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Abstract

We consider a novel clustering task in which clusters can have compositional relationships,

e.g., one cluster contains images of rectangles, one contains images of circles, and a third

(compositional) cluster contains images with both objects. In contrast to hierarchical

clustering in which a parent cluster represents the intersection of properties of the child

clusters, our problem is about finding compositional clusters that represent the union of

the properties of the constituent clusters. This task is motivated by recently developed

few-shot learning and embedding models [1, 19] can distinguish the label sets, not just

the individual labels, assigned to the examples. We propose three new algorithms –

Compositional Affinity Propagation (CAP), Compositional k-means (CKM), and Greedy

Compositional Reassignment (GCR) – that can partition examples into coherent groups

and infer the compositional structure among them. We show promising results, compared

to popular algorithms such as Gaussian mixtures, Fuzzy c-means, and Agglomerative

Clustering, on the OmniGlot and LibriSpeech datasets. Our work has applications to

open-world multi-label object recognition and speaker identification & diarization with

simultaneous speech from multiple speakers.
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1. Introduction

We consider a new kind of clustering problem in which clusters have compositional

structure, in the sense that each example in one cluster may exhibit the union of the

properties found in another set of clusters. The goal is not just to partition the data into

distinct and coherent groups, but also to infer the compositional relationships among

the groups. This scenario arises in speaker diarization (i.e., infer who is speaking when

from an audio wave) in the presence of simultaneous speech from multiple speakers

[6, 36], which occurs frequently in real-world speech settings: The audio at each time t is

generated as a composition of the voices of all the people speaking at time t, and the goal

is to cluster the audio samples, over all timesteps, into sets of speakers. Hence, if there are

2 people who sometimes speak by themselves and sometimes speak simultaneously, then

the clusters would correspond to the speaker sets {1}, {2}, and {1, 2} – the third cluster

is not a third independent speaker, but rather the composition of the first two speakers.

An analogous scenario arises in open-world (i.e., test classes are disjoint from training

classes) multi-label object recognition when clustering images such that each image may

contain multiple objects from a fixed set (e.g., the shapes in Figure 1). In some scenarios,

the composition function that specifies how examples are generated from other examples

might be as simple as superposition by element-wise maximum or addition. However, a

more powerful form of composition – and the main motivation for our work – is enabled

by compositional embedding models, which are a new technique for few-shot learning.

Compositional embedding models: Standard (non-compositional) embedding

models for few-shot learning such as FaceNet [28] and x-vector [29] have an embedding

function f emb (typically a neural network) that maps each example (e.g., image, audio clip)

into an embedding space so that examples with the same label are mapped close together,

and examples with different labels are mapped far apart. Compositional embeddings

[1, 19] go a step further and are trained to separate not just individual labels, but entire

sets of labels. As an example of how this is performed using the approach by [19], suppose

an image collection contains some images of rectangles, some of circles, and some of

both (see Figure 1). Then the embedding function f emb would induce three clusters in

the embedding space corresponding to {rectangle}, {circle} and {rectangle, circle}. In

addition to f emb, compositional embedding models have a composition function g that
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Figure 1: Conceptual overview of our paper: Scenario (1) shows clusters of images (containing rectangles,
circles, or both) and their assigned exemplars (for exemplar-based methods) or centroids (for centroid-based
methods) a, b, c, etc. Each arrow represents the assignment of an example to its cluster exemplar/centroid.
Standard clustering algorithms such as k-means or Affinity Propagation detect 3 clusters that are
independent of each other. Compositional clustering algorithms like CAP, CKM, and GCR can infer that
each example in the bottom/purple cluster is composed (via g) of examples from clusters a & b. Scenario
(2) illustrates how modeling compositionality can enable CAP and CKM to find purer clusters by not
lumping the two sets of images (some with triangles, and some with rectangles & circles) together.
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takes the embedding vectors xa, xb of two examples and computes a set relationship

between them. For instance, g(xa, xb) might return another vector in the same embedding

space corresponding to where an example containing the union of the labels in the two

inputs would lie – see Figure 1 (lower left). In particular, the training objective is for

g(xa, xb) ≈ xab, where xab is the embedding of an example containing both classes a and

b. By applying it recursively (e.g., g(xa, g(xb, xc)) ≈ xabc), the same function g can be

used to estimate the embeddings of larger sets of examples as well. At test time, f emb

and g are used together (along with a support set of few-shot examples) to infer the set

of labels in an example. Other recent works have explored a similar idea of training the

embedding network for set operations such as union, difference, and containment [30, 37],

or to use the embedding space to synthesize feature vectors with specific properties [13].

Compositional clustering methods: In this paper we present and evaluate three

novel algorithms for tackling the “compositional clustering” problem: (1) Compositional

k-means (CKM), which is a centroid-based clustering method; (2) Compositional

Affinity Propagation (CAP), which is an exemplar-based method; and (3) Greedy

Compositional Reassignment (GCR), which can be used in tandem with any standard

clustering algorithm. All three of these methods have the ability to assign each example to

either a “singleton” cluster corresponding to a single class (e.g., a single speaker, or a single

object) or to a “compositional” cluster corresponding to the union of multiple classes

(e.g., a set of speakers, or a set of objects). CKM and CAP have the additional ability to

harness the compositional structure of the data to partition them more accurately than

is possible with standard clustering algorithms.

As a conceptual illustration, see Figure 1. In scenario (1) (left half of the figure),

there are three sets of images – some contain circles, some contain rectangles, and some

contain both. Standard clustering algorithms such as Affinity Propagation and k-means

can separate the data correctly into three clusters. However, a compositional clustering

algorithm such as CKM, CAP, or GCR can also infer that the cluster shown in purple

in the bottom-left is actually a compositional cluster in which each example contains

both objects from the first two clusters. Scenario (2) in the figure shows how modeling

the compositionality can yield a more accurate partition: whereas standard clustering

algorithms will lump together the images containing triangles with those containing
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a composition of rectangles and circles, CAP and CKM can identify this relationship

automatically and thereby obtain purer clusters.

General Workflow: Here is how a compositional clustering algorithm can be used

for open-world object recognition, speaker diarization, and similar tasks: The first step is

to (1) train a compositional embedding model [1, 19] with both an embedding function

f emb (e.g., with triplet loss, ArcFace loss [8], etc.) as well as a composition function g

that computes the location in the embedding space corresponding to the set union of the

classes represented in its two input embeddings. Note that g can be trained recursively

[20] to enable the computation of set unions of arbitrary size; moreover, it needs to be

trained only once and can then be reused. Next, (2) compute the embeddings of all the

speaker utterances (or images) in the dataset; we denote the set of these embeddings

as X = {x1, . . . , xn}. (3) Pass X , as well as the composition network g, as input to the

compositional clustering algorithm (CAP, CKM, or GCR). The clustering algorithm then

(4) infers the cluster label – which could be either a singleton (a single speaker in isolation,

or a single object appearing by itself) or a set (multiple speakers in simultaneous speech,

or multiple objects co-occuring in an image) – of each example.

Contributions: (1) We consider the computational problem of clustering data with

compositional structure, particularly as afforded by compositional embedding models,

in the setting where (a) the test classes are disjoint from training classes, (b) each

example can belong to multiple classes, and (c) no information about the test classes

(neither a support set, nor a semantic description) is given. To our knowledge, this

particular task has not been tackled previously. We also define a new accuracy metric,

the Compositional Rand Index, for this problem. (2) We present three novel clustering

algorithms – CAP, CKM, and GCR – that can partition data and infer their compositional

structure automatically. (3) We illustrate how these new methods can infer the clusters, as

well as their compositional relationships, more accurately compared to standard clustering

algorithms (Affinity Propagation, k-means, Gaussian mixtures, etc.) in two challenging

application areas: speaker recognition from speech with multiple overlapping speakers,

and multi-label object recognition in open-world scenarios.1

1The data and code are available at https://github.com/jwhitehill/CompositionalClustering.
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2. Related Work

2.1. Multi-Label Few-Shot and Zero-Shot Learning

The past 5 years have seen significant growth in the fields of multi-label few-shot

and zero-shot learning (e.g., [18, 23, 7, 16]). Much of this work relies on the existence

of a knowledge graph such as WordNet [22], a word embedding space such as GloVe

[26], or external attribute vectors, to represent relationships among classes and thereby

enable the model to generalize to data from unseen classes at test time. In contrast, the

compositional embedding models of [1] and [19], and thus our work as well, make no

such assumption – each class can be completely independent of each other. To our best

knowledge, no prior work has investigated how to cluster examples automatically when

the test classes are disjoint from training classes, when no support sets are provided,

and when no semantic information about the test classes is provided. (Note that, when

few-shot examples are provided for the test classes, then the “clustering” problem becomes

trivial – the examples can be grouped based just on their estimated label vectors.)

2.2. Clustering

To our best knowledge, no previous clustering algorithm can both cluster a dataset

and infer the compositionality among clusters. (A recent paper [24] examines how to

cluster data that is “compositional” in the sense that they lie on a simplex and thus

the features within every example “compose” to 1, but this is very different from our

scenario.) Below we discuss the most similar work.

Mixture models, such as the Mixture of Gaussians fit using Expectation-Maximization,

the Dirichlet mixture process [5], and the fuzzy k-means clustering algorithm [3], extend

the standard k-means algorithm by “softly” assigning each data point to a probability

distribution over the mixture components instead of giving a “hard” assignment like in

k-means. Importantly, these approaches assume that each data point is generated by

a single cluster, and the probability distribution expresses the uncertainty over which

cluster it is. They can capture compositionality only in a limited sense by assuming that

examples that lie between two (or more) cluster centroids belong to both (or all) of these

clusters. These methods cannot distinguish between an example that is unconfidently

assigned to a single cluster (thus resulting in high entropy over the mixture components

for that example), from an example that is confidently assigned to multiple clusters.
6



Moreover, they will fail if the compositional cluster (e.g., the purple cluster in the left

half of Figure 1) does not lie near the mean of its constituent singleton clusters (the red

and blue clusters in the figure).

Hierarchical clustering algorithms create a tree (dendrogram) such that the n

leaf nodes correspond 1-to-1 to the examples in the dataset, and each internal node i

represents a cluster whose members consist of all the leaf nodes descending from i. Internal

nodes closer to the root correspond to higher-level abstractions of the data. Hierarchical

clustering algorithms can work either top-down by splitting clusters or bottom-up by

merging clusters, until some clustering criterion is reached. One popular variant is

Agglomerative Clustering using the Ward Jr [32] criterion, which seeks to minimize the

variance within each cluster. In all cases, hierarchical clustering algorithms assign each

example to a sequence of clusters of increasing generality, starting from the internal node

just above the leaf all the way up to the root node, such that each parent cluster captures

the intersection of the characteristics of the child clusters. In contrast, our proposed

method can assign each example to contain the union of the properties in multiple clusters;

this is tantamount to a dendrogram where each example is connected by an edge to

multiple parent nodes, thus yielding a directed acyclic graph rather than a tree.

Multi-view clustering algorithms (e.g., Bickel and Scheffer [4]) partition the

feature space into multiple subsets, each corresponding to a different “view” of the data

(see [34, 11] for recent surveys). For instance, each example might be a video and thus have

both auditory and visual features associated with it. Since multiple views often contain

complementary information, harnessing all of them can often improve clustering accuracy.

Moreover, the structure of the data from one view can provide implicit supervision when

clustering using the other views. However, existing multi-view clustering methods do not

have the ability to model compositionality. Franklin and Frank [9] recently proposed a

method for “compositional clustering in task structure learning”, but their method is

more akin to multi-view clustering, and the compositionality pertains to how they tackled

a control problem (separately addressing the reward and transition functions), not the

clustering problem itself.

Exemplar-based clustering algorithms differ from centroid-based algorithms in

how clusters are represented: In the former, each cluster is represented by a specific
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example in the dataset; in contrast, the latter (e.g., k-means) may compute a function of

the examples (e.g., the mean) to represent the cluster. One of the mostly widely used

exemplar-based clustering algorithms is Affinity Propagation [10].

3. Approach I: Compositional Affinity Propagation (CAP)

Our first novel algorithm is Compositional Affinity Propagation, which is an exemplar-

based clustering method and based on standard Affinity Propagation (AP) algorithm

that is widely used for speaker diarization to group clusters of utterances into distinct

speakers [35, 20]. CAP is based on an undirected probabilistic graphical model whose

likelihood is approximately optimized using discrete optimization. Before presenting CAP,

we first review standard AP [10].

3.1. Review of Affinity Propagation

Let X = {x1, . . . , xn} ⊂ Rp be a dataset, and let C = {1, . . . , n} .
= [n] be the set

of indices of the (embedded) examples in X . Next, let c1, . . . , cn ∈ C be the cluster

assignments: Each ci denotes the exemplar representing the cluster to which example i

belongs; if example i itself is the exemplar for some other example j ̸= i, then we require

ci = i. For instance, if X contains n = 3 examples, the first two of which belong to

the same cluster and the third of which belongs to its own cluster, then we might have

c1 = 2, c2 = 2, c3 = 3 (or possibly c1 = 1, c2 = 1, c3 = 3). Let S : C × C → [−∞, 0] map

from a pair of example indices to the negative (squared) distance between the examples,

i.e., S(i, j) = −∥xi − xj∥2 for i ̸= j; and let S map to a constant value for i = j, i.e.,

S(i, i) = γ, where γ is the “preference” (a hyperparameter) that xi is an exemplar, where

larger negative values discourage those examples from becoming exemplars. From these

definitions, we can formulate the following constrained optimization problem:

argmax
c1,...,cn∈C

n∑
i=1

S(i, ci) s.t. (∃i : ci = k) =⇒ ck = k

The objective is the sum of distances between each point and its assigned exemplar,

and the constraints enforce consistency that examples used by others as exemplars also

designate themselves as exemplars. The optimization has to weigh the cost γ of creating

a new cluster against assigning examples to existing exemplars that are farther away.
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Illustration: Given an appropriate choice for the γ, Affinity Propagation would yield

the results shown in the top half of Figure 1. In particular, in scenario (1), the cluster

shown in purple would be identified as an independent cluster with examplar c, and in

scenario (2), the cluster shown in purple would contain the images with triangles as well

as those composed of rectangles and circles.

Inference: Frey and Dueck [10] showed a procedure to find approximately optimal

solutions by defining a factor graph to represent the variables and constraints, where S

is interpreted as containing log-likelihoods, and then applying loopy belief propagation.

This results in a new optimization problem where the goal is to find maximum a posteriori

(MAP) solutions to argmaxc1,...,cn∈C P (c1, . . . , cn | S). where probability distribution P

is understood to encode the constraints. Specifically, the factor graph contains variable

nodes to represent c1, . . . , cn and factor nodes to represent both the log-likelihoods

S(1, ·), . . . , S(n, ·) and a set of constraints δ1, . . . , δn. Each δk encodes whether ck is

compatible with the other ck′ ̸=k:

δk(c1, . . . , cn) =

 −∞ if ∃i : (ci = k) ∧ (ck ̸= k)

0 otherwise
(1)

Given the factor graph, a sequence of “messages” (functions α, ρ : [n]× [n]×C → [−∞, 0])

is passed back and forth between the variable and factor nodes. Each variable i sends

a message ρi→k(ci) to constraint k, and each constraint k sends a message αi←k(ci) to

variable i, about the likelihood of each possible value of ci. The values of α and ρ are

determined by the max-product algorithm for loopy belief propagation [33] applied to

the factor graph (see the Appendices). To find an approximate MAP estimate for all the

ci, we alternate between computing the α’s and the ρ’s. Finally, after any number of

iterations, we compute cMAP
i = argmaxci [

∑
k αi←k(ci) + S(i, ci)]. Frey and Dueck [10]

also presented an efficient (O(n2)) method to calculate all the messages for each iteration.

3.2. Procedure: Compositional Affinity Propagation

Here we describe our proposed Compositional Affinity Propagation algorithm. At

a high level, CAP innovates on classic AP by allowing each cluster to be represented

by not just a single example (“singleton” cluster), but rather an entire set of examples

(“compositional” cluster). Importantly, the examples in this set need not be semantically
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similar or lie close to each other in the feature space; rather, the union of the characteristics

of the examples in this set should be present in each of the examples belonging to the

compositional cluster. In terms of the inference procedure, CAP is somewhat more

complex than standard AP due to the need, as part of the max-product algorithm, to

compute the maximum values of many subsets efficiently (FindAllMaxes).

Let X = {x1, . . . , xn} ⊂ Rp be a dataset. Let C ⊂ 2[n] \ ∅ be the set of compositions

of examples in X under consideration, where we assume C contains all the singletons, i.e.,

{i} ∈ C, i = 1, . . . , n. Let d = maxc∈C |c|, i.e., the size of the largest composition under

consideration. To identify which compositions contain (or do not contain) each example

k, define functions ϕ, ϕ : [n]→ 2C such that ϕ(k) = {c ∈ C : c ∋ k} and ϕ(k) = C \ ϕ(k).

Let f be defined as in standard Affinity Propagation. We further assume there is a

function g : 2X \ ∅ → Rp that consumes a set of examples and produces another vector

representing their composition; for singleton sets, we let g be the identity function, i.e.,

g({x}) = x. For instance, g could be the element-wise maximum to perform pixel-wise

superposition of the images; for word embeddings, it could be element-wise addition

[2]; or it could be a trained neural network within a compositional embedding model.

We define S : [n] × C → [−∞, 0] to measure the distance between each example and

each composition: S(i, c) = −∥xi − g({xk : k ∈ c})∥ for c ̸= {i}, and S(i, {i}) = γ is a

hyperparameter for each example.

Finally, define c1, . . . , cn ∈ C as the assignment of which example belongs to which

cluster. If ci = {k} (i.e., a singleton), then example i belongs to a singleton cluster with

exemplar xk. If |ci| ≥ 2, then example i belongs to the cluster with a compositional

exemplar g({xk : k ∈ ci}), i.e., the composition of all the examples in ci. Note that,

in general, compositional exemplars are not members of X . In CAP, we require that,

whenever some example i designates its exemplar either to be example k (ci = {k}),

or to include example k (ci ∋ k), then example k must designate itself as an exemplar

(ck = {k}). Example: if X = {x1, x2, x3, x4} and we allow compositions of size at most 2,

then C = {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}; if x1 and x2 each

constitutes its own cluster and the last two examples are both assigned to the composition

of the first two clusters, then we would have c1 = {1}, c2 = {2}, c3 = c4 = {1, 2}.

10



Our new constrained optimization problem is thus:

argmax
c1,...,cn∈C

n∑
i=1

S(i, ci) s.t. (∃i : ci ∋ k) =⇒ ck = {k}

Importantly, the optimization objective incurs no additional cost when an example is

assigned to a compositional exemplar ck as long as all of the examples k′ ∈ ck have

themselves already been designated as exemplars.

Illustration: Given an appropriate choice for γ, CAP would yield the results show

in the bottom half of Figure 1. In scenario (1), the cluster shown in purple would be

identified as a cluster with a compositional exemplar. In scenario (2), the compositional

structure identified by the algorithm could help it to separate the images containing

triangles from those containing both a rectangle and a circle.

3.2.1. Inference

As with standard Affinity Propagation, we find a MAP estimate for each ci by defining

a factor graph and computing and passing messages between the variables and the factors.

We adjust the definition of δk to be:

δk(c1, . . . , cn) =

 −∞ if ∃i : (ci ∋ k) ∧ (ck ̸= {k})

0 otherwise
(2)

In the Appendices, we derive a procedure to compute α and ρ efficiently; see Algorithm 1.

Theorem 3.1. Let n be the number of examples in a dataset X , and let d be the largest
element in the set C containing all compositions under consideration. Then Algorithm
1 implements message passing (i.e., computation of sufficient statistics of α and ρ) for
Compositional Affinity Propagation and operates in time O(dnd+1) per iteration.

Proof. See Appendices.

Inferring the Number of Clusters: The hyperparameter γ in CAP is the penalty

for creating a new cluster versus assigning data points to an existing one. It is similar to

the concentration hyperparameter (often denoted α) in the Dirichlet mixture process [5].

3.3. CAP⊂: An Approximation to CAP

To improve the scalability of CAP, we can apply it to a randomly selected subset of

examples X̃ ⊂ X and infer the cluster assignments c̃1, . . . , c̃|X̃ |. Let E = {c̃i}|X̃ |i=1 ⊂ C be

the set of unique exemplars (singleton or compositional) inferred for X̃ . Then, for each
11



Algorithm 1 Compositional Affinity Propagation (CAP)

CAP(S, C):
ϕ(k)← {c ∈ C : c ∋ k}, ϕ(k)← C \ ϕ(k) ∀k
q(i, ci)← 0 ∀i, ci
a(i, k)← 0, a(i, k)← 0 ∀i, k
while not converged do
b, b, h← ComputeRhoStats(S, C, ϕ, ϕ, a, a, q)
a, a, q ← ComputeAlphaStats(C, b, b, h)

end while
return argmaxci(q(i, ci) + S(i, ci)) ∀i

ComputeRhoStats(S, C, ϕ, ϕ, a, a, q):
for i = 1, . . . , n do
r, s← FindAllMaxes(S(i, ·) + q(i, ·), C, ϕ, ϕ)
for k = 1, . . . , n do
b(i, k)← max(r(k)− a(i, k), s(k)− a(i, k))
b(i, k)← s(k)− a(i, k)

end for
end for
for k = 1, . . . , n do
h(k)← S(k, {k}) + qk({k})− a(k, k)

end for
return b, b, h

ComputeAlphaStats(C, b, b, h):
for k = 1, . . . , n do
e(k)←

∑
i′ ̸=k b(i

′, k)

e(k)←
∑
i′ ̸=k b(i

′, k)
end for
for i = 1, . . . , n do
for k = 1, . . . , n do

if i = k then
a(i, k)← e(k)
a(i, k)← e(k)

else
a(i, k)← h(k) + e(k)− b(i, k)
a(i, k)← max(b(k, k) + e(k)− b(i, k), h(k) + e(k)− b(i, k))

end if
end for

end for
for i = 1, . . . , n do
q∗(i)←

∑
k′ a(i, k

′)
for ci ∈ C do
q(i, ci)← q∗(i) +

∑
k′∈ci(a(i, k

′)− a(i, k′))
end for

end for
return a, a, q
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Algorithm 2 Finding Maxima of Many Subsets

FindAllMaxes(q, C, ϕ, ϕ):
r(k)← max q(ϕ(k)) ∀k
s(k)← −∞ ∀k
for j = 1, . . . , d do
for τ = {t1, . . . , tj−1} s.t. ∃tj > tj−1 : {t1, . . . , tj} ∈ C do
ψτ ← {{t1, ..., tj−1, tj}}tj>tj−1

∩ C
c1, c2 ← argmax1,2c∈ψτ

q(c)
for k = 1, . . . , n do
if c1 ∈ ϕ(k) then
s(k)← max(s(k), q(c1))

else if c2 ∈ ϕ(k) then
s(k)← max(s(k), q(c2))

end if
end for

end for
end for
return r, s

example xi in the original dataset X , we designate its exemplar to be the c̃i ∈ E that is

closest to it xi according to f . Specifically, we assign ci = argminc̃i∈E ∥xi, g({xj : j ∈ c̃i})∥.

We call this method CAP⊂.

4. Approach II: Compositional k-means

The second compositional clustering algorithm we propose is called Compositional

k-means (CKM). In contrast to CAP, which uses discrete optimization to assign examples

to exemplars, CKM uses gradient descent to minimize a sum of squared distances by

adjusting the real-valued cluster centroids. Like CAP, the CKM method can potentially

cluster the data in Figure 1 more accurately by harnessing the composition function g to

infer which examples belong to singleton clusters versus compositional clusters. CKM is

a centroid-based method rather than an exemplar-based clustering method. Hence, each

cluster assignment variable ci is a subset of [k] (rather than of [n], like with CAP).

4.1. Review of classic k-means

Given the number of clusters k as input, classic k-means seeks to assign each of the

n examples to one of the k clusters (denoted ci ∈ [k] for each i), so as to minimize the

sum of squared distances (SSD) SSD({mj}kj=1, {ci}ni=1) =
∑n
i=1 ∥xi −mci∥2. Here, each
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mj ∈ Rp is a cluster centroid, and each ci ∈ [k] is a cluster index. To (locally) minimize

the SSD, two steps are executed in alternation until convergence:

1. Assign each xi to the cluster j whose centroid mj ∈ Rp is closest to xi; and

2. Compute each centroid mj as the mean of the points assigned to cluster j.

In particular, the second step is the closed-form minimizer of the SSD w.r.t. the centroids

mj . Since each of these steps is guaranteed not to increase the SSD, and since a lower

bound on SSD is always 0, the algorithm is guaranteed to converge to a local minimum.

4.2. Procedure: Compositional k-means

Let the number of singleton clusters k (e.g., the number of individual speakers in

the audio, or the number of basic object classes in the image set) be known, and let

K ⊂ 2[k] be a set of possible compositions of the singleton clusters, where we require that

K contains all the singletons, i.e., {i} ∈ K, i = 1, . . . , k. Assume composition function g is

differentiable. CKM seeks to assign each xi to either one of k singleton clusters (a single

person speaking in isolation, or a single object by itself) or to a compositional cluster

(the composition of multiple speakers in an audio, or multiple objects in an image) so as

to minimize the following sum of squared distances:

SSD({m{j}}kj=1, {ci}ni=1) =
n∑
i=1

∥xi −mci∥2 (3)

where each compositional centroidmη = g({m{j}}j∈η) (for η ∈ K and |η| > 1) is computed

using the composition function g. (Note the small difference in notation compared to the

SSD in standard k-means in the subscript of m so as to emphasize that a cluster centroid

may represent the composition of other clusters.)

Like the classic k-means, the SSD is a function of the singleton cluster centroids (i.e.,

m{1}, . . . ,m{k}). Unlike classic k-means, the CKM method can assign each example to

either a singleton or a compositional cluster. By adjusting the singleton centroids, the

locations of the compositional centroids – and thus the SSD value itself – are also affected

due to their dependence via g.

At a high level, CKM works as follows: After initializing the singleton cluster centroids

randomly and computing the compositional centroids using g, a two-step alternating

procedure is executed whereby (a) each example xi is assigned to the closest centroid
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(either singleton or compositional), and (b) the singleton centroids m{1}, . . . ,m{k} are

adjusted using gradient descent (with learning rate ϵ) to reduce the SSD in Equation 3.

Since we assume g is a differentiable function (typically implemented as a neural network),

the gradient of the SSD w.r.t. each singleton centroid (keeping the weights of g fixed)

can be computed easily. During the optimization (see Algorithm 3), CKM dynamically

infers which clusters are singletons and which are compositional, and also estimates the

centroids of the singleton clusters so as to trade off between fitting the singletons and

the compositional clusters well. Note that (like with classic k-means) the initialization

in step 1 can affect which local minimum is reached, and thus it is often useful to try

multiple random seeds and to choose the best seed based on the lowest SSD.

Algorithm 3 Compositional k-means (CKM)

CKM(X ,K, ϵ):
Set each m{j}, j ∈ [k] to a randomly drawn (without replacement) example in X .
Compute compositional centroids: mη ← g({m{j}}j∈η) ∀η ∈ K : |η| > 1.
while not converged do
ci ← argminη∈K ∥xi −mη∥2 ∀i.
m{1}, . . . ,m{k} ← SGD

(∑n
i=1 ∥xi −mci∥2; {m{j}}kj=1; ϵ

)
end while
return {ci}ni=1

Convergence: Unlike in classical k-means, the second step of the alternation (ad-

justment of cluster centroids) in CKM is conducted numerically rather than analytically.

However, assuming the learning rate of gradient descent is sufficiently small, it will not

increase the SSD. Since the first step of the alternation can also never increase the SSD,

and since the SSD is bounded below, the algorithm will converge to a local minimum.

Comparison to CAP: CKM requires that g be differentiable, and it uses gradient-

based optimization using neural network packages such as TensorFlow, PyTorch, etc. In

contrast, CAP, as it only involves computing maxes and sums, can be implemented in

simple Python or C code, and it does not require a differentiable g. Each step of the

while-loop takes runtime O(nkd), where d is the size of the largest composition in K.

Since the number of singleton clusters k is typically much smaller than the number of

examples n, CKM can run much faster than CAP.

Inferring the Number of Clusters: While CKM takes the number of singleton
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clusters k as input, it infers the number of compositional clusters automatically based on

the data – if no examples are assigned to a particular composition, then that compositional

cluster does not exist. Moreover, the value k itself can be estimated by techniques such

as the Gap statistic [31] that is commonly used for standard k-means clustering.

5. Approach III: Greedy Compositional Reassignment (GCR)

The third approach that we explored for compositional clustering is based on the idea

of using any standard clustering algorithm to partition the data X into clusters, and

then using the composition function g to find the optimal “reassignment” of the inferred

clusters so that some of them are considered to be compositions of others. Suppose

we first obtain (e.g., from Agglomerative Clustering) a set E = {m{1}, . . . ,m{k}} of k

cluster centroids. Then we could iterate over every possible subset Ẽ ⊆ E ; these represent

the compositional clusters. For each Ẽ , we conduct an inner-loop to iterate over every

possible 1-to-1 map from Ẽ to the set of compositions (via g) of E \ Ẽ ; these are the

singleton/singleton clusters. We would finally select Ẽ and its map to E \ Ẽ so as to

minimize the sum of distances between the examples and their assigned cluster centroids

(either singletons or compositional).

Unfortunately, due to the factorial time cost, this brute-force approach quickly be-

comes completely impractical (e.g., for |E| = 15 and d = 2, there are 107770296705436

possibilities). However, the idea gave us inspiration for a tractable greedy heuristic that

we call Greedy Compositional Reassignment (GCR). Like CKM, GCR is a centroid-based

clustering method. It uses g and the distances between cluster centroids to determine the

compositional relationships in a greedy manner and thereby avoid the factorial time cost.

5.1. Procedure: Greedy Compositional Reassignment

Assume that a standard clustering method (we use Agglomerative Clustering) has

produced a clustering with k centroids m{1}, . . . ,m{k} and cluster assignments c1, . . . , cn,

where each ci ∈ [k]. Let K be the set of compositions under consideration.GCR first uses

g to compute the location of the compositional centroid for every η ∈ K. It then finds, for

each putative singleton cluster j ∈ [k], the distance dj to the closest compositional centroid

bj ∈ K; if dj is below a threshold τ , then cluster j is concluded to actually be a composition

of the two other clusters in bj , and all the examples that were previously assigned to
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cluster j are reassigned to the compositional cluster bj . The process is repeated for each

singleton cluster j according to the distances dj sorted from smallest to largest until one

of several possible termination conditions are reached (so as to maintain consistency, e.g.,

avoid cycles of compositionality); once this point is reached, all the remaining clusters

that were not reassigned to be compositional are deemed to be singletons. The algorithm

uses sets S and T to keep track of which clusters have been assigned as singletons and

which are assigned as compositions, respectively. The final assignment of an example to a

cluster index is denoted c′i ∈ K for each example i ∈ [n]. See Algorithm 4 for details.

Algorithm 4 Greedy Compositional Reassignment (GCR)

GCR(X ,K, τ):
S ← ∅, T ← ∅.
Obtain preliminary clustering: {m{j}}kj=1, {ci}ni=1 ← AgglomerativeClustering(X ).
Compute compositional centroids: mη ← g({m{j}}j∈η) ∀η ∈ K.
bj ← argminη ∥m{j} −mη∥ ∀j ∈ [k].
dj ← ∥m{j} −mcj∥ ∀j ∈ [k].
for j ∈ [k] according to argsort({dj}) do

if dj ≥ τ or j ∈ S or bj ∩ T ̸= ∅ then
Assign remaining clusters j′ > j to singletons: c′i ← {j′} ∀i : ci = j′, j′ ≥ j.
break

end if
Assign cluster j to composition: c′i ← bj ∀i : ci = j.
Add the clusters in bj to the set of singletons: S ← S ∪ bj .
Add the current cluster (j) to the set of compositions: T ← T ∪ {j}.

end for
return {c′i}ni=1.

Comparison to CAP and CKM: Excluding the runtime cost of the initial clustering

using Agglomerative Clustering, GCR method is much faster than CAP and CKM since it

iterates over the k singleton clusters at most once, and each iteration is simple. Note that,

whereas CKM and CAP can use the compositionality to partition the data into clusters

more cleanly (see the right half of Figure 1), GCR cannot – it only has the ability to infer

the compositional relationships among already-formed clusters (left half of Fig. 1).

Inferring the Number of Clusters: Since GCR first runs a standard clustering

algorithm as a subroutine, then any technique that can estimate the number of clusters

for that clustering algorithm (e.g., Gap statistic) can also be used for GCR.
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6. Experiments

To evaluate the proposed algorithms, we conducted experiments, using standard

datasets that are widely used for few-shot learning research, on both multi-object image

recognition and multi-person speaker diarization with overlapping speech. We follow the

workflow described in the Introduction, i.e., for each problem domain, we use few-shot

learning to train an embedding function f emb to separate examples by their classes, as well

as a composition function g [1, 19] that can estimate the location in the embedding space

of the union of multiple sets of classes. We train these models jointly and episodically,

where the episodes contains examples from different set of classes. Evaluation: Since

standard clustering metrics such as the Adjusted Rand Index (ARI) do not capture

compositionality, we devise a new evaluation metric called the Compositional Rand Index.

6.1. Evaluation Metric: the Compositional Rand Index (CRI)

Suppose dataset X = {x1, . . . , xn} contains l singleton clusters and some number

(possibly 0) of compositional clusters. Then Y = 2[l] \ ∅ is the set of all possible ground-

truth cluster labels, and y1, . . . , yn ∈ Y are the cluster assignments. A sensible evaluation

criterion of some inferred labels c1, . . . , cn ∈ C w.r.t. ground-truth should capture the

number of clusters, their purity, and their compositional relationships. It should not

depend on the particular naming of cluster labels (the identifiability issue). With these

goals in mind, we propose the Compositional Rand Index (CRI) to compute the probability,

over all pairs i ̸= j, that the inferred labels agree with the ground-truth about whether

the cluster assignment of example i subsumes the cluster assignment of example j:

CRI(c1, . . . , cn, y1, . . . , yn) =
1

n(n− 1)

∑
i̸=j

I[I[ci ⊇ cj ] = I[yi ⊇ yj ]] (4)

where I[·] is a 0-1 indicator function. For datasets without compositionality (i.e., Y = [l]),

CRI is equivalent to the standard Rand Index [27].

6.2. Baseline Methods

We chose several baselines that seemed the most reasonable alternative approaches,

even if they had no explicit ability to model compositionality.

Ignore compositionality: One approach is simply to ignore the compositional

relationships among clusters and consider each cluster as completely independent; this
18



Figure 2: Some audio examples from LibriSpeech. From left to right are the waveforms from speaker 1,
speaker 2, and overlapping speech from both speakers.

is illustrated in Figure 1 (top row). Any standard clustering method can thus be used.

While it will pay a penalty under the CRI metric since it misses the compositional

relationships, it can sometimes (Figure 1 upper-left, but not upper-right) still do a good

job overall by correctly forming coherent clusters. With this motivation, we use standard

Affinity Propagation (AP) as well as Agglomerative Clustering (AC) with the

Ward criterion as two baselines.

Infer compositionality from “soft” label assignments: Mixture models such as

the classic Mixture of Gaussians and fuzzy k-means [3] (it is more commonly called “fuzzy

c-means” in the literature) assign to each example a vector of probabilities that express

the likelihood that it belongs to each of the k clusters. By thresholding these probabilities

with some threshold τ , one can obtain a set of cluster labels for each example. This

method can work if the embedding space is structured so that examples whose cluster

label set is {a, b} lie near the midpoint between those examples whose label set is {a} and

those whose label set is {b}. Based on this approach, we tested both Fuzzy c-Means

(FCM) and Gaussian Mixture Models (GMM) as baselines.

Oracle singleton clustering: To assess how well a perfect clustering method would

work that can determine the cluster memberships exactly but not infer compositionality,

we include an Oracle Singleton Clustering (OSC) baseline. Note it is not meaningful

when measuring ARI (since it would be 100%); hence, we use it only for the CRI.

6.3. Experiment I: LibriSpeech

Real-world conversations and meetings often contain moments when multiple people

are speaking simultaneously (due to interruptions, sub-group conversations, etc.). Hence,

an important few-shot learning problem is to identify the set of people speaking at

any given moment in time, where the classes (people) at test time usually differ from

the classes at training time. We thus used the LibriSpeech [25] dataset to explore how

well each clustering method can cluster speech samples into speaker sets and infer the
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compositional relationships between sets. LibriSpeech is a corpus of approximately 1000

hours of English audiobook speech from 2484 speakers. While it contains only individual

speakers, we can synthesize simultaneous speech by combining individual tracks, similarly

to work by [12, 15, 21]. See Figure 2 for some examples of the audio waveforms.

Embedding model: We used LibriSpeech to train a compositional embedding model

(f emb and g) for speaker verification using an LSTM neural network on top of MFCC

audio features (see Appendices for details). Importantly, none of the classes (speakers)

that were used for optimizing these networks were used in the clustering experiments. 2

Procedure: Our first experiment considers compositionality of degree at most d = 2.

We created datasets X of size n ∈ {150, 750, 1500, 7500, 15000}; each dataset contained

speech segments from 5 different speakers (picked from 100 speakers which were not seen

during training). Some of the segments contained single speakers, and some contained

combinations of two speakers. Hence, there were
(
5
1

)
+
(
5
2

)
= 15 different unique speaker

sets in total. The test set contains 10 data trials for each n and the validation set has

10 trials when n = 150 (hyperparameters are picked based on n = 150 and used for

all ns). For each n, we compared all three compositional clustering algorithms and all

the baselines described above and then compared the resulting CRI (Section 6.1) and

Adjusted Rand Index (ARI) scores. For CAP, we used the full inference procedure for

n = 150, and we used CAP⊂ with a random subset of 150 examples for n > 150. All

results of all clustering methods are averaged over 10 trials for each n.

To illustrate compositional clustering for d = 3 (i.e., up to 3 speakers speaking

simultaneously), we performed a second experiment using the same composition function

g as for d = 2 (i.e., it does not need to be retrained for different d). There are 25 classes

in total (5 singletons, 10 2-sets, and 10 3-sets). We adopted the same hyperparameters

for each method that were optimized in the previous experiment for d = 2. Due to the

high computational cost, we varied n only up to 2500, and we did not try CAP.

Hyperparameter optimization: CAP, CAP⊂, and AP have one hyperparameter,

which is the cost γ of creating a new singleton cluster. GCR has two hyperparameters: the

first is the number of clusters in the first step of clustering and the second is the threshold

2For the baseline clustering methods, we also tried training a simpler embedding model femb without
jointly training g to check whether that gave better performance. However, we found that this actually
resulted in worse performance for the baselines, and hence we abandoned it.
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LibriSpeech Results (2 Spkrs, CRI%)
n 150 750 1500 7500 15000
GCR 94.6 (1.1) 95.8 (0.7) 96.0 (0.8) 96.5 (0.5) 96.6 (0.5)
CAP 94.8 (1.4) 93.8 (1.4) 93.7 (1.5) 93.4 (1.3) 92.6 (2.1)
CKM 95.7 (0.8) 96.3 (0.6) 96.1 (0.6) 96.2 (0.4) 96.1 (0.5)
AP 87.9 (0.6) 87.0 (0.2) 86.1 (0.1) 85.0 (0.1) 84.8 (0.0)
AC 88.4 (0.3) 86.4 (0.2) 85.6 (0.1) 84.7 (0.0) 84.6 (0.0)
FCM 88.0 (0.5) 88.3 (0.5) 88.1 (0.4) 88.3 (0.4) 88.4 (0.4)
GMM 87.8 (0.4) 88.9 (0.4) 88.7 (0.4) 88.8 (0.3) 88.6 (0.5)
OSC 91.1 (0.0) 91.1 (0.0) 91.1 (0.0) 91.1 (0.0) 91.1 (0.0)

LibriSpeech Results (2 Spkrs, ARI%)
n 150 750 1500 7500 15000
GCR 77.2 (4.0) 82.1 (3.4) 82.3 (3.7) 85.1 (2.9) 85.8 (2.6)
CAP 76.5 (5.5) 74.2 (4.9) 74.1 (5.4) 73.2 (4.8) 72.5 (6.2)
CKM 78.5 (3.7) 81.8 (2.8) 81.4 (2.9) 83.4 (2.2) 83.1 (2.2)
AP 72.5 (5.1) 54.9 (2.9) 39.6 (2.2) 15.3 (0.9) 9.2 (0.6)
AC 74.2 (3.7) 43.1 (2.5) 28.6 (1.8) 8.4 (0.6) 4.7 (0.3)
FCM 70.0 (4.3) 70.5 (3.8) 69.0 (3.8) 70.7 (4.0) 71.8 (3.7)
GMM 70.5 (4.0) 80.3 (3.6) 78.6 (3.6) 79.0 (3.2) 78.8 (3.5)

Table 1: Results of LibriSpeech experiments (2 speakers) in CRI%/ARI% along with s.e.

τ to stop compositional label assignment. CKM has four hyperparameters: the number

of singleton clusters k; the number of random initializations; the maximum number of

alternations; and the learning rate. AC uses a distance threshold hyperparameter that

determines whether to merge two clusters. GMM has one hyperparameter to decide

the number of components. FCM has the number of clusters c and the corresponding

threshold 1/c on the vector of probabilities that determines when the model infers that an

example belongs to a compositional cluster; it also has a temperature m that can make the

estimated class probabilities more or less entropic. The hyperparameter sets were decided

separately for each method, based on pilot exploration, to give each method a good

chance of succeeding. The hyperparameter values were then optimized so as to maximize

the average (over 10 trials) CRI. Experiments were conducted using the Python code in

the Github repository; the sklearn implementations of AgglomerativeClustering and

AffinityPropagation; and the SciKit-Fuzzy of FCM.

Results: The mean CRI% and ARI% (along with standard error) for d = 2 are

shown in Table 1. For all values of n, all the compositional clustering algorithms (the

first three lines of the table) worked better than all of the standard clustering methods in
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LibriSpeech Results (3 Spkrs, CRI%)
n 250 1250 2500
GCR 87.4 (0.5) 88.6 (1.1) 89.6( 1.3)
CKM 95.1 (0.4) 93.1 (0.7) 94.7 (0.4)
AP 80.8 (0.2) 84.2 (0.4) 84.9 (0.2)
AC 84.8 (0.1) 84.0 (0.1) 83.7 (0.0)
FCM 84.0 (0.1) 83.8 (0.3) 84.4 (0.2)
GMM 84.3 (0.2) 84.5 (0.4) 85.0 (0.2)
OSC 87.1 (0.0) 87.2 (0.0) 87.2 (0.0)

LibriSpeech Results (3 Spkrs, ARI%)
n 250 1250 2500
GCR 55.7 (2.0) 59.0 (4.6) 69.3 (3.0)
CKM 72.6 (2.0) 64.1 (3.1) 71.6 (1.8)
AP 32.8 (1.5) 57.9 (4.6) 62.7 (2.6)
AC 54.2 (2.7) 32.9 (2.1) 22.6 (0.7)
FCM 51.2 (2.0) 50.4 (3.6) 57.0 (2.4)
GMM 53.3 (3.3) 60.4 (4.9) 67.8 (3.1)

Table 2: Results of LibriSpeech experiments (3 speakers) in CRI%/ARI% along with s.e.

terms of CRI; the differences (as assessed with matched-pair t-tests between methods

over the 10 test trials, at the 0.05 significance level) were all stat. sig. GCR and CKM

usually gave the highest accuracy. CAP comes in second place for n = 150 but as n

increases, its accuracy decreases; this is likely because, for the larger n values, CAP⊂ sees

a relatively smaller fraction of the total dataset as n increases. All the proposed methods

outperformed the Oracle Singleton Clustering baseline, suggesting that they can both

form coherent clusters and correctly infer the compositional relationships between them.

Among the traditional methods, either FCM or GMM usually performed best: while it

does have some ability to infer compositionality via the probability vector assigned to

each example, it does not use the embedding model’s composition function g; hence, it

must rely on compositional clusters lying close to their constituent singleton clusters in

the embedding space, which does not always happen in practice.

In terms of ARI – which can measure the purity of inferred clusters but not the accuracy

of the inferred compositional relationships – both GCR and CKM always outperformed

the best standard clustering method (though the differences were not always stat. sig.).

This suggests that the g function enabled the compositional methods to obtain purer

clusters. CAP outperformed all the standard clustering methods for n = 150 but not for
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Figure 3: Some LibriSpeech clusters (for d = 2), according to different methods. Circles belong to
singleton clusters; plusses belong to compositional clusters. Best viewed in color.

larger n (when CAP⊂ was used). Note that some ARI scores, particularly for the AC and

AP methods, were very low for larger n; this is likely because the hyperparameters for all

methods were optimized for CRI, not ARI, and because ARI adjusts for the accuracy

obtained by just guessing. Manual inspection of the results suggests that some methods

(e.g., AC for n = 15000) incorrectly deduced a very large number of clusters, which was

heavily penalized by the ARI metric.

For d = 3 (Table 2), the trends were mostly similar to d = 2. The accuracy differences

with the best-performing standard clustering method were stat. sig. for both GCR and

CKM for CRI for all n; for ARI, the significance tests were mixed.

Inferred Clusters: Figure 3 shows some clustering results of the 4 different methods;

in each plot (generated using PCA applied to X ), circles and plusses represent examples

from singleton and compositional clusters, respectively. (To avoid clutter, we show just 3

singleton clusters and their compositions, and the inferred relationships of which clusters

are composed to yield other clusters are not shown.) All three compositional clustering

methods are largely successful in inferring both the clusters and their compositionality.

AP and AC can approximately infer the clusters but sometimes lump groups of examples

together that actually come from distinct clusters. FCM and GMM do manage to infer

some compositionality correctly, but not as well as the compositional methods.

6.4. Experiment II: OmniGlot

Here we considered a multi-object image recognition problem using the OmniGlot

[17] dataset. OmniGlot contains images of handwritten symbols from many languages. It
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Figure 4: Some representative examples from OmniGlot images: the first three columns show examples
from singleton clusters, whereas the latter show images from compositional clusters.

has 1623 different handwritten characters from 50 different alphabets. We can synthesize

images with multiple symbols by element-wise superposition; Figure 4 shows 4 groups of

examples used in the experiment, where each group contains images with cluster labels

{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Because of the intertangling of the different symbols in

each compositional image, the recognition problem is quite challenging. We created 10

trials for each n in the test set and 10 trials when n = 150 in the validation set.

Embedding model: In our experiment, all characters are augmented with random

scaling and shifting, and random Gaussian noise is added to the background. We pre-

trained a compositional embedding model f emb using a ResNet18 [14] network; the

composition function g is the same as for LibriSpeech (see Appendices).

Procedures are analogous to the experiments on LibriSpeech (see Section 6.3).

Results are in Table 3. CKM gave the highest accuracy for almost all values of n.

With CKM (both on LibriSpeech and OmniGlot), we found that trying different random

initializations of the singleton cluster centroids, and then choosing the final clustering based

on the sum of squared distances after training, was important to get good performance.

Nonetheless, CKM’s accuracy was not just due to randomly “guessing” which of the

clusters were singleton clusters – the number of random seeds in our experiments (we

used 100) was far smaller than the total number of possible choices of 5 singleton clusters

out of 15 total clusters (
(
15
5

)
= 3003), suggesting that CKM uses g and the numerical

SSD-minimization procedure to deduce compositional structure. After CKM, GCR was

usually second best, followed by CAP (which was sometimes slightly worse than the best

standard clustering methods, in terms of ARI). Among the traditional clustering methods,

FCM usually performed best. The CRI accuracy improvement compared to the best

standard clustering method was stat. sig. for all the compositional clustering algorithms.

For ARI, the results of the t-tests were mixed.
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OmniGlot Results (CRI%)
n 150 750 1500 7500 15000
GCR 94.9 (0.4) 95.9 (0.3) 96.0 (0.2) 96.3 (0.3) 96.3 (0.3)
CAP 93.3 (0.4) 92.8 (0.5) 92.6 (0.5) 92.7 (0.5) 92.8 (0.2)
CKM 94.3 (1.2) 97.1 (0.4) 96.7 (0.5) 96.9 (0.4) 96.9 (0.5)
AP 87.9 (0.1) 86.3 (0.1) 85.6 (0.1) 84.8 (0.0) 84.7 (0.0)
AC 87.9 (0.1) 85.7 (0.1) 85.2 (0.0) 84.7 (0.0) 84.6 (0.0)
FCM 88.1 (0.1) 88.0 (0.1) 87.9 (0.2) 88.0 (0.1) 87.9 (0.3)
GMM 85.7 (0.4) 86.4 (0.5) 86.0 (0.9) 87.9 (0.3) 87.1 (0.7)
OSC 91.1 (0.0) 91.1 (0.0) 91.1 (0.0) 91.1 (0.0) 91.1 (0.0)

OmniGlot Results (ARI%)
n 150 750 1500 7500 15000
GCR 76.0 (1.3) 81.0 (1.2) 81.4 (1.0) 84.6 (0.9) 84.9 (0.9)
CAP 63.1 (2.2) 64.9 (2.5) 64.3 (2.2) 64.7 (1.9) 66.1 (0.9)
CKM 77.7 (4.1) 86.1 (1.3) 85.5 (1.5) 85.7 (1.3) 85.8 (1.6)
AP 69.8 (1.3) 43.8 (1.7) 29.3 (1.3) 9.3 (0.4) 6.3 (0.1)
AC 65.4 (1.8) 29.1 (1.6) 18.1 (0.9) 5.8 (0.2) 4.4 (0.1)
FCM 69.7 (1.1) 67.1 (1.0) 66.6 (1.5) 67.1 (1.4) 67.7 (1.5)
GMM 55.1 (2.2) 63.1 (2.7) 65.5 (4.4) 75.0 (2.3) 70.0 (3.3)

Table 3: Results of OmniGlot experiments in CRI%/ARI% along with s.e.

7. Conclusions

We presented three new algorithms (CAP, CKM,and GCR) that can both cluster data

and infer the compositional relationships between clusters. These algorithms can facilitate

data visualization and exploratory data analyses on datasets where the classes have not

been previously seen. Our experiments on the LibriSpeech and OmniGlot datasets suggest

that modeling compositionality explicitly is useful and enables the proposed methods to

identify coherent and distinctive clusters, and also to infer the compositional relationships

between them. The proposed methods deliver substantially higher accuracy than can be

achieved with standard methods (e.g., GMM, FCM), even when the latter have the ability

to assign examples “softly” to multiple clusters. Among CKM, GCR, and CAP, we found

that CKM and GCR gave higher accuracy and also scale better with dataset size n.

Limitations of proposed methods: In practice, training embedding function f emb

jointly with composition function g can be challenging, especially when the compositional

degree d ≥ 3. On the other hand, as few-shot learning is an active research field, more

powerful embedding approaches could arise that make this challenge less severe.
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Future work: We anticipate that, as multi-label few-shot learning research continues

to grow, there will be increasing interest for methods to cluster data from unseen classes.

Research on more accurate compositional embedding models, especially to the extent

that the composition function g can be increased in accuracy, will likely lead to accuracy

improvements in compositional clustering methods. One possible downstream application

of our work is a simplified pipeline for speaker diarization: instead of separate algorithms

to detect overlapping speech, separate speech segments into long vs. short turns, and

then cluster the utterances [6], it may be possible to apply a compositional clustering

algorithm that can diarize the set of all speech utterances in just one pass.
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Appendix A. Loopy Belief Propagation for Standard Affinity Propagation

When applying the max-product algorithm to the factor graph in standard Affinity

Propagation, a sequence of “messages” (functions α, ρ : [n] × [n] × C → R≤0 ∪ {−∞})

is passed back and forth between the variable and factor nodes. Each variable i sends

a message ρi→k(ci) to constraint k, and each constraint k sends a message αi←k(ci) to

variable i, about the likelihood of each possible value of ci. The max-sum algorithm (and

the related max-product algorithm for factor graphs) dictates that ρi→k(ci) equals the

sum of messages over ci’s neighbors except δk (i.e., {δk′}k′ ̸=k):

ρi→k(ci) = S(i, ci) +
∑
k′ ̸=k

αi←k′(ci) (A.1)

Also, for MAP estimation, αi←k(ci) equals the maximum possible sum of the messages

from all of δk’s neighbors except i (i.e., {ci′}i′ ̸=i), plus the value of δk itself:

αi←k(ci) = max
{ci′}i′ ̸=i

δk(c1, . . . , cn) +∑
i′ ̸=i

ρi′→k(ci′)

 (A.2)

Appendix B. Derivation of Algorithm 1 (CAP) and Proof of Theorem 1

Here we derive Algorithm 1 from the definitions of α and ρ to optimize the Composi-

tional Affinity Propagation model. We also prove the time cost in Theorem 1. Recall the

definitions of α, ρ, and δ:

ρi→k(ci) = S(i, ci) +
∑
k′ ̸=k

αi←k′(ci) (B.1)

αi←k(ci) = max
{ci′}i′ ̸=i

δk(c1, . . . , cn) +∑
i′ ̸=i

ρi′→k(ci′)

 (B.2)

δk(c1, . . . , cn) =

 −∞ if ∃i : (ci ∋ k) ∧ (ck ̸= {k})

0 otherwise
(B.3)

Each message αi←k(ci) computes, for a given value of ci for variable i, an (unnormalized)

log-likelihood of the best possible configuration of the assignments of all the other variables

{ci′ ̸=i }, given that constraint k is satisfied (i.e., δk is finite). There are four cases in

which this occurs; they mirror those in standard Affinity Propagation but differ slightly.
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For each case, the δ term in the RHS of Eqn. B.2 vanishes; the only remaining terms

are the sum of the ρ’s. Also, since each summand in Eqn. B.2 depends on just a single

unique ci′ , the max of the sum becomes the sum of the max. Cases:

1. i = k, ci = {k}: Since in this case example i = k designates itself as an exemplar,

then the constraint δk is immediately satisfied. Moreover, any of the other examples

i′ ̸= i is free to choose (or not choose) example k as an exemplar, and therefore we

can take the maximum over any possible value for each ci′ . Hence,

αi←k(ci) = max
{ci′}i′ ̸=k

0 + ∑
i′ ̸=k

ρi′→k(ci′)

 =
∑
i′ ̸=k

max
ci′

ρi′→k(ci′)

2. i = k, ci ̸∋ k: Since example i = k does not designate itself as an exemplar,

then none of the other examples i′ ≠ i may choose k as its exemplar. Hence,

αi←k(ci) =
∑
i′ ̸=kmaxci′ ̸∋k ρi′→k(ci′).

3. i ̸= k, ci ∋ k: Since example i designates its exemplar either to be or to include

example k, then α is finite only if ck = {k}, and each remaining example i′ ̸∈ {i, k}

is free to designate any example as its exemplar. Hence, αi←k(ci) = ρk→k({k}) +∑
i′ ̸∈{i,k}maxci′ ρi′→k(ci′).

4. i ̸= k, ck ̸∋ k: Since example i does not designate k as an exemplar, then example k

can either be an exemplar or not, and we take the max over both possibilities:

αi←k(ci) = max

max
ck ̸∋k

ρk→k(ck) +
∑

i′ ̸∈{i,k}

max
ci′ ̸∋k

ρi′→k(ci′), ρk→k({k}) +
∑

i′ ̸∈{i,k}

max
ci′

ρi′→k(ci)


Note that αi←k(ci) = −∞ if i = k, ci ∋ i and ci ̸= {i}. However, in practice we can avoid

this case by instead setting S(i, ci) = −∞ whenever ci ∋ i and ci ≠ {i}. Given the four

cases above, we have the following definition of α:

αi←k(ci) = max
{ci′}i′ ̸=i

δk(c1, . . . , cn) +∑
i′ ̸=i

ρi′→k(ci′)

 (B.4)

=



∑
i′ ̸=kmaxci′ ρi′→k(ci′) i = k, ci = {k}∑
i′ ̸=kmaxci′ ̸∋k ρi′→k(ci′) i = k, ci ̸∋ k

ρk→k(k) +
∑
i′ ̸∈{i,k}maxci′ ρi′→k(ci′) i ̸= k, ci ∋ k

max
[
maxck ̸∋k ρk→k(ck) +

∑
i′ ̸∈{i,k}maxci′ ̸∋k ρi′→k(ci′),

ρk→k(k) +
∑
i′ ̸∈{i,k}maxci′ ρi′→k(ci′)

]
i ̸= k, ck ̸∋ k

(B.5)
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In the most naive implementation, evaluating α for each tuple (i, k, ci) would take

time O(n2) due to the summing over the max; the entire table of α values would thus

take time O(n4 × |C|). However, there is massive redundancy that can be avoided: First,

for each tuple (i, k), only two possible values of αi←k(ci) exist: one for ci ∋ k (i.e.,

αi←k(ϕ(k))) and one for ci ̸∋ k (i.e., αi←k(ϕ(k))). Hence, instead of computing |C| values

for each tuple (i, k), we need to compute and store only 2 values. Second, the expressions∑
i′ ̸=kmaxci′ ρi′→k(ci′) and

∑
i′ ̸=kmaxci′ ̸∋k ρi′→k(ci′) depend on k but not on i; hence,

they can be reused for many tuples (i, k). Third:∑
i′ ̸∈{i,k}

max
ci′

ρi′→k(ci′) =
∑
i′ ̸=k

max
ci′

ρi′→k(ci′) −max
ci

ρi→k(ci)

∑
i′ ̸∈{i,k}

max
ci′ ̸∋k

ρi′→k(ci′) =
∑
i′ ̸=k

max
ci′ ̸∋k

ρi′→k(ci′) −max
ci ̸∋k

ρi→k(ci)

Hence, after computing each of the terms of the LHS above (just once for each k),

we need only to “adjust” them for each i, in O(1) time, by subtracting the corre-

sponding term on the RHS. At the end of all the CAP iterations, we set cMAP
i =

argmaxci [
∑
k αi←k(ci) + S(i, ci)]. Hence, as long as we can update α during each itera-

tion of message passing, then we never need to know ρ explicitly.

For convenience, define the following functions:

b(i, k) = max
ci

ρi→k(ci)

b(i, k) = max
ci ̸∋k

ρi→k(ci)

e(k) =
∑
i′ ̸=k

max
ci′

ρi′→k(ci′) =
∑
i′ ̸=k

b(i′, k)

e(k) =
∑
i′ ̸=k

max
ci′ ̸∋k

ρi′→k(ci′) =
∑
i′ ̸=k

b(i′, k)

h(k) = ρk→k(k)

a(i, k) = αi←k(ϕ(k)) =

 e(k) i = k

h(k) + e(k)− b(i, k) i ̸= k

a(i, k) = αi←k(ϕ(k)) =

 e(k) i = k

max(b(k, k) + e(k)− b(i, k), h(k) + e(k)− b(i, k)) i ̸= k

Visual inspection of Equation B.5 confirms that the a(i, k) and a(i, k) defined above

recover all 2n2 degrees of freedom of α. Below we show how we can compute e,e,b, b,
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and h in a total time of O(dnd+1) per iteration. First, however, we need to derive the

computation of some intermediate quantities.

Appendix B.1. Computing q(i, ci) =
∑
k′ αi←k′(ci) ∀i, ci

Define q(i, ci) =
∑
k′ αi←k′(ci). For each i, we can compute q(i, ci) for each ci by

splitting the sum over k′ into two parts: those k′ such that ϕ(k′) ∋ ci and those k′ such

that ϕ(k′) ∋ ci. We then substitute αi←k′(ci) = αi←k′(ϕ(k
′)) for k′ s.t. ϕ(k′) ∋ ci (and

similarly for ϕ(k′)) to yield:

q(i, ci) =
∑

k′:ϕ(k′)∋ci

αi←k′(ϕ(k
′)) +

∑
k′:ϕ(k′)∋ci

αi←k′(ϕ(k
′))

=
∑
k′

αi←k′(ϕ(k
′)) +

∑
k′:ϕ(k′)∋ci

(αi←k′(ϕ(k
′))− αi←k′(ϕ(k′)))

=
∑
k′

αi←k′(ϕ(k
′)) +

∑
k′∈ci

(αi←k′(ϕ(k
′))− αi←k′(ϕ(k′)))

We can define q∗(i) =
∑
k′ αi←k′(ϕ(k

′)). Then we have q(i, ci) = q∗(i)+
∑
k′∈ci(a(i, k

′)−

a(i, k′)). The term q∗(i) takes time O(n) for each i but is reused for all ci. The summation

on the RHS contains at most d terms (for a maximum composition size of d). Hence, for

each i, the total computation (over all ci) is O(n+ |C|d) = O(n+ dnd) = O(dnd).

Appendix B.2. Efficiently Finding Maxima of Many Subsets

The next step we need is an efficient method to compute expressions of the forms (a)

maxci∈ϕ(k) q(i, ci) and (b) maxci∈ϕ(k) q(i, ci) for all k, in a total time of O(nd+1).

Form (a): Since each such ci must contain k, then there are only d − 1 remaining

degrees of freedom for each ϕ(k); hence, |ϕ(k)| ≤ nd−1 for each k, and directly computing

the maximum of q(i, ·) over every ϕ(k) takes a total time of O(nd) (summed over all k).

Form (b): Define ϕ
j
(k) = {c ∈ ϕ(k) : |c| = j}. Since maxci∈ϕ(k) q(i, ci) = maxj∈[d] max

ci∈ϕ
j
(k)
q(i, ci),

we can split the task into subtasks by j and then take the max over all of them. To com-

pute the max over each ϕ
j
(k), we can iterate over all nj−1 tuples (t1, . . . , tj−1) ∈ [n]j−1;

for each tuple, we can compute in O(n) time the largest and second-largest value of q(i, ·)

over the set (t− 1, . . . , tj−1, tj) and then “adjust” the result in constant time to obtain

the update for each k. In particular, for each such tuple τ , let ψτ = {{t1, . . . , tj} ∈ C :

t1 < . . . < tj}. (For instance, if j = 2, n = 4, τ = (1, 2), and C contains all 3-tuples,
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then ψτ = {{1, 2, 3}, {1, 2, 4}}.) In each iteration, let c1, c2 ∈ ψτ be the arguments

corresponding to the largest and second-largest elements in q(i, ψτ ); if |ψτ | = 1, then

define c2 = ∅; if |ψτ | = 0, then define both c1 = c2 = ∅. (Note that ∅ ̸∈ ϕ(k) for any

k.) For any k, it must be the case that the number of elements in the set ψτ ∩ ϕ
j
(k) is

either 0 (if any k ∈ {t1, . . . , tj−1}), |ψτ | − 1 (if k > tj−1, such that we must ignore exactly

one element of ψτ for each k), or |ψτ | (if k ̸∈ {t1, . . . , tj−1} and k < tj−1). In the first

case (intersection is empty), we make no update to max
ci∈ϕ

j
(k)
q(i, ci). In the second

(intersection is of size |ψτ | − 1), we update max
ci∈ϕ

j
(k)
q(i, ci) with q(i, c

1) if c1 ̸∋ k and

with q(i, c2) otherwise. And in the third (intersection is of size |ψτ |), we always update

max
ci∈ϕ

j
(k)
q(i, ci) with q(i, c

1). Since c1, c2 can be computed in time |ψτ | ≤ n and then

reused for each of the k (in constant-time) for the updates, and since there are at most

nj−1 such tuples τ when scanning the entire C, then this amounts to a total time of

O(dnj) for each j. Summing over all j = 1, . . . , d, this yields a running time of O(dnd).

See Algorithm 2. The argmax1,2 function returns the c1, c2 that give the largest and

second-largest values of the specified function, where c2 = ∅ if the input set is of size 1,

and c1 = c2 = ∅ if the input set is empty.

Appendix B.3. Computing Maxes of Sums Except Row k

We can now show how expressions of the form b(i′, k) = maxci′ ρi→k(ci′) and b(i
′, k) =

maxci′ ̸∋k ρi→k(ci′) can be computed efficiently. We first examine the former, which by

definition is:

max
ci′

ρi′→k(ci′) = max
ci′

S(i′, ci′) + ∑
k′ ̸=k

αi′←k′(ci′)


In other words, we need to find the ci′ that maximizes S(i′, ci′) plus the sum (except the

kth term) of the αi←k′(ci′) (see Figure B.5). As mentioned above, for each i′, k, function

αi′←k(·) has only 2 degrees of freedom: one for ci′ ∈ ϕ(k) (the blue regions in Figure

B.5) and one for ci′ ∈ ϕ(k) (the clear regions); hence, there exist numbers u, v such that

αi′←k(ϕ(k)) = u and αi′←k(ϕ(k)) = v. Assume we have already computed q(i, ci′) =∑
k′ αi′←k′(ci′) ∀ci′ (this is the sum over all k) and also, for each k, the values r(k) =

maxci′∈ϕ(k)
∑
k′ αi′←k′(ci′) and s(k) = maxci′∈ϕ(k)

∑
k′ αi′←k′(ci′). Then, for any k, we

can find, in O(1) time, maxci′
∑
k′ ̸=k αi′←k′(ci′) by “adjusting” maxci′

∑
k′ αi′←k′(ci′) as
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Figure B.5: For each i, k, to compute the max (over ci′) of the sum of all rows k′ ̸= k, we can (1)
compute the max of the sum of all rows within region ϕ(k) and (separately) within region ϕ(k); (2)
adjust each maximum by subtracting the value of row k in region ϕ(k) and the value of row k in region
ϕ(k), respectively; (3) take the larger result.

follows:

max
ci′

∑
k′ ̸=k

αi′←k′(ci′) = max(r(k)− u, s(k)− v)

The latter case (maxci′ ̸∋k ρi′→k(ci′)) is even easier since we ignore all ci′ ∈ ϕ(k) entirely:

max
ci′ ̸∋k

∑
k′ ̸=k

αi′←k′(ci′) = s(k)− v

We have already defined u = a(i′, k) and v = a(i′, k); hence, we have:

b(i′, k) = max(r(k)− a(i′, k), s(k)− a(i′, k)), b(i′, k) = s(k)− a(i′, k)

Appendix B.4. Computing h(k) = ρk→k(k)

As the last step, we can compute h(k) = ρk→k(k) = S(k, {k}) +
∑
k′ ̸=k αk←k′(k) =

S(k, {k}) + qk({k})− a(k, k). This completes the derivation of Algorithm 1.

Appendix B.5. Time Cost Analysis

As explained in Section Appendix B.2, the FindAllMaxes takes time O(dnd) operations

for each i. The function ComputeRhoStats calls FindAllMaxes n times (and also executes

O(n2) further operations) for a cost of dnd+1. The function ComputeAlphaStats takes

O(n2) for the nested for-loops, and (as explained in Section Appendix B.1) a further

O(dnd) for the computation of each q(i, ·), amounting to O(dnd+1) in total.

This completes the proof.
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Appendix C. Brute-Force Reassignment

Here is how a brute-force reassignment could work: We first obtain a set of k singleton

clusters with associated exemplar indices E ⊂ [n]. Then we iterate over every possible

subset Ẽ ⊆ E ; these represent the compositional clusters. For each Ẽ , we conduct an

inner-loop to iterate over every possible 1-to-1 map from Ẽ to the set of compositions of

E \ Ẽ ; these represent the singleton clusters. If we consider compositions of at most d

exemplars, then we have
∑k
i=0 C(k, i)P

(∑d
d′=2 C(k − i, d′), i

)
total possible maps, where

C(k, i) and P (k, i) are the numbers of combinations and permutations of i objects from a

set of k, respectively. The P arises due to iterating over all 1-to-1 maps. Note that the

number of possible maps grows factorially with k, and hence it quickly becomes intractable

as k grows (e.g., for k = 15 and d = 2, the number of possibilities is 107770296705436).

Appendix D. LibriSpeech

LibriSpeech contains 1000+ hours of recorded English-language speech of people

reading audiobooks. While the dataset contains speech from only individual speakers, we

can synthesize speech by adding the waveforms of multiple speakers. Figure 2 shows of

an example of how simultaneous speech data is synthesized from LibriSpeech data.

Compositional embedding model: Speaker embeddings were extracted from

mel-frequency cepstrum coefficient (MFCC) features (32 coefficients, 0.025s window size,

0.01s step size) using an embedding function f emb that contains a 2-layer LSTM with 256

hidden units. Composition function g is defined as g(xa, xb) =W1xa+W1xb+W2(xa⊙xb),

where W1,W2 are learnable weights and xa, xb are speaker embeddings. f emb and g were

optimized jointly. During training, 15 audio samples from 5 unique speakers (5 labeled

with 1 speaker and 10 with 2 speakers) are used to extract reference speaker embeddings

using f emb. 20 query speaker embeddings were extracted from the same 5 speakers using

f emb&g, with audio or audio pairs. The distances between reference embeddings and

query embeddings are computed and the model is optimized using triplet loss so that the

distance between a reference-query pair share the same label is smaller then that of other

pairs. After training, the model achieves overall accuracy of 86.9% on a validation set

where each episode contains 20 queries as above.
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After function f emb and g are trained, we selected hyperparameters based on a

separate validation set and then tested on test set. Both the validation set and test set

contain 10 groups of data, and all clusters have the same number of samples in each

group of data. (For example, in the setting of l = 3, n = 120, there are 6 clusters with

labels {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} and each one has 20 samples.) For all methods,

hyperparameters are selected for l = 3 and for l = 5 (both n=150 and n=495) separately.

For CAP/CAP⊂ and AP, there is only one hyperparameter, γ, which we varied over the

set {1, 2, . . . , 7}. For AC, there is a distance threshold hyperparameter, which we varied

over {1, 2, 3, 4, 4}. These sets of values were chosen in pilot experimentation to give a

fair chance to each algorithm; in particular, they were chosen so that the best result,

during the validation process, did not fall on the boundary of these sets. During the

message-passing process, we dampened the values returned by ComputeAlphaStats and

ComputeRhoStats using a damping value of λ = 0.65: Val = OldVal∗λ+NewVal∗(1−λ).

This value for λ was used for CAP, CAP⊂, and AP.

Appendix E. OmniGlot

OmniGlot contains images of handwritten symbols from a variety of languages. Figure

4 shows 4 groups of examples used in the experiment. Each group contains images with

cluster labels {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Compositional embedding model:

For the image embedding function f emb we used ResNet18. Composition function g is

defined the same as for LibriSpeech. The training procedure of f emb and g are the same

as for LibriSpeech. After training, the embedding model achieves overall accuracy of

75.0% on validation set. After function f emb and g are trained, the hyperparameters are

selected in the same way, and from the same sets, as in the LibriSpeech experiment. We

used damping just like for LibriSpeech.
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