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Abstract: We initiate a study of asymptotic detector operators in weakly-coupled field

theories. These operators describe measurements that can be performed at future null infinity

in a collider experiment. In a conformal theory they can be identified with light-ray operators,

and thus have a direct relation to the spectrum of the theory. After a general discussion

of the underlying physical picture, we show how infrared divergences of general detector

operators can be renormalized in perturbation theory, and how they give rise to detector

anomalous dimensions. We discuss in detail how this renormalization can be performed at the

intersections of the Regge trajectories where non-trivial mixing occurs, which is related to the

poles in anomalous dimensions at special values of spin. Finally, we discuss novel horizontal

trajectories in scalar theories and show how they contribute to correlation functions. Our

calculations are done in the example of φ4 theory in d = 4− ε dimensions, but the methods

are applicable more broadly. At the Wilson-Fisher fixed point our results include an explicit

expression for the Pomeron light-ray operator at two loops, as well as a prediction for the

value of the Regge intercept at five loops.
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1 Introduction

In quantum field theory, the theory itself dictates which observables are well-defined. For ex-

ample, consider a local operator in a perturbative field theory, like the product Obare = φ(x)2

in λφ4 theory. When calculating with this operator, one quickly finds that the bare opera-

tor is ultraviolet divergent, and is not itself a good observable, even after renormalizing the

couplings of the theory. To obtain finite quantities, one must choose an ultraviolet cutoff and

define a renormalized operator Oren ≡ ZObare, where Z is a wave-function renormalization

factor that cancels the divergences. The renormalized operator Oren is then a “good” ob-

servable, interpreted as a measurement of the square of φ smeared over a region of size the

renormalization scale. Furthermore, its scaling dimension, and thus its units, depend on the

dynamics of the theory.

In this work, we explore an analogous story involving “detectors” in collider experiments.

A local operator is, roughly speaking, “anything one can measure at a point.” A detector

is, roughly speaking, “anything one can measure in scattering cross-sections,” see figure 1.

Just as the space of local operators is determined by the dynamics of a theory, the space of

detectors is determined by the theory as well.

I +

I −

i+

i−

i0

Figure 1: A detector (blue) is a translationally-invariant operator localized at future null
infinity I +, capable of measuring properties of a state at late times. Some detectors, such
as the average null energy operator E2(~n), are localized on a light-ray. Other detectors can
measure nontrivial angular distributions on the celestial sphere, as indicated by “fuzziness”
in the angular directions in the figure.

In perturbation theory, a generic bare detector suffers from infrared (IR) divergences.

For example, consider a detector EJ(~n) that counts particles propagating in the direction

~n ∈ Sd−2 on the celestial sphere, weighted by a power of their energy EJ−1. This observable

is not IR safe when J 6= 2, since soft and collinear radiation conserves energy but not powers

– 1 –



=
∑
i

hiOi (1.1)

=
∑
j

cjDj (1.2)

Figure 2: In an experiment involving a QFT Q, the probe (hammer) can be expanded in op-
erators Oi that are intrinsic to Q, schematically eq. (1.1). Similarly, a far-away measurement
apparatus (camera) can be expanded in detectors Di that are intrinsic to Q, eq. (1.2). These
twin expansions cleanly separate the details of the experiment (contained in the coefficients
hi and cj) from the dynamics of the theory (encoded in matrix elements 〈Oi|Dj |Ok〉).

local operator detector

“measure at a point” “measure in cross-sections”
UV divergence IR divergence

need to renormalize need to renormalize
theory-dependent theory-dependent

OPE light-ray OPE
radial quantization ?

Table 1: A comparison between local operators and detectors.

of energy. The lack of IR-safety manifests as IR/collinear divergences in perturbation theory.

After suitably renormalizing the detector to remove the divergences, we obtain a new “good”

observable, but its anomalous dimension (suitably-defined) is theory-dependent.

Recall that the space of local operators has a simple nonperturbative definition via radial

quantization in the UV CFT: it is its Hilbert space of states on Sd−1. Thus, local operators

provide a basis of fundamental objects in which measurements at a point can be expanded.

Similarly, detectors provide a basis of fundamental objects in which measurements near in-

finity can be expanded, see figure 2. However, we do not currently possess a similarly clean

nonperturbative definition of the space of detectors. They are less well-understood objects,

and we seek to explore them in this work, focusing mostly on the case of conformal theories.

We summarize the analogy between detectors and local operators in table 1.

The simplest kind of detector is the integral of a local operator along a light-ray at future

null infinity I +. In this case, the way renormalization works is easy to understand: the

renormalized detector is the null integral of a renormalized local operator. For example, in

a free scalar theory, the operator EJ just mentioned can be defined for even integer J ≥ 2

as a null-integral of OJ = φ∂µ1 · · · ∂µJφ. When interactions are turned on, OJ gets an

anomalous dimension, and thus so does EJ , leading to a nontrivial dependence on infrared

scales characterizing the measurement.
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However, there exist detectors that are more general than simply the null integral of a

local operator. For example, since energy is positive, we can consider EJ for general complex

J . This cannot be written as the null integral of a local operator. Instead, it is a so-called

“light-ray operator” OJ for the leading Regge trajectory [1]. In fact, such general light-ray

operators appear naturally in the OPE of more conventional detectors like the average null

energy operator E2 [2–5].

Light-ray operators have a long history in quantum field theory. Perhaps the most famil-

iar example are parton distribution functions. Their integer moments are equal to hadronic

matrix elements of operators analogous to OJ [6–8], while parton distribution functions them-

selves are matrix elements of nonlocal light-ray operators [9, 10]. In addition, detectors/light-

ray operators appear in the Regge limit of correlation functions. In gauge theories, null

Wilson lines and their products realize the BFKL Pomeron [11, 12] and control the leading

behavior of correlators at large boost [13–15].

If our theory has a mass gap and trivial infrared dynamics, its detectors are simple

to characterize: they observe stable particles that propagate to infinity. Without a mass

gap, however, a typical event is accompanied with a burst of energy moving at the speed of

light. Focusing on conformal theories will allow us to better understand this signal when it

is nontrivial.

A simplification in conformal theories is that there is nothing special about infinite dis-

tances: future null infinity can be conformally mapped to a flat null sheet. The space of

detectors and the space of light-ray operators are thus equivalent. This “spacelike-timelike”

correspondence has found a number of applications, for example [2, 16–20]. In this paper we

will thus use the terms “detector” and “light-ray operator” interchangeably. However, note

that some of our calculations, for example in section 4, do not assume conformal symmetry.

One of our first tasks in this work will be to de-mystify light-ray operators/detectors like

OJ by providing tools for defining them and computing with them directly in perturbation

theory. We work with perhaps the simplest perturbative CFT: the Wilson-Fisher theory in

4− ε dimensions.

Light-ray operators can be classified according to their dimension ∆ and spin J [1, 21,

22]. The one that dominates in the Regge limit is the so-called “Pomeron”, which is the

light-ray operator with the largest spin J along the principal series ∆ ∈ d
2 + iR. In this

work, we will provide an explicit expression for the Pomeron of the Wilson-Fisher theory.

Other light-ray operators with smaller J control subleading corrections in the Regge limit.

An important class of subleading corrections in the Wilson-Fisher theory come from novel

“horizontal trajectories” which we also explore. These will be somewhat analogous to the

null Wilson lines that appear in gauge theories.

This work is organized as follows. We begin in section 2 with an extended introduction to

detectors/light-ray operators and their appearance in the Wilson-Fisher theory. This section

contextualizes and summarizes the rest of the paper. We also show that the known anomalous

dimensions in Wilson-Fisher theory are sufficient to compute the Pomeron spin (the Regge

intercept) up to and including O(ε4) terms, which corresponds to 5 loops. In section 3, we
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describe the leading-twist Regge trajectory in the Wilson-Fisher theory in the language of

detectors, recovering known results for its anomalous dimension from a different perspective.

In section 4, we apply this perspective to describe the mixing between the leading-twist

trajectory and its so-called “shadow,” allowing us to identify the Pomeron of the Wilson-

Fisher theory. In section 5, we construct and explore some simple horizontal trajectories in

the Wilson-Fisher theory. We conclude with discussion and future directions in section 6.

2 The space of detectors in the Wilson-Fisher theory

In this section, we work out the main features of the space of detectors in the Wilson-Fisher

theory. We start by studying detectors for a free massless scalar φ in d spacetime dimensions,

and then subsequently add a φ4 interaction and tune to the critical point. We will find hints

about the space of detectors by studying singularities of anomalous dimensions as a function

of J . Surprisingly, it will turn out that light-ray operators are continuously connected with

operators supported on full lightcones.

2.1 EJ−1 flux in the free scalar theory

Let us first define an operator E2(n) that measures the energy flux in a spatial direction n

for a free massless scalar. We start by expanding φ in creation and annihilation operators,

φ(x) =

∫
p0>0

ddp

(2π)d−1
δ(p2)

(
a†(p)e−ipx + a(p)eipx

)
, (2.1)

where we use a relativistic normalization where a(p) is a Lorentz scalar.1 The Hamiltonian

in this convention is

H =
1

2

∫
dd−1x :

(
(∂0φ)2 + (∂iφ)2

)
:∝
∫
dd−1p a†(p)a(p), (2.2)

where a(p) ≡ a(p = (|p|,p)). We will not be concerned with the overall normalization of

operators in this section, so we use a proportionality sign. The energy flux E2(n) should

integrate to the Hamiltonian ∫
|n|=1

dd−2n E2(n) = H. (2.3)

Furthermore, E2(n) should only involve creation and annihilation operators with momentum

p in the direction n. Hence, we find

E2(n) ∝
∫ ∞

0
dE Ed−2a†(En)a(En). (2.4)

1Compared with the canonical normalization, a(p) =
√

2p0acanonical(p). The commutation relation is
[a(p), a†(p′)] = 2p0(2π)d−1δd−1(p− p′).
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In the free theory, we can define more general operators EJ(n) that measure the flux of

powers of energy EJ−1 by inserting an additional factor of EJ−2 into the integral:

EJ(n) ∝
∫ ∞

0
dE EJ+d−4a†(En)a(En). (2.5)

A nice property of EJ is that it transforms in a simple way under Lorentz transformations.

To see this, let us covariantize the expression (2.5). For a future-pointing null vector z, we

set

EJ(z) ∝
∫ ∞

0
dβ βJ+d−4a†(βz)a(βz). (2.6)

The expression (2.6) is now Lorentz-invariant, and (2.5) can be recovered by setting z = (1,n).

In the form (2.6), EJ(z) becomes a homogeneous function of z of degree 3− d− J :

EJ(λz) = λ3−d−JEJ(z) (λ > 0). (2.7)

Interpreted as an operator in index-free notation, this means that EJ(z) has Lorentz spin

3− d− J .2 Note that the mass dimension of EJ(z) is J − 1.

For even integer J , the “EJ−1 flux” operator EJ(z) can alternatively be defined in terms

of the light-transform of a local operator:

EJ(z) = 2L[OJ ](∞, z). (2.8)

Let us unpack this notation. Here, OJ(x, z) is the leading-twist spin-J primary operator built

out of two φ’s,

OJ(x, z) = NJ :φ(x)(z · ∂)Jφ(x) : +(z · ∂)(· · · ). (2.9)

We use an index-free notation, where the indices of Oµ1···µJ
J (x) are contracted with a null

polarization vector zµ. The total derivative terms (z ·∂)(· · · ) ensure that OJ is primary (i.e. it

is annihilated by the special conformal generators Kµ), and NJ is an inessential normalization

factor. For example, we have O2 = T , where T is the stress-tensor.

The operation L is a conformally-invariant integral transform called the light trans-

form [1]. We will not need its complete definition here — just some basic properties. Firstly,

L[O](x, z) is an integral of O along the null direction z starting at the point x. Secondly,

when applied to a primary operator O with scaling dimension ∆ and Lorentz spin J , the light

transform produces a primary operator L[O] at x with scaling dimension ∆L = 1 − J and

Lorentz spin JL = 1−∆.3

The right-hand side of (2.8) is a light transform evaluated at x =∞ (spatial infinity), and

is thus an integral along future null infinity I +. Note that in a CFT, neither x =∞ nor I +

2See e.g. [23] for an introduction to index-free notation.
3In general, the spin JL is non-integer. This is not a problem since the Lorentz group SO(d− 1, 1) admits

(infinite-dimensional) non-integer spin representations.
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are special — CFTs live on the Lorentzian cylinder, and x = ∞ is an ordinary point there

[24] (see [1] for a recent discussion). The right-hand side of (2.8) is then clearly well-defined.

Let us check that the quantum numbers agree on both sides of (2.8). The operator OJ
has spin J and scaling dimension ∆ = ∆(J) = J + d − 2. The light-transformed operator

L[OJ ] has scaling dimension ∆L = 1 − J and Lorentz spin JL = 1 − ∆(J) = 3 − d − J .

These precisely match the quantum numbers of EJ(z).4 Furthermore, both sides are primary

operators. Indeed, for operators inserted at spatial infinity, primariness is just translation-

invariance. This is true for L[OJ ] by construction, and is also obviously true for the detector

EJ(x) as translations do not change the momenta of the particles.

Thus, (2.8) makes sense from the point of view of symmetries, and agreement with (2.5)

can be verified in free theory using the explicit expression (2.9) for OJ . Similar detectors

with gravity have been recently discussed in [25].

2.2 Turning on interactions

Let us now turn on the φ4 interaction and tune to the Wilson-Fisher fixed point. Our

theory now does not have well-defined scattering states. In this setting, the notion of EJ−1

flux is ill-defined (except when J = 2), since we cannot simply count particles weighted by

powers of their energy. However, we can still build detectors from light-transforms of local

operators L[OJ ], where now OJ denotes a spin-J operator in the interacting Wilson-Fisher

theory. This gives a set of well-defined detectors with integer dimensions ∆L = 1− J in the

interacting theory. However, their Lorentz spins are different from those in the free theory:

JL = 1−∆(J) = 3− d− J − δ(J).

In the free theory, the “EJ−1 flux” operators EJ(z) made sense not just for integer J ,

but for any complex J ∈ C. The reason is that energy is positive, so there is no ambiguity

in defining EJ−1. So far, in the interacting theory, we have identified a set of detectors

L[OJ ](∞, z) that provide analogs of EJ(z) for integer J . What about non-integer J? This

leads to the question of defining an analytic continuation of L[OJ ] away from even J ≥ 0.

We will follow [1], who considered precisely this problem and showed that one can define

non-local light-ray operators O+
J (x, z) such that the dependence on J is analytic, and for even

integer J ≥ J0 (J0 ≤ 1 is the Regge intercept [22, 26]) we have

O+
J (x, z) = L[OJ ](x, z). (2.10)

This means that for general complex J we can define EJ(z) in an interacting CFT by

EJ(z) ∝ O+
J (∞, z). (2.11)

In [1] it was argued that the operators O+
J should exist non-perturbatively. To what extent

this is true remains an open question. In this work, we will explore the construction of O+
J

4The attentive reader may be puzzled that the mass dimension of L[OJ ] is 1− J while that of EJ is J − 1.
The resolution is that L[OJ ] is inserted at spatial infinity, which flips the sign of its mass dimension. Indeed,
the definition of O(∞) for any O is limx→∞ |x|2∆OO(x), where |x|2∆O is needed to obtain a non-zero result,
which adds −2∆O units of mass dimension to ∆O of O.
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and other light-ray operators in perturbation theory. We will see that they can indeed be

straightforwardly defined and multiplicatively renormalized, at least to the lowest nontrivial

order in perturbation theory.

These detectors can be naturally interpreted by thinking about measurements of “EJ−1

flux”. This phrase must be used with care in an interacting theory, since no operator has

exactly the desired quantum numbers (both dimension and spin). Let us illustrate this in the

case J = 3. We know that energy flux E2(z) is well-defined, so we can construct transparent

detectors that measure it. More precisely, we can measure the flux through a finite angular

region Ω,

E2(Ω) ≡
∫

Ω
dd−2n E2(n). (2.12)

Since our detectors are transparent, we can stack two of them to obtain an observable Ê3(Ω)

defined by

Ê3(Ω) = (E2(Ω))2. (2.13)

Intuitively, we may try to define the operator “which measures the flux of E2” as the limit

of Ê3(Ω) as the region Ω shrinks to a point around n. This requires studying the OPE

E2(n1)E2(n2) as n1 → n2. What happens is that this OPE has non-trivial scaling with

respect to the angular size of Ω, θ ∼ |n1 − n2|, which leads to [2, 3]

Ê3(Ω) ∝ θd−2+δ(3)E3(n) + · · · . (2.14)

Thus we defined an operator with manifestly the desired mass dimension ∆L = 2 (it measures

energy squared), but it does not transform under Lorentz boosts like a density of energy

squared on the celestial sphere, since JL = −d − δ(3) 6= −d. This “anomalous spin” is

related, by the light transform, to the anomalous dimension δ(3) of local operators analytically

continued to spin J = 3. Multiple energy correlators at the LHC were discussed recently in

[27].

Of course, this is just one particular way of defining “E2 flux,” and one could imagine

other measurements which for instance would have the correct Lorentz spin JL = −d. (Pos-

sibly by weighting by a suitable power of the momentum perpendicular to the axis n, or

exploiting suitable time windows [28].) By solving 3−d−J−δ(J) = −d for J , one would be

able to predict the mass dimension of such a measurement, as further discussed in section

3.1.1. Generally, a specific experiment may best be described by a linear combination of

operators, which depend on fine details of the experiment and the theory. This should not

surprise us, since it also happens with local measurements.5

5The above discussion applies equally well to the case J = 1. In the free theory, the operator E1(z) simply
counts particle number in the z direction. In the interacting theory, particle number is no longer well-defined,
due to splitting as particles propagate to null infinity. The rate of splitting can be quantified in different ways:
the anomalous dimension δ(1) is relevant for counting particles in a given angular region, while its timelike
counterpart δ

∣∣
JL=2−d (see eq. (3.17)) captures the dependence of the multiplicity of a jet on its invariant mass

Q2 [29, 30]. We thank Juan Maldacena for discussions on this point.
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2.3 The Chew-Frautschi plot of the Wilson-Fisher theory

Before proceeding with explicit calculations, let us examine more closely the quantum numbers

of the light-ray operators O+
J in the Wilson-Fisher theory. Recall that the leading-twist

operators OJ have spin J and scaling dimension

∆(J) = 2∆φ + J + γ(J), (2.15)

where γ(J) is known in perturbation theory and is well-defined for even J ≥ 0. (It differs from

δ(J) in the preceding subsection by a simple shift: δ(J) = γ(J)+2∆φ+2−d.) The Lorentzian

inversion formula provides a canonical analytic continuation of γ(J) to J ∈ C, which gives

the quantum numbers of the light-ray operators O+
J via (JL,∆L) = (1−∆(J), 1− J).

In perturbation theory in d = 4− ε dimensions, we have the following expansions [31–33]

∆φ = 1− 1

2
ε+

1

108
ε2 +

109

11664
ε3 +

(
7217

1259712
− 2ζ(3)

243

)
ε4 +O(ε5), (2.16)

γ(J) = − 1

9J(J + 1)
ε2 +

(
22J2 − 32J − 27

486J2(J + 1)2
− 2H(J)

27J(J + 1)

)
ε3 +O(ε4). (2.17)

Here, H(J) = Γ′(J+1)
Γ(J+1) + γE is the analytic continuation of the harmonic numbers, with

γE ≈ 0.5772 the Euler-Mascheroni constant. The order ε4 term in γ(J) is known [32],6 but

we do not reproduce it here for brevity.

Focusing for now on the leading ε2 contribution, we plot ∆(J) at ε = 0.3 in figure 3.

Following [21], it will prove convenient to use coordinates ∆− d
2 and J . Given the interpreta-

tion of ∆ in a conformal theory as energy in radial quantization, the resulting curve is often

called a Regge trajectory, and we will refer to this type of plot as a Chew-Frautschi plot. The

above discussion associates to each point on the Regge trajectory a light-ray operator O+
J and

the corresponding detector EJ(z) = OJ(∞, z). We can immediately spot a problem with our

Regge trajectory: the ε2 result for γ(J) has poles at J = 0 and J = −1. At higher orders,

poles appear at all non-positive integer J .

This näıvely contradicts our claim that O+
J and EJ can be multiplicatively renormalized

in perturbation theory for all J . However, as we will now explain, the poles are there for a

good reason and simply need to be interpreted correctly.

2.4 Shadow trajectories

The reason for the poles in γ(J) is that there are other Regge trajectories missing from our

Chew-Frautschi plot in figure 3. Let us first discuss the situation in the free theory, where

the trajectory of O+
J is a straight line. First, there are subleading, higher-twist trajectories

that provide analytic continuations of L[O], where O is a local operator built out of more

than two φ’s, potentially with extra contracted derivatives.7 We restrict to Z2-even Regge

6This paper contains a typo in the result, see [33].
7The degeneracy of these higher-twist operators grows with their spin since we have more ways to distribute

the derivatives among the φ’s as the spin increases. Therefore, since Regge trajectories are analytic in spin,
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Figure 3: Solid, blue: the naive leading Regge trajectory in Wilson-Fisher theory at O(ε2).
Dashed, red: the same trajectory in free theory. The plot is made for ε = 0.3. The correct
picture will be more complex, as described in the main text (see also figures 5 and 9).

trajectories, so O will be composed of an even number of φ’s. In the free theory, these give

lines parallel to the leading twist trajectory that we must add to our plot. Adding these, we

obtain a set of Regge trajectories representing “sensible lines drawn through local operators.”

We have introduced the light-ray operators OJ as devices that analytically continue light

transforms of local operators, L[OJ ], in spin J . From this point of view, it seems reasonable

to stop at the above set of trajectories. However, this does not solve the problem with poles

in γ(J) in the interacting theory.

One missing ingredient is shadow symmetry. There is a natural Lorentz-invariant integral

transform acting on the space of light-ray operators: the “spin shadow” [1] given by

SJ [O](x, z) =

∫
Dd−2z′(−2z · z′)2−d−JLO(x, z′). (2.18)

Here, the measure is given by Dd−2z = 2ddzδ(z2)θ(z0)/ volR, so the z′-integral ranges over

the forward null-cone. (If we interpret z as an embedding space coordinate on the celestial

sphere Sd−2, then SJ is the Euclidean shadow transform on the celestial sphere. This integral

will be discussed in more detail in section 4.1.) The resulting operator SJ [O](x, z) has the

the Regge trajectories for these higher-twist operators must be infinitely degenerate. By contrast, for the
leading-twist trajectories there is a unique operator for each spin, see (2.9), and the leading trajectory is
non-degenerate.
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Figure 4: Chew-Frautschi plot of free theory in d = 4 after accounting for higher-twist
trajectories and their shadows. This is a less naive version of figure 3. The full picture is
expected to be more complex and is described in the main text (see also figures 5 and 9).

same scaling dimension ∆L as O but a different Lorentz spin 2 − d − JL. Remembering

that ∆L = 1 − J and JL = 1 − ∆(J), this corresponds precisely to the standard shadow

transformation ∆ → d − ∆. Thus, the space of light-ray operators has a symmetry under

∆→ d−∆, which should be reflected in the Chew-Frautschi plot.8

Let us then add to our Chew-Frautschi plot the shadows of everything we have discussed

so far. The resulting plot in d = 4 (free theory) is shown in figure 4. As we will explain,

it is still missing some trajectories, but figure 4 already makes one point clear: free-theory

light-ray trajectories can intersect, and thus there can be degeneracies among its light-ray

operators. In particular, the poles that we observed in γ(J) at order ε2 appear precisely at

the intersections of the leading trajectory with shadow trajectories. In fact, this is true for the

poles appearing at all known orders in ε. Our failure to renormalize the light-ray operators

at these points, evidenced by these poles, can be attributed to a non-trivial mixing problem

that must be solved at these intersections.

In this paper we will study the mixing problem that appears at the simplest intersection:

8Note that if O(x, z) is somehow localized along the null direction z, then its spin shadow SJ [O(x, z)] is
delocalized over the entire future null cone. Consequently, the name “light-ray operator” is perhaps a misnomer
— although a light-ray operator is always labeled by a null ray, it is not always localized on that null ray. It
might be tempting to make a distinction between “light-ray” operators localized on a light ray and “light-cone”
operators localized on a light cone. However, surprisingly, all such operators are continuously connected on
the Chew-Frautschi plot, so such a distinction should be drawn with care.
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that of the leading-twist trajectory with its shadow. Besides its simplicity, another reason

for focusing on this intersection is that it coincides with the “Regge intercept,” or the largest

value of J among all trajectories at ∆(J) = d
2 . The Regge intercept determines the leading

behavior of correlators in the Regge limit and the light-ray operator that sits at this point is

known as the Pomeron [22]. One of the goals of this work is to answer the question, “what

is the Pomeron of the Wilson-Fisher theory?” After a warm-up in section 3, we will study

this question in detail in section 4, where we will explicitly construct the necessary light-ray

operators and solve the mixing problem at leading order.

2.5 Mixing at the Regge intercept

It turns out we can predict the quantum numbers of the solution to the mixing problem at

the Regge intercept by correctly interpreting the expansion (2.17). We simply conjecture that

in an interacting theory, Regge trajectories can’t diverge. This implies that all perturbative

singularities must get resolved in a way similar to figure 5. Specifically, we will assume that

we obtain a complex two-sheeted surface in a neighborhood of the intercept. We can describe

such surfaces by9,10

ν2 + f(J)ν + g(J) = 0, (2.19)

where f and g are functions of J that are analytic in the neighborhood of the intercept, and

ν = ∆− d
2 .11 Away from the intercept, this equation should have two roots, given by

ν±(J) = ±
(
2∆φ + J + γ(J)− d

2

)
, (2.20)

corresponding to the leading twist trajectory and its shadow. This allows us to compute f(J)

and g(J) using Vieta’s formulas,

f(J) = −ν+(J)− ν−(J) = 0 (2.21)

g(J) = ν+(J)ν−(J) = −
(
2∆φ + J + γ(J)− d

2

)2
. (2.22)

The fact that f(J) vanishes is forced by shadow symmetry, ν → −ν, but near other intersec-

tions we might have f(J) 6= 0 (and higher-degree polynomials if more than two trajectories

9We thank Nikolay Gromov for a discussion about such parametrizations. A similar parametrization of
BFKL and twist-2 trajectory in N = 4 SYM has been considered in [21], and a non-perturbative picture in
the planar limit has been studied in [34].

10Here is an argument why this is always possible. We assume that we have a complex surface Σ (which in
this context is a neighborhood of the Regge intercept on the smooth Regge trajectory), and two holomoprhic
functions ν0 : Σ → C and J0 : Σ → C which embed it into ν, J space and have bounded images. We further
assume that we have n solutions xk of J0(x) = J for all J in the image of J0, except possibly for a discrete
set of branch points. We denote these solutions by xk(J) (k = 1, · · · , n), which are multi-valued functions
of J . Under monodromies around the branch points they are permuted in some way. We then consider
F (ν, J) =

∏n
k=1(ν − ν0(xk(J))). It is a holomorphic function of J which is single-valued, and can only have

singularities at the branch points. However, since it is bounded, the singularities are removable and we get a
function which is holomorphic in J on the image of J0. It is also obviously holomorphic in ν, and thus is a
holomorphic function of both variables. The set F (ν, J) = 0 is precisely the image of Σ.

11Our definition of ν in this section differs from the usual one iν = ∆− d
2

in e.g. [22] by a factor of i.
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are mixing). The resulting equation is

ν2 = (2∆φ − d/2 + J + γ(J))2. (2.23)

The nontrivial statement here is that the right-hand-side should be free of poles near J = 0.

This is effectively a constraint on γ(J).

Before proceeding, let us see in a toy model how 1/J poles can arise from expanding

equations of the form (2.23). Consider the equation

ν2 − J2 + ε2 = 0. (2.24)

At ε = 0 this describes an intersection of straight lines, which gets resolved as in figure 5 for

ε > 0. If we solve for ∆ in this toy model, we get

∆ = d
2 ±

√
J2 − ε2. (2.25)

Expanding in ε at a generic J we find

∆ = d
2 ±

(
J − ε2

2J

)
+ · · · , (2.26)

which has a pole in J even though the curve (2.24) is perfectly smooth. Our conjecture is

that the poles at J = 0 in (2.17) appear for a similar reason.

To verify this, we can use the anomalous dimension (2.17) to compute for (2.23)

ν2 = (2∆φ − d/2 + J + γ(J))2

= J2 − Jε+

(
J

27
+

1

4
− 2

9(J + 1)

)
ε2

+

(
109J3 + 164J2 + 265J − 114

2916(J + 1)2
− 4H(J)

27(J + 1)

)
ε3 +O(ε4), (2.27)

where once again the order ε4 term can be computed [32, 33], but is omitted here for brevity.

We see that the 1/J poles nicely cancel at each order in ε, leaving a curve that is perfectly

analytic in J near J = 0. We plot the trajectory in the real (ν, J)-plane at four-loop order

in the ε expansion in figure 5, where we set ε = 0.3. In fact, (2.27) defines a complex surface

that is perfectly regular as long as we stay away from the pole at J = −1 (to which we will

return below). We plot a projection of this surface in figure 6, which makes it clear that the

two branches of the trajectory are connected in the complex plane.

One may ask: what does the cancellation of poles mean in terms of the pole structure

of γ(J)? A simple analysis shows that in order for all the poles to cancel, at each order in

ε, the leading pole in the Laurent expansion of γ(J) at J → 0 is of order ∼ J1−nεn, and

the coefficients of all multiple poles J−k for k > 1 are fixed in terms of lower-order data.12

12More generally, knowing the full form of γ(J) up to and including O(εn0) allows to predict the leading
poles Jkεn with n+k ≤ n0−1. For example, the O(ε2) result for γ(J) predicts the leading singularity J−n+1εn

for all n. In the context of BFKL/DGLAP mixing in QCD and N = 4 SYM the analogous properties were
previously noticed in [21, 35–39].
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Figure 5: Chew-Frautschi plot of the leading Regge trajectory in Wilson-Fisher theory near
the intercept at O(ε4) (solid, blue). Free theory trajectories are shown in dashed red. The
plot is made at ε = 0.3. See also figure 6.

Assuming this holds, we can predict the J−4, . . . , J−2 terms at O(ε5) from the known data. In

fact, using additional information explained below, we can determine the J−1 term at O(ε5)

as well, giving

γ(J) = · · ·+ ε5
(
− 5

216

1

J4
+

269

8748

1

J3
+
−227− 78π2 + 216ζ(3)

17496

1

J2

+
82620ζ(3)− 583200ζ(5) + 6561π4 + 46575π2 + 96275

7085880

1

J
+O(J0)

)
+O(ε6).

(2.28)

We can now extract the Regge intercept of the Wilson-Fisher theory by solving (2.27)

for J at ν = 0, order-by-order in ε. Since the curve (2.27) intersects the J-axis at two points,

see figure 5, we find two solutions. The larger solution gives the Regge intercept:

J0(ε) =

(
1

2
+

√
2

3

)
ε− 11

√
2 + 21

162
ε2 +

465 + 421
√

2 + 54(4 + 3
√

2)π2 − 648
√

2ζ(3)

17496
ε3

+
1

9447840

(
− 486π2(65(4 + 3

√
2) + (28 + 27

√
2)π2)

− 5(76227 + 57760
√

2 + 648(150 + 109
√

2)ζ(3)− 233280
√

2ζ(5))
)
ε4

+O(ε5)

= 0.971405ε− 0.225656ε2 + 0.248731ε3 − 0.631547ε4 +O(ε5). (2.29)

Here, we used the four-loop result (i.e. including ε4) for (2.17) [32, 33], as well as the J−1 term

at O(ε5) from (2.28). Note that the expansion for J0 starts at order ε, even though (2.17)
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Figure 6: An R3 projection of the C2 Chew-Frautschi plot of the leading Regge trajectory
in Wilson-Fisher theory near the intercept at O(ε4). The imaginary part of J is shown by
color, with negative values in blue and positive values in red. Even though the two branches
appear to intersect, they do not – in order to intersect in C2, they need to intersect in this
R3 projection and also have the same color. The plot is made at ε = 0.3.

started at ε2. The second solution for J is obtained by replacing
√

2 → −
√

2 in the above

expression.

Note that the numerical coefficients in this expansion are not small. Therefore, as usual,

setting ε = 1 is not justified. As an amusing exercise, we can get a more reasonable estimate

for J0(ε) by assuming J0(2) = 1, which is where the leading twist trajectory intersects its

shadow in the 2d Ising CFT, and constructing a Padé3,3 approximant using this condition

together with (2.29). This results in a monotonic curve interpolating between J0(0) = 0 and

J0(2) = 1, as shown in figure 7. With this approximation, we estimate the Regge intercept of

the 3d Ising CFT to be J0(1) ≈ 0.76, which is close to the result J0(1) ≈ 0.8 from the analysis

in [40], see the caption to figure 7. As pure speculation, we note that the plot in figure 7

suggests the possibility that the slope of J0(ε) near ε = 2 (d = 2) might be 0, especially given

the independent data point from [40]. This could be related to the constraints on a putative

(d = 2 + ε)-expansion observed in [41].
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Figure 7: Solid, blue: the Padé3,3 approximant to the intercept J0(ε) imposing the small-ε
expansion (2.29) and known value in d = 2 (J0(2) = 1). Dashed, red: the formal intercept
value for free theory. The data point at ε = 1 is the result from [40], taken with the (non-
rigorous) error bar estimated from their figure 12.

We see that by using the anomalous dimensions of the lightest spinning operators we

can straightforwardly determine the spin of the Pomeron, which in turn determines how

CFT correlators behave in the Regge limit. In fact, we get the full shape of the leading

trajectory, which in principle allows one to analyze the Regge limit beyond the saddle-point

approximation [42].

Using (2.27) we can also study where (light-transforms of) scalar operators sit on the

Regge trajectories. Setting J = 0 in (2.27) and solving for ν yields:

|ν| = ε

6
− 19ε2

162
+

(
− 937

17496
+

4ζ(3)

27

)
ε3 +O(ε4). (2.30)

Here we only used γ(J) up to order ε4.13 Of the two corresponding values of ∆(0) = d
2 ± |ν|,

the smaller one d
2 − |ν| perfectly matches the known ε-expansion for the scaling dimension

∆φ2 of the φ2 operator. This strongly suggests that L[φ2] lives on the resummed leading-twist

Regge trajectory (2.27), see figure 8. This was first observed in the ε-expansion in [43] in a

somewhat different form, and further discussed in [40]. In fact we can turn this argument

around and use known results for the ε-expansion of ∆φ2 [33, 44] to determine the O(ε5J−1)

coefficient in γ(J); this gives the prediction recorded in (2.28). If the O(ε5J0) term were

known in (2.28), the same logic would fix all singular terms of γ(J) at J → 0 at O(ε6), and

the O(ε5) term in J0.

The above discussion is, however, somewhat unsatisfactory, because it is based on the

assumption that the leading Regge trajectory is smooth at the intercept, and fundamentally

13At J = 0 (2.27) reads ν2 = 1
36
ε2 − · · · , and thus the O(ε4) term in (2.27) only determines the O(ε3) term

in (2.30).
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Figure 8: Chew-Frautschi plot of the leading Regge trajectory in Wilson-Fisher theory near
the intercept at O(ε4). This is same as figure 5, but zoomed in to show the location of the
φ2 operator (more accurately, L[φ2]).

is little more than a formal manipulation with known formulas. In particular, it does not give

insights into the question posed in section 2.4 on what is the explicit form of the Pomeron

operator in Wilson-Fisher theory or explain how mixing between different trajectories is

possible. We will answer both questions in section 4 by directly renormalizing the light-ray

operators for every point of the complex surface shown in figure 6. As a consistency check,

we will reproduce the leading correction term for the Regge intercept given in (2.29).

2.6 Horizontal trajectories

We have so far discussed Regge trajectories of local operators and their shadows. Is this a

complete picture of the Chew-Frautschi plot? It turns out it is not: we are missing more

trajectories. While the Pomeron dominates in the Regge limit, these extra trajectories can

give important subleading contributions.14

An important clue comes from gauge theories like N = 4 SYM, which possess the well-

known BFKL trajectory with J = 1 (in the free theory) but arbitrary ∆ — i.e. a horizontal

line on the Chew-Frautschi plot. It is unlikely that horizontal trajectories exist at J > 0 in

the Wilson-Fisher theory, since the anomalous dimension γ(J) does not have poles for J > 0

at any known order in perturbation theory. Furthermore, the construction of the BFKL

trajectory uses gauge fields in an essential way.

However, it turns out that we can construct many horizontal trajectories in the Wilson-

Fisher theory with J ≤ −1. The first key idea is to consider products of light-transformed

14In fact, in other symmetry sectors they can be the leading contributions – see the discussion in section 6.
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operators

L[O1](x, z1)L[O2](x, z2), (2.31)

where importantly we place L[O1] and L[O2] at the same point x. Formally, the product

(2.31) transforms like a primary light-ray operator with

∆L = ∆L,1 + ∆L,2 =⇒ J = J1 + J2 − 1. (2.32)

In [45], it was shown that the product (2.31) is nonsingular if J > J0, where J0 is the Regge

intercept of the theory. In this case, (2.31) should not be considered a qualitatively new

operator — instead it can be expanded in an OPE in terms of other light-ray operators

[3, 4].15 However, if J < J0, the product (2.31) is singular and requires regularization. After

such regularization, we may obtain a new operator.

Let us reiterate what will be a key working assumption: that we can identify independent

operators by thinking about the regularization of products. An analogy is the product of local

operators like O(x)O′(y) with x 6= y, which do not require regularization (beyond those of

O(x) and O′(y)) and do not add operators to the spectrum, while products like O(x)O′(x)

do. A peculiarity of light-ray operators is that some products, even of operators labelled by

the same base point, do not require regularization. This feature is crucial to obtain a spin

spectrum that is bounded above (for a fixed ν).

Which operators can we choose for O1 and O2 in the Wilson-Fisher theory? The simplest

choice may seem to be O1 = O2 = φ. However, as we discuss in section 5, the only sensible

definition of L[φ] vanishes in the free theory, and in the interacting theory is related to λL[φ3],

where λ is the φ4 coupling. Intuitively, in the free theory, a detector cannot absorb exactly

one φ quantum while conserving energy and momentum. Therefore, the minimal option is to

set O1 = O2 = φ2 and consider the product

L[φ2](x, z1)L[φ2](x, z2). (2.33)

The product (2.33) requires regularization, since J1 + J2 − 1 = −1 < J0. In the free theory,

we can simply normal-order and define

H(x, z1, z2) ≡ :L[φ2](x, z1)L[φ2](x, z2) : . (2.34)

The operator H(x, z1, z2) then transforms like a light-ray operator with J = −1. However,

it does not transform irreducibly under the Lorentz group, since it depends on two null po-

larizations. To obtain something that transforms irreducibly with spin JL, we must convolve

with a Clebsch-Gordan coefficient KJL(z1, z2, z) for the Lorentz group:

HJL(x, z) =

∫
Dd−2z1D

d−2z2KJL(z1, z2; z)H(x, z1, z2). (2.35)

15More precisely, the component of (2.31) with “transverse spin” j on the celestial sphere is nonsingular and
can be expanded in other operators when J1 + J2 − 1 + j ≥ J0.
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Figure 9: The expected structure of the perturbative (Z2-even, parity-even, traceless-
symmetric) Regge trajectories in Wilson-Fisher theory. All the Regge trajectories (blue)
except the leading trajectory (red) have degeneracies, which are expected to be broken at
sufficiently high orders of perturbation theory.

Here, we are free to choose any JL (and thus ∆ = 1 − JL) we like, so we obtain a family of

light-ray operators HJL(x, z) that fill out a horizontal line at J = −1 on the Chew-Frautschi

plot, see figure 9. This is essentially the same as the construction of the BFKL trajectory (see

[15] and references therein), with Wilson lines replaced by L[φ2]. (When one chooses x to be

null infinity, the light-cone emanating from x becomes the flat light-sheet like x0 − x1 = 0,

and the Clebsch-Gordan coefficients are the color-singlet eigenfunctions from [46], where the

quantum number ∆ is Fourier conjugate to the logarithmic size of the color dipole.)

This construction can be vastly generalized. Firstly, we are free to choose operators

other than φ2 in the light-transforms. As long as they are scalars, this gives new horizontal

trajectories at J = −1, and in fact infinitely many of them. We can also take products of

n > 2 light-transforms of scalar operators. This will yield horizontal trajectories at negative

spins J = 1− n, again infinitely many at each spin.16

But we can go even further: why restrict to light transforms of local operators? We

16It is interesting to ask whether we can construct horizontal trajectories with J = 0 using these techniques.
We expect that the answer is “no,” since we have been able to resolve the pole in γ(J) at J = 0 to relatively
high order in ε without taking such trajectories into account.
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Figure 10: Illustrations of the traditional conformal frame (left), with a local operator O at a
generic point inside Minkowski space, and the detector frame (right), where a detector D lies
along future null infinity I +. The detector D transforms like a primary operator at spatial
infinity i0 (the blue point), which means that it is invariant under Minkowski translation
generators, and this statement is exact in perturbation theory. In a CFT, future null infinity
is not a special place, and can be reached by a simple shift on the Lorentzian cylinder. For
simplicity of illustration, both figures show the 2d Lorentzian cylinder. For example, in the
left figure, the two solid grey lines should be identified. Minkowski space is the interior of the
diamond formed by dashed grey lines. The same is true for the figure on the right.

can consider the product O+
J1

(x, z1)O+
J2

(x, z2). This formally corresponds to a horizontal

trajectory at J = J1 + J2 − 1, which we now can tune continuously by dialing J1 and J2.

We will consider such detectors in section 5. There, we find that, at leading nontrivial order

in perturbation theory, these operators need renormalization only for special values of J ,

and furthermore their divergence is proportional to an operator with fixed values of J1, J2.

In other words, most operators of this kind are only additively renormalized, and so their

anomalous dimensions are zero and they do not appear in RG equations for other observables.

To summarize, we believe that the structure of perturbative Regge trajectories in the

Wilson-Fisher theory is as in figure 9. Note that the qualification “perturbative” is important,

and the non-perturbative structure may be different. However, we expect that the leading

trajectory and its shadow are robust (including the Regge intercept) up to the first intersection

with other trajectories.

Among the plethora of horizontal trajectories, we will restrict our attention to the op-

erators (2.35) and renormalize them explicitly in section 5.1. In section 5.3 we will show by

direct calculation that they indeed appear in the Regge limit of local correlation functions,

and so should be included in the Chew-Frautschi plot.

– 19 –



3 The twist-2 trajectory in the detector frame

3.1 The detector frame

Having described general features of the space of detectors in the Wilson-Fisher theory, let us

now turn to constructing detectors explicitly in perturbation theory. Detectors live at future

null infinity I +. This is not a special place in a CFT, since it can be mapped elsewhere

by conformal transformations. However, perturbation theory does not respect conformal

invariance in intermediate steps. Thus, defining detectors in perturbation theory is somewhat

different from defining operators inside Minkowski space. The symmetries of I + can provide

powerful simplifications. (We will see examples where they trivialize some 2-loop integrals!)

Furthermore, working with detectors leads to fruitful connections to scattering amplitudes

and cross sections, as we explain shortly. We refer to the conformal frame with a detector at

I + as the “detector frame.”

Before discussing the detector frame in detail, let us recall some facts about perturbation

theory in the traditional conformal frame. Consider a spin-J local operator O(0) at the origin,

see the left pane of figure 10. To define O(0) in perturbation theory, we start with a bare

operator O0(0) with spin J and dimension ∆0. Note that the spin J of O0(0) is exact: it does

not receive perturbative (or non-perturbative) corrections because the Lorentz generators

are exact in perturbation theory. By contrast, the bare dimension ∆0 is not exact. The

renormalized operator O(0) develops an anomalous dimension γ(J), and its full dimension ∆

is given by

∆ = ∆0 + γ(J). (3.1)

Unlike the Lorentz generators, the dilatation generator D and special conformal generators

Kµ do receive corrections. In particular the condition that O(0) is a primary (i.e. that it is

killed by Kµ) gets corrections.

Now consider the detector frame, depicted on the right of figure 10. Detectors transform

like primary operators at spatial infinity. Consequently, the condition of primariness for a

detector is just translation invariance:

[Pµ,D] = 0. (3.2)

(Recall that a primary operator at the origin is killed by Kµ, while a primary at spatial

infinity is killed by Pµ.) The statement of primariness for detectors is exact in perturbation

theory because the translation generators are exact.

For example, consider a free scalar field φ(x). We can define it at future null infinity via

the limit17

φ(α; z) = lim
L→∞

L∆φφ(x+ Lz), (3.3)

17In the embedding formalism, this is equivalent to φ(X) where X = (X+, X−, Xµ) = (0,−α, z). In
the following it will be useful to note that φ(α, z) has mass-dimension 0 (dilatations still act on α), and a
homogeneity property φ(α, λz) = λ−∆φφ(λ−1α, z). These follow directly from the limit definition.
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where α = −2x · z and ∆φ = d−2
2 . Here, z = (1, ~n) is a future-pointing null vector with

~n ∈ Sd−2 labeling a point on the celestial sphere, and α is twice the retarded time of φ(α, z).

Translations simply shift retarded time:

[Pµ, φ(α, z)] = −2zµ∂αφ(α, z). (3.4)

Thus, an example of a primary detector is

Dψ(z) =

∫
dα1 . . . dαn ψ(α1, . . . , αn) : φ(α1, z) · · ·φ(αn, z) : , (3.5)

where ψ(α1, . . . , αn) is any 1-dimensional translationally-invariant kernel. When we turn on

interactions, the operator Dψ(z) will remain primary to all orders in perturbation theory.

More general detectors can be built from products of Dψ(z)’s with different ψ’s and z’s, or

from analogs of Dψ involving derivatives of φ.

We can also classify detectors into irreducible representations of the Lorentz group. We

denote spin in the detector frame by JL. A traceless-symmetric-tensor detector D(z) with

spin JL is a homogeneous function of a null vector z of degree JL, which transforms under

Lorentz transformations as

UΛD(z)U †Λ = D(Λz). (3.6)

(For detectors in more general Lorentz representations, D(z) carries additional indices, and

JL denotes the length of the first row of the Young diagram of the representation.) Note that

JL need not be an integer. For example, if the kernel ψ(α1, . . . , αn) is homogeneous in the

α’s, then the operator Dψ(z) has spin

JL[Dψ] = n(1−∆φ) + degα ψ, (3.7)

where we’ve used that dαφ(α, z) has degree 1−∆φ in z. For instance, the following “twist-2”

detector has spin JL:18

DJL(z) ≡ 1

CJL

∫
dα1dα2|α1 − α2|2(∆φ−1)+JL : φ(α1, z)φ(α2, z) : . (3.8)

For future convenience, we choose the constant CL to be

CJL = 2JL+d−1π sin
(
π
JL+2∆φ

2

)
Γ(2∆φ + JL − 1). (3.9)

This choice ensures that formula (3.27) below is as simple as possible.19 Because the Lorentz

group is exact in perturbation theory, the quantum number JL does not receive corrections

when we turn on interactions.
18We refer to (3.8) as “twist-2” because in the free theory it has twist 2∆φ = d− 2, which is 2 when d = 4.
19As JL is varied, the constant CJL may become 0 or singular. These features are somewhat of a red herring.

Some of them are related to the fact that the factor |α1 − α2|2(∆φ−1)+JL in (3.8) can become singular. For
example, if 2∆φ + JL = 1, then CJL has a pole. This pole cancels the pole coming from |α1 − α2|−1, turning
it into a delta-function δ(α1 − α2). This ensures that the bare detector becomes the light transform of φ2.
Other features can be explained by similar degenerations.
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Finally, the dimension in the detector frame ∆L is minus the eigenvalue of the dilatation

generator D:

[D,D(z)] = −∆LD(z). (3.10)

(The minus sign is because D(z) transforms like a primary operator at infinity.) Of course

∆L does receive perturbative corrections because D does.

In summary, detectors are characterized by the following data

primariness [Pµ,D(z)] = 0,

detector spin JL,

}
exact in perturbation theory,

detector dimension ∆L.
}

corrected in perturbation theory. (3.11)

To define a detector in perturbation theory, we begin with a bare primary detector D0(z)

with spin JL and tree-level dimension ∆L,0(JL). (For example, the tree-level dimension of

the twist-2 operator (3.8) is ∆L,0 = JL + d− 2.) Renormalizing D0, we obtain an anomalous

dimension γL(JL). The full dimension of the renormalized operator is then

∆L = ∆L,0(JL) + γL(JL). (3.12)

These considerations may seem elementary, but they give a surprising way to access Regge

trajectories of light-ray operators that essentially flips the role of ∆ and J ! Consider the

leading-twist detector O+
J (∞, z) in the interacting theory. To construct it using perturbation

theory, we must start with a bare detector DJL(z) with the same Lorentz spin, i.e. JL =

1 − ∆(J), where ∆(J) corresponds to the full interacting theory. When we renormalize

DJL(z), it acquires a detector anomalous dimension γL(JL) and the renormalized operator

[DJL ]R will be O+
J :

[D1−∆(J)(z)]R = O+
J (∞, z). (3.13)

Using (3.12) and the dictionary (JL,∆L) = (1 − ∆, 1 − J), this gives a relation between

∆ = ∆(J) and J

J = J0(1−∆)− γL(1−∆), (3.14)

where we have defined the function J0(JL) by ∆L,0(JL) = 1 − J0(JL). Thus, the detector

frame anomalous dimension γL(JL) naturally gives J as a function of ∆, instead of the more

traditional ∆ as a function of J . Due to (3.14), we sometimes abuse terminology and refer to

−γL(1−∆) as an “anomalous spin,” since it is a correction to J .

To summarize: In terms of the Chew-Frautschi plot, working in the traditional frame

amounts to fixing the vertical position J and computing corrections to the horizontal position

∆. By contrast, working in the detector frame amounts to fixing the horizontal position ∆

and computing corrections to the vertical position J .
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3.1.1 Timelike anomalous dimensions and reciprocity

Thus, the traditional frame and the detector frame give us two ways to access the same

Regge trajectory: (1) renormalize local operators in the traditional frame and compute γ(J),

or (2) renormalize detectors in the detector frame and compute γL(1 − ∆). It turns out

that γL(1 − ∆) is a simple rewriting of a so-called “timelike anomalous dimension” γT (N),

while γ(J) is sometimes called a “spacelike anomalous dimension.” This leads to a simple

explanation of the so-called “reciprocity” relation between spacelike and timelike anomalous

dimensions in CFT [47].

In more detail, consider a Regge trajectory with tree-level twist τ0. For example, the

“twist-2” operators (3.8) have τ0 = d− 2. In the traditional frame, we have

∆ = τ0 + J + γ(J). (3.15)

By contrast, in the detector frame, (3.14) becomes

∆ = τ0 + J + γL(1−∆). (3.16)

Let us define the “timelike anomalous dimension” γT by the trivial redefinition

γL(1−∆) ≡ γT (∆− τ0). (3.17)

Together, (3.15) and (3.16) imply the functional equation

γT (N) = γ(N − γT (N)). (3.18)

Figure 11 gives a geometric interpretation of this equality. This is the statement of “reci-

procity” [47].20

(Reciprocity also sometimes refers to a distinct phenomenon: that the large-spin expan-

sions of γ proceeds in inverse powers of the conformal Casimir h(h − 1) where h = ∆(J)+J
2 ,

that is, that the function P(N) = γ(N − 1
2P(N) + ε

2) admits an asymptotic series in even

powers of 1/(N + 1
2). For conformal theories, this is a consequence of the general structure

of large-spin expansions as manifested by the Lorentzian inversion formula [26, 48, 49].)

3.1.2 The in-in formalism and weighted cross-sections

Detectors annihilate the vacuum:

D|Ω〉 = 0. (3.19)

In conformal field theory, this follows from the identification of detectors with light-ray op-

erators at infinity Oi(∞, z), which must annihilate the vacuum by representation-theoretic

20This simple explanation of reciprocity clarifies its appearance in [20], which studied the leading term in
the OPE of energy detectors. In a CFT, this leading term is fixed by conformal symmetry to be a light-ray
operator O3 with J = 3 [2]. However, the work [20] studied the OPE in the detector frame, so they needed
to access the J = 3 operator by correctly tuning ∆ and using reciprocity to relate timelike and spacelike
anomalous dimensions.
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∆− d
2

J

γT

γ

Figure 11: The anomalous dimension γ (shown in blue) measures the distance between a
Regge trajectory and a 45◦ line, with fixed J , as appropriate for the traditional conformal
frame. The timelike anomalous dimension γT = γL (shown in red) measures the distance
between a Regge trajectory and a 45◦ line, with fixed ∆, as appropriate for the detector
frame. They are equal because they form equal edges of an isosceles right triangle. This is
the statement of reciprocity [47].

arguments [1]. More generally, in a not-necessarily-conformal theory, the primariness condi-

tion (3.2) implies that D|Ω〉 is a zero-energy state, and therefore proportional to the vacuum.

If D has nonzero Lorentz spin JL (in a general theory) and/or dimension ∆L (in the case of

a CFT), then the constant of proportionality must vanish.

Thus, the simplest non-vanishing matrix elements involving detectors are “event shapes,”

i.e. matrix elements in a non-vacuum state |Ψ〉:

〈Ψ|D|Ψ〉. (3.20)

Such event shapes can be computed using the Schwinger-Keldysh or “in-in” formalism. The

ket |Ψ〉 is described by a path integral with the usual Feynman rules, implementing forward

time-evolution. The bra 〈Ψ| is described by a path integral with complex-conjugated Feynman

rules, implementing backward time-evolution. The detector D lives on a “fold” connecting

these two path integrals. In Feynman diagrams, we denote the fold pictorially by a gray

line, with the region below the fold representing the ket |Ψ〉 and the region above the fold

representing the bra 〈Ψ|. See figures 12 and 13 below for examples.

Many interesting bare detectors are diagonalized on scattering states of the free theory:

D|p1, . . . , pk〉out = fD(p1, . . . , pk)|p1, . . . , pk〉out. (3.21)

For example, a product of average null energy (ANEC) operators has this property. When

(3.21) holds, the event shape (3.20) can be written as a sum over final states |p1, . . . , pk〉out

〈Ψ|D|Ψ〉 =
∑

k,p1,...pk

|out〈p1, . . . , pk|Ψ〉|2fD(p1 . . . pk), (3.22)
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where
∑

denotes a sum over particles and integral over phase space. In the in-in formalism,

this representation comes about because propagators between the ket and bra sheets of the

path integral are Wightman propagators, which are supported on-shell. Expressing them as

sums over on-shell states, we obtain (3.22).

We could choose |Ψ〉 itself to be a free theory scattering state |Ψ〉 = |q1, . . . , ql〉in. This

leads to an interpretation for matrix elements of D in terms of weighted cross-sections

〈Ψ|D|Ψ〉 =
∑

k,p1,...pk

|out〈p1, . . . , pk|q1, . . . , ql〉in|2fD(p1 . . . pk)

=
∑

k,p1,...pk

σ(q1, . . . , ql → p1, . . . , pk)fD(p1, . . . , pk). (3.23)

While this interpretation is perhaps the most transparent one, it conflates two problems: the

IR safety of the detector D and the IR divergences associated with the initial state. For this

reason, we will stick with states |Ψ〉 that are clearly well-defined in the interacting theory,

such as |Ψ〉 = T {φ(q1) · · ·φ(ql)}|0〉, where the momenta qi are generic and off-shell.

For well-defined |Ψ〉, the divergences in matrix elements of bare detectors D0 are just

the IR divergences in the weighted cross sections (3.22). Traditionally, one focuses on IR-safe

detectors with fD invariant under soft and collinear splittings. As we will see, there exist

detectors that are not IR-safe and yet their associated IR divergence can be multiplicatively

renormalized (as opposed to being absent altogether in the IR-safe case).

3.2 The leading Regge trajectory in the Wilson-Fisher theory

Let us illustrate these ideas by renormalizing the twist-two detectors (3.8) in the Wilson-

Fisher theory. This will provide our first example of fixing ∆ and computing an “anomalous

spin” −γL(1−∆). In the end, we will recover conventional results for anomalous dimensions

of twist-two operators in the Wilson-Fisher theory, which serves as a useful consistency check

on our methods. This computation will also serve as a warmup before tackling more exotic

types of detectors in sections 4 and 5.

Let us start by determining the Feynman rule for insertions of the bare operator DJL(z).

This can be read off from the tree-level matrix element

〈0|φ(−q)DJL(z)φ(p)|0〉 = (2π)dδd(p− q)VJL(z; p). (3.24)

We often abuse notation and write

〈0|φ(−p)DJL(z)φ(p)|0〉 = VJL(z; p), (3.25)

where we implicitly strip off (2π)d times the momentum-conserving δ-function when the

initial and final momenta of an event shape are equal. A straightforward computation (see

appendix A) gives

〈0|φ(α; z)φ(p)|0〉 = e−
iπ∆φ

2 2∆φπd/2
∞∫

0

dβ δd(p− βz)β∆φ−1e−
i
2
αβ. (3.26)
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Figure 12: Vertex for the twist-two light-ray operators. This represents a time-folded di-
agram where the gray horizontal line separates the lower and upper folds. The momentum
runs from the lower to upper fold. The black dot on the gray horizontal line is the insertion
of DJ at null infinity.

The δ-function ensures that only particles moving in the direction z contribute, and we see

that their energy β is Fourier conjugate to the arrival time α. Plugging this in to (3.8), we

find the following simple result for the vertex VJL(z; p):

VJL(z; p) =

∞∫
0

dββ−JL−1δd(p− βz). (3.27)

In fact, this result for the vertex VJL(z; p) is completely determined (up to normalization) by

the symmetries, momentum conservation, and positivity of energy.

A diagrammatic representation of VJL(z; p) is shown in figure 12. This is a time-folded

diagram where the bottom and top edges correspond to t = −∞, while the horizontal line

in the middle corresponds to t = ∞. Time increases in the lower half of the diagram as we

approach the horizontal line from below and decreases once we cross it. The horizontal line

represents the fold where we insert DJL (indicated by a dot). This picture comes from using

a time-ordered path integral to create the ket state φ(p)|0〉 and an anti-time-ordered path

integral to create the bra state 〈0|φ(−p), and the fold, or “cut”, separates the amplitude from

its complex conjugate.

Overall, the Feynman rules for in-in calculations involving insertions of DJL are:

1. Each interaction vertex on the lower sheet gets a factor of iλµ̃ε.

Each interaction vertex on the upper sheet gets a factor of −iλµ̃ε.

2. For propagators on the lower sheet use the time-ordered propagator −i/(p2 − i0).

For propagators on the upper sheet use the anti-time-ordered propagator i/(p2 + i0).

3. For propagators between the lower and upper sheets use the Wightman propagator

2πδ(p2)θ(p0) ≡ (2π)δ+(p2). Note that only positive momenta flow through the fold.

– 26 –



Figure 13: Two loop correction to the vertex VJL . All momentum flows up from the lower
to the upper fold.

4. For a line with momentum p passing through an insertion of DJL(z), include a factor of

VJL(p; z). (Do not include extra propagators for the segments of the line on either side

of the insertion, since these are already included in VJL(p; z). Using cross-section inter-

pretation, this corresponds to the usual fact that we should be computing amputated

diagrams.)

5. For the time-ordered initial state T {φ(p1) · · ·φ(pn)}|0〉 add n univalent vertices sourcing

momenta pi on the lower sheet.

6. For the anti-time-ordered final state 〈0|T {φ(−q1) · · ·φ(−qm)} add m univalent vertices

sinking momenta qi on the upper sheet.

7. Multiply by an overall momentum conserving δ-function, (2π)dδ(p1 + . . . + pn − q1 −
. . .− qm).

With these rules in hand, we are ready to study loop corrections to DJL . We focus on

the event shape

〈Ω|φR(−p)DJL(z)φR(p)|Ω〉, (3.28)

where we implicitly strip off the momentum-conserving δ-function as in (3.25). To make the

initial and final states well-defined, we have inserted renormalized operators

φR(p) = Z
−1/2
φ φ(p), (3.29)

where the wavefunction renormalization factor for φ is given by

Zφ = 1− 1

ε

λ2

12(4π)4
+O(λ3). (3.30)

Any divergences in the event shape (3.28) must be removed by multiplicative renormalization

of the operator DJL , from which we can read off its anomalous dimension.
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At one loop, there are no nontrivial contributions to (3.28): the sole interaction vertex

must lie either below or above the fold, and the resulting loop integral simply gives a mass

correction to the propagator, which vanishes in dimensional regularization. At two loops, the

only nontrivial diagrams are “sunrise” diagrams. For these, we have three possibilities: (1)

the interaction vertices lie on opposite sides of the fold, (2) both interaction vertices lie below

the fold, (3) both interaction vertices lie above the fold.

Case (1) is the most interesting, so we consider it first. By positivity of energy, the

operator φ(p) creating the initial state must connect to the interaction vertex below the fold,

and φ(−p) creating the final state must connect to the vertex above the fold. One of the lines

between the vertices must pass through the DJL insertion. The resulting diagram is depicted

in figure 13, and is given by

F (2)
JL

(z; p) =
(−iλµ̃ε)(+iλµ̃ε)

2

∫
ddq

(2π)d
ddk

(2π)d
i

p2 + i0

−i
p2 − i0

VJL(z; q)(2π)2δ+(k2)δ+((p− q − k)2)

=(λµ̃ε)2 volSd−2

2d(2π)2d−2

Γ(d−2
2 )Γ(−JL)

Γ(−JL + d−2
2 )

(−2z · p)JL(−p2)
d−4

2
−JL−2θ(−p2). (3.31)

The symmetry factor 1
2 comes from swapping the lines that do not pass through DJL . To

compute the integral, we used δd(q−βz) inside VJL(q; z) to solve for q. The remaining integral

over k localizes to a sphere Sd−2, giving a factor volSd−2. Finally, integrating over β gives

(3.31). Note that the i0’s play no role in this calculation, since kinematics force p to be

strictly timelike.

Näıvely, the result (3.31) appears to be finite. However, there is a hidden divergence

when we interpret it as a distribution in p. Setting d = 4− ε and expanding around ε = 0 we

find the pole

(−2z · p)JL(−p2)
d−4

2
−JL−2 =

π

2ε(JL + 1)

∫
dββ−JL−1δd(p− βz) +O(ε0)

=
π

2ε(JL + 1)
VJL(z; p) +O(ε0). (3.32)

The derivation of this identity can be found in Appendix B. The divergence originates from

the region where q, k and z are all collinear, whence the factor VJL(z; p). Plugging it into

(3.31), this gives a divergence proportional to the tree-level vertex VJL(z; p):

F (2)
JL

(z; p) = −1

ε

λ2

2(4π)4

1

JL(JL + 1)
VJL(z; p) +O(ε0). (3.33)

This will make multiplicative renormalization possible.

Finally, let us consider cases (2) and (3), where the two-loop sunsets are entirely below

or above the fold. In either case, the diagram is proportional to∫
ddk ddq

1

q2

1

k2

1

(p− q − k)2

1

p2
VJL(z; p) ∝ p−2εVJL(z; p), (3.34)
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where we have performed the integral by dimensional analysis and used d = 4 − ε. Note

that the vertex VJL(z; p) is supported on-shell, p2 = 0. How then should we interpret the

distribution p−2εVJL(z; p)? We claim that it vanishes. Indeed, if Re ε < 0, then the distri-

bution clearly vanishes when paired with any smooth test function. In general, we define it

by analytic continuation away from this region, so it vanishes identically. Alternatively, for

p2 = 0 the integral ∫
ddk ddq

1

q2

1

k2

1

(p− q − k)2
(3.35)

does not have a scale, and such integrals are known to vanish in dimensional regularization.

In summary, the bare detector event shape (3.28) is given up to two-loop order by

〈Ω|φR(−p)DJL(z)φR(p)|Ω〉 = Z−1
φ

(
VJL(z; p) + F (2)

JL
(z, p)

)
+O(λ3), (3.36)

where the Z−1
φ factor comes from the renormalized φR operators. There are divergences from

Z−1
φ and also the ε−1 pole in F (2)

JL
(z; p). They can be cancelled up to O(λ3) by defining the

renormalized operator

[DJL(z)]R = Z−1
JL
DJL(z)

ZJL ≡ Z
−1
φ

(
1− 1

ε

λ2

2(4π)4

1

JL(JL + 1)

)
+O(λ3). (3.37)

The anomalous dimension of DJL in the detector frame is then

−γL(JL) =
∂ logZJL

∂λ
β(λ) =

λ2

(4π)4

(
1

JL(JL + 1)
− 1

6

)
+O(λ3), (3.38)

where the β-function is

β(λ) = −ελ+ 3
λ2

(4π)2
+O(λ3). (3.39)

The minus sign on the left-hand side of (3.38) comes from the fact that we define the dimension

of a detector as if it were a primary at infinity. (It is the same minus sign as in (3.10).)

The fixed-point value of the coupling is

λ∗ =
(4π)2

3
ε+ . . . . (3.40)

Plugging this into γL(JL), the expression (3.14) for the twist-2 Regge trajectory becomes

J(∆) = ∆− (d− 2)− γL(1−∆)

= ∆− 2 + ε+
ε2

9

(
1

(∆− 1)(∆− 2)
− 1

6

)
+O(ε3). (3.41)
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Equation (3.41) gives the promised perturbative expansion for J in terms of ∆. If we solve

it for ∆ in terms of J , the result agrees precisely with (2.15) and (2.17) at O(ε2).

One lesson from this exercise is that we can define and renormalize DJL(z) using only its

action on on-shell states. Specifically, in the above computation, we needed only the vertex

VJL(z; p) — never the explicit definition (3.8). In fact, this lesson holds more generally. When

defining and renormalizing detectors in perturbation theory, it is sufficient (and often more

convenient) to specify their action on on-shell states. This method is distinct from the usual

renormalization of twist-2 operators (which can also exploit matrix elements between on-shell

parton states, see e.g. [50]), since usually operators are inserted at finite positions rather than

at infinity; the resulting Regge trajectory coincides at the critical point λ = λ∗.

4 The leading intersection and the Pomeron

In the previous section, we studied the renormalization of the leading-twist detectors DJL ,

which precisely define “EJ−1 flux” for a certain J = 1−∆L(JL). We found that a renormalized

detector [DJL ]R can be defined in (3.37) so that divergences in its matrix elements cancel.

However, the definition (3.37) does not work for JL = 0 or JL = −1, since the renormalization

constant ZJL becomes ill-defined. This also leads to the singularities at ∆ = 1 and ∆ = 2

in (3.41).

In section 2.5, we anticipated that the problem at JL = −1 (∆ = 2) is due to the

intersection of the leading twist trajectory with its shadow, see figure 4. In this section, we

explicitly confirm this expectation. We start with a discussion of the shadow trajectory in

general. We then discuss its role in perturbation theory and see how the mixing happens.

4.1 Shadow symmetry of Regge trajectories

As discussed in section 2.4, the shadow of DJL(z) takes the (schematic) form

SJ [DJL ](z) =

∫
Dd−2z′(−2z · z′)2−d−JLDJL(z′). (4.1)

The shadow detector SJ [DJL ] has the same scaling dimension as DJL , but its Lorentz spin is

2− d− JL instead of JL. The trajectories DJL and SJ [DJL ] thus intersect at JL = 2−d
2 .

The expression (4.1) is schematic because we have been imprecise about the convergence

of the integral. The variable z′ is integrated over the projective future null cone, which is

compact, as it is just a parametrization of the celestial sphere. Assuming that DJL(z′) is

well-defined, divergences can only come from the factor (−2z · z′)2−d−JL , which is singular

when z′ ∝ z. To study the singularity, we parametrize z = (z+, z−, zi) = (1, y2, yi) using a

(d− 2)-dimensional coordinate y. The right-hand side of (4.1) becomes∫
dd−2y′|y − y′|2(2−d−JL)DJL(y′) =

∫
dd−2x|x|2(2−d−JL)DJL(y + x)

=

∫
Sd−3

dΩd−3

∫ ∞
0

drr−1+(2−d−2JL)DJL(y + x), (4.2)
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where in the last line, we chose radial coordinates for x ∈ Rd−2. Since nothing special happens

to DJL(y + x) at x = 0, this integral is convergent near r = 0 for JL <
2−d

2 . (We don’t have

to worry about r = ∞ because it is merely a coordinate singularity and is a regular point

on the celestial sphere. Practically speaking, the r → ∞ limit is regulated by the decay of

DJL(y + x) at large x, which in turn is due to the singular Weyl factor coming from the

coordinate choice.)

More generally, as discussed in appendix B, the integral (4.2) should be defined by analytic

continuation in JL away from the region where it converges. The result is that we can view

the expression

|y − y′|2(2−d−JL) (4.3)

as a well-defined distribution in y′ for all JL ∈ C \ {2−d
2 , 2−d

2 + 1, 2−d
2 + 2, · · · }. Near JL =

2−d
2 + n, we have simple poles

|y − y′|2(2−d−JL) ∝ 1

JL − 2−d
2 − n

∂2nδd−2(y − y′). (4.4)

It is helpful to define the following rescaled version of SJ ,

S′J = SJ
2

volSd−3Γ(2−d
2 − JL)

, (4.5)

where JL reads off the spin of the object on which it acts. This cancels the above poles and

also makes the coefficient of the delta-function δd−2(y− y′) at the n = 0 pole equal to 1. The

transform S′J now has two key properties: it is well-defined for all JL ∈ C, and for JL = 2−d
2

it acts as the identity:

S′J [D 2−d
2

] = D 2−d
2
. (4.6)

In perturbation theory, if we define a renormalized detector [DJL ]R = Z−1
JL
DJL , the same

factor ZJL renormalizes S′JL [DJL ]. This is because for any matrix element we can write

〈Ψ|Z−1
JL

S′JL [DJL ]|Φ〉 = S′JL [〈Ψ|Z−1
JL
DJL |Φ〉] = S′JL [〈Ψ|[DJL ]R|Φ〉], (4.7)

and the matrix elements 〈Ψ|[DJL ]R|Φ〉 are finite by construction. This means that the results

of section 3.2 also renormalize the shadow of the leading twist trajectory (with the same

caveats at JL ≈ 0,−1 as for the leading twist trajectory).

Our main motivation for discussing the shadow trajectory is to explain why we failed

to define [DJL ]R near JL = 2−d
2 ≈ −1 in perturbation theory. We have claimed that this is

due to mixing with the shadow trajectory at the intersection. With this in mind, it will be

convenient to normalize the shadow transform so that it squares to the identity for any JL:

ŜJ = SJ
Γ(−JL)

π
d−2

2 Γ(2−d
2 − JL)

. (4.8)
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This has the property that Ŝ2
J = 1, which will simplify calculations below (and we still have

ŜJ [D 2−d
2

] = D 2−d
2

). This comes at the expense of ŜJ having spurious poles for JL ∈ Z≥0, but,

importantly, it is still regular for JL < 0. This includes the intercept point JL = −1 and the

points JL = 1−∆ with ∆ being the scaling dimensions of the local operators, so the spurious

poles will not cause problems in our calculations.

From what we have explained so far, it is not obvious how mixing can happen. Operators

with different tree-level dimensions don’t mix in dimensional regularization, so we do not

expect mixing away from the intersection of the trajectories. Furthermore, the tree-level

trajectories intersect at JL = 2−d
2 , but ŜJ [D 2−d

2
] = D 2−d

2
, so näıvely there is only one detector

at the intersection point! (This property is important for the final picture in figure 6 to be

self-consistent: otherwise the operators with JL = 2−d
2 would always be doubled by ŜJ .)

As we will see, both of these problems have subtleties that resolve them. For the first

problem, it is not true that there is no mixing in dimensional regularization: the coupling λ

always comes in the combination λµ̃ε, so mixing can occur between operators whose dimen-

sions differ by multiples of ε. We can choose JL so that the scaling dimensions of the leading

twist trajectory and its shadow differ by an integer multiple of ε, and this allows them to mix.

For the second problem, even though there is only one operator at the intersection, there are

two tangent spaces (as in figure 4), and this non-analyticity will turn out to be sufficient to

produce a new operator when interactions are turned on.

4.2 The two-loop dilatation operator

In this section we explain in detail how mixing happens between DJL and its shadow. First,

let us define the shadow detectors using the ŜJ version of the spin shadow transform,

D̃JL ≡ ŜJ [D2−d−JL ]. (4.9)

Note that D̃JL has Lorentz spin JL. The property Ŝ2
J = 1 ensures that

DJL = ŜJ [D̃2−d−JL ], (4.10)

which will simplify our calculations. Note that D̃JL is well-defined near JL = −1.

Our goal now is to study the perturbative corrections to the matrix elements of DJL and

D̃JL and demonstrate that the divergences in these matrix elements can be canceled by a

matrix of renormalization constants that mixes these two operators.

We start with a more careful analysis of the matrix elements

〈DJL〉 ≡ 〈0|φR(−p)DJLφR(p)|0〉 and 〈D̃JL〉 ≡ 〈0|φR(−p)D̃JLφR(p)|0〉 (4.11)

near the intersection. In section 3.2 we showed that (eq. (3.36))

〈DJL〉 = Z−1
φ

(
VJL(z; p) + F (2)

JL
(z, p)

)
+O(λ3), (4.12)
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where the two-loop correction is given exactly as (eq. (3.31))

F (2)
JL

(z; p) =(λµ̃ε)2 volSd−2

2d(2π)2d−2

Γ(d−2
2 )Γ(−JL)

Γ(−JL + d−2
2 )

(−2z · p)JL(−p2)
d−4

2
−JL−2θ(−p2). (4.13)

For generic JL, this correction has a divergence at small ε = 4 − d coming from the factor

(−2z · p)JL(−p2)
d−4

2
−JL−2, as given in (3.33). In terms of the matrix element 〈DJL〉, it can

be written as

〈DJL〉 =

(
1 +

λ2

(4π)4

1

ε

[
1

12
− 1

2JL(JL + 1)

])
〈DJL〉tree +O(λ2) + (regular at ε = 0), (4.14)

and the pole was removed in section 3.2 by renormalization.

It turns out that the matrix element 〈DJL〉 also has a divergence for any fixed ε > 0 and

a special value of JL, which also comes from the factor (−2z · p)JL(−p2)
d−4

2
−JL−2. Indeed,

near JL = J/ ≡ d−6
2 (J/ ≈ −1 for small ε; we will see the significance of its precise value

shortly) we find that21

(−p2)
d−4

2
−JL−2θ(−p2) ∼ 1

J/ − JL
δ(p2). (4.15)

On the pole, the angular factor (−2z · p)JL coincides with that of the shadow transform of

V2−d−J/ , so that we can write

F (2)
JL

(z; p) ∼ 1

JL − J/
λ2µ2ε

2(4π)4
R(ε)ŜJ [V2−d−J/ ](z; p), (4.16)

where, after a short calculation (setting µ =
√

4πe−γ/2µ̃ as usual), we find the coefficient

R(ε) = −
(µ̃/µ)2ε211−3dπ

9
2
−dΓ(d− 4)Γ(3− d

2)Γ(d−2
2 )

Γ(d−1
2 )Γ(3d−10

2 )
=

1

ε
+ 1 +O(ε). (4.17)

In terms of the matrix element 〈DJL〉 this means

〈DJL〉 ∼
1

JL − J/
λ2µ2ε

2(4π)4
R(ε)〈D̃J/〉tree + (regular at JL = J/). (4.18)

Equation (4.18) suggests why this divergence appears: the divergence in DJ/ is propor-

tional to D̃J/ . We can thus say that DJ/ and D̃J/ mix. For this to be possible the mass dimen-

sions must agree. Note that the (tree-level) mass dimension of DJ/ is −∆L(J/) = −J/−d+2,

while the mass dimension of D̃J/ is −∆L(2−d−J/) = J/. Furthermore, two-loop contributions

always appear with the factor µ̃2ε = µ̃2(4−d), and so we have to solve

−J/ − d+ 2 = J/ + 2(4− d), (4.19)

21See appendix B. There are also other singularities in the two-loop correction to 〈DJL〉 that can be classified
using the results of appendix B. They will not play a role in the present discussion.
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Figure 14: Free theory Regge trajectories (dashed, red), with the operators participating in
the mixing at JL = J/ shown as green dots. Their scaling dimensions ∆L = 1 − J differ by
2ε, which is the mass dimension of the coupling λ2µ̃2ε. The renormalized trajectory at O(ε2)
is shown in solid blue. The plot is made at ε = 0.3.

which gives J/ = d−6
2 , see figure 14. We use the subscript / for J/ due to the triangular shape

formed by the lines in figure 14.

The divergence (4.18) is worrisome. What does it mean? We expect our perturbative

calculations to follow the following very simple logic: perturbation theory in d = 4 is divergent;

the divergences are regulated in d = 4 − ε where they appear as 1/ε poles; we remove the

1/ε poles to get a sensible ε-expansion. Here we have a divergence that is not regulated

in d = 4 − ε: the matrix elements of the bare detector DJ/ are infinite at two-loop order

regardless of the value of ε.

When d ≈ 4, this divergence happens at JL = J/ ≈ −1. This suggests to view it as the

cause of the breakdown of perturbation theory near JL ≈ −1. This is similar to the breakdown

of the ε-expansion near ε = 0 that would happen due to 1/ε poles if we did not renormalize our

operators. We should thus try to improve perturbation theory by renormalizing our operators

to remove the 1/(JL − d−6
2 ) poles.

As a first attempt, we may try the combination

DJL − C
λ2

JL − J/
D̃J/ , (4.20)

where C is chosen using (4.18) so that the 1/(JL − J/) pole cancels in the matrix elements.

While this combination can cancel the 1/(JL−J/) pole, it is not consistent with dimensional

analysis and the Lorentz spins of the two terms do not match. We may then consider an

– 34 –



improved version

DJL − C
λ2µ2−d−2JL

JL − J/
D̃JL , (4.21)

which now has matching dimensions and spins and still cancels the pole. Note that even

though the divergence occurs at one value of JL, to cancel it we are forced to consider a

mixed combination of the two trajectories for all values of JL. In the above we could replace

C by any holomorphic function C(JL) that has the correct value at J/. This is a scheme

choice of the same kind we face when removing 1/ε divergences. Physical quantities will not

depend on this choice.

The linear combination in (4.21) is sufficient to remove the 1/(JL − J/) divergence, but

it does not remove the standard 1/ε divergence. Simply adding the standard counter-term

defined by (3.37) will not work because it will reintroduce the 1/(JL−J/) pole. This happens

because, as one can see from (4.18), the constant C in (4.21) itself contains a 1/ε pole: the

divergences overlap. The total divergence of the matrix element near JL = J/ and ε = 0 has

the schematic form

〈DJL〉 ∼
1

(J − J/)ε
+

1

J − J/
+

1

ε
. (4.22)

We seek a renormalization that removes all these divergences at the same time.

We can try to represent the divergence as

〈DJL〉 = X(ε, JL)〈DJL〉tree + µ2−d−2JLY (ε, JL)〈D̃JL〉tree + finite, (4.23)

and similarly for D̃, so the renormalization factor becomes a 2× 2 matrix acting on the basis

(DJL , µ2−d−2JLD̃JL). The coefficients are to be found by making all matrix elements in the

renormalized basis free of the poles (4.22).

A complication can be anticipated: because D 2−d
2

= D̃ 2−d
2

, the coefficients X and Y in

eq. (4.23) will contain spurious poles at JL = 2−d
2 ≈ −1, due to the degeneracy of the basis.

In some sense this is really a problem with the tree-level basis. Before proceeding with the

two-loop renormalization, we should first fix the tree-level problem.22 We thus define a basis

that is non-degenerate near the intersection:

DJL =

(
DJL
D′JL

)
, D′JL ≡

µ2−d−2JLD̃JL −DJL
JL − 2−d

2

. (4.24)

Since the two entries have the same mass dimension and Lorentz spin, the renormalization

matrix in this basis will be dimensionless and Lorentz invariant. The detectors D′JL however

do not have definite scaling dimension due to the explicit presence of µ. Note in particular that

D 2−d
2

and D′2−d
2

are linearly-independent, but D′2−d
2

does not scale in a standard way. Instead,

22Strictly speaking, we could proceed also in the degenerate basis. In fact, we will do so in section 5. Here
we will chose a non-degenerate basis in order to make the discussion of the intercept more transparent.
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D′2−d
2

and D 2−d
2

form a log-multiplet in the free theory. As we will see later, interactions break

this log-multiplet into two independent operators.

The renormalization of DJL can be worked out from the divergences in eqs. (4.14) and

(4.18), which give respectively:

〈DJL〉 =
λ2

(4π)4

1

ε

[
1

12
− 1

2JL(JL + 1)

]
〈DJL〉tree + (regular at ε→ 0), (4.25)

〈DJL〉 =
λ2

(4π)4

1

JL − J/

[
R(ε)

2
〈DJL〉tree −

εR(ε)

2
〈D′JL〉tree

]
+ (regular at JL → J/). (4.26)

As a sanity check, let us verify the compatibility of these equations. Recalling that R(ε) ∼ 1
ε ,

the second line gives the double pole

〈DJL〉 ∼
λ2

(4π)4

〈DJL〉tree

2ε(JL + 1)
+ (less singular as ε→ 0, JL → −1), (4.27)

which is in perfect agreement with the first line. This confirms that we identified all nearby

singularities, and allows us to combine the divergences into a single expression:

〈DJL〉 =
λ2

(4π)4

([
1

12ε
− 1

2εJL
+

R(ε)

2(JL − J/)

]
〈DJL〉tree −

εR(ε)

2(JL − J/)
〈D′JL〉tree

)
+ (regular).

(4.28)

The divergences in 〈D̃JL〉 follow by the simple replacements JL 7→ 2−d−JL and D̃ ↔ D, which

transforms D′JL in a simple way. Employing elementary algebra, we obtain the divergences

in the matrix elements of the basis (4.24), or equivalently the renormalization factor which

cancels them:

[DJL ]R ≡ Z−1
JL

DJL (4.29)

with

ZJL = 1 +
λ2

(4π)4

(
1

12ε −
1

2εJL
+ R(ε)

2(JL−J/)
−εR(ε)

2(JL−J/)

1
εJL(JL+d−2) −

R(ε)
(JL−J/)(JL+d−2+J/)

1
12ε −

1
2ε(2−d−JL) −

R(ε)
2(JL−J/)

)
.

(4.30)

As expected, the renormalization factor has singularities at ε→ 0 and as JL → J/ ≈ −1 and

its shadow 2 − d − J/ ≈ −1, but no other singularities near the intersection point. We have

thus succeeded at removing all the known singularities without introducing new ones! The

renormalized detectors [DJL ]R form a regular basis near the leading intersection.

From this result we can deduce how the dilatation operator acts as a 2× 2 matrix in this

basis,

D[DJL ]R = D [DJL ]R. (4.31)
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The dilatation operator D captures the physical scale dependence of matrix elements, and is

given on detectors at infinity by

D = Deng −
∂

∂ logµ
, (4.32)

where Deng is the operator counting the engineering mass dimensions. We stress that this is

not simply the µ dependence, because of the explicit factors of µ in the basis (4.24). In fact,

D commutes with powers of µ. At tree-level it gives

DDJL = (2− d− JL)DJL +O(λ2), DD̃JL = JLD̃JL +O(λ2), (4.33)

and working through the basis change in eq. (4.24) we find

D0 =

(
2− d− JL 0

2 JL

)
. (4.34)

It will be significant that this is non-diagonal already at tree-level. At higher orders, acting

on eq. (4.29) we have

D = Z−1
JL

(D0 +Dλ)ZJL (4.35)

where Dλ acts as renormalization group flow on the couplings in Z,

Dλ = β(λ)
∂

∂λ
= (−ελ+O(λ2))

∂

∂λ
. (4.36)

Substituting in eq. (4.30) and commuting D0 across, we finally find

D = D0 +
λ2

(4π)4

(
1
JL
− 1

6 εR(ε)
2

JL(2−d−JL)
1

2−d−JL −
1
6

)
+O(λ3). (4.37)

This is the main result of this section. Crucially, all entries are regular as ε→ 0 and JL ≈ −1.

4.3 Interpreting the result

What can we extract from the dilatation operator D in (4.37)?

Firstly, it should correctly reproduce the anomalous dimensions of DJL away from the

intercept JL = 2−d
2 . This is essentially guaranteed by construction, since it is just a change

of basis away from the usual (diagonal) dilatation operator that we discussed in the previous

section. It is still interesting to verify it directly from (4.37). If we define O = v[DJL ]R for

some row vector v, then

DO = vD [DJL ]R. (4.38)

Thus, in order to have scaling detectors O with the property DO = −∆LO we must choose

v to be a left eigenvector of D , vD = −∆Lv.
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At tree level, such eigenvectors are v
(0)
1 = (1, 0) and v

(0)
2 = ( 1

JL− 2−d
2

, 1) with eigenvalues

v
(0)
1 D = (2− d− JL)v

(0)
1 , v

(0)
2 D = JLv

(0)
2 . (4.39)

Unless JL = 2−d
2 , these are non-degenerate, and thus the corrections to the eigenvalues are

easily determined. The only subtlety is that D is not Hermitian, and so its perturbation theory

is a bit more general than usually encountered in quantum mechanics. In practice this means

that we should track both left eigenvectors vi and right eigenvectors ui for each eigenvalue.

Normalizing them so that viuj = δij (which gives u
(0)
1 = (1, −1

2−d−JL ) and u
(0)
2 = (0, 1)), trivial

modifications of the standard theory give for the O(λ2) eigenvalues

−(∆L)i = v
(0)
i Du

(0)
i +O(λ3), (4.40)

and so in particular

(∆L)1 = JL + d− 2 +
λ2

(4π)2

(
1

6
− 1

JL(JL + 1)
+O(ε)

)
+O(λ3). (4.41)

This is equivalent to (3.38) obtained in section 3.2, and leads to the standard result for

the anomalous dimension of the leading twist trajectory upon specializing to the fixed point

λ = (4π)2

3 ε+O(ε2).

More generally, the characteristic equation for D gives:

0 = det(D + ∆L)

= (∆L + JL)(∆L + 2− d− JL)

+
λ2

(4π)4

(
−2∆L + 2− d

6
+

(2− d)∆L

JL(2− d− JL)
+ 2(1− εR(ε))

)
+O(λ3), (4.42)

which generalizes the physical state condition (2.27) to the theory away from the conformal

fixed point λ = λ∗. The singularities at JL ≈ 0,−2 will be discussed in the next section.

The advantage of the dilatation operator in the regular basis (4.37) is that we are free to

set JL = 2−d
2 directly, since the matrix is perfectly regular. At tree level we find

D0 =

(
2−d

2 0

2 2−d
2

)
. (4.43)

This does not only have degenerate eigenvalues, but also forms a non-trivial Jordan block.

Thus, D 2−d
2

and D′2−d
2

form a logarithmic multiplet at tree level.

This is surprising at first sight since D is expected to be self-adjoint with respect to

the inner product defined by the two-point functions of time-ordered operators. This is

required by target-projectile duality in the Regge limit of correlators, see section 2.3 of [15].

Physically, correlation functions should depend only on the relative boost between a target

and a projectile and not on individual boosts. However, nothing ensures that this inner
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product is positive, nor nondegenerate at weak coupling in the regular basis (4.24), which

could explain eq. (4.43). It would be interesting to further study Regge factorization in this

basis.

The Jordan form makes the determination of the eigenvalues harder than above, and the

easiest way is to solve the characteristic equation in (4.42), restricted to JL = 2−d
2 . It has

solutions

(∆L)± = 1− ε

2
∓
√

2λ

(4π)2
(1 +O(ε)) +O(λ2). (4.44)

Writing this result in terms of J = 1−∆L and evaluating at the fixed point λ = (4π)2

3 ε+O(ε2),

we find

J± =

(
1

2
±
√

2

3

)
ε+O(ε2). (4.45)

The Regge intercept is the larger of the two roots, which agrees with (2.29) obtained from

general analyticity assumptions. Here we observe two new features. Firstly, we can set ε = 0

in (4.44) to obtain the Regge intercept in the non-conformal massless 4d φ4 theory:

(∆L)± = 1∓
√

2λ

(4π)2
+O(λ2). (4.46)

Secondly, we can explicitly determine the (left) eigenvectors of D ,

v± =

(
1,± λ√

2(4π)2
(1 +O(ε)) +O(λ2)

)
. (4.47)

In particular, the detector v+[DJL ]R is the Pomeron of the Wilson-fisher theory.

In this calculation, we saw explicitly that the intersection of two trajectories gave rise

to a logarithmic multiplet at tree level. We were able to construct a logarithmic partner for

D 2−d
2

due to the existence of two tangent spaces at the intersection point, even though D 2−d
2

is the unique primary operator at that point. Turning on interactions broke the logarith-

mic multiplet into two conventional primary multiplets. The Jordan form of the tree-level

dilatation operator was essential to produce an O(λ) splitting from a two-loop diagram.

In section 2.5 we considered characteristic equations of the form

(∆L − (∆L)1(JL))(∆L − (∆L)2(JL)) = 0, (4.48)

and observed that non-perturbative analyticity in spin implies an all-orders cancellation of

poles near the intercept. Here we realized such an equation from the determinant of a mix-

ing matrix (4.37) which is guaranteed to be free of poles near the intercept, provided our

renormalization procedure (removing both 1/ε and 1/(J − J/)-type poles) is self-consistent

to all orders. As in section 2.5, this characteristic equation allows us to partially resum the

perturbative expansion to obtain reliable results near the intercept, as we saw in the example

of JL = 2−d
2 .
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4.4 Can trajectories intersect?

It is interesting to ask whether all intersections in the free spectrum (figure 9) get resolved in

a way similar to the resolution of the Regge intercept. It is tempting to conjecture that any

given intersection will always get resolved at a sufficiently high order in perturbation theory,

meaning that there will be no level crossing. Taking this conjecture to its extreme, one can

conjecture that in the non-perturbative theory all light-ray operators (with the same global

symmetry) live on a single complex-analytic Regge trajectory.

Here we will simply make an observation of a statistical nature. We saw that it is fruitful

to view Regge trajectories as the solutions to a mixing problem, where near intersections

one diagonalizes a regular “Hamiltonian” representing J = 1 −∆L. In similar situations in

quantum mechanics, one generically expects level crossings to be resolved, in the absence of

symmetry or fine tuning.

Let us review this genericity argument, considering for example a 2× 2 D(ν),

D(ν) =

(
a(ν) b(ν)

c(ν) d(ν)

)
, (4.49)

where ν is a real parameter. In our situation ν is the horizontal coordinate in the Chew-

Frautschi plot, D represents the dilatation operator whose eigenvalues give ∆L = 1− J . The

discriminant of the characteristic equation for D is

DiscrD(ν) = Discrλ (det(λ−D(ν))) = (a(ν)− d(ν))2 + 4b(ν)c(ν). (4.50)

The discriminant vanishes if and only ifD(ν) has degenerate eigenvalues. IfD(ν) is Hermitian,

then we would have that a(ν), d(ν) ∈ R and c(ν) = b(ν)∗. In this situation,

DiscrD(ν) = 4|b(ν)|2 + |a(ν)− d(ν)|2, (4.51)

and DiscrD(ν) = 0 implies a(ν) = d(ν) and b(ν) = 0. This gives 2 or 3 real conditions,

depending on whether b(ν) is real or complex, for just one real variable ν. Generically

these cannot all be satisfied, making level-crossing non-generic in quantum mechanics. The

discriminant is over-constraining because it is the sum of two non-negative terms. If n energy

levels get close to crossing each other, one can extend this argument by considering an n×n
sub-matrix capturing those states.

Now, in the case of Regge trajectories, we do not expect D(ν) to be Hermitian, at least

not when written in a form that is regular in perturbation theory (witness the Jordan form

in (4.43)).

Naively, DiscrD(ν) = 0 is then a single real equation and one might generically expect a

solution for ν ∈ R. However, such a solution, where D(ν) has a single zero, does not describe

level crossing, rather it represents two real solutions colliding to become a complex-conjugate

pair, as in the third of figure 15.

In fact, if we define “no level-crossing” for Regge trajectories to mean that det(1 − J −
D(ν)) = 0 defines a non-singular complex surface in C2 (in particular it cannot look like the
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ν

J

−→

ν

J

or

ν

J

Figure 15: Left: naive level-crossing. Right: two generic resolutions for a non-Hermitian
Hamiltonian.

left of figure 15 in any real section), then generically we do not expect level-crossing as long

as D(ν) is (locally) holomorphic in ν. Indeed, a singular point (J, ν) would need to satisfy

three independent conditions,

det(1−J−D(ν)) = 0, ∂J det(1−J−D(ν)) = 0, ∂ν det(1−J−D(ν)) = 0, (4.52)

and it can be checked that such a point exists only if DiscrD(ν) has a double-zero at some

ν, which is non-generic. Moreover, the surface will be connected as long as DiscrD(ν) has

a zero in the complex plane, which is generic. These arguments can be straightforwardly

generalized to the n× n case.

Of course, none of this proves that level crossing is impossible, only that we do not expect

to see it unless some yet unknown structure restricts the mixing between trajectories.

5 Horizontal trajectories

As explained in section 2.6, we can build horizontal trajectories by taking a product of de-

tectors O1(∞, z1)O2(∞, z2) and convolving with a Clebsch-Gordan coefficient for the Lorentz

group. Which Lorentz irreps can appear in this decomposition? Recall that z1 and z2 can

be thought of as embedding-space coordinates for the celestial sphere Sd−2. Let us assume

for simplicity that O1(∞, z1) and O2(∞, z2) transform like scalar operators on the celestial

sphere. Then their product O1(∞, z1)O2(∞, z2) can be decomposed into traceless symmetric

tensor operators: ∫
Dd−2z1D

d−2z2KJL,j(z1, z2; z)O1(∞, z1)O2(∞, z2). (5.1)

The corresponding representations are two-row Young diagrams for SO(d − 1, 1), with row

lengths (JL, j). Here, −JL ∈ C is a scaling dimension on the celestial sphere, and j ∈ Z≥0 is

spin on the celestial sphere, which we call “transverse spin”.

The Clebsch-Gordan coefficient that implements this decomposition is a conformal three-

point function on the celestial sphere. For example, in the case j = 0, we have

KJL,0(z1, z2; z) = 〈P−J̃L1
(z1)P−J̃L2

(z2)P−JL(z)〉, (5.2)
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where J̃Li = 2− d− JLi and we have defined the standard celestial three-point structure

〈Pδ1(z1)Pδ2(z2)Pδ3(z3)〉 =
1

z
δ1+δ2−δ3

2
12 z

δ2+δ3−δ1
2

23 z
δ3+δ1−δ2

2
31

, (5.3)

where zij ≡ −2zi · zj .
In this section, we study horizontal trajectories built from products of the detectors

DJL(z). In other words, we will study renormalization of the composite detector

HJL1,JL2
(z1, z2) ≡ DJL1

(z1)DJL2
(z2). (5.4)

A special case of (5.4) is the product of light-transformed operators : L[φ2](∞, z1)L[φ2](∞, z2) :,

which at tree level is proportional to H3−d,3−d(z1, z2). This operator will eventually be our

main interest, since in section 5.3 we will find evidence that it appears in the Regge limit of

a correlation function of local operators 〈φ2φ2φ2φ2〉.
Before launching into a detailed discussion of HJL1,JL2

(z1, z2), let us first explain why we

do not consider the apparently simpler expression

: L[φ](∞, z1)L[φ](∞, z2) : . (5.5)

The reason is that in the free theory the operator L[φ](∞, z1) vanishes.23 Indeed, any matrix

element of the schematic form

〈0|φ · · ·φL[φ]φ · · ·φ|0〉 (5.6)

can be computed by Wick’s theorem, and each term in the result will contain either 〈0|φL[φ]|0〉
or 〈0|L[φ]φ|0〉. However, as shown in [1], L[φ] annihilates the vacuum on both the left and

the right, so 〈0|φL[φ]|0〉 = 〈0|L[φ]φ|0〉 = 0.

One can also view this result as a consequence of equations of motion: LSJL[φ] is propor-

tional to the usual shadow transform S∆[φ] [1], and (regularized) S∆ acting on an operator

φ of dimension d−2
2 is just �φ = 0. This suggests that as interactions are turned on, we have

�φ ∝ λφ3, and so L[φ] ∝ λSJL[φ3]. In other words, L[φ] lives on the shadow of whatever

trajectory L[φ3] belongs to. So L[φ2] is indeed the simplest light-transform we can consider

in the Wilson-Fisher theory.

5.1 Renormalizing HJL1,JL2

To renormalize HJL1,JL2
, we study its event shape in a two-φ state:

(2π)dδ(p1 + p2 − q1 − q2)〈HJL1,JL2
(z1, z2)〉

≡ 〈0|T{φR(−q1)φR(−q2)}HJL1,JL2
(z1, z2)T{φR(p1)φR(p2)}|0〉, (5.7)

23There is an additional complication that the definition of the light-transform is not convergent on φ for
d ≤ 4 (it converges on operators of dimension ∆ and spin J satisfying ∆ + J > 1 [1]). However, we can
define the integral by analytic continuation in ∆, similarly to what we did with the spin shadow transform in
section 4.1. In this sense, (d− 4)L[φ] is well-defined in a neighborhood of d = 4.
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Figure 16: Tree-level contribution to (5.7) for p1 ' q1 and p2 ' q2.

Here, we continue to use 〈HJL1,JL2
(z1, z2)〉 as a convenient shorthand for the event shape with

the momentum-conserving δ-function stripped off.

A tree-level contribution to (5.7) is shown in figure 16. Altogether there are four tree-level

diagrams related to figure 16 by permuting p1 ↔ p2 and q1 ↔ q2. Their sum is:

〈HJL1,JL2
(z1, z2)〉tree = (2π)dδ(p2 − q2)VJL1

(z1; p1)VJL2
(z2; p2) + (p1 ↔ p2, q1 ↔ q2), (5.8)

where the vertex VJL(z; p) is defined in (3.27). This event shape is simply the product of

“EJi−1 fluxes” in two different directions.

There are no divergent one-loop diagrams contributing to the event shape (5.7). At

two-loop order, there are two types of diagrams we must distinguish. Firstly, there are

diagrams where we decorate only one of the detectors with loops (such as those considered in

section 3.2), while the other detector simply contributes a tree-level vertex VJLi(zi, pi). We

refer to these as “disconnected” contributions. Secondly, there are diagrams that connect both

detectors DJL1
(z1) and DJL2

(z2) via loops. We refer to these as “connected” contributions.

As explained in the previous section, disconnected contributions lead to subtle mixing

between DJLi(zi) and its shadow D̃JLi(zi). When analyzing operators close to L[φ2]L[φ2], this

mixing depends sensitively on the values JL1, JL2, since they are very close to the Pomeron

intercept.

5.1.1 Connected two-loop diagram

Up to two-loop order, the unique connected diagram (modulo permutations) that contributes

a nontrivial divergence in our event shape is shown in figure 17a. The physical interpretation

is that the particle p1 can split into other particles before arriving at the detector. The

detector can then measure these other particles even if p1 is not in the direction of z1 or z2.

Hence, splitting due to interactions effectively “smears” the detector over the celestial sphere.

The diagram is given by:

G(2) = (λµ̃ε)2 (2πδ(q2
1))(2πδ(p2

2))

∫
ddk

(2π)d
VJL1

(z1; k)VJL2
(z2; q2 − p2 − k)

1

(p2
1 − i0)(q2

2 + i0)

=
(λµ̃ε)2

(2π)d−2
δ(q2

1)δ(p2
2)

∫
dβ1dβ2 β

−JL1−1
1 β−JL2−1

2

δd(q2 − p2 − β1z1 − β2z2)

(p2
1 − i0)(q2

2 + i0)
. (5.9)
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(a) (b)

Figure 17: Loop-level contributions to the mixing of H(z1, z2). (a) Connected diagram
which induces “smearing” on celestial sphere. (b) Disconnected diagram for the correction
to an individual detector. There exist other diagrams at O(λ) and O(λ2) but they do not
contain IR divergences.

Momentum conservation at the interaction vertices implies

p1 = q1 + β1z1 + β2z2, (5.10)

q2 = p2 + β1z1 + β2z2. (5.11)

Plugging these expressions into the propagators, we obtain

G(2) =
(λµ̃ε)2

(2π)d−2
δ(q2

1)δ(p2
2)

∫
dβ1dβ2β

−JL1−1
1 β−JL2−1

2

× δd(q2 − p2 − β1z1 − β2z2)

(2β1q1 · z1 + 2β2q1 · z2 + 2β1β2z1 · z2)(2β1p2 · z1 + 2β2p2 · z2 + 2β1β2z1 · z2)
.

(5.12)

All the angular integrals are gone because the detectors lie at definite angles zi, we only have

to integrate over the two energies βi.

We have in mind JLi ≈ −1 (corresponding to L[φ2] detectors), so the βi → 0 limits

separately converge. However the integral has an IR divergence when both βi simultaneously

go to zero if JL1 + JL2 + 2 = 0. This is the regime where particles formed by splitting

become soft. To compute the divergence, we can ignore higher-order terms in β1, β2 in the

denominator, and also ignore β1, β2 inside the δ-function. Making these approximations and

changing variables to β1 = βx1/2, β2 = βx−1/2, we obtain a pole 1/(JL1 + JL2 + 2) from the

integral over β:

G(2) ∼ (λµ̃ε)2

(2π)d−2

−1

JL1 + JL2 + 2
δ(q2

1)δ(p2
2)δd(q2 − p2)Kα(z1, z2; q1, p2), (5.13)

where α = JL1−JL2
2 and we have defined the kernel

Kα(z1, z2; z3, z4) ≡
∫ ∞

0

dxx−α

(xz13 + z23)(xz14 + z24)
=

π

sinπα

(
z13
z23

)α
−
(
z14
z24

)α
z24z13 − z14z23

, (5.14)
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where zij ≡ −2zi · zj as before. Note that Kα in (5.13) has homogeneity degree −1 with

respect to q1 and p2.

Since the divergence (5.13) is proportional to the on-shell δ-functions δ(q2
1)δ(p2

2), it can

be written as an angular integral over tree-level event shapes. The following identity applies

to any function with the homogeneous scaling f(λz) = λ2−d−JLf(z):∫
Dd−2z VJL(z; p)f(z) = 2

∫
dβ

β
β−d−JL

δ(p2/β2)

volR
f(p/β) = 2δ(p2)f(p), (5.15)

where we used the definition of the measure Dd−2z given below (2.18). Equation (5.13) can

thus be written

G(2) ∼ (λµ̃ε)2

4(2π)2d−2

−1

JL1 + JL2 + 2
(2π)dδd(q2 − p2)

×
∫
Dd−2z3D

d−2z4Kα(z1, z2; z3, z4)V3−d(z3; p1)V3−d(z4; p2). (5.16)

Other connected two-loop diagrams can be obtained by summing over p1 ↔ p2 and

q1 ↔ q2. Overall, we find

〈HJL1,JL2
(z1, z2)〉2 loop,

conn.
∼ (λµ̃ε)2

4(2π)2d−2

−1

JL1 + JL2 + 2

×
∫
Dd−2z3D

d−2z4Kα(z1, z2; z3, z4)〈H3−d,3−d(z3, z4)〉tree (5.17)

Note that the divergence in HJL1,JL2
is proportional to H3−d,3−d, regardless of the values

of JL1 and JL2. Thus, only H3−d,3−d gets multiplicatively renormalized (with some integral

kernel) — other detectors get additively renormalized. This happens because the homogeneity

in q1 and p2 of (5.13) determines the Lorentz spin of the resulting detector.

The multiplicative nature of the divergence can be made more explicit by exploiting

the full power of Lorentz symmetry. Indeed we have not yet diagonalized the total spin of

the operator on the left, which also includes an orbital component. As anticipated in (5.1),

eigenfunctions are simply labelled by three-point functions,

HJL1,JL2;JL(z) ≡
∫
Dd−2z1D

d−2z2〈P−JL(z)Pd−2+JL1
(z1)Pd−2+JL2

(z2)〉HJL1,JL2
(z1, z2).

(5.18)

By the uniqueness property of three-point functions, these automatically diagonalize the

integral: ∫
Dd−2z1D

d−2z2〈P−JL(z)Pd−2+JL1
(z1)Pd−2+JL2

(z2)〉Kα(z1, z2; z3, z4)

= πd−2κα(JL)〈P−JL(z)P1(z3)P1(z4)〉. (5.19)
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Thus the divergence in eq. (5.17) can be written more simply as

〈HJL1,JL2;JL(z)〉2 loop,
conn.

∼ (λµ̃ε)2

(4π)d
−1

JL1 + JL2 + 2
κα(JL)〈H3−d,3−d;JL(z)〉tree. (5.20)

This is the main result of this subsection. Here, as before α = JL1−JL2
2 . The eigenvalue

κα(JL), computed in appendix C, takes the form

κα(JL) =
2

JL + 1
cos(πJL2 )Γ(−JL

2 )2Γ(JL+2
2 − α)Γ(JL+2

2 + α) +O(ε). (5.21)

The eigenvalue is nonsingular for α ∼ ε and generic JL.

The full basis of eigenfunctions, according to the tensor product decomposition in eq. (5.1),

includes states with nonzero transverse spin j 6= 0. Remarkably, it turns out that the eigen-

value κα(JL, j 6= 0) identically vanishes for all nonzero j! This is shown in appendix C; for

α = 0 this also follows from the results of [4] and the fact there there are no horizontal trajec-

tories with J = 0, 1, · · · and j = 0. We will thus restrict our attention to j = 0 states. Note

that this is distinct from what happens in the BFKL case, where all transverse spins evolve

nontrivially (although some may appear with vanishing OPE coefficient in specific examples

due to selection rules, see [51]).

5.1.2 Disconnected contributions and the complete renormalization

In addition to the connected diagram in figure 17a there also exist disconnected diagrams

which correct each of the two constituent detectors DJLi inside of HJL1,JL2
, see figure 17b.

For JL1, JL2 ∼ −1 these diagrams lead to the mixing of DJLi with D̃JLi , as we discussed in

section 4.

To interpret the results of section 4 in the context of HJL1,JL2;JL we can just apply

the conformal decomposition (5.18) to the divergence (4.23). It is important however that

after performing the angular integral in (5.18), the shadow detectors D̃JLi do not define an

independent family of detectors, rather they are just proportional to D2−d−JLi . Thus,

〈HJL1,JL2;JL〉2 loop,
disc.

= (X(ε, JL1) +X(ε, JL2)) 〈HJL1,JL2;JL〉tree

+ Ŝ(−JL, d− 2 + JL2, [d− 2 + JL1])Y (ε, JL1)µ2−d−2JL1〈H2−d−JL1,JL2;JL〉tree

+ Ŝ(−JL, d− 2 + JL1, [d− 2 + JL2])Y (ε, JL2)µ2−d−2JL2〈HJL1,2−d−JL2;JL〉tree

+ finite. (5.22)

Here the shadow coefficient Ŝ(δ1, δ2, [δ3]) is defined by

〈Pδ1(z1)Pδ2(z2)ŜJ [Pδ3(z3)]〉 = Ŝ(δ1, δ2, [δ3])〈Pδ1(z1)Pδ2(z2)Pd−2−δ3(z3)〉. (5.23)

Explicitly,

Ŝ(δ1, δ2, [δ3]) =
π
d−2

2 Γ(δ3 − d−2
2 )Γ(d−2−δ3+δ1−δ2

2 )Γ(d−2−δ3+δ2−δ1
2 )

Γ(d− 2− δ3)Γ( δ3+δ1−δ2
2 )Γ( δ3+δ2−δ1

2 )

Γ(δ3)

π
d−2

2 Γ(2−d
2 + δ3)

=
Γ(δ3)Γ(d−2−δ3+δ1−δ2

2 )Γ(d−2−δ3+δ2−δ1
2 )

Γ(d− 2− δ3)Γ( δ3+δ1−δ2
2 )Γ( δ3+δ2−δ1

2 )
. (5.24)
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In the first line, the first factor is the standard shadow coefficient in d−2 dimensions and the

second factor comes from the definition (4.8). The coefficients X(ε, JL) and Y (ε, JL) can be

deduced from (4.28),

X(ε, JL) =
λ2

(4π)4

(
1

12ε
− 1

2εJL
+

R(ε)

2(JL − J/)
+

εR(ε)

2(JL − J/)(JL − 2−d
2 )

)
, (5.25)

Y (ε, JL) =− λ2

(4π)4

εR(ε)

2(JL − J/)(JL − 2−d
2 )

. (5.26)

As discussed in section 4, these have a spurious pole at JL = 2−d
2 , but it cancels in the

combination (4.23) due to D 2−d
2

= D̃ 2−d
2

. It therefore also cancels in the combination (5.22).

Combining (5.22) with (5.20), we can define the renormalized operator

[HJL1,JL2;JL ]R =(1−X(ε, JL1)−X(ε, JL2))HJL1,JL2;JL

− Ŝ(−JL, d− 2 + JL2, [d− 2 + JL1])Y (ε, JL1)µ2−d−2JL1H2−d−JL1,JL2;JL

− Ŝ(−JL, d− 2 + JL1, [d− 2 + JL2])Y (ε, JL2)µ2−d−2JL2HJL1,2−d−JL2;JL

+
(λµ̃ε)2

(4π)d
µ−JL1−JL2−2

JL1 + JL2 + 2
κα(JL)H3−d,3−d;JL . (5.27)

The operator [HJL1,JL2;JL ]R has finite matrix elements at two-loop level.

5.2 Dilatation operator and anomalous dimensions?

The dilatation operator acting on [HJL1,JL2;JL ]R can now be obtained straightforwardly. The

structure of its action is evident from (5.27):

D[HJL1,JL2;JL ]R ∼ [HJL1,JL2;JL ]R + [H2−d−JL1,JL2;JL ]R + [HJL1,2−d−JL2;JL ]R + [H3−d,3−d;JL ]R,

(5.28)

where we omit explicit coefficients. We can make two observations. Firstly, the subspace

spanned by the three operators

{[H3−d,3−d;JL ]R, [H3−d,−1;JL ]R, [H−1,−1;JL ]R} (5.29)

is closed under the action of D. (There are three operators and not four because of Bose

symmetry: [H−1,3−d;JL ]R = [H3−d,−1;JL ]R.) Secondly, for all other JL1, JL2 the disconnected

part of D acts within the subspace spanned by

{[HJL1,JL2;JL ]R, [H2−d−JL1,JL2;JL ]R, [HJL1,2−d−JL2;JL ]R, [H2−d−JL1,2−d−JL2;JL ]R}, (5.30)

while the connected contribution adds an off-diagonal mixing with [H3−d,3−d;JL ]R.

As far as computing the eigenvalues of D goes, this means that the connected diagrams

only affect the eigenvalues on the subspace (5.29). On the subspace (5.30) the connected

contribution does not affect the eigenvalues, and only modifies the eigenvectors. In fact, for
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most values of JL1, JL2 there is technically no need to subtract H3−d,3−d in (5.27), and the

modification to the eigenvectors amounts to removing this subtraction.

As discussed in section 2.6, this suggests that generically (5.30) should not be treated as

new operators, and only (5.29) contains new dynamical information. We can then consider

the problem of diagonalizing the dilatation operator on the subspace (5.29).

This turns out to be subtle for at least two reasons. Firstly, when we go to higher pertur-

bative orders, it is possible that operators other thanH3−d,3−d,JL will appear from connnected

divergences. Our preliminary analysis indicates that this happens already at O(λ3).24 These

might include operators with other values of JL1 and JL2, or with a different number of fun-

damental fields, e.g. L[φ2]L[φ4]. While it isn’t necessarily a problem for diagonalizing the

action of D order by order, this infinite degeneracy raises the question of the meaning of

its eigenvalues. Normally, when we have a finite degeneracy, we can write an RG equation

which shows that computing anomalous dimensions γ allows us to resum terms of the form

(γ log x)n, where x is some scale. Here, the structure of the resummation is unclear, and

so the meaning of D eigenvalues is also obscured. Specifically, it is not clear whether the

solutions to the RG equation have the form of a discrete sum of powers xγ . It would be

interesting to study this question in more detail.

Secondly, even if we simply focus on computing the eigenvalues order-by-order, our dilata-

tion operator D has poles λ2/(JLi− 2−d
2 ) ∼ λ2

ε due to degeneracy of the basis (5.29) as ε→ 0.

This can be resolved as in section 4 by a change of basis. This results in the leading-order

dilatation operator becoming a 3× 3 Jordan block. This Jordan block structure complicates

the perturbation theory for the eigenvalues. For example, in section 4 we saw that at the

fixed point we needed O(ε2) dilatation operator to determine O(ε) anomalous dimensions for

a 2 × 2 Jordan block. For a 3 × 3 Jordan block we need D to O(ε3) to determine even just

the O(ε) anomalous dimensions.

To be more concrete, let us define the analog of the regular basis (4.24) for two detectors:

H1;JL = [H3−d,3−d;JL ]R, (5.31)

H2;JL =
2

ε

(
µ−ε[H−1,3−d;JL ]R − [H3−d,3−d;JL ]R

)
, (5.32)

H3;JL =
4

ε2
(
µ−2ε[H−1,−1;JL ]R − 2µ−ε[H−1,3−d;JL ]R + [H3−d,3−d;JL ]R

)
. (5.33)

Setting HJL = (H1;JL ,H2;JL ,H3;JL)T , we have

DHJL = DHHJL +O(λ3), (5.34)

24For example, if we replace one of the interaction vertices in the diagram in figure 17a with its two-loop
correction (i.e. a sum of 3 subdiagrams and a counter-term), we will get an O(λ3) diagram which induces
mixing of H3−d,3−d with H3−d+ε/2,3−d. Replacing both vertices with their higher-order corrections we can get
mixing with H3−d+aε/2,3−d+bε/2 at O(λa+b+2).
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where (treating λ ∼ ε)

DH =

−2 0 0

2 −2+ε 0

0 4 −2+2ε

+
λ2

(4π)4

−7
3 + s11 2 0

2 + s21
−7
3 1

s31 4 + s32
−7
3 + s33


+

λ2

(4π)4

 κ0(JL) 0 0

0 0 0

−∂2
ακα(JL)

∣∣
α=0

0 0

+O(ε3). (5.35)

The first two terms come from the disconnected result (4.37) at tree- and two-loop level

respectively, restricted to JLi = 3−d, while the last term comes from the connected divergence

(5.20). The latter has two columns that strictly vanish, because the divergence involves only

H3−d,3−d;JL . The coefficients sij originate from the shadow coefficient (5.24) and are given in

appendix D.

Naively, one would like to predict the scale dependence of matrix elements by exponen-

tiating (5.35):

〈HJL〉{Λpi}
?
= exp [log(Λ)DH ] 〈HJL〉{pi} (5.36)

where the expectation value on the left is taken in a state with momenta rescaled by Λ. The

difficulty is that due to the ∼ ε0 terms below the diagonal, the unknown ∼ ε3 top-right entry

(DH)13 contributes to the exponential already at leading logarithm order (∼ εk logk Λ). Thus,

eq. (5.35) does not even contain enough information to predict leading logarithms! The same

conclusion is reached by considering its characteristic equation: eq. (5.35) is insufficient to

predict O(ε) eigenvalues.

One might try to make assumptions about (DH)13 at O(λ3), but representing D as a

3× 3 matrix becomes questionable at that order since other operators start to mix.

A somewhat analogous situation exists in gauge theories, where evolution can produce

an unbounded number of Wilson lines U(zi). At weak fields these can be parametrized using

a “Reggeized gluon” operator, U(zi) = eigW (zi). While it is clear from the Wilson line picture

that increasing the number of Reggeized gluons W (zi) costs powers of the coupling g, it turns

out that terms in the evolution that remove Reggeized gluons also cost the same powers of

g. This second property is crucial to approximately decouple sectors with different numbers

of Reggeized gluons (each having a discrete spectrum [52]), but it is far from obvious in the

Wilson line picture. Rather, it follows from target-projectile duality of rapidity evolution,

mentioned previously below eq. (4.43).25 This suggests that target-projectile duality should

play an important role in scalar theories as well.

The calculations here simply establish a general method for renormalizing individual

diagrams, which applies even in the vicinity of singular points. They do not answer the basic

25The present detector-frame formulation corresponds to resumming so-called non-global logarithms, while
target-projectile duality applies to rapidity evolution of correlators. The evolution equations coincide in the
critical dimension where QCD is conformal [16, 17].
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question of whether the evolution of general composite operators in the Wilson-Fisher theory

can be understood in terms of simple elementary excitations, or even if there should be a

single such “Reggeon” (corresponding perhaps to L[φ2]), a pair of them (corresponding say

to the two eigenstates of eq. (4.37) at JL = 3 − d), or more. We leave these questions to

future work.

5.3 Appearance in correlation functions

The construction and renormalization of the horizontal trajectories in the preceding subsec-

tions leaves open the question of whether they actually contribute to correlation functions.

This question is further complicated by the subtleties discussed at the end of section 5.2.

In this section, as a first step in addressing these issues, we consider correlators in a

modified theory, or more simply a subset of the diagrams of the Wilson-Fisher theory, which

corresponds to only the connected contribution in figure 17a.26 The renormalization of (5.20)

then gives rise to a single near-horizontal trajectory with (setting JL = 1−∆)

J(∆) = 1−∆L(JL) = −1 +
λ2

(4π)4
κ0(1−∆) +O(λ3) . (5.37)

Since this trajectory is constructed from a product of two L[φ2] operators, it is natural to

expect it to be exchanged in the correlator 〈φ2φ2φ2φ2〉. By examining a subset of Feynman

diagrams and studying CFT inversion formulas, we will show that a Regge trajectory with

(approximately) constant negative spin, J ≈ −1, indeed contributes to the Regge limit of this

correlator.

First, as a brief reminder, in CFTs we can rewrite this position-space correlator as:

〈φ2(x1)φ2(x2)φ2(x3)φ2(x4)〉 =
1

x2∆O
12 x2∆O

34

G(z, z), (5.38)

with O = φ2 and where (z, z) are the d-dimensional conformal cross-ratios,

zz =
x2

12x
2
34

x2
13x

2
24

, (1− z)(1− z) =
x2

14x
2
23

x2
13x

2
24

. (5.39)

We can write the four-point function G(z, z) as an integral of conformal blocks over the

principal series:

G(z, z) =
∑
J

d/2+i∞∫
d/2−i∞

d∆

2πi
C(∆, J)g∆,J(z, z) (5.40)

26The subset of diagrams that we consider here gives the full answer for two-magnon correlators in the
large-N limit of the conformal fishnet theory [53, 54]. In fact, essentially the same calculation as we do here
has been performed in [55]. The exact spectrum of two-magnon Regge trajectories is given by their equations
(4.47) and (4.49) (in arXiv version 1 of [55]), which can be seen to contain a single J = −1 horizontal trajectory
at weak coupling (the authors of [55] were only interested in Re J ≥ 0). In operator language, we expect that,
due to the simplifications in the large-N limit of the fishnet theory, no mixing is possible for the H3−d,3−d
trajectory, which then gives the unique contribution at J = −1. Here, our goal is to describe the physical
picture of how these operators appear in the correlation functions, as well as to explain that their contribution
is non-zero in more general theories, such as the Wilson-Fisher theory.

– 50 –



1
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1
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Figure 18: The operators φ(x1) and φ(x2) can create a φ2 operator between them via the
λφ4 interaction. When φ(x1) and φ(x2) are boosted apart, this φ2 operator gets smeared over
the null cone, creating the detector L[φ2]. Right: when φ2(x1) and φ2(x2) are boosted, the
same mechanism can create a pair of detectors L[φ2]L[φ2].

where g∆,J(z, z) are the conformal blocks and C(∆, J) is the OPE function we want to study.

To recover the standard conformal block expansion we close the contour to the right and

pick up the poles in C(∆, J). The poles of C(∆, J) in ∆ at fixed, positive, integer J then

determine the spectrum of the exchanged operators.27 The Lorentzian inversion formula [26]

gives an analytic continuation of C(∆, J) to generic J ∈ C and the poles of this analytic

function are associated to light-ray operators [1]. The goal of this section is then to show

that C(∆, J) for 〈φ2φ2φ2φ2〉 has a pole at J ≈ −1 for arbitrary ∆, which would correspond

to a horizontal trajectory in a Chew-Frautschi plot.

In practice, we use two different methods. In the first approach we compute the correlator

〈φ2φ2φ2φ2〉 using standard Feynman rules, analytically continue to Lorentzian kinematics,

and then evaluate the Lorentzian inversion formula in the Regge limit. This approach lets

us directly compute C(∆, J) for J near −1, but quickly becomes cumbersome at higher-

loops. In the second approach, we use that many Feynman diagrams for 〈φ2φ2φ2φ2〉 can be

computed using harmonic analysis for the Euclidean conformal group. In this method we

compute C(∆, J) for positive, even integers using the Euclidean inversion formula and then

analytically continue this expression to J = −1. The fact these two methods agree gives a

non-trivial consistency check for our results. In this section we will mostly explain the first

method, involving the Lorentzian inversion formula, and explain the second method in more

detail in Appendix E.

For the remainder of this section we will work in d = 4 dimensions. We use the standard

scalar propagator 〈φ(x1)φ(x2)〉 = Nφx
−2
12 , where Nφ = 1

4π2 . At tree level, our correlator is

given by

〈φ2(x1)φ2(x2)φ2(x3)φ2(x4)〉tree = Gtree(x1, x2, x3, x4), (5.41)

where Gtree is a sum of Wick contractions whose explicit form will not be needed here.

To understand which diagrams are relevant for finding the horizontal trajectory, it is

helpful to give a physical interpretation for how the product L[φ2]L[φ2] appears in the Regge

27The function C(∆, J) and the conformal blocks also have kinematic poles in ∆, but these will cancel out.
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Figure 19: On the left, a diagram showing an event shape for L[φ2]L[φ2], embedded inside the
four-point correlator 〈φ2φ2φ2φ2〉. We imagine φ2(x1)φ2(x2) creating the detector L[φ2]L[φ2]
via the mechanism in figure 18. This detector is then measured in states created by φ2(x3)
and φ2(x4). On the right, we re-draw the same diagram in a simpler way that makes clear
that it is the square of the kernel S, which is one of the terms inside SGtree in equation (5.55).

limit of the correlator. Let us begin with a pair of operators φ2(x1) and φ2(x2), and boost

them in opposite directions. In the limit of large boost, the points x1 and x2 approach the

tips of a null cone. From each pair φ(x1)φ(x2), we obtain an effective φ2 operator using the

λφ4 interaction, see the left panel of figure 18. This φ2 operator is smeared near the null cone

with a wavefunction that becomes independent of the null direction in the large boost limit

— in other words, at large boost, we end up with L[φ2]. Since we have two pairs φ(x1)φ(x2),

we obtain two L[φ2] operators, as shown on the right panel. This argument shows that the

detector L[φ2]L[φ2] should appear in the Regge limit of 〈φ2φ2φ2φ2〉 at order O(λ2).

We can embed the second diagram of figure 18 into a standard Feynman diagram for

〈φ2φ2φ2φ2〉 by evaluating its expectation value in a state created by φ2. This leads to the

diagram in figure 19. We recognize this as the square of the standard conformal box diagram:

F (2)(xi) =
λ2

2
N8
φ

∫
ddx′1d

dx′2
1

x2
11′x

2
21′x

2
31′x

2
41′

1

x2
12′x

2
22′x

2
32′x

2
42′

=
λ2

2
N8
φπ

4 (zz)2

x4
12x

4
34

(
Φ(1)(z, z)

)2
, (5.42)

where the factor of 1/2 is a symmetry factor and

Φ(1)(z, z) =
1

z − z

(
2Li2(z)− 2Li2(z) + log(zz) log

(
1− z
1− z

))
. (5.43)

We next need to plug this result into the Lorentzian inversion formula. The inversion
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formula for 〈φ2φ2φ2φ2〉 in 4d is:28

C(∆, J) =
κ∆+J

2

1∫
0

dzdz
(z − z)2

(zz)4
gJ+3,∆−3(z, z)dDisc[G(z, z)], (5.44)

κβ =
Γ(β2 )4

2π2Γ(β − 1)Γ(β)
, (5.45)

where here g∆,J is a 4d conformal block,

g∆,J(z, z) =
zz

z − z
(k∆+J(z)k∆−J−2(z)− (z ↔ z)) (5.46)

k2h(z) = zh2F1(h, h, 2h, z), (5.47)

and the double-discontinuity is defined by:

dDisct[G(z, z)] = G(z, z)− 1

2

[
G	(z, z) + G�(z, z)

]
. (5.48)

The arrows in G	,� indicate how we analytically continue around the branch cut that runs

along z ∈ (1,∞).29

To look for poles of C(∆, J) in J , we should study the Regge limit

z = σ, z = ησ, (5.49)

with σ → 0 and η held fixed.30 In this limit, the t-channel dDisc of (5.42) becomes

dDisct

[
x4

12x
4
34F

(2)(xi)
]
≈ N8

φλ
22π6 η

2σ2 log2(η)

(1− η)2
. (5.50)

Plugging this into the Lorentzian inversion formula and evaluating the integral in the limit

σ → 0, we indeed find a pole at J = −1:

C(2)(∆, J) ∼ N8
φλ

2 1

J + 1

π7 sin(π∆)Γ
(

∆−1
2

)4
cos4

(
π∆
2

)
Γ(∆− 2)Γ(∆− 1)

. (5.51)

This calculation shows that the correlator 〈φ2φ2φ2φ2〉 does indeed contain a horizontal

trajectory near J = −1. The result (5.51) encodes the appearance of this trajectory at

O(λ2), as anticipated above. To find its anomalous spin, we must study the correlator at

O(λ4). However, before doing so, it will be helpful to understand the appearance of the

1/(J + 1) pole in (5.51) in a more efficient way using Euclidean harmonic analysis.

28κβ is a kinematic factor and should not be confused with the eigenvalue κα(JL) studied in the previous
section.

29In general the inversion formula has distinct contributions from the t- and u- channel double-discontinuities,
but 〈φ2φ2φ2φ2〉 is invariant under x3 ↔ x4 so they give identical results.

30The pole at J = −1 will come from the σ � 1 region of the integral so we can focus on this part of the
integrand.
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Figure 20: The kernel S(x1, x2, x3, x4) in pictorial form.

Staring at figure 19, we recognize that it has the structure of a composition of kernels

acting on pairs of spacetime points:

(S1S2)(x1, x2, x3, x4) =

∫
ddx′1d

dx′2S1(x1, x2, x
′
1, x
′
2)S2(x′1, x

′
2, x3, x4). (5.52)

Specifically, we can think of the diagram in figure 19 as part of the composition

λ2(SGtree)(x1, x2, x3, x4) ⊂ 〈φ2(x1)φ2(x2)φ2(x3)φ2(x4)〉 (5.53)

where the kernel S is given by

S(x1, x2;x3, x4) ≡
N4
φ

2

1

x2
13x

2
14x

2
23x

2
24

, (5.54)

see figure 20.

In fact, figure 19 is part of a series of diagrams obtained by iterating the kernel S:

〈φ2(x1)φ2(x2)φ2(x3)φ2(x4)〉 ⊃
∞∑
n=0

λ2n(SnGtree)(x1, x2, x3, x4)

=

(
1

1− λ2S
Gtree

)
(x1, x2, x3, x4). (5.55)

Note that S(x1, x2;x3, x4) contains a factor of 1/2. The terms in (5.55) thus contain factors

of 1/2n that account for the symmetry factors of diagrams obtained by composing multiple

S’s. In the last line of (5.55), we summed the geometric series.

Nicely, the term S2Gtree in (5.55) can be interpreted as an embedding of figure 17a into

the four-point function, see figure 21. Thus, we expect this term to reveal the anomalous

spin of the horizontal trajectory. The full series (5.55) represents the exponentiation of this

anomalous spin.

Because S is conformally-invariant, it can be diagonalized via its conformal partial wave

decomposition, with eigenvalue s(∆, J). The key observation is that the eigenvalue s(∆, J)

exhibits a pole at J = −1, as we show in appendix E:

s(∆, J) ∼ −
sin(π∆

2 )

128π2(∆− 2) cos(π∆
2 )2

1

J + 1
. (5.56)
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Figure 21: On the left, an embedding of the anomalous dimension diagram from figure 17a
inside the four-point correlator 〈φ2φ2φ2φ2〉. We imagine φ2(x1)φ2(x2) creating the detector
L[φ2]L[φ2] via the mechanism in figure 18. This detector is measured by particles that
propagate from x3, x4, split at x′′1 and x′′2, and are finally detected at x′1 and x′2. On the right,
we re-draw the same diagram in a simpler way that makes clear that it is the cube of the
kernel S, which is one of the terms inside S2Gtree in equation (5.55).

This matches the 1/(J + 1) pole in (5.51). However, we can now proceed further and use the

eigenvalues of S in the re-summed series (5.55), giving

C(∆, J) ⊃ 1

1− λ2s(∆, J)
Ctree(∆, J). (5.57)

Plugging in the eigenvalue (5.56) near J = −1, we find a pole in C(∆, J) at the shifted

location

J = −1 +
λ2

(4π)4

2π2 sin(π∆
2 )

(2−∆) cos(π∆
2 )2

, (5.58)

in precise agreement with eqs. (5.37) and (5.21)!

Thus, we have found a match between a subset of diagrams contributing to the renor-

malization of H and a subset of diagrams contributing to the pole near J = −1 in the

four-point function 〈φ2φ2φ2φ2〉. This gives evidence that near-horizontal Regge trajectories

do contribute to correlators of this theory, at a subleading power. We emphasize that we

included only a subset of diagrams — those that were naturally related to the connected

graph in figure 17a. It would be interesting to include all diagrams and understand how the

corrections exponentiate, which is challenging as discussed in subsection 5.2. We leave this

for the future.

6 Discussion

In this paper we have made some initial progress towards understanding the perturbative

structure of the space of asymptotic detectors (equivalently, Regge trajectories, or non-local

light-ray operators) in CFTs, and especially in the Wilson-Fisher CFT. Detectors, roughly,

are anything one can measure at infinity in a scattering experiment. We have shown that the
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detector point of view on light-ray operators not only gives them a physical interpretation,

but is also a convenient technical tool for perturbative computations.

Operators involving products of fields along a light ray have long been studied in quan-

tum field theory. The simplest, leading-twist operators, involve products of two fields time-

integrated against some kernel. Perhaps surprisingly, we find that such “light-ray” operators

continuously connect with ones spread over a full null plane: quantum mechanics can prevent

localization to a light ray.

As our first technical result, in section 4 we explained the precise perturbative mechanism

behind the resolution of the J = 0 singularity of the leading-twist anomalous dimension

in the Wilson-Fisher CFT. We showed that this singularity is due to mixing between the

leading-twist trajectory and its shadow at their unique intersection point: to renormalize

light-ray operators near this intersection (including the Pomeron operator), novel 1/J-type

subtractions are needed in addition to the standard 1/ε-type subtractions. Accounting for

this, the dilatation operator becomes a regular 2×2 matrix (see eq. (4.37)), whose eigenstates

smoothly connect leading-twist operators to their shadows, which are delocalized.

Our second technical result is the construction and renormalization of novel horizontal

Regge trajectories in the Wilson-Fisher theory in section 5, which are qualitatively similar to

null Wilson lines in gauge theories. This result connects to previous work of some of us on

the light-ray OPE [3, 4, 45], where it was shown that some pairs of light-ray operators can be

inserted on the same null plane without encountering singularities. Here we showed how to

renormalize the products when they are singular, producing new well-defined operators. In

section 5 we studied the simplest example of such trajectories, built from L[φ2]L[φ2], which

in the free theory sits at fixed J = −1 in the Chew-Frautschi plot. We showed, by matching

with a computation based on the Lorentzian inversion formula, that the connected part of the

dilatation operator precisely reproduces the contribution of a class of diagrams to the four-

point function of φ2. Interestingly, as we discuss in section 5.1.1, the connected contributions

to the dilatation operator vanish for non-zero transverse spin.

It is important to note that horizontal trajectories are not always subleading in the Regge

limit (as was the case for the trajectories in section 5). Even in the Wilson-Fisher theory, the

leading Regge intercept in other symmetry sectors can receive corrections from mixing with

horizontal trajectories. For example, the leading-twist local Z2-odd operators have twist 3 in

d = 4, and thus their trajectory intersects with its shadow at J = −1, where Z2-odd horizontal

trajectories also exist (e.g. L[φ2]L[φ3]). Parity-odd local operators have even higher twists,

and thus horizontal trajectories should be the only contributions to the Regge intercept in

parity-odd sectors.

Intersections between perturbative Regge trajectories are ubiquitous (there are infinitely

many already in the Wilson-Fisher theory), and it would be very interesting to apply our

techniques to other examples. One intersection in the Wilson-Fisher theory which might

be accessible is the one related to the J = −1 pole in the two-loop leading twist anoma-

lous dimension, where the mixing presumably involves both the horizontal and the higher-

twist trajectories (see figure 9). In gauge theories, there is a prominent intersection between
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leading twist trajectories that control deep inelastic scattering (“DGLAP evolution”), and

near-horizontal ones that control forward scattering (“BFKL evolution”). Localized light-

ray operators are supposed to become delocalized dipoles [56] as they evolve through this

intersection. Our results suggest it may be natural to unite these formalisms into a smooth

matrix, that would effectively remove the small-x singularities of the DGLAP kernel as well

as the collinear singularities of the BFKL kernel, and yet avoid double counting, at the cost of

introducing an off-diagonal term that mixes them. This would be similar, if possible, to how

the matrix (4.37) (or its characteristic equation (2.27)) smoothens out the leading intersection

in the Wilson-Fisher theory.

More generally, the language of asymptotic detectors appears to provide a new and poten-

tially useful point of view on splitting functions and other timelike quantities. For instance,

as discussed in section 3.1.1, it gives a simple explanation of the reciprocity between time-

like and spacelike anomalous dimensions – the two anomalous dimensions describe the same

curve but in different coordinates. The curves are the same simply because there is noth-

ing special about infinity in a conformal theory, so measurements at infinity (“timelike”) are

conformally equivalent to other measurements. This is related to a timelike-spacelike corre-

spondence which has sometimes been exploited in non-conformal theories. For example, in

minimal subtraction schemes, anomalous dimensions do not depend on the spacetime dimen-

sion d = 4 − ε while rapidity evolution equations do; choosing the spacetime dimension so

that the β-function vanishes then yields interesting relations (see [18, 47, 57]). A technical

advantage of the detector frame is that it does not require a rapidity regulator since these

divergences are regulated by ε.

Our results leave us with many open questions. Firstly, it would be interesting to under-

stand how to resum the contributions of horizontal trajectories in the Wilson-Fisher theory.

The technical challenge, discussed in section 5.2, is that while each diagram can be renormal-

ized straightforwardly and a dilatation operator can be calculated order-by-order, it is not

clear how to exponentiate it: new operators appear at each loop order. In gauge theories, the

analogous problem is solved perturbatively by the Reggeized gluon, and one can wonder if a

similar effective degree of freedom exists in the Wilson-Fisher theory.

Secondly, this leads to the question of studying the more general operators HJL1,JL2
. As

we showed in section 5, their (connected) 2-loop divergences arise only for JL1 +JL2 ' −2 and

are proportional to H3−d,3−d. A preliminary analysis suggests that the situation at higher

loop orders is more involved and additional operators appear in the divergences. It is an

important open problem to develop a systematic understanding of what this means for the

set of the Regge trajectories in Wilson-Fisher theory, both at a fixed loop level and non-

perturbatively. Similarly, one should consider the operators of the type L[φn]L[φm] which

should also correspond to Regge trajectories at J = −1, as well as operators involving more

light-rays which would live at J = −n with n > 1. It would also be interesting to understand

whether the horizontal trajectories survive in some form down to ε = 2 and make sense in

the 2d Ising CFT.

Thirdly, we have not discussed the higher-twist trajectories that appear as diagonal lines

– 57 –



on the Chew-Frautschi plot. Beyond the leading one, these are infinitely-degenerate and their

renormalization is not well understood for non-integer J (see figure 5 of [58] for examples of

distinct analytic continuations). It is an important problem to develop at least a perturbative

picture of these trajectories.

Our results in sections 4 and 5 suggest that the picture of the Regge trajectories in

the Wilson-Fisher is relatively simple above and in the neighborhood of the leading twist

trajectory for J > −1, but infinite degeneracies in the free theory obscure the other regions

of the Chew-Frautschi plot. Nonperturbatively, we expect a set of discrete trajectories that

characterize the physical measurements that can be made on a null plane. It is striking how

little we understand about this plot even in such a well-studied theory.
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A The tree-level twist-2 vertex

In this appendix, we derive formula (3.26) for the tree-level vertex of φ(α; z), which is needed

as an intermediate step in computing the tree-level vertex VJL . In position space we have,

〈0|φ(α; z)φ(y)|0〉 = lim
L→+∞

L∆φ
Nφ

(x+ Lz − y)2∆φ
=

Nφ

(−α− 2y · z + iε)∆φ
, (A.1)

where we restored the iε prescription and made the identification α = −2x · z. The standard

normalization in perturbation theory is,

Nφ =
Γ(∆φ)

πd/22d−2∆φ
, (A.2)

where ∆φ = d−2
2 , which corresponds to the time-ordered propagator

〈φ(p)φ(0)〉 =
−i

p2 − iε
. (A.3)

We must now Fourier transform (A.1) in y to obtain 〈0|φ(α; z)φ(p)|0〉. Using Lorentz

symmetry, we can take z to be along + direction, i.e. z+ = 1, and other components to vanish.

We then find∫
ddyeip·y

1

(−α− 2y · z + iε)∆φ
=

1

2

∫
dd−2~ydy+dy−e−i

1
2
p+y−−i 1

2
p−y++i~y~p 1

(−α+ y− + iε)∆φ

=
21−∆φe−

iπ∆φ
2

Γ(∆φ)
e−i

1
2
αp+

(2π)dδ(p−)δd−2(~p)θ(p+)(p+)∆φ−1.

(A.4)

We can compare the final answer with the ansatz

∞∫
0

dβ δd(p− βz)βaeibβ = 2

∞∫
0

dβ δd−2(~p)δ(p−)δ(p+ − β)βaeibβ

= 2δd−2(~p)δ(p−)(p+)aeibp
+
, (A.5)

From this we conclude that for general z,

〈0|φ(α; z)φ(p)|0〉 = Nφ
2−∆φe−

iπ∆φ
2

Γ(∆φ)
(2π)d

∞∫
0

dβ δd(p− βz)β∆φ−1e−i
1
2
αβ

=
e−

iπ∆φ
2

2(2π)d/2

∞∫
0

dβ (2π)dδd(p− βz)β∆φ−1e−i
1
2
αβ. (A.6)
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B Poles of distributions

In this appendix, we discuss the analytic continuation of distributions of a special form,

following [59, 60]. The key example is

fa,b,c(x, y) = xayb(y − x2)cθ(x)θ(y − x2), (B.1)

analytically continued in a, b, c, which appears when renormalizing twist-two operators. The

methods discussed here apply more generally to distributions of the form
∏
i fi(x)ai , although

we will not discuss the generalization explicitly.

Let us start by considering a simpler example, the distribution fa(x) = xaθ(x) on R [61].

For Re a > −1 this is a locally-integrable function, and thus defines a distribution by

fa(φ) =

∫ +∞

−∞
dxfa(x)φ(x) =

∫ +∞

0
dxxaφ(x) (Re a > −1). (B.2)

In fact, the number fa(φ) depends on a holomorphically, i.e. a 7→ fa(φ) defines a holomorphic

function for Re a > −1. We can then ask if this holomorphic function can be analytically

continued to other values of a. It is well-known [61] that the answer is yes, and it can

be continued to all of C \ {−1,−2, · · · }. Furthermore, for every a in this set, the analytic

continuation fa(φ) depends on the test function φ in such a way that it defines a distribution.

Therefore, we can speak of the analytic continuation of fa to a ∈ C \ {−1,−2, · · · } without

referring to φ. From now on, we will write simply xaθ(x) instead of fa. Finally, and crucially

for us, at a ∈ {−1,−2, · · · } xaθ(x) has simple poles with residues proportional to derivatives

of a delta-function. Specifically,

xaθ(x) =
(−1)n−1δ(n−1)(x)

(n− 1)!

1

a+ n
+ · · · . (B.3)

There are many ways to see this. For example one can relate xaθ(x) to (x ± i0)a which are

well-defined distributions for all a ∈ C and depend on a holomophically (this follows because

they are boundary values of holomorphic functions).

Note that the step function θ(x) in xaθ(x) is somewhat of a red herring – we use it to

define the simplest distribution that we can. Distributions supported for all x can be defined

by linear combinations. For example, we can consider

xaθ(x)− (−x)aθ(−x). (B.4)

The pole at a = −1 cancels in this combination, and setting a = −1 we obtain the principal

value distribution p.v. 1x .

The above gives a complete description of the properties of xaθ(x). We can now use it

as a building block for more complicated distributions, e.g.

xaybθ(x)θ(y). (B.5)
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Here we are multiplying two distributions together. In general, this is not allowed, but in this

case they depend on two different variables, so this is fine and we simply get a distribution on

R2 that has poles whenever a or b is a negative integer. A more general way of phrasing this

is that whenever the singular loci of the two distributions (in this example, the lines x = 0

and y = 0) intersect (i.e. at x = y = 0), they intersect transversely, and we can chose the local

coordinates appropriately to justify the multiplication of the distributions (here x, y already

work).

This way of thinking allows us to consider, for example, the distribution

xayb(1− x− y)cθ(x)θ(y)θ(1− x− y). (B.6)

In this case we can multiply the distributions because when, say, x = 0 intersects 1−x−y = 0

at (x, y) = (0, 1), we can use coordinates s = x, t = 1 − x − y to justify multiplying saθ(s)

by tcθ(t) (while (1− s− t)bθ(1− s− t) is just a smooth function near this point). Therefore,

we obtain a distribution with poles whenever one of a, b, c is a negative integer, and we can

easily compute the Laurent series near any pole.

We now want to repeat this analysis for the distribution fa,b,c(x, y) defined by (B.1).

Unfortunately, the above discussion isn’t enough here. Indeed, in this case we have a product

of three distributions which are singular along x = 0, y = 0, and y = x2. All three curves

intersect at (x, y) = 0, and so this is not a transverse intersection. This means that there is

no choice of local coordinates that could justify the multiplication of the three distributions.

One could guess that perhaps we should treat y − x2 ≈ y near this point, but as we will see

this leads to wrong results.

To bypass this problem one can follow the logic described in [59, 60]. The idea is to find

a manifold R and a smooth map τ : R→ R2 such that the pullback of fa,b,c(x, y)dxdy along

τ is better behaved than fa,b,c(x, y)dxdy itself. Concretely, we take R = R2 and

τ(u, v) = (u, vu2). (B.7)

First of all, as functions,

fa,b,c(x, y)dxdy = ua+2b+2c+2vb(v − 1)cθ(u)θ(v − 1)dudv. (B.8)

This means that at least for Re a,Re b,Re c > 0∫
dxdyfa,b,c(x, y)φ(x, y) =

∫
R
dudvua+2b+2c+2vb(v − 1)cθ(u)θ(v − 1)φ(u, vu2). (B.9)

Note that as long as φ(x, y) is a smooth function, so is φ(u, vu2). Therefore, if we manage

to analytically continue the right-hand side of (B.8) in a, b, c as a distribution, we will also

find an analytic continuation of fa,b,c(x, y). But we already know how to perform the analytic

continuation of (B.8) since the singularities v = 1 and u = 0 intersect transversely (v = 0 is

not really a singularity since it is inaccessible due to θ(v − 1)). Morally speaking, what we
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have constructed is a resolution of the singularity at x = y = 0, which turned a non-transverse

intersection into several transverse ones.

We then conclude immediately that fa,b,c can be analytically continued as a distribution

to all complex values a, b, c except those where

a+ 2 + 2b+ 2c = −n or c = −m, n,m ∈ Z>0, (B.10)

where we have simple poles.31 We will be interested in two poles in this sequence, the one at

a+ 2 + 2b+ 2c = −1, (B.11)

and the one at

c = −1. (B.12)

For the first pole, we have

ua+2b+2c+2vb(v − 1)cθ(u)θ(v − 1) =
δ(u)vb(v − 1)cθ(v − 1)

a+ 2b+ 2c+ 3
+ · · · (B.13)

Using this in (B.9) we find∫
dxdyfa,b,c(x, y)φ(x, y) =

φ(0, 0)

a+ 2b+ 2c+ 3

∫ ∞
1

dvvb(v − 1)c + · · ·

=
Γ(−1− b− c)Γ(1 + c)

Γ(−b)
φ(0, 0)

a+ 2b+ 2c+ 3
+ · · · . (B.14)

This implies, near this pole,

fa,b,c(x, y) =
Γ(−1− b− c)Γ(1 + c)

Γ(−b)
δ(x)δ(y)

a+ 2b+ 2c+ 3
+ · · · . (B.15)

A similar procedure for the second pole yields

fa,b,c(x, y) =
xa+2bδ(y − x2)θ(x)

c+ 1
+ · · · . (B.16)

We can now apply these results to the two-loop calculations from the main text.

There, we found the following density (see (3.31)),

ddp(−2z · p)JL(−p2)
d−4

2
−JL−2θ(−p2). (B.17)

To find the map to fa,b,c(x, y) it is convenient to use lightcone coordinates and take z = e+,

ddp(−2z · p)JL(−p2)
d−4

2
−JL−2

∣∣∣∣
z=e+

=
1

2
dp+dp−dd−2~p(p−)JL(p+p− − ~p2)

d−4
2
−JL−2. (B.18)

31Note that merely approximating y − x2 ≈ y would yield poles at a = −m and b + c = −n, which is a
completely different (and wrong) set of poles.
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If we define x = |~p| and y = p+p− then we find,

ddp(−2z · p)JL(−p2)
d−4

2
−JL−2θ(−p2)

=
1

2
dxdydp+dΩd−3(p+)−1−JLyJLxd−3(y − x2)−JL+ d−4

2
−2θ(y − x2)θ(x). (B.19)

Comparing to the function fa,b,c(x, y) in (B.1) we see,

a = d− 3, b = JL, c = −JL +
d− 4

2
− 2 . (B.20)

Setting d = 4− ε and using (B.10) we see there are poles when,

−1− 2ε = −n, (B.21)

−2− JL − ε/2 = −m, (B.22)

for positive integer n and m. We see that for generic JL there is a single pole when ε = 0

coming from n = −1. This is the first pole that we analyzed above. Using (B.15) we find

yJLxd−3(y − x2)−JL+ d−4
2
−2θ(y − x2)θ(x) =

1

1 + JL

δ(x)δ(y)

4ε
+ · · · . (B.23)

Taking into account x = |~p| and thus

dΩd−3dxδ(x) = volSd−3dd−2~pδd−2(~p), (B.24)

for generic JL we find,

ddp(−2z · p)JL(−p2)
d−4

2
−JL−2θ(−p2)

=
1

4ε(1 + JL)
(p+)−1−JLdΩd−3δ(x)δ(y) + · · ·

=
volSd−3

4ε(1 + JL)
(p+)−1−JLdd−2~pdp−dp+δd−2(~p)δ(p−) + · · ·

=
volSd−3

4ε(1 + JL)
ddp

∫
dββ−1−JLδd(p− βz)

∣∣∣∣
z=e+

+ · · · (B.25)

Generalizing in z, which is possible by Lorentz invariance, we get

(−2z · p)JL(−p2)
d−4

2
−JL−2 =

volSd−3

4ε(1 + JL)

∫
dββ−1−JLδd(p− βz) + · · · . (B.26)

At ε = 0 we have volSd−3 = 2π, which proves (3.32).

The result (B.16) can be used in a similar way to justify (4.15).
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C Diagonalizing the kernel Kα

In this section, we diagonalize the kernel

Kα(z1, z2; z3, z4) =
π

sinπα

(
z13
z23

)α
−
(
z14
z24

)α
z24z13 − z14z23

=
1

z12z34

(
z14

z24

)α π

sinπα

u(v−α − 1)

1− v
, (C.1)

where zij = −2zi·zj and u = z12z34
z13z24

, v = z23z14
z13z24

are celestial sphere cross-ratios. We perform

the computation for general α, though in section 5.3, we only need the result for α = 0.

The general result may be useful when studying the full space of detectors HJL1,JL2
including

connected and disconnected loop corrections.

The kernel Kα is defined in any spacetime dimension d. However, for our applications

it will suffice to determine its eigenvalues in d = 4, which we assume henceforth. We can

diagonalize it by decomposing it into projectors onto irreducible representations of the Lorentz

group. Thinking of the Lorentz group as the conformal group of the celestial sphere S2, this

is the same as decomposing the kernel into 2-dimensional conformal partial waves:32

Kα(z1, z2; z3, z4) =
∞∑
j=0

1+i∞∫
1

dδ

2πi
Aα(δ, j)Ψδ,j(zi)

Ψδ,j(zi) =

∫
D2z5〈P1−α(z1)P1+α(z2)Pδ,j(z5)〉〈P

δ̃,j
(z5)P1(z3)P1(z4)〉. (C.2)

Here, 〈Pδ1(z1) · · ·〉 denote standard three-point structures of fictitious operators Pδi(zi) in the

embedding space zi ∈ R3,1, see eq. (5.3). The shadow dimension δ̃ is given by δ̃ = 2− δ, and

the transverse spin indices of Pδ,j(z5) and P
δ̃,j

(z5) are implicitly contracted. For fictitious

embedding-space scalars, we use the shorthand Pδ,0 = Pδ.
Remarkably, it turns out that Kα can be completely decomposed into partial waves with

vanishing transverse spin (j = 0). These are given by

Ψδ,0(zi) =
1

z12z34

(
z14

z24

)α (
S34
δ̃,0
Gδ,0(z, z) + S12

δ,0Gδ̃,0(z, z)
)
,

S12
δ,0 =

πΓ(δ − 1)Γ( δ̃2 − α)Γ( δ̃2 + α)

Γ(2− δ)Γ( δ2 − α)Γ( δ2 + α)
, (C.3)

S34
δ,0 =

πΓ(1− δ
2)2Γ(δ − 1)

Γ(2− δ)Γ( δ2)2
, (C.4)

where u = zz, v = (1− z)(1− z), and Gδ,0(z, z) are 2d scalar conformal blocks:

Gδ,0(z, z) = kδ(z)kδ(z) , kδ(z) = zδ/22F1

(
δ
2 + α, δ2 , δ, z

)
. (C.5)

32We follow the notation and conventions of [62].
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Specifically, we find

Kα(z1, z2; z3, z4) =

1+i∞∫
1

dδ

2πi
Aα(δ)Ψδ,0(zi),

Aα(δ) ≡ δ − 1

π
cos(πδ2 )Γ(1− δ

2)2Γ( δ2 + α)Γ( δ2 − α). (C.6)

Note the shadow symmetry AJ(δ)S34
δ̃,0

= AJ(δ̃)S12
δ̃,0

. To verify (C.6), we can plug in the

expression for Ψδ,0(zi) and use shadow symmetry to remove the G
δ̃,0

term and extend the

integral from 1 − i∞ to 1 + i∞. Closing the δ-contour to the right, we pick up residues of

poles in δ, giving

π

sinπα

u(v−α − 1)

1− v
=
∞∑
n=1

(−1)n+1Γ(n)2Γ(n+ α)Γ(n− α)

Γ(2n)Γ(2n− 1)
G2n,0(z, z). (C.7)

We have verified (C.7) by expanding to high orders in z, z.

The kernel Kα is diagonalized when acting on celestial three-point functions. Since the

decomposition (C.7) contains only scalar blocks, the only nonzero eigenvalues come from

acting on three-point functions with vanishing transverse spin:∫
D2z1D

2z2〈P−JL(z6)P1+α(z1)P1−α(z2)〉Kα(z1, z2; z3, z4) = π2κα(JL)〈P−JL(z6)P1(z3)P1(z4)〉.

(C.8)

We can obtain the eigenvalue κα(JL) from the conformal “bubble” integral [62, 63]:∫
D2z1D

2z2〈P1−is(z6)P1+α(z1)P1−α(z4)〉〈P1−α(z1)P1+α(z2)P1+is′(z5)〉

= − 2π3

(δ − 1)2
2πδ(s− s′)δ(z5, z6), (C.9)

where δ = 1 + is = −JL, which together with (C.6) gives

κα(JL) = − 2π

(JL + 1)2
Aα(2 + JL) =

2

JL + 1
cos(πJL2 )Γ(−JL

2 )2Γ(JL+2
2 − α)Γ(JL+2

2 + α).

(C.10)

D Coefficients sij

The coefficients sij are given by

s11 = 4∂εŜ(δ1, δ2, [δ3]), (D.1)

s21 =
(
4∂3∂ε − 4∂2

ε − 4∂2∂ε − 2∂2
3

)
Ŝ(δ1, δ2, [δ3]), (D.2)

s31 =
(
−16∂2

2∂ε + 16∂2∂
2
ε − 16∂3∂2∂ε + 8∂3∂

2
2 + 8∂2

3∂2

)
Ŝ(δ1, δ2, [δ3]), (D.3)

s32 =
(
8∂3∂ε − 8∂2

ε + 24∂2∂ε − 4∂2
3 − 8∂2∂3

)
Ŝ(δ1, δ2, [δ3]), (D.4)

s33 = (4∂2 − 4∂ε) Ŝ(δ1, δ2, [δ3]). (D.5)
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Here ∂ε denotes the derivative with respect to ε in d = 4 − ε, while ∂i is the derivative with

respect to δi. The above expressions are to be evaluated for

ε = 0, δ1 = −JL, δ2 = δ3 = 1. (D.6)

E Diagonalizing the kernel S

In this appendix, we diagonalize the kernel S(x1, x2, x3, x4) defined in (5.54), to leading order

near J = −1. We begin with its partial wave decomposition

S(x1, x2, x3, x4) =

∫ d
2

+i∞

d
2

d∆

2πi

CS(∆, J)

K
∆̃,J

Ψ∆,J(x1, x2, x3, x4), (E.1)

where d = 4. We follow the conventions of [62, 64]. The coefficient function CS(∆, J) was

computed via the Lorentzian inversion formula in [3]. We will only need its value at J = −1:

CS(∆,−1) =
N4
φ

2

Γ(3−∆
2 )Γ(∆−1

2 )5

Γ(∆− 2)2
. (E.2)

To relate CS(∆, J) to the eigenvalues of S, we can use the “bubble formula” [62, 63]∫
ddx5d

dx6Ψ∆,J(x1, x2, x5, x6)Ψ∆′,J ′(x5, x6, x3, x4) = B∆,J2πδ(s− s′)δJJ ′Ψ∆,J(x1, x2, x3, x4),

(E.3)

where ∆ = d
2 + is, ∆′ = d

2 + is′, and we restrict to s, s′ > 0. The left-hand side of (E.3) is a

composition of the kernels Ψ∆,J and Ψ∆′,J ′ acting on pairs of points. The bubble coefficient

B∆,J is given by

B∆,J =
π6

2J−1(J + 1)(∆− J − 3)(∆ + J − 1)(∆− 2)2

∼ 4π6

(∆− 2)4

1

J + 1
, (E.4)

where we have indicated its pole near J = −1. Combining (E.1) and (E.3), we find that the

eigenvalues of S are

s(∆, J) =
CS(∆, J)

K
∆̃,J

B∆,J ∼ −
sin(π∆

2 )

128π2(∆− 2) cos(π∆
2 )2

1

J + 1
, (E.5)

where again we focus on the pole at J = −1.
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[5] C. Córdova and S.-H. Shao, Light-ray Operators and the BMS Algebra, Phys. Rev. D98 (2018)
125015, [1810.05706].

[6] N. H. Christ, B. Hasslacher and A. H. Mueller, Light cone behavior of perturbation theory, Phys.
Rev. D 6 (1972) 3543.

[7] D. J. Gross and F. Wilczek, Asymptotically Free Gauge Theories - I, Phys. Rev. D 8 (1973)
3633–3652.

[8] H. Georgi and H. D. Politzer, Electroproduction scaling in an asymptotically free theory of
strong interactions, Phys. Rev. D 9 (1974) 416–420.

[9] J. C. Collins and D. E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194
(1982) 445–492.

[10] I. I. Balitsky and V. M. Braun, Evolution Equations for QCD String Operators, Nucl. Phys. B
311 (1989) 541–584.

[11] E. A. Kuraev, L. N. Lipatov and V. S. Fadin, The Pomeranchuk Singularity in Nonabelian
Gauge Theories, Sov. Phys. JETP 45 (1977) 199–204.

[12] I. I. Balitsky and L. N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics,
Sov. J. Nucl. Phys. 28 (1978) 822–829.

[13] A. H. Mueller and B. Patel, Single and double BFKL pomeron exchange and a dipole picture of
high-energy hard processes, Nucl. Phys. B 425 (1994) 471–488, [hep-ph/9403256].

[14] I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99–160,
[hep-ph/9509348].

[15] S. Caron-Huot, When does the gluon reggeize?, JHEP 05 (2015) 093, [1309.6521].

[16] Y. Hatta, Relating e+ e- annihilation to high energy scattering at weak and strong coupling,
JHEP 11 (2008) 057, [0810.0889].

[17] S. Caron-Huot, Resummation of non-global logarithms and the BFKL equation, JHEP 03
(2018) 036, [1501.03754].

[18] A. A. Vladimirov, Correspondence between Soft and Rapidity Anomalous Dimensions, Phys.
Rev. Lett. 118 (2017) 062001, [1610.05791].

[19] A. H. Mueller, Conformal spacelike-timelike correspondence in QCD, JHEP 08 (2018) 139,
[1804.07249].

[20] L. J. Dixon, I. Moult and H. X. Zhu, Collinear limit of the energy-energy correlator, Phys. Rev.
D 100 (2019) 014009, [1905.01310].

[21] R. C. Brower, J. Polchinski, M. J. Strassler and C.-I. Tan, The Pomeron and gauge/string
duality, JHEP 12 (2007) 005, [hep-th/0603115].

[22] M. S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 1212 (2012) 091,
[1209.4355].

– 67 –



[23] M. S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP
11 (2011) 071, [1107.3554].

[24] M. Luscher and G. Mack, Global Conformal Invariance in Quantum Field Theory, Commun.
Math. Phys. 41 (1975) 203–234.

[25] R. Gonzo and A. Pokraka, Light-ray operators, detectors and gravitational event shapes, JHEP
05 (2021) 015, [2012.01406].

[26] S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078, [1703.00278].
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