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Abstract

We propose that the electroweak and flavour quantum numbers of the Standard Model
(SM) could be unified at high energies in an SUp4q ˆ Spp6qL ˆ Spp6qR anomaly-free gauge
model. All the SM fermions are packaged into two fundamental fields, ΨL „ p4,6,1q and
ΨR „ p4,1,6q, thereby explaining the origin of three families of fermions. The SM Higgs,
being electroweakly charged, necessarily becomes charged also under flavour when embedded
in the UV model. It is therefore natural for its vacuum expectation value to couple only to
the third family. The other components of the UV Higgs fields are presumed heavy. Extra
scalars are needed to break this symmetry down to the SM, which can proceed via ‘flavour-
deconstructed’ gauge groups; for instance, we propose a pattern Spp6qL Ñ

ś3
i“1 SUp2qL,i Ñ

SUp2qL for the left-handed factor. When the heavy Higgs components are integrated out,
realistic quark Yukawa couplings with in-built hierarchies are naturally generated without
any further ingredients, if we assume the various symmetry breaking scalars condense at
different scales. The CKM matrix that we compute is not a generic unitary matrix, but it
can precisely fit the observed values.
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1 Introduction

The Standard Model (SM) offers an extremely successful description of particle physics phe-

nomena at energies up to 1 TeV or so. But it is rather complicated. The existence of three

generations of matter, and the particular structure observed in their masses and mixings,

has no explanation. Even for a single generation the structure is elaborate, with 15 Weyl

fermions packaged into five irreducible representations (irreps) of a SM gauge symmetry that

is not even semi-simple, and which are cutely arranged so that all gauge anomalies cancel.

Unification is the attempt to explain this observed SM structure as a consequence of

something simpler at high energies. For a single generation of fermions, the SM embeds

snugly inside SUp5q [1], with the 15 SM fermions spread across the 10 and 5 representations.

Even more strikingly, if a right-handed neutrino is included, the one-generation SM embeds

inside Spinp10q [2,3] with all fermions packaged into a 16-dimensional spinor representation.1

However, in either scenario, flavour remains as mysterious as before; to fit the three gener-

ations that we see, the SUp5q (Spinp10q) GUT now needs six (three) irreps – no longer so

neat. Moreover, the quark and lepton masses and mixings remain arbitrary. Since flavour is

1By Spinp10q we refer to the double cover of SOp10q. Note that, while both the groups Spinp10q and
SOp10q share the same Lie algebra sop10q, only the former has 16-dimensional spinor representations.
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such a rich source of unexplained structure in the SM, it is intriguing to ask whether flavour

can be brought into a unified gauge model.

One way to do this is simply to promote flavour to a horizontal gauge symmetry, wherein

the gauge symmetry can be factored as G – GvertˆGhoriz. Here Gvert breaks to the SM gauge

symmetry, while Ghoriz breaks ultimately to nothing, giving rise to heavy gauge bosons that

mediate very weak flavour-changing forces. Curiously, if we want to fit all 48 Weyl fermions

of the SM+3νR into a single irrep R of a unified gauge group G that acts faithfully on

matter, assuming G is connected and semi-simple, then the only options are G “ Spinp10q ˆ

tSUp2q or SOp3qu with R “ p16,3q [4].2 Both these are horizontal extensions of the Spinp10q

GUT. Such horizontal gauge symmetries, and their controlled breaking, have been much-used

to explain quark mass and mixing hierarchies (see e.g. [5]). Despite these successes, horizontal

gauge symmetries are not so compelling from the unification perspective, since flavour is not

really unified with the existing SM gauge structure at all.

Nevertheless, there are interesting options for unifying flavour with the SM gauge symme-

tries in a way that cannot be factorized as Gvert ˆGhoriz, which have been little explored in

the model-building literature to date. Recently, Ref. [4] classified all semi-simple Lie algebras

g in which the SM+3νR gauge algebra can be embedded without needing extra fermions.

This list of algebras enumerates all possible ways in which flavour could be intertwined with

the SM gauge interactions, albeit subject to the (not insignificant) assumption that there are

no extra fermions beyond those of the SM+3νR.

One might judge the ‘most unified’ of these gauge algebras to be those in which the SM

fermions are packaged into the smallest number Nrep of irreps. If we moreover insist that

the flavour symmetry does not just act horizontally, thereby removing the Nrep “ 1 options

discussed above, then three gauge algebras from [4] emerge as especially interesting, each

with Nrep “ 2. These are sup12q ‘ sup2qL ‘ sup2qR, sup4q ‘ spp6qL ‘ spp6qR, and sup4q ‘

spp6qL ‘ sop6qR. In each case, the 48 Weyl fermions transform in a pair of bifundamentals

(e.g. ΨL „ p12,2,1q and ΨR „ p12,1,2q for the first case), where the former (latter)

representation contains all 24 left-handed (right-handed) SM+3νR Weyl fermions.

For each of these gauge algebras g, one can embed the3 SM gauge group GSM inside a

number of corresponding Lie groups G with LiepGq “ g. Valid choices of group are

GCF “ SUp12q ˆ SUp2qL ˆ SUp2qR (colour flavour unification), (1.1)

GEWF “ SUp4q ˆ Spp6qL ˆ Spp6qR (LR electroweak flavour unification),

G1EWF “ SUp4q ˆ Spp6qL ˆ SOp6qR (��LR electroweak flavour unification),

for which the corresponding fermion representations are properly anomaly-free (of both local

2Interestingly, there is no simple gauge group in which one can ‘faithfully embed’ the SM+3νR with all 48
Weyls sitting in a single representation – Ref. [4] amounts to a proof-by-exhaustion of this fact. Such is life!

3We are being a little cavalier in referring to ‘the’ SM gauge group. Technically, the SM could have one of
four possible gauge groups, of the form pSUp3q ˆ SUp2q ˆ Up1qq {Γ where the discrete group Γ is isomorphic
to one of t1,Z2,Z3,Z6u (see e.g. [6]). It is actually the version of the SM gauge group with Γ – Z3 that
embeds inside all three Pati–Salam-based groups written in (1.1).
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and global4 gauge anomalies). Each of these gauge groups fully intertwines a 3-family flavour

symmetry with the SM gauge symmetries in a way that doesn’t factorize,5 and so any one of

them would explain the origin of three families in terms of an underlying gauge symmetry.

Let us describe these gauge groups in a little more detail. The first two are flavour enriched

extensions of the familiar Pati–Salam group SUp4qˆSUp2qLˆSUp2qR [7], and share its left-

right symmetry. In GCF, flavour is unified with the ‘lepton-enlarged’ SUp4q colour symmetry

of Pati–Salam to an SUp12q factor, while in GEWF flavour is unified with the ‘custodially-

enlarged’ SUp2qL ˆ SUp2qR electroweak symmetry. Note that one cannot choose to extend

either electroweak SUp2qL,R factor to an SUp6qL,R, because that theory would suffer from

gauge anomalies for each SUp6q factor; it is for the Sp series of Lie groups, and not SU , that

the fundamental representation remains free of perturbative gauge anomalies.6 The fact that

the 3-family SM field content can be embedded in the group GEWF was in fact first noticed

by Kuo and Nakagawa in 1985 [10], following [11], although its consequences as a UV model

were little explored. Finally, the group G1EWF also unifies flavour with electroweak symmetry,

but not in a left-right symmetric way. Rather, in this case hypercharge Up1qY – SOp2qR is

extended via the SO series to an SOp6qR factor. Each of the gauge groups in (1.1) has a

generalisation to an arbitrary number of SM generations.7

We here initiate the study of gauge-flavour unified symmetries such as GCF, GEWF and

G1EWF as viable theories of flavour. To study the Yukawa sector in any of these gauge models,

the first step is to embed the SM Higgs in representations ‘HG’ of G. Certainly in the case

of electroweak flavour unification, this means that the Higgs, being charged under the SM

electroweak symmetry, necessarily acquires flavour quantum numbers; the minimal option is

to embed the p1,2,2q ‘ p15,2,2q Higgs fields of the one-family Pati–Salam model inside the

representations HG “ p1,6,6q‘p15,6,6q of GEWF. Knowing that the SM flavour symmetries

are broken only by the Yukawa couplings of the fermions to the Higgs, where they are broken

badly, such a flavour-distinguishing Higgs field seems ideally suited to explaining the mass and

mixing hierarchies. Indeed, a generic potential for HG that breaks electroweak symmetry will

simultaneously break the flavour symmetries; one naturally expects a Higgs that couples only

to one family, which we should take to be the third. Thus, for GEWF and G1EWF, one swiftly

arrives at a model in which only the third family fermions are massive at the renormalisable

level (§2), which is an agreeable zeroth order postdiction.

4Freedom from global gauge anomalies is rather subtle to prove, and can be checked by computing an
appropriate bordism group. We include the relevant calculation for GEWF in Appendix A. The other cases
are somewhat similar.

5Equivalently, the generators of flavour ‘rotations’ do not commute with the generators of the extended
SM gauge symmetry.

6On the other hand, the fundamental representation of any Sp group, like Spp2q – SUp2q, suffers from a
Z2-valued global anomaly [8] – see also Appendix A. Ref. [9] also considers the Sp series of Lie groups to be
the natural generalisation of the SM’s SUp2qL symmetry.

7For nf generations of SM fermions, the relevant embeddings in each case are: (a) colour and complex
SUpnf q flavour symmetry are unified via the natural embedding of SUp4qˆSUpnf q ãÑ SUp4nf q; (b) Spp2qLpRq
and real SOpnf q flavour symmetry are unified via the natural embedding Spp2q ˆ SOpnf q ãÑ Spp2nf q; (c)
SOp2qR hypercharge and real SOpnf q flavour symmetry are unified via the natural embedding SOp2qR ˆ
SOpnf q ãÑ SOp2nf q. See Refs. [12,13,10,4].
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SUp4q ˆ Spp6qL ˆ Spp6qR

SUp3q ˆ
ś

i SUp2qL,i ˆ Spp4qR,12 ˆ Up1qR

SUp3q ˆ SUp2qL ˆ Up1qY

SUp3q ˆ Up1qem

ΛL, ΛR

ΛH
[Heavy Higgses integrated out]

εΛH

v

xSLy „ p1,14,1q xSRy „ p4,1,6q

xΦLy „ p1,14,1q xΦRy „ p1,1,14q

xH1y „ p1,6,6q xH15y „ p15,6,6q

Figure 1: The symmetry breaking scheme in our model. At high scales ΛL and ΛR a pair of scalars
condenses to break the electroweak-flavour-unified model down to an intermediate gauge theory, which
features a deconstructed SUp2qL symmetry. At a lower scale ΛH , the heavy components of the Higgs
fields H1 and H15 are integrated out. At a slightly lower scale again, indicated by εΛH , the Gint

theory is broken by the vevs of two more scalars down to the SM. The quantum numbers of all these
scalars are recorded in Table 2.

In this paper we focus on the left-right symmetric option GEWF,8 and we find that such

a gauge theory can provide an elegant explanation of the quark masses and mixing angles

observed in Nature. The rough idea is simple, requiring just two symmetry breaking steps

and no additional fermions beyond the SM, as follows.

• A pair of UV scalar fields SL and SR acquire non-zero vacuum expectation values

(vevs) at high scales ΛL and ΛR that first break GEWF down to a family non-universal

subgroup Gint, where GSM Ă Gint Ă GEWF. (See Fig. 1 for the specific symmetry

breaking pattern that we here study.) The vev of the Higgs fields, which start off in

representations H1 „ p1,6,6q and H15 „ p15,6,6q, emerge in representations of Gint

that couple only to the third family.

• The other Higgs components, which couple to lighter families, are presumed heavy and

are integrated out at a high scale ΛH ă ΛL,R.

• Two more scalars ΦL and ΦR must then acquire vevs at lower scales „ εΛH , where

ε ă 1 indicates a number of parameters that denote small scale separations needed in

the model, which break Gint Ñ GSM. Now, by including GEWF-invariant interactions

between H1, H15, and ΦL,R in the scalar potential of the UV model, we can compute

8We nonetheless expect that most of our constructions and fermion mass predictions could be adapted to
the G1EWF variant.
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the tower of higher-dimension operators tOdą4
i u appearing in the Gint-invariant effective

field theory (EFT), that are generated by integrating out the heavy Higgs components.

Most importantly, there are Yukawa-like operators for the light fermions, involving

insertions of components of ΦL,R.

Once ΦL,R acquire their vevs, the higher dimension operators Odą4
i match onto Yukawa

couplings in the SM, with hierarchies determined by the EFT expansion parameters „ ε.

Importantly, we show that there is enough freedom in the model to fit all quark masses and

mixing angles to the data (as well as the charged lepton masses – we postpone a discussion of

neutrino mass generation for future work). We emphasize that no additional scalars beyond

those strictly necessary to break GEWF Ñ Gint Ñ GSM are needed, and no extra fermions

are needed whatsoever.

The big trade off, of course, like in any GUT (and in many UV models that seek to explain

flavour), is that one must swallow a large scalar sector with a tuned potential. Assuming

that the extra components of the Higgs fields are heavy is reminiscent of the well-known

‘doublet-triplet problem’ that afflicts GUTs, although the problem is less severe here because

the extra states do not lead to proton decay – this also means the high scale ΛH can be much

lower than the traditional GUT scale. Moreover, to generate the mass hierarchies requires

a small separation of the two symmetry breaking scales by an order of magnitude or two.

Recent work [14] at least suggests that maintaining such a separation of scales, in the context

of flavour model building, can be radiatively stable. And, of course, the presence of many

heavy scalars that couple to the Higgs would exacerbate the electroweak hierarchy problem

– which is essentially an unavoidable problem in models with enlarged symmetries in the

UV. All of these requirements place constraints on the coefficients appearing in the scalar

potential of the UV model, a detailed study of which is beyond the scope of this paper.

Finally, we remark that a further hint for high scale gauge-flavour unification comes from

an idea in quantum gravity, which suggests that there are no global symmetries in the UV;

either a symmetry is gauged, as would be the fate of the SM’s flavour symmetries if there were

high scale electroweak flavour unification, or it is explicitly broken. Well known arguments

from black hole heuristics gave rise to this idea (going back to [15]), which has subsequently

been proven in the context of holography [16,17], and in perturbative string theory [18].

The structure of this paper is as follows. In §2 we review some basic facts about the

Spp6q Lie group and introduce some helpful notation, before setting out the symmetries and

couplings in the UV model. In §3 we explain the symmetry breaking pattern in detail. We

show in detail how the SM quark masses and mixings are generated in §4. Finally, we conclude

and discuss some interesting future directions in §5.
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2 Electroweak flavour unification at high energies

In this paper we propose a gauge-flavour unified model based on the UV gauge group

GEWF :“ SUp4q ˆ Spp6qL ˆ Spp6qR . (2.1)

Since the Lie group Spp6q may be unfamiliar to some model-builders, we begin by recalling

its definition9 and setting out some useful conventions.

2.1 Notation and conventions

The matrix group Spp6q consists of 6 ˆ 6 special unitary matrices U such that UTΩU “ Ω,

where Ω “
´

0 I3
´I3 0

¯

. The Lie algebra of Spp6q, denoted spp6q, is

spp6q :“ tX PM6ˆ6pCq | ΩX “ ´XTΩ, X “ X:,TrpXq “ 0u . (2.2)

The dimension of spp6q is 21.

We denote by ta1, a2, a3, a4u the standard basis for the vector space V4 – C4 acted on by

the fundamental representation 4 of SUp4q, and the basis for the conjugate representation

4̄ by ta˚1 , a
˚
2 , a

˚
3 , a

˚
4u. The basis for the vector space VL – C6 acted on by the fundamental

representation 6 of Spp6qL is denoted tb1, b2, b3, b4, b5, b6u, and the basis for VR – C6 acted on

by the fundamental of Spp6qR is denoted tc1, c2, c3, c4, c5, c6u. For example, in this notation

the matrix Ω above, for Spp6qL, takes the form

Ω “ b:1 ^ b
:
4 ` b

:
2 ^ b

:
5 ` b

:
3 ^ b

:
6, (2.3)

where tb:iu is the dual basis to tbiu. Complex conjugation p˚q is defined throughout to be

the complex-linear map ai ÞÑ a˚i , bi ÞÑ Ωjibj and ci ÞÑ Ωjicj . A real field is one for which

φ “ φ˚. With the exception of Weyl fermions, we use a ‘bar’ (e.g. φ̄) to indicate a distinct

symbol, not complex conjugation. We will use it, nevertheless, such that if a reality condition

is imposed on the relevant object then φ̄ “ φ˚.

Inner products: In what follows, we make use of two inner products. The first, which we

denote x¨, ¨y1, is an inner product on the complex vector space VL b VR, defined as

xA,By1 “ Tr pΩTA:ΩBq . (2.4)

The second, which we denote x¨, ¨y15, is an inner product on V4 b V
˚

4 b VL b VR, defined as

xA,By15 “
ÿ

ij

Tr pΩTA:ijΩBjiq , (2.5)

9Since there are a number of conventions in use for the symplectic groups, we emphasize that in our
convention Spp2q – SUp2q, with Spp2Nq having a fundamental representation of complex dimension 2N .
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where the sum is over SUp4q indices, and the Tr is over the Spp6q indices. The inner products

satisfy the additional relations

xA,Bya “ xB
˚, A˚ya , a P t1, 15u. (2.6)

Diagrams: It will be convenient when we come to draw Feynman diagrams to introduce a

pictorial notation for the ‘flow’ of Spp6q indices. We thus introduce solid red lines marked with

1, 2, or 3 arrowheads to denote specific contractions of Spp6qL fundamental representations

x and y, as follows:

“

x y
‰

„ x1y4,
“

x y
‰

„ x4y1,

“

x y
‰

„ x2y5,
“

x y
‰

„ x5y2,

“

x y
‰

„ x3y6,
“

x y
‰

„ x6y4. (2.7)

The significance of the number of arrowheads is that it will match the family index of the

SM fermion. We introduce analogous lines for Spp6qR, with the exception that solid red lines

p q are replaced by dashed blue lines p q.

2.2 Embedding the SM particles

We now describe the basic elements of the model. Firstly, we take the SM gauge group to be

GSM :“
SUp3q ˆ SUp2qL ˆ Up1qY

Z3
. (2.8)

Here, the Z3 quotient is generated by the element pω,1, e2πi{3q P SUp3q ˆ SUp2qL ˆ Up1qY ,

where ω is the generator of the Z3 centre of SUp3q such that ω3 “ 1 P SUp3q. This version

of the SM gauge group embeds inside the UV gauge group (2.1).10 As described in the

Introduction, the GEWF symmetry unifies the SM electroweak gauge symmetries with the SM

flavour symmetries that act on the 3 generations of matter, while simultaneously unifying

quarks and leptons via the enlarged colour group SUp4q.

All the eighteen fermion multiplets of the SM, including three right-handed neutrinos

10To see that it is the particular group (2.8) that embeds inside GEWF, first consider the map β : SUp3q ˆ

SUp2qL ˆ Up1qY Ñ SUp4q ˆ SUp2qL ˆ SUp2qR : ph, gL, αq ÞÑ
´

`

αh 0
0 α´3

˘

, gL,
´

α3 0
0 α´3

¯¯

. This map is not

injective and so not an embedding [19]. Rather, kerβ – Z3, generated by the element
´

e´2πi{313, 1, e
2πi{3

¯

.

Quotienting by kerβ, we arrive at an injective map GSM ãÑ SUp4qˆSUp2qLˆSUp2qR, which can be composed
with the injection SUp4q ˆ SUp2qL ˆ SUp2qR ãÑ SUp4q ˆ Spp6qL ˆ Spp6qR to embed GSM in GEWF.
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νR,f , are packaged together into just two Weyl fermion fields,

ΨL „ p4,6,1q “ Qi,kf ai b b3k`f ` L
k
fa4 b b3k`f

“ Di
L,fai b bf ` U

i
L,fai b b3`f ` EL,fa4 b bf ` νL,fa4 b b3`f ,

ΨR „ p4,1,6q “ Di
R,fai b cf ` U

i
R,fai b c3`f ` ER,fa4 b cf ` νR,fa4 b c3`f ,

(2.9)

each of which has 24 components. The index i P t1, 2, 3u labels colour, with the fourth

component of ai being reserved for leptons, k P t0, 1u labels SUp2qL isospin, and f P t1, 2, 3u

labels the family.

The SM Higgs field is embedded in a pair of complex UV scalar fields,

H1 „ p1,6,6q, H15 „ p15,6,6q, (2.10)

with which we write down Yukawa couplings in the renormalisable UV theory, schematically

Lyuk “ y1ΨLH1ΨR ` y15ΨLH15ΨR ` y1ΨLH
˚
1 ΨR ` y15ΨLH

˚
15ΨR ` h.c. (2.11)

Precisely, we can use the inner products (2.4) and (2.5) to indicate how the group indices are

contracted:

Lyuk “
ÿ

aPt1,15u

"

yaxpΓaΨRΨLq
:, Haya ` yaxHa, pΓaΨRΨLq

T ya (2.12)

`y˚axHa, pΓaΨRΨLq
:ya ` y

˚
axpΓaΨRΨLq

T , Haya

*

,

where the Γ1 “ Tr4 indicates a trace of SUp4q indices and Γ15 is the identity.

Since the Higgs fields transform in the bifundamental representation of the flavour-

enriched electroweak symmetry Spp6qL ˆ Spp6qR, a generic electroweak symmetry breaking

vev will also pick up a direction in flavour space. The vev directions can be such that the

renormalisable Yukawa couplings (2.12) only give masses to one family, which we are free to

identify with the third family. Specifically, the Higgs vevs are

xH1y “ v1b3 b c6 ´ v1b6 b c3 , (2.13)

xH15y “ pa1 b a
˚
1 ` a2 b a

˚
2 ` a3 b a

˚
3 ´ 3a4 b a

˚
4q b pv15b3 b c6 ´ v15b6 b c3q , (2.14)

where v1, v1, v15, and v15 are four independent scales. (If one wants to force Ha to be real,

then take va “ v˚a .)

Thus, in the renormalisable UV theory, only the third family fermions are massive. To

8



ΨL ΨR

xHay

Figure 2: The vevs (2.13–2.14) of the Higgs fields H1 and H15 couple only to the third family
fermions, because of their direction in Spp6qL ˆ Spp6qR space.

leading order, their masses are

mt « py1v1 ` y1v
˚
1 q ` py15v15 ` y15v

˚
15q,

mb « py1v1 ` y1v
˚
1q ` py15v15 ` y15v

˚
15q,

mτ « py1v1 ` y1v
˚
1q ´ 3py15v15 ` y15v

˚
15q,

(2.15)

mimicking the mass formulae of the one-family Pati–Salam model. In this model, unlike a

flavour-blind Pati–Salam model, the light families are strictly massless at the renormalisable

level. In §4 we will see how the light masses can be generated at a lower scale by higher-order

operators in the effective theory.

In principle, one neutrino also acquires a renormalisable Dirac mass, but we assume that

a form of seesaw mechanism sends the physical neutrino masses down to the eV scale. We

postpone a discussion of neutrino masses for future work.

3 Symmetry breaking pattern

We next discuss the breaking of the UV gauge symmetry GEWF down to GSM. This requires

many scalar fields, and we choose what we believe to be an almost-minimal set of scalars that

will do the job – see Table 2. We suppose that these scalars acquire their vevs at different

energy scales, resulting in a sequential breaking of GEWF down to GSM via an intermediate

effective field theory (EFT) that we describe in this Section.

3.1 Flavour deconstruction in the intermediate EFT

The group SUp4qˆSpp6qLˆSpp6qR has many subgroups that contain GSM, and so there are

many possible paths by which one can break GEWF Ñ GSM. That said, the breaking of the

SUp4q colour factor is essentially constrained to be as it is in the one-family Pati–Salam case,

i.e. via SUp3q ˆ Up1qB´L where Up1qB´L must ultimately combine with a Up1q subgroup

of Spp6qR to give hypercharge. Thus, the freedom we have in breaking GEWF Ñ GSM comes

from the plethora of subgroups of the family-enriched Spp6qL ˆ Spp6qR symmetry.

One intriguing possibility, which is the route we explore in this paper, exploits the fact that

Spp6qL contains a ‘flavour-deconstructed’ electroweak symmetry group, SUp2qL,1ˆSUp2qL,2ˆ

9



SUp2qL,1 ˆ SUp2qL,2 ˆ SUp2qL,3

SUp2qL

Spp6qL

D
eco

n
stru

ction
R

eu
n

ifi
cation

IR

Intermediate

UV

Figure 3: The universal SUp2qL weak interactions that we see at low energies could be deconstructed
according to flavour at higher energies, before being ultimately re-unified with flavour in the UV, via
an Spp6qL symmetry.

SUp2qL,3 Ă Spp6qL,11 where SUp2qL,i denotes the usual SUp2qL factor of the SM but acting

only on the ith family. Breaking Spp6qL down to this subgroup can be achieved using a scalar

field in the antisymmetric 2-index 14, the joint-smallest dimension irrep of Spp6qL after the

fundamental. We remark that Ref. [10] made use of a similar symmetry breaking pattern.

We thus suppose that at a high scale ΛL a real scalar field SL „ p1,14,1q acquires the

vev

xSLy “ ΛL pb1 ^ b4 ´ b3 ^ b6q , (3.1)

where we use ‘^’ to denote the antisymmetrization over Spp6qL fundamental indices.12 This

induces the symmetry breaking

Spp6qL Ñ SUp2qL,1 ˆ SUp2qL,2 ˆ SUp2qL,3 . (3.2)

Thus, at intermediate energies, each SM family interacts with its own set of SUp2qL,i weak

gauge bosons. There are 12 broken generators, and the corresponding heavy gauge bosons

consist of three sets of flavour-changing SUp2qL triplets W 1a, plus three additional SM singlet

Z 1 bosons.

As an aside, we remark that similar ‘flavour-deconstructed’ SM gauge symmetries have

recently been used as part of a larger ‘Pati–Salam cubed’ symmetry
ś3
i“1 SUp4qiˆSUp2qL,iˆ

SUp2qR,i [20–22], to explain both fermion masses and the B physics anomalies recently mea-

11The same breaking pattern, Spp2nf q Ñ
śnf

i“1 SUp2qL,i Ñ SUp2qL, can be realised for any number nf of
SM generations.

12In fact, one achieves the same symmetry breaking pattern for any non-zero vev in the vector space spanned
by (3.1) and b3 ^ b6 ´ b2 ^ b5, so this is a rather generic (as well as minimal) breaking pattern.
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UV fermion Rep Intermediate fermion Rep

ΨL p4,6,1q Q1 r3, p2,1,1q,1s1
Q2 r3, p1,2,1q,1s1
Q3 r3, p1,1,2q,1s1
L1 r1, p2,1,1q,1s´3

L2 r1, p1,2,1q,1s´3

L3 r1, p1,1,2q,1s´3

ΨR p4,1,6q QR,12 r3, p1,1,1q,4s1
LR,12 r1, p1,1,1q,4s´3

U3 r3, p1,1,1q,1s4
D3 r3, p1,1,1q,1s´2

E3 r1, p1,1,1q,1s´6

νR,3 r1, p1,1,1q,1s0

Table 1: Representations of the UV fermions under GEWF “ SUp4qˆSpp6qLˆSpp6qR (left), and how
these decompose under the symmetry breaking GEWF Ñ SUp3q ˆ

ś

i SUp2qL,i ˆ Spp4qR,12 ˆ Up1qR
that occurs at the high scale ΛH .

sured by LHCb. In these works, a fifth dimension punctuated by 4d matter branes is a

possible origin of such flavour deconstruction. Here we see that deconstruction of SUp2qL
could alternatively emerge from a 4d gauge model in which flavour and SUp2q symmetry

are eventually re-unified deeper in the UV.13 We summarize this qualitative picture in the

cartoon in Fig. 3.

We must also decide how to break the Spp6qR symmetry. One well-motivated option is

to break Spp6qR alongside SUp4q in such a way that the first two families of right-handed

fields remain unified. (The breaking of degeneracy in the 1-2 Yukawa sector will then arise

in the next symmetry breaking step i.e. the breaking down to the SM.) To achieve this, the

minimal choice is to take a complex scalar field SR „ p4,1,6q which also gets a vev at a high

scale ΛR, which need not coincide with ΛL:

xSRy “ ΛR a
˚
4 b c3 . (3.3)

This vev triggers the high-scale symmetry breaking

SUp4q ˆ Spp6qR Ñ SUp3q ˆ Spp4qR,12 ˆ Up1qR , (3.4)

where the right-handed fermions in the first and second family remain packaged into funda-

mental reps of Spp4qR,12. Here Up1qR acts as hypercharge on the third family and on the

left-handed fermions; for the light right-handed fermions, SM hypercharge will emerge as a

linear combination of Up1qR and a Up1q subgroup of Spp4qR,12. A total of 17 heavy gauge

bosons result from this breaking: one U1 vector leptoquark, in the representation p3̄,1q´4,

13We emphasize that a flavour-deconstruction of the SUp4q factor is needed if we want to explain the B
physics anomalies in PS3 models, since one needs a U1 leptoquark coupled predominantly to the third family.
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three charged Z˘ bosons, that is, complex vector bosons in the representation p1,1q6, and

five (real) Z 1 bosons.

Putting (3.2) and (3.4) together, the UV symmetry GEWF is broken at high scales ΛL,R
by xSLy and xSRy down to an intermediate gauge symmetry,

GEWF
ΛL,ΛR
ÝÝÝÝÑ Gint :“ SUp3q ˆ

ź

i

SUp2qL,i ˆ Spp4qR,12 ˆ Up1qR . (3.5)

The decomposition of the SM fermion fields under Gint is recorded in Table 1. The Higgs

fields H1 and H15 decompose into a multitude of scalars under Gint, viz.

H1,15 ÞÑr1, p2,1,1q,1s´3 ‘ r1, p1,2,1q,1s´3 ‘ r1, p1,1,2q,1s´3

‘ r1, p2,1,1q,1s3 ‘ r1, p1,2,1q,1s3 ‘ r1, p1,1,2q,1s3

‘ r1, p2,1,1q,4s0 ‘ r1, p1,2,1q,4s0 ‘ r1, p1,1,2q,4s0

‘ tSUp3q triplets and octets for H15u . (3.6)

The underlined components, which we name

H1 „ r1, p1,1,2q,1s´3, H1 „ r1, p1,1,2q,1s`3 , (3.7)

H15 „ r1, p1,1,2q,1s´3, H15 „ r1, p1,1,2q,1s`3 , (3.8)

will contain the physical SM Higgs doublet; these components remain light and acquire

the EWSB vev (2.13–2.14). By construction, they are charged only under the third family

symmetry factors SUp2qL,3 and Up1qR.

The other Higgs components written in (3.6), i.e. those not underlined, do not acquire

vevs, and are assumed to be heavy with masses

MH « ΛH ă ΛL,R, (3.9)

where ΛH defines an EFT matching scale at which the heavy Higgses are integrated out.

From their representations under the flavour-deconstructed Gint symmetry, we see that there

are Higgs components that couple to each pair of SM families (one left-handed, one right-

handed); this will be important in §4.

3.2 Breaking to the SM

The intermediate gauge symmetry Gint must be broken down to GSM, and this occurs at

energy scales below ΛH . We refer the reader back to Fig. 1, which summarizes the overall

symmetry breaking scheme for our model.

A strikingly minimal sector consisting of two scalars ΦL „ p1,14,1q and ΦR „ p1,1,14q,

where ΦL is real and ΦR is complex, will do the job. The vev of ΦL serves to ‘link together’

the deconstructed SUp2qL,i factors, as was appreciated in Ref. [10]. In terms of the Spp6qL

12



GEWF irrep Vev direction Gint irrep(s) of vev

SL p1,14,1q b1 ^ b4 ´ b3 ^ b6 NA
SR p4,1,6q a˚4 b c3 NA

ΦL p1,14,1q ε12
L pb1 ^ b5 ` b2 ^ b4q ` ε

23
L pb2 ^ b6 ` b3 ^ b5q φ12

L „ r1, p2,2,1q,1s0,
φ23
L „ r1, p1,2,2q,1s0

ΦR p1,1,14q ε23
R pw23c2 ^ c6 ` w23c3 ^ c5q φ23

R „ r1, p1,1,1q,4s`3,

`ε12
R pw12c1 ^ c5 ` w12c2 ^ c4q φ

23
R „ r1, p1,1,1q,4s´3,
φ12
R „ r1, p1,1,1q,5s0

H1 p1,6,6q v1b3 b c6 ´ v1b6 b c3 Ha „ r1, p1,1,2q,1s`3,

H15 p15,6,6q pai b a
˚
i ´ 3a4 b a

˚
4q b pv15v3 b c6 ´ v15b6 b c3q Ha „ r1, p1,1,2q,1s´3

Table 2: The set of scalar fields needed to break the UV symmetry SUp4q ˆ Spp6qL ˆ Spp6qR
eventually down to SUp3qC ˆUp1qem. We record the directions of the corresponding vevs in SUp4qˆ
Spp6qL ˆ Spp6qR space, where ai, bi, and ci index the fundamental representations of SUp4q, Spp6qL,
and Spp6qR respectively, as well as the representations of the intermediate gauge symmetry SUp3q ˆ
ś

i SUp2qL,i ˆ Spp4qR,12 ˆ Up1qR in which the vevs sit.

indices, we choose the vev to be

xΦLy “ ε23
L ΛH pb2 ^ b6 ` b3 ^ b5q
looooooooooooooomooooooooooooooon

xφ23L y

` ε12
L ΛH pb1 ^ b5 ` b2 ^ b4q
looooooooooooooomooooooooooooooon

xφ12L y

, (3.10)

where we have indicated how, in the Gint-invariant intermediate theory, this vev ends up

in two components that we denote by lower case symbols, in the representations φ23
L „

r1, p1,2,2q,1s0 and φ12
L „ r1, p2,2,1q,1s0. The εijL are assumed to be small parameters (both

ă 1), that each sets a separation of scales relative to the EFT matching scale ΛH . The vev

(3.10) breaks
ś3
i“1 SUp2qL,i Ñ SUp2qL, giving two more SUp2qL triplets of W 1a bosons.

The vev of the complex scalar field ΦR, written in terms of Spp6qR indices, is

xΦRy “ ΛHε
23
R w23c2 ^ c6

looooooooomooooooooon

φ23R

`ΛHε
23
R w23c3 ^ c5

looooooooomooooooooon

φ
23
R

`ΛHε
12
R pw12c1 ^ c5 ` w12c2 ^ c4q

loooooooooooooooooooomoooooooooooooooooooon

φ12R

, (3.11)

where we take w23w23 “ 1 and w12w12 “ 1. The Gint components that acquire the vev

are in the representations φ23
R „ r1, p1,1,1q,4s`3, φ

23
R „ r1, p1,1,1q,4s´3, and φ12

R „

r1, p1,1,1q,5s0.14 Again, the parameters ε23
R and ε12

R encode ratios of scales with respect

to ΛH , and are assumed to be ă 1. The vev (3.11) breaks Spp4qR,12 ˆ Up1qR Ñ Up1qY .

This gives rise to 10 heavy gauge bosons, decomposing as three (complex) Z˘ bosons in the

14For completeness, the scalar fields ΦL and ΦR, which transform in the 14-dimensional irreps of the UV
Spp6qL and Spp6qR symmetries respectively, themselves decompose under the high scale symmetry breaking
step GEWF Ñ Gint as

ΦL ÞÑr1, p1,1,1q,1s
‘2
0 ‘ r1, p2,2,1q,1s0 ‘ r1, p2,1,2q,1s0 ‘ r1, p1,2,2q,1s0 ,

ΦR ÞÑr1, p1,1,1q,1s0 ‘ r1, p1,1,1q,5s0 ‘ r1, p1,1,1q,4s´3 ‘ r1, p1,1,1q,4s3 . (3.12)

The underlined components are those that pick up vevs, as detailed in the main text.
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Heavy scales (ΛL,R) Intermediate scale (εΛH)

Name GSM representation Number (origin) Number (origin)

Charged Z˘ p1,1q6 3 (SR) 3 (ΦR)
U1 leptoquark p3,1q´4 1 (SR) ´

W 1a triplet p1,3q0 pRq 3 (SL) 2 (ΦL)
Real Z 1 p1,1q0 pRq 3 (SL), 5 (SR) 4 (ΦR)

Table 3: The decomposition of the 45 heavy gauge bosons in our theory, organised by the scales at
which they obtain their mass.

representation p1,1q6, plus four neutral (real) Z 1 bosons.

The end result of these breakings induced by ΦL and ΦR is the SM. To summarize, the

scalar sector of the model is recorded in Table 2, and we list all the 45 heavy gauge bosons

that appear in our spectrum, together with the scales that set their masses, in Table 3.

4 Quark masses and mixings

In this Section we show that realistic masses and mixings for the light quarks are naturally

generated within the model we have set out, without any additional fields required. The

idea is the following. When the heavy Higgs components are integrated out at the scale

MH « ΛH , higher-dimensional Yukawa-like operators are generated in the Gint-invariant

intermediate EFT which involve insertions of the symmetry breaking fields ΦL and ΦR.

Once ΦL,R acquire their vevs (3.10–3.11), which (a) link together different families due to their

Spp6qL,R orientation, and (b) are suppressed with respect to MH by small scale hierarchies (of

order 10´1–10´2), hierarchical Yukawa matrices are generated that have enough parametric

freedom to account for the quark mass and mixing data. The built-in hierarchies mean the

data are reproduced for ‘Op1q’ couplings in the UV model.

By writing down a complete UV model and explicitly integrating out the relevant heavy

degrees of freedom, we also ensure that no baryon number violating operators are generated

in the IR that would trigger proton decay. One can straightforwardly see why this is the

case, without going into details, by the following argument. All terms present in our UV

lagrangian will contract SUp4q indices using one of the two inner products x¨, ¨ya defined in

§2.1 – this is made explicit in our notation, e.g. in Eq. (4.9) for the scalar potential. Hence,

the EFT will not inherit any contractions of SUp3q quark indices using the Levi-Civita tensor

εijk. Since proton decay generically requires such contractions, it is absent from our model.

As is the case in a renormalisable model with the Pati–Salam gauge group, but unlike in

the SUp5q model, a similar argument indicates the absence of proton decay mediated by the

vector gauge bosons.
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4.1 EFT operators

Before we dive into the details, it is helpful to first derive the fermion mass matrix hierarchies

that we expect based on EFT reasoning alone. Using the EFT fields present in the Gint-

invariant theory, the leading Yukawa-like operators in the EFT expansion are

L Ą
ÿ

aPt1,15u

´

φ23L φ
12
L

Λ2
H

Q1
φ23L
ΛH
Q2 Q3

¯

#

´

HaU1
a `H˚aU

1
a

¯ 1

Λ2
H

¨

˚

˚

˚

˝

φ12R φ
23
R

φ12R φ
23˚
R

φ12˚R φ23R

φ12˚R φ
23˚
R

˛

‹

‹

‹

‚

QR,12

`

´

HaU2
a `H˚aU

2
a

¯ 1

ΛH

˜

φ23R

φ
23˚
R

¸

QR,12

`

´

HaU3
a `H˚aU

3
a

¯

U3

+

. (4.1)

This formula may appear complicated, and requires some explanation. Firstly, the three

lines of the formula list operators that populate the three columns of the Yukawa matrix.

The EFT coefficients are contained in matrices denoted U ia, i P t1, 2, 3u, and their ‘barred’

versions – thus, the family index i indicates the column number of the Yukawa matrix. Now,

each of these coefficient matrices has 3 rows, which are contracted with the three columns

of
´

φ23L φ
12
L

Λ2
H

Q1
φ23L
ΛH
Q2 Q3

¯

. The columns of the coefficient matrices, on the other hand,

are contracted with the column vectors containing combinations of φR fields that we have

written explicitly. Thus, U1
a and U1

a are 3-by-4 matrices, U2
a and U2

a are 3-by-2 matrices, and

U3
a and U3

a are 3-by-1 matrices. Based only on the EFT, we would generically expect all these

matrices to be populated by arbitrary Op1q numbers.

Similarly for the down-type quarks we have

L Ą
ÿ

aPt1,15u

´

φ23L φ
12
L

Λ2
H

Q1
φ23L
ΛH
Q2 Q3

¯

#

´

HaD1
a `H˚aD

1
a

¯ 1

Λ2
H

¨

˚

˚

˚

˝

φ12R φ
23
R

φ12R φ
23˚
R

φ12˚R φ
23
R

φ12˚R φ23˚R

˛

‹

‹

‹

‚

QR,12

`

´

HaD2
a `H˚aD

2
a

¯ 1

ΛH

˜

φ
23
R

φ23˚R

¸

QR,12

`

´

HaD3
a `H˚aD

3
a

¯

D3

+

, (4.2)

for another set of a priori Op1q coefficient matrices Di
a and their ‘barred’ versions, and a very
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similar set of operators for the charged lepton Yukawas,

L Ą
ÿ

aPt1,15u

´

φ23L φ
12
L

Λ2
H

L1
φ23L
ΛH
L2 L3

¯

#

´

HaE1
a `H˚aE

1
a

¯ 1

Λ2
H

¨

˚

˚

˚

˝

φ12R φ
23
R

φ12R φ
23˚
R

φ12˚R φ
23
R

φ12˚R φ23˚R

˛

‹

‹

‹

‚

LR,12

`

´

HaE2
a `H˚aE

2
a

¯ 1

ΛH

˜

φ
23
R

φ23˚R

¸

LR,12

`

´

HaE3
a `H˚aE

3
a

¯

E3

+

. (4.3)

When the scalar fields ΦL,R acquire their vevs at the lower scale, breaking Gint Ñ GSM in

the process, these operators match onto Yukawa couplings for all three families, with lighter

family Yukawas coming from higher order operators in the EFT expansion.

To see this, it is first convenient to gather together combinations of the EFT coefficients,

weighted by the factors wij and wij that appear in the vev (3.11) of ΦR. We thus define

3-by-3 matrices

Ua :“

¨

˝U1
a

¨

˚

˝

w12w23

w12w
˚
23

w˚12w23

w˚12w
˚
23

˛

‹

‚

, U2
a

´w23

w˚23

¯

, U3
a

˛

‚ ,

Da :“

¨

˝D1
a

¨

˚

˚

˝

w12w23

w12w
˚
23

w˚12w23

w˚12w
˚
23

˛

‹

‹

‚

, D2
a

ˆ

w23

w˚23

˙

, D3
a

˛

‚ ,

Ea :“

¨

˝E1
a

¨

˚

˚

˝

w12w23

w12w
˚
23

w˚12w23

w˚12w
˚
23

˛

‹

‹

‚

, E2
a

ˆ

w23

w˚23

˙

, E3
a

˛

‚ , (4.4)

and define Ua, Da, and Ea analogously i.e. with the same structure in terms of wij and wij ,

just replacing each U ia by U ia etc. Once the Higgs fields Ha and Ha also acquire their vevs,

we obtain the following mass matrices for the SM quarks:

?
2Mu “

ÿ

aPt1,15u

diagpε23
L ε

12
L , ε

23
L , 1qpvaUa ` v˚aUaqdiagpε23

R ε
12
R , ε

23
R , 1q , (4.5)

?
2Md “

ÿ

aPt1,15u

diagpε23
L ε

12
L , ε

23
L , 1qpvaDa ` v

˚
aDaqdiagpε23

R ε
12
R , ε

23
R , 1q . (4.6)

The mass matrix
?

2M e for the charged leptons is given by a similar formula to
?

2Md, except

that the a “ 15 components are weighted in the sum by an overall factor of ´3. Writing

this out explicitly, we find all three SM fermion mass matrices have the following hierarchical

16



structure

Mf

v
„

¨

˚

˝

ε12
L ε

23
L ε

12
R ε

23
R ε12

L ε
23
L ε

23
R ε12

L ε
23
L

ε23
L ε

12
R ε

23
R ε23

L ε
23
R ε23

L

ε12
R ε

23
R ε23

R 1

˛

‹

‚

. (4.7)

Note that in the limit where ε12
L Ñ 1 and ε12

R Ñ 1, the upper-left 2-by-2 block has the

same suppression factor. Thus, the parameters ε12
L and ε12

R roughly act as spurions for SUp2q

symmetries acting on the first two generations of left- and right-handed fields respectively.

Not surprisingly, the ε12
L ‘spurion’ will end up being of order the Cabibbo angle if we are to

accurately model the observed quark masses and mixings in the 1-2 sector, as we see in §4.3.

4.2 EFT matching formulae

To see how these EFT operators are explicitly generated in our model without needing any

additional fields, and to calculate the Wilson coefficients U1,15, D1,15, and E1,15, we must first

discuss the scalar potential of the UV model. Since the fields SL and SR, which recall trigger

the first high scale symmetry breakings, are integrated out before the heavy components of

the Higgs fields, we focus on the interactions between the Higgs fields H1,15 and the symmetry

breaking scalars ΦL,R.

Interactions between H1,15 and the ΦL,R fields are governed by SUp4qˆSpp6qLˆSpp6qR
gauge invariance, and there is a large number of independent terms that can be written down

and so should be included. Before we do so, we think it important to clarify that, while

quartic terms of the form „ H4
a are of course required to generate the third-family aligned

electroweak symmetry breaking vevs (2.13–2.14), we do not include them here because they

do not affect the Yukawa-like operators that are generated upon integrating out the heavy

Higgs components (to the order we are working).15 Similarly, we do not include quartic terms

involving only ΦL and ΦR.

Thus, for our purpose, a sufficient set of terms in the potential are the following interac-

15As we observed in the Introduction, it is clear that the scalar potential of our model will need tuning in
order to explain the particular vevs and masses of the scalars that we require. For now, we point out that the
‘alignment’ of the Higgs vev with the third-family direction (which is first originates with the vev of SR) does
not require tuning. To justify this, consider the following interactions between H1 and SL{R:

MHxH1, H1y1 ` α1xH1, SLΩH1y1 ` α2xH1, H1ΩSRS
:

Ry1 ` α3xH1, H1ΩS:RSRy1 , (4.8)

where αi are free-parameters. Inserting the vevs of SL (3.1) and SR (3.3), and choosing order-1 parameter
values α1 “ ´0.5MH , α2 “ ´0.6MH , α3 “ 0.6MH (say), the only non-zero negative eigenvalues of the resulting
mass matrix sit in the direction of the third family. A similar argument can be applied to H15. The inclusion
of additional terms for large enough MH will not alter this fact. A more detailed study of the potential and
its requisite tuning will be explored in future studies.
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tions,16

V pH,Φq “
ÿ

aPt1,15u

`

M2
HaxHa, Haya ´ xHa, fpHaqya

˘

` . . . , (4.9)

where we have explicitly included the Higgs bare mass terms, and where we found it con-

venient to define the operators f1 : VL b VR Ñ VL b VR and f15 : V4 b V ˚4 b VL b VR Ñ

V4 b V
˚

4 b VL b VR,

fapAq :“´

#

ΛHβ
a
LΦLΩA` βaLLΦLΩΦLΩA` ΛHAΩβaR

ˆ

ΦR
Φ˚R

˙

` ΦLΩAΩβaLR

ˆ

ΦR
Φ˚R

˙

`AΩβaRR

¨

˚

˚

˝

ΦRΩΦR
Φ˚RΩΦR
ΦRΩΦ˚R
Φ˚RΩΦ˚R

˛

‹

‹

‚

+

. (4.10)

These fapAq are mass dimension-3 operators, one for each value of a P t1, 15u, which encode all

the cubic and quartic interactions between Ha and ΦL,R. Here βaL and βaLL are dimensionless

real coupling constants, and the following are vectors of dimensionless coupling constants:

βaR :“ pβaR, β
a˚
R q with βaR P C, (4.11)

βaLR :“ pβaLR, β
a˚
LRq with βaLR P C, (4.12)

βaRR :“
´

βaRR, β̃
a
RR, β̌

a
RR, β

a˚
RR

¯

with βaRR P C, β̃aRR, β̌aRR P R . (4.13)

We observe that the operators fapAq are hermitian with respect to both inner products

x¨, ¨ya defined in (2.4) and (2.5), namely xA, fapBqya “ xfapAq, Bya for all A and B (in the

appropriate domain).

With such vertices, one can write down Feynman diagrams in the UV model that link

fermions with different family indices to the Higgs components H1,15 and H1,15 that acquire

the EWSB vevs. The ΦL,R fields, which recall transform in 2-index 14-dimensional irreps of

Spp6qL,R, play a crucial role in the flavour structure of these vertices; their 2-index vevs can

be thought of as matrices that ‘transfer’ the 3rd family-aligned Higgs vev (in the b3 b c6 and

b6 b c3 directions) to the light family Spp6qL,R indices b1,2,4,5 and c1,2,4,5. These indices are

carried by components of the heavy Higgs fields that are integrated out, which then couple

to the light family fermions via the same Yukawa couplings (2.12) that we wrote down in the

renormalisable model.

In the next few Subsections we give the gory details of the EFT matching procedure, which

appears complicated in large part due to the fact that there are many different interactions in

the scalar sector that are similar but have independent couplings. This feature, which follows

generically given our scalar field content, is in fact important in giving enough freedom in

16The potential here is the most general one quadratic in Ha and invariant under a global Up1q-symmetry
under which only the Ha carry non-zero charges. Including additional terms only aids to increase the freedom
to fit the data - in this sense, we consider this potential to be sufficient for our study.
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the resulting EFT coefficients to fully explain the CKM matrix, and the differences between

the up and down quark and charged lepton spectra. For more casual readers, we recommend

skipping ahead to Figs. 4–7 for the relevant Feynman diagrams, which conveniently summarize

how all the effective Yukawa couplings are generated.

Integrating out the heavy Higgses

It is easy enough, albeit a little tedious, to explicitly integrate out the heavy Higgs components

at tree level. Firstly, let us define a 3rd-family projection map P3, which projects each Ha

onto its vev-acquiring irreps of Gint (we emphasize that these are the light degrees of freedom

in H1,15). We also define P12 :“ id´ P3. The projections P3 and P12 project Ha (and other

elements in the appropriate vector space) onto subspaces that are orthogonal under our inner

products, namely

xP3A,P12Bya “ xP12A,P3Bya “ 0 (4.14)

for any A and B.

We intend to integrate out the heavy Higgs components P12Ha and P12H
˚
a at tree-level,

and for that we need their equations of motion. We have the following general formulae for

functional derivatives of our inner products with respect to the heavy Higgs fields,

D

DP12Ha

ż

xA,Haya d
4x “ ΩTP12A

˚Ω,
D

DP12H˚a

ż

xHa, Aya d
4x “ ΩP12AΩT , (4.15)

which we can use to differentiate the Yukawa couplings (2.12) and the terms in the potential

that we wrote explicitly in (4.9). Solving the equations of motion for P12H, we get

P12Ha “
1

M2
H

yaP12pΓaΨRΨLq
T `

1

M2
H

y˚aP12pΓaΨRΨLq
: `

1

M2
H

P12fapHaq ` . . . , (4.16)

where the ‘` . . . ’ indicates contributions from all the additional terms in the potential that

we are not writing explicitly (such as the various H4
a terms). This admits a series solution

P12Ha “

8
ÿ

m“0

1

M
2pm`1q
H

pP12faq
mpP12pyapΓaΨRΨLq

T ` y˚apΓaΨRΨLq
:q

`

8
ÿ

n“1

1

M2n
H

pP12fq
npP3Haq ` . . . (4.17)

To get the effective action that follows from integrating out P12Ha, we substitute (4.17) back

into the action. The terms in the effective action that we are interested in are the Yukawa-

type ones. Substituting (4.17) into the renormalisable Yukawa terms (2.12), we obtain the
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following towers of EFT operators

Lyuk Ą yaxpΓaΨRΨLq
:, Haya ÞÑ

8
ÿ

n“0

ya
M2n
H

xpΓaΨRΨLq
:, pP12faq

npP3Haqya,

Lyuk Ą yaxHa, pΓaΨRΨLq
T ya ÞÑ

8
ÿ

n“0

ya
M2n
H

xpP12faq
npP3Haq, pΓaΨRΨLq

T ya, (4.18)

plus equivalent formulae for their conjugates. We checked that substituting (4.17) into the

potential itself gives a vanishing tree-level contribution to Yukawa operators.

Detailed example: dimension 5 Yukawa operators

There are four dimension-5 terms in the EFT expansion of Lyuk, encoded in (4.18). Two are

given by

Lyuk Ą ´
ÿ

aPt1,15u

"

yaΛH
M2
H

xpΓaΨRΨLq
:, P12pβLΦLΩP3Haqya

`
yaΛH
M2
H

xP12pβLΦLΩP3Haq, pΓaΨRΨLq
T ya

*

, (4.19)

where we have used the fact that the projection P12 commutes with the transpose. Once ΦL

is expanded around its vev (3.10), which recall breaks the deconstructed weak symmetry to

its diagonal subgroup, xΦLy :
ś

SUp2qL,i Ñ SUp2qL, these dimension-5 terms match onto

dimension-4 Yukawa couplings of the SM with an EFT suppression factor of ε23
L . Further

expanding the Higgs about its vev, the resulting mass terms are

Λ2
H

2M2
H

ε23
L

 

β1
Lpy1v1` y1v

˚
1qpDL2DR3`EL2ER3q`β

15
L py15v15` y15v

˚
15qpDL2DR3´ 3EL2ER3q

` β1
Lpy1v1 ` y1v

˚
1 qpUL2UR3 ` ν2Lν3Rq ` β

15
L py15v15 ` y15v

˚
15qpUL2UR3 ´ 3ν2Lν3Rq

(

. (4.20)

Assuming hereon that MH equals ΛH the EFT matching scale, for simplicity, we can thus

read off the following EFT coefficients,

rD3
a s2 “ rU3

a s2 “
1

2
yaβ

a
L, r E3

1 s2 “
1

2
y1β

1
L, r E3

15 s2 “ ´
3

2
y15β

15
L , (4.21)

rD3
a s2 “ rU

3
a s2 “

1

2
yaβ

a
L, r E3

1 s2 “
1

2
y1β

1
L, r E3

15 s2 “ ´
3

2
y15β

15
L , (4.22)

which populate the 2-3 elements of each fermion mass matrix. Note the relative factors of

´3 appearing in the SUp4q-adjoint Higgs’ couplings to charged leptons.

20



The other contributions from dimension-5 terms in LY are given by

Lyuk Ą ´
ÿ

aPt1,15u

"

y1ΛH
M2
H

xpΓaΨRΨLq
:, P12pP3HaΩβaR

ˆ

ΦR
Φ˚R

˙

qya

`
y1ΛH
M2
H

xP12pP3HaΩβaR

ˆ

ΦR
Φ˚R

˙

q, pΓaΨRΨLq
T ya

*

, (4.23)

and these populate the 3-2 elements of the fermion mass matrices. Instead of writing out the

full expressions for these mass terms as per (4.20), we are here content to just write down

the contributions to the relevant EFT coefficients. These are

rD2
a s3‹ “ rU2

a s3‹ “
1

2
yaβ

a
R, r E2

1 s3‹ “
1

2
y1β

1
R, r E2

15 s3‹ “ ´
3

2
y15β

15
R , (4.24)

rD2
a s3‹ “ rU

2
a s3‹ “

1

2
yaβ

a
R, r E2

1 s3‹ “
1

2
y1β

1
R, r E2

15 s3‹ “ ´
3

2
y15β

15
R , (4.25)

where the ‹ is a standard short-hand denoting the matrix rows. (Recall that the bold-face

β’s are themselves row-vectors, as defined in (4.11–4.13)).

The contributions that we have just derived to the 2-3 and 3-2 elements of the Yukawa

matrices can be vizualized in terms of the tree-level Feynman diagrams in Fig. 4.

ΨL ΨR

xHay

xΦLy

ΨL ΨR

xHay

xΦRy

Figure 4: Feynman diagrams that contribute to the 2-3 (left) and 3-2 (right) elements of the Yukawa
matrices, once the heavy Higgs components running along the internal lines are integrated out at
ΛH “MH .

In what follows, for the higher dimensional operators, we will simply show the corresponding

Feynman diagrams, and the contributions to the Da, Ua, and Ea coefficient matrices (and

their barred versions). Our life is made a little easier by the fact that some simple relations

exist between the different matrices, namely

Di
a “ U ia, Di

a “ U ia, Di
a “

ˆ

ya
ya

Di
a with β̃aRR Ø β̌aRR

˙

,

E i1 “ Di
1, E i15 “ ´3Di

15, E i1 “ Di
1, E i15 “ ´3Di

15 . (4.26)

Thus in what follows, we only explicitly write the contributions to the matrices hda, and all

others can be inferred using (4.26).
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Dimension 6, 7, and 8 Yukawa operators

The dimension-6 operators contribute to the 1-3, 2-2 and 3-1 Yukawa couplings, i.e. those

on the i` j “ 4 diagonal. The EFT coefficients are

rD3
a s1‹ “

1

22
yappβ

a
Lq

2 ´ βaLLq,

rD2
a s2‹ “

1

22
yap2β

a
Lβ

a
R ´ βaLRq,

rD1
a s3‹ “

1

22
yapβ

a
R b βaR ´ βaRRq, (4.27)

corresponding to the Feynman diagrams in Fig. 5. The dimension-7 operators contribute to

the 1-2 and 2-1 Yukawa couplings, i.e. those on the i` j “ 3 diagonal. These give

rD2
a s1‹ “

1

23
yap3β

a
Rpβ

1
Lq

2 ´ 2βaRβ
1
LL ´ 2βaLRβ

1
Lq, (4.28)

rD1
a s2‹ “

1

23
yap3β

1
Lβ

a
R b βaR ´ 2β1

Lβ
a
RR ´ βaLR b βaR ´ βaR b βaLRq, (4.29)

corresponding to the diagrams in Fig. 6. Lastly, the dimension-8 terms contribute to the 1-1

Yukawa coupling. These give

rD1
a s1‹ “

1

24
yap6pβ

a
Lq

2βaR b βaR ´ 3βLLβ
a
R b βaR ´ 3pβaLq

2βaRR ` 2βLLβ
a
RR

´ 3βLβ
a
LR b βaR ´ 3βLβ

a
R b βaLR ` βaLR b βaLRq, (4.30)

corresponding to the diagrams in Fig. 7.

Using all these formulae for the EFT coefficients, we can piece together the mass matrices

using Eqs. (4.4–4.6).

ΨL ΨR

xHay

xΦLy

xΦLy

ΨL ΨR

xHay

xΦRy

xΦLy

ΨL ΨR

xHay

xΦRy

xΦRy

ΨL ΨR

xHay

xΦLy

xΦLy

ΨL ΨR

xHay

xΦRyxΦLy

ΨL ΨR

xHay

xΦRy

xΦRy

Figure 5: Feynman diagrams contributing to the 1-3 (left), 2-2 (middle) and 3-1 (right) elements of
the Yukawa matrices.
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ΨL ΨR

xHay

xΦRy

xΦLy

xΦLy

ΨL ΨR

xHay

xΦRy

xΦLy

xΦLy

ΨL ΨR

xHay

xΦRy

xΦLy

xΦLy

ΨL ΨR

xHay

xΦLy

xΦRy

xΦRy

ΨL ΨR

xHay

xΦLy

xΦRy

xΦRy

ΨL ΨR

xHay

xΦLy

xΦRy

xΦRy

Figure 6: Feynman diagrams for the 2-1 (top) and 1-2 (bottom) elements of the Yukawa matrices.

ΨL ΨR

xHay

xΦLy

xΦLy

xΦRy

xΦRy

ΨL ΨR

xHay

xΦLy

xΦLy

xΦRy

xΦRy

ΨL ΨR

xHay

xΦLy

xΦLy

xΦRy

xΦRy

ΨL ΨR

xHay

xΦLy

xΦLy xΦRy

xΦRy

ΨL ΨR

xHay

xΦLy

xΦLy

xΦRy

xΦRy

ΨL ΨR

xHay

xΦLy

xΦLy

xΦRy

xΦRy

Figure 7: Feynman diagrams for the 1-1 elements of the Yukawa matrices.
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4.3 Perturbative analysis of quark masses and mixings

We now derive formulae for the quark and charged lepton masses and the quark mixing

angles predicted by the model. We begin by defining shorthand matrices of dimensionless

coefficients

U :“

?
2

v

ÿ

a

`

va Ua ` v˚a Ua
˘

, (4.31)

D :“

?
2

v

ÿ

a

`

vaDa ` v
˚
a Da

˘

, (4.32)

E :“

?
2

v

ÿ

a

`

va Ea ` v˚a Ea
˘

, (4.33)

where the Wilson coefficients Ua, Da, Ea, Ua, Da, and Ea can be written in terms of the

fundamental couplings of the UV model using the formulae in the preceding Subsections.

Leading order mass formulae

Assuming all four parameters εijLpRq are ! 1, we can use matrix perturbation theory to write

down the leading expressions for the quark masses and mixing angles. For each of the matrices

U , D, and E , let pUij , pDij , and pEij denote the minor obtained by removing the ith row and jth

column of the respective matrix, then taking the determinant. For the masses we find, for

f1 P tu, d, eu, f2 P tc, s, µu, f3 P tt, b, τu, and corresponding F P tU ,D, Eu,

yf1 «

ˇ

ˇ

ˇ

ˇ

detpFq
pF11

ˇ

ˇ

ˇ

ˇ

ε12
L ε

12
R ε

23
L ε

23
R , (4.34)

yf2 «

ˇ

ˇ

ˇ

ˇ

ˇ

pF11

F33

ˇ

ˇ

ˇ

ˇ

ˇ

ε23
L ε

23
R , (4.35)

yf3 « |F33| , (4.36)

where yfi “
?

2mfi{v for each particle. The last equation, for the third family fermion

masses, simply matches (2.15). Thus, the mass hierarchies between families are set by the

expansion parameters εijL,R. We emphasize that one could substitute in expressions for the

EFT Wilson coefficients in terms of the fundamental UV couplings, but, with the exception

of the renormalisable third family masses, the resulting formulae would be very complicated

– and not especially enlightening.

Fixing the scale separations

We now turn to the mixing angles. Again using perturbation theory, we can find the uni-

tary matrices V u
L and V u

R such that V u
LM

upV u
LM

uq: and pMuV u
R q
:MuV u

R are diagonal, and

similarly for V d
L and V d

R. The CKM matrix is then VCKM “ V u
L V

d :
L . In terms of the small
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parameters, the result is

VCKM « (4.37)
¨

˚

˚

˚

˚

˝

1´

ˆ

ˇ

ˇ

ˇ

pD21

pD11

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

pU21

pU11

ˇ

ˇ

ˇ

2

´ 2
pU˚
21

pD21

pU˚
11

pD11

˙

pε12L q
2

2

´

pD21

pD11
´

pU˚
21

pU˚
11

¯

ε12L

´

pU˚
31

pU˚
11

` D13

D33
´ D23

D33

pU˚
21

pU˚
11

¯

ε12L ε
23
L

´

pU21

pU11
´

pD˚
21

pD˚
11

¯

ε12L 1´

ˆ

ˇ

ˇ

ˇ

pD21

pD11

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

pU21

pU11

ˇ

ˇ

ˇ

2

´ 2
pU21

pD˚
21

pU11
pD˚
11

˙

pε12L q
2

2

´

D23

D33
´

U˚
23

U˚
33

¯

ε23L
´

pD˚
31

pD˚
11

` U13

U33
´ U23

U33

pD˚
21

pD˚
11

¯

ε12L ε
23
L

´

U23

U33
´

D˚
23

D˚
33

¯

ε23L 1

˛

‹

‹

‹

‹

‚

assuming that both ε12
L and ε23

L are small. The model therefore predicts that the product of

the Cabibbo angle („ ε12
L ) and the 2-3 quark mixing angle („ ε23

L ) is of order the 1-3 mixing

angle, a relation that is approximately correct. Indeed, to leading order the CKM matrix in

our model can be matched onto the Wolfenstein parametrization [23]. The Cabibbo angle

λ « 0.23 is given by the combination

λ « |Vus| “ ε12
L

ˇ

ˇ

ˇ

ˇ

ˇ

˜

pD21

pD11

´
pU˚21

pU˚11

¸ˇ

ˇ

ˇ

ˇ

ˇ

. (4.38)

The CKM matrix element Vcb, which is empirically observed to be of order λ2, is given by

Vcb “ ε23
L

ˆ

D23

D33
´

U˚23

U˚33

˙

. (4.39)

The scaling of our small parameters with the Cabibbo angle is then

ε12
L „ λ, ε23

L „ λ2 , (4.40)

assuming the fundamental parameters are chosen so that the prefactors appearing inside

brackets in Eqs. (4.38) and (4.39) are Op1q. We hereon set ε12
L “ λ and ε23

L “ λ2 precisely,

without losing any freedom in our ability to fit all the mass and mixing parameters.

Plugging these back into the formulae for the mass eigenvalues, we predict the rough

relations between the families,

m2

m3
„ λ2ε23

R , (4.41)

m1

m2
„ λε12

R . (4.42)

Thus, having fit the hierarchies in the measured CKM angles via ε12
L and ε23

L , the remaining

expansion parameters ε12
R and ε23

R can be fit to the general trend in the mass ratios between

generations, as observed across up, down, and charged lepton. (The residual differences

between these species will be absorbed by the EFT coefficients.) For example, by crudely

comparing (4.41) with the geometric means of the fermion masses in each family, one favours

ε12
R „ λ2, ε23

R „ λ . (4.43)
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In other words, the right-handed mixing angles can exhibit the ‘opposite’ scaling to the left-

handed mixing angles, so that the mass hierarchies m1{m2 „ λ3 and m2{m3 „ λ3 are roughly

equal.

Note that if we sub these scaling relations back into the hierarchical form (4.7) predicted

for the Yukawa matrices, we can express the hierarchical structure (up to the order-1 coeffi-

cients) in terms of the Cabibbo angle λ, finding:

m „
v
?

2

¨

˚

˝

λ6 λ4 λ3

λ4 λ3 λ2

λ3 λ 1

˛

‹

‚

, (4.44)

for up-type quarks, down-type quarks, and charged leptons.

Relations in the CKM matrix, and the Jarlskog invariant

Our formula (4.37) for the CKM matrix does not parametrize a completely general unitary

matrix. But happily, as mentioned above, our model can be matched onto the Wolfenstein

parametrization. For example, both our Eq. (4.37) and the Wolfenstein parametrization of

the CKM matrix satisfy the following relations:

Vcd “ ´V
˚
us, (4.45)

Vts “ ´V
˚
cb, (4.46)

Vud “ V ˚cs, (4.47)

VusVcd “ pVud ` Vcs ´ 2q, (4.48)

Vtd ` V
˚
ub “ pVusVcbq

˚ , (4.49)

which are not implied by unitarity alone. The first three relations imply |Vcd| “ |Vus|,

|Vts| “ |Vcb|, and |Vud| “ |Vcs|, all of which agree well with experiments. Moreover, relations

(4.47) and (4.48) together imply

|Vud| “ |Vcs| “ 1´
1

2
|Vus|

2 ` . . . , (4.50)

where ‘` . . .’ indicates terms suppressed by factors of λ. This too agrees well with observation.

Using a Gröbner basis analysis, the relation (4.49) can be combined with the definition

of the Jarlskog invariant, J “ ImpVusVcbV
˚
ubV

˚
csq, to give

4J2 “ 2|VusVcb|
2p|Vub|

2 ` |Vtd|
2q ` 2|VubVtd|

2 ´ |Vtd|
4 ´ |Vub|

4 ´ |VusVcb|
4 , (4.51)

at leading order in λ. Note that this formula for J , which to the authors’ knowledge is new,

indeed vanishes if all entries of VCKM are real. The Jarlskog invariant is a function of the

CP -violating phase usually denoted by δ13 (in the standard parametrization of the CKM

matrix). Plugging into this relation the central observed values of the CKM angles θ12, θ13
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and θ23 and solving for δ13 gives

δ13 « 1.25 pradiansq , (4.52)

which agrees well with the experimental value. Relation (4.49) also implies the following

inequalities,

|Vub|
2 ` |VcbVus|

2 ´ 2|VubVcbVus| ă |Vtd|
2 ă |Vub|

2 ` |VcbVus|
2 ` 2|VubVcbVus| . (4.53)

These are indeed satisfied by the central values of the observed CKM matrix.

It is not hard to see that if we can fit Vus, Vcb and Vub to any complex numbers, we can

of course fit |Vus|, |Vcb| and |Vub| freely, and we can fit |Vtd| to any value satisfying (4.53).

This then determines the CP-phase through (4.51), the value of |Vud| “ |Vcs| through (4.50),

and the values of |Vcd| “ |Vus| and |Vts| “ |Vcb|. Thus, by fitting |Vus|, |Vcb|, |Vub| and |Vtd| to

their central experimental values, we will reproduce the remaining VCKM observables in close

agreement with their experimental values.

Parameter space of the model

Although we do not explicitly include every possible contribution in the scalar potential (4.9),

our EFT nevertheless has enough freedom to fit (in complex space) all quark and charged

lepton masses as well as the three CKM elements Vus, Vcb and Vub, as follows. (And as just

discussed, this in turn allows us to fit the whole CKM matrix to a very good approximation.)

• Firstly, tyt, yb, yτ , Vcbu have no dependence on couplings to ΦR, and can be fit using the

Yukawa coefficients ty1, y1, y15, y15u for any values of pβ1
L, β

15
L q away from a small set of

points. The reader can easily verify this, since Vcb is simple enough to write explicitly

in terms of fundamental parameters; from Eq. (4.39), we have

Vcb “
λ2

2

!β1
L

yb
py1v1 ` y1v

˚
1q `

β15
L

yb
py15v15 ` y15v

˚
15q

´
β1
L

y˚t
py˚1v1 ` y

˚
1v
˚
1q ´

β15
L

y˚t
py˚15v15 ` y

˚
15v

˚
15q

)

, (4.54)

and yt, yb and yτ are given by the linear combinations (2.15).17

• Secondly, the observables tyc, ys, yµ, Vus, Vubu have a dependence on couplings in the

scalar potential that contain at most one ΦR field. While the analytic expressions

for these observables are unwieldy, we find that four of them can be fit using the

model parameters tβ1
R, β

1
LR, w23, w23u. There is a remaining linear combination of these

observables which is in fact independent of any coupling to ΦR, and this can be fit using

17Unsurprisingly, the Vcb angle vanishes in the limit where both cubic couplings β1
L and β15

L vanish, since in
this case the tree-level diagrams in Fig. 4 are not generated at all.
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tβ1
LL, β

15
LLu. Note that both β1

LL and β15
LL, which are real couplings, are required to fit

the complex observable.

• Finally, the remaining set of observables we need to fit are the first family

fermion Yukawa couplings tyu, yd, yeu. These can be fit using the model parameters

tw12, w12, β
1
RRu.

• The remaining model parameters can then be chosen arbitrarily, except on certain

lower-dimensional surfaces in parameter space on which certain observables can’t be

fit.

5 Conclusion

In this paper we have introduced a fundamental gauge theory of flavour based on the gauge

group SUp4qˆSpp6qLˆSpp6qR. This gauge group, which is a family-enriched generalisation

of the Pati–Salam symmetry, unifies electroweak and flavour symmetries in the UV. All three

generations of SM+3νR fermions are packaged into two fields in the UV. Additional scalar

fields are required to break this much-enlarged gauge symmetry down to the SM, and we

have chosen an almost-minimal set tSL, SR,ΦL,ΦRu of scalars, as listed in Table 2, to do

the job. The SM Higgs, as in the one-family Pati–Salam model, is embedded in a pair of

bifundamentals of the extended electroweak symmetry, which transform in the singlet and

adjoint of the SUp4q. The vevs of these Higgs fields now automatically carry a direction in

flavour space, which we suppose is aligned with the heavy third family fermions.

As well as explaining the origin of three generations in terms of broken gauge symmetries

that extend the electroweak force, we also find that such a model can naturally account for

the very particular hierarchical structure observed in quark and charged lepton masses and

quark mixings. Only the third family fermions have renormalisable Yukawa couplings, and

the mechanism for generating the light Yukawas is simple. First, two of the scalars SL and

SR acquire vevs that partially break SUp4qˆSpp6qLˆSpp6qR down to a family non-universal

intermediate gauge symmetry – see Fig. 1. Next, the extra components of the Higgs fields

are integrated out at a heavy scale MH , before the remaining scalars ΦL,R condense. At this

point, higher-dimension Yukawa-like operators are generated for all the light fermions, due

to scalar interactions between the Higgses and ΦL,R. We compute all these EFT coefficients

explicitly. Finally, once the remaining dynamical BSM scalars ΦL and ΦR acquire their

vevs, breaking the gauge group down to the SM, the EFT Yukawa-like operators match onto

the dimension-4 Yukawa operators of the SM. As long as the vevs of ΦL,R are an order of

magnitude or so lighter than MH , all the observed hierarchies in the Yukawa matrices are

generated for Op1q fundamental couplings, and there is enough parametric freedom in the

EFT coefficients to fit all the quark and charged lepton masses, as well as the complete CKM

matrix (although not a generic unitary matrix).
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Further work

Concerning the possible phenomenological consequences of electroweak flavour unification,

we have only begun to scratch the surface in this paper. We envisage a number of extensions

of this work.

1. We have implicitly assumed that the scales associated with breaking the extra gauge

symmetries are all suitably high. In this high-scale unification scenario, the low energy

physics is essentially described by the SM plus three extra Higgs doublets with natural

masses À 1 TeV, as in other Pati–Salam based models. More interestingly, since there

is no danger of excessive proton decay in the model we have set out, the scale of

electroweak flavour unification could be rather low (much lower than the traditional

GUT scale). In this case, the complicated spectrum of extra gauge bosons, most of

which mediate flavour-dependent forces (with the exception of the U1 leptoquark),

would have a rich low-energy phenomenology. By measuring up against the current

flavour data, one could find the lowest possible scale of electroweak flavour unification,

and the BSM effects that one would expect to see first.

2. Related to this, it is intriguing that hints of flavour-dependent forces are already being

seen in the decays of B-mesons, predominantly by the LHCb collaboration. These

‘B-anomalies’ are now observed with a high statistical significance in neutral current

b Ñ s`` transitions, and there remain hints of anomalies in b Ñ cτν charged currents.

An obvious question to ask is: is there a viable parameter space in which any of the

heavy gauge bosons predicted by electroweak flavour unification can simultaneously

explain the B-anomalies, while remaining consistent with all flavour bounds and related

constraints?

3. For the bÑ s`` anomalies at least, there is indeed an obvious candidate already present

in our model, which is the Z 1 boson in the SUp2q triplet that arises from φ23
L acquiring

its vev. This Z 1 couples only to left-handed quarks and leptons in the 2nd and 3rd

families. Moreover, since its vev is suppressed with respect to the vev of φ12
L by a

factor of the Cabibbo angle, in order to explain the hierarchy in quark mixing angles

|Vcb| „ λ|Vus|, this Z 1 boson can be the lightest BSM gauge boson in the spectrum. We

save a detailed phenomenological study of this possibility for future work.

4. We have not explained neutrino masses at all in this work. Simultaneously explaining

the anarchic neutrino mixing angles using some combined seesaw mechanism, while

preserving the explanation of hierarchies in the quark sector, poses some challenges.

Such an explanation will warrant an extension of the field content of the model beyond

the very minimal setup we have used here.

5. There are possible cosmological consequences of electroweak flavour unification that we

have not explored. Firstly, the symmetry breaking GEWF Ñ GSM ought to give rise to
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monopoles because the homotopy group π2pGEWF{GSMq – Z is non-vanishing.18 This

is the case for any UV model with semi-simple gauge group. One way to avoid an over-

density of monopoles is for the scale ΛR of SUp4qˆSpp6qR Ñ SUp3qˆSpp4qRˆUp1qR
breaking to be higher than the scale of inflation, meaning that the monopole density

would be diluted during inflation. Since there is no monopole production below the

scale ΛR, no more monopoles are produced after inflation ends.

6. Secondly, it was shown in Ref. [24] that the generation of flavour hierarchies via a

succession of symmetry breaking steps can lead to a multi-peaked stochastic gravita-

tional wave (GW) signal, that could in principle be detected by future interferometer

experiments such as LISA, the Einstein Telescope (ET), and Cosmic Explorer (CE). If

the analogous symmetry breaking steps in our model can proceed via first order phase

transitions, there could be detectable GW signatures in our model also – even in the

case of very high scale symmetry breaking. Since in this scenario there is little hope of

directly producing the heavy gauge bosons at present or future colliders, the detection

of GWs could provide a complementary probe of electroweak flavour unification.
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A Anomaly cancellation

In this Appendix we show that the GEWF “ SUp4q ˆ Spp6qL ˆ Spp6qR gauge model is

anomaly-free.

No local anomalies. One must first consider local (perturbative) gauge anomalies. Since

Spp6q has only real and pseudoreal representations there are no associated local anomalies,

and it remains only to check that the SUp4q factor is free of perturbative anomalies. This

follows automatically, since there are equal numbers of left-handed and right-handed Weyls

transforming in the anomalous fundamental representation of SUp4q.

No global anomalies. Having first checked that there are no local anomalies, one should

next ask whether there are more subtle global anomalies in our UV gauge model. To detect

global anomalies in a 4d gauge theory with gauge group GEWF, and with fermions defined

using a standard spin structure, one should compute the torsion part of the bordism group

ΩSpin
5 pBGEWFq. This bordism group can be easily computed using the Atiyah–Hirzebruch

spectral sequence (AHSS). We refer the curious reader to Refs. [25, 26] for similar examples

of the AHSS in the context of BSM physics, and for an introduction to this method.19

The calculation of ΩSpin
5 pBGEWFq goes as follows. Recall that, when BG sits inside a

fibration F Ñ BG Ñ B, the second page of the (homological version of the) AHSS is given

by E2
p,q “ Hp

`

B; ΩSpin
q pF q

˘

. It here suffices to consider the trivial fibration pt Ñ BGEWF Ñ

BGEWF of BGEWF over itself, where pt denotes a point, meaning the input to the spectral

sequence is

E2
p,q “ Hp

`

BGEWF; ΩSpin
q pptq

˘

. (A.1)

Recall that the first few bordism groups of a point are [28]

n 0 1 2 3 4 5 6

ΩSpin
n pptq Z Z2 Z2 0 Z 0 0

, (A.2)

and so we need the first few homology groups of BGEWF valued in Z and Z2, in order to

populate E2
p,q.

Such groups are easy to find. Firstly, the cohomology ring of BGEWF is

H‚pBGEWF;Zq – Z
“

c2, c3, c4, p
L
1 , p

L
2 , p

L
3 , p

R
1 , p

R
2 , p

R
3

‰

, (A.3)

where ci are the non-zero Chern classes of the SUp4q factor, and pL,Ri are the non-zero Pon-

tryagin classes of the Spp6qL,R factors. Therefore, the low-dimension cohomology groups are

H‚pBGEWF;Zq – tZ, 0, 0, 0,Z3, 0,Z, 0,Z8, . . . u, and these coincide with the low-dimension

homology groups by universal coefficients (since all the odd-degree cohomology groups van-

19Ref. [27] uses the Adams spectral sequence to compute anomalies relevant to BSM physics.
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ish, and there is no torsion). Using this information, we write down the second page of the

AHSS in Fig. 8.

E2 page

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

Z

Z2

Z2
2

0

Z

0

Z3

Z3
2

ββ
Z3
2

0

Z3

0

Z

αα
Z2

Z2

0

Z

0

Z8

Figure 8: The second page of the AHSS for ΩSpin
5 pBGEWFq.

Already on the second page, there is only a single element on the p ` q “ 5 diagonal

that could contribute to Ω5, which is E2
4,1. The map out, β : E2

4,1 Ñ E2
2,2 is the zero map so

ker β – pZ2q
3, and it remains only to compute the map in, α : E2

6,0 Ñ E2
4,1. This map is the

composition of the dual of a Steenrod square and reduction modulo 2,

α : Z mod 2
ÝÝÝÝÑ Z2

ĄSq2

ÝÝÑ pZ2q
3 , (A.4)

where the Steenrod square that we need is simply

Sq2 : H4pBGEWF;Z2q Ñ H6pBGEWF;Z2q : (A.5)

c2 ÞÑ c3, pL1 , p
R
1 ÞÑ 0. (A.6)

Its dual therefore sends rc3 to rc2 (where the notation denotes the dual to the corresponding

elements in mod 2 cohomology), and so Im α – Z2, generated by rc2. Thus, taking the

homology with respect to the differentials α and β, we turn to the next page:

E3
4,1 –

pZ2q
3

Z2
– pZ2q

2 . (A.7)

Continuing to turn pages, there are no further relevant differentials until the fourth page,

but here the differential is a map γ : E4
4,1 Ñ E4

0,4 : pZ2q
2 Ñ Z which must be the zero map.

Hence, E84,1 – pZ2q
2. Since there are no other entries on the p` q “ 5 diagonal, we read off
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the fifth bordism group to be

ΩSpin
5 rB pSUp4q ˆ Spp6qL ˆ Spp6qRqs – Z2 ˆ Z2 , (A.8)

which is pure torsion.

From the computation of the AHSS above, we see that these Z2 factors derive from the

combination of each Spp6qL,R Pontryagin class pL,R1 , together with ΩSpin
1 pptq – Z2. Thus, in

a 4d theory with gauge group SUp4q ˆ Spp6qL ˆ Spp6qR, there is a pair of possible global

anomalies, one associated with each Spp6q factor. These anomalies, which afflict any Spp2rq

gauge theory (as was observed in Witten’s first paper concerning global anomalies [8]) are

avatars of the more famous SUp2q – Spp2q anomaly. For one way to see this anomaly (see

e.g. [29, 30]), consider a single Spp6q fundamental fermion on a spacetime M – S4, in the

presence of an odd instanton, i.e. an Spp6q-principal bundle over M with p1prM sq P p2Z`1q.

The fermion partition function flips sign under the gauge transformation by ´1 P Spp6q,20

meaning that Spp6q is anomalous.

In general, each Spp6qL,R anomaly is generated by odd numbers of fermions transforming

in the fundamental 6 representation (amongst others21) of either Spp6q. Since our electroweak

flavour unification model features an even number (four) of Weyl fermions transforming in

the fundamental representation of each of Spp6qL and Spp6qR, both global anomalies cancel,

exactly as for the ordinary Pati–Salam model. We conclude that our SUp4qˆSpp6qLˆSpp6qR
gauge model is completely anomaly-free on any suitable spin 4-manifold equipped with gauge

bundle.
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