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Abstract

We propose that the electroweak and flavour quantum numbers of the Standard Model
(SM) could be unified at high energies in an SU(4) x Sp(6), x Sp(6)r anomaly-free gauge
model. All the SM fermions are packaged into two fundamental fields, ¥, ~ (4,6,1) and
Ui ~ (4,1,6), thereby explaining the origin of three families of fermions. The SM Higgs,
being electroweakly charged, necessarily becomes charged also under flavour when embedded
in the UV model. It is therefore natural for its vacuum expectation value to couple only to
the third family. The other components of the UV Higgs fields are presumed heavy. Extra
scalars are needed to break this symmetry down to the SM, which can proceed via ‘flavour-
deconstructed’ gauge groups; for instance, we propose a pattern Sp(6); — 1—[?:1 SU(2)L; —
SU(2)r, for the left-handed factor. When the heavy Higgs components are integrated out,
realistic quark Yukawa couplings with in-built hierarchies are naturally generated without
any further ingredients, if we assume the various symmetry breaking scalars condense at
different scales. The CKM matrix that we compute is not a generic unitary matrix, but it
can precisely fit the observed values.
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1 Introduction

The Standard Model (SM) offers an extremely successful description of particle physics phe-
nomena at energies up to 1 TeV or so. But it is rather complicated. The existence of three
generations of matter, and the particular structure observed in their masses and mixings,
has no explanation. Even for a single generation the structure is elaborate, with 15 Weyl
fermions packaged into five irreducible representations (irreps) of a SM gauge symmetry that

is not even semi-simple, and which are cutely arranged so that all gauge anomalies cancel.

Unification is the attempt to explain this observed SM structure as a consequence of
something simpler at high energies. For a single generation of fermions, the SM embeds
snugly inside SU(5) [1], with the 15 SM fermions spread across the 10 and 5 representations.
Even more strikingly, if a right-handed neutrino is included, the one-generation SM embeds
inside Spin(10) [2,3] with all fermions packaged into a 16-dimensional spinor representation.!
However, in either scenario, flavour remains as mysterious as before; to fit the three gener-
ations that we see, the SU(5) (Spin(10)) GUT now needs six (three) irreps — no longer so
neat. Moreover, the quark and lepton masses and mixings remain arbitrary. Since flavour is

!By Spin(10) we refer to the double cover of SO(10). Note that, while both the groups Spin(10) and
SO(10) share the same Lie algebra s0(10), only the former has 16-dimensional spinor representations.



such a rich source of unexplained structure in the SM, it is intriguing to ask whether flavour
can be brought into a unified gauge model.

One way to do this is simply to promote flavour to a horizontal gauge symmetry, wherein
the gauge symmetry can be factored as G =~ Gyert X Ghoriz- Here Gyert breaks to the SM gauge
symmetry, while G, breaks ultimately to nothing, giving rise to heavy gauge bosons that
mediate very weak flavour-changing forces. Curiously, if we want to fit all 48 Weyl fermions
of the SM+3vp into a single irrep R of a unified gauge group G that acts faithfully on
matter, assuming G is connected and semi-simple, then the only options are G = Spin(10) x
{SU(2) or SO(3)} with R = (16, 3) [4].? Both these are horizontal extensions of the Spin(10)
GUT. Such horizontal gauge symmetries, and their controlled breaking, have been much-used
to explain quark mass and mixing hierarchies (see e.g. [5]). Despite these successes, horizontal
gauge symmetries are not so compelling from the unification perspective, since flavour is not
really unified with the existing SM gauge structure at all.

Nevertheless, there are interesting options for unifying flavour with the SM gauge symme-
tries in a way that cannot be factorized as Gyert X Ghoriz, which have been little explored in
the model-building literature to date. Recently, Ref. [4] classified all semi-simple Lie algebras
g in which the SM+3vp gauge algebra can be embedded without needing extra fermions.
This list of algebras enumerates all possible ways in which flavour could be intertwined with
the SM gauge interactions, albeit subject to the (not insignificant) assumption that there are
no extra fermions beyond those of the SM+3vg.

One might judge the ‘most unified’ of these gauge algebras to be those in which the SM
fermions are packaged into the smallest number Nye, of irreps. If we moreover insist that
the flavour symmetry does not just act horizontally, thereby removing the N,¢, = 1 options
discussed above, then three gauge algebras from [4] emerge as especially interesting, each
with Nyep = 2. These are su(12) @ su(2); @ su(2)g, su(4) ® sp(6)r @ sp(6) g, and su(4) @
sp(6) @s0(6)r. In each case, the 48 Weyl fermions transform in a pair of bifundamentals
(e.g. ¥p ~ (12,2,1) and ¥p ~ (12,1,2) for the first case), where the former (latter)
representation contains all 24 left-handed (right-handed) SM+3vr Weyl fermions.

For each of these gauge algebras g, one can embed the? SM gauge group Gsy inside a
number of corresponding Lie groups G with Lie(G) = g. Valid choices of group are

Ger = SU(12) x SU(2), x SU(2)r (colour flavour unification), (1.1)
Grwr = SU(4) x Sp(6)1, x Sp(6)r (LR electroweak flavour unification),
Ewr = SU(4) x Sp(6)r, x SO(6)g (LK electroweak flavour unification),

for which the corresponding fermion representations are properly anomaly-free (of both local

2Interestingly, there is no simple gauge group in which one can ‘faithfully embed’ the SM+3vg with all 48
Weyls sitting in a single representation — Ref. [4] amounts to a proof-by-exhaustion of this fact. Such is life!

3We are being a little cavalier in referring to ‘the’ SM gauge group. Technically, the SM could have one of
four possible gauge groups, of the form (SU(3) x SU(2) x U(1)) /T where the discrete group I is isomorphic
to one of {1,Z2,Z3,Z¢} (see e.g. [6]). It is actually the version of the SM gauge group with I' = Z3 that
embeds inside all three Pati-Salam-based groups written in (1.1).



and global* gauge anomalies). Each of these gauge groups fully intertwines a 3-family flavour
symmetry with the SM gauge symmetries in a way that doesn’t factorize,” and so any one of
them would explain the origin of three families in terms of an underlying gauge symmetry.

Let us describe these gauge groups in a little more detail. The first two are flavour enriched
extensions of the familiar Pati-Salam group SU(4) x SU(2)r, x SU(2)g [7], and share its left-
right symmetry. In Gcp, flavour is unified with the ‘lepton-enlarged’ SU(4) colour symmetry
of Pati-Salam to an SU(12) factor, while in Ggwr flavour is unified with the ‘custodially-
enlarged’ SU(2)r, x SU(2)g electroweak symmetry. Note that one cannot choose to extend
either electroweak SU(2)p, r factor to an SU(6)r, r, because that theory would suffer from
gauge anomalies for each SU(6) factor; it is for the Sp series of Lie groups, and not SU, that
the fundamental representation remains free of perturbative gauge anomalies.® The fact that
the 3-family SM field content can be embedded in the group Grwr was in fact first noticed
by Kuo and Nakagawa in 1985 [10], following [11], although its consequences as a UV model
were little explored. Finally, the group Gy also unifies flavour with electroweak symmetry,
but not in a left-right symmetric way. Rather, in this case hypercharge U(1)y =~ SO(2)g is
extended via the SO series to an SO(6)g factor. Each of the gauge groups in (1.1) has a

generalisation to an arbitrary number of SM generations.”

We here initiate the study of gauge-flavour unified symmetries such as Ger, Ggwr and
GEwr as viable theories of flavour. To study the Yukawa sector in any of these gauge models,
the first step is to embed the SM Higgs in representations ‘Hg’ of G. Certainly in the case
of electroweak flavour unification, this means that the Higgs, being charged under the SM
electroweak symmetry, necessarily acquires flavour quantum numbers; the minimal option is
to embed the (1,2,2)® (15, 2,2) Higgs fields of the one-family Pati-Salam model inside the
representations Hg = (1,6,6)®(15,6,6) of Grwr. Knowing that the SM flavour symmetries
are broken only by the Yukawa couplings of the fermions to the Higgs, where they are broken
badly, such a flavour-distinguishing Higgs field seems ideally suited to explaining the mass and
mixing hierarchies. Indeed, a generic potential for Hg that breaks electroweak symmetry will
simultaneously break the flavour symmetries; one naturally expects a Higgs that couples only
to one family, which we should take to be the third. Thus, for Ggwr and Gy, one swiftly
arrives at a model in which only the third family fermions are massive at the renormalisable
level (§2), which is an agreeable zeroth order postdiction.

4Freedom from global gauge anomalies is rather subtle to prove, and can be checked by computing an
appropriate bordism group. We include the relevant calculation for Gewr in Appendix A. The other cases
are somewhat similar.

SEquivalently, the generators of flavour ‘rotations’ do not commute with the generators of the extended
SM gauge symmetry.

60On the other hand, the fundamental representation of any Sp group, like Sp(2) = SU(2), suffers from a
Zg-valued global anomaly [8] — see also Appendix A. Ref. [9] also considers the Sp series of Lie groups to be
the natural generalisation of the SM’s SU(2)1 symmetry.

"For n; generations of SM fermions, the relevant embeddings in each case are: (a) colour and complex
SU (ny) flavour symmetry are unified via the natural embedding of SU(4) x SU (ny) < SU(4ny); (b) Sp(2) L(r)
and real SO(ny) flavour symmetry are unified via the natural embedding Sp(2) x SO(nyf) — Sp(2ny); (c)
SO(2)r hypercharge and real SO(ny) flavour symmetry are unified via the natural embedding SO(2)r x
SO(nys) — SO(2ny). See Refs. [12,13,10,4].



SU(4) x Sp(6)r x Sp(6)r

ALa AR <SL> ~ (17 14, 1) <SR> ~ (Z’ 1, 6)

[Heavy Higgses integrated out]
Ag

A (@)~ (1,14,1) (Bp) ~ (1,1,14)

SU(3) x SU2)z x U(L)y
v (Hy) ~(1,6,6) (Hi5) ~ (15,6,6)

SU(3) x U(1)em

Figure 1: The symmetry breaking scheme in our model. At high scales Ay and Agr a pair of scalars
condenses to break the electroweak-flavour-unified model down to an intermediate gauge theory, which
features a deconstructed SU(2);, symmetry. At a lower scale Ay, the heavy components of the Higgs
fields Hy and His are integrated out. At a slightly lower scale again, indicated by eAp, the Giy
theory is broken by the vevs of two more scalars down to the SM. The quantum numbers of all these
scalars are recorded in Table 2.

In this paper we focus on the left-right symmetric option Ggwr,® and we find that such
a gauge theory can provide an elegant explanation of the quark masses and mixing angles
observed in Nature. The rough idea is simple, requiring just two symmetry breaking steps
and no additional fermions beyond the SM, as follows.

e A pair of UV scalar fields S;, and Sgr acquire non-zero vacuum expectation values
(vevs) at high scales A, and Ag that first break Ggwr down to a family non-universal
subgroup Gint, where Gy © Gine © Grwr. (See Fig. 1 for the specific symmetry
breaking pattern that we here study.) The vev of the Higgs fields, which start off in
representations Hy ~ (1,6,6) and Hy5 ~ (15,6,6), emerge in representations of Giyt
that couple only to the third family.

e The other Higgs components, which couple to lighter families, are presumed heavy and
are integrated out at a high scale Ay < Ap g.

e Two more scalars ®; and ® must then acquire vevs at lower scales ~ eAy, where
€ < 1 indicates a number of parameters that denote small scale separations needed in
the model, which break Gix — Gsm. Now, by including Ggwp-invariant interactions
between Hi, His, and ®7, g in the scalar potential of the UV model, we can compute

8We nonetheless expect that most of our constructions and fermion mass predictions could be adapted to
the Ggwy variant.



the tower of higher-dimension operators {(’);’l>4} appearing in the Giy-invariant effective
field theory (EFT), that are generated by integrating out the heavy Higgs components.
Most importantly, there are Yukawa-like operators for the light fermions, involving
insertions of components of ¢, g.

Once ®; g acquire their vevs, the higher dimension operators Of»l>4 match onto Yukawa
couplings in the SM, with hierarchies determined by the EFT expansion parameters ~ e.
Importantly, we show that there is enough freedom in the model to fit all quark masses and
mixing angles to the data (as well as the charged lepton masses — we postpone a discussion of
neutrino mass generation for future work). We emphasize that no additional scalars beyond
those strictly necessary to break Gpwrp — Gint — Gsum are needed, and no extra fermions
are needed whatsoever.

The big trade off, of course, like in any GUT (and in many UV models that seek to explain
flavour), is that one must swallow a large scalar sector with a tuned potential. Assuming
that the extra components of the Higgs fields are heavy is reminiscent of the well-known
‘doublet-triplet problem’ that afflicts GUTs, although the problem is less severe here because
the extra states do not lead to proton decay — this also means the high scale Ay can be much
lower than the traditional GUT scale. Moreover, to generate the mass hierarchies requires
a small separation of the two symmetry breaking scales by an order of magnitude or two.
Recent work [14] at least suggests that maintaining such a separation of scales, in the context
of flavour model building, can be radiatively stable. And, of course, the presence of many
heavy scalars that couple to the Higgs would exacerbate the electroweak hierarchy problem
— which is essentially an unavoidable problem in models with enlarged symmetries in the
UV. All of these requirements place constraints on the coefficients appearing in the scalar
potential of the UV model, a detailed study of which is beyond the scope of this paper.

Finally, we remark that a further hint for high scale gauge-flavour unification comes from
an idea in quantum gravity, which suggests that there are no global symmetries in the UV;
either a symmetry is gauged, as would be the fate of the SM’s flavour symmetries if there were
high scale electroweak flavour unification, or it is explicitly broken. Well known arguments
from black hole heuristics gave rise to this idea (going back to [15]), which has subsequently
been proven in the context of holography [16,17], and in perturbative string theory [18].

The structure of this paper is as follows. In §2 we review some basic facts about the
Sp(6) Lie group and introduce some helpful notation, before setting out the symmetries and
couplings in the UV model. In §3 we explain the symmetry breaking pattern in detail. We
show in detail how the SM quark masses and mixings are generated in §4. Finally, we conclude
and discuss some interesting future directions in §5.



2 Electroweak flavour unification at high energies

In this paper we propose a gauge-flavour unified model based on the UV gauge group
Gewr = SU(4) x Sp(6)r x Sp(6)g . (2.1)

Since the Lie group Sp(6) may be unfamiliar to some model-builders, we begin by recalling
its definition? and setting out some useful conventions.

2.1 Notation and conventions

The matrix group Sp(6) consists of 6 x 6 special unitary matrices U such that UTQU = Q,
where Q = (_(}3 103) The Lie algebra of Sp(6), denoted sp(6), is

sp(6) := {X € Mgx(C) | QX = —XTQ, X = XT Tr(X) = 0}. (2.2)

The dimension of sp(6) is 21.

We denote by {a1, as, a3, as} the standard basis for the vector space V; = C* acted on by
the fundamental representation 4 of SU(4), and the basis for the conjugate representation
4 by {a¥,a},a},af}. The basis for the vector space Vi, =~ C% acted on by the fundamental
representation 6 of Sp(6)y, is denoted {b1, ba, b3, bs, bs, bg}, and the basis for Vi = C° acted on
by the fundamental of Sp(6)r is denoted {c1, co, cs3, ¢4, 5, c6}. For example, in this notation
the matrix Q above, for Sp(6)r, takes the form

Q=00 AbL 4+ b A DL+ b A B (2.3)

where {bj} is the dual basis to {b;}. Complex conjugation (x) is defined throughout to be
the complex-linear map a; — af, b; — §j;b; and ¢; — Qj;c;. A real field is one for which
¢ = ¢*. With the exception of Weyl fermions, we use a ‘bar’ (e.g. ¢) to indicate a distinct
symbol, not complex conjugation. We will use it, nevertheless, such that if a reality condition
is imposed on the relevant object then ¢ = ¢*.

Inner products: In what follows, we make use of two inner products. The first, which we
denote (-, )1, is an inner product on the complex vector space Vi, ® Vg, defined as

(A,B); = Tr (QTATQB). (2.4)
The second, which we denote (-, )15, is an inner product on V4 ® V;* ® Vi, ® Vg, defined as

(A, Byis = > Tr (QTALQB;;), (2.5)
]

9Since there are a number of conventions in use for the symplectic groups, we emphasize that in our
convention Sp(2) = SU(2), with Sp(2N) having a fundamental representation of complex dimension 2N.



where the sum is over SU(4) indices, and the Tr is over the Sp(6) indices. The inner products
satisfy the additional relations

(A,B)y = (B*,A%*,,  ae{1,15}. (2.6)

Diagrams: It will be convenient when we come to draw Feynman diagrams to introduce a
pictorial notation for the ‘flow’ of Sp(6) indices. We thus introduce solid red lines marked with
1, 2, or 3 arrowheads to denote specific contractions of Sp(6); fundamental representations
x and y, as follows:

[95 — y]~$1y4, [55 S E— y]~x4y1,
[90 — y]~x2y5, [55 — y]~:p5y2,
[l“ O y]~$3y6a [f — ’y]~x6y4-

(2.7)

The significance of the number of arrowheads is that it will match the family index of the
SM fermion. We introduce analogous lines for Sp(6)r, with the exception that solid red lines
( — ) are replaced by dashed blue lines ( - ).

2.2 Embedding the SM particles
We now describe the basic elements of the model. Firstly, we take the SM gauge group to be

SU<3) X SU(Q)L X U(l)y
Zs ‘

Gsm = (2.8)
Here, the Z3 quotient is generated by the element (w, 1,e*™/3) € SU(3) x SU(2) x U(1)y,
where w is the generator of the Zs3 centre of SU(3) such that w? = 1 € SU(3). This version
of the SM gauge group embeds inside the UV gauge group (2.1).!° As described in the
Introduction, the Ggwr symmetry unifies the SM electroweak gauge symmetries with the SM
flavour symmetries that act on the 3 generations of matter, while simultaneously unifying
quarks and leptons via the enlarged colour group SU(4).

All the eighteen fermion multiplets of the SM, including three right-handed neutrinos

10T6 see that it is the particular group (2.8) that embeds inside Gewr, first consider the map 8 : SU(3) x
SU(2)L x U(1)y — SU(4) x SU(2)r x SU(2)r : (h,gL,q) — ((ah %), 9z, (063 o )) This map is not

0 a3 a3
injective and so not an embedding [19]. Rather, ker 8 >~ Z3, generated by the element e~ 2mi/31,, 1, 62”i/3).

Quotienting by ker 8, we arrive at an injective map Gsm < SU(4) x SU(2) 1 x SU(2) g, which can be composed
with the injection SU(4) x SU(2)r x SU(2)r — SU(4) x Sp(6)r x Sp(6)r to embed Gsm in Gewr.



VR,f, are packaged together into just two Weyl fermion fields,

Up ~ (4,6,1) = Q7 a; ®bypsy + Lias ® by
= Di ai ® by + Up, 1a; @bz g + B jas @by + vi jas @ bay g (2.9)
Up ~ (4, 1, 6) = D%,fai ®cy+ Uf'%’fai ®czqf+ ER,fa4 ®cr+vRras@csyr,
each of which has 24 components. The index i € {1,2,3} labels colour, with the fourth

component of a; being reserved for leptons, k € {0, 1} labels SU(2)y, isospin, and f € {1, 2,3}
labels the family.

The SM Higgs field is embedded in a pair of complex UV scalar fields,
Hy ~ (1,6,6), Hys ~ (15,6,6), (2.10)
with which we write down Yukawa couplings in the renormalisable UV theory, schematically
Ly =YL HIVR + 15V HisVp + 7,V H Vg + 7,5 W His ¥R + hec. (2.11)

Precisely, we can use the inner products (2.4) and (2.5) to indicate how the group indices are
contracted:

Lyac= Y. {ya<(Fa\I’R‘I’L)T,Ha>a + Yol Ha, (TaWRY L) a (2.12)
ae{1,15}

+Z/2<Haa (Fa‘PR@LYba + ?2<(Fa‘lfR@L)T7 Ha>a} )

where the I'y = Try indicates a trace of SU(4) indices and I'j5 is the identity.

Since the Higgs fields transform in the bifundamental representation of the flavour-
enriched electroweak symmetry Sp(6); x Sp(6)r, a generic electroweak symmetry breaking
vev will also pick up a direction in flavour space. The vev directions can be such that the
renormalisable Yukawa couplings (2.12) only give masses to one family, which we are free to
identify with the third family. Specifically, the Higgs vevs are

(Hy) = vib3 ®cs — V1bs @ c3, (2.13)
<H15> = (al ® aik +a2® a; +a3® a§ —3a4 ® GZ) ® (U15bg ® cg — V15bg ® Cg) R (2.14)

where vy, U1, v15, and U5 are four independent scales. (If one wants to force H, to be real,
then take 7, = v}.)

Thus, in the renormalisable UV theory, only the third family fermions are massive. To
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Figure 2: The vevs (2.13-2.14) of the Higgs fields H; and Hys couple only to the third family
fermions, because of their direction in Sp(6)r x Sp(6)r space.

leading order, their masses are

m ~ (Y101 + 1v7) + (Y15715 + Y15015),
my ~ (y1v1 +7107) + (Y15v15 + Y15075), (2.15)

mr ~ (y1v1 + 7107) — 3(y15v15 + Y1570715),

mimicking the mass formulae of the one-family Pati-Salam model. In this model, unlike a
flavour-blind Pati—Salam model, the light families are strictly massless at the renormalisable
level. In §4 we will see how the light masses can be generated at a lower scale by higher-order
operators in the effective theory.

In principle, one neutrino also acquires a renormalisable Dirac mass, but we assume that
a form of seesaw mechanism sends the physical neutrino masses down to the eV scale. We
postpone a discussion of neutrino masses for future work.

3 Symmetry breaking pattern

We next discuss the breaking of the UV gauge symmetry Grwr down to Ggy. This requires
many scalar fields, and we choose what we believe to be an almost-minimal set of scalars that
will do the job — see Table 2. We suppose that these scalars acquire their vevs at different
energy scales, resulting in a sequential breaking of Ggwr down to Gsy via an intermediate
effective field theory (EFT) that we describe in this Section.

3.1 Flavour deconstruction in the intermediate EFT

The group SU(4) x Sp(6)1 x Sp(6)r has many subgroups that contain Ggyr, and so there are
many possible paths by which one can break Ggwr — Gsm. That said, the breaking of the
SU (4) colour factor is essentially constrained to be as it is in the one-family Pati—Salam case,
i.e. via SU(3) x U(1)p—r where U(1)p_1, must ultimately combine with a U(1) subgroup
of Sp(6)R to give hypercharge. Thus, the freedom we have in breaking Ggwr — Ggy comes
from the plethora of subgroups of the family-enriched Sp(6);, x Sp(6)r symmetry.

One intriguing possibility, which is the route we explore in this paper, exploits the fact that
Sp(6), contains a ‘flavour-deconstructed’ electroweak symmetry group, SU(2)r,1 x SU(2) 2 %
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Figure 3: The universal SU(2), weak interactions that we see at low energies could be deconstructed
according to flavour at higher energies, before being ultimately re-unified with flavour in the UV, via
an Sp(6), symmetry.

SU(2)r3 = Sp(6)r,'t where SU(2),; denotes the usual SU(2)y, factor of the SM but acting
only on the i*® family. Breaking Sp(6)r, down to this subgroup can be achieved using a scalar
field in the antisymmetric 2-index 14, the joint-smallest dimension irrep of Sp(6)r after the
fundamental. We remark that Ref. [10] made use of a similar symmetry breaking pattern.

We thus suppose that at a high scale Aj, a real scalar field S;, ~ (1,14,1) acquires the

vev

<SL>=AL (bl Ab4*b3 /\b6) 5 (3.1)

where we use ‘A’ to denote the antisymmetrization over Sp(6);, fundamental indices.!? This
induces the symmetry breaking

Sp(G)L — SU(Q)LJ X SU(2)L’2 X SU(Q)L;; . (3.2)

Thus, at intermediate energies, each SM family interacts with its own set of SU(2)r; weak
gauge bosons. There are 12 broken generators, and the corresponding heavy gauge bosons
consist of three sets of flavour-changing SU(2), triplets W', plus three additional SM singlet
Z' bosons.

As an aside, we remark that similar ‘flavour-deconstructed’” SM gauge symmetries have

recently been used as part of a larger ‘Pati—Salam cubed’ symmetry ]_[?:1 SU(4); xSU(2) i %
SU(2) g, [20-22], to explain both fermion masses and the B physics anomalies recently mea-

"'The same breaking pattern, Sp(2ns) — [, SU(2)r,; — SU(2)1, can be realised for any number n; of
SM generations.

121n fact, one achieves the same symmetry breaking pattern for any non-zero vev in the vector space spanned
by (3.1) and bz A bg — ba A bs, so this is a rather generic (as well as minimal) breaking pattern.

10



UV fermion Rep Intermediate fermion Rep
vy (47671) Q1 [3> (27171)71]1
Qo [3,(1,2,1),1]
Q3 [37 (17172)71]1
Ly [1,(2,1,1),1] 3
Lo [17(17271)’1]73
Ls [17(17172>71]—3
Up (4,1,6) QR,12 [3,(1,1,1),4];
ER,12 [17(17171)74]73
Us [7(7 71)71]4
D3 [3,(1,1,1),1] o
Es [1,(1,1,1),1] ¢
VR3 [ ’( ) 71)71]0

Table 1: Representations of the UV fermions under Ggwr = SU(4) x Sp(6) L x Sp(6) g (left), and how
these decompose under the symmetry breaking Ggwr — SU(3) x [ [, SU(2)r,; x Sp(4)r12 x U(1)r
that occurs at the high scale Ag.

sured by LHCb. In these works, a fifth dimension punctuated by 4d matter branes is a
possible origin of such flavour deconstruction. Here we see that deconstruction of SU(2)p,
could alternatively emerge from a 4d gauge model in which flavour and SU(2) symmetry
are eventually re-unified deeper in the UV.'® We summarize this qualitative picture in the
cartoon in Fig. 3.

We must also decide how to break the Sp(6)r symmetry. One well-motivated option is
to break Sp(6)r alongside SU(4) in such a way that the first two families of right-handed
fields remain unified. (The breaking of degeneracy in the 1-2 Yukawa sector will then arise
in the next symmetry breaking step i.e. the breaking down to the SM.) To achieve this, the
minimal choice is to take a complex scalar field Sg ~ (4, 1, 6) which also gets a vev at a high
scale Ar, which need not coincide with Ay :

(Sr) =ARaj®cs. (3.3)
This vev triggers the high-scale symmetry breaking
SU(4) x Sp(6)r — SU(3) x Sp(4)ra12 x U(1) R, (3.4)

where the right-handed fermions in the first and second family remain packaged into funda-
mental reps of Sp(4)r12. Here U(1)r acts as hypercharge on the third family and on the
left-handed fermions; for the light right-handed fermions, SM hypercharge will emerge as a
linear combination of U(1)r and a U(1) subgroup of Sp(4)r12. A total of 17 heavy gauge
bosons result from this breaking: one U; vector leptoquark, in the representation (3,1)_4,

13We emphasize that a flavour-deconstruction of the SU(4) factor is needed if we want to explain the B
physics anomalies in PS? models, since one needs a U; leptoquark coupled predominantly to the third family.
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three charged Z* bosons, that is, complex vector bosons in the representation (1,1)s, and
five (real) Z’ bosons.

Putting (3.2) and (3.4) together, the UV symmetry Ggwr is broken at high scales Ay, r
by (Sr) and {(Sgr) down to an intermediate gauge symmetry,

Ar, A
Gewr =25 Ging = SU3) x [ [ SU2)1,i x Sp(4)ra2 x ULk (3.5)
%

The decomposition of the SM fermion fields under Gijy is recorded in Table 1. The Higgs
fields Hy and His decompose into a multitude of scalars under Giy, viz.

Hig5 —[1,(2,1,1),1] 3@[1,(1,2,1),1] 3®[1,(1,1,2),1] 3
1,(2,1,1),1]s®[1,(1,2,1),1]35®[1,(1,1,2),1]3
1,(2,1,1),4]0®[1,(1,2,1),4]p®[1,(1,1,2),4]o

@ {SU(3) triplets and octets for Hys} . (3.6)

® |
S

The underlined components, which we name

Hy ~[1,(1,1,2 Hi~[1,(1,1,2),1] 3, (3.7)
ﬁlf) ~ [1’ (]-a 172)’1]*?” His ~ [1’ (]-a 172)71]+3a (38)

SN—
=

.
|

w

will contain the physical SM Higgs doublet; these components remain light and acquire
the EWSB vev (2.13-2.14). By construction, they are charged only under the third family
symmetry factors SU(2)r, 3 and U(1)g.

The other Higgs components written in (3.6), i.e. those not underlined, do not acquire
vevs, and are assumed to be heavy with masses

MHQAH<AL,R, (39)

where A defines an EFT matching scale at which the heavy Higgses are integrated out.
From their representations under the flavour-deconstructed Gint symmetry, we see that there
are Higgs components that couple to each pair of SM families (one left-handed, one right-
handed); this will be important in §4.

3.2 Breaking to the SM

The intermediate gauge symmetry Gi,; must be broken down to Ggy, and this occurs at
energy scales below Ap. We refer the reader back to Fig. 1, which summarizes the overall
symmetry breaking scheme for our model.

A strikingly minimal sector consisting of two scalars ®; ~ (1,14,1) and 5 ~ (1,1,14),
where @y is real and ®p is complex, will do the job. The vev of ®; serves to ‘link together’
the deconstructed SU(2)r; factors, as was appreciated in Ref. [10]. In terms of the Sp(6)r,
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Ggwr irrep Vev direction Ging irrep(s) of vev

SL (1, 14, 1) b1 AN b4 - b3 AN b6 NA
SR (Z, 1,6) CLZ ® c3 NA
P, | (1,14,1) | €2 (b1 A bs +ba A by) + €7 (ba A bg + by A bs) 12 ~[1,(2,2,1),1],
¢>2L3 ~ [17 (17 2, 2)7 1]0
dr (1, 1, 14) 6%3(11)2362 A Cg + Wa3C3 A 65) QS? ~ [1, (1, 1, 1), ]+3,
+e}§(w1201 A Cs + W1i2C2 A 04) 6? ~ [1, (1, 1, 1),4]_3,
d)g ~ [1’( > 71)750
H, (1,6,6) v1b3 ® cg — V1bg @ c3 He ~ [1,(1,1,2),1]4.3,
H15 (15,6,6) (a,»@a;" —3a4®aj)®(vl5v3®c6 —515[)(3@03) ﬁa ~ [1,(1,1,2),1]_3

Table 2: The set of scalar fields needed to break the UV symmetry SU(4) x Sp(6)r x Sp(6)
eventually down to SU(3)¢ X U(1)em. We record the directions of the corresponding vevs in SU(4)
Sp(6)r x Sp(6)r space, where a;, b;, and ¢; index the fundamental representations of SU(4), Sp(6)
and Sp(6) g respectively, as well as the representations of the intermediate gauge symmetry SU(3)
[1,SU(2)1,: x Sp(4)r,12 x U(1)Rr in which the vevs sit.

=

X
L,
X

indices, we choose the vev to be

<(I)L> = E%3AH (b2 A bg + bg A b5) + E?AH (b1 A bs + by A b4), (3.10)
i (072

where we have indicated how, in the Gjy-invariant intermediate theory, this vev ends up
in two components that we denote by lower case symbols, in the representations d)%?’ ~
[1,(1,2,2),1]p and ¢}? ~ [1,(2,2,1),1]o. The ¢} are assumed to be small parameters (both
< 1), that each sets a separation of scales relative to the EFT matching scale Ay. The vev
(3.10) breaks H?:l SU(2)r; — SU(2) 1, giving two more SU(2), triplets of W'® bosons.

The vev of the complex scalar field ®, written in terms of Sp(6)g indices, is

23 23 12 _

(PRry = Agerwazca A Co + {\HER W23C3 A C5+ {\HER (wize1 A c5 +Wi2e2 A ca),  (3.11)
v Y
P2 27

where we take woswoz = 1 and wiowiz = 1. The Gy components that acquire the vev
are in the representations q%?’ ~ [1,(1,1,1),4]3, a%g ~ [1,(1,1,1),4]_-3, and gb};? ~
[1,(1,1,1),5]p.1* Again, the parameters €% and e} encode ratios of scales with respect
to Ag, and are assumed to be < 1. The vev (3.11) breaks Sp(4)r,12 x U(1)r — U(1)y.
This gives rise to 10 heavy gauge bosons, decomposing as three (complex) Z* bosons in the

4For completeness, the scalar fields @1 and @z, which transform in the 14-dimensional irreps of the UV
Sp(6)r and Sp(6)r symmetries respectively, themselves decompose under the high scale symmetry breaking
step GeEwr — Gint as

®r —[1,(1,1,1), 1]0®2 ®[1,(2,2,1),1]0®[1,(2,1,2),1]0 P [1,(1,2,2),1]0,
dp —[1,(1,1,1),1]0®[1,(1,1,1),5]0®[1,(1,1,1),4]_sD[1,(1,1,1),4]s. (3.12)

The underlined components are those that pick up vevs, as detailed in the main text.
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Heavy scales (A gr)

Intermediate scale (eAp)

Name Gswm representation Number (origin) Number (origin)
Charged Z+ (1,1)6 3 (Sgr) 3 (PR)
U leptoquark (3,1)_4 1 (Sgr) -
W' triplet (1,3)0 (R) 3 (Sr) 2 (®p)
Real 7' (1,1)o (R) 3 (S1), 5 (Sr) 4 (®r)

Table 3: The decomposition of the 45 heavy gauge bosons in our theory, organised by the scales at
which they obtain their mass.

representation (1,1)g, plus four neutral (real) Z’ bosons.

The end result of these breakings induced by ®; and ®p is the SM. To summarize, the
scalar sector of the model is recorded in Table 2, and we list all the 45 heavy gauge bosons
that appear in our spectrum, together with the scales that set their masses, in Table 3.

4 Quark masses and mixings

In this Section we show that realistic masses and mixings for the light quarks are naturally
generated within the model we have set out, without any additional fields required. The
idea is the following. When the heavy Higgs components are integrated out at the scale
My =~ Ap, higher-dimensional Yukawa-like operators are generated in the Gjp-invariant
intermediate EFT which involve insertions of the symmetry breaking fields ®; and ®g.
Once @y, p acquire their vevs (3.10-3.11), which (a) link together different families due to their
Sp(6) 1, r orientation, and (b) are suppressed with respect to My by small scale hierarchies (of
order 107'-1072), hierarchical Yukawa matrices are generated that have enough parametric
freedom to account for the quark mass and mixing data. The built-in hierarchies mean the
data are reproduced for ‘O(1)’ couplings in the UV model.

By writing down a complete UV model and explicitly integrating out the relevant heavy
degrees of freedom, we also ensure that no baryon number violating operators are generated
in the IR that would trigger proton decay. One can straightforwardly see why this is the
case, without going into details, by the following argument. All terms present in our UV
lagrangian will contract SU(4) indices using one of the two inner products (-, -), defined in
§2.1 — this is made explicit in our notation, e.g. in Eq. (4.9) for the scalar potential. Hence,
the EFT will not inherit any contractions of SU(3) quark indices using the Levi-Civita tensor
€;jk- Since proton decay generically requires such contractions, it is absent from our model.
As is the case in a renormalisable model with the Pati-Salam gauge group, but unlike in
the SU(5) model, a similar argument indicates the absence of proton decay mediated by the
vector gauge bosons.
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4.1 EFT operators

Before we dive into the details, it is helpful to first derive the fermion mass matrix hierarchies
that we expect based on EFT reasoning alone. Using the EFT fields present in the Gint-
invariant theory, the leading Yukawa-like operators in the EFT expansion are

¢ ¢23

23*

3 23 __ —_ - 771 1
= 5 (e Fo o) | (o) [ 4 oo
ae{1,15} " ¢>12*723*

(% U2+ HU ) v <23*>QR 12
+ (ﬁauj’ + ’HZUﬁ) Ug} . (4.1)

This formula may appear complicated, and requires some explanation. Firstly, the three
lines of the formula list operators that populate the three columns of the Yukawa matrix.
The EFT coefficients are contained in matrices denoted U!, i € {1,2,3}, and their ‘barred’
versions — thus, the family index 7 indicates the column number of the Yukawa matrix. Now,
each of 1:1121656 coefﬁment matrices has 3 rows, which are contracted with the three columns

( oL (ON —Qz Qg) The columns of the coefficient matrices, on the other hand,
are contracted with the column Vectors containing combinations of ¢r fields that we have

written explicitly. Thus, ¢! and U , are 3-by-4 matrices, U? and u . are 3-by-2 matrices, and
U3 and Hi are 3-by-1 matrices. Based only on the EFT, we would generically expect all these
matrices to be populated by arbitrary O(1) numbers.

Similarly for the down-type quarks we have

¢7

23 412 ___ 23__ 1 23%
£> Y (%FEe, L0, @) { (#.Ds+ HoDs) 1 z‘:) Qr,12
ac{1,15} H ¢12*¢2§*

+ (HaDg +H.D ) A(¢23*>QR 12

(”HD3+7—[D>D} (4.2)

for another set of a priori O(1) coefficient matrices D and their ‘barred’ versions, and a very
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similar set of operators for the charged lepton Yukawas,

23 412 23 1 (1)1}2%252%1
DY (¢ LOCT, YT, Zg) (Haé‘l VH 5) R VP
Ay H AH b1 bR
ae{1,15} PL2% 23
R %R

I 1 —23
n (Haé:f + HZEZ) AH( %;*)LR,H

4 (Hasgj’ n ﬂj?i) Eg} . (4.3)

When the scalar fields ®;, r acquire their vevs at the lower scale, breaking Giy,, — Ggswm in
the process, these operators match onto Yukawa couplings for all three families, with lighter
family Yukawas coming from higher order operators in the EFT expansion.

To see this, it is first convenient to gather together combinations of the EFT coefficients,
weighted by the factors w;; and w;; that appear in the vev (3.11) of ®r. We thus define
3-by-3 matrices

wi12w23
ua — U; (wfw;:s) Z/{ (w23> u3
wiywa3 | Wy ’
W, W3y
w12w23

D, = | D! Wrawly ’Iﬂ(ﬁf>’p3 ’

*
a wl w23 a Wog a
wihwsy
w12W23

Eaim | & wru | e2(Te). €2 ). (4.4)

WioW23 a

¥ %
WygWag

and define U,, D, and &, analogously i.e. with the same structure in terms of w;j and W,
just replacing each U! by ij etc. Once the Higgs fields H, and H, also acquire their vevs,
we obtain the following mass matrices for the SM quarks:

> diag(ePel?, €7, 1)(Daldy + villa) ding(eF e, €, 1), (4.5)
ae{1,15}

> diag(eP’er?, €7, 1) (vaDy + T3 D) diag(ef el €75, 1) . (4.6)
ae{1,15}

The mass matrix +/2M¢€ for the charged leptons is given by a similar formula to +/2M?, except
that the a = 15 components are weighted in the sum by an overall factor of —3. Writing
this out explicitly, we find all three SM fermion mass matrices have the following hierarchical
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structure

12 23 12 23 12 23 23 12 23

M €LELCRER CLCLCR CLE€L
23,12 23 2323 23
— | rercr €7ER €7 . (4.7)
12,23 23
€ERER €h 1

Note that in the limit where 61L2 — 1 and 6}%2 — 1, the upper-left 2-by-2 block has the
same suppression factor. Thus, the parameters elL2 and 6}%2 roughly act as spurions for SU(2)
symmetries acting on the first two generations of left- and right-handed fields respectively.
Not surprisingly, the €}? ‘spurion’ will end up being of order the Cabibbo angle if we are to
accurately model the observed quark masses and mixings in the 1-2 sector, as we see in §4.3.

4.2 EFT matching formulae

To see how these EFT operators are explicitly generated in our model without needing any
additional fields, and to calculate the Wilson coefficients U 15, D115, and &7 15, we must first
discuss the scalar potential of the UV model. Since the fields Sy, and Sg, which recall trigger
the first high scale symmetry breakings, are integrated out before the heavy components of
the Higgs fields, we focus on the interactions between the Higgs fields H; 15 and the symmetry
breaking scalars ®, .

Interactions between H; 15 and the @, g fields are governed by SU(4) x Sp(6)r, x Sp(6)r
gauge invariance, and there is a large number of independent terms that can be written down
and so should be included. Before we do so, we think it important to clarify that, while
quartic terms of the form ~ H2 are of course required to generate the third-family aligned
electroweak symmetry breaking vevs (2.13-2.14), we do not include them here because they
do not affect the Yukawa-like operators that are generated upon integrating out the heavy
Higgs components (to the order we are working).'® Similarly, we do not include quartic terms
involving only ®; and ®r.

Thus, for our purpose, a sufficient set of terms in the potential are the following interac-

15 As we observed in the Introduction, it is clear that the scalar potential of our model will need tuning in
order to explain the particular vevs and masses of the scalars that we require. For now, we point out that the
‘alignment’ of the Higgs vev with the third-family direction (which is first originates with the vev of Sr) does
not require tuning. To justify this, consider the following interactions between H; and S /g:

MH<H1, H1>1 -+ Oé1<[’117 SLQH1>1 + a2<H1, HlQSRSL>1 + Oé3<H1, H1QS};SR>1 s (48)

where «; are free-parameters. Inserting the vevs of Sp (3.1) and Sr (3.3), and choosing order-1 parameter
values a1 = —0.5Mpu, a2 = —0.6 My, as = 0.6 My (say), the only non-zero negative eigenvalues of the resulting
mass matrix sit in the direction of the third family. A similar argument can be applied to His. The inclusion
of additional terms for large enough My will not alter this fact. A more detailed study of the potential and
its requisite tuning will be explored in future studies.
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tions, 6

V(H,®) = Y (Mp,(Ha,Hodo — (Ha, f(Ha)ba) + - (4.9)
ae{1,15}

where we have explicitly included the Higgs bare mass terms, and where we found it con-
venient to define the operators f1 : VL ® Vg — VL ® Vg and fi5 : Va@ V@V, ® Vg —
VZL ® ‘/4* ® VL ® VRv

fa(A) =~ {AHﬂgchQA 01, PL00L0A + Ar AQBH(3F)

SRODR
P ¥OP

+<I>LQAQ,6%R<¢£>+A95}§R anont }
' A oL 3.3

(4.10)

These f,(A) are mass dimension-3 operators, one for each value of a € {1, 15}, which encode all
the cubic and quartic interactions between H, and ®, r. Here 8¢ and ¢, are dimensionless
real coupling constants, and the following are vectors of dimensionless coupling constants:

B = (B, A with AR e C, (4.11)
Bir = (BLr,Bir) with Bip€C, (4.12)
Bt = (Bhn Bien: B Bi) with B € C, B, B € R. (413)

We observe that the operators f,(A) are hermitian with respect to both inner products
(-, )¢ defined in (2.4) and (2.5), namely (A, fo(B))s = {fa(A), B), for all A and B (in the
appropriate domain).

With such vertices, one can write down Feynman diagrams in the UV model that link
fermions with different family indices to the Higgs components H; 15 and ﬁl’lg) that acquire
the EWSB vevs. The ® g fields, which recall transform in 2-index 14-dimensional irreps of
Sp(6) 1, r, play a crucial role in the flavour structure of these vertices; their 2-index vevs can
be thought of as matrices that ‘transfer’ the 3'4 family-aligned Higgs vev (in the b3 ® cg and
be ® c3 directions) to the light family Sp(6)r r indices b1 245 and c1245. These indices are
carried by components of the heavy Higgs fields that are integrated out, which then couple
to the light family fermions via the same Yukawa couplings (2.12) that we wrote down in the
renormalisable model.

In the next few Subsections we give the gory details of the EF'T matching procedure, which
appears complicated in large part due to the fact that there are many different interactions in
the scalar sector that are similar but have independent couplings. This feature, which follows
generically given our scalar field content, is in fact important in giving enough freedom in

1The potential here is the most general one quadratic in H, and invariant under a global U(1)-symmetry
under which only the H, carry non-zero charges. Including additional terms only aids to increase the freedom
to fit the data - in this sense, we consider this potential to be sufficient for our study.
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the resulting EFT coefficients to fully explain the CKM matrix, and the differences between
the up and down quark and charged lepton spectra. For more casual readers, we recommend
skipping ahead to Figs. 4-7 for the relevant Feynman diagrams, which conveniently summarize
how all the effective Yukawa couplings are generated.

Integrating out the heavy Higgses

It is easy enough, albeit a little tedious, to explicitly integrate out the heavy Higgs components
at tree level. Firstly, let us define a 3rd-family projection map Ps, which projects each H,
onto its vev-acquiring irreps of Giy (we emphasize that these are the light degrees of freedom
in Hy 15). We also define Py3 :=id — P3. The projections P; and P2 project H, (and other
elements in the appropriate vector space) onto subspaces that are orthogonal under our inner
products, namely

(P3A, P1aB), = (P12A, P3B), =0 (4.14)

for any A and B.

We intend to integrate out the heavy Higgs components PjoH, and PioH) at tree-level,
and for that we need their equations of motion. We have the following general formulae for
functional derivatives of our inner products with respect to the heavy Higgs fields,

D

A H)yd*z = QT P A*Q, ————
<, > X 12 , DPlgH;‘

l)PlZHJ J<Hav Ay dir = QPR AQT, (4.15)

which we can use to differentiate the Yukawa couplings (2.12) and the terms in the potential
that we wrote explicitly in (4.9). Solving the equations of motion for PjoH, we get

1 — 1 — 1
PioHy = 0 ToPr2(TaVpU )T + Wyjplg(rawR\yL)T + Wmea(Ha) +..., (4.16)
H H H
where the ‘+ ...  indicates contributions from all the additional terms in the potential that

we are not writing explicitly (such as the various HZ terms). This admits a series solution

o0
1 — _
P12Ha = ZO W(Plgfa)m(Plg(ya(Fa\IfR\IfL)T + y:(ra\I/R\I’L)T)
Z M% (Prof)"(PsH,) + . .. (4.17)

To get the effective action that follows from integrating out PioH,, we substitute (4.17) back
into the action. The terms in the effective action that we are interested in are the Yukawa-
type ones. Substituting (4.17) into the renormalisable Yukawa terms (2.12), we obtain the
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following towers of EFT operators

F \I’R@L)Ta (P12fa)n(P3Ha)>aa

Ly 2 Yol (LW VL)', Hy g — Z M%

ﬁyuk > ya<Hav (Fa\I’RaL)T% — Z ]\zgn«PHfa)n(PBHa)a (Fa\IJR@L)T%a (4-18)
n=0 H

plus equivalent formulae for their conjugates. We checked that substituting (4.17) into the
potential itself gives a vanishing tree-level contribution to Yukawa operators.

Detailed example: dimension 5 Yukawa operators

There are four dimension-5 terms in the EFT expansion of Ly, encoded in (4.18). Two are
given by

oA
Lyac D= ), {y P (D W R L), Pra(BL®LQPs Ho) b
ae{1,15} H

+ BB P30, 0P ), CWRT) | (@19)
where we have used the fact that the projection Pjo commutes with the transpose. Once ®p,
is expanded around its vev (3.10), which recall breaks the deconstructed weak symmetry to
its diagonal subgroup, (@) : [[SU(2)r; — SU(2)r, these dimension-5 terms match onto
dimension-4 Yukawa couplings of the SM with an EFT suppression factor of 623 Further
expanding the Higgs about its vev, the resulting mass terms are

A2
2M2
+ BL (171 + §107) (U r2Urs + Darvsgr) + BL (y15015 + §15035) (UraUrs — 302rv3r) ). (4.20)

e {BL(y1v1 + 1107) (D2Drs + Er2Ers) + Br (y15015 + §15015) (D2 Drs — 3E 2 ERs)

Assuming hereon that My equals Ay the EFT matching scale, for simplicity, we can thus
read off the following EFT coefficients,

1 1 3
(D3] = [U31e = 5uaBt, (€112 = suiBh, [Ehla=—SusBP  (421)
— — 1 . = ~ 3
Dol = [W)e = 50ty [E1h=gmbh, [Ehl=—smsfl  (422)

which populate the 2-3 elements of each fermion mass matrix. Note the relative factors of
—3 appearing in the SU(4)-adjoint Higgs’ couplings to charged leptons.
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The other contributions from dimension-5 terms in Ly are given by

A _
Loncs = X BB RTL) PalPa 08555 ) Do
ae{1,15} H
A -
+ D o Py 0832 ). <rawL>T>a} e
o R

and these populate the 3-2 elements of the fermion mass matrices. Instead of writing out the
full expressions for these mass terms as per (4.20), we are here content to just write down

the contributions to the relevant EFT coefficients. These are

1 1 3
[D2)oe = (U)o = 5vaBs [E2)se = JuiBh, [Eh)s = —SusBR,  (429)
—9 —9 1_ —2 1_ —2 3_
[Da]3* = [ua]3* = §ya57%a [E1]3« = 53/1511% [515]3* = *53/15,311125, (4.25)

where the * is a standard short-hand denoting the matrix rows. (Recall that the bold-face
B’s are themselves row-vectors, as defined in (4.11-4.13)).

The contributions that we have just derived to the 2-3 and 3-2 elements of the Yukawa
matrices can be vizualized in terms of the tree-level Feynman diagrams in Fig. 4.

N
5
NS
S
5
NS

(@r) ==

RN N
JEESSE N S ——

U, — P ——<—— Up Y, — LT Uy,

Figure 4: Feynman diagrams that contribute to the 2-3 (left) and 3-2 (right) elements of the Yukawa
matrices, once the heavy Higgs components running along the internal lines are integrated out at
AH = Myg.

In what follows, for the higher dimensional operators, we will simply show the corresponding
Feynman diagrams, and the contributions to the D,, U,, and &, coefficient matrices (and
their barred versions). Our life is made a little easier by the fact that some simple relations
exist between the different matrices, namely

D, = U, D, — 1/727 D), = (yaﬁz with B < B?%R) )
Ya
Sf = Ziv 5{5 = _3Di57 gll = ﬁih EZ15 = _3ﬁ5 . (4'26)

Thus in what follows, we only explicitly write the contributions to the matrices hff, and all
others can be inferred using (4.26).
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Dimension 6, 7, and 8 Yukawa operators

The dimension-6 operators contribute to the 1-3, 2-2 and 3-1 Yukawa couplings, i.e. those
on the ¢ + j = 4 diagonal. The EFT coefficients are

1
[D3h1e = sval (89 — B,
[D2]50 = va(2685% — BLr).
[P Jse = y0a(B% ® B — B, (427

corresponding to the Feynman diagrams in Fig. 5. The dimension-7 operators contribute to
the 1-2 and 2-1 Yukawa couplings, i.e. those on the ¢ + j = 3 diagonal. These give

[D211s = 50 (304(51)° — 28351, — 26151, (428)

[Dh]or = 5ua(36L8% ® B — 2618%n — Bin® Bk — B ®BL), (429

corresponding to the diagrams in Fig. 6. Lastly, the dimension-8 terms contribute to the 1-1
Yukawa coupling. These give
1
[Da]1e = 57a(6(51)*B% ® B, — 36L08% ® B — 3(81)*Bhr + 261LB%r
—3BLBLr ® BR — 3BLBR®PBLr + BLr® BLr), (4.30)
corresponding to the diagrams in Fig. 7.

Using all these formulae for the EFT coeflicients, we can piece together the mass matrices
using Eqs. (4.4-4.6).

<f{a> <F{a>
<<I>L> ZJ: :P:—:z:—: <<I)R>
(@) === (1) ===
0y, H—% Ur Uy H%’—<7 Vg
(H) H
@ ¥ 1
= (@uy==ltesezz (Br)
SR |

P, —p——<— Up Y, —>——— Up

Figure 5: Feynman diagrams contributing to the 1-3 (left), 2-2 (middle) and 3-1 (right) elements of
the Yukawa matrices.
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(Pr) === 43
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U, —»4’—47 Ug
(Ha)
(Pr) === 43

V, —p——<—— Up

(Pp) ===
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4.3 Perturbative analysis of quark masses and mixings

We now derive formulae for the quark and charged lepton masses and the quark mixing
angles predicted by the model. We begin by defining shorthand matrices of dimensionless

cocfficients
Uu:= *f; (TaUs +vEU,) (4.31)
D= \fza: (va Do + V5 Dy) (4.32)
£ = ‘f ; (va&a +T2E,) (4.33)

where the Wilson coefficients U,, D,, £, Ua, Da, and &€, can be written in terms of the
fundamental couplings of the UV model using the formulae in the preceding Subsections.

Leading order mass formulae

Assuming all four parameters elg( ) are € 1, we can use matrix perturbation theory to write
down the leading expressions for the quark masses and mixing angles. For each of the matrices
U, D, and &, let Z/A{ij, 23,-], and (‘:’\ij denote the minor obtained by removing the i*" row and ;"
column of the respective matrix, then taking the determinant. For the masses we find, for
fie{u,d e}, foe{c, s, u}, f3€{t,b,7}, and corresponding F € {U, D, £},

det(F)

LLCa | EET Y (130
Ji
ﬁll
Up ~ | F | LR (4.35)
33
Yps ~ [Fasl, (4.36)

where yy, = \/Emfi /v for each particle. The last equation, for the third family fermion
masses, simply matches (2.15). Thus, the mass hierarchies between families are set by the
expansion parameters elLJ r- We emphasize that one could substitute in expressions for the
EFT Wilson coefficients in terms of the fundamental UV couplings, but, with the exception
of the renormalisable third family masses, the resulting formulae would be very complicated
— and not especially enlightening.

Fixing the scale separations

We now turn to the mixing angles. Again using perturbation theory, we can find the uni-
tary matrices V* and V¥ such that VFM*(VEM®)T and (M“VE)TM“V¥ are diagonal, and
similarly for VLd and V}‘%. The CKM matrix is then Voxym = VL“VLd . In terms of the small
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parameters, the result is

Vekwm ~ (4.37)

~ L2 ~e A ~ ~ ~ ~
Dy Upi | _ 2%’;1?21 (e1)? (?21 _ LA{;) el2 (Z:t; 4+ Dis _ Das Z:{Z*I) €l2.23
D U, U¥ Dy 2 D U¥X) L a¥ " Dss  DssyX ) LL

. 5 2 .2 oo

(Z/Afm _ ?;) el2 1— Doy Usi | _ 21{21?;‘1 (er))? (Dzs u2*d> €23

nwo DR L D11 U1 U1 DF 2 Dz U} ) L

DE | Uis _ U3 DF ) 12,23 Uz _ D 23
(’5;“1 t Uy 33 DX €Lr Uss  DF, €L 1

assuming that both 61L2 and 6%3 are small. The model therefore predicts that the product of
the Cabibbo angle (~ €}?) and the 2-3 quark mixing angle (~ €2*) is of order the 1-3 mixing
angle, a relation that is approximately correct. Indeed, to leading order the CKM matrix in

our model can be matched onto the Wolfenstein parametrization [23]. The Cabibbo angle

(Dﬂ - ufl) | . (4.38)

D U}y

A~ 0.23 is given by the combination

A~ |Vis| = €2

The CKM matrix element Vi, which is empirically observed to be of order A2, is given by
V=€ | == — 2. 4.39
A (4.39)
The scaling of our small parameters with the Cabibbo angle is then

e’ ~ A\, B~ A2, (4.40)

assuming the fundamental parameters are chosen so that the prefactors appearing inside
brackets in Egs. (4.38) and (4.39) are O(1). We hereon set 12 = X and €23 = A\? precisely,
without losing any freedom in our ability to fit all the mass and mixing parameters.

Plugging these back into the formulae for the mass eigenvalues, we predict the rough
relations between the families,

T2 N3 (4.41)
ms3

ml 12

— ~ Xep . 4.42
s €R ( )

Thus, having fit the hierarchies in the measured CKM angles via €}? and €2, the remaining
expansion parameters 6}32 and 6%3 can be fit to the general trend in the mass ratios between
generations, as observed across up, down, and charged lepton. (The residual differences
between these species will be absorbed by the EFT coefficients.) For example, by crudely

comparing (4.41) with the geometric means of the fermion masses in each family, one favours

€~ N2, B~ N, (4.43)
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In other words, the right-handed mixing angles can exhibit the ‘opposite’ scaling to the left-
handed mixing angles, so that the mass hierarchies m;/ma ~ A3 and ma/m3 ~ A3 are roughly
equal.

Note that if we sub these scaling relations back into the hierarchical form (4.7) predicted
for the Yukawa matrices, we can express the hierarchical structure (up to the order-1 coeffi-
cients) in terms of the Cabibbo angle A, finding:

PUNBCIPT:
m~—— [ X2 a2, (4.44)
Mol

for up-type quarks, down-type quarks, and charged leptons.

Relations in the CKM matrix, and the Jarlskog invariant

Our formula (4.37) for the CKM matrix does not parametrize a completely general unitary
matrix. But happily, as mentioned above, our model can be matched onto the Wolfenstein
parametrization. For example, both our Eq. (4.37) and the Wolfenstein parametrization of
the CKM matrix satisfy the following relations:

Vea = —V.5, (4.45)

Vis = =V, (4.46)

Vua = Vi, (4.47)

Vus‘/cd = (Vud + ‘/cs - 2)7 (448)

th + Vu*b = (Vus‘/cb)* ) (4-49)

which are not implied by unitarity alone. The first three relations imply |Veq| = |Vusl,

|Vis| = |Ve|, and |Viq| = |Ves|, all of which agree well with experiments. Moreover, relations
(4.47) and (4.48) together imply

1 2
‘Vud‘ = ‘Vcs‘ :1_§‘Vus‘ + .. (4.50)
where ‘+ ...” indicates terms suppressed by factors of A\. This too agrees well with observation.

Using a Grobner basis analysis, the relation (4.49) can be combined with the definition
of the Jarlskog invariant, J = Im(V,V VL VE), to give

472 = 2|V Va2V |* + [Vaal?) + 2|Vis Via? — [Vial* — [Vis[* — [Vaus V|, (4.51)

at leading order in . Note that this formula for J, which to the authors’ knowledge is new,
indeed vanishes if all entries of Voga are real. The Jarlskog invariant is a function of the
C P-violating phase usually denoted by 013 (in the standard parametrization of the CKM
matrix). Plugging into this relation the central observed values of the CKM angles 6012, 03
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and o3 and solving for d13 gives
013 ~ 1.25 (radians), (4.52)

which agrees well with the experimental value. Relation (4.49) also implies the following
inequalities,

|Vub|2 + |V;:bvu5’2 - 2|Vub‘/cbvus| < “/td’Z < ’v'ub|2 + |‘/cqus|2 + 2|Vub%bvus| . (453)

These are indeed satisfied by the central values of the observed CKM matrix.

It is not hard to see that if we can fit Vs, V4 and V,, to any complex numbers, we can
of course fit |Vys|, [Vep| and |Vyp| freely, and we can fit |Vi4| to any value satisfying (4.53).
This then determines the CP-phase through (4.51), the value of |V,4| = |Ves| through (4.50),
and the values of |V 4| = |Vys| and |Vis| = |Vip|. Thus, by fitting |Visl|, [Ve|, |Vaus| and |Vig| to
their central experimental values, we will reproduce the remaining Vokn observables in close
agreement with their experimental values.

Parameter space of the model

Although we do not explicitly include every possible contribution in the scalar potential (4.9),
our EFT nevertheless has enough freedom to fit (in complex space) all quark and charged
lepton masses as well as the three CKM elements V5, Vo and Vi, as follows. (And as just
discussed, this in turn allows us to fit the whole CKM matrix to a very good approximation.)

o Firstly, {v:, Y, yr, Ve } have no dependence on couplings to P, and can be fit using the
Yukawa coefficients {y1, 9, y15,¥15} for any values of (8}, 8+%) away from a small set of
points. The reader can easily verify this, since V is simple enough to write explicitly
in terms of fundamental parameters; from Eq. (4.39), we have

N (B e, B B
Veb =§{*(y101 +7,07) + (y15v15 + Y15075)
Yb Yp
/Bi — % % 61145 — * %
—y?(y1vl +y1v7) — 79* (U15v15 + Y15075) ¢ (4.54)
¢ t

and y, y, and y, are given by the linear combinations (2.15).7

e Secondly, the observables {yc, ys, Yu, Vus, Vup} have a dependence on couplings in the
scalar potential that contain at most one ®p field. While the analytic expressions
for these observables are unwieldy, we find that four of them can be fit using the
model parameters { 5}2» BL R»> W23, Wa3}. There is a remaining linear combination of these
observables which is in fact independent of any coupling to @, and this can be fit using

" Unsurprisingly, the Vi, angle vanishes in the limit where both cubic couplings 81 and 8;° vanish, since in
this case the tree-level diagrams in Fig. 4 are not generated at all.
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{ﬂi I ﬂf’L} Note that both Bi ;, and B?L, which are real couplings, are required to fit
the complex observable.

e Finally, the remaining set of observables we need to fit are the first family
fermion Yukawa couplings {yu,Vyd,ye}. These can be fit using the model parameters

{’U)IQ, w12, B}{R}

e The remaining model parameters can then be chosen arbitrarily, except on certain
lower-dimensional surfaces in parameter space on which certain observables can’t be

fit.

5 Conclusion

In this paper we have introduced a fundamental gauge theory of flavour based on the gauge
group SU(4) x Sp(6)r, x Sp(6)r. This gauge group, which is a family-enriched generalisation
of the Pati—Salam symmetry, unifies electroweak and flavour symmetries in the UV. All three
generations of SM+3vg fermions are packaged into two fields in the UV. Additional scalar
fields are required to break this much-enlarged gauge symmetry down to the SM, and we
have chosen an almost-minimal set {Sr,Sgr, ®r, Pr} of scalars, as listed in Table 2, to do
the job. The SM Higgs, as in the one-family Pati—-Salam model, is embedded in a pair of
bifundamentals of the extended electroweak symmetry, which transform in the singlet and
adjoint of the SU(4). The vevs of these Higgs fields now automatically carry a direction in
flavour space, which we suppose is aligned with the heavy third family fermions.

As well as explaining the origin of three generations in terms of broken gauge symmetries
that extend the electroweak force, we also find that such a model can naturally account for
the very particular hierarchical structure observed in quark and charged lepton masses and
quark mixings. Only the third family fermions have renormalisable Yukawa couplings, and
the mechanism for generating the light Yukawas is simple. First, two of the scalars Sy and
Sr acquire vevs that partially break SU(4) x Sp(6)1, x Sp(6)r down to a family non-universal
intermediate gauge symmetry — see Fig. 1. Next, the extra components of the Higgs fields
are integrated out at a heavy scale My, before the remaining scalars ®7, r condense. At this
point, higher-dimension Yukawa-like operators are generated for all the light fermions, due
to scalar interactions between the Higgses and ®;, r. We compute all these EFT coefficients
explicitly. Finally, once the remaining dynamical BSM scalars ®; and ®p acquire their
vevs, breaking the gauge group down to the SM, the EFT Yukawa-like operators match onto
the dimension-4 Yukawa operators of the SM. As long as the vevs of ®1 r are an order of
magnitude or so lighter than My, all the observed hierarchies in the Yukawa matrices are
generated for O(1) fundamental couplings, and there is enough parametric freedom in the
EFT coefficients to fit all the quark and charged lepton masses, as well as the complete CKM
matrix (although not a generic unitary matrix).
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Further work

Concerning the possible phenomenological consequences of electroweak flavour unification,
we have only begun to scratch the surface in this paper. We envisage a number of extensions
of this work.

1. We have implicitly assumed that the scales associated with breaking the extra gauge
symmetries are all suitably high. In this high-scale unification scenario, the low energy
physics is essentially described by the SM plus three extra Higgs doublets with natural
masses < 1 TeV, as in other Pati-Salam based models. More interestingly, since there
is no danger of excessive proton decay in the model we have set out, the scale of
electroweak flavour unification could be rather low (much lower than the traditional
GUT scale). In this case, the complicated spectrum of extra gauge bosons, most of
which mediate flavour-dependent forces (with the exception of the U; leptoquark),
would have a rich low-energy phenomenology. By measuring up against the current
flavour data, one could find the lowest possible scale of electroweak flavour unification,
and the BSM effects that one would expect to see first.

2. Related to this, it is intriguing that hints of flavour-dependent forces are already being
seen in the decays of B-mesons, predominantly by the LHCb collaboration. These
‘B-anomalies’ are now observed with a high statistical significance in neutral current
b — sl transitions, and there remain hints of anomalies in b — c7v charged currents.
An obvious question to ask is: is there a viable parameter space in which any of the
heavy gauge bosons predicted by electroweak flavour unification can simultaneously
explain the B-anomalies, while remaining consistent with all flavour bounds and related
constraints?

3. For the b — sff anomalies at least, there is indeed an obvious candidate already present
in our model, which is the Z’ boson in the SU(2) triplet that arises from (;5%3 acquiring
its vev. This Z’ couples only to left-handed quarks and leptons in the 2nd and 3rd
families. Moreover, since its vev is suppressed with respect to the vev of ¢1L2 by a
factor of the Cabibbo angle, in order to explain the hierarchy in quark mixing angles
|Vep| ~ A[Visl, this Z’ boson can be the lightest BSM gauge boson in the spectrum. We
save a detailed phenomenological study of this possibility for future work.

4. We have not explained neutrino masses at all in this work. Simultaneously explaining
the anarchic neutrino mixing angles using some combined seesaw mechanism, while
preserving the explanation of hierarchies in the quark sector, poses some challenges.
Such an explanation will warrant an extension of the field content of the model beyond
the very minimal setup we have used here.

5. There are possible cosmological consequences of electroweak flavour unification that we
have not explored. Firstly, the symmetry breaking Grwr — Gsm ought to give rise to
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monopoles because the homotopy group me(Grwr/Gsm) = Z is non-vanishing.'® This
is the case for any UV model with semi-simple gauge group. One way to avoid an over-
density of monopoles is for the scale Ar of SU(4) x Sp(6)r — SU(3) x Sp(4)r x U(1)r
breaking to be higher than the scale of inflation, meaning that the monopole density
would be diluted during inflation. Since there is no monopole production below the
scale Ar, no more monopoles are produced after inflation ends.

6. Secondly, it was shown in Ref. [24] that the generation of flavour hierarchies via a
succession of symmetry breaking steps can lead to a multi-peaked stochastic gravita-
tional wave (GW) signal, that could in principle be detected by future interferometer
experiments such as LISA, the Einstein Telescope (ET'), and Cosmic Explorer (CE). If
the analogous symmetry breaking steps in our model can proceed via first order phase
transitions, there could be detectable GW signatures in our model also — even in the
case of very high scale symmetry breaking. Since in this scenario there is little hope of
directly producing the heavy gauge bosons at present or future colliders, the detection
of GWs could provide a complementary probe of electroweak flavour unification.
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18This can be easily seen from the long exact sequence in homotopy groups for the fibration Gsy — Gewr —
X, where X =~ Gewr/Gsm. The portion

-+ —> ma(Gewr) — m2(X) — m1(Gsm) — 1 (Gewr) — - ..

reads
~~—>O—>7r2(X)—>Z—>O—>...7

where we have used the fact that both 71 and w2 vanish for any compact semi-simple Lie group, while
m1(Gsm) = Z because of the hypercharge factor. We read off that the group we want is m2(X) x> Z.
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A Anomaly cancellation

In this Appendix we show that the Ggpwr = SU(4) x Sp(6)r, x Sp(6)r gauge model is
anomaly-free.

No local anomalies. One must first consider local (perturbative) gauge anomalies. Since
Sp(6) has only real and pseudoreal representations there are no associated local anomalies,
and it remains only to check that the SU(4) factor is free of perturbative anomalies. This
follows automatically, since there are equal numbers of left-handed and right-handed Weyls
transforming in the anomalous fundamental representation of SU(4).

No global anomalies. Having first checked that there are no local anomalies, one should
next ask whether there are more subtle global anomalies in our UV gauge model. To detect
global anomalies in a 4d gauge theory with gauge group Grwr, and with fermions defined
using a standard spin structure, one should compute the torsion part of the bordism group
Qgpin(BGEWF). This bordism group can be easily computed using the Atiyah—Hirzebruch
spectral sequence (AHSS). We refer the curious reader to Refs. [25,26] for similar examples
of the AHSS in the context of BSM physics, and for an introduction to this method.'®

The calculation of Qgpin(BGEWF) goes as follows. Recall that, when BG sits inside a
fibration ' — BG — B, the second page of the (homological version of the) AHSS is given
by Eg,q = H,(B; Qgpin(F)). It here suffices to consider the trivial fibration pt — BGgwr —
BGgrwr of BGrwr over itself, where pt denotes a point, meaning the input to the spectral

sequence is
E} . = H, (BGrwr; Q"™ (pt)) . (A.1)

Recall that the first few bordism groups of a point are [28]

n ‘0123456

Qipin(pt)‘Z Zo Zy 0 Z 0 0

and so we need the first few homology groups of BGgwr valued in Z and Zo, in order to
populate Eg’q.
Such groups are easy to find. Firstly, the cohomology ring of BGgwr is

H.(BGEWF,Z) =7 [027CSWZL;P%aP&?éaP?aP?P?] ) (As)

where ¢; are the non-zero Chern classes of the SU(4) factor, and piL’R are the non-zero Pon-
tryagin classes of the Sp(6)r, r factors. Therefore, the low-dimension cohomology groups are
H*(BGgwr;Z) = {Z,0,0,0,Z3,0,Z,0,Z%, ...}, and these coincide with the low-dimension
homology groups by universal coefficients (since all the odd-degree cohomology groups van-

19Ref. [27] uses the Adams spectral sequence to compute anomalies relevant to BSM physics.
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ish, and there is no torsion). Using this information, we write down the second page of the
AHSS in Fig. 8.

E? page
) 0 0 0
4 Z VA Z
3 0 0 0
2 | 73 X 73 Z,
1 Zs Z3 Zs
0| z 73 \Z 78
0 1 2 3 4 5 6 7 8

Figure 8: The second page of the AHSS for Qgs)pin (BGEwF).

Already on the second page, there is only a single element on the p + ¢ = 5 diagonal
that could contribute to €25, which is Eil. The map out, [ : Eil — E%Q is the zero map so
ker 3 = (Z3)3, and it remains only to compute the map in, o : Eg,o — Eil. This map is the
composition of the dual of a Steenrod square and reduction modulo 2,

a2
a:Z 242 7, 59, (7,)3, (A.4)

where the Steenrod square that we need is simply
Sq? : HY(BGrwr; Z2) — H®(BGrwr;Z2) : (A.5)
C2 — C3, PlLa pf” — 0. (A.6)

Its dual therefore sends ¢3 to ¢; (where the notation denotes the dual to the corresponding
elements in mod 2 cohomology), and so Im a =~ Zj, generated by ¢3. Thus, taking the
homology with respect to the differentials @ and 3, we turn to the next page:

5 (Zy)?
1=y

lIe

~ (Z9)*. (A7)
Continuing to turn pages, there are no further relevant differentials until the fourth page,

but here the differential is a map v : Ef; — Ej, : (Z)* — Z which must be the zero map.
Hence, B = (Z)?. Since there are no other entries on the p + ¢ = 5 diagonal, we read off
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the fifth bordism group to be
QP [B(SU) x Sp(6)1 x Sp(6)r)] = Zz x Zs, (A8)

which is pure torsion.

From the computation of the AHSS above, we see that these Zs factors derive from the
combination of each Sp(6) r Pontryagin class plL’R, together with Q?pin(pt) ~ Zs. Thus, in
a 4d theory with gauge group SU(4) x Sp(6)r, x Sp(6)g, there is a pair of possible global
anomalies, one associated with each Sp(6) factor. These anomalies, which afflict any Sp(2r)
gauge theory (as was observed in Witten’s first paper concerning global anomalies [8]) are
avatars of the more famous SU(2) = Sp(2) anomaly. For one way to see this anomaly (see
e.g. [29,30]), consider a single Sp(6) fundamental fermion on a spacetime M = S, in the
presence of an odd instanton, i.e. an Sp(6)-principal bundle over M with p;([M]) € (2Z+1).
The fermion partition function flips sign under the gauge transformation by —1 € Sp(6),?°
meaning that Sp(6) is anomalous.

In general, each Sp(6)r, r anomaly is generated by odd numbers of fermions transforming
in the fundamental 6 representation (amongst others?!) of either Sp(6). Since our electroweak
flavour unification model features an even number (four) of Weyl fermions transforming in
the fundamental representation of each of Sp(6); and Sp(6)g, both global anomalies cancel,
exactly as for the ordinary Pati-Salam model. We conclude that our SU(4) x Sp(6), x Sp(6)r
gauge model is completely anomaly-free on any suitable spin 4-manifold equipped with gauge
bundle.
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