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Abstract—Automated driving desires better performance on
tasks like motion planning and interacting with pedestrians in
mixed-traffic environments. Deep learning algorithms can achieve
high performance in these tasks with remarkable visual scene
understanding and generalization abilities. However, when com-
mon scene-parsing methods are used to train end-to-end models,
limitations of explainability in such algorithms inhibit their im-
plementations in fully automated driving. The main challenges
include algorithm performance deficiencies and inconsistencies,
insufficientAI transparency, degradeduser trust, andundermining
human-AI interactions. This research aids the decision-making
performance and transparency of automated driving systems by
providing multi-modal explanations, especially when interacting
with pedestrians. The proposed algorithm combines global visual
features and interrelation features by parsing scene images as
self-constructed graphs and using an attention-based module to
capture the interrelationship among the ego-vehicle and other
traffic-related objects. The output modules make decisions while
simultaneously generating semantic text explanations. The results
show that the fusion of the features from global frames and inter-
relational graphs improves decision-making and explanation pre-
dictions compared to two state-of-the-art benchmark algorithms.
The interrelation module also enhances algorithm transparency
by disclosing the visual attention used for decision-making. The
importance of interrelation features on the two prediction tasks is
further revealed alongwith the underlyingmechanism ofmultitask
learning on the datasets with hierarchical labels. The proposed
model improves driving decision-making during pedestrian inter-
actions with intelligible reasoning cues for building an appropriate
mental model of automated driving performance for human users.

Index Terms—Interpretable AI, automated driving, scene
understanding, multi-task learning.
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I. INTRODUCTION

THANKS to the rapid development of modern AI tech-
niques, automated driving is becoming closer to reality.

Deep learning algorithms have had breakthroughs in many
automated driving tasks, such as perception [1], [2], motion
planning [3], [4], [5], and obstacle detection [6], [7]. Differ-
ent technical solutions have been proposed and implemented
to either break down automated driving into sub-tasks such
as lane detection, obstacle avoidance [8], [9], and pedestrian
intent prediction [10], [11], [12], or develop holistic systems
to design an end-to-end network that executes multiple tasks
simultaneously [13], [14], [15].
Even though multi-modal sensors provide alternative or sup-

plementary methods for vehicle perception [16], [17], [18],
[19], they often come with higher expenses in both computation
and fabrication. On the other hand, high-resolution cameras are
relatively low-cost while capturing detailed visual information
such as traffic signs and pedestrian facial expressions. Thus, the
mainstreamsolution for automateddrivingheavily relies onopti-
cal sensors, creating deep-learning algorithms using images and
videos as inputs. However, despite the superior performance of
modern computer-vision algorithms in driving decision-making,
the “black box” property of these algorithms decreases the trans-
parency, interpretability, and explainability of the underlying
mechanisms that contribute to outcomes. Such limitations may
inhibit the penetration of automated driving by affecting user
attitudes and intention to use. This includes topics such as trust
between the users and the automated driving system [20], [21],
[22], [23], [24], human-AI teaming efficiency [25], [26], and
the capability to diagnose and improve the algorithms from
system-centric information [27], [28].
However, few studies focus on the interrelationship across

traffic-induced objects to support explainable decision-making
for automated driving. To the best of our knowledge, only
Yao et al. [29] devised an attentive relation network to explore
the relational features of the surrounding objects and predict
pedestrian behaviors. Their model reconstructed the scenario
using masks from a pre-trained semantic segmentation model.
However, the model only implemented segmentation features
and did not include local visual features, which may result in
themodel not fully reflecting the interrelationships among scene
objects.
In this study, we propose an attention-based deep learning

algorithm to predict feasible actions of the ego vehicle and
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Fig. 1. A demonstration for our studied problem. Specifically, there are four
potential driving actions (Left/right turn and forward/stop.) Given a driving
scenario (dash-cam image), the model needs to infer the possible driving actions
and explains the corresponding decision-making reasoning.

explain the corresponding decision-making reasoning, given
a driving scene captured in an egocentric (dash-cam) image
(in Fig. 1). The proposed method extends existing research
by studying interrelationships among scene objects, including
both visual and segmentation features, to support explainable
automated driving. The direct use of the model is to deploy it
in the level 2 and level 3 automated driving systems [30] to
support driving decision-making in complicated urban settings,
especially during pedestrian encounters. The outputs of the
proposed module can mimic human driver decision-making in
complex situations for both lateral and longitudinal controls
and explain how the driving decisions are made automatically
with visual and semantic feedback. The explanations can help
to calibrate the trust in automated driving and improve user
acceptance and performance facing such AI systems.
The key innovation of our work is the interrelation module,

which encodes the interrelationship among the traffic-related
objects into a fully connected graph. The pooled graph repre-
sentation is fusedwith global visual features to create hidden em-
beddings for the traffic context. Finally, the embeddings are used
for predicting driving actions with corresponding explanations
using a non-linear classifier. The performance of our proposed
model outperformed state-of-the-art models on two benchmark
datasets. In addition, we demonstrate the underlying reasons
for the performance improvement using a multitask learning
mechanism. To sum up, our key contributions are highlighted
below:! We model the interrelationship among the traffic-related

objects to extract discriminative context embeddings con-
sidering both visual and segmentation features.! The proposed framework incorporates global and local
contexts to predict driving actions and explanations of
the decision-making process, where the performance sur-
passes the state of the art on two benchmark datasets.

! We show that multi-task predictions on action and explana-
tion together boost the performance due to the hierarchical
structure.

II. RELATED WORKS

Many studies have highlighted the importance of explain-
able automated driving models [3], [31], [32], [33], [34], [35],
especially from the perspective of human-AI cooperation. On
one hand, the unpredictable performance of automated driving
substantially undermines user acceptancewhen explanations are
not included. On the other hand, Koo et al. found that providing
the underlying reasons for automated driving decisions was
preferred by the drivers and led to a better AI-assisted driving
performance [36]. One recent work found a significant effect of
explainability on the perception, trust, and acceptance of gen-
eral AI systems [37]. Thus, explainability in automated driving
systems is a critical and promising research focus.
Since automated driving is a highly context-dependent task,

the interpretation of AI algorithms involves describing the key
contextual features and their effects on driving decisions. In one
study, [38] proposed an object-centric architecture for traffic
policy learning and found that it was superior when compared
with object-agnostic methods on both simulated and real traffic.
In another study, [31] devised a selector module identifying the
action-induced objects and mapped the objects to explanations.
The model proposed by [39] transforms the visual observation
into natural language along with the driving actions. In addition
to predicting driving actions with explanations, research [40],
[41] has also predicted drivers’ visual attention to assist with
AI interpretability. The above-mentioned studies have shown
that traffic-related objects may be a suitable medium to convey
the context and convey the underlying causality of automated
driving algorithms.
Although both one or many objects can explain the automated

driving maneuvers to a great extent, modeling complex driving
contexts by only relying on the existence and appearance of in-
dividual objects might overgeneralize the scenarios. Intuitively,
the relationship between the key objects might make the context
more discriminative and is critical for understanding traffic rules
and social norms. In particular, the interrelationship is critical
for understanding and following social and traffic rules. Despite
some deterministic traffic rules like “stop at the right light” and
“yield at the roundabout” that are well-defined and easier to be
code, many other aspects of the object interrelationships, like
the social norms, are more complicated and context-dependent.
Those social rules are difficult to be manually engineered. We
believe that a deep learning module specialized to learn the
interrelationships is necessary to facilitate mining traffic and
social rules.

III. THE PROPOSED ALGORITHM

A. Problem Setup

Given a dash-cam image, our major objective is to predict
feasible maneuvers of automated driving while explaining the
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Fig. 2. Overview of the proposed model with the input as an RGB image, which is then fed into a Faster R-CNN for backbone features extraction and object
detection. The main goal of the Faster R-CNN is to extract the global context features, which is its backbone feature, and the local object features, which are the
average pool features after the ROI alignment for each detected bounding box. Eventually, two new proposed modules work together for driving decision-making
and human explanation.

corresponding reasoning process, which is fundamental for mo-
tion planning that is interpretable. We define the problem as a
multilabel classification problem: given a dashcam image I in
some space χ, the goal is to determine feasible actions A ∈ Θ
with explanations E ∈ {0, 1}ne . Θ in our study has two types,
depending on the evaluation datasets. Details of the datasets are
provided in section IV-A.
1) In the BDD-OIA dataset [31],Θ is defined as {0, 1}4 (four

binary independent action categories).
2) In the PSI dataset [42],Θ is defined as {0, 1, 2} (one action

category with three choices).
The ne is the number of explanation categories. Mathemati-

cally, we aim to construct a mapping function:

φ : χ → (A,E) ∈ Θ× {0, 1}ne . (1)

B. Framework Overview

Fig. 2 shows the overall architecture of our proposed model,
which is composed of global and interrelation modules. Illus-
trated in the top part of the figure, the global module aims to
capture the traffic context information at a higher level using the
feature map of the entire input image. Our design of the global
module extends work in [31], which is a simple but powerful
way to capture the useful information of the backbone features.
Shown in the bottom half of Fig. 2, the interrelation module

focuses on modeling the interrelationship among the detected
scene objects. Details of this module will be provided in the
next section. The embeddings from both modules are then fused
into a final representation through elementwise addition. In the
end, two classifiers with a shared fully connected layer are used
for the multi-label classification.
We perform multitask learning, where the loss function is

composed of two losses from both the predicted action and
explanation. The multi-task loss function is formulated as:

L = Laction + Lexplanation, (2)

where Laction and Lexplanation are the summation of the binary
cross entropy loss for each label.

C. Object Detetection Via Faster R-CNN

In order to detect the objects and extract the visual features of
the images, we pre-trained a Faster R-CNN [43] with ResNet-50
structure [44] on the BDD-100 k dataset. The main goal of the
Faster R-CNN is to extract the global context features, which are
its backbone feature, and the local object features, which are the
average pool features after the ROI alignment for each detected
bounding box. Note we kept only 100 proposals with the largest
confidence level from the RPN for simplicity.

D. Object Interrelation Discovery

Even though our proposed model does not explicitly use an
existing graph neural network (GNN), the underlying concept
is consistent with GNNs. We explain the intuition of our inter-
relationship model among traffic-related objects by comparing
it to graph convolution networks (GCN) [45].
Generally, a graph is defined as a tuple of a node- and edge-set,

where the node-set contains nodes in the graph and the edge-set
describes the relationship among nodes. Graph-based modeling
has been widely implemented. For instance, the relationships in
a crowd are often modeled as social networks [46], where each
node represents a person, and edges indicate certain relationships
between people. Such a graph-based model can capture the
interconnections among those in the group.
Similarly, driving scenes in dash-cam images can also be

modeled with graphs. Extending our earlier work [12], we use
traffic-related objects as nodes in the graph. The traffic-related
objects in this study are the annotated objects in the BDD-100K.
There are 10 annotated classes in the dataset including pedes-
trian, rider, car, truck, bus, train, motorcycle, bicycle, traffic
light, and a traffic sign. All the other objects are not considered
traffic-related objects and are not included in the interrelation
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modules. Driving a vehicle is a highly context-dependent task.
The context includes both other road users (vehicles, bicyclists,
or pedestrians) and road infrastructure (road position or traffic
light), which are complicated and diversely perceived and pro-
cessed by human drivers to infer upcoming actions. To better
capture the scene features and traffic rules, the node features we
designed could be decomposed into two parts:
1) Bounding-box location features include the pixel co-

ordinates of the top-left and bottom-right corners and
confidence level for the object detection, which are 5-
dimensions vectors zli for each node i.

2) Visual features zvi are the corresponding global pooled
features from the ROI (Region of Interests) for each object
proposal i, extracted with a pre-trained backbone (Faster
R-CNN inour implementation). Please refer to Section III-
E for more details about proposals in the object detection
phase.

Earlier work using graphmodels of the driving scenes usually
defines edges manually based on certain assumptions [12], [47],
like pixel distances among the objects. However, pre-determined
edges are too simple to reflect relationship changes along with
the context. Thus, we utilized a multi-head attention layer [48]
to define the edge weights. Moreover, rather than the binary
coding of the graph, percentage coding is adopted where any
value between 0 to 1 is assigned as an edge weight where higher
values indicate a greater ability to transmit a message.
LetG = (V,E) be the interrelation graph, where each object

detection proposal i is considered as a node vi ∈ V . For all
proposals, we designed a function p : R5 → R2048 to map the
location feature zli to a vector hli with length 2048. And then,
the full node feature is the element-wise summation of the visual
feature and transformed location feature, zfi = zli + hli. The
function p served as the positional encoder, commonly used in
natural language processing (NLP) to incorporate features with
positional information.
All nodes in the graph are fully connected, where the key

ki and query qj determine the edge weights between node i
and node j. In particular, ki = zfiθk and qj = zfjθq. The node
features are first transformed through a neural network Θ and
then summedby the edgeweights. Therefore, the hidden features
of all nodes Ht+1

f at the multi-head attention layer t+ 1 could
be expressed as the following:

Ht+1
f = softmax

(
Kt+1Qt+1$

)
Ht

fΘ
t+1, (3)

Kn×nk and Qn×nk are the matrices of row-stacked keys k and
queries q,n, andnk are the numbers of nodes, and the dimension
of keys and queries, and the softmax(.) is a row-wise softmax
operator. The node hidden feature H0

f at the first layer is Zf .
The above-mentioned processes are very similar to the graph
convolution network, except that the edge weights are learned
from the similarity measure of the features represented by the
products of keys and queries.
Since the task is a multi-label classification, we used a

summation to read out the sequence into a single vector, hgk

representing the graph k. The output vector is considered an
interrelation feature that concentrates the information of the

traffic-related objects and their context-based relationships into
an epitome.

E. Proposals Filtering Enhancement

We chose the Faster R-CNN to detect traffic-related objects.
Though using a pre-trained detector saves many workforces
and promotes an end-to-end framework, it came with flawed
performance. Therefore, to deal with potential object detection
errors, we use the confidence levels of the object detection
outputs to devise a data augmentation strategy. Among all the
detection proposals from any pre-trained detectors, we draw a
subset with the selection probability being proportional to the
object detection confidence level. Since each proposal is selected
independently, the distribution of the proposal i being selected
follows Bernoulli(pi), where pi is the proposal i’s confidence
level.
To better control the selection of object proposals and balance

the contributions between the global and interrelation modules,
we manipulate the confidence level by calculating (pi)λ to
replace the original pi, where λ ∈ [0,∞].! As the λ value goes bigger towards infinity, the likelihood

of being selected will reduce to zero, even for the high
confident proposals. In this case, the global module will
contribute more to the final prediction.! In contrast, regardless of the confidence level, all proposals
will be selected when the λ goes to zero, and the contribu-
tions from the interrelation module will increase.

By changing λ, the most appropriate object proposals can be
selected. The proposed data augmentation guides the model to
prevent excessively noisy detection by keeping high-confidence
objects (true positives) and reducing low-confidence objects
(false positives).

IV. EXPERIMENTS

In this section, we elaborate on the two abovementioned
datasets for action and explanation prediction. Then we discuss
about the implementation details.

A. Datasets

BDD-OIA dataset [31] is a subset of BDD-100k [49], which
is a large-scale, diverse driving video database. The video clips
were recorded from a dashcam in front of the vehicle running
in the naturalistic road environment. The original BDD-100 K
dataset contains various driving scenes, including different
weather and traffic conditions. While the BDD-100 k dataset
is built for object detection, semantic segmentation, and other
classic computer vision tasks, the BDD-OIA dataset focuses on
the prediction of vehicle actions and driving-decision explana-
tions.
Regarding the vehicle actions, the BDD-OIA dataset pro-

vides annotation of four available maneuvers (move forward,
stop/slow, turn/merge left, and turn/merge right) for each image.
In addition, the dataset also categorizes the possible explanations
for the driving decisions into twenty-one classes and provides
the corresponding explanations for each image. Both action and
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TABLE I
STATISTICS OF BDD-OIA AND PSI DATASET

explanation predictions are multi-label classifications, i.e., each
image could have more than one positive label for both actions
and explanations. There are 22,924 images with annotations in
the BDD-OIA datasets (Table I). Moreover, compared to other
vehicle dashcam-based datasets (BDD-100 k, KITTI [50], and
Cityscapes [51], there are much more pedestrians and vehicles
appearing in the BDD-OIA, indicating the high complexity of
the traffic context. As there are four action labels for each image,
we first evaluate the action prediction performance using an F1
score for each specific action. Then, a sample-wise overall F1
score and a class-wise averageF1 score are calculated to evaluate
action and explanation prediction tasks.
PSI dataset [42] contains 110 15-second driving videos cap-

tured by a dashcam. The videos were randomly selected from a
large naturalistic driving dataset [52] with potential conflicts be-
tween vehicles and pedestrians. The original data were collected
from 116 human drivers continuously for one year. Twenty-four
human drivers annotated each video for driving actions (“main-
tain speed,” “slow down,” and “stop”) at keyframes based on
their scene understanding. In addition to the driving decisions,
human drivers describe the corresponding reasoning explana-
tions. We used a pre-trained BERT [53] to map the explanation
sentences into semantic embeddings and then used K-means
to cluster the sentences into 29 explanation categories. In other
words, each framehas onedrivingdecision and its corresponding
explanation categories. Note that the driving action in PSI is a
single selection label which is different from the BDD-OIA.
There is a total of 11,902 keyframes in the dataset, with the
details shown in Table I.
All samples are split into training, validation, and test setswith

a ratio of 7/1/2. Since the action annotation is a single-label clas-
sification, we first evaluate the action prediction performance
using accuracy for each specific action. Then, we use overall
prediction accuracy and class-wise average accuracy to evaluate
the action prediction task, and sample-wise overall F1 score and
the class-wise average F1 score for the explanation prediction
task.

B. Implementation Details

First, the global module used the backbone feature map from
a frozen Fast R-CNNwith ResNet-50 to capture the entire scene.
Next, we added two convolution blocks (convolution layer and
ReLU activation functions) to lower the dimensionality and

spatial size (256x7x7) and then feed it into an average pool layer
to get the final representation for the global features.
The design of the interrelation module simplifies the scene

context by focusing on the relationships among driving-related
objects. The location and feature maps of the proposals are
obtained from the ROI and RPN (Region Proposal Network)
heads of the Faster R-CNN. In our implementation, the number
of proposals is limited to 100 instead of the standard setting,
which is 300. The feature maps of the proposals are then average
pooled to vectorize the features. We add a fully connected layer
as a positional encoder to transform the location feature into a
vector with 2048 dimensions and then element-wisely add to
the pooled visual features. The combined proposal feature thus
contains both visual and position information. The multi-head
attention block contains three multi-head attention layers. Each
layer’s value, key, and query features are transformed from
the proposal features through a fully connected network with
a ReLU activation function, respectively. The fully connected
layer in the multi-head attention layer also reduces the dimen-
sionality from 2048 to 256. The features generated from the
multi-head attention block represent the interrelation graph.
After obtaining the features from the global and interrelation

module, we used element-wise summation to fuse the features
into one vector. Then, a fully connected layer with the ReLU
activation function transformed the fused feature, before two
separated fully-connected layers were applied as the classifier
for action and explanation prediction.
The training procedure is different for single-module train-

ing and dual-module training. For single-module training, we
trained the network with either the global module or the inter-
relation module from the random initialization. However, when
training the entire network with dual modules, we initialized the
weights of the global module with a pre-trained model and then
trained the entire network. All models are trained for 50 epochs
with no weight decay. The learning rate is set as 0.001 with the
Adam solver.

V. RESULTS

In this section, we firstly show the comparison results of our
proposed models with existing algorithms. Then, we discuss
the influence of hyper-parameter in data augmentation, which
could be considered an ablation study. At last, we demonstrated
the underlying reason why such multitasks learning alleviated
the performance by examining the intrinsic correlation between
two tasks.

A. Comparison Results

We compare our proposed model with the state-of-the-art ex-
plainable model, OIA1 to evaluate the performance. In addition,
we add another baseline for comparison that is composed of a
ResNet-101 pre-trained on ImageNet [54] to extract features and
then followed by classifiers.

1Note that we cannot reproduce the performance of OIA as reported in the
paper, so we include our reproduced results and the reported results.
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TABLE II
ACTION AND EXPLANATION PREDICTION PERFORMANCE COMPARED AMONG OUR AND EXISTING MODELS ON BDD-OIA DATASET. IN THE TABLE, THE
PERFORMANCE OF OIA* IS REFERENCED FROM THE PAPER, AND THE OIA IS REPRODUCED. DRIVING ACTION LEVELS DENOTE “MOVE FORWARD” (F),

“STOP/SLOW DOWN” (S), “TURN/CHANGE LANE TO THE LEFT” (L), AND “TURN/CHANGE LANE TO THE RIGHT” (R). (THE BEST PERFORMANCE AMONG ALL
MODELS ARE UNDERLINED, WHILE THE BEST PERFORMANCE AMONG ALL REALIZED MODELS ARE BOLD.)

TABLE III
ACTION AND EXPLANATION PREDICTION PERFORMANCE COMPARED AMONG OUR AND EXISTING ALGORITHMS ON PSI DATASET

On the BDD-OIA dataset, both our model and the repro-
duced OIA model outperform the baseline model significantly,
as shown in Table II. Moreover, our proposed model outper-
forms the reproduced OIAmodel in both action and explanation
predictions in most of the metrics, with about 2% and 10%
improvements in terms of both F1 scores, respectively. The
reproduced OIA model performs worse than the results shown
in the original paper [31], but better for explanation prediction,
which may be caused by different training strategies that we
were not able to reproduce. In comparison with the original OIA
model, the proposed model performs slightly worse in action
prediction measured by both F1 scores (about 2% decrease), but
has better explanation prediction capability (27% and 61% in
two F1 scores respectively).
We also trained the baseline, OIA, and our proposed models

using the PSI dataset to compare the performance, with the
results shown in Table III. On this dataset, the proposed model
outperforms both the baseline and the OIA algorithm signifi-
cantly, with two main results:! Driving action prediction accuracy has improved from

around 60% with OIA to 70% with the proposed model,
indicating promising results to support driving decision-
making.! Explanation prediction performance is worse using the
PSI dataset for all models compared with the results on
the BDD-OIA dataset. PSI data focuses on more complex
driver-pedestrian interaction sceneswithmore complicated
scene explanations. In this case, the proposed model still
has 47% to 74% higher F1 scores compared with the OIA
model trained on the same dataset.

B. Parameter Analysis

As mentioned above, the hyper-parameter λ in the data aug-
mentation decides the number of selected proposals from the
Faster R-CNN outputs and balances the contributions between

the global and interrelationmodules.When theλ goes to infinity,
even the likelihood of being drawn from the highly confident
proposals will shrink to zero, which leaves the global modules
to do the work. In contrast, regardless of the confidence level, all
proposals will be selected when the λ goes to zero. We test the
proposed model when λ equals 0, 0.25, 1, 1.25, and infinity. To
evaluate the performance of the interrelation module by itself,
we add that into the experiments as well. The results of the
models with different values of λ and with a single module are
shown in Table IV.
As we see, when λ = 1, the balanced dual-module model has

the best performance on all the action predictions. And selecting
all proposals (λ = 0) results in the best performance on the
explanation prediction. Several key findings include:! The global module is more important in driving scene

understanding in terms of both action and explanation
prediction. The abundant information extracted from the
whole image makes the global module perform better
compared with the interrelation module.! Compared with the global module itself, adding local ob-
ject features and the interrelationships can improve action
and explanation prediction performance. The dual-module
models with different λ values almost always perform
better than the global module itself.! For action prediction, the balanced dual-module model
performs the best, meaning that although certain lev-
els of interrelation information are helpful, adding too
many objects may distract the algorithm from the
key features and thus reduce the action prediction
capability.! More interrelation information is important for continuous
improvement of explanation prediction performance. This
result may be caused by the fact that human drivers use
more features than the trained learning algorithm for driv-
ing decision-making, and more interrelation information
can help the algorithm to capture these human-used cues.
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TABLE IV
ACTION AND EXPLANATION PREDICTION PERFORMANCE UNDER DIFFERENT λ IN THE DATA AUGMENTATION. DRIVING ACTION LABELS DENOTE “MOVE

FORWARD” (F), “STOP/SLOW DOWN” (S), “TURN/CHANGE LANE TO THE LEFT” (L), AND “TURN/CHANGE LANE TO THE RIGHT” (R). (THE BEST PERFORMANCE
AMONG ALL MODELS IS BOLD)

Fig. 3. (a) shows the hierarchical relationship between the selected explanation and action categories. (b), (c) and (d) are the t-SNE visualizations of the hidden
features, where (b) refers to the samples with positive action predictions in “move forward” and “stop/slow down,” (c) and (d) refers to the samples with positive
predictions in the selected explanations. (b) and (c) are generated using the balanced dual-module model with multi-task learning, and (d) is from the single-module
model focusing on explanation prediction only.

To conclude, this experiment shows that interrelation features
can supplement global features for better driving scene under-
standing. Although more interrelation features can always help
the algorithm to learn human explanations, many of them are not
useful for predicting driving actions. Such discrepancies reflect
the fundamental differences between human and AI decision-
making. Because the balanced dual-module model performs the
best in action prediction, we set the λ as 1 in later analysis.
All models with two modules perform similarly because the

data augmentation does not change the input of the global
module. And the global module is loaded with pre-trained
weights. Therefore, no matter how many proposals are fed
into the interrelation module, the network could always rely
on the global module. The global module outperformed the
interrelation module (select all proposals) because it has much
richer input information.

C. Multi-Task Learning Boosting

As shown in our results (Table IV), multi-task [55] learning
improves performance on both action and explanation predic-
tions. Under the intuition that explanation of a certain scene shall
help to infer the corresponding action, we believe that multi-task
learning on a dataset with hierarchical labels, likeBDD-OIA and
PSI, enables the model to capture the hierarchical relationship
between the explanation and action prediction tasks, and can

supplement extra information when inferring one based on the
other.
To further investigate how the hierarchical structures of

the dataset and model cause the performance-boosting phe-
nomenon, one critical piece of evidence needed is that the
model captures the hierarchical relationship between tasks. We
extracted the last shared hidden feature from our balanced dual-
module model (λ = 1, trained on BDD-OIA), i.e., the second to
the last fully connected layers (Fig. 2). Then,we used t-SNE [56]
to transform the dimension from 64 to 2 for visualization.
For comparison, we also trained the single-module model for
explanation prediction.
To simplify the comparison, we chose six explanation cat-

egories corresponding to two action categories for demonstra-
tions. These explanations and actions and their relationship are
shown in Fig. 3(a). The main hypothesis is that for samples with
position predictions of certain driving actions, “Move Forward”
or “Stop/Slow Down,” they shall also predict the corresponding
explanations, so that we show that the algorithm learns the two
tasks simultaneously.
Fig. 3(b) shows the distribution of samples with positive

predictions of the two driving actions, and Fig. 3(c) shows
the distribution of samples with positive predictions of the
six explanations. The results show consistent patterns between
the two results that samples for each action occupy one side
of the hear-shape manifold (“Move Forward” to the right and
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Fig. 4. Selected examples of action and explanation prediction on BDD-OIA dataset. G denotes the ground-truth annotation, and P shows our predicted result.
Green and red arrows represent correct and wrong predictions, respectively. The green explanation predictions are True Positives, and the red ones are False
Positives. Red bounding boxes are induced objects reflected by the model, while the white bounding boxes are the proposals from Faster R-CNN.

“Stop/Slow Down” to the left), with predictions of correspond-
ing explanations as well. Thus, the hidden features in multi-task
learning incorporate the hierarchical relationship in the data,
and a model may leverage such information to make better
inferences.
For comparison, we also show the hidden features of the

single-module model only focusing on predicting the six ex-
planations in Fig. 3(a). Fig. 3(d) shows the distributions of
sample embeddings with corresponding positive explanation
predictions. The pattern looks very different from Fig. 3(c).
In particular, the greenish dots (samples with explanations that
should correspond to the “Move Forward” action) and the red-
dish dots (samples with explanations that should be correspond-
ing to the “Stop/Slow Down” action) are mixed in Fig. 3(d),
indicating that the samples are not predicting corresponding
actions consistently (i.e., no straight line could separate the
samples into two actions).

D. Case Study for Visual Attention Illustration

Since one main research goal is to improve the explainability
of driving decision-making algorithms, the proposed model not
only supports explicit explanations as final outputs but can also
feed back the visual attention for generating these action and
explanation prediction outputs. We visualize the attention from
the first-layer multi-head attention for a better understanding of
the interrelation module. Due to many proposals, it isn’t easy to
illustrate the interrelation graph. Instead, we draw the bounding
boxes on the object proposals with high attention scores from
the others by calculating {bi|# of attention>0.3

ij >= 5, ∀i ∈ B},

where bi is the bounding box, attention>0.3
ij is the indicator func-

tion for the attention score between proposal i and j is greater
than 0.3, andB is the set of bounding boxes. In other words, we
are selecting objects that have relatively higher attention than at
least fiveother objects,which are considered as highly influential
ones.
The images in the first rows of Fig. 4 show cases when the

model performs well. The results show that when the model
valued the correct objects, such as the leading vehicles, obstacle
vehicles or pedestrians, and traffic lights, the predictions of
driving actions and explanations are more accurate. On the
contrary, the second rows in Fig. 4 show some worse cases.
The results clearly demonstrate that when visual attention is
distracted by noisy and irrelevant objects, the predictions of
driving actions and explanations are less accurate.
The capability of localizing algorithm visual attention can

help us to understand the model performs better. Some obser-
vations show that the proposed model still suffers from noisy
detection and is sometimes distracted by objects in the top left,
which might be caused by the positional encoder. More impor-
tantly, the visualization of visual attention can generate direct
feedback to common users about the algorithm decision-making
process so that the algorithm transparency is improved.

VI. CONCLUSION

The explainability of automated driving decision-making al-
gorithms may aid in their development and acceptance and
should be improved along with the overall action prediction
performance. Contextual scene features that are better modeled
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and connected can help with this goal. This paper proposes an
attention-based module to capture the interrelationship among
traffic-related objects and then combines the interrelation mod-
ule with a global module to build a dual-module multi-task
algorithm that can predict driving actions and explanations
simultaneously for given driving scene images. The interrelation
module provides the possibility to enable the illustration of
visual attention toward prediction outputs to further improve
algorithm transparency.
We exhaustively tested the performance of the proposed

model on two benchmark datasets, and our model outperformed
the baseline and state-of-the-art models in predicting both ego-
vehicle actions and their corresponding explanations.Additional
experiments reveal the importance of interrelation features in
predicting actions and explanations, and the underlying mecha-
nisms for improving performance using multitask learning on
datasets with hierarchical labels. The proposed model sheds
light on developing automated driving algorithmswith improved
decision-making performance and explainability when faced
with complicated driving scenes.
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