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We study generalized symmetries in a simplified arena in which the usual quantum
field theories of physics are replaced with topological field theories and the smooth
structure with which the symmetry groups of physics are usually endowed is forgot-
ten. Doing so allows many questions of physical interest to be answered using the
tools of homotopy theory. We study both global and gauge symmetries, as well as
‘t Hooft anomalies, which we show fall into one of two classes. Our approach also al-
lows some insight into earlier work on symmetries (generalized or not) of topological

field theories.
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Generalized symmetries have come to play an important role in quantum field theory.

Nevertheless, they retain an air of mystery. In [1], a ¢-form global symmetry in spacetime

dimension d was defined as ‘topological operators U, (M@= associated to codimension

¢ + 1 manifolds M9~ that fuse according to a group law U,(M@-9=D)U,(M@-1-D) =

Uy (M@=4=1)) (where g” = gg'), but this leaves us with several questions. Firstly, the defi-

nition makes sense for every 0 < ¢+ 1 < d, so do the individual groups assemble themselves

into some larger structure, and if so how? Secondly, we know that even in quantum me-

chanics, there exist ordinary symmetries in which the associated operators do not quite fuse

according to a group law (or to put it more prosaically, do not form a representation). For

example, a rotation of an electron is represented projectively and a reversal of time is rep-

resented antilinearly. Can such symmetries be generalized? Thirdly, what does ‘topological’



mean, exactly, and how does it relate to our usual understanding of ordinary symmetries in
quantum mechanics as (unitary) operators that commute with the hamiltonian operator?
Fourthly, can we give a meaning to gauging a generalized symmetry? If so, can it always
be done, or are there possible 't Hooft anomalies? If it can be done, is the resulting theory
unique?

Here, we wish to shed some light on such questions by studying generalized symmetries in
a simplified arena in which we replace the usual dynamical quantum field theories of physics
with topological field theories and we forget the smooth Lie group structure with which the
symmetry groups of physics are usually endowed (though we make some remarks about Lie
groups and the connection to Noether’s theorem in §VIII).

Such theories are somewhat boring, dynamically speaking, in that the theories are few
and far between and, in any given one of them, very little can actually happen. But,
as we will see, this disadvantage is offset by the consequent advantage that they exhibit
larger amounts of symmetry than theories with additional structures. Moreover, they can
be formulated precisely using the language of category theory, and we can often calculate
everything we desire. (Indeed, many of the mathematical constructions we describe are
known to mathematicians, or at least will come as no surprise, but the interpretation in
terms of generalized symmetries of physics is hopefully new.)

Generalized symmetries by their very nature require us to use higher categories, which
in practice involves a great deal of faff. Fortunately, almost all of it can be avoided by
going all the way to infinity and observing that both the generalized symmetries and the
topological field theories on which they act form very special cases of co-categories, namely
oo-groupoids, in which all morphisms are invertible. As such, they can be replaced by
topological spaces, or rather homotopy types, and the requisite mathematics can mostly be
phrased in terms of homotopy theory. To translate back to physics requires us to return to
higher categories, whose terminology we use in a colloquial sense, except when it comes to
concrete examples.

So, for example, a point Z in a topological space © representing some oco-groupoid of
topological field theories corresponds to an object, i.e. a specific topological field theory, a
path between two points corresponds to a 1-morphism between the corresponding topological
field theories, a homotopy between two paths corresponds to a 2-morphism, and so on.

Our questions above are easily answered using this language. To give a sketch, it is



convenient to distinguish the three mathematical notions of a group, an action of that group,
and a fized point of that action, and to generalize each of these.

In our simplified arena, a generalized group can be completely characterized by the ho-
motopy type of a pointed connected topological space, or equivalently the classifying space
BG of a single topological group G (which is not unique). The semi-infinite tower of homo-
topy groups m,+1(BG) ~ m,(G) encode the abstract groups of g-form symmetries for each
non-negative integer q. The tower comes equipped with a rich structure. For example, for
g > 1 the groups are abelian, in agreement with expectations for generalized symmetries.
Furthermore, there is an action of the ordinary symmetry group m(G) on each of the gener-
alized symmetry groups m,(G), induced by the action of the topological group G on itself by
conjugation. Thus, an answer to our first question is: a generalized group is the classifying
space of a topological group (and an ordinary group corresponds to the special case of a
discrete group).

A generalized action of a generalized group on some space O of topological field theories
is then a fibration over BG, together with an identification of © with the fibre over the
basepoint. (Many, but not all, of these arise via a continuous action of G on © as the bundle
EG xc© — BG.) A generalized fixed point is a homotopy fixed point, namely a section of
the fibration (in the case of the bundle EG x5 © — BG, this is equivalently a G-equivariant
map from EG to ©).

Our second question can then be answered as follows. Every space © admits the trivial
action of GG, in which no points are moved. By passing back to the language of category
theory, one sees that the corresponding homotopy fixed points (which are simply maps
BG — ©) correspond to true representations. But a specific © may also admit non-trivial
actions of G, and we will see in examples how these reproduce projective and antilinear
representations, and more besides. In category-theoretic language, these exotic possibilities
arise because topological field theories (and presumably quantum field theories in general)
form an oco-groupoid, whose morphisms record (some of) their internal structure. So the
right notion of a (generalized) group action is not one on a set, but on an co-groupoid, and
the right notion of a fixed point is a limit in the sense of oo-categories.

To answer the third question, consider again the homotopy fixed points of the trivial
action, i.e. the maps BG — ©. Looping such a map, we obtain a map from G to the space,

70, of loops in © based at Z € ©. On the category-theoretic side, these correspond to the



automorphisms of the topological field theory Z, whose objects are invertible natural trans-
formations from the topological field theory to itself. They thus commute with all possible
dynamical evolutions. This is just the same as what happens for ordinary symmetries in
quantum mechanics, except that in topoogical field theories the possible dynamical evolu-
tions are different in nature, being evolutions along spacetimes with non-trivial topology or
along spacetimes equipped with non-trivial geometric structures. There are induced homo-
morphisms 7,(G) — 7,11(0, Z), showing that the composition of natural transformations
respects the group law on the nose. For non-trivial actions, we get transformations whose
composition does not respect the group law on the nose, but is merely coherent with respect
to it.

On the category theory side, a g-form symmetry corresponds to choices of (¢+1)-transfors
of TFTs (where a O-transfor is a functor, a 1-transfor a natural transformation, etc.). Part
of the data of such a (¢ + 1)-transfor is the assignment of top-level morphisms in the target
category to codimension (¢ 4+ 1)-manifolds. This is in accordance with the notion of a ¢-
form symmetry given in [1]. In particular, 0-form symmetries assign top-level morphisms
to codimension 1-manifolds. On looping, these morphisms descend down to linear maps
between vector spaces.

To deal with the fourth question, of gauging generalized symmetries, we equip the bordism
category underlying topological field theories with tangential structure. One can do this in a
very general way, following Lurie [2], that allows for gauge symmetries that act non-trivially
on spacetime. By introducing a notion of fibrations of tangential structures, we construct
maps, in the language of homotopy theory, which we call globalization maps, that send spaces
of theories with gauge symmetry to spaces of theories with global symmetry. This gives a
convenient framework for discussing ‘t Hooft anomalies, which can be seen to be of one of
two kinds. The first is an anomaly afflicting an entire space of theories with global symmetry,
so we call it a metaphysical 't Hooft anomaly, and arises when that space is not the image
of any globalization map. An example familiar from quantum mechanics are theories with
genuinely projective representations (meaning the associated 2-cocycle is not a coboundary)
of an ordinary symmetry group.

The second kind of anomaly is that even if a suitable globalization map exists, it may
fail to be surjective (on 7p); a theory with a global symmetry lying outside the image will

then be anomalous. We call these unphysical ‘t Hooft anomalies, for reasons which will soon



become clear.

These considerations also show that one can have what we call ‘¢t Hooft ambiguities.
Namely, even if a theory is non-anomalous, so it is in the image of some globalization map,
there is no guarantee that that map is unique, nor that it injects. So there may be many
ways to gauge a global symmetry.

In the case of topological field theories that are fully local (or fully extended in the
mathematicians’ jargon), the cobordism hypothesis implies that the globalization maps are
homotopy equivalences, so unphysical anomalies and ambiguities are necessarily absent.
They thus arise purely in theories that fail to fully respect the sacred physics principle of
locality, hence the moniker unphysical.

Our approach also allows us to shed further light on several earlier observations in the
literature regarding symmetries (generalized or ordinary) of topological field theories.

To set the scene for this, consider the example of the orientable topological field theory in
d = 2 obtained by quantizing a classical field theory with gauge symmetry Z2, as described
in [3]. For now we will be deliberately vague regarding whether this theory is considered to
be fully extended or not, as well as regarding what the target category is.

The classical action of this theory is specified by p € H*(B(Z2),C*) ~ Z,,. In [1], it was
argued that this theory has 0- and 1-form symmetries given by Z? I where k = ged(p,n). To
make sense of this in our language requires us to consider the theories to be fully extended
(with values in a certain bicategory of algebras over C). We will then show that in fact Z2 sk 18
merely a subgroup of m,(©, Z) ~ S22 (i.e. the permutation group on n?/k?* elements) and
of (0, 7) ~ ((C*)nz/ ¥ for the corresponding theory Z. These larger symmetries cannot be
seen by inspection of the classical action. More generally, we show how to compute (0, Z)
and (0, Z) for every fully-extended topological field theory in d = 2 and show how they
arise as subgroups of S,,, and (k*)™, for some m € N (which are (0, Z) and m2(0, Z) for
every possible Z for the base case of topological field theories defined on manifolds equipped
with 2-framings) with values in algebras over any separably closed field k. We also show
how one may characterize all possible homotopy fixed points of all possible actions in such
cases.

These results are suspiciously close to those of [4], which showed that 0-form symmetries of
unextended oriented topological field theories whose corresponding commutative Frobenius

algebras are semisimple act on a basis of idempotents by permutations preserving the trace



map, while 1-form symmetries act by multiplication of idempotents by elements of C*. In fact
this is no coincidence, because the semisimple commutative Frobenius algebras correspond
precisely to oriented topological field theories which are extendable: by extending, one can
make a proper definition of a 1-form symmetry, and show that the conditions obtained in
[4] are not only necessary, but also sufficient. Our results thus not only generalize those of
[4], but also place them in their proper context.

The same (unextended) Z?2 gauge theory appears elsewhere [5] as an example of a theory
with ordinary global symmetries that ostensibly suffer from a ‘t Hooft anomaly. This seems
odd, given that the theory is extendable, and given that for extended theories the cobordism
hypothesis implies that the globalization map is a homotopy equivalence. The resolution
of this apparent paradox is as follows. Ref. [5] in fact describes a method for constructing
theories with global symmetries that are free of ‘t Hooft anomalies (see the diagram in Eq.
17). The construction only works if a certain necessary condition is satisfied. Ref. [5] defines
a theory to be ‘anomalous’ if that condition is violated, but that merely means that the
construction cannot be carried out. As a result one does not even have a theory of which
one can ask the question of whether it is anomalous or not, in the usual sense.

The outline of the paper is as follows. In §II, we give a brief introduction to co-categories
and describe some examples relevant for topological field theory. In §III we define gener-
alized groups and generalized global symmetries of topological field theories. In §IV we
define generalized gauge symmetries, construct the globalization maps, and define 't Hooft
anomalies and ambiguities in that context. In §§V—-VII we discuss examples of topological
field theories in d = 1 and d = 2. In §VIII we discuss Lie group symmetries and in §IX we

compare our results with earlier literature.

II. TOPOLOGICAL FIELD THEORIES
A. TUnextended topological field theories

To set the scene, we begin with a review of unextended topological field theories, formu-
lated using the category-theoretic approach pioneered by Atiyah, Kontsevich, and Segal. We

need the notions of category, functor, natural transformation, and equivalence of categories,



all of which are standard and may be found in [6]. To set the notation, a category! C is a
collection of objects with a set of composable morphisms between each pair of objects; given
a pair of categories C and D, the functors between them themselves form the objects of a
category Fun(C,D) whose morphisms are the natural transformations.

We also need extra structure on a category C, namely a symmetric monoidal structure,
for which definitions may be found in [7]. Roughly, we have a functor ® : C x C — C, a unit
object 1 € C, natural braiding isomorphisms s, : a ® b = b ® a that square to the identity,
and natural isomorphisms a®1 —+ a exhibiting 1 as a unit. A dual to a is an object a" along
with an evaluation morphism ev : ¢ ®a — 1 and a coevaluation morphism coev : 1 — a®a"
obeying certain familiar conditions; we say that a is invertible if these morphisms are,
moreover, isomorphisms. Given a pair of symmetric monoidal categories, there is a notion
of a (strong) symmetric monoidal functor; these form the objects of a symmetric monoidal
category Fun®(C, D), whose morphisms are the monoidal natural transformations.

For unextended topological field theory in spacetime dimension d, we start from the
symmetric monoidal category Bordg ;. An object in Bord,; is a closed (i.e. compact without
boundary) (d —1)-manifold M. (In general, we may wish to equip manifolds with additional
structures, such as an orientation or spin structure, but since this will not play a significant
role until § IV, we elide it for now.) A morphism from M to N in Bordy; is an equivalence
class of compact d-manifolds W whose boundary is identified with the disjoint union M [ N,
where two WW’s are considered equivalent if they are related by a diffeomorphism which is the
identity on the boundary.? Composition of bordisms is defined by gluing manifolds along
the appropriate boundary components. The product in the symmetric monoidal structure
is given by the disjoint union of manifolds (so we denote it []) and the unit is given by the
empty manifold (). Physically, W represents the ‘spacetime’ of a euclidean quantum field
theory evolving in euclidean time from space M to space N, but the evolution is allowed to
be topologically non-trivial.

An unextended topological field theory is then a symmetric monoidal functor Z out of

L A note on notation: since categories and higher categories can be thought of as special cases of infinity
categories, we use a sans serif font for all of them (and even the same letter C to denote a generic one),

except in the case of co-groupoids, which will later be treated as topological spaces.
2 We remark that this unpleasantry is already a good motivation to go to (oo, 1)-categories, in which a

morphism is simply a bordism.



Bord;; to some target symmetric monoidal category, which we must now choose. Given
that we are modelling a euclidean theory, and given that there is is no obvious available
notion of a Wick rotation to a lorentzian theory, it seems artificial to demand the usual
quantum-mechanical structure of complex Hilbert space and operators that are self-adjoint
or isometries (or hermitian and unitary in the physics lingo), or even some Wick-rotated
version thereof. We therefore choose the target to be Vect, whose objects are vector spaces
over an arbitrary field k, whose morphisms are k-linear maps, and whose product is the usual
tensor product of vector spaces (so the unit may be taken to be k). Physically, the fact that
Z is a functor, so preserves composition, encodes (partially) the fact that theories of physics
should be local. Indeed, going backwards we see that we can recover the evolution along W
from the evolution along bordisms obtained by cutting it along an arbitrary submanifold of
codimension one.?> The symmetric monoidal structure of Z allows for composite systems to
be entangled in the usual way.

The correlation functions of the theory are encoded as follows. The usual local operators
of quantum field theory are supported on points, and the effect of inserting such operators
at points wy,...,w;, ..., w, in a closed d-manifold W is found by deleting disjoint open
neighbourhoods of each w; in W, resulting in a compact d-manifold with boundary W’
which in turn defines a bordism from [[, S*' to the empty d-manifold (). Applying the
functor Z returns a linear map Z(W’) : @, Z(S* ') — k. The vectors in Z(S9') may
thus be regarded as the local operators of the theory, and the linear map Z(W'), which
returns a complex number given a choice of local operator at each w;, may be regarded as
the correlation function.

Key to our story will be the category TFT4; := Fun®(Bord,, Vecty) of symmetric
monoidal functors. Its objects are topological field theories and its morphisms (which are
monoidal natural transformations) give us a way to compare topological field theories with
one another and thus detect at least some of their structure. In particular, the presence of a
morphism between two theories that is an isomorphism allows us to conclude that they are
are physically equivalent, since they will lead to theories in which the correlation functions

(and ultimately the observables) are related to one another in the same way.

3 We remark that the fact that we are only allowed to cut along codimension one means that, locality is

not fully manifest. This is already a good motivation to go to (oo, d)-categories.
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In fact, every morphism in TFT,; is a isomorphism (so TFT,; is a groupoid). To show
this, we need to show that given a natural transformation n : Z — Z’ and any closed d-
manifold M, the induced linear map ny : Z(M) — Z'(M) is an isomorphism. Regarding
the ‘cylinder’ M x I as a bordism M [[M — 0 or ) — M J[ M and applying Z furnishes us
with evaluation and coevaluation maps that exhibit Z(M) as a dual of itself and the dual
map ny, : Z' (M) — Z(M) turns out to be the sought-after inverse to 7.

Even though every morphism in a groupoid such as TFT,;; is an isomorphism, the
groupoid can tell us much more than just whether two theories are equivalent, because
each theory (and indeed any object in any category) has associated to it a group of auto-
morphisms, namely the isomorphisms from the theory to itself. It is natural to guess that
this group is related to the global symmetry of the theory and this guess is confirmed by pick-
ing apart the definition of an automorphism of Z € TFT,;: it is, for each closed d-manifold
M, a linear isomorphism 7y, : Z(M) — Z(M) such that, for any bordism W : M — N, the
diagram

z(m) 2% Z(n)

o g

z(m) 22 7wy
commutes. So the components of n are linear maps (for each state space Z(M)) that
commute with the dynamical evolutions Z (W) along all possible euclidean spacetimes W.
This looks very close to the usual quantum-mechanical notion of a unitary operator on the
Hilbert space of states that commutes with the unitary time evolution operator, except that
the notion of unitarity has gone and that the evolutions are now trivial (since the cylinder
M x I is the identity bordism on M, it gets sent by the functor Z to the identity linear map
on Z(M)), unless spacetime is topologically non-trivial. Moreover, the diagram shows that
the components of 1 are compatible with locality, expressed in terms of cutting and pasting
of bordisms.

We could, therefore, make an intrinsic definition of the global symmetry group of Z to
be its group Aut(Z) of monoidal natural automorphisms, or alternatively make an extrinsic
definition of a global symmetry of Z as a group G together with a homomorphism G —
Aut(Z), but we will see in the next Section that it pays to do something which is naively
rather different, namely to consider fixed points (in a appropriate sense) of actions of G on

the groupoid TFT,;;. In fact this turns out to generalize the notion of a homomorphism
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G — Aut(Z) (which is recovered as a fixed point of the trivial action of G on TFT,;).
Doing so allows us to capture the notion that an element of a physical symmetry group
need not fix Z, but rather can send it to an isomorphic theory, without affecting physical
observables. We will see in §VI, moreover, that this generalization is needed to describe
well-known physical phenomena such as the behaviour of electrons under spatial rotations
and time-reversal invariance.

Before doing that, we describe extended topological field theories. These will be needed
not only to define generalized global symmetries in §III, but also to formulate physics in
a way which is fully local. As we will argue in §VI, certain ‘t Hooft anomalies are best
viewed as arising from a failure to define a theory in such a way and so should be regarded

as unphysical.

B. Extending topological field theories downwards

We have already seen that defining topological field theories using ordinary categories
only captures a part of the local structure of physics. To fully capture locality, the theory
should be defined not only on closed (d—1)-manifolds and d-manifolds with boundary, but on
manifolds with corners of all possible codimensions, so that dynamics can be reconstructed
by pasting together simplices.

For that, we require higher categories. Roughly, these should consist of objects, mor-
phisms, higher morphisms, and so on, which can be composed in multiple ways in a coherent
fashion. Precise definitions are, however, somewhat involved. Since we will only go one step
higher in our examples, and since we will anyway soon need the yet more general notion of
an oo-category, we will content ourselves here with sketching the simplest case, namely a
bicategory. Full details are given in, e.g., [8].

A bicategory, C, is a collection of objects with a category C(a,b) for each ordered pair
(a,b) of objects in C. The objects of C(a,b) are called 1-morphisms and the morphisms of
C(a,b) are called 2-morphisms. In addition, there is a functor C(b,c) x C(a,b) — C(a,c)
known as horizontal composition, with a unit 1-morphism 1, € C(a, a) whilst composition

within C(a, b) is called vertical composition. An equivalence between objects a and b is a pair



12

of 1-morphisms f : a <+ b : g and a pair of 2-morphisms o : 1, — go f and 8: fog — 1,*
that are isomorphisms in C(a, a) and C(b, b) respectively.

Given two bicategories, we have the notion of a functor between them; given two functors
we have the notion of a transformation, and given two transformations we have the notion
of a modification. The functors, transformations, and modifications assemble themselves
respectively into the objects, 1-morphisms, and 2-morphisms of a functor bicategory.

We will also need a symmetric monoidal structure on bicategories and the corresponding
bicategory of symmetric monoidal functors.

An example of a symmetric monoidal bicategory, which will play the role of the target
bicategory in our examples, is Alg,: an object is an algebra over a field k, a 1-morphism from
an algebra A to an algebra B is an (A, B)-bimodule, and a 2-morphism is an (A, B)-bilinear
map. The horizontal composition of 1-morphisms is given by the tensor product of bimod-
ules (over the algebra in the middle) and the symmetric monoidal structure is given by the
tensor product over k. The relevance of this bicategory to physics is as follows. Given any
(symmetric) monoidal bicategory C, the endomorphisms of the unit object form a (symmet-
ric) monoidal category, which we denote QC. This looping construction extends to higher
monoidal categories and is adjoint to a delooping construction, which sends a monoidal
higher category C to a monoidal category BC one level higher with a single object whose
endomorphisms are C. The unit object of the bicategory Alg, is k and its endomorphism
category consists of k-vector spaces and k-linear maps. Thus, Alg, may be regarded as an
extension (not unique) of the usual target category Vecty of unextended topological field
theories. Looping again, we obtain the symmetric monoidal O-category (i.e. commutative
monoid) of linear endomorphisms of k, which is isomorphic to k itself. This provides a tar-
get for maximally unextended theories, in which the source ‘category’ contains only closed

d-manifolds, which we discuss as a toy example in §V.

4 We reluctantly perpetuate the now-standard practice of denoting both horizontal composition of 1-
morphisms and vertical composition of 2-morphisms with o, with * being used for horizontal composition
of 2-morphisms.
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C. Extending topological field theories upwards

It is convenient, for a number of reasons, to extend topological field theories upwards as
well, using the language of co-categories. One is that, as we have already hinted, it leads
to a simplification of the domain. Another is that the connection with homotopy theory is
more explicit. A third is that it then becomes obvious that symmetries of topological field
theories should be described by homotopy fixed points of group actions, since homotopy
limits are the only kind of limits in the oo-categorical context.

As for higher categories, we shall content ourselves with a sketch of the relevant concepts
and definitions. For more details, see [2].

An (00, n)-category C has objects, and morphisms of all levels, where the morphisms at
level greater than n are invertible, but now in a recursive sense. So a morphism f is invertible
if there exists a morphism ¢ in the other direction along with morphisms o : 1 — go f and
B : fog — 1 at one level higher that are themselves invertible. An oco-category is n-truncated
if the morphisms at level greater than n are equivalent to identity morphisms. Evidently, a
higher n-category can be identified with an n-truncated oo-category (which we hope excuses
the somewhat overloaded notation). Going in the other direction, we obtain the homotopy
n-category of an oo-category C by replacing the morphisms at level n with their equivalence
classes under the equivalence described above.

Given two (oo, n)-categories C, D, there is an (0o, n)-category of functors Fun(C, D) from
one to the other, and if D is n-truncated then Fun(C, D) is an n-truncated category. There is
an (oo, n+ 1)-category Cat,, whose objects are (0o, n)-categories and whose endomorphisms
are the (oo, n)-categories of functors.

An (o0, 0)-category, in which all morphisms are invertible, is also called an oo-groupoid
and corresponds, via the homotopy hypothesis, to a homotopy type, .e. a topological space
up to weak homotopy type. In one direction, this correspondence is given by forming the
fundamental oco-groupoid of a topological space X: objects are points in X, 1-morphisms
are continuous paths, 2-morphisms are homotopies between paths, and so on.

The (o0, p)-category Bord, , has objects given by (d—p)-manifolds (with suitable corners),
1-morphisms given by (d — p — 1)-manifolds,. . ., p-morphisms given by d-manifolds, (p+ 1)-
morphisms given by diffeomorphisms of d-manifolds, (p + 2)-morphisms given by isotopies

of diffeomorphisms, and so on.
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In this picture, topological field theories are (oo, p)-functors from Bord,, to some target
(00, p)-category D. An argument similar to the one we gave for unextended topological field
theories shows that the category Fun®(Bord,,, D) is in fact an oo-groupoid, or a homotopy
type [2, Remark 2.4.7]. In our examples, we will take D to be p-truncated, so that a
topological field theory factors through the homotopy p-category of Bord,,. Moreover,
Fun®(Bord,,, D) is a homotopy p-type.

IIT. (GENERALIZED) GLOBAL SYMMETRIES
A. Ordinary global symmetries

Before discussing generalized global symmetries, let us consider how to describe ordinary
global symmetries of topological field theories. As usual in mathematics, it is convenient to
separate the notions of a group, an action of that group on something, and a fixed point of
that action.

The most straightforward example is that of a group action on a set S, where a group
action is a homomorphism from G to the group Aut(S) of bijections of S. A fixed point is
an element of S that is fixed by each element of G and the set of all fixed points forms a
subset S¢ of S.

This can be formulated using the language of category theory as follows. A group G can
be considered as a category (in fact, a groupoid) BG with a single object and an isomorphism
for each element of G. A group action of G on S is then a functor from BG to the category
Set, whose objects are sets and whose morphisms are functions, that sends the single object
of BG to the set S. The fixed point set S along with its inclusion in S then arises as the
limit (in the category theory sense) of this functor.

From here it is easy to see what an ordinary global symmetry of a topological field theory
should be. Topological field theories do not form a set, but rather an co-groupoid, which
we generically denote by ©. To discuss a G-symmetry of a topological field theory Z € ©
we should therefore first give a G-action on the oo-groupoid © of topological field theories
of interest, i.e. an co-functor BG' — Gpd_, sending the unique object of BG to ©, and then
the oo-limit ©"“ of this functor should be thought of as an co-groupoid of topological field
theories equipped with G-symmetry. The oco-functor ©"¢ — © sends a topological field
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theory equipped with a G-symmetry to the underlying topological field theory. It need not
be either essentially surjective or injective (unlike the inclusion S¢ — S), reflecting the fact
that not every theory need admit a symmetry for the given action, and that if it does the
symmetry need not be unique.

Now the advantage of working exclusively with oco-groupoids, as we have done, becomes
clear: it is that the category of such is equivalent to the category of spaces, and the cate-
gorical constructions we have just described have down-to-earth interpretations in terms of
homotopy theory of topological spaces and the familiar tools of algebraic topology can be
used to study them.

The following, then, is a reformulation of the above in terms of topological spaces. Firstly,
the oo-groupoid BG corresponds to the classifying space BG of the group G, considered as
a pointed space (this excuses the clash of notation). Then, giving an action of G on the
oo-groupoid © of topological field theories corrresponds to giving a commutative square of

spaces
O — F

Lk

{x} — BG
which is a homotopy pull-back, i.e. giving a fibration © : £ — BG of spaces, along with
an identification 771(x) = © of the fibre over the basepoint * € BG with ©. Finally, the
oo-groupoid ©"¢ corresponds to the space of sections s : BG — E of the fibration 7, and
the forgetful morphism ©"¢ — © corresponds to the map sending a section s to the point
s(x) € © = 71 (x).

As we will see in §VI in the examples with d = 1, corresponding to quantum mechanics,
these notions naturally give rise to global symmetries with the usual physical properties. In
particular, the oriented topological field theories in d = 1 correspond to finite dimensional
vector spaces, with equivalences given by linear isomorphisms. For the trivial action of G on
this groupoid, the groupoid of homotopy fixed points has objects that are finite-dimensional
representations of G and morphisms that are invertible G-equivariant linear maps. For
non-trivial actions, we obtain both projective and semi-linear representations, and more
besides.

An important subtlety is the following. In defining the notion of a global symmetry, we

did not take the symmetric monoidal structure of topological field theories into account. We
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could instead have defined a group action to be an co-functor from BG to the (oo, 1)-category
of symmetric monoidal co-groupoids. This makes a difference when we try to take the limit,
since ©"¢ must itself then be a symmetric monoidal co-groupoid. This would exclude, for
example, projective representations, the category of which (for a specified cocycle) does
not have the necessary monoidal structure. Since these are well-known to occur as global

symmetries in Nature, we consider our construction to be the appropriate one.

B. Generalized global symmetries

Our formulation of ordinary global symmetries of topological field theories makes it easy
to extend to generalized symmetries. Indeed, in the categorical language, the group G is
considered as a 1-truncated oo-groupoid with a single object. So the only non-identity
morphisms are the 1-morphisms, and these correspond to the elements of G. The only
change we need to make to consider generalized symmetries is to relax the requirement that
our oco-groupoid be 1-truncated. So it may now have invertible morphisms at all levels, and
these give rise, albeit indirectly, to higher-form symmetries.

On the homotopy theory side, an oo-groupoid with a single object corresponds to a
pointed connected topological space. Every such space has the homotopy type of the clas-
sifying space BG of some topological group G, so we continue to refer to it as such. It is
important to note, however, that GG is not necessarily unique. For example, any connected
Lie group has a maximal compact subgroup, and the embedding is both a homomorphism
and a homotopy equivalence. Since the classifying space construction can be made functorial,
we conclude that the classifying space of any connected Lie group has the same homotopy
type of a maximal compact subgroup.®

With this change made, everything goes through as before. A generalized group action
of G on O is again an oco-functor BG — Gpd,, sending the unique object of BG to ©, or
equivalently, on the homotopy theory side, a fibration 7 : E — BG with fibre © over the
basepoint, and ©"¢ is the limit of this co-functor, or equivalently the space of sections of
m: E — BG.

Thus we have an extrinsic notion of generalized global symmetry. Let us now give, as we

5 We will use this fact later when we discuss generalized gauge symmetries to replace general linear groups

by orthogonal groups.
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did earlier for ordinary symmetries, an intrinsic notion, and connect the two. As we saw in
the previous section, for any ordinary category, there is a natural notion of the symmetry of
an object, given by the group of automorphisms of that object, with multiplication given by
composition of morphisms. (For an object in a groupoid, such as a TFT, every morphism is
an isomorphism, so we can equivalently consider the endomorphisms.) For an object Z in
an oco-groupoid ©, the morphisms from that object to itself themselves form an oo-groupoid.
The corresponding space is the homotopy pullback of {Z} < © <= {Z}, i.e. the loop space
22(©). To see that this is sensible, note that an object in the fundamental co-groupoid of
the space © is a point Z € © and a 1-morphism from Z to Z is a path from Z to Z in O,
i.e. aloop at Z. Now, Q7(0) does not quite have the structure of a group,® but rather that
of an H-group. That is, it has a multiplication (given by concatenation of loops) and an
identity (given by the constant loop at Z), such that the usual group axioms are obeyed up
to homotopy.

To see the relation between the extrinsic and intrinsic symmetries, consider the special
case of a trivial fibration F = © x BG. A section of this is simply a map BG — 0. It sends
* € BG to some Z € © and looping we get a map QBG — Qz(©) and consequently homo-
morphisms 7,(G) ~ 7,41(BG) — 7,41(0, Z), corresponding to actions of ¢g-form symmetry
groups m,(G) on the theory Z.

Passing back to the category theoretic side, we see that mo(G) acts by transformations,
7m1(G) acts by modifications, and so on. Now, part of the data of a transformation is a
1l-morphism in the target for each object in the source, a 2-morphism in the target for
each l-morphism in the source, éc, whereas the data of a modification is a 2-morphism
in the target for each object in the source, &c, éc. Spacetime evolutions are associated
to d-morphisms, and we see that then the g-form symmetries act on what the topological
field theory associates to manifolds of codimension ¢ + 1, exactly as we expect for g-form
symmetries.

Moreover, we see that a non-trivial g-form symmetry can only arise for a topological field
theory that has been extended at least ¢ + 1 times. (Our convention is that a maximally
unextended theory is a functor out of a O-category, i.e. a set, whose objects are closed d-

manifolds.) So for a topological field theory formulated using ordinary category theory (i.e.

6 Tt is, however, a theorem that every loop space has the homotopy type of a topological group.
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once extended, according to the convention just given), we can have at most an ordinary
symmetry. But maximally extended theories, in which locality is fully manifest, can have

g-form symmetries for all ¢ < d — 1.7

IV. GENERALIZED GAUGE SYMMETRIES

We now wish to describe generalized gauge symmetries of topological field theories. An
ordinary gauge theory corresponds to equipping spacetime M with a principal G-bundle,
or equivalently a map from M to BG. Since we saw in the last Section that a generalized
global symmetry can be obtained by replacing the abstract group G by a topological group,
it is natural to suppose that the same is true in the gauge case.

As we shall see, it is fruitful to do something more general than equip manifolds with maps
to BG. Indeed, as well as giving us a notion of gauge symmetries that act non-trivially on
spacetime, it allows us to subsume the notion of spacetime structures, such as an orientation
or a spin structure. We refer to gauge symmetries that act trivially on spacetime as internal
gauge symmetries.

This construction closely follows [2], though the interpretation in terms of generalized
symmetries is presumably new.

Letting X be a topological space, and £ a rank d real-vector bundle over X, we define the
p-category X¥)Bord,, as follows: A (p — k)-morphism, for 0 < k < p—1is a triple (M, f, s)

consisting of:

e a (d — k)-dimensional manifold M, with boundary, corners, &c;
e a continuous map f: M — X;

e an isomorphism of real vector bundles s : TM @ R* — f*¢, where TM is the tangent
bundle of M, R is the trivial rank-k real vector bundle over M, and @ denotes the

Whitney sum of bundles.

For p-morphisms, we take the equivalence class of such triples up to structure- and corner-

preserving diffeomorphisms.

7 As we shall see in an example in V, at the level of the action it makes sense to speak of ¢-form symmetries
acting on ¢-times extended theories. But the resulting fixed points represent properties, rather than

structures, of the corresponding theories.
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One source of (X,¢)’s is as follows: if G is a topological group and x : G — O(d) is a
d-dimensional representation, we can take X = BG and £ to be the vector bundle EG x o R?
over BG.

BGEGxcR)Bord, ., we denote this category by “Bordg,,, with the ho-

Instead of writing (
momorphism x left implicit. Similarly, by “TFT,, we denote the co-groupoid of symmetric
monodial functors from “Bordg, to some symmetric monodial p-category C.

Some relevant examples are: (i) *TFT,, corresponds to framed TFTs (where % denotes
the group with one element); (i) S YTFT,,, with x the obvious inclusion, corresponds
to oriented TFTs, since our conditions correspond to a reduction of structure group from
SO(d) — O(d); and (iii) ©“DTFT,,, with x the identity map, corresponds to unoriented
TFTs, which we earlier denoted simply TFT .

A notion of equivalence of tangential structures is naturally built in as follows. A map
& — & of vector bundles which covers a homotopy equivalence X — X’ and induces a linear

isomorphism on fibres, gives an equivalence (X Bordy, — (lefl)Bordd,p of categories, and

therefore an equivalence X' ¢)TFT,, = XOTFT,, of spaces of TFTs.

A. Globalization maps

We now wish to make a connection between generalized global symmetries and generalized
gauge symmetries and to discuss possible generalized ‘t Hooft anomalies, i.e. obstructions
to gauging generalized global symmetries.

As we will see, this question of physics has a natural mathematical formulation in terms of
globalization maps relating spaces of theories with various combinations of gauged and global
symmetries. These globalization maps formalize, in the topological field theory context, the
physicist’s notion (for Lie group gauge symmetries of theories on spacetime R?) of ‘turning
off the gauge field’. The issue of ‘t Hooft anomalies can then be broken down into whether
a suitable globalization map exists and, if so, whether it surjects (on 7). For maximally-
extended theories, the cobordism hypothesis guarantees the latter.

Let us first try to develop some intuition for globalization maps by describing the simplest
case in which we have an internal gauge symmetry G (i.e. the homomorphism y maps G to
the identity element in O(d)) which we wish to globalize. We can achieve this by restricting
a topological field theory to spacetime manifolds equipped with the trivial G-bundle, which
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defines a functor “TF T4, —* TFT,,, and then consider the effect of bundle automorphisms,
which allows us to factor “TFT,, —* TFT,, through *TFTZS, where the action of G on
*TFT,, is the trivial one. (In the physicist’s lingo, we switch off the gauge field and do a
constant gauge transformation.)

More generally, we might want to retain some some normal subgroup of G as a gauge
symmetry (or as a spacetime structure), or preserve an existing global symmetry, or both.
The following construction allows us to cover all of these possibilities, and more besides.

We consider the following data: a tangential structure (X, &) and a fibration IT : X — B.
For each point b € B we then have a space X}, := II"!(b) with a vector bundle &, := ¢|x,
on it, so we think of this data as a continuous family of tangential structures {(Xy, &) }oen
parameterised by B. To this data we may associate the family of bordism (oo, p)-categories
{(Xo8)Bordy, ven, and by applying the functor Fun®(—, C) to each member of this family

we obtain a family of co-groupoids {(Xb’gb)TFTd,p}be p parameterised by B. Equivalently, we

have a space SIDTET, , and a fibration
7. XSOTFT, , — B

such that 771(b) = Ko@) TFT,,,.

The inclusions i, : X;, — X are by definition covered by bundle isomorphisms &, — ¢,
so we can canonically consider any manifold equipped with a (X, &,)-structure as be-
ing equipped with a (X, &)-structure: this defines symmetric monoidal functors (i), :

Xo:%)Bord,,, — X¥)Bord,, and hence restriction functors
iy o XOTFT,, — Cv9ITFT,,.

Thus any topological field theory defined for (X, £)-manifolds provides a theory for (Xj, &)-

manifolds, varying continuously with b € B. That is, there is a map
I, : @9TFT,, — {Sections of 7 : *SWTFT,, — B}.

This map is contravariantly functorial in the data (Il : X — B,¢). In particular, if I' is a
group of symmetries of this data then it acts on source and target of this map, and we can
further take the (oo-)fixed points for these I'-actions.

The most important source of examples for us will arise from having a group extension

1+ K —G-3%Q—1and arepresentation x : G — O(d), then taking X = BG, B = BQ,
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Il = Bg: BG — BQ, and ¢ = EG x¢ R%. In this case the construction gives a homotopy

pull-back square
KTFT,, —— @OTFT,

| [
() ——— B0,

which as usual corrresponds to an (oo-)@-action on XTFT,,, along with a map
I, : “TFT,, — {Sections of 7 : (“OTFT,, — BQ},

where the latter corresponds to the (oo-)fixed points of the Q-action, and might equally well
be denoted by ¥ TFTZg. In physics terms, this corresponds to passing from a (generalized,
not necessarily internal) gauge symmetry G to a normal subgroup K, such that the quotient
group () becomes a global symmetry.

A notable example comes from the degenerate extension 1 = 1 — G MG 5 1. In this

case the homotopy pull-back square

*TFTy, — EIOTFT,,

l [

{x} ——— BG

can be identified with that given by the G-action via x on *TFT,, by the symmetries of the

tangential structure (x, R?), and so the map in question is
Id, : “TFT,, — {Sections of 7 : (“YTFT,, - BG} = *"TFTHC.

Physically, we have turned all of the gauge symmetry into a global symmetry (of d-framed
TFTs).

B. Anomalies and the cobordism hypothesis

The globalization map allows us to discuss the notion of ‘t Hooft anomalies (i.e. global
(generalized) symmetries that can’t be gauged) in a precise way. Indeed, we see that to
be anomaly-free, a theory Z € © must be in the image of some globalization map. This
condition can be violated in two ways.

Firstly, the space © in which Z lives may not be the target of any globalization map;

if so we say we have a metaphysical anomaly, since the anomaly afflicts the entire space
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of TFTs. Indeed, to be the target of a globalisation functor, the action of this global
symmetry has to be of a special kind, namely it must act via symmetries of the tangential
structure. An example of such an anomaly, as we will later see, is given by representations
of topological field theories in d = 1 that are genuinely projective, i.e. those that correspond
to cohomologically non-trivial group cocycles.®

Secondly, we may have a globalization map, but Z may not be in its image. We call this
an unphysical anomaly, because it cannot arise in theories that are maximally extended,
ergo fully local, as we believe theories of physics should be. This follows by the cobordism

hypothesis, whose proof is sketched in [2], which implies that the map
Ty (X’g)TFTd,d — {Sections of T : (X’g;”)TFTdd — B}

is a weak homotopy equivalence.

So (up to equivalence), any theory in the target corresponds to a unique theory in the
source, meaning that neither ‘t Hooft anomalies nor ‘t Hooft ambiguities (by which we mean
multiple gauge theories with the same image under globalization) can arise in this way. But
for non-maximally extended theories where the cobordism hypothesis does not apply, we
may also find that the globalization maps fail to be either surjective or injective (on ),
leading to what we call unphysical 't Hooft anomalies or ambiguities, respectively.

It is natural to ask whether one can also have metaphysical ambiguities, in the sense
that there exist globalization maps from multiple sources to a given target. But to give
this concept any teeth, one would first need to impose some coarse notion of equivalence
on tangential structures, presumably based on considerations from physics. If not, then
for underlying spaces of TF'Ts that are homotopy n-types, one will always find ambiguities

between tangential structures whose Xs are equivalent as n-types.

V. MAXIMALLY-UNEXTENDED THEORIES

We begin our discussion of examples by considering a case which, although uninteresting

as far as physics is concerned, nevertheless illustrates the mathematics well enough. To wit,

8 More generally, any space of TFTs with global symmetry that does not admit a suitable symmetric

monoidal structure must be anomalous.
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we consider TFTs that are maximally unextended, in that the (truncated) bordism category
is a O-category, or set, whose objects are diffeomorphism classes of closed d-manifolds.
Such theories contain no physics, because they contain no relations (beyond those implied
by the symmetric monoidal structure) between observables: a theory is specified by its values
on diffeomorphism classes of connected manifolds, and those values are independent of one
another. Nevertheless, the constructions described in previous sections can be carried out.
On the homotopy theory side, the space © has the homotopy type of a discrete space (so
each of its connected components is contractible). We claim that an oo-action of G then
corresponds to the usual notion of a set-theoretic action of my(G) on 7y(0), and a homotopy
fixed point corresponds to a set-theoretic fixed point. To see this, note that as the notion
of co-action is intrinsically homotopy-invariant, there is no loss of generality in replacing ©
with the homotopy equivalent discrete space my(©). Then a fibration 7 : E — BG with fibre
mo(©) is a covering space, so is determined by the monodromy action of 7y(G) = m1(BG, )
on 7 1(%) = m(©). A homotopy fixed point of this action is by definition a section s of
m. As BG is path-connected, by the uniqueness of lifts to covering spaces such a section is
uniquely determined by s(*) € 77 1(x) = m(0). Considering s as a map of covering spaces
from the trivial covering space id : BG — BG to 7w : E — BG, we see that s(x) € my(©)
must be invariant under the monodromy of 7, i.e. must be a G-fixed point. This identifies

O" ~ 715(0)"Y = my(©)Y, as claimed.

A. d=1

Things are particularly simple when d = 1, where *TFT)  is equivalent to the space k,
equipped with the discrete topology. To show this, observe that the source *Bord; o is the
symmetric monoidal co-groupoid consisting of finite disjoint unions of framed circles. The

corresponding homotopy type is the free E -algebra on the space
{framings of S*} /Diff(S").

The space of framings of S! is the same as the space of orientations of S', and consists
of two contractible path components. The action of an orientation-reversing element of
Diff(S!) interchanges these components, so the resulting homotopy type is BDiff*(S!), the

classifying space of the group of orientation-preserving diffeomorphisms of S*, which in turn



24

is equivalent to BSO(2) ~ CPP*™. The target category is obtained by looping Vect, so it is the
set of linear maps k — k with the symmetric monoidal structure given by tensor product,
which is isomorphic to k itself with symmetric monoidal structure given by multiplication. It
follows that *TFT , is the space of continuous maps BDiff*(S') — k, which as BDiff*(S!)
is connected is simply isomorphic to the space k with the discrete topology. In other words,
such a theory is determined by its value on any framed circle, and this value can be chosen
freely.?

Now let us consider the possible gauge symmetries. For simplicity, we consider here only
internal gauge symmetries, so we take a topological group G and the trivial representation
X : G — O(1), and describe “TFT; o. Now the source is the symmetric monoidal co-groupoid

“Bord, o, whose corrresponding homotopy type is the free E,.-algebra on the space
{framings of S*, f : S' — BG}/Diff(S").

Following the discussion above we only need to understand the set of path-components of
this space, which is the same as {f : St — BG}/Diff*(S!), and as the group Diff"(S?) is
connected the path components of this are identified with my{f : S' — BG}, or in other
words with the set Conj(myG) of conjugacy classes of elements of moG. Thus “TFT, is
identified with the set of k-valued functions on this set, 7.e. the k-valued class functions
on oGt Thus we might as well take G to be discrete in what follows. By the general
arguments already given, the possible global symmetries of XTFT; o correspond to fixed
points of some action of some discrete group () on the set of class functions K — k, so let us
now consider the globalization maps. Starting from an internal gauge symmetry based on
discrete group G as above, every fibration II of tangential structures is equivalent to a short
exact sequence * — K — G — ) — x of groups. For such a sequence, there is an action of
Q) ~ G/K on the set Ck of conjugacy classes of K given by p: G/K xCxk — Ck : ([g], [k]) —
[gkg™']. The fibration 7 corresponds to the @ action on Map(Ck, k) that is induced by p,
and I, corresponds to the map Map(Cg,k) — Map(Ck,k)? given by restriction. Since a

normal subgroup of GG is a union of conjugacy classes, it is easy to see that the map II,

9 We shall later see that the extended theories in d = 1 have values on a framed circle given by the trace
of the identity map on some finite-dimensional vector space, so the extendable theories are those which

take the value Y " 1 €k, for some n € {0,1,2,...}.
10 The extendable theories are given by the class functions that are characters of representations of m,G.
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always surjects, but injects iff K = G. So there are no unphysical anomalies, but plenty of
unphysical ambiguities.

In contrast, we certainly have metaphysical anomalies, for any Q-action on Map(Ck, k)
that is not of the form above (e.g. one that does not fix the image of all maps) cannot be

gauged.

VI. MAXIMALLY-EXTENDED THEORIES

We now wish to focus on the case of maximally-extended theories, with p = d. Not only
are these the ones of interest to physics (being fully local), but they also lead to a number
of simplifications thanks to the cobordism hypothesis. Theories that are not maximally
extended are less pleasant and will be studied in §VII.

At least in low dimension d, maximally-extended theories are fairly simple to classify
and study. In the following subsections, we focus on the cases of d = 1, and d = 2, where
we investigate symmetries and anomalies in more detail. Unfortunately, for d > 2, there
is even less consensus on what a suitable target category for TFTs might be, let alone an

description of the corresponding space of TFTs.

A. d=1

Here we will classify group actions on framed (equivalently oriented), fully-extended TFTs
for d = 1 valued in Vecty. It is easily shown that *TFT; ; is equivalent to the groupoid (i.e.
1-truncated oco-groupoid) of finite-dimensional vector spaces (including the zero-dimensional
space) and linear isomorphisms.

Though this case of ‘topological quantum mechanics’ may seem rather boring from the
dynamical perspective, we will see that it admits a rich variety of global symmetries.

As a topological space, we may take the 1-type
“TFT:; = [ [ BGL(n, k), (2)
n>0

the disjoint union of the classifying spaces of the groups G L(n, k) with the discrete topology.

As we have discussed, an (oo-)action of G on *TFT} ; corresponds to the data of a homotopy
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pull-back square
*TFTLl — F

L)

() — BG.
As two GL(n, k) for different n cannot be isomorphic [9], we must have £ ~ [[, ., £y, and

assuming F, — BG is splittable (if not, the space of homotopy fixed points will be empty)

we must have E, ~ BG, for topological groups G,, fitting into splittable extensions
0— GL(n,k) > G, % G — 0. (3)
Having fixed a G-action on *TFT;; as above, we find that

“TFT}S ~ H{Splittings s of a: G, — G} JJGL(n, k),

n>0

where // denotes the action groupoid (or homotopy quotient) for the GL(n,k)-action on the
set of splittings by conjugation. As GL(n,k) is discrete, splitting such an extension is the
same as splitting mo : moG — TG, so we may as well suppose that G is discrete.

Group extensions of G by GL(n,k) are classified by the non-abelian group co-
homology H?*(G,GL(n,k)) (see e.g. [10, 11]), in which a 2-cocycle is a pair
(0: G — Aut(GL(n,k)),e: G x G — GL(n,k)) of functions satisfying certain conditions.'!
Two pairs (o,¢€) and (o', €) represent the same cohomology class (which we denote [[o, €] €

H?(G,GL(n,k))) iff there exists a function ¢ : G — GL(n,k) such that

€ (91, 92) = t(g1)o(g1)(t(92))e(g1, 92)t(g192) (4)

for all N € GL(n,k) and g, ¢1,92 € G.

As described above, we are only interested in short exact sequences which admit a split-
ting, since otherwise there will be no homotopy fixed points. In terms of non-abelian group
cohomology, a sequence splits iff its cohomology class has a representative of the form [o,I]
where [(g;,92) = 1 is the constant map, in which case ¢ is a homomorphism. Indeed

given a section s of the sequence, we can define o, : G — Aut(GL(n,k)) : g — (N —

1 To wit (letting 1 denote the identities in both G and GL(n,k)): o(1) = idgr(nx, €(1,1) = 1, 0(g192)(N) =
e(g1,92) "o (91)(0(g2)(N))e(g1, 92), and €(g1, 92)e(g192, 93) = 0 (91)(€(92, g3))e(91, 9295)-
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B7(s(g9)B(N)s(g)~")) and [os,I] is the cohomology class of the SES. This reproduces the
well-known fact that a sequence splits iff it is equivalent to a semi-direct product.

The set of sections of a sequence with representative 2-cocycle (o, €) can be conveniently
described as follows: it is in bijection with functions r : G — GL(n,k) that are twisted

versions of representations, in the sense that

7(91)0(91)(r(g2))e(g1, g2) = 1(g192)- (5)

From the homotopy quotient, we see that two twisted representations r and r’ are to be

considered equivalent if there exists an M € GL(n,k) such that

Mr(g)e(1, g) = r'(g9)a(g)(M)e(g, 1) (6)

for all g € G.

In the special case when o and € are both trivial, Eq. 5 corresponds to the condition
for standard representations, and Eq. 6 the usual equivalence of representations. More
generally, if just o is the trivial map, then Eq. 5 corresponds to the condition for projective
representations with twisting €, and, since €(1, g) = €(g, 1) in this case, Eq. 6 corresponds to
the usual ‘linear equivalence’ of projective representations.

It follows from the above discussion that all we need to describe a splittable short exact
sequence is a homomorphism o : G — Aut(GL(n,k)). Thus we need to describe all possible
automorphisms of GL(n,k).

These are indeed known, though complicated [12]. In a nutshell, all automorphisms arise
from: (i) inner automorphisms; (%i) field automorphisms of k; (iii) the involution given by
taking the inverse transpose; and (iv) homomorphisms y : GL(n, k) — k*.

Let us now spell out some examples of physical interest, corresponding to the different
types of automorphism of GL(n,k) described above. We will see that Nature makes use of
all but the last one.

The usual representations of physics arise from the trivial action, which exists for every
G. Here o, sends all of G to the identity automorphism and we may take G, = GL(n,k) x
G for all n. For a given n, the space of sections are then in 1-1 correspondence with
homomorphisms 7 : G — GL(n,k), i.e. representations of dimension n. A morphism
between two homotopy fixed points with representations r1,79 : G — GL(n,k) corresponds
to an M € GL(n,k) such that Mri(g) = ra(g)M, for all g € G, i.e. the usual notion of

equivalence of representations.
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More generally, inner automorphisms of GL(n,k) give rise to projective representations,
as described above. We remark that the possible occurrence of projective representations
in physics is usually derived from the axiom that physical states in quantum mechanics
correspond to rays in Hilbert space. Here we have no such axiom (the notion of a ray in a
vector space certainly makes sense, but it is not clear what ‘physical’ should mean, given that
we have no way of extracting real numbers that could be interpreted as predictions for physics
measurements),'? but it is nevertheless reassuring to see that projective representations are
nevertheless allowed by the primitive requirements of locality and entanglement that the
axioms of topological field theories encode.

When the homomorphism of G — Aut(GL(n,k)) is induced by a homomorphism G —
Aut(k), we get semi-linear representations. An important case for physics occurs when k = C
and we choose some involution of C (which defines a complex conjugation in C relative to
the real line, defined as the fixed point subset). Then we get the antilinear representations,
of which time reversal symmetry is an example. Here, though, we have no notion of time
and no notion of unitarity.

Next consider the inverse transpose automorphism. This has a special role to play,
because it corresponds to the O(1)-action on *TFT; ;. By the cobordism hypothesis, its
groupoid of homotopy fixed points should be equivalent to the groupoid of topological
field theories on unoriented manifolds. To see this, let G = O(1) = {41, —1}, and let

G, = GL(n,k) x O(1), where the semi-direct product is defined via the multiplication rule
(Ma, 1) - (My, £1) = (MpMy, £1),  (My, =1) - (My, £1) = (My(M; )", F1). (7)

A splitting s of the corresponding extension is specified by its value A € GL(n,k) on
—1 € O(1). By considering s(—1 - —1) = s(1), we find that AT = A. So splittings cor-
respond to non-degenerate symmetric bilinear forms. A morphism between the splittings
corresponding to Ay, Ay € GL(n,k) is given by an M € GL(n,k) such that MA; MT = A,,
which corresponds to the usual notion of equivalence of non-degenerate symmetric bilin-
ear forms (i.e. *TFT?S(I) is equivalent to the groupoid of finite-dimensional vector spaces
equipped with non-degenerate symmetric bilinear forms and whose morphisms are linear iso-

morphisms which preserve the forms under pullback, which is indeed the same as O(I)TFTM).

12 Even for k = C, we have no way to identify R C C.
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It is difficult to say much more for generic fields k. However, for algebraically closed
fields (such as C) all A are equivalent to the identity matrix, and their automorphisms are

isomorphic to O(n, k). Thus, in this case we have that

OWTFT,, = [[ BO(n.k). (8)

n=0
When k = R, Sylvester’s law of inertia tells us that, up to equivalence, the A are given by
diagonal matrices whose diagonal entries are +1, with automorphisms given by O(p, ¢, R).

Thus we have

OTETy, = [[[[BO®. 4. R). 9)

p=0 g=0

In closing, it is perhaps of interest to speculate whether there might exist yet more ways of
realizing symmetries, as yet unknown to physics. At least when k = C, this seems unlikely.
All the field automorphisms of C are either of order two, so define a real line and a complex
conjugation as needed to define the values of physical observables, or are of infinite order. But
complex conjugation is the only automorphism of C considered as an R-algebra. The only
non-trivial automorphisms obtained from homomorphisms x : GL(n,C) — C* correspond
to powers of the determinant map. For a non-zero power, the resulting automorphism of
G L(n, C) generates a subgroup isomorphic to Z, so doesn’t admit a non-trivial automorphism

from a finite group.

B. d=2

We now carry out an analysis of the possible generalized global symmetries of framed
TFTs in d = 2 valued in Alg,. As we will see, this can be done in full, at least when the
field k is separably closed, though the result is somewhat complicated.

Keeping k general to begin with, the cobordism hypothesis [2] states that the bicategory
of framed TFTs valued in Alg, is given by the core of the fully-dualizable objects in Alg,
where a k-algebra A is fully-dualizable iff it is separable, meaning that A ®y K is finite
dimensional and semisimple for every field extension K D k. Choosing K = k, we see
that A itself is finite dimensional and semisimple, so we can apply the Artin—Wedderburn

theorem. To do so, we need to know the finite-dimensional division algebras over k. Since
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A is separable, these must be too, so we are looking for finite-dimensional division algebras
whose centres are finite-dimensional separable field extensions of the field k.

In general, this is difficult, as can be seen by considering the extreme case in which k
is perfect (meaning that every algebraic extension is separable), in which case every finite-
dimensional division algebra over k is valid and being separable is equivalent to being finite
dimensional and semisimple. This case includes all fields of characteristic zero and all finite
fields, so probably every field that could be of interest to physicists. But finding the division
algebras, even for a specific k, is a hard (though well-studied) problem.

Instead we choose to focus here on the opposite extreme in which k is separably closed
(meaning that no algebraic extension is separable), in which case the only division algebra
is k itself. This case includes the one of most interest, namely k = C (which is algebraically

closed so separably closed).

Separably closed fields

For separably closed fields k, the Artin—-Wedderburn theorem tells us that every separa-
ble algebra is isomorphic as an algebra to a finite product of matrix algebras over k, but
every such algebra is Morita equivalent to k™ for some positive integer n. Generalizing the

arguments in [13], one finds

“TFTy2 = [[ ES, x5, K(k*,2)*" (10)

n>1

where the permutation group S,, acts on K (k*,2)*" by permuting the factors. (We remark
that unlike for theories in d = 1, the sum here starts from n = 1, since there is no zero-
dimensional algebra.)

As usual, an action of G on *TFT,, is described by a homotopy pull-back square

*TFTQ’Q — F

L)

{+} — BG.

As the path-components of *TFT, 5 have non-isomorphic fundamental groups (namely the
distinct symmetric groups), the G-action preserves path-components and so there is a cor-

responding decomposition £ = ]_[n21 E,. As we are only interested in G-actions which
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admit homotopy fixed points, writing X,, = ES,, xg, K(k*,2)*" we are therefore looking for
homotopy fibre sequences

X, — E, * BG (11)

which admit a section. Using that m(X,) = S, and m(X,) = (k*)®" with S,-module
structure given by permuting the summands, we can understand such a homotopy fibre

sequence by developing the diagram

K((k")®",2) =—— K((k*)®",2) — *
| | l
X, En il (12)
| p H
BS, > B/, ~ ., BG
Ks0=ps_~

in which all rows and columns are homotopy fibre sequences, by letting 7’ be the fibrewise

1-truncation of 7. The bottom row, with a choice sy of section, is classified by the data of:
(i) a homomorphism myG — Aut(S,).

Given such a choice, which in particular identifies £/, ~ B(S, x G), the middle row is

classified by the data of:
(ii) a S, x mpG-module structure on (k*)®" extending the S,,-module structure,
(iii) a class k € H3(B(S, x G); (k*)®") which vanishes when restricted to H3(BS,,; (k*)®").
In order for the resulting 7 to admit a section, this should satisfy
(iii’) k € H3(B(S, x G); (k*)®") vanishes when restricted to H*(BG; (k*)®").

In this case the homotopy classes of sections s lifting the given sy are given by the reasons
this class vanishes, i.e. are a torsor for H?(BG; (k*)®").

The data in (i) and (ii) can be packaged together as follows. There is a group
Aut(S,, (k*)®") consisting of pairs of a group isomorphism fy : S, — S, and a fy-linear
module isomorphism f; : (k*)®" — (k*)®", and (i) and (ii) combined correspond to a homo-
morphism

¢ : MG — Aut(S,, (k*)®").
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To analyse this group, first note that for n # 6 all automorphisms f; of S, are inner, and
it is clear that these admit a canonical corresponding f;. On the other hand, for n = 6
the outer automorphism fy of Sg does not admit a corresponding f; (unless k* is trivial),
so for the data (ii) to exist, in (i) we must choose a homomorphism 7yG — Inn(S,,). This

discussion gives us a split extension
1 — Autys,(kK)®") — Aut(S,, (k*)*") — Inn(S,) — 1.

The kernel in this extension can be interpreted as the subgroup of G L(n, Endz(k*)) consisting
of those matrices which centralise the permutation matrices. It is easy to see that these are
the invertible matrices which have a common entry at all diagonal positions and another

common entry at all off-diagonal positions, i.e. invertible matrices of the form

a+b b ... b
b a+b ... b

a,b € Endz (k") (13)
b b ...a+b

Such a matrix is invertible for n > 1 if and only if both @ and a + n - b are invertible in
Endz(k*).

The scope of the data in (iii) (satisfying (iii’)) can be analysed by considering the Serre
spectral sequence for the bottom row of (12) with (k*)®"-coefficients. This describes the

group K of all possible k’s in terms of an exact sequence

HO(BG; H(Sy; (K)°")) —%= H*(BG; H'(Sy; (k)*")) —— K )

(14
L (80, 5,501 50 198G, )

As a S,-module we have (k*)®" = coIndngllk*, so by Shapiro’s lemma we have
Hi(S,; (k*)®") = HY(S,_1;k*), which may be determined using the Universal Coefficient
Theorem and the known low-degree homology of symmetric groups: the result is shown in
Table I. The group Aut(S,, (k*)®") acts on H'(S,; (k*)®") by functoriality of group coho-
mology in the group and in the module. The subgroup Inn(S,) < Aut(S,, (k*)¥") given
by the splitting acts trivially on H'(S,; (k*)®"), because inner automorphisms act triv-

ially on cohomology [14, Proposition II1.8.3]. A matrix of the form (13) in the subgroup
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n 123 4 >5

H2(Sy; (K*)%)|0 0 k*/(k*)* k*/(k*)? k*/(k*)* & k*[2]
HY(Sp; (k*)®) [0 0k*[2]  Kk*[2]  k*[2]

TABLE I: k*[2] and k*/(k*)? denote the kernel and cokernel respectively of the squaring map
(—)? : k* — k*.

Autys, (k*)®") < Aut(S,, (k*)®") acts as a + n - b € Endg(k*) on H'(S,_1;k*), so by
the induced map on the k*[2] and k*/(k*)? in Table I. This describes the myG-action on
H(S,; (k*)®") with which the cohomology groups in (14) are taken.

If k is a separably closed field of characteristic # 2 then it is closed under the formation
of square roots, and so k*/(k*)? is trivial, and k*[2] = {£1}, which has no automorphisms.

Thus for n > 5 the group K fits into an exact sequence
HY(BG; {+1}) B H*(BG;{+1}) = K — H'(BG;{+1}) B H3(BG; {+1}).

(If the myG-action on S, is trivial then the do-differentials are zero, so K is determined up
to an extension problem.) If instead k has characteristic 2 then k*[2] is trivial, so for n > 3
there is an isomorphism

K 5 H'(BG;k*/(k*)?),
where myG acts on k*/(k*)? as described in the previous paragraph.

Let us now discuss the space of sections of (11), i.e. the homotopy G-fixed points of the
G-actions on X, that we have just described. As we have classified such fibrations with a
choice of section sy : BG — E! of ' : E!, = B(S, x G) — BG, we may as well focus on
the space I'(m),, of sections of w : E,, — BG such that ps is in the path component of s.

Composing with p gives a fibration
pe i D(m)sg = T(7)s,

to the space of sections of 7 in the path component of sy. Precisely as in the previous section,
the space I'(7’) is homotopy equivalent to {splittings of S, x oG — mG}//S,. Thus the
path-component of sy is a classifying space for the stabiliser Stg, (sg) < S,, which may be
seen to be the subgroup of elements which centralise Im(myG' — Inn(S,,)). The fibre F' of

P« OVer sq is the space of sections s : BG — FE,, such that ps = so. This may be viewed as
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the space of trivialisations of the (trivial) class (so)*(k) € H*(BG; (k*)®"), so its set of path

components is a torsor for H?(BG; (k*)®"), and
mi(F,s) = H*(BG; (k*)*") for i > 0.
The long exact sequence on homotopy groups for the fibration p, then gives

0 — H'(BG; (")®") = m(D(r), 5) — Sts, (s0) = HX(BG; (k")) — mo(D(7)y,) —
HY(BG; (k")) = ma(I'(7), 5)

and all higher homotopy groups of I'(m) are trivial. The map 0 is a crossed homomor-
phism, i.e. an element of H'(Stg,(so); H*(BG; (k*)®")), and corresponds to restricting
k € H3(B(S, x G); (k*)®") to the subgroup Stg,(sg) X G < S, x G and then applying
the map

Ker(H*(B(Sts, (s0) x G); (k")*") — H*(BG; (K")*")) — H'(Sts, (s0); H*(BG; (k"))

coming from the Serre spectral sequence for Stg, (sg) X G — Stg, (So0)-

As an example, let us consider the trivial G-action on *TFT3,. A G-homotopy fixed
point whose underlying topological field theory is an algebra Morita equivalent to k™ cor-
responds to a section s of the trivial fibration BG x X,, — BG, or in other words to
a map f : BG — X,. In terms of our classification this corresponds to the homomor-
phism 7,G mf S, — Inn(S,) and the S, x moG-module structure on (k*)®" induced by
(0,9) = o -mf(g) : Sp xmG — S, and the usual S,-module structure. As the under-
lying fibration is trivial, £ = 0 and so the crossed homomorphism 9 is trivial. We have

Sts, (so) = {0 € S, centralising Im(m, f : m¢G — S,,)}. The discussion above then gives

H?(BG; (k*)®")/Sts, (so) = {those elements of m(*TFTSS) inducing the splitting m f}
0 — H'(BG; (k*)®") — m (*TFT5S, s) — Sts, (s0) = 0

~

HY(BG; (k*)®™) & WQ(*TFng, s).

For example, taking G = S, and f : BS, — X,, to be the map that acts on the algebra
k™ by permuting the factors, then for n > 3 there are no elements centralising all of 5,, so
m (*TFT5S, s) = H'(BS,; (k*)®") & H'(BS,-1;k*) = k*[2]

m(*TFTSS, s) = HO(BS,; (k*)®") = k"
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On the other hand if n = 2 then H'(BSs; (k*)¥?) = H'(BS;;k*) =0 so

m (*TFTLG, s) = Sy
T (*TFT5G, s) = H°(BSs; (k*)®?) = k™.

These groups are abstractly isomorphic to the above if k does not have characteristic 2, but
their origin, and presumably therefore the physical interpretation, is different.

As another example, let G be a connected group and f : BG — X,, be a map. This map
must be trivial on 7y, so Wo(*TFTé‘g) ~ H%(BG; (k*)®")/S,, and the f corresponds to an
Sp-orbit of an element ¢ € H*(BG; (k*)®") = H*(BG;k*)". Such a theory has

Wl(*TFng, s) = {stabiliser of S,-action on ¢}

m("TETAG, 5) = HO(BG: (k)") = (k)"

This generalises [13, Lemma 3.3.1]. In particular, letting G = SO(2) act trivially on *TFT5 5
we obtain a space with 7o(*TFT45°®) = H2(BSO(2); (k*)®")/S, = (k*)®")/S,. Since
the action of SO(2) C O(2) via tangential symmetries on *TFT,, trivializes [13], and
Spin”(2) = SO(2), this reproduces the classification of TFTs with r-spin structure for any
r > 1[8, 15], and shows that abstractly their classification is independent of . Namely [8],
since every algebra is Morita equivalent to k™, the components are given by a choice of n
and a choice of Frobenius structure on k™. The latter is classified by the trace (i.e. identity)
map on each factor of k, each of which may be multiplied by a non-vanishing (to ensure
non-degeneracy) element in k, i.e. an element in k*, up to permutation. However, the
map *TFT;EO@) — *TFngp @) induced by the covering map Spin”(2) — SO(2) is not an
equivalence: the functoriality with respect to GG of our arguments above allows us to see that
on 7 it sends each of the n elements of k* to its rth power, while it induces an isomorphism
on all higher homotopy groups. In particular, we note that if two oriented theories differ
in their structure-constants by rth roots of unity, then they become isomorphic as r-spin

theories.

VII. NON-MAXIMALLY-EXTENDED EXAMPLES

Here we discuss the example of TFTs in d = 2 based on ordinary categories rather than

bicategories. We will see by means of an example that, even by taking just one step down
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the ladder compared to the maximally-extended case, unphysical anomalies can arise, in
that a globalization map can fail to be my-surjective.

We consider the well-studied case of oriented topological field theories in d = 2 with a
finite group internal gauge symmetry. So we consider the homomorphism x : G x SO(2) —

0(2) : (g, s) — s, with G finite, along with the globalization map

11, : ©SOATET,, — Mapg(EG, S°@TFT,,) = Map(BG, S°@TFT, ). (15)

To describe the category ¢*50(2)

TFT,;, let us introduce some definitions. A Frobenius
G-algebra over k is a pair (A, n) consisting of a G-graded k-algebra A (so A = ®yeqA, such
that A;A, C Ayp), and n: A x A — k is a k-bilinear form, or equivalently a k-linear map
A® A — k, such that: n(A, ® A,) = 0 if gh # 1; n is non-degenerate when restricted to
A, ® Ay-1; and n(ab, c) = n(a,be) [16]. A Frobenius algebra is a Frobenius G-algebra with
G given by the trivial group.

A crossed G-algebra overk is a triple (A, n, ¢), where (A, n) is a Frobenius G-algebra over
k and ¢ : G — Aut(A) is a group homomorphism such that: ¢, preserves n; ¢4(Ay) C Agng-1;
bgla, = id; for a € Ay and b € A, then ¢p(a)b = ba; and for g,h € G and ¢ € Agg-1)1
we have that Tr(coy : Ay = Aq) = Tr(¢pg-1c 1 Ay — Ap) [16]. We remark that a crossed
G-algebra for G = % is a commutative Frobenius algebra.

GxSO(2)

The category TFT,, is equivalent to that whose objects are crossed G-algebras

and whose morphisms are unital algebra maps f : A — B which are G-equivariant and

preserve 1 [17]. In turn, 9@

TFTy; is equivalent to the category whose objects are com-
mutative Frobenius algebras with unit and whose morphisms are Frobenius algebra maps.

On the right-hand side of our globalization map, we therefore have the category whose
objects are commutative Frobenius algebras equipped with a G-action and whose morphisms
are GG-equivariant isomorphisms of commutative Frobenius algebras.

From this point of view, the globalization map takes (A,n) to its principal component
(Ac,n]a.04.) equipped with the homomorphism which sends g € G to ¢4|a, [17].

To exhibit an unphysical ‘t Hooft anomaly, observe that for an object in SO(2)TFT§‘§ to
be gaugeable, we require that for each g € G the corresponding algebra morphism ¢, have

integer trace [16]. An example of an object in “°@TFT}S which fails this criterion may

be given as follows: Let A = C[z,y]/(x?, y?) with trace n(1,zy) = 1 and n(1,7) = 0 for
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r = 1,x,y. The automorphism
Tr—=ur, Yrr u_ly

has trace given by 2 +u + u~! which is generically non-integral. Thus if the action of G on
A involves such an automorphism it is not gaugeable.

We remark that the algebra A is not semi-simple, since any semi-simple Frobenius algebra
only has integral traced automorphisms. Thus we know that A cannot descend from a fully-

extended theory by looping.

VIII. LIE GROUP SYMMETRIES AND NOETHER’S THEOREM

Up until now, we have treated the individual g-form symmetry groups for each ¢ of
topological field theories as abstract groups, without the smooth (i.e. Lie group) structure
with which symmetries in physics are usually endowed. Doing so allowed us to package
the tower of ¢-form symmetries into a single topological group, and so on. But it brings
significant disadvantages. In particular, there is no possibility of deriving a generalized
version of Noether’s theorem, which associates conserved currents to a Lie group symmetry.

In this Section, we take a first step in the direction of extending our results to Lie groups
by sketching a version of Noether’s theorem for ordinary global Lie group symmetries of
unextended oriented topological field theories.

Let us first ask roughly what form this ‘theorem’ might take. In physics, we have a Lie
group of symmetries of a theory and Noether’s theorem gives us, for each element in the
corresponding Lie algebra, a conserved current or a conserved charge. The conserved current
is usually thought of as a vector or a 1-form, but this requires a Hodge structure of some
kind (e.g. from a metric), which is not available to us in topological field theory. In fact, the
conserved current arises as a differential form whose degree is one less than the dimension
of spacetime W. Current conservation is then simply the statement that the form is closed.

The degree of the form is such that one can integrate it on a closed oriented submanifold
M of codimension one (or more generally a closed cycle). We call the value of the integral,
which will vanish if the manifold bounds in W, the charge on M. This can be viewed as
a vast generalization of the usual notion in physics that ‘the charge is conserved’, which

amounts to the statement that the charge evaluated on one connected component of the
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boundary of M x I equals to the charge on the other connected component. Importantly, it
allows for spacetime evolutions that are topologically non-trivial, which is just as well, since
these are the only non-trivial evolutions in a TFT.

In the above, we tacitly assumed that our theory was a classical one, in which the con-
served charge is a number (obtained from fields satisfying the equations of motion). In
quantum field theory, we instead obtain the Ward identities for correlation functions involv-
ing the conserved charge. This is what we want to reproduce in TFT. We shall do so in the
following way: a correlator is interpreted as the result of applying a functor to a bordism
to the empty set obtained by cutting out tubular neighbourhoods of the supports of the
operators appearing in the correlator. For a conserved charge, this means a submanifold
M of codimension one, whose normal bundle will be trivial (since everything is oriented)
and whose tubular neighbourhood has boundary M [[ M. We will see that we get a map
g = Z(M)® Z(M)" which picks out the conserved charges. They are conserved in the
sense that, if the bordism when cut contains a piece M — (), then the correlation function
vanishes when evaluated on elements of Z(M) ® Z(M)" in the image of the above map
from g. The requirement that the bordism factors in this way corresponds to our earlier
requirement that the conserved charge is to be evaluated on a cycle that bounds.

Let us see in more detail how this happens. We suppose that we are given a TFT whose
automorphism group can be given a smooth structure, such that it acts smoothly on the
vector space Z(M) assigned to each object M in the bordism category. For example, for
oriented theories in d = 1, we have seen that this group is GL(n,k) for some n, so this is
certainly the case for R or C. We take a Lie group G and a smooth homomorphism into
the automorphism group (which corresponds to our earlier notion of the trivial action of the
group on the space of TFTs).

Differentiating the map G — GL(Z(M)) for each object then gives a map g —
End(Z(M)), which, since Z(M) is finite-dimensional, is canonically isomorphic to Z(M) ®
Z(M)Y. The latter space can be interpreted as the vector space of operators associated to
a codimension one submanifold M of some spacetime W. Indeed, when everything is ori-
ented, the normal bundle of M in W is necessarily trivial and so the boundary of a tubular
neighbourhood is given by two copies of M with opposite orientations, to which the TFT
functor assigns Z(M) @ Z(M)".

Now let us consider the effect of inserting these operators into correlation functions. Let
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W : N — N’ be a cobordism with M embedded in the interior of W. Excising an open
tubular neighbourhood of M in W, we obtain another cobordism W : N[[M [ MY — N'.
Given ¢ € EndZ (M), we form the linear map

Z(N) 25 7Ny @ 2 @ Z2(M) 20 Z(v (16)

where € : k — Z(M)® Z(M") is the linear map such that £(1) is the element corresponding
to & Our map g — Z(M) ® Z(M)" picks out a distinguished subspace of such linear maps
and gives it the structure of an algebra, just as we expect for conserved charges.

To see the sense in which charges are conserved, force N’ to be the empty set. Combining
g — End(Z(M)) and (16) we get a natural map Z(N) ® g — k, but it is easy to show that
this map is in fact the zero map. Translating back to physics, we see that any correlation

function with an insertion of a conserved charge on M vanishes, when M is nullbordant in

W, as desired.

IX. DISCUSSION

In closing, we would like to show how our results shed some light on the previous litera-
ture. We begin with ‘t Hooft anomalies of ordinary symmetries of non-maximally extended
orientable TFTs, which were studied in [5] (and formalized and generalized in [10, 11]).
In our notation (omitting the SO(2) factors corresponding to orientation), the idea can be
described as follows. Letting K be an ordinary group acting trivially on TFTs;, a TEFT
in TFT?1 ~ Map(BK, TFTy;) may not have a preimage in *TFTy; under the obvious
globalization map. In [5], this problem was studied using an approach which is natural
from the physicist’s (if not the physics) point of view, namely to study K symmetries of
quantum theories which arise by quantizing classical theories. We have not discussed quan-
tization in the present work, but for the discussion that follows it suffices to know that there
exists an orbifoldization functor [18] from the category of finite groups to the category of
spaces that sends a group G to “TFT and that for the homomorphism G — * to the trivial
group this corresponds, when restricted to invertible theories in “TFT to quantization & la
Dijkgraaf-Witten [3].

Given a short exact sequence * — H — G — K — x of finite groups, there is a
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commutative diagram

“TFTy, » KTFTy,
Globl lGlob (17)
Map o (EK, "TFTs,) — Map(BK, TFTs,)

The proposal of [5] is, given K, to start from an invertible theory in #TFTy; (with the
trivial H action) and to ask if there exists an extension G of K by H and a theory in
the resulting “TFT,; (with the trivial G action) that maps to it under the left-hand map
followed by composition with the map that forgets the K symmetry. If so, one may say that
the corresponding theory in Map, (FK,#TFTy;) is non-anomalous, since one can follow
the diagram to find a theory in the top right-hand corner that is a gauging of the theory in
the bottom right-hand corner that is the quantization of the theory in Map (EK, " TF T, ).
In [5] and [10, 11], obstructions to this were given, as well as sufficient conditions for the
construction to go through.

Though this construction is well-motivated from the physics point of view, it seems unrea-
sonable to us to describe failures of this construction as anomalies. When the construction
fails, one cannot even find a quantum theory with global K symmetry in Map(BK, TFT, )
for which one can ask the question of whether K is gaugeable. Moreover, any theory in K
which one actually can construct by quantizing a classical theory is automatically gaugeable,
because the Dijkgraaf~Witten construction extends to fully-extended theories [19], where the
cobordism hypothesis applies.

The same trick of extending theories can be applied to understanding the results of [4],
where it is shown that 0- and 1-form symmetries of a sub-class of oriented non-maximally
extended TFTs in d = 2 (i.e. S9PTFTy;) valued in Vectc, to wit those corresponding to
commutative Frobenius algebras that are additionally semisimple, are given by permuta-
tions and phasings, respectively. These are the symmetries in the intrinsic sense of being
automorphisms of the TFTs and the result comes as no surprise once we observe that the
semisimple algebras are the ones that arise from fully-extended TFTs upon looping. So the
automorphism groups can be read off directly from (10) and correspond to permutations
of the simple factors that preserve the trace map and rephasings (or rather elements in C*
given that we have no inner product structure).

Finally, generalized symmetries of certain extended, oriented topological field theories
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in d = 2 are described in [1], namely those obtained by quantizing classical Z,, X Z,,
gauge theories. The resulting algebra is the twisted group algebra C,, [Z,, X Z,,| where
wp((a1,01), (az,b2)) = exp(27wipaiby/GCD(ny1,ny)). The algebra C, [Z,, x Z,,] is Morita
equivalent (and therefore equivalent in TFT,5) to the algebra kmin2/m* where m =
GCD(ny,n2)/GCD(p, ny1,ny) is the dimension of the irreducible projective representation
with twisting w,, and njny/m? their number. Correspondingly the automorphism groups
are Sy, n,/m2 and (C*)manz/ m? which are substantially larger than the Loy, j X Ly . SUb-
groups obtained in [1] by inspection of the classical action. This example shows that, at
least for spaces of topological field theories with their large number of equivalences, studying
classical actions gives a rather poor guide to the resulting quantum physics. Happily, the
power of the cobordism hypothesis for physical (i.e. fully-extended) theories suggests that

we may one day no longer need to.
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