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Abstract

We study effective field theories (EFTs) enjoying (maximal) biform symmetries. These are

defined by the presence of a conserved (electric) current that has the symmetries of a Young

tableau with two columns of equal length. When these theories also have a topological

(magnetic) biform current, its conservation law is anomalous. We go on to show that

this mixed anomaly uniquely fixes the two-point function between the electric and magnetic

currents. We then perform a Källén–Lehmann spectral decomposition of the current-current

correlator, proving that there is a massless mode in the spectrum, whose masslessness is

protected by the anomaly. Furthermore, the anomaly gives rise to a universal form of the

EFT whose most relevant term—which resembles the linear Einstein action—dominates

the infrared physics. As applications of this general formalism, we study the theories of

a Galileon superfluid and linearized gravity. Thus, one can view the masslessness of the

graviton as being protected by the anomalous biform symmetries. The associated EFT

provides an organizing principle for gravity at low energies in terms of physical symmetries,

and allows interactions consistent with linearized diffeomorphism invariance. These theories

are not ultraviolet-complete—the relevant symmetries can be viewed as emergent—nor do

they include the nonlinearities necessary to make them fully diffeomorphism invariant, so

there is no contradiction with the expectation that quantum gravity cannot have any global

symmetries.

∗kurt.hinterbichler@case.edu
†d.m.hofman@uva.nl
‡austinjoyce@uchicago.edu
§gregoire.mathys@cornell.edu

arX
iv:2

205
.122

72v
2  [h

ep-t
h]  1

6 N
ov 2

022



Contents

1 Introduction 3

2 Field theories with higher-biform symmetries 6

2.1 Conserved currents and EFTs 6

2.2 Higher-biform symmetries 10

2.3 Biform gauge symmetries and fractons 14

2.4 Beyond maximal symmetries 17

2.5 Conserved charges and anomalies 19

3 Superfluids 22

3.1 Ordinary superfluid 22

3.2 Galileon superfluid 27

4 The graviton as a Goldstone 35

4.1 Linearized gravity 37

4.2 Gauging higher-biform symmetries 41

4.3 Anomalies 43

4.4 Gravity as a phase of matter 47

4.5 Charged solutions 50

5 Discussion 54

A Spectral representation 57

A.1 Spectral density 57

A.2 Contact terms 60

B More on the Galileon superfluid 62

B.1 Currents from the action 62

B.2 Current two-point function 64

C Galileonic electromagnetism 66

C.1 Summary of Maxwell theory 66

C.2 Galileon electromagnetism 68

D Anomaly structure in linearized gravity 74

D.1 Projectors 74

D.2 Current-current two-point function 75

References 77

2



1 Introduction

Symmetry is a powerful concept in physics, providing an organizing principle that dictates how

we construct mathematical theories describing nature. Symmetries control the properties of

phase transitions and they explain why certain phases are robust, with Goldstone’s theorem

serving as perhaps the oldest example of this line of reasoning [1–3]. In the last decade, our

conceptions of what symmetries are, or can be, have been extensively broadened. Vast gener-

alizations of symmetry have been proposed, starting with higher-form symmetries [4]—which

act on extended objects—and including more exotic structures, like 2-groups and non-invertible

symmetries. Anomalies for these new structures have been understood and incorporated into

the general program of studying the possible phases of quantum field theory. These new view-

points have both brought new results to light and have placed old results into sharper focus.

For example, one can understand Goldstone’s theorem as a consequence of anomalies, which

protect the gaplessness of certain phases [5].

Symmetries play an essential role in the phenomenological study of both condensed matter

and particle physics. Experimentally, we only ever have access to the physics of a system

below some energy scale (the resolution of our apparatus, or the amount of energy we can

generate). In this case, a complete microscopic description of the system is not necessarily the

most useful parameterization of the physics. Instead, it is often effective field theory (EFT) that

provides the most practical organizing principle. In this way we can understand a wide range

of problems—all the way from the Standard Model to the Ising model—in the same language.

This perspective has been extremely successful in understanding much of the physics of the

possible phases of matter at low energies, and the transitions between them.

As an important example of the utility of this paradigm, one can understand the emergence

of gauge theories as a consequence of global symmetries and their effective descriptions. For

example, the magnetic 1-form symmetry associated to the conservation of magnetic flux leads,

at low energies, to EFTs described by the usual Maxwell theory coupled to electric matter.

When this matter is gapped, the deep infrared is described by free photons that emerge as

the Goldstones for the original magnetic 1-form symmetry [4, 6, 7], which is spontaneously

broken. The explanatory power of this perspective suggests that one should take this physical

symmetry (as opposed to the unphysical redundancy that is gauge invariance) as the organizing

principle underlying these theories as a guide to finding a more microscopic description from

which electromagnetism is emergent.1

What about gravity? How does gravity fit into this paradigm?2 Unfortunately, there is

good evidence (see for example [11]) that gravity cannot have any exact global symmetries that

survive all the way to the ultraviolet (UV). If one had a unique UV-complete description of

the universe which was under control, we could take this to be the end of the story and just

view gravity to be a low energy accident of this complete description. However, we do not have

full non-perturbative control of string theory, or even know if it is the unique UV-complete

theory that can describe nature. And further, there is plausibly a full landscape of solutions

in string theory which can lead to very different low energy physics. Some progress has been

made in addressing these challenges in the form of the Swampland program (see e.g., [12] for

1Early approaches to this problem involved the formulation of theories in loop space [8] which has been coura-

geously revisited recently in [9].
2See [10] for an interesting attempt at understanding this problem from a related point of view.
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a review). Nevertheless, it is fair to say that it is still unclear whether this approach can fully

explain the characteristics of our low energy phase of nature, which we usually associate with

Einstein gravity (and its irrelevant corrections). Therefore, it seems useful to search for an

organizing principle with which to construct gravity as an EFT. In other words: what is the

gauge-invariant language that characterizes gravity?

In this work we make a modest attempt to answer this question in the language of EFT.

We show that linearized gravity has a global continuous symmetry that fits into a category of

symmetries that can be called maximal higher-biform symmetries. We show that this provides a

guiding principle that is sufficient to construct the linearized Einstein theory and its irrelevant

corrections. Furthermore, we show how an anomaly between the magnetic and an electric

version of this biform symmetry is responsible for protecting the masslessness of the graviton

and keeping the low-energy phase gapless. This line of reasoning extends previous results for

usual 0-form symmetries [5] and higher form symmetries [6] to the present context. This result

amounts to a generalized Goldstone theorem for this type of system.

We begin by presenting a general framework to study theories with biform symmetries, focus-

ing mostly on the description of the gapless phase of these systems. There are two alternative,

but equivalent, perspectives on how to think about these phases. From the more abstract per-

spective, it is only the symmetries and their anomalies that determine the low energy physics,

and everything else follows from this symmetry structure. Given this input, one can constrain

the general form of correlation functions of conserved currents. From these universal correlation

functions, one can deduce the spectrum of the system, and see that it must necessarily have

a gapless degree of freedom. We use this perspective to obtain the low energy physics of the

simplest systems exhibiting biform symmetries: a Galileon superfluid and linearized gravity. A

complementary viewpoint is to realize these universal results via a concrete instantiation by

building an EFT Lagrangian that describes the relevant physics and reproduces the anomaly

structure. Interestingly, the anomaly that is responsible for the gaplessness of the phase ends

up being coded in a general kind of interaction similar to the linearized Einstein action. This

low energy action shares many features with Chern–Simons [13, 14] and BF theories—its equa-

tions of motion are a partial flatness condition on the gauge-invariant curvature—but, crucially,

gives rise to propagating massless degrees of freedom. We study this phenomenon in detail and

construct the associated EFTs realizing higher-biform symmetries.

After having constructed the EFTs of interest, one can notice that they always involve some

form of generalized gauge theory. Indeed, massless degrees of freedom with spin s ≥ 1 always

display emergent gauge symmetries, which are crucial for removing redundant degrees of freedom

while keeping a manifestly Lorentz invariant description. Historically, these gauge symmetries

have been used to “explain” the gaplessness of the low energy phase, for example the photon

is typically said to be massless because of gauge symmetry. However, from this perspective

they are merely an inevitable consequence of our desire to write a manifestly Lorentz-invariant

EFT that realizes the physical biform symmetries. Still, one can ask: what are these massless

modes gauging? This is equivalent to asking what the charged degrees of freedom are that

we gap and integrate out to obtain a theory purely of massless gauge fields. In the case of

electromagnetism, these massive degrees of freedom just correspond to charged particles such

as electrons. Interestingly, it turns out that for linearized gravity, the gapped degrees of freedom

that carry charge under the emergent gauge symmetry of the graviton can be viewed as fractonic
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particles. This provides a precise construction of the ideas advocated in [15–17].3

It is important to emphasize that the symmetries described here do not only apply to free

linearized gravity. As in any EFT, it is possible to classify and add an infinite number of

irrelevant deformations which—while trivial in the infrared—introduce interactions at higher

energies. However, these interactions are still linear gauge invariant, of the type described

in [28–32], and so do not include the types of nonlinear interactions that allow the theory to

become nonlinearly diffeomorphism invariant. Much like Einstein gravity, these theories are

also not UV complete. Therefore, there is still the important question of why or how these

biform symmetries arise at low energies from a microscopic UV-complete theory of gravity.

For example, are there associated biform Ward identities in string theory, and what are their

consequences? It is also interesting to understand what if anything the Swampland program

has to say about the possible UV completions of these EFTs. While we return to discuss these

questions in section 5, we hope that this is a first step toward understanding the emergence of

gravity in our universe.

The rest of this paper is organized as follows: in section 2 the general theory of biform sym-

metries is presented, gapless field theories displaying these biform symmetries are constructed,

and the connection to the physics of fractons is discussed. In section 3 we review the EFT

of relativistic superfluids, its symmetries and anomalies, and generalize these results to the

Galileon superfluid. This system constitutes the simplest theory enjoying a (scalar) biform

symmetry. In section 4 we study linearized gravity and its irrelevant corrections in detail and

frame this physics in the language of biform symmetries. We show how the symmetry and

anomaly structure are sufficient to completely fix the two-point function of conserved currents

and, as a consequence, protect the masslessness of the graviton. In section 5 we synthesize

these results and discuss future directions. Several technical details somewhat outside the main

line of development are presented in appendices: In appendix A we describe the systematics

of the spectral decompositions required to prove that various phases have gapless excitations.

In appendix B we provide some additional details about the anomaly structure of the Galileon

superfluid. In appendix C we present Maxwell electromagnetism in the same language as the

rest of the paper, realizing the photon as a Goldstone. Finally, in appendix D we present

more technical details about the anomaly structure and spectral decomposition in the case of

linearized gravity.

Disclaimer: While this work was in preparation [17, 33] appeared, which have some overlap

with this work.

Notation and conventions: We work in flat d-dimensional Euclidean space with metric ηµν
which we use to raise, lower, and contract indices. We (anti-)symmetrize indices with unit

weight, e.g., ∂(µAν) = 1
2(∂µAν + ∂νAµ). We use the manifestly antisymmetric convention for

mixed-symmetry tensors and Young tableaux. We label two-column Young diagrams as (i|j)
where i, j are the lengths of the columns from left to right.

3There has been a substantial amount of recent work related to the physics of fractons and their relation to

these general ideas. More details can be found for example in [18–27] and references therein.
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2 Field theories with higher-biform symmetries

We begin by discussing the structure of theories with higher biform symmetries, of which lin-

earized gravity will be the prime example. We will start by keeping the discussion as general

as possible, and then in the following sections we will elaborate on the most important exam-

ples in excruciating detail. One of the benefits of this unified exposition is that it will allow

us to treat scalars, p-forms, and linearized gravity with similar techniques and elucidate their

commonalities.

We will describe the global symmetries of these theories and show how they naturally give rise

to presentations in terms of gauge fields and their associated gauge invariances. The resulting

framework will allow for the construction of EFT Lagrangians for these theories, which describe

their different phases. We will concentrate on gapless phases, but we expect that the geometric

approach we describe can be extended to other interesting cases. We also discuss the coupling

of these theories to sources and how they relate to background gauge potentials.

2.1 Conserved currents and EFTs

When constructing universal EFTs, the guiding principle should always be the physical symme-

tries of the system. Once we know the algebra of conserved charges and the way that charged

operators represent these symmetries we can then build the EFT. This is what makes electro-

magnetism, for example, universal: it is the local EFT of a theory with a 1-form symmetry

in its symmetry broken (i.e., gapless) phase. Notice that this approach is completely agnostic

about what the UV microphysics that gave rise to this EFT is, or even whether the EFT can

be UV completed. The theory might be formulated microscopically in terms of the dynamics of

extended objects (as is often the case for higher-form symmetries), or a quantum field theory,

or even a lattice model. This is, at this stage, of little consequence. All we demand is that the

theory is a local field theory at low energies.

In local theories, conserved quantities corresponding to continuous symmetries are generally

given by integrals of local current operators. In all of the following we will concentrate on

abelian continuous symmetries, and will assume the existence of associated conserved currents.

We want to trace the logic that leads from these conserved quantities to local degrees of freedom

in a field-theoretic description. The physics that we review in this section is elementary, but we

want to introduce it in a language that will be appropriate for generalization to cases enjoying

higher biform symmetries, like linearized gravity.

One way to proceed is to start with the desired current—for example for a 0-form symmetry

the current is Jµ. Next, we express this operator in terms of elementary fields as Jµ[φ]. Lastly,

we construct an EFT Lagrangian such that equations of motion for the fields φ lead to the

conservation law for the current: ∂µJ
µ = 0. This construction makes manifest the symmetry

for which Jµ is a Noether current, in the sense that this symmetry acts locally on the fields φ.

The associated conserved charge can be written as:

Q =

∫
Σd−1

∗J , (2.1)

where the integral is over a codimension 1 surface Σd−1. As is well-known, the conservation

of J implies that Q depends only topologically on the surface Σ. These symmetries are often

called dynamical, or electric.
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An alternative option is to realize our desired current as a magnetic symmetry. In this case,

we would start with a (d − 1)-form electric current, Jµ1···µd−1 , where d is the dimension of

spacetime. If we want a magnetic 0-form symmetry to emerge from this operator, it must be

associated to the dual current 1-form current K(1) ≡ ∗J(d−1) which must be conserved:

∂µK
µ = ∂µ

(
εµν1···νd−1Jν1···νd−1

)
= 0 . (2.2)

The conservation condition (2.2) implies that J(d−1) is a closed (d − 1)-form: dJ(d−1) = 0.

Assuming that there are no topological obstructions, we can always parameterize this as an

exact form:

J(d−1) = dA(d−2) , (2.3)

where A(d−2) is a (d− 2)-form. This parameterization necessarily introduces a gauge symmetry

A(d−2) 7→ A(d−2) + dξ(d−3), where ξ(d−3) is a (d − 3)-form. This gauge symmetry is of course

unphysical, and only a consequence of our choices. We can now construct any EFT Lagrangian

in terms of A(d−2), provided it is gauge invariant. The conservation law we were interested in

is then guaranteed by (2.3), independent of the equations of motion. Sometimes we call these

symmetries topological or magnetic, but there is no real physics in this distinction. Topological

symmetries can become dynamical symmetries in a different parameterization of the EFT in

terms of different local fields.

The breaking of a magnetic symmetry can only happen through the inclusion of topological

defects which invalidate the equation (2.3). On the other hand, the electric symmetry is not

guaranteed and it depends on the choice of EFT Lagrangian. If there is light electric matter,

this symmetry will be explicitly broken.4 This is certainly allowed, as we were only building

an EFT for the symmetry associated to K(1). However, if electric matter is gapped, we expect

the electric current to be conserved and the original magnetic symmetry to be spontaneously

broken. That is, conservation of the electric current, which is equivalent to dual conservation

of K(1)

dK(1) = 0 , (2.4)

will imply a wave equation for A(d−2) of the form

�A(d−2) = 0 , (2.5)

where � is the gauge-invariant Laplacian operator (e.g., �Aν = ∂µ∂
µAν − ∂ν∂µAµ if Aν is a

1-form). This is the gapless phase of the theory. Coming back to our starting point, we see

that we could have easily started from the electric realization of the symmetry and reached an

equivalent destination.

In order to make the physics of this gapless phase more explicit, note that if we want to build

an EFT with this symmetry, without any additional matter (i.e., all other matter is gapped),

we see that the most relevant term we can write whose Lagrangian is gauge invariant is

SEFT[A] =

∫
ddxJµ1···µd−1

Jµ1···µd−1 . (2.6)

This theory is nothing other than a free abelian (d−2)-form gauge theory. From some perspec-

tive, this reasoning is the actual origin of gauge symmetries in physics.

4Notice that in this case where we use A(d−2) as the field in the Lagrangian, electric matter is given by extended

objects with space-time dimension d − 2. While this complicates the construction of a Lagrangian, it does not

appreciably affect the physics discussed.
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As desired, the action (2.6) yields the equation of motion dK(1) = 0, corresponding to conser-

vation of the electric symmetry. Had we chosen to represent K(1) = dφ, for a scalar φ, we would

have obtained the same result, making it clear that the above theory is just a free scalar with

a shift symmetry φ 7→ φ+ c for any constant c. Notice that this choice of field variables would

trivialize dK(1) = 0 (corresponding to conservation of the electric current), while conservation

of the (1-form) magnetic current would be a consequence of the equations of motion, further

illustrating that what we call a topological and what we call a dynamical symmetry depends

on our choice of field variables.

The magnetic charge associated with the original 0-form symmetry that we were interested

in can be written as:

Qm(Σd−1) =

∫
Σd−1

∗K(1) , (2.7)

while the emergent electric charge associated with a (d−2)-form symmetry in the gapless phase

is given by:

Qe(Σ1) =

∫
Σ1

∗J(d−1) . (2.8)

We see from this discussion in the magnetic language how a symmetry broken phase gives rise

to a gapless scalar Goldstone mode.

All of this can be straightforwardly generalized to any higher form symmetry associated to a

conserved magnetic (d − p − 1)-form current K(d−p−1). (The previous example corresponds to

p = d− 2.) In this case, the starting point is an electric (p+ 1)-form current J(p+1) that must

satisfy dJ(p+1) = 0—which is equivalent to conservation of the magnetic current. We choose to

parametrize this electric current in terms of a p-form gauge field A(p) as

J(p+1) = dA(p) , (2.9)

which trivializes the constraint that J(p+1) be closed. Following the same path as before we find

the effective theory in the phase where electric matter is gapped

SEFT[A] =

∫
ddxJµ1···µp+1J

µ1···µp+1 , (2.10)

which gives rise to the magnetic (d− p− 2)-form charge

Qm(Σp+1) =

∫
Σp+1

∗K(d−p−1) , (2.11)

along with an emergent electric p-form charge

Qe(Σd−p−1) =

∫
Σd−p−1

∗J(p) . (2.12)

Operators charged under these physical symmetries are electric p-dimensional and magnetic

(d−p−2)-dimensional extended objects which couple directly to A(p) and φ(d−p−2), respectively,

where φ is a (d− p− 2)-form defined as K(d−p−1) = dφ(d−p−2).

More irrelevant terms in the effective theory can be constructed from J(p+1) and its derivatives

and added to the action. For example, one could imagine adding to the action terms like

J4, J6, · · · . These terms would keep the magnetic symmetry unmodified, since dJ(p+1) = 0

still, but would change the electric symmetry current operator. This is an important point—in

8



general in the gapless phases of interest the currents J(p+1) and K(d−p−1) are just Hodge duals of

each other in the deep IR (i.e., at the free level). However, these two currents are not equivalent

once we begin to introduce interactions. Still, the electric symmetry would not be disturbed

provided we do not add light electrically charged matter to our Lagrangian. One way see this is

to invoke Noether’s theorem. The actions above, including their irrelevant deformations, have a

p-form symmetry δA(p) = Λ(p), where Λ(p) is a constant p-form satisfying dΛ(p) = 0. Noether’s

theorem then guarantees that, if we consider a general perturbation A(p) 7→ A(p) + δA(p), we

must have:

δS ∼
∫

ddx δAµ1···µp∂µĴ
µµ1···µp , (2.13)

where Ĵ(p+1) must be conserved on-shell, and is therefore the desired electric current. This

reasoning is valid for all our effective actions and thus Ĵ(p+1) can be computed in each case in

terms of J(p+1). Its precise form will depend on the details of the theory, but the existence of

some conserved current is robust.

We claimed, rather carelessly, that in the absence of matter the EFT associated to the higher

form symmetries above describes gapless phases of matter. This is not strictly true. When

integrating out matter, the effect of their anomalies cannot be neglected. For example, for

d = 2p+ 1, there exist Chern–Simons terms that can appear in the low energy effective action

if the integrated-out matter breaks parity invariance. These Chern–Simons terms are more

relevant than the Maxwell-type terms described above. They would give a theory in the deep

IR of the form

SCS[A] =

∫
d2p+1x εµ1···µ2p+1Aµ1···µpJµp+1···µ2p+1 . (2.14)

The equations of motion are fundamentally different in this case—being a flatness condition,

J(p+1) = 0, rather than a wave equation—and the phase of matter becomes gapped. If the

original continuous symmetry is compact, the gapped phase just has a discrete symmetry. If

it is non-compact, the lack of local degrees of freedom ensures one can still build topological

charge operators (i.e., they are not built from a gauge-invariant local current) of the form:

Qtop(Σp) =

∫
Σp

A(p) . (2.15)

In both cases, we could say the original symmetry we were aiming to describe by J(p+1) (and

its dual K(d−p−1)) got gauged and new symmetries appear.

A more general version of this phenomenon is given by BF-type Lagrangians. In that case, if

we have two gauge fields, say A(p) and B(d−p−1) we can write the Lagrangian

SBF =

∫
ddx εµ1···µdAµ1···µp (dB)µp+1···µd . (2.16)

Like the Chern–Simons example, this theory is gapped and our would-be currents dA and dB
vanish as a consequence of the equations of motion.

The systematics of the above structures are built on the theory of differential forms and

their exterior calculus. The Poincaré lemma plays an important role by guaranteeing that,

in the absence of topological defects, closed forms can be written in terms of exact ones, i.e.,

that dJ(p+1) = 0 implies J(p+1) = dA(p). This is of course always locally true. In terms

of representation theory, all the currents and gauge fields transform in antisymmetric tensor

representations of GL(d,R) labeled by single-column Young diagrams. In the next subsection
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we will generalize this by considering Young tableaux made up of two vertical columns. This

may seem to be an extravagance, but is actually necessary to cast (linearized) gravity in the

same framework.

2.2 Higher-biform symmetries

We now want to generalize the type of conserved currents we consider when building EFTs. We

will be interested in currents transforming in irreducible representations of GL(d,R) labeled by

two-column Young diagrams (see [34–44] for other work involving these representations). We

will call these mixed-symmetry representations biforms, since they are, in a sense, the natural

generalization of differential forms to having two sets of antisymmetric indices. Under the action

of a properly defined exterior derivative, these form a complex. The mathematics associated

to its differential calculus, Poincaré lemma, and cohomology has been developed [45–50], see

[51, 52] for reviews and a complete list of references and [53] for the results of interest to our

discussion. Here, in order to make the discussion self contained, we present the very little

technology that we need, with some small modifications with respect to [53], in order to move

forward. Equivalent biform field theories were also constructed in [54, 55]

Let us start with the simplest (and most important) example. Consider a theory with an

electric current J(p+1|p+1) that transforms in an irreducible representation of GL(d,R) labeled

by a Young diagram with two identical vertical columns of length p+ 1:

J(p+1|p+1) ∈

 p+ 1 . (2.17)

We call such an object a (p+ 1|p+ 1)-biform.5 We wish to build a conserved magnetic current,

K, from J(p+1|p+1). The Hodge star operator can now act on either of the two columns of our

current. In this case, since J(p+1|p+1) has two identical columns, it is of no consequence which

column we dualize. It is actually most convenient to dualize both columns and define

K(d−p−1|d−p−1) = ∗J(p+1|p+1)∗ : Kµ1···µd−p−1|ν1···νd−p−1 = εµ1···µdJµd−p···µd|νd−p···νdε
ν1···νd .

(2.18)

Here both J and K are antisymmetric under the interchange of any of the indices inside a block

separated by |. Since the two sets of indices are of equal length, they are additionally symmetric

under the interchange of these two blocks of indices.

We would like K(d−p−1|d−p−1) to satisfy the conservation equation

∂µ1K
µ1···µd−p−1|ν1···νd−p−1 = 0 , (2.19)

which is equivalent to imposing the condition

(dJ)(p+2|p+1) = 0 . (2.20)

The exterior derivative above is defined with the correct (anti-)symmetrization properties so

that (dJ)(p+2|p+1) is a (p + 2|p + 1)-biform. More generally, let us define the set of maximal

5We adopt the convention for mixed-symmetry tensors that they are manifestly antisymmetric in the indices

associated to a column. The only other constraint is that antisymmetrizing all the indices from the first column

plus any index from the second column causes the tensor to vanish. When necessary, we refer to two-column Young

diagrams using the notation (p | q), where p and q label the column lengths from left to right.
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biforms, denoted by Ω̂. These are given by the direct sum of the space of (p|p)-biforms, Ω(p|p),

and (q + 1|q)-biforms, Ω(q+1|q) for all p, q.

Ω̂ =
(⊕p Ω(p|p)

) ⊕ (⊕q Ω(q+1|q)
)
. (2.21)

We call the first set above
(⊕p Ω(p|p)

)
even biforms and the second set

(⊕q Ω(q+1|q)
)

odd biforms.

In this section we will be interested in an even current J(p+1|p+1). More explicitly, the symmetry

types of elements of these vector spaces are

Ω(p|p) ∈ p p , Ω(q+1|q) ∈ q q . (2.22)

On this set we define the action of the exterior derivative by (anti-)symmetrization such that

it takes elements of Ω(p|p) to Ω(p+1|p) and elements of Ω(p+1|p) to Ω(p+1|p+1):

d : Ω(p|p) → Ω(p+1|p) , d : Ω(p+1|p) → Ω(p+1|p+1) . (2.23)

Note that the operator d is nilpotent of degree 3, i.e., d3 = 0. This follows because acting with

d three times guarantees that we will be antisymmetrizing over at least two partial derivatives.

It is clear, from the present discussion, why we chose to define K by the double action of the

Hodge operator ∗. This choice implies that the dual of a maximal biform is itself a maximal

biform.

∗ · ∗ : Ω(p|p) → Ω(d−p|d−p) , ∗ · ∗ : Ω(p+1|p) → Ω(d−p|d−p−1) . (2.24)

Returning to our current, we would like to introduce a gauge field that makes dJ(p+1|p+1) = 0

automatic in the absence of defects. From the fact that d3 = 0, it is clear that we can take6

J(p+1|p+1) = d2h(p|p) , (2.25)

where we have introduced a (p|p)-biform h(p|p) as a new gauge field. With this definition h(p|p)
enjoys a gauge symmetry h(p|p) 7→ h(p|p) + dξ(p|p−1), where ξ(p|p−1) is a (p|p− 1)-biform.

Any effective theory constructed in a gauge-invariant manner from h(p|p) will necessarily have

a new type of symmetry arising from the conservation of the magnetic current K(d−p−1|d−p−1).

We will call this symmetry a maximal (d− p− 2)-biform symmetry.

We can construct magnetic charges in this theory by contracting K(d−p−1|d−p−1) with a (d−
p− 1)-form, %(d−p−1) using the flat metric to define:

K
(%)
µ1···µd−p−1

= Kµ1···µd−p−1|ν1···νd−p−1
%ν1···νd−p−1 . (2.26)

With this definition, the conserved charges are given by

Q(%)
m (Σp+1) =

∫
Σp+1

∗K(%)
(d−p−1) . (2.27)

Conservation of this charge is guaranteed if %(d−p−1) satisfies appropriate conditions, which are

described further in section 2.5. Notice that K(%) is a (d − p − 1)-form and as such its Hodge

dual is given by the single action of the ∗ operator.

6More formally, this follows from the Poincaré lemma for this complex [53].
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We are now ready to write down the simplest (i.e. most relevant) action for an EFT enjoying

this symmetry. The natural guess is that the action we are looking for is:

SEFT[h] =

∫
ddxJµ1···µp+1|ν1···νp+1

Jµ1···µp+1|ν1···νp+1 . (2.28)

The equations of motion following from (2.28) indeed produce a gapless phase, where the equa-

tion of motion is

d2K(d−p−1|d−p−1) = d2 ∗ J(p+1|p+1) ∗ = d2 ∗ d2h(p|p)∗ = 0 =⇒ �2h(p|p) = 0 , (2.29)

with � again a gauge-invariant version of the Laplacian. However, this equation is fourth

order in derivatives! Furthermore, K(d−p−1|d−p−1) satisfies a different equation from J(p+1|p+1)

(d2K = 0 vs. dJ = 0) which means that the emergent electric symmetry is of a slightly different

character than the original symmetry.

What equation of motion would give the desired two derivative equations and the corre-

sponding electric conservation law, dK = 0? Whatever it is, must be gauge invariant so we

should produce it from J(p+1|p+1). But J(p+1|p+1) already involves two derivatives of h(p|p), so

we can’t add any extra ones. Additionally, since ultimately we will vary an action with respect

to h(p|p)—which is a (p|p)-biform—we expect that the equation of motion will also be in that

representation. Sadly, J(p+1|p+1) is a (p + 1|p + 1)-form, so we need to add one more piece of

structure that allows us to reduce the size of the representations. In a spacetime with a metric

(which we have taken to be flat), we can always trace over a pair of indices, one from each

column in a biform. We therefore define a trace operation:

tr (·) : Ω(q|p) → Ω(q−1|p−1) , as tr (X) = ηµqνpXµ1···µq |ν1···νp . (2.30)

Conveniently, this trace operation (2.30) maps maximal biforms to other maximal biforms.

The candidate equation of motion for an EFT with a higher biform symmetry is therefore:

tr
(
J(p+1|p+1)

)
= tr

(
d2h(p|p)

)
= 0 . (2.31)

For p = 1, this is nothing other than the linearized Einstein equation. Furthermore, it turns

out this condition exactly guarantees the conservation of the electric current. We have

tr (dJ) = a ∗ (d ∗ J∗) ∗+b
(
d tr (J)

)
, (2.32)

where a and b are constants that depend on conventions for the normalization of biforms which

we have not specified. Using this equation, we infer that the conditions

dJ(p+1|p+1) = 0 and tr
(
J(p+1|p+1)

)
= 0 , (2.33)

imply the following equations for the magnetic current

dK(d−p−1|d−p−1) = 0 and d tr
(
K(d−p−1|d−p−1)

)
= 0 . (2.34)

In other words, the electric current is conserved (which is equivalent to dK = 0).

The simple equation of motion (2.31) describes a gapless phase, which we associate with lin-

earized gravity for p = 1, and gives rise to an emergent electric maximal (p|p)-biform symmetry

with current J(p+1|p+1) and charges constructed as:

Q(ζ)
e (Σd−p−1) =

∫
Σd−p−1

∗J (ζ)
(p+1) , with J

(ζ)
µ1···µp+1 = Jµ1···µp+1|ν1···νp+1

ζν1···νp+1 , (2.35)
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for an appropriately defined Conformal Killing tensor-like (p+ 1)-form ζ(p+1) which we further

discuss in section 2.5.

What is the action that produces this interesting equation of motion? We, of course, know the

answer for p = 1: it is the Fierz–Pauli action of linearized gravity. If we did not already know

about it we might be surprised by the existence of such a theory, since we have argued that

the most relevant term we can write in terms of J(p+1|p+1) leads to fourth-order equations of

motion. In order to produce second-order equations of motion, we require an action that contains

a more relevant operator. The resolution of this apparent tension is that our desired action is

actually more like the Chern–Simons example discussed in section 2.1 than the Maxwell-like

construction (2.28). The surprising fact is that for EFTs of higher biform symmetries, this type

of action still produces gapless phases (in high enough dimension). This is because tr (J) = 0

does not imply that the full current J = 0, for dimensions d ≥ 2p+ 2. This leaves some degrees

of freedom left in the current to propagate at low energies. These Chern–Simons-like actions

can be built in any dimension.

In order to construct an action with equation of motion (2.31), we first have to point out the

existence of an important object: a generalized Einstein (p|p)-biform, which is defined as:

G(p|p) ≡
p∑

k=0

(−1)k

k + 1! k!
ηk(1|1) ∧ trk+1J(p+1|p+1) . (2.36)

Here η(1|1) is the flat metric thought of as a fixed background (1|1) biform, the notation

ηk(1|1) denotes a repeated wedge product of k copies of η, and we have used the obvious

wedge product of biforms given by ∧ which produces new, higher rank biforms by appropriate

(anti)symmetrization.7 The defining property of the Einstein biform is that it is automatically

conserved as consequence of the original magnetic symmetry. That is, the dual conservation

dJ(p+1|p+1) = 0 implies

d ∗G(p|p)∗ = 0 , (2.37)

which is equivalent to the component expression ∂µ1G
µ1···µp|ν1···νp = 0. The Einstein biform is

also obviously gauge invariant, since it is constructed from J(p+1|p+1).

We now have enough ingredients to write what we call the Einstein EFT action (also discussed

in [54]):

SE[h] =

∫
ddxhµ1···µp|ν1···νpG

µ1···µp|ν1···νp . (2.38)

This action is gauge invariant, up to a boundary term—just like Chern–Simons theory. The

variation of the action h(p|p) 7→ h(p|p) + dξ(p|p−1) indeed vanishes due to the conservation of

G(p|p). The equation of motion following from (2.38) is easy to obtain:

G(p|p) = 0 , =⇒ tr
(
J(p+1|p+1)

)
= 0 . (2.39)

This is a partial flatness condition on the (gauge-invariant) curvature, J(p+1|p+1), further em-

phasizing the similarity between the action (2.38) and Chern–Simons theory.

We saw from (2.31) that setting the trace of J(p+1|p+1) to zero implies a wave equation for the

biform gauge potential h(p|p), and that this equation also implies the conservation of an electric

7We have chosen this product to be unnormalized, so for example Xµ|ν ∧ Yρ|σ = Xµ|νYρ|σ − Xρ|νYµ|σ −
Xµ|σYρ|ν +Xρ|σYµ|ν .
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biform current. Therefore the action (2.38) describes the gapless phase of a theory with both a

magnetic maximal (d − p − 1)-biform and an electric maximal p-biform symmetry. For p = 1,

this is the action of linearized Einstein gravity, which we will study in detail further below.

Here we see what the general structure of the theory is, and how it is a member of a larger set

of theories. Another interesting example is provided by p = 0, which is a theory of a free scalar

that falls in this same class of theories, and therefore shares many features with gravity. We will

also explore the details of this theory in section 3, and will point out the subtle differences that

make the EFT of this scalar somewhat different from the usual Goldstone theory for a 0-form

symmetry: in a nutshell, the IR Lagrangians agree while their irrelevant corrections need not.

It is also interesting to consider defects charged under these symmetries. One can couple

the field h(p|p) to a p-dimensional defect by contracting half of its indices with velocity vectors

defined by the surface and thinking of the remaining indices as producing a p-form, which can

then be integrated. It is a simple exercise to see that the resulting operator can only be gauge

invariant if the defect is an extremal surface (e.g., a geodesic for p = 1) of the background

geometry. This is well-known in linearized gravity [56]—and generalizes to higher p—and is a

strong hint that biform symmetries are related to properties of spacetime. The restriction on

the possible types of charged objects can also be related to the physics of fractons [16], which

we will comment on further below.

More irrelevant corrections to (2.38) would be of the form J2, J3, J4, · · · . These terms8 would

preserve both the gaplessness of the theory, and conservation of both the electric and magnetic

currents, up to some deformation of the electric current J → Ĵ similar to the ordinary higher-

form case. Notice that, if one fine-tunes the most relevant Einstein term in this action to

zero, we go back to the Maxwell-type actions discussed in (2.28). Linearized conformal gravity

belongs to this class of theories.

It is worth underlining both the commonalities and differences between these theories and

Chern–Simons theories. While they share many features, these theories remain gapless (for

d ≥ 2p+ 2). One way to understand this is to note that if we think of J(p+1|p+1) as a curvature,

not all of it is required to vanish on-shell, only its trace. This point of view can be related to

the physics of fractons, which we explore next.

2.3 Biform gauge symmetries and fractons

The previous discussion focused primarily on the physical symmetries of the problem, which

were used to construct an effective theory that describes the gapless phase where the magnetic

symmetry is nonlinearly realized. In doing this, we have somewhat glossed over the discussion of

the gauge symmetries. What are we really gauging here? In order to make contact with familiar

physics, it is useful to repackage the previous construction in terms of curvatures built by acting

with a single derivative on the gauge fields. This will amount to a first-order formulation of the

theories of interest. Let’s build a first-order curvature for our gauge field h as:

Q(p+1|p) = dh(p|p) . (2.40)

8The precise allowed interactions depend on the value p+ 1, corresponding to the number of indices the biform

has. For example, for p odd, cubic terms are allowed for a single species of biform field h(p|p), while for p even

such interactions vanish as a consequence of permutation symmetry.
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In this setup, h(p|p) is invariant under a gauge transform of the form: h(p|p) 7→ h(p|p) +

d2ω(p−1|p−1), where ω(p−1|p−1) is a (p − 1|p − 1)-biform. What is this gauging? For p > 1,

this symmetry necessarily acts on extended objects, but for p = 1 we can give an intuitive

description: h(1|1) is a gauge field for the spatial part of a fracton field [16].

Consider a scalar field Φ transforming under an abelian symmetry as

Φ 7→ eiα(x)Φ , (2.41)

where α(x) is a linear function of the coordinates: α(x) = α + αµx
µ, with α a constant and

αµ a constant vector. This symmetry is necessary to have both charge and dipole moment

conservation.9 It turns out it is possible to build a quadratic combination of Φ and its derivatives

that transforms covariantly under this scalar fractonic symmetry.10 In detail, the combination(
∂2Φ2

)
µν
≡ Φ∂µ∂νΦ− ∂µΦ∂νΦ , (2.42)

transforms as (
∂2Φ2

)
µν
7−→ ei2α(x)

(
∂2Φ2

)
µν
, (2.43)

under (2.41) with α(x) = α + αµx
µ. If one wishes to gauge this symmetry, so that the combi-

nation (2.42) transforms covariantly for all functions α(x), this can be done by introducing a

symmetric gauge field hµ|ν and defining(
D2Φ2

)
µν
≡ Φ∂µ∂νΦ− ∂µΦ∂νΦ− ihµ|νΦ2 . (2.44)

If the gauge field transforms as

hµ|ν 7→ hµ|ν + ∂µ∂να , (2.45)

then (2.44) will transform covariantly:(
D2Φ2

)
µν
7−→ ei2α(x)

(
D2Φ2

)
µν
, (2.46)

where α(x) is now an arbitrary function. In the language of section 2.2, hµ|ν is a (1|1)-biform,

which transforms as h(1|1) 7→ h(1|1) + d2α. Notice this is not the gauge transformation discussed

in the previous section, nor is it the gauge symmetry enjoyed by linearized gravity.

The gauge invariant curvature associated to h(1|1) we call Q(2|1), which is defined as:

Q(2|1) = dh(1|1) . (2.47)

A natural question to ask is: how do we enlarge the gauge symmetry so that transformations

h(1|1) 7→ h(1|1) + dξ(1|0) are also unphysical? First, notice that Lagrangians constructed from

the curvature Q(2|1) would enjoy an electric symmetry related to shifts of h(1|1) that satisfy

d2ξ(1|0) = 0. We can gauge this putative symmetry by introducing a new gauge field Γ(2|1) and

deforming the curvature Q(2|1) as:

Q(2|1) = dh(1|1) − Γ(2|1) . (2.48)

9Theories that have higher conserved moments have also been considered. They can be constructed along similar

lines to what we describe here, and would fit into a family of theories with a generalization of the biform symmetries

discussed in section 2.2 to multiforms, involving tensors labeled by Young diagrams with more columns [54, 55].

The relevant representatives of that class of theories with conserved multipole ` would be the ones with symmetric

tensor gauge fields, corresponding to `+ 1 columns of length 1.
10Here we are only concerned with the space-like part of fractonic theories. In condensed matter applications, a

non-relativistic time direction is also included.
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We do not want to gauge totally generic shifts of h(1|1), but just a small part. This is achieved

by considering only transformations of the form

h(1|1) 7→ h(1|1) + dξ(1|0) , Γ(2|1) 7→ Γ(2|1) + d2ξ(1|0) . (2.49)

The shift (2.49) guarantees that a small part of the electric global symmetry will survive in the

EFT. Notice that there is another curvature that we can construct purely from Γ(2|1):

J(2|2) = dΓ(2|1) , (2.50)

which is gauge invariant as a consequence of the fact that d3 = 0.

It seems that we are left with a new fractonic-type gauge symmetry for Γ(2|1), since this gauge

field also transforms by a term with two derivatives in (2.49). In order to recover the Einstein-

like theories discussed in section 2.2, all we need to do is demand a flatness condition on Q(2|1)

to relate Γ(2|1) and h(1|1), which we could interpret as coming from an equation of motion of a

BF-like action:

Q(2|1) = 0 =⇒ J(2|2) = d2h(1|1) . (2.51)

As advertised, this construction recovers the familiar gauge invariance h(1|1) 7→ h(1|1) +dξ(1|0) of

linearized gravity. This type of gauge field was also introduced in [16], appearing in theories that

violate rotational invariance, with a clear origin in lattice models. Here we have obtained this

gauge theory from a further gauging of the original fracton-like symmetry. This is completely

analogous to the Green–Schwarz mechanism [57] in string theory.

While we have set p = 1 in our example above, the whole construction goes through for any p,

provided that the fractonic matter field Φ is gapped. If this is not the case, we would be forced

to deal with dynamical extended objects when p > 1. It would be interesting to construct UV

complete theories for p = 1 using these ingredients.

Even for p = 1, extended objets make an appearance. Notice that the Green–Schwarz mecha-

nism implies that dh(1|1) is no longer gauge invariant. As such, we can’t couple it to worldlines

in the usual way. Let’s examine this. Before introducing Γ(2|1), the natural coupling between

hµ|ν and an external worldline is

S
(monopole)
line =

∫
hµ|ν

ẋν√
ẋ2

dxµ , (2.52)

where ẋµ = dxµ

dτ for some parameterization of the worldline given by τ . The expression above

is manifestly diffeomorphism invariant on the worldline, as it must be. However, this coupling

is only gauge invariant under hµ|ν 7→ hµ|ν + ∂µ∂νξ if d
dτ

(
ẋν√
ẋ2

)
= 0. This is the statement that

monopoles are not mobile in fractonic theories. A dipole coupling is however possible:

S
(dipole)
line =

∫
hµ|ν x

ν dxµ . (2.53)

This coupling is gauge invariant and possible for any trajectory xµ(τ). Once we include the

enhanced gauge symmetry by introducing Γ(2|1), this coupling needs to be reconsidered. Just as

in string theory, gauge invariance can only be preserved by realizing the worldline as a boundary

of some two-dimensional surface, Σ. If that is the case, we can write:

S
(dipole)
surface =

∫
∂Σ
hµ|ν x

ν dxµ −
∫

Σ
Γµν|σx

σdxµ ∧ dxν . (2.54)
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We therefore see that the theory that includes the new gauge field Γ(2|1) naturally includes

higher dimensional defects. In the gapless gravity phase, Γ(2|1) = dh(1|1) as a consequence of

the flatness condition Q(2|1) = 0. In this situation, the coupling above disappears as it becomes

identically zero. The upshot is that the extra gauging has the physical effect of removing the

dipole particles from our EFT, they no longer couple to the gauge fields. All that remains

are the monopoles (2.52), which are forced to move on geodesics. This builds the connection

between biform symmetries and spacetime. From the perspective advocated here, this is a

natural consequence of the properties of the original fractonic matter.

What is the EFT which agrees with the Einstein action (2.38) in these variables? Schemati-

cally, it takes the form:

S =

∫
ddxhG[Γ] + Γ2 . (2.55)

We will write the precise form of this action for theories of interest in the following sections.

The Einstein biform G above is written in terms of Γ, rather than h. Because of this, it is

not automatically conserved and gauge invariance requires the introduction of Γ2 terms, with

a precise structure that we will write explicitly in the later sections. The only possible gauge-

invariant equations of motion are of course the flatness conditions

G(1|1) = 0 , Q(2|1) = 0 . (2.56)

This amounts to a first order formalism for the theories described in the previous section. When

describing linearized gravity, there is a simple and familiar interpretation for these biforms: Γ(2|1)

is related to the usual Christoffel connection and Q(2|1) is the nonmetricity tensor, which is set

to zero here.

2.4 Beyond maximal symmetries

Within the space of maximal biforms Ω̂, there is one more family of interesting theories that

can be studied. Consider as our starting point a (p+ 1|p)-biform current H(p+1|p) satisfying

dH(p+1|p) = 0 . (2.57)

This example differs from the previous case in that H(p+1|p) is what we called an odd biform.

The important change is that the naive form of the Poincaré lemma that we used above does

not hold [53]. In order to see this, we need to leave the space of maximal forms.

While the interested reader can find the full details in [53], we will sketch here only the

necessary machinery. We have to refine the concept of exterior derivative and allow it to act on

either the left or right column of the Young tableaux, when this is possible. As such we define

both left and right differentials:

dL : Ω(p|q) → Ω(p+1|q) , ∀p ≥ q , dR : Ω(p|q) → Ω(p|q+1) , ∀p ≥ q + 1 . (2.58)

The fact that dR does not act on even biforms, and at the same time even forms are not in the

image of dL is why we did not need this technology in the previous section.

With this refinement, rather than (2.57) what we need to impose is the two equations

dLH(p+1|p) = 0 , dRH(p+1|p) = 0 , (2.59)
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in order to guarantee that we can write H(p+1|p) in terms of a (p|p− 1)-biform gauge potential

as

H(p+1|p) = dLdR a(p|p−1) . (2.60)

The conditions (2.59) just guarantee that ∗H(p+1|p)∗ is conserved when taking the divergence

with respect to an index in either of its two columns. This family of theories enjoys a more

general gauge symmetry of the form a(p|p−1) 7→ a(p|p−1) + dLξ(p−1|p−1) + dRχ(p|p−2). Having

already left the space of maximal biforms Ω̂, we see that these theories are not very different

conceptually from having started with H being a totally generic (p|q)-biform. We will not study

this totally general case here, nevertheless there is a very simple and interesting example of this

family of theories that we will treat in more detail in appendix C, that we briefly describe.

Consider the case where H(2|1) is a (2|1)-biform, which is the simplest nontrivial example.

In this case, notice that a(1|0) has the simple gauge symmetry a(1|0) 7→ a(1|0) + dLξ, with ξ a

scalar, since no (1|0)-biform sits in the image of dR. Given this simple gauge transformation,

it is natural to suspect we are dealing with a familiar theory. Notice that the version of the

Einstein biform which is relevant in this case is

S(1|0) = tr
(
H(2|1)

)
. (2.61)

In components this reads

Sµ = ∂ρ∂
ρaµ − ∂µ∂ρaρ . (2.62)

It can be easily checked that Sµ is automatically conserved, ∂µS
µ = 0. From this, we can

immediately write the Einstein action for these objects:

SE [a] =

∫
ddx aµS

µ , (2.63)

which yields the equation of motion

Sµ = 0 . (2.64)

What is this equation? Notice that, because of the reduced gauge symmetry of this particular

case, there is another gauge invariant curvature:

F(2|0) = dLa(1|0) , (2.65)

such that we have H(2|1) = dRF(2|0). Then, the equations of motion (2.64) are nothing other

than the Maxwell equations

∂µF
µν = 0 . (2.66)

We have thus obtained electromagnetism as a simple example of a non-maximal biform theory

with an Einstein-type Lagrangian! Notice that this similarity is lost once the theory is written

directly in terms of F . Of course, the irrelevant terms that we can add to this EFT are not the

same if we restrict ourselves to observables that can only be expressed in terms of H. This is

analogous to the different treatments of the scalar theory as a biform (i.e., Galileon superfluid)

or single form (i.e., ordinary superfluid) theory discussed in section 3. We comment further on

this in appendix C below.
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2.5 Conserved charges and anomalies

Now that we have set up the notation for the exterior calculus of general biforms, let us return to

the issue of conserved quantities in theories with maximal higher-biform symmetries. Consider

a theory with a (p+ 1|p+ 1)-biform conserved electric current J(p+1|p+1) satisfying:

d ∗ J(p+1|p+1)∗ = 0 . (2.67)

We would like to study under which circumstances the (p+ 1)-form current J
(ζ)
(p+1) is conserved,

where

J
(ζ)
µ1···µp+1 = Jµ1···µp+1|ν1···νp+1

ζν1···νp+1 , (2.68)

with ζ(p+1) a (p + 1)-form. Taking the divergence of the equation above and using the conser-

vation of J(p+1|p+1) we find:

∂µ1J
(ζ)
µ1···µp+1 = 0 =⇒ Jµ1···µp+1|ν1···νp+1

∂µ1ζν1···νp+1 = 0 . (2.69)

From the point of view of representation theory, J(p+1|p+1) is a an irreducible (p+1|p+1)-biform.

Therefore, equation (2.69) carries no information about the totally antisymmetric (p+ 2)-form

dLζ(p+1), its contraction with J(p+1|p+1) vanishes automatically by symmetry. It does contain,

however, information about the other irreducible possibility dRζ(p+1), which is a (p+1|1)-biform.

We will further require our current to be traceless, as is the case on-shell in the EFTs we

studied above. In biform language we can then write the following constraint on ζ(p+1), that

will ensure conservation of J (ζ):

(dRζ)(p+1|1) =
(
η ∧ γ(p)

)
(p+1|1)

, (2.70)

where γ(p) is some p-form—which we write below—that, when combined via the wedge product

with the metric, produces a (p+ 1|1)-biform. In component notation we can write:

∂µζν1···νp+1 +
1

p+ 1

p+1∑
i=1

∂νiζν1···µ···νp+1 =
p+ 2

(d− p)(p+ 1)

p+1∑
i=1

gµνi∂
ρζν1···ρ···νp+1 . (2.71)

Here we have determined γ(p) by taking the trace of (2.70) and demanding consistency. The

equation (2.71) is the generalization of the conformal Killing equation to a (p+1)-form. The (p+

1)-forms that solve this equation are sometimes referred as conformal Killing–Yano tensors. In

flat space, this equation can be solved by acting with derivatives and contracting appropriately

to obtain the equation

∂ρ∂σ∂µζν1···νp+1 = 0 , (2.72)

that a conformal Killing (p+ 1)-form must satisfy. The most general solution to this auxiliary

equation that is compatible with the original conformal Killing equation (2.71) is given by

ζµ1···µp+1 = A
(p+1)
µ1···µp+1 +B

(p+2)
µ1···µp+2x

µp+2 +

(
p∑
i=1

C
(p)
µ1···µi−1µp+1µi+1···µpxµi − C

(p)
µ1···µpxµp+1

)

+

(
D

(p+1)
µ1···µp+1x

2 − 2

p+1∑
i=1

xµiD
(p+1)
µ1···µi−1σµi+1···µp+1x

σ

)
,

(2.73)

where A(q), B(q), C(q), and D(q) are constant q-forms. Notice that A is analogous to translations,

B to rotations, C to dilations, and D to special conformal transformations. This general solution
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can be cast in a nicer form in terms of the standard CFT embedding of Rd into Rd+2 with metric

ηAB = diag(−1, 1, ηµν), XA(x) =
(

1+x2

2 , 1−x2
2 , xµ

)
. In these variables, the conformal Killing

tensors can be written as

ζµ1···µp+1 = KA1···Ap+1Ap+2

∂XA1

∂xµ1
· · · ∂X

Ap+1

∂xµp+1
XAp+2 , (2.74)

where KA1···Ap+2 is a constant (p+2)−form in the (d+2)−dimensional embedding space. Upon

dimensional reduction to the physical d-dimensional space, the (p+ 2)−form K breaks up into

(p + 2)−form, 2 different (p + 1)−forms and a p−form, which are precisely the coefficients

B(p+2), A(p+1), D(p+1), C(p).

We are interested in these equations when d ≥ 2p+ 2, since in lower dimensions our theories

of interest are gapped. Something special happens in the equations above when d = 2p + 2.

For p = 0, we have a free scalar CFT2 and there exist an infinite number of solutions to the

conformal Killing equation giving rise to a Kac–Moody current algebra. For higher values of p,

the solutions (2.73) are still the full set of solutions. Nevertheless, the structure of the equations

is different in these special dimensions and the solutions further satisfy the Laplace equation:

∂ρ∂
ρζν1···νp+1 = 0 when d = 2p+ 2 . (2.75)

For electromagnetism in d = 4, it was found that the special structure of the equations leads to

the existence of 0-form symmetries which also imply the existence of Kac–Moody algebra [6].

This suggests that d = 4 linearized gravity might also enjoy a symmetry enhancement for lower

codimension charges. An explicit construction of these charges could possibly arise from the

double copy techniques in gravity [58]. Soft graviton theorems can already be viewed as an

example of this enhanced symmetry structure [59].

In conclusion, we have seen that charges for theories with maximal higher biform symmetries

are labeled by conformal Killing–Yano forms. Given a current satisfying d∗J(p+1|p+1)∗ = 0 and

tr(J(p+1|p+1)) = 0, conserved charges are given by:

Q(ζ)(Σd−p−1) =

∫
Σd−p−1

∗J (ζ)
(p+1) . (2.76)

Notice that some of these charges might be trivial. Indeed, provided there are not topological

features and that the fundamental fields are globally well defined, it is not hard to see that only

ζs satisfying ∂ρζν1···νpρ 6= 0 will yield nontrivial charges. The rest just give total derivatives. In

the language of the conformal group, the nontrivial generators are the ones that are not part of

the Poincaré group, i.e., the dilations and special conformal transformations. For us, it is the

C(p) and D(p+1) that parameterize the non-trivial charges.11

It is relatively easy to see the origin of these conserved quantities. The Einstein type actions

we consider turn out to be invariant under the global symmetry generated by

hµ1···µp|ν1···νp 7→ hµ1···µp|ν1···νp + Y(p|p) ∂
ρ
(
ζµ1···µpρεν1···νp

)
, (2.77)

where Y(p|p) is the Young projector onto a (p|p)-biform, and ζ(p+1) is a conformal Killing (p+1)-

form. It is clear that this transformation is only nontrivial when ∂ρζµ1···µpρ 6= 0. The divergence

11We stress again that this is the case if there are no topological defects. In many cases these defects would not

be allowed. But in the critical dimension d = 2p + 2, they can appear as part of the magnetic symmetries. See

section 4.5 for such an example.
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of a conformal Killing (p+1)-form is at most linear in the coordinates, so the current J(p+1|p+1) =

d2h(p|p) is manifestly invariant under this global transformation. It is then easy to see that this

implies all Einstein and Maxwell-type terms are invariant under this symmetry.

Magnetic charges can be constructed in similar fashion. Notice, however, that our magnetic

current is not generically traceless. In that case, looking at (2.27), we must demand a more

constraining Killing type equation for %:

∂µ%ν1···νp+1 +
1

p+ 1

p+1∑
i=1

∂νi%ν1···µ···νp+1 = 0 . (2.78)

which has the smaller set of solutions:

%µ1···µp+1 = A
(p+1)
µ1···µp+1 +B

(p+2)
µ1···µp+2x

µp+2 . (2.79)

Coupling to gauge fields and anomalies: In what follows, we would like to couple these

theories to background gauge fields that gauge the symmetries (2.77). In order to that, we let

our fundamental field h(p|p) shift by the divergence of an arbitrary (p+ 1|p)-biform as:

hµ1···µp|ν1···νp 7→ hµ1···µp|ν1···νp + Y(p|p) ∂
ρΛρµ1···µp|ν1···νp , (2.80)

and demand our actions are invariant by the addition of appropriate compensating gauge fields.

We do this in detail in the following sections for the cases of interest, including linearized gravity.

Schematically, the expectation is that the curvatures get nonlinearly gauged by the addition of

background (p+ 1|p+ 1)-biform fields C(p+1|p+1):
12

J(p+1|p+1) → J(p+1|p+1) ≡ J(p+1|p+1) − C(p+1|p+1) . (2.81)

This background gauge field transforms as C(p+1|p+1) 7→ C(p+1|p+1) + d2 ∂ ·Λ(p+1|p) under gauge

transformations. Already at this level, it is clear that this will lead to a mixed anomaly with

the magnetic conservation equation since:

dJ(p+1|p+1) = −dC(p+1|p+1) 6= 0 . (2.82)

This anomaly is directly responsible for protecting the gaplessness of this phase, as was studied

for superfluids in [5]. In the following, we extend the arguments to linearized gravity, showing

how it can be interpreted as a gapless phase defined by a particular structure of mixed anomalies.

It turns out that (2.81) is not quite the end of the story. There are two interlocked reasons

for this. The first is that we would expect gauge fields that act as sources for the electric

current (2.17) to transform by something that has a single derivative of the gauge parameter

Λ(p+1|p), in order to couple to a conserved current satisfying d ∗ J(p+1|p+1)∗ = 0. The second is

that the Einstein term is no longer invariant under the original symmetries, parameterized by

conformal Killing (p + 1)-forms, once we gauge as in (2.81). We expect this not to be allowed

for abelian symmetries. It turns out that the way out of both puzzles is that C(p+1|p+1) must

be constructed as:

C(p+1|p+1) ∼ d
(
∂ ·A(p+1|p+1)

)
, (2.83)

12Throughout this work, we will denote currents before the introduction of background gauge fields with capital

roman letters and their gauge-invariant counterparts with calligraphic capital letters.
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where A(p+1|p+1) is also a (p + 1|p + 1)-biform. The equation (2.83) is just schematic; explicit

expression are written for the examples of interest below. For transformations of the form (2.77),

A(p+1|p+1) shifts by a term proportional to the conformal Killing equation, guaranteeing both

invariance under global symmetries and that the gauge field transforms by something linear in

derivatives.

3 Superfluids

We begin by describing the simplest theory that exhibits a biform symmetry. This is a scalar

theory which can be thought of as a somewhat peculiar kind of superfluid that has a 0-biform

symmetry. We first review the ordinary superfluid case from the perspective that it is a gapless

phase protected by anomalies, as was considered in [5]. We then add a new twist to the superfluid

discussion by considering a 0-biform superfluid, which is related to the physics of Galileons [60]

which share many of the features of gravity [61]. This galileon superfluid theory belongs to

the same class of theories as gravity, and shares a number of features with linearized gravity,

making it a useful illustrative example.

Both the ordinary superfluid and the galileon superfluid are members of a broader class of

theories that could be called fractonic superfluids. All of these theories agree in the deep in-

frared, and correspondingly have the same scalar gapless degree of freedom. The theories differ

in their symmetries, which are of the form δφ = cµ1···µNx
µ1 · · ·xµN , where cµ1···µN is a traceless

tensor. (The ordinary superfluid has the N = 0 symmetry and the galileon superfluid addi-

tionally has the N = 1 symmetry.) The theories have different allowed irrelevant deformations

depending on the maximal value of N which is a symmetry. From the operator perspective,

the fundamental conserved currents in these theories are Jµ1···µN+1
, and in the deep infrared

are given by Jµ1···µN+1
= ∂µ1 · · · ∂µN+1

φ. The fact that all of these theories agree in the deep

IR—or equivalently that all of these currents propagate a gapless scalar—is a manifestation

of the so-called inverse Higgs effect, where a single Goldstone degree of freedom nonlinearly

realizes several spacetime symmetries [62].

3.1 Ordinary superfluid

As a first example in order to orient ourselves, we describe the effective field theory of an ordinary

superfluid [63].13 This is a rephrasing of the discussion that appeared in [5], emphasizing the

aspects that will be important for the extension to the gravity case. The perspective that we

take begins with the global symmetries that define a superfluid phase: 0-form U(1) symmetry

and a (d − 2)-form U(1)(d−2) symmetry in d spacetime dimensions. The gapless superfluid

phonon can be thought of as an inevitable consequence of the mixed anomaly between these

two global symmetries—sourcing one of the conserved currents via a background gauge field

necessarily causes a non-conservation of the other current.

13We are slightly abusing terminology, strictly speaking the hydrodynamics of a superfluid is described by

expanding the effective field theory that we will construct around a finite density configuration [63]. See [5] for

the details of how this works in this context.
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3.1.1 Conservation equations

An interesting and recurring theme in physics is that phases of matter can be classified by

anomalies. In [5] it was shown how this classification scheme can also be usefully applied to

systems with spontaneously broken global symmetries, providing an alternative viewpoint on

Goldstone’s theorem. In this spirit, following [5] we define a superfluid as a phase involving two

conserved currents with a mixed ’t Hooft anomaly.

The effective field theory has two conserved currents: one is an ordinary 1-form Noether

current, Jµ, associated to a 0-form symmetry. The other current is a (d − 1)-form Kµ1···µd−1 ,

and is associated to a (d− 2)-form symmetry. In the standard presentation of the theory, this

latter current is usually called topological, but—as was discussed in section 2—this depends on

the variables that we choose to parameterize the theory.

We now want to gauge one of these symmetries, and we can choose which one. The standard

way to do this is to introduce a background gauge field that couples to the symmetry currents.

Upon turning on a background gauge field for one symmetry current, the other current will

cease to be conserved. The fact that its conservation equation becomes anomalous captures the

impossibility of simultaneously gauging both symmetries.

If we choose to gauge the ordinary U(1) shift symmetry by introducing a 1-form background

gauge field Aµ, we need to improve both the ordinary U(1) current and the higher-form current

in order to make them gauge invariant. We will denote these gauge-invariant currents by J µ

and Kµ1···µd−1 , respectively. Because we have decided to source J µ by Aµ, conservation of this

current will be maintained: ∂µJ µ = 0. On the other hand, this gauge improvement will spoil

the conservation of Kµ1···µd−1 ; we instead have

∂µJ µ = 0 , ∂[µ ∗ Kν] = −1

2
Fµν , (3.1)

where Fµν = 2∂[µAν] is the usual field strength, so that the anomaly is gauge invariant, as it must

be.14 Here we have dualized the K current for convenience, so that its conservation corresponds

to the vanishing of the exterior derivative of ∗K. Note that—unlike axial-type anomalies—this

mixed anomaly between U(1) and U(1)(d−2) symmetries is not dimension-dependent, and can

occur in any spacetime dimension.

The equation where the anomaly appears is always a choice, and so we can choose to put the

anomaly in the J µ conservation equation if we like. This is achieved by gauging the (d−2)-form

symmetry by introducing a (d − 1)-form background gauge field, Bν1···νd−1 . In this case, the

conservation equations instead read

∂µJ µ = εµ1···µd∂
µ1Bµ2···µd , ∂[µ ∗ Kν] = 0 , (3.2)

where εµ1···µd∂
µ1Bµ2···µd is the (Hodge dual of the) field strength associated to the higher-form

gauge field. Either presentation of the anomaly—eq. (3.1) or eq. (3.2)—is sufficient to completely

fix the current-current correlation function 〈Jµ ∗Kν〉, as we now review.

14Note that we are normalizing the Jµ and Kµ1···µd−1 currents in the way that is appropriate for compact

symmetries. This means that even in the deep infrared they are not exactly Hodge duals of each other, because

their normalizations differ.
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3.1.2 Current-current correlator

The current-current two-point function 〈Jµ ∗Kν〉 is completely fixed by the anomalous conser-

vation conditions in the presence of a background field that sources one of the currents. The

way that this manifests at the level of correlation functions with the background fields turned

off is that it is impossible to impose conservation of both Jµ and Kµ1···µd−1 at coincident points.

There will always be contact terms that violate one of the two conservation conditions. Since

we will be interested in the properties of the current-current correlator at coincident points, it

is natural to Fourier transform, so that position space contact terms appear as analytic terms

in the momentum p in Fourier space.

We can see this structure by parameterizing the most general possible correlator. The Fourier

transform of the mixed correlator is constrained by Lorentz invariance to take the form

〈Jµ(p) ∗Kν(−p)〉 ≡
∫

ddx eip·x 〈Jµ(x) ∗Kν(0)〉 = c1(p2)pµpν + c2(p2)p2gµν , (3.3)

where c1, c2 are at this point arbitrary functions. Note that even though the two currents in

the correlator are different, this is symmetric in µ and ν.

We now want to impose conservation of the currents. We will see that we can pick one of

the two currents to be conserved everywhere, and that the mixed anomaly will then constrain

the other current to not be conserved at coincident points. This failure of conservation by

contact terms is the hallmark of an anomaly. The final form of 〈Jµ(p) ∗Kν(−p)〉 depends on

which current we choose to be conserved. The different choices that we can make shift the final

two-point function by local contact terms. However, the nonlocal part of the correlator that

describes physics at separated points is completely fixed, and it is this part that we will use to

deduce facts about the spectrum of the theory.

• The 1-form current is conserved: We first consider the case where we demand that

the current Jµ is conserved everywhere—including at coincident points. This requires that

the two free functions in (3.3) are related as c2(p2) = −c1(p2). The residual freedom to

select c1(p2) is then fixed by the anomaly equation (3.1), which when differentiated with

respect to the background fields to get the two-point function and written in momentum

space, requires the failure of conservation to be purely analytic in p (corresponding to a

position space contact term),

p[ρ 〈J|µ|(p) ∗Kν](−p)〉 = −p[ρην]µ . (3.4)

Imposing this completely fixes the two-point correlator to be [5]

〈Jµ(p) ∗Kν(−p)〉 =
pµpν − p2ηµν

p2
. (3.5)

The conservation of Jµ holds exactly (i.e., even at coincident points), while the dual con-

servation of ∗Kν holds only at separated points. The failure of Kµ1···µd−1 to be conserved

at coincident points due to a contact term is precisely the statement that there is an

’t Hooft anomaly between the symmetries that these currents correspond to.

• The (d − 1)-form current is conserved: We can instead require that Kµ1···µd−1 is

conserved even at coincident points. This forces us to set c2(p2) = 0 in (3.3). It is
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then not possible to make Jµ identically conserved. The anomaly equation (3.2), when

differentiated with respect to the background fields to get the two-point function and

written in momentum space, requires the failure of conservation to be the particular

contact term

pµ 〈Jµ(p) ∗Kν(−p)〉 = pν . (3.6)

Imposing this completely fixes the two-point correlator to be

〈Jµ(p) ∗Kν(−p)〉 =
pµpν
p2

. (3.7)

We see that the difference between the two correlators (3.5) and (3.7) is a local contact term

∝ ηµν , which is what we anticipated. However, the nonlocal part of the correlator, which

controls the behavior at separated points, is identical. This part is universal in any theory with

these conserved currents, and will be the part that tells us the theory has a massless mode.

3.1.3 Källén–Lehmann for a superfluid

We now perform a Källén–Lehmann [64, 65] spectral decomposition of the correlators in order

to prove that there is a massless scalar mode in the spectrum [5]. As we saw in the previous

section, our two possible choices for which current is conserved merely serve to shift the contact

term appearing in the correlator, but in both cases the nonlocal part is the same. In order to

perform a Källén–Lehmann decomposition, it is convenient to dualize one of the currents so

that the two operators in the correlator have the same number of Lorentz indices. It is more

convenient to dualize Kµ1···µd−1 to a vector, so we will do that in the following. As we elaborate

on in appendix A, only the nonlocal part is necessary to deduce the spectrum of the theory, the

spectral decomposition is insensitive to what contact terms are present in the theory. We can

therefore take the correlator in the form (3.7).

Our starting point is the spectral representation of the current two-point function (see ap-

pendix A for details of its derivation)

〈Jµ(p) ∗Kν(−p)〉 =

∫ ∞
0

ds
s

p2 + s

[
ρ1(s)Π̃(1)

µν − ρ0(s)Π̃(0)
µν

]
. (3.8)

Here ρ0(s) and ρ1(s) are the spin-0 and spin-1 spectral densities, which tell us about the presence

of spin 0 and spin 1 states that couple to the currents (note that only a massive spin-1 field can

couple to a conserved current [66–68], so the spectral density ρ1 must go to zero as s→ 0), and

the projectors are defined as

Π̃(0)
µν = −pµpν

s
, Π̃(1)

µν = ηµν +
pµpν
s

. (3.9)

which are related to the usual projectors

Π(0)
µν =

pµpν
p2

, Π(1)
µν = ηµν −

pµpν
p2

, (3.10)

by the replacement p2 → −s, and agree with them on-shell where p2 = −s.

We can then rewrite (3.8) as

〈Jµ(p) ∗Kν(−p)〉 =

∫ ∞
0

ds

p2 + s

[
sρ1(s)ηµν +

(
ρ1(s) + ρ0(s)

)
pµpν

]
. (3.11)
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In order to reproduce (3.7), the spectral densities must be given by15

ρ1(s) = 0 , ρ0(s) = δ(s) . (3.12)

That is, we see that there is a massless spin-0 mode in the spectrum as a consequence of the

structure of anomalies, and furthermore, no other states contribute to the two-point function.16

The local contact term does not affect the spectral functions (see appendix A), so regardless of

the choices made in where to put the anomaly, there is a gapless mode, establishing a version

of a Goldstone theorem [5].

3.1.4 The superfluid EFT

The previous discussion did not rely on any action to derive the current conservation equations.

However, the universality of the result suggests that one can build an effective field theory

that captures this physics in the form of an infrared Lagrangian with the appropriate degree of

freedom, which further includes irrelevant corrections via higher dimension operators.

Indeed, the superfluid EFT is given by the action

S = a

∫
ddx

[
1

2
∂µφ(x)∂µφ(x)

]
+ · · · , (3.13)

where · · · represents the possible inclusion of irrelevant corrections which we discuss below, and

a is the normalization of the action. The action (3.13) is invariant under the usual constant

shift

φ(x) 7→ φ(x) + c , (3.14)

for which φ serves as the Goldstone boson. The corresponding conserved current is Jµ = ∂µφ.

This global symmetry can be gauged in the free theory by introducing a 1-form background

gauge field Aµ as

S = a

∫
ddx

[
1

2
(∂µφ−Aµ)2

]
, (3.15)

with gauge transformations δφ(x) = c(x) and δAµ = ∂µc(x). The equation of motion derived

from (3.15) is

�φ = ∂αA
α . (3.16)

The gauge invariance of the action guarantees that the current

Jµ ≡
δS

δAµ
= a (∂µφ−Aµ) , (3.17)

is conserved on-shell.

15Note that in performing the spectral decomposition, the distinction between the actual projectors given in

(3.10) and the off-shell projectors (3.9), along with the constraint that ρ1 → 0 as s → 0, are crucial. Notice that

the two-point function with different contact terms can be written directly in terms of projectors. For example,

we can write (3.7) as 〈Jµ ∗Kν〉 = Π
(0)
µν and (3.5) as 〈Jµ ∗Kν〉 = −Π

(1)
µν , respectively. This would seem to suggest

that when we perform the spectral decomposition, we could actually decompose this latter correlator in terms of

spin-1 states, implying a massless spin-1 mode instead of a spin-0 one. However, because of the constraint that ρ1

has no support at s = 0, it is impossible to reproduce the two-point function with ρ1(s) ∼ δ(s).
16The same conclusion can be reached with less work by noting that in the spectral decomposition the only

massless particle that can couple to a conserved current is a scalar [66, 67], and since the two-point function has

a pole at p2 → 0, there must be a massless particle in the spectrum.
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There is additionally a topological current

Kµ1···µd−1
= εµ1···µd−1α∂

αφ , (3.18)

which in the absence of Aµ is identically conserved. However, in the presence of the background

gauge field for the shift symmetry, we have

∂[µ ∗ Kν] = −1

2
Fµν , (3.19)

where ∗Kµ = ∂µφ− Aµ is the (dual of) the gauge-invariant version of K. (Notice that Jµ and

∗Kµ differ only by normalization at the free level.)

The action (3.13) produces the two-point function derived in equation (3.7). Typical analytic

corrections for an ordinary superfluid are of the form (∂µφ∂
µφ)n, n ∈ N. In this sense, the

superfluid EFT is a Maxwell action in the language of sections 2.2 and 2.4, which has a 0-form

symmetry.

Less obvious is the fact that the most relevant term of this EFT enjoys another symmetry of

the form δφ = cµx
µ, which is the defining feature of a Galileon theory [60], as well as an infinite

tower of higher symmetries with higher powers of xµ [69–71]. If we want to describe this EFT

and its irrelevant corrections that preserve this enhanced symmetry, we must reinterpret the

leading quadratic term as an Einstein action for a maximal 0-biform symmetry. This theory

then shares many features with gravity. We describe this perspective in the following section.

3.2 Galileon superfluid

We now want to consider a slightly different superfluid theory, which differs from the usual

superfluid in that it has a larger set of symmetries. In order to make these symmetries more

intuitive, we show how one could “discover” them in the IR action (3.13) below. Once we have

a handle on this theory and its symmetry structure, we invert the logic and study its anomalies

and universal current-current two-point function.

Let us start by rewriting the action (3.13) in a slightly different form by simply integrating

by parts

S = a

∫
ddx

[
−1

2
φ∂µ∂

µφ

]
. (3.20)

While the action (3.13) was manifestly invariant under the usual U(1) shift symmetry, by writing

it in the form (3.20) we see it admits a larger set of symmetries which include the more general

shifts:17

φ(x) 7→ φ(x) + ∂µξ
µ , (3.21)

where ξµ is a conformal Killing vector satisfying (2.72). The most general solution to (2.72) is

given in (2.73). In particular, any vector ξµ that satisfies (2.72) has a divergence ∂µξ
µ which

is either a constant, c, or linear in coordinates, i.e., ∂µξ
µ = c + cµx

µ, with c, cµ constant. It

is straightforward to check that these two cases are symmetries of the action (3.20). These

symmetries are the ones relevant for theories of Galileons [60], so we will refer to the type of

17In fact, the action (3.20) has an infinite number of nonlinearly realized symmetries where φ shifts by any

harmonic function of the form cµ1···µNx
µ1 · · ·xµN , where cµ1···µN is traceless (see, e.g., [69]). The symmetry (3.21)

is the one whose EFT fits into the class of biform theories that we are interested in presently, but EFTs that preserve

more of the shift symmetries would describe other fractonic superfluids.
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superfluid that has this symmetry as a Galileon superfluid. It is also simple to see that Killing

vectors that satisfy ∂µξ
µ = 0 cannot generate non-trivial symmetries if the fundamental field

φ(x) is globally well defined and topologically trivial. These Killing vectors are associated with

translations and rotations in (2.73).

In the deep infrared, where we only need the leading order term in the EFT, this theory

coincides with the usual superfluid (3.13). However, the allowed irrelevant corrections are

different in each case. We have already described the subleading corrections to (3.13), but

the subleading corrections to (3.20) involve more derivatives and are of the form (Jµ|ν)n (with

appropriate index contractions), where Jµ|ν = a ∂µ∂νφ is the conserved current associated to

(3.21).18 These terms are more restricted than the generic interactions of a superfluid and,

hence, the two theories agree solely at leading order, i.e., in the deep infrared.

3.2.1 First-order EFT Lagrangian

In order to couple this theory to background gauge fields for the symmetry (3.21), it is convenient

to rewrite the action (3.20) in first-order form, along the lines of the discussion in section 2.3.

For the free scalar theory, the first-order formulation is

S = −a
∫

ddx

(
φ∂µsµ +

1

2
sµsµ

)
. (3.22)

The φ equation of motion sets

∂µsµ = 0 , (3.23)

which we can think of as a flatness condition. The equation of motion for sµ allows for us to

solve for it in terms of φ:

sµ = ∂µφ . (3.24)

Substituting (3.24) into (3.23), we obtain the Klein–Gordon equation �φ = 0. We could also

integrate out sµ using its equation of motion (3.24) in the action (3.22), which yields the usual

free scalar action (3.20).

Returning to the discussion in section 2.3, we would like to identify the relevant curvatures.

In this case, the gauge symmetry can’t show all its muscle, as φ is only a 0-form. Nevertheless,

we can ask which objects are invariant under the global symmetries, which act as δφ = c+ cµx
µ

and δsµ = cµ . We consider the two objects,19

Jµ|ν = a ∂(µsν) , (3.25)

Qµ = a (∂µφ− sµ) . (3.26)

These are the same curvatures discussed in section 2.2, provided we identify φ with h(0|0) and sµ
with Γ(1|0). We have introduced a normalization factor for the currents, a, which follows from

18In addition to these interactions—which are exactly invariant under the relevant global symmetries—there

are interactions with fewer derivatives that are also invariant up to a total derivative. These are known as the

Galileon interactions [60], and can be thought of as Wess–Zumino (WZ) terms for the spontaneous breaking of

the symmetries [72]. Since they have the fewest derivatives per field, they will be the least irrelevant terms in the

infrared, though they are not renormalized or induced by integrating out matter that is coupled in a manner that

preserves the symmetries we are discussing [73].
19Notice that ∂[µsν] is also invariant under the symmetries, which is an accident of the scalar theory. In any

case, this tensor is set to zero by equations of motion.
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the normalization of the action. With these identifications we recognize (3.22) as an Einstein-

like action. We can think of the field sµ as gauging the 0-form symmetry present in the ordinary

superfluid current. The EFT expansion is then organized in terms of Jµ|ν via contractions of

the form
(
Jµ|ν [s]

)n
(excepting WZ terms—see Footnote 18), distinguishing this theory from the

ordinary superfluid EFT.

The equations of motion actually set most of the curvatures (3.25) and (3.26) to zero. The

equation (3.23) written in terms of Jµ|ν reads

tr (J) = 0 , (3.27)

while (3.24) corresponds to

Q = 0 . (3.28)

Importantly, the fact that tr (J) = 0 does not imply that all of Jµ|ν vanishes—in particular the

trace-free part can be nonzero. This is the crucial difference between a BF type Lagrangian

and the Einstein form in (3.22), the relevant curvature only obeys a partial flatness condition

so there is enough room for degrees of freedom to propagate. The equations of motion further

imply the conservation of the electric current:

∂µJµ|ν = ∂ν�φ = 0 , (3.29)

as expected. In addition to the conserved electric current (3.25) there is a conserved (topological)

magnetic symmetry current

Kµ1···µd−1|ν1···νd−1 = εµ1···µdεν1···νd∂µd∂νdφ , (3.30)

which is (identically) conserved as a consequence of the fact that partial derivatives commute.

3.2.2 Coupling to background gauge fields

We now turn to the study of the fate of these symmetries in the presence of background sources

for the conserved currents in the theory. The most obvious way to gauge the global symmetries

is to improve the curvatures by introducing a background gauge field as

Jµ|ν −→ Jµ|ν = a
(
∂(µsν) − g ηµν∂αsα − Cµ|ν

)
, (3.31)

where we have additionally shifted J by its trace with a free coefficient g for later convenience,

and where Cµ|ν is a symmetric two-index background gauge field (i.e. a (1|1)-biform), which

corrects the shift of sµ from the gauged version of the global symmetry of interest. The curvature

Jµ|ν is invariant under the gauge transformations

δφ = ∂αΛα , (3.32)

δsµ = ∂µ∂αΛα , (3.33)

δCµ|ν = ∂µ∂ν∂αΛα − g ηµν�∂αΛα , (3.34)

for any 1-form Λ. Notice that Q is already invariant and so does not need an additional

background gauge field improvement.
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There is, however, a surprise. We cannot build an Einstein-type action using Cµ|ν as our

background gauge field. We anticipated this problem in section 2.5. The resolution is that we

have to build Cµ|ν itself from two derivatives of a symmetric gauge field Aµ|ν as

Cµ|ν = 2κ
(
∂α∂(µAν)|α −

1

2
�Aµ|ν

)
− (κ+ g − 1)

(
∂(µ∂ν)A+ ηµν∂

α∂βAα|β

)
+ (κ+ g2 − 1)ηµν�A ,

(3.35)

where we have defined A ≡ ηµνAµ|ν as the trace tr
(
Aµ|ν

)
, and κ is another free coefficient.

Provided that under a gauge transformation, Aµ|ν transforms as

δAµ|ν =
1

(1− g)
∂(µΛν) , (3.36)

then (3.35) will shift as in (3.34). Note that there is a two-parameter family of tensors (parame-

terized by g and κ) that all have the same transformation properties, so that the current (3.31)

is gauge invariant. Noting that J(1|1) = a ∗K∗(1|1) in the free theory, it is also straightforward

to promote the magnetic current to its gauge-invariant version:

∗ K∗µ|ν ≡ ∗K∗µ|ν −g ηµν�φ− Cµ|ν . (3.37)

We now want to investigate the properties of these gauge-invariant currents.

Anomalies: Recall that the currents Jµ|ν and Kµ1···µd−1|ν1···νd−1
satisfy the following equations

on-shell (and at separated points)

tr J = 0 ,

∂µJµ|ν = 0 , ∂[ρ ∗K∗µ]|ν = 0 ,
(3.38)

where the condition on ∗K∗ is the dualization of the conservation of the magnetic current

K(d−1|d−1). In the presence of the background gauge field Aµ|ν , it is impossible to satisfy all of

these conditions on shell. This is the expression of a mixed anomaly between the electric and

magnetic symmetries.

The two anomalous conservation conditions are the trace condition on the electric current

trJ = a
[
1− d+ κ(d− 2)

](
∂α∂βA

α|β −�A
)
, (3.39)

and the conservation of the magnetic current, which can be expressed as

∂[ρ ∗ K∗µ]|ν = −∂[ρCµ]|ν , (3.40)

where we have defined the tensor

Cµ|ν ≡ 2κ
(
∂α∂(µAν)|α −

1

2
�Aµ|ν

)
− (κ− 1)ηµν

(
∂α∂βAα|β −�A

)
. (3.41)

The condition ∂µJµ|ν = 0 continues to hold even in the presence of the background gauge field.

It is straightforward to check that the right hand sides of both (3.39) and (3.40) are gauge

invariant, as they must be. From these expressions, we see first that there is no choice of g, κ

that makes these conservation conditions exact, which will end up being an anomaly in the

theory. We further see a conceptual difference between d = 2 and d > 2. In generic dimension,

it is possible to choose κ to make Jµ|ν traceless, while this is not possible in d = 2. We therefore

treat these two cases separately in the following.
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• d > 2 : In generic dimension, it is convenient to set

κ =
d− 1

d− 2
, (3.42)

along with g = 1/d. In this case, we find both that the right-hand side of (3.39) van-

ishes and that the anomalous conservation equation (3.40) can be written in terms of the

traceless part of A
(T )
µ|ν :

C(d)
µ|ν =

d− 1

d− 2

[
2∂α∂(µA

(T )
ν)|α −�A(T )

µ|ν −
1

d− 1
ηµν∂

α∂βA
(T )
α|β

]
, (3.43)

where A
(T )
µ|ν ≡ Aµ|ν − 1

dηµνA. This is the minimal presentation of the anomaly, where

the only anomalous equation is the conservation of K(d−1|d−1). This makes clear that

the mixed anomaly is between the electric and magnetic symmetries responsible for the

conservation of these currents.

• d = 2 : In two spacetime dimensions, there is a further trace anomaly. Since κ multiplies

d−2 in (3.39), we can no longer choose it to make the trace of Jµ|ν vanish.20 In this case,

the currents satisfy the equations

trJ = a C(2) ,

∂µJµ|ν = 0 , ∂[ρ ∗ K∗µ]|ν = −∂[ρC
(2)
µ]|ν ,

(3.44)

where the field strengths appearing on the right hand sides are

C(2) = −∂α∂βAα|β + �A , (3.45)

along with (3.41), and there is no choice of the free parameters that makes either of them

vanish. Notice that the gauge-invariant tensor (3.45) is proportional to the linearized Ricci

tensor in gravity if we interpret Aµ|ν as a metric perturbation, so that we have effectively

coupled our Galileon theory to a background linearized geometry.

In both cases, the combined (anomalous) conservation equations are sufficient to completely fix

the two-point function involving the conserved currents J(1|1) and K(d−1|d−1), as we demonstrate

explicitly in section 3.2.3. However, we first show how one can reproduce the structure of

anomalies described here starting directly from an action principle for the free scalar.

Gauging the action: We can now write a gauge-invariant action that reproduces this universal

physics as

S = −a
∫

ddx

[
φ
(
∂µsµ − ∂µ∂νAµ|ν + g�A

)
+

1

2
sµs

µ − κ∂µAµ|α∂νAν|α

+
κ

2
∂µAν|α∂

µAν|α + (κ+ g − 1)∂µA∂νAµ|ν −
1

2

(
κ+ g2 − 1

)
∂µA∂

µA

]
,

(3.46)

which is the most general action coupling Aµ|ν to φ that is invariant under the gauge trans-

formations (3.32), (3.33) and (3.36). It is worth noting that the equation of motion for sµ is

20One way to understand this is to note that the tensor (3.43) (after multiplying through by d−2) is accidentally

gauge invariant in d = 2, and so cannot be used to gauge the current J(1|1).
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unchanged by the presence of the background gauge field (reflecting the fact that the curvature

Q is already gauge invariant), and still sets sµ = ∂µφ.

From the action (3.46) we can extract gauge-invariant versions of the analogue of the Einstein

tensor (which is a scalar in this case) and the conserved current J(1|1) as

G =
δS

δφ
, (3.47)

Jµ|ν =
δS

δAµ|ν
. (3.48)

Explicitly, we find that the Einstein scalar is given by

G = −a
(
∂µsµ − ∂µ∂νAµ|ν + g�A

)
, (3.49)

while the gauge-invariant current is

Jµ|ν = a
(
∂(µ∂ν)φ− g ηµν�φ− Cµ|ν

)
, (3.50)

where the tensor Cµ|ν is the same as in (3.35). This current is the same as the one in (3.31).

The gauge invariance of the action guarantees that Jµ|ν will be conserved on-shell. But its trace

does not vanish for generic parameter choices, and is instead given by (3.39). In this simple

example, we can see that J(1|1) = a ∗ K∗(1|1), so the topological magnetic current is essentially

the same as the electric current. We can then read off the anomalous conservation condition

from the definition of J , which reproduces exactly (3.40).

For d 6= 2, there is a further simplification of the action (3.46) that can be effected by choosing

κ as in (3.42) and setting g = 1/d. With this choice, the trace A completely decouples and the

action (3.46) becomes

S = −a
∫

ddx

[
φ
(
∂µsµ − ∂µ∂νA(T )

µ|ν

)
+

1

2
sµs

µ +
d− 1

d− 2

(
1

2
(∂µA

(T )
ν|α)2 − (∂µA

(T )
µ|α)2

)]
, (d 6= 2),

(3.51)

where A
(T )
µ|ν is the traceless part of Aµ|ν . As a consequence of the fact that only the traceless

part of A(1|1) couples to the dynamical fields, the current Jµ|ν is now traceless off-shell. This

simplification does not take place in d = 2, and is an action-level manifestation of the trace

anomaly discussed above.

There is an elegant simplification of the action (3.46) in second-order form. If we eliminate

sµ using its equation of motion, we can write

S =
1

2

∫
ddx

(
φG +Aµ|νJµ|ν

)
. (3.52)

Varying this action with respect to φ produces (3.49), where we write sµ = ∂µφ, while varying

with respect to Aµ|ν produces (3.50).

As emphasized before, these results, although obtained from an EFT, are completely universal.

In the next section we compute the current-current correlation functions using the symmetry

structure alone and reproduce the pattern of anomalies discovered above. We then go on to

prove that this symmetry structure implies the gaplessness of the phase, which is therefore

protected by the anomalies found.
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3.2.3 Current two-point function

We now want to consider the two-point function between the electric and magnetic currents in

the theory of a Galileon superfluid. We wish to show that—much like the case of the ordinary

superfluid—the structure of anomalies completely fixes this two-point function, and mandates

that the system is in a gapless phase. The relevant two-point function of interest is between

the electric current Jµ|ν and the (dualized) magnetic current ∗K∗µ|ν .

We first treat the generic dimension case (d 6= 2), where the currents satisfy the equations

trJ = 0 ,

∂µJµ|ν = 0 , ∂[ρ ∗ K∗µ]|ν = −∂[ρC
(d)
µ]|ν ,

(3.53)

with the tensor C(d)
µ|ν given by (3.43). In momentum space, the most general possible form of

the current-current two-point function is

〈Jµ1|µ2 ∗K∗ν1|ν2〉 = 2c1(p2)p2ηµ1(ν2ην1)µ2 + c2(p2)p2ηµ1µ2ην1ν2 + c3(p2)ηµ1µ2pν1pν2

+ c4(p2)ην1ν2pµ1pµ2 + 2c5(p2)
(
ηµ2(ν2pν1)pµ1 + ηµ1(ν2pν1)pµ2

)
+ c6(p2)

pµ1pµ2pν1pν2
p2

,

(3.54)

where c1, · · · , c6 are arbitrary functions. We have assumed that the two-point function is sep-

arately symmetric under the interchange of µ1, µ2 and ν1, ν2, but we have not assumed any

symmetry under the interchange of the µs with the νs. We now have to impose the conditions

in (3.53). Requiring that Jµ|ν is both conserved and traceless fixes the two-point function up

to one free function

〈Jµ1|µ2 ∗K∗ν1|ν2〉 = 2c1(p2)

[
p2ηµ1(ν2ην1)µ2 −

1

d− 1

(
p2ηµ1µ2ην1ν2 − ηµ1µ2pν1pν2 − ην1ν2pµ1pµ2

)
− ηµ2(ν2pν1)pµ1 − ηµ1(ν2pν1)pµ2 +

d− 2

d− 1

pµ1pµ2pν1pν2
p2

]
.

(3.55)

Even if the starting ansatz (3.54) is not symmetric under the interchange of the two currents,

(3.57) is manifestly symmetric under the interchange of the µs with the νs. In order to fix

c1(p2), we use the magnetic conservation anomaly equation (3.40), which implies the failure of

K(d−1|d−1) to be conserved in the two-point function is by the precise contact terms

p[λ 〈Jµ1|µ2 ∗K∗
ν1]|ν2〉 =

p2

2

(d− 1)

d− 2
p[λ

[
Π

(1)
(µ1

ν1]Π
(1)
µ2)

ν2 + Π
(1)
(µ1

ν2Π
(1)
µ2)

ν1] − 2

d− 1
Π(1)
µ1µ2

Π(1)ν1]ν2

]
,

(3.56)

where Π
(1)
µν = ηµν− pµpν

p2
is the transverse projector. This equation sets c1(p2) = (d−1)/[2(d−2)]

so that the two-point function is completely fixed by the conditions (3.53)

〈Jµ1|µ2 ∗K∗ν1|ν2〉 =
d− 1

d− 2

[
p2ηµ1(ν2ην1)µ2 −

1

d− 1

(
p2ηµ1µ2ην1ν2 − ηµ1µ2pν1pν2 − ην1ν2pµ1pµ2

)
− ηµ2(ν2pν1)pµ1 − ηµ1(ν2pν1)pµ2 +

d− 2

d− 1

pµ1pµ2pν1pν2
p2

]
.

(3.57)

In the next section we verify that the spectral decomposition of this correlation function includes

a massless scalar, showing that this pattern of conserved currents implies that the theory is in

a gapless phase.
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Here we have focused on the most minimal presentation of the anomaly, but we can shuffle

it instead into the electric conservation equation, if desired. In this formulation, the two-point

function takes the particularly simple form

〈Jµ1|µ2 ∗K∗ν1|ν2〉 =
pµ1pµ2pν1pν2

p2
, (3.58)

which clearly obeys conservation for the magnetic current, but J is neither traceless nor con-

served at coincident points. Notice of course that this presentation of the correlator differs

from (3.57) only by contact terms. We elaborate more on these other presentations of the

anomaly in appendix B.2.

d = 2 dimensions: In two spacetime dimensions, we cannot impose all the conditions (3.53).

In this case, there is a three-way anomaly between conservation and tracelessness of J , and the

conservation of K—we can choose one of these conditions to be preserved, while the other two

will be anomalous. We discuss the various possibilities in more detail in appendix B.2. Here we

just report the correlator where J is conserved:

〈Jµ1|µ2 ∗K∗ν1|ν2〉 = p2ηµ1µ2ην1ν2 − ηµ1µ2pν1pν2 − ην1ν2pµ1pµ2 +
pµ1pµ2pν1pν2

p2
. (3.59)

Other choices of conditions to impose at coincident points will just change the contact terms

appearing in this correlator. (For example, requiring conservation of the magnetic current yields

the same answer as in general dimension (3.58).)

3.2.4 Källén–Lehmann spectral representation

We have seen that the structure of anomalies completely fixes the nonlocal part of the current

two-point function, and the precise conditions that we decide to impose at coincident points

only change the contact terms appearing in the correlator. We now want to perform a spectral

decomposition to show that there is necessarily a gapless mode in the spectrum, whose presence

is protected by the anomaly.

Our starting point is the Källén–Lehmann decomposition for a correlator of two symmetric

traceless tensors (see appendix A for details)

〈Jµ1|µ2 ∗K∗ν1|ν2〉 =

∫ ∞
0

ds
s2

p2 + s

(
ρ0(s)Π̃(0)

µ1µ2ν1ν2
− ρ1(s)Π̃(1)

µ1µ2ν1ν2
+ ρ2(s)Π̃(2)

µ1µ2ν1ν2

)
.

(3.60)

Here ρi(p
2) are the spin i components of the spectral density (the only massless representation

that can couple to a symmetric conserved current is a scalar [67, 68], so the spectral densities of

the spin-1 and spin-2 states must go to zero as p2 → 0). We defined Π
(i)
µ1µ2ν1ν2 as the projectors

onto the spin-i representation that couples to the currents, given by

Π(0)
µ1µ2ν1ν2

=
d

d− 1

(
Π(0)
µ1µ2

− ηµ1µ2
d

)(
Π(0)
ν1ν2
− ην1ν2

d

)
, (3.61)

Π(1)
µ1µ2ν1ν2

=
1

2

(
Π(0)
µ1ν1

Π(1)
µ2ν2

+ Π(0)
µ1ν2

Π(1)
µ2ν1

+ Π(1)
µ1ν1

Π(0)
µ2ν2

+ Π(1)
µ1ν2

Π(0)
µ2ν1

)
, (3.62)

Π(2)
µ1µ2ν1ν2

=
1

2

(
Π(1)
µ1ν1

Π(1)
µ2ν2

+ Π(1)
µ1ν2

Π(1)
µ2ν1

)
− 1

d− 1
Π(1)
µ1µ2

Π(1)
ν1ν2

, (3.63)

where Π
(0)
µν =

pµpν
p2

and Π
(1)
µν = ηµν − pµpν

p2
are defined as in (3.10). The projectors (3.63) are

orthonormal and complete on the space of traceless symmetric two-index tensors. As in the
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previous case, the tensors that actually appear in the spectral decomposition of the correlator

are not quite (3.61)–(3.63), but are instead off-shell versions of them obtained by replacing Π(0)

and Π(1) with their tilded versions defined in (3.9). This defines the set of four-index tensors

Π̃
(i)
µ1µ2ν1ν2 appearing in (3.60). They depend on s and reduce to the projectors when s→ −p2.

Given the tensors (3.61)–(3.63), we can write (3.57) quite economically as

〈Jµ1|µ2 ∗K∗ν1|ν2〉 =
d− 1

d− 2
p2Π(2)

µ1µ2ν1ν2
. (3.64)

The way that s appears and the fact that ρ1(s) and ρ2(s) must go to zero as s→ 0 means that

there is a unique way to match (3.64), which is to set

ρ2(s) = 0 , ρ1(s) = 0 , ρ0(s) =
d− 1

d
δ(s) . (3.65)

From the spectral densities (3.65), we see that there is a gapless scalar in the spectrum. Fur-

ther, since position space contact terms do not affect the spectral functions (as is discussed

in appendix A), this will be the case regardless of where we choose to put the anomaly. We

therefore conclude that there must always be a gapless scalar in the spectrum, whose presence

is a consequence of the symmetry and anomaly structure of the currents.

4 The graviton as a Goldstone

What defines a theory of gravity? A common response is that gravitational theories are those

that respect general coordinate invariance. However, this is a statement about the gauge re-

dundancies in our description of the physics, and so cannot be the true essence of gravity. A

slightly better answer is that gravitational theories are those with a massless spin-2 particle in

the spectrum, since powerful uniqueness results imply that the interactions of such a theory

will be those of Einstein gravity, assuming it mediates a ∼ r−2 force between point-like matter

sources [74–76]. Despite being correct, this answer is somewhat incomplete, because gaplessness

is itself something to be explained. A ubiquitous source of gapless modes is symmetry breaking.

Goldstone’s theorem guarantees that systems with spontaneously broken continuous symmetries

will possess massless excitations. It is therefore natural to ask whether a similar explanation

can underly the appearance of a massless spin-2 field in gravitational theories. The relevant

symmetries necessarily belong to the family of biform symmetries discussed in section 2.2, and

so we want to understand how gravity fits into this picture.

In this section, we explore these questions. We will see that linearized gravity can be defined

as a gapless phase with two conserved currents

Jµ1µ2|ν1ν2 , and Kµ1µ2···µd−2|ν1ν2···νd−2
, (4.1)

where J(2|2) is a (2|2)-biform—which is traceless on-shell—and K(d−2|d−2) is a (d − 2|d − 2)-

biform. Importantly, there is a mixed anomaly between the conservation conditions of these

currents: turning on a background gauge field source for J(2|2) causes K(d−2|d−2) to no longer

be conserved, and vice versa. In the deep infrared, the currents are related in a simple way as

J(2|2) = a ∗K(d−2|d−2)∗, so we can phrase the mixed anomaly in terms of J(2|2) alone.
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We can think of linearized gravity as being the phase defined by the following equations in

the IR21

J µν|µβ = 0 ,

∂µJµν|αβ = 0 , ∂[ρ ∗ K∗µν]|αβ = −∂[ρCµν]|αβ ,
(4.2)

where J(2|2) is a gauge-invariant improvement of J(2|2) in the presence of a background gauge

field. The first line of (4.2) expresses the tracelessness of J(2|2) . The first equation on the

second line is the conservation of J(2|2) and the second equation is the manifestation of the

mixed ’t Hooft anomaly between the (2|2)-biform global symmetry generated by J and the

(d − 2|d − 2)-biform symmetry related to K. In the presence of a source A(2|2) for the current

J(2|2), conservation of K(d−2|d−2) is lost, and the non-conservation is proportional to the field

strength of this gauge field.22 Much as we saw for superfluids, the two-point function between

the operators J and K will be completely fixed by these equations. Then, upon performing

a Källén–Lehmann decomposition, we will infer the presence of a gapless spin-2 mode (the

graviton) in the spectrum of the theory in this phase.

In order to realize this physics via a quantum field theory, we have to represent the current

J(2|2) in terms of local fields so that the conditions (4.2) follow from the equations of motion.

To do this, we introduce the two curvatures

Jµν|ρσ ≡
a

2

(
∂ρΓµν|σ − ∂σΓµν|ρ

)
, (4.4)

Qµν|ρ ≡ ∂[µhν]ρ −
1

2
Γµν|ρ , (4.5)

where Γ(2|1) is a (2|1)-biform and hµν is a symmetric tensor (a (1|1)-biform). Note that this nec-

essarily introduces linearized diffeomorphism invariance, as these curvatures are gauge invariant

under the transformations

δhµν = 2∂(µξν) , δΓµν|ρ = 2∂ρ∂[µξν] . (4.6)

The goal is then to construct an action whose equations of motion are the flatness conditions

Qµν|ρ = 0 , and (trJ)µ|ν = 0 . (4.7)

The first of these conditions allows us to express Γµν|ρ in terms of hµν . Then, in terms of hµν ,

J(2|2) is nothing other than the linearized Riemann tensor, so that the equation tr J = 0 is

precisely the linearized Einstein equation.

An action that produces (4.7) as its equations of motion is

S = −a
∫

ddx

[
hµν

(
∂αΓαµ|ν − ηµν∂αΓαρ|ρ + ∂νΓ ρ

µ |ρ

)
+

1

4
Γµν|ρΓ

µν|ρ − 1

2
Γµρ|ρΓ

σ
µ |σ

]
. (4.8)

21These equations are valid for d > 4. For d = 4 there is additionally an interesting anomaly in the trace

condition for J , which we discuss further in the following.
22In detail, the gauge-invariant field strength dC(2|2) is built from the background gauge field for J(2|2), Aµν|αβ ,

as the exterior derivative of

Cµν|αβ =
d− 3

d− 4
Y(2|2)

(
∂σ∂βA

(T )
µνασ −

1

4
�A(T )

µναβ +
3

2(d− 3)
ηαβ∂

ρ∂σA
(T )
µρνσ

)
(4.3)

where Y(2|2) is the young projector onto the (2|2) Young diagram corresponding to a (2|2)-biform, and A(T ) is the

traceless part of the gauge field A(2|2).
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This action is precisely of the form (2.55), where the first term in brackets is the linearized

Einstein tensor, written in terms of Γ(2|1). Upon integrating out this auxiliary field, we re-

cover the ordinary Einstein action for hµν . This action possesses a higher-biform symmetry,

whose Noether current is Jµν|αβ in (4.34). Coupling this current to a background gauge field

source improves the current J to the gauge-invariant current J , which then displays the mixed

anomaly (4.2) between ordinary and dual conservation.

In this section we first describe the higher form symmetries of linearized gravity and their

gauging, showing how the biform current J(2|2) arises from the linear Einstein action. We then

invert the logic and demonstrate how one can use the higher-form currents and their anomalies

as an input in order to interpret linearized gravity as a gapless phase realizing these symmetries

in a particular way. This serves as a version of a Goldstone theorem for the graviton.

4.1 Linearized gravity

In order to ground our discussion in the familiar, we begin by reviewing the rudiments of

linearized gravity. A free massless spin-2 field is described by the Fierz–Pauli action23

SFP =

∫
ddx

[
1

2
∂ρhµν∂

ρhµν − ∂ρhµν∂νhρµ −
1

2
∂µh∂

µh+ ∂νh
µν∂µh

]
. (4.9)

In what follows we will stick to d > 3 since this theory is topological with no propagating modes

in d ≤ 3. It is convenient to integrate by parts to write this in terms of the linearized Einstein

tensor

G [h]µν = 2∂σ∂(µh
σ

ν) − ∂µ∂νh−�hµν − ηµν
(
∂α∂βh

αβ −�h
)
, (4.10)

so that (4.9) takes the form

SFP =

∫
ddx

1

2
hµνGµν , (4.11)

which makes it clear that the linearized Einstein equation is Gµν = 0. The Fierz–Pauli action

is invariant under linearized diffeomorphisms, where hµν shifts as

δhµν = ∂µξν + ∂νξµ . (4.12)

This diffeomorphism invariance is seen most simply in the form (4.11). The Einstein ten-

sor (4.10) is both identically gauge invariant and conserved, so that the action is gauge invariant

after integration by parts.

The Einstein tensor is not the most general gauge-invariant local operator in linearized gravity.

In fact, the full linearized Riemann tensor

Rµνρσ = ∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ , (4.13)

is gauge invariant, and has the symmetries of the GL(d) Young tableau

Rµνρσ ∈ µ ρ
ν σ

. (4.14)

The Einstein tensor (4.10) is related to the traces of the Riemann tensor as Gµν = R α
αµ ν −

1
2ηµνR

αβ
αβ , so the linearized Einstein equations are a partial flatness condition, setting the trace

23This action also arises from linearizing the Einstein–Hilbert action as gµν = ηµν + 2hµν/M
d−2
2

Pl .
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of the Riemann tensor to zero. The remaining nonzero curvature is the Weyl tensor.24 It is

straightforward to check that the symmetries of the Riemann tensor along with the linearized

Einstein equation are equivalent to the following conditions on the Riemann tensor25

Rµ νµβ = 0 , R[µνα]β = 0 ,

∂µRµναβ = 0 , ∂[ρRµν]αβ = 0 .
(4.16)

As we will see, the linearized Riemann tensor is closely related to the current Jµν|αβ appearing

in eqs. (4.2).

Symmetries: In addition to linearized diffeomorphisms (4.12), the Fierz–Pauli action is also

invariant under a global (1|1)-biform symmetry where

δhµν = bµν , (4.17)

with bµν a constant symmetric tensor. The Noether current associated to this continuous

symmetry is a (2|1)-form

Jµν|α = ∂[µhν]α + ηα[µ∂ν]h+
1

2
∂ρhρ[µην]α . (4.18)

The divergence of this current is the linearized Einstein tensor: ∂µJµν|α = Gνα, so it is conserved

on-shell, as expected. However, this current is not gauge invariant, and so does not really exist

as an operator in the theory. This suggests that the symmetry for which the graviton is a

Goldstone is a slightly different, but related, one.

The transformation (4.17) with a constant bµν is not the most general (1|1)-form symmetry

of the Fierz–Pauli action. More generally, bµν can have some spatial dependence, we just

need to require that the Riemann tensor built from it vanishes: R[b]µναβ = 0, rather than b

being constant.26 This condition is the analogue of the 1-form symmetry in electromagnetism

requiring that we shift by a flat connection. The relevant choice is to write bµν as the divergence

of a three-index tensor bµν = 2∂αΛα(µ|ν) so that hµν shifts as

δhµν = 2∂αΛα(µ|ν) , (4.19)

where Λαµ|ν is a (2|1)-biform

Λαµ|ν ∈
α ν
µ

. (4.20)

The benefit of parametrizing bµν this way is that the corresponding Noether current is the

Riemann tensor (4.13), which is gauge invariant. In a precise sense, we can think of the graviton

as the Goldstone mode for this nonlinearly realized higher-biform symmetry.27

24Explicitly it is given in terms the Riemann tensor by

Wµνρσ = Rµνρσ −
2

d− 2

(
ηµ[ρRσ]|ν − ην[ρRσ]|µ

)
+

2

(d− 1)(d− 2)
ηµ[ρησ]νR , (4.15)

where Rµν ≡ R α
αµ ν is the linearized Ricci tensor and R ≡ R αβ

αβ is the linearized Ricci scalar.
25In fact, the logic can be inverted—starting from these equations one can infer that Rµναβ can be written

in terms of a graviton field hµν which solves the Einstein equations. This formulation is the one that makes

electric-magnetic duality of gravity manifest in D = 4 [39, 53, 56].
26At the free level, we only have to require that the Einstein tensor built from bµν vanishes: G[b]µν = 0, but

interactions built of the linearized Riemann tensor will only preserve shifts that have vanishing Riemann.
27There is another well known interpretation of the graviton or gauge fields as the goldstone corresponding to

the non-linear realization of the infinite number of broken global symmetries making up their gauge symmetries

[77–85].
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We would like to study the gauging of these (1|1)-biform symmetries. Our desire is to source

the Riemann tensor current, which is diffeomorphism invariant. But, once we promote bµν to be

an arbitrary function, it is hard to tell the difference between (4.17) and (4.19). We are therefore

motivated to find a formulation that decouples these two symmetries in order to simplify the

gauging of the system. Precisely this happens in first-order form, as we now describe.

4.1.1 Linearized first-order formulation

Einstein gravity of course has a well-known metric-based first-order formulation—the so-called

Palatini action. In this formalism the metric and Christoffel connection are treated as indepen-

dent variables, the equation of motion for the Christoffel symbols allows us to relate them to

the metric in the usual way, and integrating them out reproduces the standard Einstein–Hilbert

action. Linearized gravity has an analogous Palatini-like formulation, where the action is given

by [76]

S = −2

∫
ddx

[
ϕµν

(
∂µΓ α

να − ∂αΓ α
µν

)
+ ηµν

(
Γ α
µν Γ ρ

αρ − Γ α
ρµ Γ ρ

αν

) ]
. (4.21)

Here ϕµν is a symmetric tensor and Γµνρ is the linearized analogue of the Christoffel connection—

it is symmetric in its first two indices, but the last index has no specific symmetry property.

In other words, it is a tensor of symmetry type µ ν ⊗ ρ . This action is invariant under the

combined gauge transformations

δϕµν = 2∂(µξν) − ηµν∂αξα , (4.22)

δΓµνρ = ∂µ∂νξρ , (4.23)

with ξµ an arbitrary d−dimensional vector.

In order to see the equivalence of (4.21) with the ordinary Einstein action, we vary with

respect to Γµνρ, to obtain an algebraic equation of motion for Γµνρ

ηµνΓ α
ρα − 2Γ(µν)ρ + ηρ(µΓααν) + ∂ρϕµν − ηρ(µ∂

αϕν)α = 0 . (4.24)

This equation can be used to solve for Γµνρ in terms of ϕµν . It is simplest to express in terms

of a trace-shifted field

hµν ≡ ϕµν −
1

d− 2
ηµνϕ

α
α , (4.25)

so that the solution to (4.24) is the standard expression for the linearized Christoffel connection,

Γµνρ =
1

2
(∂µhνρ + ∂νhµρ − ∂ρhµν) . (4.26)

Substituting this relation back into (4.21), integrating by parts, and writing ϕµν in terms of

hµν , we precisely recover the linearized Einstein action (4.9).

Decoupling the symmetric part of Γµνα: In the formulation of linear gravity given by (4.21),

the Christoffel symbol is reducible as a representation of the symmetric group—it can be decom-

posed into a totally symmetric tensor, and one with the index symmetries of a hook diagram.

Interestingly, in linearized gravity only the hook part contributes to the Riemann tensor. We

should therefore expect that the totally symmetric part of Γµνα is unnecessary to formulate the

action in first-order form. As we will now show, this is indeed the case.
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We begin by splitting Γµνα into its irreducible components as

Γµνα = −1

3

(
Γαν|µ + Γαµ|ν

)
+ Γ(s)

µνα , (4.27)

where Γ(s) is a symmetric tensor and Γαµ|ν is a (2|1)-biform, with the index symmetries of the

Young tableau

Γαµ|ν ∈
α ν
µ

, (4.28)

and the normalization has been chosen for later convenience. In terms of these fields, the

action (4.21) becomes

S =

∫
ddx

[
ϕµν

(
−2∂µΓ(s) α

να + 2∂αΓ(s) α
µν

)
− 2

3
ϕµν

(
∂(µΓν) − 2∂αΓ α

(µ |ν)

)
(4.29)

+ ηµν
(

2Γ(s) α
ρµ Γ(s) ρ

αν − 2Γ(s) α
µα Γ(s) α

να −
1

3
Γµα|ρΓ

α|ρ
ν +

4

9
ΓµΓν +

2

3
ΓµΓ(s) α

να

)]
,

where we have defined Γµ ≡ ηαβΓµα|β, the trace of Γ(2|1). We can then integrate out Γ
(s)
µνα using

its equation of motion, which sets

Γ(s)
µνα =

1

2(d− 1)
η(µνΓα) +

1

2
∂(µϕνα) +

1

2(d− 1)
∂ρϕρ(αηµν) −

1

2(d− 1)
η(µν∂α)ϕ . (4.30)

Substituting this back into the action (after defining ϕµν = hµν − 1
2hηµν and integrating by

parts), we get

S =

∫
ddx

(
2− 3d

3(d− 1)

[
hµν

(
∂αΓαµ|ν − ηµν∂αΓαρ|ρ + ∂νΓ ρ

µ |ρ

)
+

1

4
Γµν|ρΓ

µν|ρ − 1

2
Γµρ|ρΓ

σ
µ |σ

]
− 1

6(d− 1)
hµνG[h]µν −

(d− 2)

12(d− 1)
(Γµν|α − 2∂[µhν]α)(Γµν|α − 2∂[µhν]α)

)
.

(4.31)

The field Γ(2|1) is still auxiliary, and integrating it out using its equation of motion sets

Γµν|α = ∂µhνα − ∂νhµα . (4.32)

Substituting this into the action (4.31) reproduces the linearized Einstein–Hilbert action.

The action (4.31) therefore is a formulation of linearized gravity with an auxiliary (2|1)-biform

field. However, it is not exactly of the form that we would expect from (2.55). In particular we

would like to remove the quadratic dependence on hµν . In reality, (4.31) is a representative of a

two-parameter family of actions that all produce the same equations of motion, which are (4.32),

along with the linearized Einstein equation Gµν = 0. We are free to add any multiple of both

hµνGµν and (Γµν|α−∂µhνα+∂µhνα)2 to the action without modifying these equations of motion.

There is a unique choice, up to overall rescaling, that removes the quadratic dependence on hµν
so that we are left with

S = −a
∫

ddx

[
hµν

(
∂αΓαµ|ν − ηµν∂αΓαρ|ρ + ∂νΓ ρ

µ |ρ

)
+

1

4
Γµν|ρΓ

µν|ρ − 1

2
Γµρ|ρΓ

σ
µ |σ

]
.

(4.33)
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This action is exactly equivalent to the linearized Einstein action, after integrating out Γµν|α
using (4.32), and where a parametrizes its overall scaling. Of course we could have just written

down (4.33) without taking this detour through the linearized Palatini formulation (4.21), but

it is conceptually useful to see how this fractonic formulation of linearized gravity arises from

more familiar variables.

If we introduce the two curvatures

Jµν|ρσ ≡
a

2

(
∂ρΓµν|σ − ∂σΓµν|ρ

)
, (4.34)

Qµν|ρ ≡ ∂µhν|ρ − ∂νhµ|ρ − Γµν|ρ , (4.35)

then the equations of motion of (4.33) are precisely the statements that (parts of) these curva-

tures vanish

(tr J)µ|ρ = 0 , Qµν|ρ = 0 . (4.36)

We see that the curvature Jµν|ρσ coincides with the linearized Riemann tensor on-shell using the

vanishing of Q(2|1). Consequently we find that Jµν|ρσ is also conserved and its antisymmetric

derivative vanishes on shell.

The action (4.33) has the same higher-form symmetries as the original linearized Einstein–

Hilbert action (4.9), but this formulation is more convenient for their gauging.

4.2 Gauging higher-biform symmetries

We want to understand the higher-form symmetries of the action (4.33) and then introduce a

background gauge field source for J(2|2). In addition to the gauge transformations

δhµ|ν = ∂µξν + ∂νξµ , δΓµν|ρ = ∂ρ∂µξν − ∂ρ∂νξµ , (4.37)

the action (4.33) is invariant under some biform symmetries. The first type is (4.17) where we

just shift hµν :

δhµν = bµν , δΓµν|ρ = 0 , (4.38)

with bµν a constant tensor. The action is additionally invariant under a symmetry of the

form (4.19), where now Γ(2|1) transforms as well

δhµν = ∂αΛαµ|ν + ∂αΛαν|µ , δΓµν|ρ = ∂µ∂
αΛαν|ρ + ∂µ∂

αΛαρ|ν − ∂ν∂αΛαµ|ρ − ∂ν∂αΛαρ|µ .

(4.39)

We now see one of the benefits of the first-order formulation, it decouples the symmetry whose

Noether current is the gauge non-invariant (4.18), from the symmetry whose current is the

Riemann tensor.28

We now want to gauge the symmetry (4.39). That is, we want to promote (4.39) to a symmetry

for an arbitrary function Λµν|α, not just one for which the Einstein tensor built out of ∂αΛαµ|ν
vanishes. There are two complementary viewpoints on this procedure: the first is to introduce

couplings to a background gauge field into the action (4.33) so that it becomes invariant under

28Of course, we need not stop with (4.39). We could imagine considering symmetries involving additional

derivatives of tensors with more indices. Following a similar logic, we would find that their associated conserved

currents are derivatives of the Riemann tensor. This is in a sense similar to the fractonic superfluids considered in

section 3. It is natural to consider the symmetry (4.39) because gauging it will introduce a source for the simplest

gauge-invariant operator in the theory.
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these more general transformations. The other is to work at the level of the curvatures (4.34)

and (4.35) and promote them to gauge-invariant operators. These are of course closely related

and we will explore both.

The background field that gauges the symmetry (4.39) should act as a source for Jµν|αβ, so

we introduce a gauge field Aµν|αβ with the index symmetries of Riemann:

Aµν|αβ ∈
µ α
ν β

. (4.40)

Under the gauged version of (4.39), the fields in the theory transform as

δAµν|αβ = 12Y(2|2) ∂µΛνα|β = ∂µΛνα|β + · · · , (4.41)

δhµν = 3 (1 + g)
(
∂αΛαµ|ν + ∂αΛαν|µ

)
, (4.42)

δΓµν|ρ = 3 (1 + g)
(
∂µ∂

αΛαν|ρ + ∂µ∂
αΛαρ|ν − ∂ν∂αΛαµ|ρ − ∂ν∂αΛαρ|µ

)
, (4.43)

where Y(2|2) is the projector onto the tableau (4.40), and where we have introduced the free

parameter, g, which captures the relative normalization between the gauge transformations of

the dynamical fields hµν ,Γµν|ρ and the background field Aµν|αβ. The slightly strange parame-

terization is chosen for later convenience.

At this point, we can just directly construct combinations of Aµν|αβ that promote (4.35) to a

gauge-invariant current (note that Q(2|1) is already gauge invariant). It is mechanically simpler,

however, to first construct a gauge invariant action and then derive the gauge-improved current

Jµν|αβ from it. There is a two-parameter family of actions invariant under the gauge symmetry,

which can be parameterized as

S =

∫
ddx

[
− hµν

(
∂αΓαµ|ν− ηµν∂αΓαρ|ρ + ∂νΓ ρ

µ |ρ + ∂α∂βAµα|νβ

)
− 1

4
Γµν|ρΓ

µν|ρ +
1

2
Γµρ|ρΓ

σ
µ |σ

+ g Aµ|νRµν −
1

4
(1 + 2g)AR+ κ (∂αAµν|ρσ)2 − 4κ (∂αAµν|ρα)2 + c1(∂αAµ|ν)2

− 2c1(∂αAα|ν)2 + c2Aµν|αβ∂
µ∂αAν|β + c3(∂A)2 + c4A

µ|ν∂µ∂νA

]
, (4.44)

where the coefficients c1, c2, c3, c4 can be written in terms of the free parameters g, κ as:

c1 ≡
1

2

(
g2 − 8κ− 1

)
, c2 ≡ −g − 8κ− 1 , (4.45)

c3 ≡ −
1

2
g(g + 1) + κ , c4 ≡ −

1

2

(
g(2g + 1)− 8κ− 1

)
. (4.46)

In writing the action (4.44) it was convenient to introduce both the trace of Aµν|αβ, defined as

Aµ|ν ≡ A
α
µ |να, and the double trace A ≡ ηµνAµ|ν .

Using the action (4.44) we can extract gauge-invariant versions of the Einstein tensor and the

current J(2|2) as

Gµν ≡
δS

δhµν
, (4.47)

Jµν|αβ ≡
δS

δAµν|αβ
. (4.48)

Note that the Γ(2|1) equation of motion is unchanged in the presence of A(2|2) and still sets

Γµν|α = ∂µhνα − ∂νhµα. Explicitly, the gauge-invariant improvement of the Einstein tensor is

given by
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Gµν = G[Γ]µν − ∂α∂βAµα|νβ − g
(
�Aµ|ν − 2∂α∂(µAν)|α + ηµν∂

α∂βAα|β

)
− 1

2
(1 + 2g)

(
∂µ∂νA− ηµν�A

)
,

(4.49)

where G[Γ]µν is the ordinary Einstein tensor written in terms of Γ,

G[Γ]µν ≡ −∂αΓα(µ|ν) + ηµν∂αΓαρ|ρ − ∂(µΓ ρ
ν) |ρ . (4.50)

Similarly, we can derive the gauge-invariant current:

Jµν|αβ =
1

4
Rµναβ +

3

4
Y(2|2)

(
g ηνβRµα −

1

4
(1 + 2g)ηµαηνβR

)
− Cµν|αβ , (4.51)

where Rµναβ is the linearized Riemann tensor, Rµα is the linearized Ricci tensor, R is the

linearized Ricci scalar, and we have defined here the tensor

Cµν|αβ ≡ −Y(2|2)

(
2κ
(
4∂ρ∂µAνα|βρ − �Aµν|αβ

)
+

3c2

4

[
ηµα∂

ρ∂σAρν|σβ + ∂µ∂αAν|β

]
+ 3c1ηµα

[
∂ν∂

ρAβ|ρ −
1

2
�Aν|β

]
+

3c4

4
ηµα

[
ηνβ∂

ρ∂σAρ|σ + ∂ν∂βA
]

− 3c3

2
ηµαηνβ�A

)
.

(4.52)

where Y(2|2) is the projection on the tableau of equation (4.40). It is relatively straightforward to

check that both (4.49) and (4.51) are invariant under the gauge transformations (4.41)–(4.43).

Note that as a consequence of the index symmetries of Aµν|αβ, the current satisfies the condition

J[µν|α]β = 0 , even off-shell. In the next section we will explore the on-shell properties of this

current.

Though we have been proceeding in first-order form, there is an elegant simplification of the

action (4.44) that occurs in second-order form. If we use the equation (4.32) to integrate out

Γ(2|1), we can write the action as

S =
1

2

∫
ddx

(
hµνGµν +Aµν|ρσJµν|ρσ

)
. (4.53)

Varying this action with respect to hµν produces (4.49) (with Γ(2|1) written in terms of hµν),

and varying with respect to Aµν|ρσ produces (4.51). Note that the existence of this formulation

of the action is entirely nontrivial because both terms contribute to each variation, so there

must be a conspiracy between the two terms to produce the correct variations.

4.3 Anomalies

We want to understand how the introduction of the background gauge field A(2|2) changes the

properties of the current J(2|2). Recall that this current satisfies all of the equations

Jµν|µβ = 0 ,

∂µJµν|αβ = 0 , ∂[ρJµν]|αβ = 0 ,
(4.54)

on shell. We have coupled the theory to A(2|2) in a way that preserves the gauge transforma-

tion (4.41), so J(2|2) will be conserved on-shell. However, the other two conditions in (4.54) are
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not necessarily satisfied because Aµν|αβ is not traceless, and does not have the correct gauge

symmetry to guarantee dual conservation. So, we want to see how we can use the freedom to

select the parameters κ and g in (4.44) to enforce as many of the conditions (4.54) as possible

for J(2|2) on shell. We will find two interesting features: the first is that not all the conservation

conditions (4.54) can be satisfied—which implies a nontrivial mixed ’t Hooft anomaly. Addi-

tionally, we will find that the d = 4 dimensional case is special, where we can impose even fewer

conditions.

Conservation conditions on-shell: In order to explore the anomaly structure, we need to

compute the on-shell conditions (4.54) for J(2|2). This means that we can use the conditions

Gµν = 0, where G is defined in (4.49) and Q = 0, where Q is defined in (4.35). We can then

compute

• Trace: We first compute the trace Jµ|ν = ηαβJµα|νβ :

Jµ|ν =

(
3− d− 8(d− 4)κ

)
4

[
∂ρ∂σAµρ|νσ −�Aµ|ν + 2∂α∂(µAν)|α − ηµν∂ρ∂σAρ|σ

− 1

2

(
∂µ∂νA− ηµν�A

)]
,

(4.55)

which we see in general does not necessarily vanish. We can also check that the right hand

side is gauge invariant, as it must be.

• Conservation: Next we can compute the divergence, which vanishes on shell

∂µJµν|αβ = 0 . (4.56)

This is a consequence of the way that we have introduced the gauge field Aµν|αβ. Since

its gauge transformation involves a derivative of the gauge parameter, gauge invariance

guarantees that it couples to an on-shell conserved current. If we had chosen to gauge the

theory in a different way this condition would not necessarily be satisfied.

• Dual conservation: Finally, we can compute the antisymmetric derivative

∂[ρJµν]|αβ = −∂[ρCµν]|αβ , (4.57)

where we have defined the tensor

Cµν|αβ ≡ −Y(2|2)

[
2κ
(
4∂ρ∂µAνα|βρ −�Aµν|αβ

)
− 3(1 + 8κ)

4
ηµα

(
∂ρ∂σAρν|σβ + 2∂ν∂

ρAβ|ρ −�Aν|β
)

+
3

8

(
8κ+ 1 +

1

d− 2

)
ηµαηνβ

(
∂ρ∂σAρ|σ −

1

2
�A

)]
.

(4.58)

It is easy to check that the field strength ∂[ρCµν]|αβ is gauge invariant, as expected.

Now that we have the three on-shell equations (4.55), (4.56), and (4.57) we want to see how

many of them we can set to zero simultaneously. It is clear from (4.55) and (4.57) that it is not

possible to make them all vanish. In particular, we cannot make (4.57) vanish for any choice of

parameters, because we have required (4.56) to be satisfied, which is the expression of a mixed
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anomaly between the electric and magnetic biform symmetries. However, we see from (4.55)

that we can set the trace to zero in d 6= 4, so it is convenient to split the discussion into two

cases, d > 4 and d = 4. We will consider the generic case first.

Generic dimension d > 4: In the general case it is possible to make J(2|2) both traceless and

conserved, in addition to being dual traceless. We accomplish this by setting

κ = − (d− 3)

8(d− 4)
. (4.59)

In addition, it is convenient to further set g = 1/(2 − d). With this choice, we can partially

fix the gauge invariance to set A = 0, after which the trace Aµ|ν completely decouples and the

action (4.44) becomes

S =

∫
ddx

[
− hµν

(
∂αΓαµ|ν− ηµν∂αΓαρ|ρ + ∂νΓ ρ

µ |ρ + ∂α∂βA
(T )
µα|νβ

)
− 1

4
Γµν|ρΓ

µν|ρ +
1

2
Γµρ|ρΓ

ρ
µ |ρ

− (d− 3)

8(d− 4)
(∂αA

(T )
µν|ρσ)2 +

(d− 3)

2(d− 4)
(∂αA

(T )
µν|ρα)2

]
,

(4.60)

where we have introduced the traceless part of Aµν|αβ defined as

A
(T )
µν|αβ ≡ Aµν|αβ −

3

d− 2
Y(2|2)Aµ|αηνβ , (4.61)

and where Aµ|ν itself is traceless because of the partial gauge fixing we have done. The ac-

tion (4.60) is invariant under the gauge transformations (4.41)–(4.43) with a traceless gauge

parameter. The fact that only the traceless part of A(2|2) couples to the dynamical fields will

imply that the corresponding current Jµν|αβ is now traceless off shell. We can write the relevant

current more explicitly as

Jµν|αβ =
1

4
Wµναβ − C

(T )
µν|αβ , (4.62)

where the C tensor built from the traceless part of A is:

C
(T )
µν|αβ =

d− 3

d− 4
Y(2|2)

(
∂ρ∂µA

(T )
να|βρ −

1

4
�A(T )

µν|αβ −
3

2(d− 2)
ηµα∂

ρ∂σA
(T )
ρν|σβ

)
. (4.63)

Note that it is not obvious in the way (4.63) is written, but C
(T )
µν|αβ is traceless as it should.

In fact, (4.63) is the unique tensor that is traceless, has the correct index symmetries, and

transforms oppositely to the Weyl tensor, so that the current (4.62) is gauge invariant. Indeed,

we could have worked directly at the level of the current and introduced (4.63) in order to gauge

the relevant symmetries, and we would have ended up with the same result.

The current (4.62) has many desired properties; however the right hand side of (4.57) continues

to be nonzero, so that all together we have

J µν|µβ = 0 ,

∂µJµν|αβ = 0 , ∂[ρJµν]|αβ = −∂[ρC
(d)
µν]|αβ ,

(4.64)

where the tensor appearing in the magnetic conservation equation is

C(d)
µν|αβ =

d− 3

d− 4
Y(2|2)

(
∂σ∂βA

(T )
µν|ασ −

1

4
�A(T )

µν|αβ −
3

4(d− 3)
ηµα∂

ρ∂σA
(T )
ρν|σβ

)
. (4.65)
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Note that this differs slightly from (4.63) because there are contributions from the equations

of motion to the right hand side of the dual conservation equation. Our inability to satisfy

both the electric and magnetic conservation laws at the same time is a consequence of a mixed

’t Hooft anomaly between these global biform symmetries. We could, of course, have instead

chosen J(2|2) to be dual conserved (preserving the magnetic symmetry), but we would then

have found both electric conservation and tracelessness would fail to hold. We can understand

the presence of the graviton as being a consequence of this mixed anomaly, as we explore in

section 4.4.

Four dimensions: As we can see from the appearance of (d− 4) factors in (4.59) and (4.63),

something is special about d = 4. Indeed, we can no longer choose parameters to make J(2|2)

both traceless and conserved.29 In particular, setting κ as in (4.59) is not possible, because it

will diverge in d = 4. In this case, the conservation equations take the form

J µν|µβ = C(4)
µ|ν ,

∂µJµν|αβ = 0 , ∂[ρJµν]|αβ = −∂[ρC
(4)
µν]|αβ ,

(4.66)

where the field strengths appearing on the right hand sides are

C(4)
µ|ν = −1

4

[
∂ρ∂σAµρ|νσ −�Aµ|ν + 2∂α∂(µAν)|α − ηµν∂ρ∂σAρ|σ −

1

2
∂µ∂νA+

1

2
ηµν�A

]
, (4.67)

along with

C(4)
µν|αβ =Y(2|2)

[
2κ
(
�Aµν|αβ − 4∂ρ∂µAνα|βρ

)
+

(
3

4
+ 6κ

)
ηµα

(
∂ρ∂σAρν|σβ + 2∂ν∂

ρAβ|ρ −�Aν|β
)

− 3

16
(3 + 16κ) ηµαηνβ

(
∂ρ∂σAρ|σ −

1

2
�A
)]
,

(4.68)

where A is the trace of Aµ|ν .

It is easy to check that C(4)
(1|1) and dC(4)

(2|2) are gauge invariant under the transformation (4.41).

Interestingly, we see that the minimal anomaly in d = 4 also involves failure of tracelessness, in

contrast to the d > 4 case.

Here we have given only one presentation of the mixed anomaly between the various conserva-

tion conditions (4.54). By including different contact terms (corresponding to terms quadratic in

the gauge field) or gauging the theory in different variables one can shuffle around the anomaly

into failures of different conservations conditions. However, the incompatibility between elec-

tric and magnetic conservation cannot be changed. Indeed, one can understand gravity as a

gapless phase mandated by the presence of this anomaly. In the following section, we explore

this viewpoint, and show how the anomalies uncovered here can be used to prove that there

is a massless spin-2 field in the spectrum of the theory, without making any reference to an

underlying Lagrangian that realizes the physics. This approach also has the benefit of making

manifest the origin of the anomaly and showing that it cannot be removed by clever choice of

field variables or gauging of the theory.

29As in the galileon superfluid case, the tensor (4.63) (after multiplying through by d− 4) is gauge invariant in

d = 4, which prevents us from using it to gauge J(2|2).
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4.4 Gravity as a phase of matter

The preceding discussion has centered on a particular realization of the physics described by the

current conservation conditions (4.2), but we now wish to show that this effective description is

actually universal. To do so, we will prove a version of a Goldstone theorem, showing that any

theory that has two currents of the type (4.1) with a mixed anomaly necessarily has a gapless

spin-2 mode in the spectrum. In the deep infrared, this graviton is of course described by the

linearized Einstein action discussed in section 4.1. The philosophy is then that we can define a

(linear) theory of gravity as the gapless phase with a particular structure of conserved currents

associated to biform global symmetries.

Concretely, we consider a theory that has two currents of the form (4.1)

Jµ1µ2|ν1ν2 , and Kµ1µ2···µd−2|ν1ν2···νd−2
. (4.69)

The two natural conditions that we can impose on these currents at separated points are

(trJ)µ|ν = 0 ,

∂µ1Jµ1µ2|ν1ν2 = 0 , ∂µ1Kµ1µ2···µd−2|ν1ν2···νd−2
= 0 .

(4.70)

These relations hold as operator equations in the quantum theory, so long as operators never

collide. However, the conditions (4.70) cannot all be made to hold at coincident points as well.

Instead the failure of these conditions is universal, and is dictated by the anomaly.

We now wish to show how the combination of the conservation conditions (4.70) at separated

points, along with the equation for the anomaly completely fixes the 〈J ∗K∗〉 two point function.

The spectral decomposition of this two point function will then include a massless spin-2 state,

establishing a Goldstone theorem for the graviton.

4.4.1 The current two-point function

We now use (4.70) to fix the two point function between the currents J(2|2) and K(d−2|d−2). First,

it is convenient to dualize the current K(d−2|d−2) into ∗K∗(2|2), so that the two currents have the

same index symmetries. We can then construct the most general ansatz for the Fourier-space

correlator 〈Jµ1µ2|ν1ν2 ∗K∗α1α2|β1β2〉, where the two currents have the following index symmetries

Jµ1µ2|ν1ν2 ∈
µ1 ν1

µ2 ν2
, ∗K∗α1α2|β1β2 ∈

α1 β1

α2 β2
, (4.71)

which is built solely out of the Lorentz-invariant metric ηµν , and the single momentum that

the correlator depends on, pµ. This general ansatz has eleven different independent tensor

structures, which can each be multiplied by an arbitrary function of p2.

Next, we want to see how many of the conditions (4.70) we can simultaneously impose ev-

erywhere (meaning both separated and coincident points). Unsurprisingly, it is not possible

to satisfy all of these conditions simultaneously, and depending on which equations we require

different possibilities are allowed. We enumerate all the possibilities in appendix D and here

just focus on the maximal case, where we impose as many conditions as possible. There is again

a difference between what happens in d = 4 and in d > 4, so we treat them separately.
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Generic dimension d > 4: In general dimensions ≥ 4, it is possible to require that J(2|2) is

both conserved and traceless even at coincident points. We can write these conditions as

(trJ)µ|ν = 0 ,

∂µ1Jµ1µ2|ν1ν2 = 0 .
(4.72)

These conditions on J completely fix the current two-point function, up to a function of p2:

〈Jµ1µ2|ν1ν2 ∗K∗α1α2|β1β2〉 = −1

4
(d− 4)(d− 3)f(p2)

[
p2Π

(1|1)
µ1µ2ν1ν2α1α2β1β2

+ contact terms
]
,

(4.73)

where “contact terms” indicates terms that are purely analytic in p2, and in this expression we

have defined the tensor structure (for more details see appendix D.1)

Π
(1|1)
µ1µ2ν1ν2α1α2β1β2

≡ P 9(d− 2)

8(d− 3)

pµ1pν1pα1pβ1
p4

(
ηµ2α2ην2β2 + ην2α2ηµ2β2 −

2

d− 2
ηµ2ν2ηα2β2

)
,

(4.74)

with P ≡ Y(2|2)TY(2|2)T a Young projector onto the tableau

µ1 ν1

µ2 ν2

T

⊗ α1 β1

α2 β2

T

, (4.75)

where the superscript T means the tableaux are traceless.

The expression (4.73) satisfies all the conditions (4.72) exactly, but there is no choice of f(p2)

for which K(d−2|d−2) is identically conserved (corresponding to ∂[α∗K∗µ1µ2]|ν1ν2 = 0), aside from

the trivial f = 0. Instead, the anomaly equation for K (which is the gauge-improvement of K

in a background field that sources J)30

p[λ∗K∗
αβ

µν]| = −d− 3

d− 4
p[λY(2|2)

(
pρpβA

(T )α
µν]| ρ −

1

4
p2A

(T )αβ
µν]| −

3

4(d− 3)
δ α
µ pρpσA

(T ) β
ν]ρ| σ

)
. (4.76)

expresses the fact that the non-conservation of K only fails at coincident points. Taking a

functional derivative of (4.76) with respect to A
(T )
α1α2|β1β2 yields an explicit expression for the

terms analytic in p that appear in the non-conservation of K. Applying this to (4.73) sets

f(p2) = − 1
(d−2)(d−4) , and so the current-current two-point function is completely fixed:

〈Jµ1µ2|ν1ν2 ∗K∗α1α2|β1β2〉 =
d− 3

4(d− 2)

[
p2Π

(1|1)
µ1µ2ν1ν2α1α2β1β2

+ contact terms

]
. (4.77)

Looking at the definition (4.74), we see that (4.77) scales like p−2, so we can already anticipate

that there will be a massless particle in the spectrum of the theory, and indeed we will see that

this is the two-point function of a massless spin-2 particle.

The conditions (4.72) are the maximal set that we can impose identically, shuffling the

anomaly into the failure of conservation of the magnetic current at coincident points. How-

ever, it is possible to require other conditions to be satisfied identically, making the anomaly

appear elsewhere. All this does is change the precise contact terms that appear in (4.77), but

does not alter the nonlocal part of the correlator. Since only the nonlocal part is relevant to

30This equation can be obtained from (4.64), but it can alternatively be thought of as a definition of the theory

because K is uniquely determined in the presence of a traceless source for J , as was discussed below equation (4.63).
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extract the spectrum of the theory, there is no loss of generality in making the choices of conser-

vation conditions to impose that we have made. Nevertheless, for completeness in appendix D,

we discuss the other possible conditions that one could impose.

Four dimensions: In four dimensions there are several subtle differences compared with the

general dimensional case. First, we have to take into account dimension-dependent identities,

which cause some linear combinations of the general tensor structures in the current two-point

function ansatz to vanish. This removes one free parameter, leading to an ansatz with 10

independent structures.

In four dimensions, it is not possible to require all of (4.72) at coincident points, consistent

with what we saw in section 4.3. Instead, the maximal condition we can impose everywhere is

∂µ1Jµ1µ2|ν1ν2 = 0 . (4.78)

This, completely fixes the correlator, up to overall normalization, which can be fixed by the

anomaly equations

J µν|µβ = C(4)
µ|ν , ∂[ρ ∗K∗µν]|αβ = −∂[ρC

(4)
µν]|αβ , (4.79)

where the field strengths C(4)
µ|ν and dC(4)

(2|2) are given by (4.67) and (4.68), respectively. Accounting

for all these constraints, the current two-point function is again completely fixed to be (4.77)

with d = 4. Note that the contact terms are different between the d = 4 case and the d > 4 case.

In particular, in four dimensions, we need traceful contact terms to be able to write the full

two-point function. The d = 4 case is written explicitly in equation (D.19) in appendix D.2.1.

As before, we see that this correlator has a 1/p2 pole, indicating the presence of a massless

spin-2 field in the spectrum.

4.4.2 Källén–Lehmann decomposition

We have seen that the two-point function of the currents J(2|2) and K(d−2|d−2) is completely

fixed by their conservation conditions and the mixed ’t Hooft anomaly. Much like we did for the

superfluid, we would now like to prove a Goldstone-like theorem and show that any theory with

these two conserved currents must necessarily have a gapless spin-2 excitation in the spectrum.

The universal effective action for this gapless phase is then the linearized Einstein action (plus

irrelevant corrections), whose properties we explored in sections 4.1–4.3.

The strategy is as before: we decompose the current two-point function (4.77) by means of

the Källén–Lehmann spectral representation. We can then read off the (gapless) spectrum of

the theory by matching the spectral density to the correlator, which is entirely fixed by the

structure of symmetries and anomalies.

Since contact terms do not affect the spectral decomposition, we only are interested in the

Källén–Lehmann representation of the nonlocal part of the correlator, which is identically trace-

less. The spectral decomposition for traceless currents of Riemann symmetry type is given by

(see appendix A for details)

〈Jµ1µ2|ν1ν2 ∗K∗α1α2|β1β2〉 =

∫ ∞
0

s2 ds

p2 + s

[
ρ(2|2)(s) Π̃

(2|2)
µ1µ2ν1ν2α1α2β1β2

− ρ(2|1)(s) Π̃
(2|1)
µ1µ2ν1ν2α1α2β1β2

+ ρ(1|1)(s)Π̃
(1|1)
µ1µ2ν1ν2α1α2β1β2

]
,

(4.80)
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where the on-shell projectors Π̃
(i|j)
µ1µ2ν1ν2α1α2β1β2

are defined in appendix D.1. The spectral

densities ρ(i|j) are associated with the internal propagation of states with (i|j)-biform Lorentz

representations. Since a massless (2|2) or (2|1) state cannot couple to a current of Riemann

type [67, 68], the densities ρ(2|2), ρ(2|1) must go to zero as s→ 0.

In order to match the two-point function (4.77), the spectral densities have to be given by

ρ(2|2)(s) = 0 , ρ(2|1)(s) = 0 , ρ(1|1)(s) =
d− 3

4(d− 2)
δ(s) , (4.81)

which shows that there is a massless spin-2 particle in the spectrum—the graviton. Since the

spectral decomposition is insensitive to contact terms, the presence of the graviton is completely

robust, and does not depend on where we choose to put the anomaly. This establishes a

Goldstone-like theorem: any theory with conserved currents of the form (4.71) with a mixed

anomaly will be in a gapless phase where the massless degree of freedom has spin two.31

4.5 Charged solutions

We now want to study the conserved charges associated to the electric and magnetic currents

J(2|2) and K(d−2|d−2) and the defects charged under these symmetries. In linearized gravity,

on-shell these currents are just the Weyl tensor and its double dual, so we will take the Weyl

tensor as our starting point. Recall that it is given by32

Wµνρσ = −3YT(2|2) ∂µ∂ρhνσ , (4.82)

where YT(2|2) is a Young projector onto the traceless Young tableau with the symmetries of the

Riemann tensor (4.14). The Weyl tensor is conserved on-shell

∂µWµνρσ = 0, (4.83)

where we used Rµν = R = 0 on shell. In order to get a conserved 2-form current that we

can integrate from the Weyl tensor (which is a (2|2)-biform), we proceed as in section 2.5 and

contract two of its indices with a 2-form Killing tensor ζµν to obtain

J (ζ)
µν = Wµν αβζ

αβ . (4.84)

Using (4.83), we can write the divergence of this current as

∂νJ (ζ)
µν = Wµν αβ∂

νζαβ. (4.85)

In order for this to vanish, the mixed symmetry traceless part of the derivative of the Killing

vector must vanish, the special case p = 1 of (2.71),

∂νζαβ − ∂[αζβ]ν +
3

d− 1
ην[α∂ρζ

β]ρ = 0 . (4.86)

31Note that, much as in the previous case, there is a more efficient route to the same conclusion. The fact that

the non-local part of the correlator has a pole as p → 0 already indicates that there is a massless particle in the

spectrum, and this massless degree of freedom cannot be gapped by local interactions in the effective field theory,

so we can restrict the spectral decomposition to massless states. We can then apply the results of [67, 68], which

show that only massless particle that can appear in matrix elements with a conserved current with the symmetries

of the Weyl tensor is a spin-2.
32The normalization convention is that the linearization of the usual fully non-linear Weyl tensor is given

by M
− 1

2
(d−2)

Pl Wµ1µ2µ3µ4 when hµν is the canonically normalized fluctuation of the graviton around flat space,

hµν = 1
2M

1
2
(d−2)

Pl (gµν − ηµν).
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From (2.73), the solutions to this equation are parametrized by four constant fully antisymmetric

tensors cµ, cµ1µ2 , cµ1µ2 , cµ1µ2µ3 as

ζαβ = cαβ + cαβρxρ + c[αxβ] + c[α
ρx
β]xρ − 1

4
cαβx2. (4.87)

The conserved charges are then constructed by integrating the current (4.84) over a codimen-

sion two surface:

Q(ζ)(Σd−2) =

∫
Σd−2

∗J (ζ) . (4.88)

There is an independent charge for each choice of the constant c tensors. For d = 4, there are

a total of 20 such charges. These are the same charges discussed recently in non-relativistic

language in [17] and covariantly in [33]. Earlier references include [86–90].

As we pointed out before, we expect only cµ and cµν to yield non-trivial charges for topolog-

ically trivial field configurations that are regular on Σd−2. Still, we will consider solutions that

turn on all charges and we will comment on their regularity and significance.

Let us then describe solutions of the equations of motion of linearized gravity that carry these

charges. In electromagnetism the Coulomb and Dirac monopole solutions carry respectively the

1-form electric and magnetic charges. Analogous solutions exist in this case, carrying (4.88). In

d = 4 we will see explicitly these include their magnetic counterparts. These will be solutions

which are singular at the spatial origin, and can be considered as defect line operators that

are charged under the 1-form symmetries corresponding to the topological operators (4.88).

Furthermore, there might be Dirac strings coming out of these singularities for topologically

non-trivial solutions. The Lorentzian d = 4 solutions are given in spherical coordinates by

htt =
M

r
+
L cos(θ)

(
r2 + t2

)
2r2

, hrr =
M

r
−
L cos(θ)

(
cos(2θ)

(
t2 − r2

)
+ 2t2

)
2r2

, (4.89a)

htr = −Lt sin2(θ) cos(θ)

r
, hrθ = −

L sin(θ)
(
cos(2θ)

(
3r2 + t2

)
− r2 − 3t2

)
4r

, (4.89b)

htθ = −Lt sin(θ) cos2(θ) , hθθ = L sin(θ) sin(2θ)
(
r2 + t2

)
, (4.89c)

htφ = −N (c+ cos θ) +
J

r
sin2 θ , hφφ = Lr2 sin2(θ)(b− 2 cos(θ)) , (4.89d)

with the other components zero.33

This general solution depends on six parameters: M , J , N , L, c and b. It solves the vacuum

linearized Einstein equations for any choice of these parameters. The interpretation of the

parameters appearing in the solution is as follows: M is a mass, the solution for this parameter

is the linearized Schwarzschild solution [91]. The parameter J is an angular momentum along the

z direction, the solution for this parameter is the linearized Kerr solution [92].34 The parameter

N is a NUT charge, which is the magnetic dual of the mass, and the solution for this parameter

is the linearized Taub–NUT solution [93, 94]. The parameter L is a magnetic dual version

of angular momentum called acceleration, and the solution associated to this parameter is a

linearization of the GR solution known as the C-metric [95–100]. Finally, c, b are proportional

to pure gauge solutions and will be important in our discussion of singularities.

33This solution with c = −1 and J = L = b = 0 was presented in [56].
34Note that in the linearized theory there is no extremality or positive energy constraint and we can take any

values for M , J .
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The solutions for M and J are manifestly regular away from the spatial origin. The solutions

with N and L have Dirac string type singularities away from the origin along the z axis.

Nevertheless, the Weyl tensor calculated from these solutions is regular away from the origin,

showing that these singularities are gauge artifacts. This is analogous to electromagnetism, were

the electric solution can be described with a single gauge field, but the magnetic solution requires

patching together gauge fields with the singularities in various places, related on overlaps by a

gauge transformation. Here, solutions with different singularity placements than those shown

in (4.89) will be related by linearized diffeomorphisms. For instance, consider the N part of the

solution,

htφ = −N (c+ cos θ) , (4.90)

with other components zero. Here the c part is pure gauge, and this solution has the same Weyl

tensor independent of the value of c. In cartesian coordinates, the non-zero metric components

of the solution (4.90) are ht,x⊥ = x̂⊥

ρ

(
c+ z√

z2+ρ2

)
, where x⊥ are the coordinates perpendicular

to z, and ρ the distance from the z axis. Expanding for small ρ we see that there is a singularity

∼ 1/ρ extending along the positive z axis unless c = −1, and along the negative z axis unless

c = 1. Given that the Weyl tensor is independent of c, these solutions must be related by a

gauge transformation on the overlap where they are both non-singular,

hc=1
µν − hc=−1

µν = ∇µξν +∇νξµ, with ξµ = (−2φ, 0, 0, 0). (4.91)

In the above equation, the covariant derivative of the background flat metric in spherical coor-

dinates has been used.

A similar situation occurs for the L solution. We can see the structure of the singularity at

the origin by expanding near the z axis in cartesian coordinates, where the upper sign applies

for z > 0 and the lower sign applies for z < 0,

hµν
ρ→0−−−→


± t2+z2

2z2
0 0 0

0 (b∓2)y2

ρ2
− (b∓2)xy

ρ2
0

0 − (b∓2)xy
ρ2

(b∓2)x2

ρ2
0

0 0 0 ±1
2

(
1− 3t2

z2

)

 , (4.92)

where ρ is the distance to the z axis. Note that there is no 1/ρ type singularity as there was for

the Taub–NUT solution, everything is finite at the z axis, but for generic b the metric depends

on the direction of approach to the z axis, so there is still a discontinuity. We can remove

this discontinuity for z > 0 by choosing b = 2, or we can remove this discontinuity for z < 0

by choosing b = −2. Given that the Weyl tensor is independent of b, these solutions must be

related by a gauge transformation on the overlap where they are both non-singular. In spherical

coordinates we have hb=2
µν − hb=−2

µν = diag(0, 0, 0, 4r2 sin2 θ) which is pure gauge with the gauge

parameter

hb=2
µν − hb=−2

µν = ∇µξν +∇νξµ, with ξµ = (0, 0, 0, 2φ). (4.93)

Let us now comment on the meaning of equations (4.91) and (4.93). As can easily be seen,

these gauge transformations are not globally well defined. This is completely analogous to the

situation in electromagnetism for the Dirac monopole. In that case, the solution is only consid-

ered acceptable when the associated higher form symmetry is compact. When that happens,
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only the imaginary exponential of the gauge parameter is observable and the gauge transfor-

mation is allowed to have a discrete winding number. The same considerations apply here. If

the biform symmetries associated with cµν and cµνρ are compact, we expect the gauge trans-

formations (4.91) and (4.93) to be allowed. Otherwise, we must conclude that these charges

are trivial. Notice that, in the compact case when these charges are allowed, they will further-

more introduce quantization conditions both for these charges and for their magnetic duals, as

expected from Dirac quantization.

We now evaluate the charges (4.88) for the metric (4.89). This can be done on any surface

surrounding the worldline of the spatial origin, due to the topological nature of the charge. We

will choose a spherical surface of radius R at time T surrounding the origin:

Q(ζ)(Σ2) =

∫
Σ2

∗J (ζ) =

∫
dθdφ

1

2
ε µ1µ2
θφ Wµ1µ2 ν1ν2ζ

ν1ν2

∣∣∣∣
r=R,t=T

, (4.94)

and the fact that the result is independent of R and T is a check on the topological invariance of

the charge. In d = 4, the tensors cµ1µ2 and cµ1µ2 each have 6 parameters, and cµ and cµνρ each

have 4 parameters, for a total of 20 parameters. Evaluating (4.94) with all these parameters

turned on we get (switching to cartesian coordinates)

Q(ζ)(Σ2) = 16π
(
c0M − c12 J + c123N − c03L

)
. (4.95)

Since the dual of the Weyl tensor is also conserved and traceless (or equivalently, the Weyl

tensor is dual conserved), we can also consider the dual charges,

Q̃(ζ)(Σ2) =

∫
Σ2

J (ζ). (4.96)

Evaluating these explicitly, we find a different packaging of the same charges:

Q̃(ζ)(Σ2) =

∫
dθdφ Wθφµ1µ2ζ

µ1µ2

∣∣∣∣
r=R,t=T

= 16π
(
c123M − c03 J − c0N − c12L

)
, (4.97)

consistent with the electric-magnetic duality invariance of linear gravity in d = 4 [39, 53]. Notice

that this is only the case in d = 4 at leading order in the EFT expansion. Higher derivative

terms are expected to change the above result. In particular, we do not expect the magnetic dual

current to be traceless, which changes the construction of charges above. The same comment

applies to gravity in d > 4.

We see from (4.95) that the conformal Killing tensor parameters cµ extract the standard

energy-momentum, while cµνρ—dual to a vector in d = 4—picks up the dual energy momentum

(in general d, the dual energy-momentum is a 3-form [56]). The 2-form parameters cµν , cµν

pick up the angular momentum and dual angular momentum. Note that these charges are

constructed as integrals of gauge-invariant currents. This is unlike the standard Abbott–Deser

charges [101], which are constructed as gauge-invariant integrals of non-gauge-invariant inte-

grands. Furthermore, the integrals above can be computed on any surface that surrounds the

defect and not only in asymptotic regions, as is typically done in the ADM formalism.

In quantum field theory, the energy-momentum and angular momentum usually arise from

0-form symmetries, whose 1-form currents are given by contracting the stress tensor with a

Killing vector. Linearized gravity, however, has no stress tensor [102, 103] (a direct consequence

of the Weinberg–Witten theorem [66]) and we see here that energy-momentum and angular

momentum instead arise from 1-form symmetries with 2-form currents.
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5 Discussion

In this work we have taken a modest first step toward answering a deep and important question:

what is gravity? It is quite surprising that more than three hundred years after Newton’s—and

more than one hundred after Einstein’s—ideas started this research field, we do not have a

precise and simple definition. Much of the effort in the last fifty years has revolved around the

study of the ultraviolet properties of theories of gravity. The non-renormalizability of Einstein

gravity catalyzed the search for a consistent theory of nature incorporating both gravity and

quantum mechanics to arbitrarily high energy. While string theory provides an answer to this

search, away from perturbation theory it does not really answer the posed question. What

property or structure in string theory fundamentally makes it a theory of gravity? The issue

becomes more acute in the context of the Swampland program. Since the space of actual

solutions to string theory might correspond to isolated points in its landscape, we are left with

a lack of adjustable parameters. From the ultraviolet perspective this is a great advantage, as it

helps singling out a unique theory. From the infrared however, it points to a strange coincidence

that the theory gives rise to a gapless phase we associate with Einstein gravity.

What then, is the organizing principle? In condensed matter systems we have learned a

great deal from the Landau paradigm, which states that phases of matter and phase transitions

are associated to physical symmetries and the emergence of order parameters associated to

them. This organizing principle for infrared physics has proved useful even at strong coupling,

where perturbative techniques are unavailable. How does gravity fit into this paradigm? An

important challenge is that we do not expect any exactly conserved global charges in quantum

gravity. While this presents a real difficulty in synthesizing gravity into this framework, it is

not necessarily fatal. In the last few years, the concept of symmetry has been greatly enlarged

to include more exotic concepts (e.g., higher-form, 2-group, non-invertible symmetries, and

beyond). There may still be a structure, compatible with the constraints of quantum gravity,

that defines this theory in terms of relations between observables.

In this note we have approached the problem from the infrared by considering EFTs with a

novel symmetry, biform symmetry. We have explored how theories with these symmetries can

give rise to a gapless phase that is protected by a mixed anomaly between electric and magnetic

biform currents. This structure of symmetries and anomalies is sufficient to completely fix

the non-local part of the two-point correlators of the conserved currents in the theory. For

theories with a maximal electric (1|1)-biform symmetry, the spectral decomposition of this

correlator reveals the presence of a massless spin-2 excitation: the graviton. Using these global

symmetries as a guiding principle, we can construct the universal EFT that reproduces this

anomaly structure, which ends up being nothing but linearized gravity plus its (linear gauge

invariant) irrelevant corrections.

A similar story should go through for the higher biforms: for theories with a maximal elec-

tric (p|p)-biform symmetry, the spectral decomposition of the correlator determined from the

anomaly should reveal the presence of a massless particle with the Lorentz symmetries of a

(p − 1|p − 1)-biform. Note that this does not include the traditional higher-spin particles,

which transform in completely symmetric Lorentz representations. (A further generalization to

multiforms would be needed to account for these and other representations [54, 55].)

Importantly, the EFTs so constructed are not restricted to free theories; they can include an

infinite number of interaction terms. For example, corrections to the linearized Einstein action
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of the form W 3—where W is the linearized Weyl tensor—are included in this EFT, and provide

a cubic interaction for the graviton. So, these theories are far from trivial. Nevertheless, they do

not include the usual graviton vertices we would obtain by expanding the fully nonlinear Einstein

action, as these terms break the biform symmetries. However, we can get some guidance from

the traditional gauge theory viewpoint. Starting from the linearized Einstein action, there are

two paths that one can take [28]: the first is to include interactions that are exactly invariant

under the linearized gauge transformations of the free theory [32], this reproduces the EFTs

discussed here that have exact nonlinearly realized biform symmetries. Alternatively, we can

introduce the Einstein-like irrelevant interactions that are not linearized gauge invariant. These

interactions do not destroy the gauge invariance of the system, but rather deform it into full

diffeomorphism invariance. This strongly suggests that there is a deformation of the biform

symmetries that survive in the nonlinear Einstein theory, but it remains an important open

challenge to understand precisely how this works, and to frame this physics from the perspective

of global symmetries. Some further evidence that this is not a futile endeavor is provided by the

fact that the charged solutions presented in section 4.5 persist in nonlinear Einstein gravity [104].

An interesting ingredient in all of these field theories is the presence of an anomaly. This

anomaly is encoded by the Einstein term, which is the most relevant one in the EFT expansion.

Interestingly, some of the physics associated to this term is quite similar to that of Chern–Simons

(or BF) theories. This explains why the Einstein action produces equations of motion that set

parts of curvatures to zero, instead of just implying their conservation, like what happens for

Maxwell actions. A crucial difference with topological field theories, is, of course, that the

associated biform symmetry allows for a gapless phase in our case—essentially because the

equations of motion are only a partial flatness condition. Nevertheless, many of the lessons of

the physics of anomalies in Chern–Simons theories can be imported into in these new cases. In

this context, the presence of boundaries typically play an important role. The anomaly structure

we have discussed can be reproduced from a higher-dimensional topological theory via inflow,

which raises interesting questions: Can we realize the linearized graviton as a boundary mode for

a dynamical gapped bulk theory? Or, can we construct an Einstein-type action on boundaries

of theories which have only Maxwell-type terms?35

An important detail in the study of anomalies and their connection to different phases for

these systems is whether the biform symmetry of interest is compact or non-compact. We have

been a bit cavalier about this important aspect of the problem. It is the compactness of the

symmetry that might lead to the quantization of anomalies and might prove crucial in defining

a UV complete model with these symmetries. We saw one small hint of the role of compactness

in the study of charged solutions in linearized gravity where NUT and acceleration charges

become available only in that case. The consequences of this fact must be further explored.

A deeper understanding of this general structure could also be useful for more systematically

studying other phases of quantum gravity that could be gapped or, alternatively, present a large

number of massless excitations (as in higher-spin theories, for example). An intriguing notion

is that string theory could display other, more symmetric, phases (for example, phases with

tensionless strings), whose understanding may be crucial to decipher the full non-perturbative

structure of the theory. One might hope that biform (or more extended multiform) symmetries

could present an avenue of approach to these questions.

35Relatedly, (p|p)-biform theories with d < 2p + 2 have no local propagating degrees of freedom. It would be

interesting to understand their features as topological field theories.
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Along the road, we have also remarked on the intriguing connection between this approach

and the physics of fractons. Indeed, gravity can be understood as a gauging of a fractonic global

symmetry, and its massless phase corresponds to the gapping of the degrees of freedom charged

under the fractonic symmetry, not unlike the massless phase of electromagnetism. Curiously,

some stringy physics appeared in this connection, for example one of the structures in the

theory naturally couples to a worldsheet (see (2.54), for example). This is rather surprising and

mysterious, and it would be interesting to deepen this connection.

Another interesting fact we stumbled upon when coupling linearized gravity to background

sources associated to the biform symmetries is that this theory is special in d = 4. Only in

this dimension does the theory present a trace anomaly for the background fields. The scalar

case shows a similar feature in d = 2, which is known to be associated to conformality and the

appearance of a Kac–Moody algebra in the extreme infrared. In [6], a similar structure was

uncovered for electromagnetism. It is therefore natural to suspect that a similar Kac–Moody

enlargement will occur for linearized gravity in d = 4. This possibility is particularly interesting

in connection with both the double copy formalism and with soft graviton theorems.

One arena where these ideas may find practical application is cosmology. An understanding of

the fundamental organizing principles of EFTs for gravitational physics is surely of importance

in developing cosmological models. Concretely, understanding the symmetries of gravity will

help shed further light on the early universe, where it is expected that spacetime experienced a

period of inflationary expansion. This can be interpreted as a partial higgsing of gravity [105–

107], where matter degrees of freedom mix with the graviton in the infrared. In much the same

way that the Higgs phase of electromagnetism can be viewed as a symmetry-restored phase of

the magnetic 1-form symmetry [108, 109], one could imagine that inflation can be understood

as a different phase of gravity. In any case, having an EFT definition of the inflationary era

based purely on global symmetries is clearly of importance for the further understanding of

the microphysics of inflation, and we expect that the (nonlinear extension of) the symmetries

explored here will play a role. A step in this direction would be the formulation of these

symmetries and anomalies on (anti) de Sitter backgrounds. It would also be interesting to see

how the new types of representations such as partially massless fields that are possible in de

Sitter space fit into this picture. Beyond this, it is tempting to speculate that gapped phases

of gravity could themselves play a role in the early universe, possibly along the lines of [110].

Having discussed at length the infrared properties of gravity, let us come full circle and return

to the ultraviolet. One obvious question we can ask is: Are there nontrivial UV-complete

theories that have these symmetries, say only in their magnetic form. What would such a

theory look like?36 Below the mass scale of whatever electric matter breaks the electric biform

symmetry, we would expect this electric symmetry to be restored in an emergent way, giving rise

to linearized gravity in the infrared. While this is not the theory of gravity that describes our

universe (as it would have different nonlinearities from Einstein gravity), it would nevertheless

amount to a version of emergent gravity at low energies. More ambitiously, we might hope that

these symmetries can deformed in some way so that the nonlinearities of Einstein gravity also

emerge at low energies. This would amount to nothing short of an understanding of gravity in

the infrared within the framework of the Landau paradigm, which is clearly a worthy goal. We

hope to return to these interesting problems in the near future.

36Such a theory is unlikely to look anything like a local QFT. We certainly know that it cannot have a stress

tensor by Weinberg–Witten [66]. Likely it would be some sort of theory of extended objects, along the lines of [8, 9].
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A Spectral representation

In this appendix, we provide some technical details about the Källén–Lehmann spectral repre-

sentation of correlators. The goal is to derive the form of the spectral function that we used

throughout the main text. Ultimately we are interested in euclidean correlation functions, but it

will prove to be convenient to first construct the spectral representation in Lorentzian signature

and then analytically continue. Our discussion somewhat follows [111, 112].

A.1 Spectral density

We would like to decompose the two-point function between currents with the same number

of Lorentz indices, q. (This assumption that both currents have an equal number of Lorentz

indices is not generally necessary, but it will simplify our discussion, and is sufficiently general

for our purposes.) We do not put any constraints on the index symmetries of the two currents.

The basic object of interest is the Fourier transform of the position space correlator

〈Jµ1···µq(p)Kν1···νq(−p)〉 =

∫
ddx eixp 〈Jµ1···µq(x)Kν1···νq(0)〉 . (A.1)

The Wightman function in position space is defined as an ordered vacuum expectation value,

where the operators are ordered from left to right in Lorentzian time. This is achieved via the

usual iε prescription, such that

〈0|Jµ1···µq(x)Kν1···ν1(0)|0〉
W
≡ lim

ε→0+
〈0|Jµ1···µq(x̂)Kν1···ν1(0)|0〉 , (A.2)

where we have defined x̂µ = (x0− iε, ~x), with ε > 0. As usual, we perform all the computations

at finite ε before taking the limit where ε approaches 0 from above at the end of the computation.

We define the spectral density ρ(−p2) as the Fourier transform

(2π)θ(p0)ρµ1···µpν1···νp(−p2) ≡
∫

ddx e−ip·x 〈0|Jµ1···µp(x)Kν1···νp(0)|0〉W . (A.3)

The appearance of the Heavyside function θ(p0) ensures that we are working with positive

energies [111]. From this definition, it is clear that

〈0|Jµ1···µp(x)Kν1···νp(0)|0〉W = lim
ε→0+

∫
ddp

(2π)d
eip·x(2π)θ(p0)ρµ1···µpν1···νp(−p2) . (A.4)

It is now helpful to define a non-negative variable as s ≡ −p2. We can then rewrite (A.4) by

inserting a delta function enforcing the condition s = −p2

〈0|Jµ1···µp(x)Kν1···νp(0)|0〉W = lim
ε→0+

∫ ∞
0

ds

∫
ddp

(2π)d
eip·x(2π)θ(p0)ρµ1···µpν1···νp(s)δ(s+ p2) .

(A.5)

57



In any unitary quantum field theory, we can assemble a complete basis of states, that we

collectively denote as |n〉. These states must transform in unitary representations of the Poincaré

group, and in particular, we require that they diagonalize the generators of translations Pµ as

Pµ |n〉 = pµn |n〉. The completeness relation is then

1 =
∑
n

|n〉〈n| . (A.6)

In this case, the summation over n stands for a sum over any required quantum numbers needed

to characterize these states, as well as Lorentz indices. We can insert (A.6) within the Wightman

function and then perform the following manipulations

〈0|Jµ1···µp(x)Kν1···νp(0)|0〉W = lim
ε→0+

∑
n

〈0|Jµ1···µp(x)|n〉〈n|Kν1···νp(0)|0〉 , (A.7)

= lim
ε→0+

∑
n

〈0|e−iP ·xJµ1···µp(0)eiP ·x|n〉〈n|Kν1···νp(0)|0〉 , (A.8)

= lim
ε→0+

∑
n

eipn·x〈0|Jµ1···µp(0)|n〉〈n|Kν1···νp(0)|0〉 , (A.9)

= lim
ε→0+

∫
ddp

(2π)d
eip·x

∑
n

(2π)dδ(d)(p− pn)×

〈0|Jµ1···µp(0)|n〉〈n|Kν1···νp(0)|0〉 . (A.10)

By comparing (A.4) with (A.10), we conclude that the spectral density is given by

(2π)θ(p0)ρµ1···µpν1···νp(−p2) =
∑
n

(2π)dδ(d)(p− pn) 〈0|Jµ1···µp(0)|n〉 〈n|Kν1···νp(0)|0〉 . (A.11)

This is the general form of the spectral density that we consider. (Note that it is not neces-

sarily positive-definite, since it involves two different operators, though it is positive when the

operators are identical.)

The spectral density ρµ1···µpν1···νp(−p2) can be decomposed using Lorentz invariance. The

strategy is to construct dimensionless projectors Π
µ1···µpν1···νp
i that depend on the d-momenta

pµ and the metric ηµν which are orthonormal and complete:

Π
µ1···µp
i ρ1···ρpΠ

ρ1···ρpν1···νp
j = δijΠ

µ1···µpν1···νp
j ,

∑
i

Π
µ1···µpν1···νp
i = 1µ1···µpν1···νp , (A.12)

where 1µ1···µpν1···νp is the identity in the relevant space of tensors. In many cases we will be

interested in decomposing traceless tensors, so the projectors will be traceless.

We can thus write the spectral density as

ρµ1···µpν1···νp(−p2) =
∑
i

(−p2)∆−d/2+1ρi(−p2)Π
µ1···µpν1···νp
i , (A.13)

where ρi(−p2) are scalar functions that can depend only on p2, and ∆ is the mass dimension of

the currents appearing in the Källén–Lehmann decomposition. Note that we sometimes have

to extract a minus sign from the definition of the spectral function to ensure that they are

positive-definite when the two operators are identical [111].

Using (A.13) within (A.5), we can rewrite the Wightman function as

〈0|Jµ1···µp(x)Kν1···νp(0)|0〉W =
∑
i

∫ ∞
0

ds (s)∆−d/2+1ρi(s)∆
µ1···µpν1···νp
i (x; s) . (A.14)
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where

∆
µ1···µpν1···νp
W,i (x; s) = lim

ε→0+

∫
ddp

(2π)d
eip·x(2π)θ(p0)δ(s+ p2)Π

µ1···µpν1···νp
i . (A.15)

In general, we can use the explicit form of the projectors that appear in (A.13) to rewrite the

propagators (A.15) in terms of the scalar Wightman two-point function, which is given as:

∆W (x; s) = lim
ε→0+

∫
ddp

(2π)d
eip·x(2π)θ(p0)δ(s+ p2) . (A.16)

For example, in the simple case of two spin 1 currents of dimension ∆ = d − 1, the projectors

are

Πµν
0 =

pµpν

p2
, Πµν

1 = ηµν − pµpν

p2
. (A.17)

We can thus obtain the building blocks that appear in (A.15) from (A.16) as

∆µν
W,0(x; s) =

∂µ∂ν

�
∆W (x; s) , ∆µν

W,1(x; s) =

(
ηµν − ∂µ∂ν

�

)
∆W (x; s) . (A.18)

Now that we understand how to decompose Wightman functions, we would like to consider the

case of time-ordered (or Feynman) propagators.

Time-ordered two-point functions: To obtain the time-ordered two-point function from

the Wightman function, we use the following relation:

〈0|Jµ1···µp(x)Kν1···νp(0)|0〉T = (A.19)

θ(x0) 〈0|Jµ1···µp(x)Kν1···νp(0)|0〉W + θ(−x0) 〈0|Kν1···νp(0)Jµ1···µp(x)|0〉W ,

where the subscript T indicates that this is a time-ordered correlator. Using (A.14), we can

decompose the time-ordered correlator as

〈0|Jµ1···µp(x)Kν1···νp(0)|0〉T = −i
∑
j

∫ ∞
0

ds s∆−d/2+1ρj(s)∆
µ1···µpν1···νp
F,j (x; s) , (A.20)

where the Feynman propagators are defined as

−i∆µ1···µpν1···νp
F,j (x; s) = θ(x0)∆

µ1···µpν1···νp
W,j (x; s) + θ(−x0)∆

µ1···µpν1···νp
W,j (−x; s) , (A.21)

= lim
ε→0+

ddp

(2π)d
eip·x
−iΠµ1···µpν1···νp

j

p2 + s− iε
. (A.22)

Euclidean space: We next want to analytically continue to euclidean signature. This amounts

to the following change of variables:

x0
L → −ix0

E , p0
L → −ip0

E . (A.23)

The iε prescription is no longer needed since there are no poles to be regularized for real p2.

The general decomposition is now37

〈0|Jµ1···µp(x)Kν1···νp(0)|0〉E =
∑
i

∫ ∞
0

ds s∆−d/2+1ρEi (s)∆
µ1···µpν1···νp
E,i , (A.24)

37The overall signs of the various spectral densities, ρi, have been left implicit here, and can be fixed by requiring

that the spectral density is positive-definite for identical operators.
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z

Figure 1: The contour deformation used to derive the spectral function. We deform the blue contour

centered around z into the green contour that runs along the branch cut with an arc at infinity.

where the subscript E denotes that these are Euclidean objects, and we have used

∆
µ1···µpν1···νp
E,i =

∫
ddpE
(2π)d

eiPE ·xE
Π
µ1···µpν1···νp
i

p2
E + s

. (A.25)

The spectral decomposition (A.24) is the form that we use in the main text.

A.2 Contact terms

In this section, we show that we can neglect contact terms when we perform a Källén–Lehmann

decomposition, as they never contribute to the spectral function. For simplicity we consider the

spectral function of scalars, but the arguments can be readily generalized to cases with spin.

We begin by considering a Euclidean momentum space two-point function for real scalars of

mass dimension ∆ in d dimensions, denoted G(p2). The two-point function has mass dimension

2∆−d, and is well-defined and real for all p2 > 0. If we let z ≡ p2, we can analytically continue

to the complex z-plane, and the result should be analytic everywhere except for the negative z

axis, i.e., z ≤ 0, where it can have isolated simple poles and a branch cut extending to z = −∞.

Because we continued a real function, the correlator should obey G(z) = G(z). In particular, if

we cross the branch cut, the discontinuity is

DiscG(z) ≡ lim
ε→0

[G(z + iε)−G(z − iε)] = 2i ImG(z) , (A.26)

where the imaginary part is taken above the branch cut.

Unsubtracted dispersion relation: We can now apply the Cauchy integral formula to a

general point z away from the negative axis to write

G(z) =
1

2πi

∮
dω

G(ω)

ω − z
, (A.27)

where the contour is a small circle encircling the point z. We can then deform the contour as

shown in Figure 1. As long as G(z) is bounded by a constant as z → ∞, we can ignore the

circle at infinity and we pick up integrals along the singular points. This implies that

G(z) =
1

2πi
lim
ε→0

[∫ 0

−∞
ds
G(s+ iε)

s− z
+

∫ ∞
0

ds(−1)
G(−s− iε)
−s− z

]
. (A.28)
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The first integral runs to the right over the branch cut with z = s+ iε, s = (−∞, 0) while the

second integral runs to the left under the branch cut with z = −s− iε, s = (0,∞). We can then

change variables as s→ −s in the first integral, so that we can combine the integrals as

G(z) = − 1

2πi
lim
ε→0

∫ ∞
0

ds
G(−s+ iε)−G(−s− iε)

s+ z
. (A.29)

We can now use (A.26) to rewrite this last expression as

G(z) = − 1

2πi

∫ ∞
0

ds
Disc (G(−s))

s+ z
= − 1

π

∫ ∞
0

ds
ImG(−s)
s+ z

. (A.30)

Defining the spectral function

s∆−d2+1ρ(s) ≡ − 1

π
ImG(−s) , (A.31)

so that ρ(s) has mass dimension [ρ(s)] = −2—as required for a density—we can finally write

the spectral representation as

G(z) =

∫ ∞
0

ds
ρ(s)s∆−d2+1

s+ z
. (A.32)

Note that the condition that G(z) is bounded by a constant together with (A.31) ensures that

ρ(s)s∆−d2+1 < const. as s→∞, so the integral (A.32) converges at infinity.

Subtracted dispersion relation: In general, G(z) is only bounded by some power at infinity:

G(z) < O (zn) as z →∞. In this case, we cannot ignore the contribution from the contour

at infinity. Nevertheless, taking the n-th derivative as G(n)(z) ≡ dn

dznG(z), we can obtain

something that is bounded by a constant so that we can apply the Cauchy theorem for G(n)(z),

G(n)(z) =
n!

2πi

∮
dω

G(ω)

(ω − z)n+1
, (A.33)

and then deform the contour as in Figure 1. We obtain

G(n)(z) =
n!

2πi

[∫ 0

−∞
ds

G(s+ iε)

(s− z)n+1
+

∫ ∞
0

ds(−1)
G(−s− iε)
(−s− z)n+1

]
, (A.34)

=
n!

π
(−1)n+1

∫ ∞
0

ds
ImG(−s)
s+ z

. (A.35)

Using the same definition (A.31), we can write

G(n)(z) = n!(−1)n
∫ ∞

0
ds
ρ(s)s∆−d2+1

(s+ z)n+1
. (A.36)

Note that (A.36) is formally the derivative of the expression (A.32), but (A.36) converges at

infinity given the behavior of G(z) at infinity, whereas (A.32) diverges.

In order to recover G(z) from G(n)(z), we take the n-th indefinite integral, which introduces

n integration constants c0, · · · , cn−1 so that

G(z) = c0 + c1z + c2z
2 + · · ·+ cn−1z

n−1 +

∫
z

dz1

∫
z1

dz2 · · ·
∫
zn−1

dznG
(n)(zn) . (A.37)

This is what we call an n-subtracted dispersion relation. The constants c1, · · · , cn are sub-

traction constants and are not determined. Nevertheless, these integration constants multiply

polynomials in z = p2, so although they are undetermined, they are just contact terms, con-

tributing only at coincident points in position space. Note that contact terms in correlators are

everywhere analytic in z, so they do not affect the discontinuity along the branch cut and hence

do not enter the spectral density ρ(s).
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B More on the Galileon superfluid

In section 3.2, we analyzed the EFT that describes a Galileon superfluid. There we defined the

theory in terms of a current Jµν that was conserved on shell: ∂µJµν = 0. This current failed

to be antisymmetrically conserved, which was the manifestation of the mixed anomaly in that

context. In this appendix, we wish to show how one can move the anomaly around into other

conservation conditions by an appropriate definition of the gauge-invariant current.

B.1 Currents from the action

Here we want to utilize the Galileon superfluid action to construct currents that manifest the

mixed anomaly in a different way from the main text. Our starting point is again (3.22):

S = −a
∫

ddx

(
φ∂µsµ +

1

2
sµsµ

)
. (B.1)

In order to gauge the symmetries of this action, we proceed slightly differently. We introduce

a background two-index symmetric gauge field Ãµ|ν (or a (1|1)-biform), that we will separate

into a traceless part Aµ|ν and its trace B. As in section 3.2, in d 6= 2, the trace B completely

decouples so that we can take the background gauge field to be traceless, while in d = 2, we

must keep the trace B to obtain a gauge-invariant action.

The gauge transformations are slightly different since we have explicitly separated the trace

B (they agree with the ones from section 3.2 if we reabsorb B into Aµ|ν):

δφ = ∂αΛα , δsµ = ∂µ∂αΛα , (B.2)

δAµ|ν =
1

(1− g)

(
∂(µΛν) −

1

d
ηµν∂αΛα

)
, δB =

1

(1− g)
∂αΛα . (B.3)

The most general gauge-invariant improvement of (B.1) is

S = −a
∫

ddx
[
φ

(
∂µsµ − ∂µ∂νAµ|ν +

(
g − 1

d

)
�B

)
+

1

2
sµs

µ

+
d κ

2(d− 2)

(
κ∂µAν|α∂

µAν|α − 2∂µAµ|α∂νA
ν|α
)

+ (κ+ g − 1)∂µB∂νAµ|ν +
−d(κ+ g2 − 1) + κ+ 2g − 2

2d
∂µB∂

µB
]
,

(B.4)

with a a free normalization. The action (B.4) has two free parameters (g and κ), and is slightly

different than (3.46) because of the way we separated the trace. Looking at (B.4), it is already

clear that d = 2 is special.

When d 6= 2, we can choose

κ =
d− 1

d
, g =

1

d
, (B.5)

in which case the trace B totally decouples from the rest of the action and we obtain the same

action as in section 3.2. When d = 2, the choice of parameters is impossible because the terms

that are quadratic in Aµ|ν diverge, and we must keep the trace B explicitly.

The equation of motion for sµ is unchanged compared to the ungauged version of the action

∂µφ− sµ = 0 , (B.6)
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which allows us to solve for sµ in terms of φ, while varying the action (B.4) with respect to φ,

we obtain

�φ− ∂µ∂νAµ|ν +

(
g − 1

d

)
�B = 0 , (B.7)

where we have used (B.6).

Conserved current

To derive the current, we need to vary the action (B.4) with respect to the background gauge

fields that we introduced. Since Aµ|ν is identically traceless, we need to remove the traces when

we perform the variation, this produces

Jµ|ν ≡
δS

δAµ|ν
= a

[
∂(µ∂ν)φ−

κ d

d− 2

[
2∂α∂(µAν)|α −�Aµ|ν

]
+ (κ+ g − 1)∂(µ∂ν)B

− ηµν
d

(
�φ− 2κ d

d− 2
∂α∂µAµ|α + (κ+ g − 1)�B

)]
.

(B.8)

In order to be able to impose dual conservation on the current instead of standard conservation,

we note that the variation of the action with respect to B is also gauge invariant

J ≡ δS

δB
= a

[
−
(
g − 1

d

)
�φ+(κ+g−1)∂µ∂νAµ|ν +

−d(κ+ g2 − 1) + κ+ 2g − 2

d
�B

]
, (B.9)

so that we can consider the following general current

Jµ|ν ≡ Jµ|ν + β ηµν J , (B.10)

where β is a free parameter. For different choice of parameters g, κ, and β, the current (B.10)

will obey different conditions. In order to express them simply, it is useful to define the gauge-

invariant combination

Fd ≡ −∂α∂βAα|β +
d− 1

d
�B . (B.11)

We now consider the various equations that Jµ|ν could satisfy:

• Trace: Computing the trace of (B.10) yields

J µ
µ = −aβ(1 + d(κ− 1))Fd . (B.12)

• Divergence: Computing the divergence of (B.10) yields

∂µJµ|ν = −a(β − 1)
(1 + d(κ− 1))

d
∂νFd . (B.13)

• Dual divergence: Computing the dual divergence of (B.10) yields

∂[αJµ]|ν = a
[
− d κ

d− 2

(
∂β∂ν∂[αAµ]|β −�∂[αAµ]|ν

)
(B.14)

+
(
β

(
1− κ− 1

d

)
+

1

d
− 2κ

d− 2

)
ην[α∂µ]∂

ρ∂σAρ|σ

− (1 + d(κ− 1))(1 + β(d− 1)

d2
ην[α∂µ]�B

]
.
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We now want to explore how many of these conditions we can impose simultaneously. As before,

it will be necessary to consider d = and d 6= 2 separately.

• d > 2 : In this case, we can choose

κ =
d− 1

d
, (B.15)

so that the current is both traceless and conserved for any value of g and β. This is the

case that we considered in detail in the main text. In this case, we cannot choose β to

ensure dual conservation, and we obtain

∂[αJµ]|ν = − a

d− 2

[
(d− 1)

(
∂β∂ν∂[αAµ]|β −�∂[αAµ]|ν

)
+ ην[α∂µ]∂

ρ∂σAρ|σ

]
. (B.16)

Alternatively, we can choose

κ = 0 , β = − 1

d− 1
, (B.17)

which ensures dual conservation. In this case, the current is neither traceless nor con-

served:

J µ
µ = −aFd , ∂µJµ|ν = −a∂νFd . (B.18)

• d = 2 : In two dimensions, we cannot choose κ as in (B.15) because then the action (B.4)

has some divergent contact terms. We then choose κ = 0 which implies

J µ
µ = a β F2 , (B.19)

∂µJµ|ν =
1

2
a(β − 1)∂νF2, (B.20)

∂[αJµ]|ν = a
1 + β

2
ην[α∂µ]F2 . (B.21)

Looking at (B.19)–(B.21), it is clear that in two dimensions, we have a three-way anomaly,

where we can choose the current Jµν to be one of traceless (β = 0), conserved (β = 1) or

dual conserved (β = −1).

This structure of anomalies exactly matches the possible conditions that we can impose on the

current two-point function, as we now explore.

B.2 Current two-point function

Next, we enumerate the possible conditions that one can impose on the currents appearing in

the two-point function. In momentum space, the most general form for this correlator with the

appropriate symmetries is (3.54):

〈Jµ1|µ2 ∗K∗ν1|ν2〉 = 2c1(p2)p2ηµ1(ν2ην1)µ2 + c2(p2)p2ηµ1µ2ην1ν2 + c3(p2)ηµ1µ2pν1pν2

+ c4(p2)ην1ν2pµ1pµ2 + 2c5(p2)
(
ηµ2(ν2pν1)pµ1 + ηµ1(ν2pν1)pµ2

)
+ c6(p2)

pµ1pµ2pν1pν2
p2

,

(B.22)

where c1(p2), · · · , c6(p2) are all arbitrary functions of p2 and we have not assumed any symmetry

under (µ1µ2)↔ (ν1ν2) exchange. We now impose various conditions on the currents. As before

we see that we have to separate the d = 2 case from the generic case.

In d 6= 2 dimensions: When d 6= 2, we can impose the following:
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• Tracelessness and conservation: Requiring the current J to be both traceless and

conserved at coincident points implies

c1(p2) = −1

2
(d− 1)c2(p2) , c3(p2) = c4(p2) = −c2(p2) , (B.23)

c5(p2) =
1

2
(d− 1)c2(p2) , c6(p2) = −(d− 2)c2(p2) . (B.24)

Using the anomaly equation as in the main text, which is given in (3.56), we can fix

c2(p2)—which cannot be chosen so that J is also dual conserved:

c2(p2) = − 1

d− 2
, (B.25)

such that the correlator is the one given in (3.57).

• Dual conservation: In this case, we require that the current is dual conserved , which

means p[α 〈Jµ1|µ2(p) ∗K ∗ν1]|ν2 (−p)〉 = 0 everywhere. This implies

c1(p2) = c2(p2) = c4(p2) = c5(p2) = 0 . (B.26)

We cannot choose c3,6(p2) to either ensure tracelessness nor conservation. Using the trace

and conservation anomaly equations

〈J µ1
µ1| (p) ∗K ∗ν1|ν2 (−p)〉 = pν1pν2 , pµ1 〈Jµ1|µ2 (p) ∗K ∗ν1|ν2 (−p)〉 = pµ2pν1pν2 ,

(B.27)

we can fix c3(p2) = 0, c6(p2) = 1 so that the correlator is

〈Jµ1|µ2(p) ∗K ∗ν1|ν2 (−p)〉 =
pµ1pµ2pν1pν2

p2
. (B.28)

In d = 2 dimensions: When d = 2, the tensor structure multiplied by c1(p2) in the

ansatz (B.22) is not linearly independent from the other structures, so we can set c1(p2) = 0.

We now see that we can impose fewer conditions:

• Conserved: Requiring conservation, and using the trace anomaly equation

〈J µ1
µ1| (p) ∗K ∗ν1|ν2 (−p)〉 = p2ην1ν2 − pν1pν2 , (B.29)

we can uniquely fix the two-point function to be

〈Jµ1|µ2(p) ∗K∗ν1|ν2 (−p)〉
d=2

= p2ηµ1µ2ην1ν2 − ηµ1µ2pν1pν2 − ην1ν2pµ1pµ2 +
pµ1pµ2pν1pν2

p2
.

(B.30)

We can check that this also agrees with the dual conservation anomaly equation.

• Dual conserved: For this case, there is actually nothing that changes compared to the

d 6= 2 computation that we performed above. The two-point function thus has the form

shown in (3.58)

We see that the possible conditions and anomalous conservation equations agree perfectly with

the analysis of section B.1 based on the IR EFT action.
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C Galileonic electromagnetism

In this appendix, we work out the details of the EFT that has a (1|0)-biform symmetry, which

is the simplest example of the theories discussed in section 2.4. The relevant Goldstone mode is

a vector gauge field, so this EFT coincides with electromagnetism in the deep infrared, but has

different (more restricted) allowed interactions. Much as in the other examples, the presence

of the gapless photon in this theory is a consequence of a mixed anomaly between electric and

magnetic symmetries.

C.1 Summary of Maxwell theory

We first briefly review Maxwell electromagnetism in its usual formulation, in order to contrast

with the presentation in the subsequent section. More details can be found for example in [4,

113, 114]. We work in general dimension d and denote the gauge coupling as g. This theory

is usually described using a 1-form (electric) gauge field, a(1), that is associated to the usual

(electric) field strength F(2) = da(1). This theory has two different conserved currents

J(2) ≡
1

g2
F(2) , K(d−2) ≡ ∗F(2) . (C.1)

These currents are associated to two global higher-form symmetries: An electric 1-form symme-

try with current J(2) and a (d− 3)-form magnetic symmetry with current K(d−2). The objects

charged under these symmetries are Wilson (electric) and ’t Hooft (magnetic) lines, and one

can define conserved charges as:

Qe =

∮
Σd−2

∗F(2) , Qm =

∮
Σ2

F(2) . (C.2)

We can gauge the electric symmetry by including a background source B(2) for the electric

current so that the theory is invariant under arbitrary shifts a(1) 7→ a(1)+ξ(1). The currents (C.1)

can be improved to preserve gauge invariance as

J(2) → J(2) =
1

g2

(
F(2) −B(2)

)
, K(d−2) → K(d−2) = ∗(F(2) −B(2)) , (C.3)

where under a gauge transformation B(2) 7→ B(2) + dξ(1). The equations above imply a mixed

anomaly between the conserved currents in the form

d ∗ J(2) = 0 , (C.4)

d ∗ K(d−2) = −dB(2) . (C.5)

These equations continue to hold even in the presence of interactions, so long as they preserve the

higher-form symmetries. Interactions would change the form of the electric symmetry current,

but it would have the same anomaly with the magnetic symmetry.

C.1.1 Two-point function

This anomaly structure is enough to guarantee that the theory is in a gapless phase, with the

photon appearing as a Goldstone mode. With the above input, we can compute the current-

current two-point function in electromagnetism. We are interested in the correlator

〈Jµ1µ2(p) ∗Kν1ν2(−p)〉 ≡
∫

ddx eix·p 〈Jµ1µ2(x) ∗Kν1ν2(0)〉 . (C.6)
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The most general form that this can take consistent with Lorentz invariance is

〈Jµ1µ2(p) ∗Kν1ν2(−p)〉 = −2c1(p2)p2
(
ηµ1[ν1ην2]µ2

)
+ 2c2(p2)

(
ην1[µ1pµ1]pν2 − ην2[µ1pµ2]pν1

)
,

(C.7)

which depends on two unknown functions c1(p2) and c2(p2) that are fixed by the conservation

equations. Requiring (C.4) and (C.5) to be satisfied, we have

pµ1 〈Jµ1µ2(p) ∗Kν1ν2(−p)〉 = 0 , =⇒ c1(p2) = c2(p2) , (C.8)

p[α 〈Jµ1µ2(p) ∗Kν1ν2](−p)〉 = p[αδ
µ
σδ

ν
ρ] , =⇒ c2(p2) =

1

2p2
. (C.9)

The mixed correlator is therefore entirely fixed and takes the form

〈Jµ1µ2(p) ∗Kν1ν2(−p)〉 =
ηµ2ν2pµ1pν1 + ηµ1ν1pµ2pν2 − ηµ1ν2pµ2pν1 − ηµ2ν1pµ2pν2

2p2
− ηµ1[ν1ην2]µ2 .

(C.10)

The 1/p2 pole is a robust consequence of the anomaly, as in the superfluid case. Moreover, the

contact terms can be redefined at will to choose which of the two currents should be conserved

even at coincident points. If we instead require the magnetic current to be identically conserved,

we obtain

〈Jµ1µ2(p) ∗Kν1ν2(−p)〉 =
1

2

ηµ2ν2pµ1pν1 + ηµ1ν1pµ2pν2 − ηµ1ν2pµ2pν1 − ηµ2ν1pµ2pν2
p2

. (C.11)

The difference between the two correlators (C.10) and (C.11) is simply a local contact term.

Källén–Lehmann decomposition: We can now perform the spectral decomposition of this

correlator to verify that there is a massless spin-1 particle in the spectrum: the photon. Using

the results from appendix A, we can write the spectral function for an antisymmetric current,

〈Jµ1µ2(p) ∗Kν1ν2(−p)〉 =

∫ ∞
0

ds
s

p2 + s

(
−ρ1(s)Π̃µ1µ2ν1ν2

1,em + ρ(2|0)(s)Π̃
µ1µ2ν1ν2
(2|0),em

)
. (C.12)

The spectral densities ρ1 and ρ(2|0) capture the coupling of spin-1 states and antisymmet-

ric tensor states respectively (Massless antisymmetric tensor states cannot couple to the anti-

symmetric current [67, 68] so the density ρ(2|0) must go to zero as s→ 0).

The projector Πµ1µ2ν1ν2
1,em is that of a spin-1 particle while Πµ1µ2ν1ν2

(2|0),em is the projector for a rank

2 antisymmetric tensor particle (a 2-form). They are uniquely defined by the requirements that

they be traceless, transverse, and complete on the space of traceless antisymmetric tensors.

Explicitly,

Πµ1µ2ν1ν2
1,em =

1

p2

(
ηµ1[ν1pν2]pµ2 − ηµ2[ν1pν2]pµ1

)
, (C.13)

Πµ1µ2ν1ν2
(2|0),em =

(
ηµ1[ν1ην2]µ2

)
− 1

p2

(
ηµ1[ν1pν2]pµ2 − ηµ2[ν1pν2]pµ1

)
. (C.14)

The tensors appearing in (C.12) are projectors only on-shell, given by replacing p2 → −s,

Π̃µ1µ2ν1ν2
1,em = −1

s

(
ηµ1[ν1pν2]pµ2 − ηµ2[ν1pν2]pµ1

)
, (C.15)

Π̃µ1µ2ν1ν2
(2|0),em =

(
ηµ[ρησ]ν

)
+

1

s

(
ηµ1[ν1pν2]pµ2 − ηµ2[ν1pν2]pµ1

)
. (C.16)
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Using these two projectors, we can write respectively (C.10) and (C.11) as

〈Jµ1µ2(p) ∗Kν1ν2(−p)〉 = −1

2
Πµ1µ2ν1ν2

1,em , (C.17)

〈Jµ1µ2(p) ∗Kν1ν2(−p)〉 =
1

2
Πµ1µ2ν1ν2

(2|0),em . (C.18)

Writing (C.12) as

〈Jµ1µ2(p) ∗Kν1ν2(−p)〉 =

(∫ ∞
0

ds
sρ(2|0)(s)

p2 + s

)
ηµ[ρησ]ν (C.19)

+

(∫ ∞
0

ds
ρ(2|0)(s) + ρ1(s)

p2 + s

)(
ηµ1[ν1pν2]pµ2 − ηµ2[ν1pν2]pµ1

)
,

we see that the two-point function of pure Maxwell theory, (C.11), is recovered by taking

ρ(2|0)(s) = 0 , ρ1(s) = δ(s) . (C.20)

This shows that there is a massless spin-1 particle (the photon) in the spectrum.

C.2 Galileon electromagnetism

We now turn to the study of the galileonic version of electromagnetism that has biform sym-

metries. The approach is philosophically similar to the discussion of the Galileon superfluid

in section 3.2. The EFT that we construct will have a larger set of global symmetries than

ordinary electromagnetism, and so will have different irrelevant corrections.

We begin by writing the free Maxwell action in a first-order form that manifests more of

its symmetries. Consider a vector field aµ together with a symmetric two-index tensor (or a

(1|1)-biform) sµ|ν . Electromagnetism can be written in a Palatini-like form as

S = − 1

g2

∫
ddx

[
aν
(
∂µsµ|ν − ∂νs

)
+

1

2

(
sµ|νs

µ|ν − s2
)]

, (C.21)

where we defined the trace s = s µ
µ| . The action (C.21) is invariant under the gauge transfor-

mations

δaµ = ∂µΛ , δsµν = ∂µ∂νΛ , (C.22)

where Λ is an arbitrary scalar function. The equations of motion of (C.21) are

sµ|ν = ∂(µaν) , ∂αsα|ν − ∂νs = 0 . (C.23)

Combining these two equations, we find the ordinary Maxwell equation in vacuum

∂µ (∂µaν − ∂νaµ) = ∂µFµν = 0 . (C.24)

It is interesting to note that we obtained an equation for the antisymmetric Maxwell tensor

despite the fact that the fundamental object sµν that we used to construct the action (C.21) is

symmetric. Integrating out sµν via its equation of motion recovers the usual Maxwell action.

From the first-order action (C.21), we can now see that it has a second set of 1-form symme-

tries, which can be written as

δaν =
(
∂αΛµ|α + ∂αξµα

)
+ ∂µΛα|α , (C.25)

δsµ|ν =
(
∂α∂(µΛν)α + ∂α∂(µξν)α

)
+ ∂µ∂νΛα|α , (C.26)
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where Λµ|ν is a symmetric two tensor, while ξµν is a two-form Killing tensor that solves (2.72).

This is a symmetry of the action (C.21) provided we impose the flatness condition

∂α∂[µΛν]|α = 0 . (C.27)

We now want to gauge these symmetries so that Λ can be an arbitrary function.

C.2.1 Coupling to sources

We gauge the higher-form symmetries (C.25) and (C.26) by introducing a background gauge

field that couples to the conserved current. Because we anticipate a trace anomaly in special

dimension, we will consider a traceful background gauge field Bµν|ρ expecting that we can

decouple its trace generally. The background gauge field Bµν|ρ is a (2|1)-biform. The current

associated to this symmetry, following the discussion in 2.4 is

Hµν|ρ = ∂µsν|ρ − ∂νsµ|ρ , (C.28)

and is traceless on-shell using the equations of motion (C.23).

We consider the following gauge transformations

δaν = 6(1− `)
(

1

3
∂αΛµ|α + ∂αξµα

)
+ ∂µΛα|α , (C.29)

δsµ|ν = 6(1− `)
(

1

3
∂α∂(µΛν)α + ∂α∂(µξν)α

)
+ ∂µ∂νΛα|α , (C.30)

δBµν|ρ = 3Y(2|1) (∂µΛνρ + ∂µξνρ) , (C.31)

where we have chosen the normalization for later convenience, and ` is a free coefficient. In

(C.29)-(C.31), the gauge parameter Λµ|ν is a symmetric 2-tensor (or a (1|1)-biform) while ξµν
is an antisymmetric tensor (or a 2-form). The most general action that we can write that is

gauge-invariant (for any choice of κ, `) under these transformations is

S = − 1

g2

∫
ddx

[
aν
(
∂µsµ|ν − ∂νs− ∂µ∂ρBµν|ρ − `

(
∂β∂νBβ −�Bν

))
(C.32)

+
1

2

(
sµ|νs

µ|ν − s2
)
− κ

(
∂µB

µν|ρ∂σBρσ|ν − ∂µBνρ|µ∂σBνρ|σ +
1

2
∂σBµν|ρ∂

σBµν|ρ
)

− (`− 1− κ)∂µBν∂σBµν|σ −
(
`2 − 1− κ

)
(∂µBν∂µBν − ∂µBµ∂νB

ν)

]
.

where we have defined Bµ ≡ B ρ
ρµ| , which is the trace of Bµν|α. The equation of motion for sµ|ν

is unchanged from (C.23)—and sets sµν in terms of aµ—while the equation of motion for aµ is

�aµ − ∂µ∂ρaρ − 2∂ρ∂σBρµ|σ − 2` (∂µ∂αB
α −�Bµ) = 0 . (C.33)

To obtain the current of interest, we vary the action (C.32) with respect to Bµν|ρ:

Hµν|ρ =
1

g2

(
∂ρ∂[µaν] − Bµν|ρ

)
, (C.34)

where we have defined

Bµν|ρ = −Y(2|1)

[
κ
(
3∂α∂µBρα|ν + 3∂α∂νBρα|µ −�Bµν|ρ

)
(C.35)

− 3 (1 + κ)
(
ηµν∂

α∂βBρα|β + ηµν (�Bρ − ∂ρ∂αBα)
)

+ 3(1 + κ− `)∂µ∂νBρ
]
,
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and have used the equation of motion (C.33) to replace �aµ. It is straightforward to check that

the current (C.34) is gauge invariant. Moreover, it is conserved for both divergences

∂µHµν|ρ = 0 , ∂ρHµν|ρ = 0 , (C.36)

for any κ. This is a consequence of the way we have introduced the gauge field Bµν|ρ, which is

designed to couple to a conserved current.

C.2.2 Anomalies

We now want to understand how the introduction of the background gauge field Bµν|ρ changes

the properties of the current (C.34). The current is conserved on-shell, but the other conditions

(tracelessness and dual conservation) do not need to be satisfied, and we have some freedom to

tune κ and ` to enforce different conditions. In order to explore the anomaly structure, we need

to compute the on-shell conditions for (C.34).

• Trace: The on-shell trace of the current (C.34) is

Hρµ|ρ = −(d− 2 + κ(d− 3))

g2

(
∂α∂βBαµ|β + ∂µ∂αB

α −�Bµ
)
. (C.37)

It is straightforward to check that this is gauge invariant.

• Dual conservation: The on-shell dual conservation is

∂[αHµν]|ρ = − 1

g2
∂[αBµν]|ρ , (C.38)

which is also gauge invariant.

We now want to explore what conditions we can require that the current satisfy. It is already

clear that the current cannot be made to be both traceless and dual conserved. In fact, it is

impossible to enforce dual conservation (C.38) for any choice of parameters, because we have

required the current to be conserved instead. This is the expression of a mixed anomaly between

the electric and magnetic biform symmetries. However, we see from (C.37) that we can set the

trace to zero in d 6= 3, so it is convenient to split the discussion into two cases, d 6= 3 and d = 3.

We will consider the generic case first.

In d 6= 3 dimensions: In general dimension, it is possible to make the current Hµν|ρ simulta-

neously conserved and traceless by choosing

κ = −d− 2

d− 3
. (C.39)

With the further choice

` =
1

d− 1
, (C.40)

the trace Bµ decouples from the action (C.32) so that we obtain

S = − 1

g2

∫
ddx

[
aν
(
∂µsµ|ν − ∂νs− ∂µ∂ρB

(T )
µν|ρ

)
+

1

2

(
sµ|νs

µ|ν − s2
)

(C.41)

−d− 2

d− 3

(
∂µB

µν|ρ
(T ) ∂

σB
(T )
ρσ|ν − ∂µB

νρ|µ
(T ) ∂

σB
(T )
νρ|σ +

1

2
∂σB

(T )
µν|ρ∂

σB
µν|ρ
(T )

)]
,
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where we have introduced the traceless part of Bµν|ρ defined as

B
(T )
µν|ρ = Bµν|ρ −

2

d− 1
ηρ[µBν] . (C.42)

The action (C.41) is invariant under the gauge transformations (C.29)-(C.31) with traceless

gauge parameters. The fact that only the traceless part of Bµν|ρ couples to the dynamical fields

will imply that the corresponding current Hµν|ρ is now traceless off-shell. This current can be

written as

Hµν|ρ =
1

g2

(
∂ρ∂[µaν] − B

(T )
µν|ρ

)
, (C.43)

where the traceless version of B is

B(T )
µν|ρ =

d− 2

d− 3
Y(2|1)

[
3∂α∂µB

(T )
ρα|ν + 3∂α∂νB

(T )
ρα|µ −�B(T )

µν|ρ +
3

d− 2
ηµν∂

α∂βB
(T )
αρ|β

]
. (C.44)

In fact, (C.44) is the unique tensor that is traceless, has the correct index symmetries, and

transforms appropriately under the gauge transformations, so that the current (C.43) is gauge

invariant. Indeed, we could have worked directly at the level of the current and introduced

(C.44) in order to gauge the relevant symmetries. This current satisfies

Hµν|µ = 0 , ∂ρHµν|ρ = 0 ,

∂µHµν|ρ = 0 , ∂[σHµν]|ρ = ∂[σB̃
(d)
µν]|ρ ,

(C.45)

where the tensor appearing in the magnetic conservation equation is

B̃(d)
µν|ρ =

d− 2

g2(d− 3)
Y(2|1)

(
−3∂α∂µB

(T )
ρα|ν + �B(T )

µν|ρ −
3

d− 2
ηµν∂

α∂βB
(T )
αρ|β

)
. (C.46)

Note that this differs slightly from (C.44) because there are contributions from the equations of

motion to the right hand side of the dual conservation equation. Our inability to satisfy both

the electric and magnetic conservation laws at the same time is a consequence of a mixed ’t

Hooft anomaly between these global biform symmetries.

In d = 3 dimensions: As we can see from this appearance of (d− 3) factors in the previous

discussion (for example in (C.39)), something is special in d = 3. In this case, it is impossible

to choose the two free parameters ` and κ to make the current simultaneously traceless and

conserved. The best that we can do is to satisfy the equations

Hµν|µ = B̃(3)
ν , ∂ρHµν|ρ = 0 ,

∂µHµν|ρ = 0 , ∂[σHµν]|ρ = ∂[σB̃
(3)
µν]|ρ ,

(C.47)

where the field strengths appearing in (C.47) are

B̃(3)
ν = − 1

g2

(
∂α∂βBαν|β + (∂ν∂αB

α −�Bν
)
, (C.48)

together with

B̃(3)
µν|ρ =

1

g2
Y(2|1)

[
κ
(
3∂α∂µBρα|ν −�Bµν|ρ

)
− 3 (1 + κ) ηµν

(
∂α∂βBρα|β + �Bρ

) ]
. (C.49)
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Interestingly, we see that the minimal anomaly in d = 3 also involves a trace anomaly.

Here we have given a particular presentation of the mixed anomaly between the various

conservation conditions. By including different contact terms (corresponding to terms quadratic

in the gauge field) or gauging the theory in different variables one can shuffle around the anomaly

into failures of different conservations conditions. However, the incompatibility between electric

and magnetic conservations cannot be changed. This is similar to what we showed in appendix B

for the Galileon superfluid.

C.2.3 Two-point function

We now want to consider the current two-point function in this theory and show both that the

structure of mixed anomalies completely fixes its structure and that the spectral decomposition

has a massless spin-1 in the spectrum. The most general form of such a correlator consistent

with Lorentz invariance is

〈Hµ1µ2|µ3(p) ∗ I ∗ν1ν2|ν3 (−p)〉 = 9Y2,1Y2,1

[c1(p2)

8
p2ηµ1ν1ηµ2ν2ηµ3ν3 −

c2(p2)

4
p2ηµ1ν1ηµ2µ3ην2ν3

− c3(p2)

8
pµ1pµ2ηµ3ν2ην1ν3 +

c4(p2)

4
pµ1pν1ηµ2µ3ην2ν3 +

c5(p2)

4
pµ1pν1ηµ3ν2ηµ2ν3 (C.50)

+
c6(p2)

4
pµ3pν3ηµ1ν1ηµ2ν2 +

c7(p2)

8
pν1pν3ηµ1ν2ηµ2µ3 +

c8(p2)

4

ηµ1ν1pµ2pµ3pν2pν3
p2

]
,

where I(d−2|d−1) is the current associated to the magnetic biform symmetry and Y2,1Y2,1 is the

projector on the Young tableau:

µ1 µ3

µ2
⊗ ν1 ν3

ν2
. (C.51)

It is again convenient to consider the generic case and d = 3 separately.

In d 6= 3 dimensions: We can use the conservation equations we just derived to fix the

current-current two-point function (C.50). When d 6= 3, we know that we can choose a traceless

background gauge field so that our current with be both traceless and conserved. The last free

coefficient is fixed by the anomalous dual conservation equation (C.45).

Requiring both tracelessness and conservation

tr
(
Hµν|ρ

)
= Hµ

ν|µ = 0 , ∂µHµν|ρ = 0 , (C.52)

and using the anomalous conservation equation, we obtain

c1 =
2(d− 2)

3g2(d− 3)
, c2 = c3 = c4 = −c6 =

2

g2(d− 3)
, c5 = − 4(d− 2)

3g2(d− 3)
, c8 =

2

g2
.

(C.53)

We can write the correlator in terms of the projectors that we will derive shortly. We obtain:

〈Hµ1µ2|µ3(p) ∗ I ∗ν1ν2|ν3 (−p)〉 =
p2(d− 2)

g2(d− 3)
Πµ1µ2µ3ν1ν2ν3

(2|1) , (C.54)

where the projector is given in equation (C.59).

In d = 3 dimensions: In three dimensions, we can rederive the two-point function with the

different set of conservation equations (C.47). We obtain the exact same non-local terms, while
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the local contact terms are different, and in particular have a trace, since we cannot require

that the current be tracelessness. Nevertheless, the non-local part of the correlator is exactly

the same, and hence we reach the same conclusion after performing a spectral decomposition:

there is a massless state in the spectrum, which is the photon.

Källén–Lehmann decomposition

We can now perform a spectral decomposition of the correlator to show that there is a massless

spin-1 particle in the spectrum. Using the results from appendix A, we can write the two-point

function as

〈Hµ1µ2|µ3(p) ∗ I ∗ν1ν2|ν3 (−p)〉 =

∫ ∞
0

ds
s2

p2 + s

(
ρ(1|0)(s)Π̃

µ1µ2µ3ν1ν2ν3
(1|0) − ρ(1|1)(s)Π̃

µ1µ2µ3ν1ν2ν3
(1|1)

− ρ(2|0)(s)Π̃
µ1µ2µ3ν1ν2ν3
(2|0) + ρ(2|1)(s)Π̃

µ1µ2µ3ν1ν2ν3
(2|1)

)
,

(C.55)

where Π̃µ1µ2µ3ν1ν2ν3
(1|0) is the (off-shell) projector for a spin-1 particle,Π̃µ1µ2µ3ν1ν2ν3

(1|1) is the projector

for a rank-2 symmetric tensor particle, Π̃µ1µ2µ3ν1ν2ν3
(2|0) is the projector a rank-2 antisymmetric

tensor particle and Π̃µ1µ2µ3ν1ν2ν3
(2|1) is the projector for a particle with the symmetries of a hook

diagram. These projectors are transverse, traceless, and complete in the space of tensors with

the symmetries of a traceless hook tableau. Explicitly, the projectors are given by

Πµ1µ2µ3ν1ν2ν3
(1|0) = YT(2|1)Y

T
(2|1)

[
9

2

1

p2

d− 1

d− 2
ηµ1ν1pµ2pµ3pν2pν3

]
, (C.56)

Πµ1µ2µ3ν1ν2ν3
(1|1) = YT(2|1)Y

T
(2|1)

[
9

4p2

(
2ηµ1(ν1ην2)µ2pµ3pν3 − 1

p2
ηµ1ν1pµ2pµ3pν2pν3

)]
, (C.57)

Πµ1µ2µ3ν1ν2ν3
(2|0) = YT(2|1)Y

T
(2|1)

[
3

4p2

(
2ηµ1[ν1ην2]µ2pµ3pν3 − 9

p2
ηµ1ν1pµ2pµ3pν2pν3

)]
, (C.58)

Πµ1µ2µ3ν1ν2ν3
(2|1) = YT(2|1)Y

T
(2|1)

[
3

4

(
ηµ1ν1ηµ2ν2ηµ3ν3 − 4

p2
ηµ1ν1ηµ2ν2pµ3pν3 − 2

p2
ηµ1ν2ηµ2ν1pµ3pν3

)
+

3

4

6(d− 3)

p4(d− 2)
ηµ1ν1pµ2pµ3pν2pν3

]
, (C.59)

where YT(2|1)Y
T
(2|1) is the traceless version of the projector (C.51). As in the other cases, we

obtain the tilde tensors that appear in (C.56) from the projectors (C.56)–(C.59) by replacing

p2 → −s. These agree with the projectors on-shell. The two-point function of pure Maxwell

theory is recovered by taking the spectral densities to be

ρ(1,0)(s) =
d− 2

g2(d− 1)
δ(s) , ρ(1|1)(s) = ρ(2|0)(s) = ρ(2|1)(s) = 0 . (C.60)

This implies that there is a massless spin-1 particle in the spectrum. As in the previous cases,

this is independent of the presentation of the anomaly, because this only changes the contact

terms appearing in the correlator, to which the spectral decomposition is insensitive.

73



D Anomaly structure in linearized gravity

In this appendix, we elaborate on the structure of mixed anomalies in linearized gravity, and

review some technical details required in the main text. In section 4.4, we focused on a particular

presentation of the anomaly, but here we want to explore how the anomaly can be shuffled

around into other conditions on the currents.

D.1 Projectors

We begin by constructing the projectors needed to perform the Källén–Lehmann decompo-

sition in the main text. Note that the currents of interest can only fail to be traceless by

contact terms—which can be ignored in the spectral decomposition—so we only require trace-

less projectors to decompose their nonlocal parts. There are three projectors, Π(i|j) for (i, j) ∈
{(1, 1) , (2, 1) , (2, 2)}, that are labeled by the Young diagram of the representation that they

carry and which have the following properties:

• Tracelessness:

ηµ1ν1Π
(i|j)
µ1µ2ν1ν2α1α2β1β2

= ηα1β1Π
(i|j)
µ1µ2ν1ν2α1α2β1β2

= 0 , (D.1)

• Orthonormality:

Π(i|j) ρ1ρ2σ1σ2
µ1µ2ν1ν2

Π
(k|l)
ρ1ρ2σ1σ2α1α2β1β2

= δikδjlΠ
(i|j)
µ1µ2ν1ν2α1α2β1β2

, (D.2)

• Completeness: They add up to the identity on the space of traceless tensors with the

symmetry of the Riemann tensor. This implies

Π
(1|1)
µ1µ2ν1ν2α1α2β1β2

+ Π
(2|1)
µ1µ2ν1ν2α1α2β1β2

+ Π
(2|2)
µ1µ2ν1ν2α1α2β1β2

=
3

4
P
[
ηµ1α1ηµ2α2ην1β1ην2β2

]
,

(D.3)

where the right hand side is the identity on the space of traceless tensors with the sym-

metries of the Riemann tensor.38

These conditions are uniquely fix these three projectors, which take the following form: The

projector on the symmetric 2 tensor states is

Π
(1|1)
µ1µ2ν1ν2α1α2β1β2

≡ P
[

9(d− 2)

8(d− 3)

pµ1pν1pα1pβ1
p4

(
ηµ2α2ην2β2 + ην2α2ηµ2β2 −

2

d− 2
ηµ2ν2ηα2β2

)]
.

(D.4)

The projector on hook tensor fields is given by

Π
(2|1)
µ1µ2ν1ν2α1α2β1β2

≡ P
[
3
pµ1pα1ην1β1

p4

(
−6pµ2pβ2ην2α2 + p2ηµ2α2ην2β2

)]
. (D.5)

Finally, the projector on window fields (with the symmetries of Riemann) is given by

Π
(2|2)
µ1µ2ν1ν2α1α2β1β2

≡ P
[

3

4
ηµ1α1ηµ2α2ην1β1ην2β2 −

3pµ1pα1ηµ2α2ην1β1ην2β2
p2

+
9(d− 4)

d− 3

pµ1pµ2pα1pα2ην1β1ην2β2
p4

]
.

(D.6)

38The projector appearing here is P ≡ Y(2|2)T Y(2|2)T , which is the Young projector onto the tableau (4.75).
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The objects appearing in the Källén–Lehmann decomposition are slightly different objects,

which coincide with the projectors on shell (when p2 = −s). They are given by replacing

p2 → −s in the projectors,

Π̃
(1|1)
µ1µ2ν1ν2α1α2β1β2

(s) ≡ P
[

9(d− 2)

8(d− 3)

pµ1pν1pα1pβ1
s2

(
ηµ2α2ην2β2 + ην2α2ηµ2β2 −

2

d− 2
ηµ2ν2ηα2β2

)]
,

(D.7)

Π̃
(2|1)
µ1µ2ν1ν2α1α2β1β2

(s) ≡ P
[
3
pµ1pα1ην1β1

s2
(−6pµ2pβ2ην2α2 − s ηµ2α2ην2β2)

]
, (D.8)

Π̃
(2|2)
µ1µ2ν1ν2α1α2β1β2

(s) ≡ P
[

3

4
ηµ1α1ηµ2α2ην1β1ην2β2 +

3pµ1pα1ηµ2α2ην1β1ην2β2
s

+
9(d− 4)

d− 3

pµ1pµ2pα1pα2ην1β1ην2β2
s2

]
. (D.9)

D.2 Current-current two-point function

We now describe the systematics of the construction of the current two-point function in lin-

earized gravity and the appearance of anomalies.

D.2.1 Ansatz

First, we describe the most general ansatz used to compute the current-current correlator. This

object is a tensor with 8 indices that is constructed out of the metric ηµν and the momentum

pµ. The general structure of the ansatz is the following:

〈Jµ1µ2µ3µ4 ∗K∗ν1ν2ν3ν4〉 =
27∑
i=1

ei(p
2)T (i)

µ1µ2µ3µ4ν1ν2ν3ν4
, (D.10)

where there are 27 terms that are pairwise antisymmetric (meaning they are antisymmetric

in [µ1µ2] , [µ3µ4] , [ν1ν2] , [ν3ν4]). The coefficients ei(p
2) are arbitrary functions of p2, and we

will not write the tensor structures T
(i)
µ1µ2µ3µ4ν1ν2ν3ν4 explicitly, as they are straightforward but

tedious to obtain. Nevertheless the counting is the following: First, there are six terms which

are built only out of metrics of the schematic form

T (i)
µ1µ2µ3µ4ν1ν2ν3ν4

∼ p2ηµ1µ3ηµ2µ4ην1ν3ην2ν4 + · · · , (D.11)

where the · · · contain all the contributions needed by symmetry, and we have introduced the

factor of p2 since we know this is how the Weyl tensor two-point function scales in linearized

gravity. Second, there are eighteen terms with two momenta and three metrics which are

schematically given as

T (j)
µ1µ2µ3µ4ν1ν2ν3ν4

∼ ηµ1µ3ηµ2µ4ην1ν3pν2pν4 + · · · . (D.12)

Third, there are three terms with four momenta and two metrics, which are schematically

T (k)
µ1µ2µ3µ4ν1ν2ν3ν4

∼ 1

p2
ηµ2µ4ην2ν4pµ1pν1pµ3pν3 + · · · . (D.13)

Note that in the main text, we start with an ansatz that has eleven terms. This difference

in counting is due to imposing the first algebraic Bianchi identity, which provides eighteen

constraints amongst the free coefficients ei(p
2).
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D.2.2 Einstein gravity Weyl-Weyl two-point function

Here we describe the calculation of the two-point function of the Weyl tensor in linearized

gravity. This expression agrees with the current two-point function obtained in the main text

up to local terms, as it must.

The Weyl tensor in linearized gravity is

Wµνρσ = Rµνρσ −
2

d− 2

(
ηµ[ρRσ]ν − ην[ρRσ]µ

)
+

2

(d− 1)(d− 2)
ηµ[ρησ]νR . (D.14)

Using the expression for Rµνρσ in terms of the metric hµν , which is given in (4.13), it is straight-

forward to obtain the expression for Wµνρσ in terms of hµν . We can then use the linearized

graviton propagator in de Donder gauge (see e.g. [115] for a derivation),

〈hµν(p)hαβ(−p)〉 =
1

p2

(
ηµαηνβ + ηναηµβ −

2

d− 2
ηµνηαβ

)
. (D.15)

Taking the appropriate derivatives, projecting onto the right symmetry type and removing

traces, we find

〈Wµνρσ(p)Wαβγδ(−p)〉 = 9P
[
pµpρpαpγ

p2
〈hνσ(p)hβδ(−p)〉

]
= 8

(d− 3)

(d− 2)
p2Π

(1|1)
µνρσαβγδ , (D.16)

where the projector P is defined in Footnote 38.

D.2.3 Current-current two-point function in d > 4

In the main text, we wrote the current-current two-point function as (4.77). Interestingly, the

contact terms are exactly those that allow us to write the two-point function in terms of a

different projector:

〈Jµ1µ2|ν1ν2 ∗K∗α1α2|β1β2〉 =
d− 3

4(d− 2)

[
p2Π

(1|1)
µ1µ2ν1ν2α1α2β1β2

+ contact terms

]
, (D.17)

=
d− 3

4(d− 4)
p2Π

(2|2)
µ1µ2ν1ν2α1α2β1β2

. (D.18)

The fact that the two-point function is exactly proportional to a projector—but that this is

not the projector associated to the massless states in the spectral decomposition—is completely

analogous to what happens for a superfluid and for electromagnetism.

D.2.4 Parameter counting

We now describe all the different conditions that we can impose on the current-current two-point

function. Here we slightly generalize the discussion in the main text, and allow for the currents

Jµν|αβ and ∗K∗µν|αβ to be only antisymmetric in their index pairs, without assuming that the

µ, ν and α, β are symmetric under interchange. We enumerate the possible conditions that we

can impose exactly (even at coincident points) and also give the number of free coefficients

ei(p
2) that are left. In each case, we will write in parentheses the d = 4 case. In all cases, the

number of free coefficients is fewer or equal in d = 4 to the number in generic dimension. This

is a consequence of dimension-dependent identities that imply that some different solutions in

generic dimension are degenerate in four dimensions.
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One condition: Unsurprisingly, we can impose any of the four conditions we like. The param-

eter counting is as follows:

• Tracelessness: This yields a 9 (6 in d = 4) parameter family of solutions.

• Conservation: This yields a 6 (3 in d = 4) parameter family of solutions.

• Dual conservation: This yields a 3 (3 in d = 4) parameter family of solutions.

Two conditions: Imposing two conditions further fixes the two-point function. The different

cases are:

• Conservation & dual conservation: This cannot be imposed.

• Conservation & tracelessness: This yields a 3 (0 in d = 4) parameter family of solutions.

• Dual conservation & tracelessness: This yields a 1 parameter family of solutions.

Including the anomalous conditions completely fixes the correlator.

D.2.5 Four dimensions

In four dimensions, the most we can simultaneously impose on the current is conservation.

Taking account of the anomalies, yields the correlator

〈Jµ1µ2|ν1ν2 ∗K∗α1α2|β1β2〉 = P
[
− 9

32
p2ηµ1µ2ην1ν2ηα1α2ηβ1β2 +

3

16
p2ηµ1α1ηµ2α2ην1β1ην2β2

+
9

16
ηµ1µ2ην1ν2ηα1α2pβ1pβ2 −

3

4
ηµ1α1ηµ2α2ην1β1pν2pβ2 −

9

32
ηµ1µ2ηα1β1ηα2β2pν1pν2

+
9

4

ηµ1α1ηµ2β2pν1pβ1pν2pα2

p2
− 9

8

ηµ1µ2ηα1β2pν1pβ1pν2pα2

p2

]
, (D.19)

where P is the projector defined in footnote 38.

We see that in the four-dimensional case, the conditions that we can impose on our two-

point function are slightly different from the generic case. One can also check that the allowed

possibilities are consistent with electric-magnetic duality in linearized gravity.
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