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Abstract

We consider a novel clustering task in which clusters can have compositional relationships,
e.g., one cluster contains images of rectangles, one contains images of circles, and a third
(compositional) cluster contains images with both objects. In contrast to hierarchical
clustering in which a parent cluster represents the intersection of properties of the child
clusters, our problem is about finding compositional clusters that represent the union of
the properties of the constituent clusters. This task is motivated by recently developed
few-shot learning and embedding models [1, 19] can distinguish the label sets, not just
the individual labels, assigned to the examples. We propose three new algorithms —
Compositional Affinity Propagation (CAP), Compositional k-means (CKM), and Greedy
Compositional Reassignment (GCR) — that can partition examples into coherent groups
and infer the compositional structure among them. We show promising results, compared
to popular algorithms such as Gaussian mixtures, Fuzzy c-means, and Agglomerative
Clustering, on the OmniGlot and LibriSpeech datasets. Our work has applications to
open-world multi-label object recognition and speaker identification & diarization with
simultaneous speech from multiple speakers.
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1. Introduction

We consider a new kind of clustering problem in which clusters have compositional
structure, in the sense that each example in one cluster may exhibit the union of the
properties found in another set of clusters. The goal is not just to partition the data into
distinct and coherent groups, but also to infer the compositional relationships among
the groups. This scenario arises in speaker diarization (i.e., infer who is speaking when
from an audio wave) in the presence of simultaneous speech from multiple speakers
[6, 36], which occurs frequently in real-world speech settings: The audio at each time ¢ is
generated as a composition of the voices of all the people speaking at time ¢, and the goal
is to cluster the audio samples, over all timesteps, into sets of speakers. Hence, if there are
2 people who sometimes speak by themselves and sometimes speak simultaneously, then
the clusters would correspond to the speaker sets {1}, {2}, and {1,2} — the third cluster
is not a third independent speaker, but rather the composition of the first two speakers.
An analogous scenario arises in open-world (i.e., test classes are disjoint from training
classes) multi-label object recognition when clustering images such that each image may
contain multiple objects from a fixed set (e.g., the shapes in Figure 1). In some scenarios,
the composition function that specifies how examples are generated from other examples
might be as simple as superposition by element-wise maximum or addition. However, a
more powerful form of composition — and the main motivation for our work — is enabled
by compositional embedding models, which are a new technique for few-shot learning.

Compositional embedding models: Standard (non-compositional) embedding
models for few-shot learning such as FaceNet [28] and x-vector [29] have an embedding
function f™P (typically a neural network) that maps each example (e.g., image, audio clip)
into an embedding space so that examples with the same label are mapped close together,
and examples with different labels are mapped far apart. Compositional embeddings
[1, 19] go a step further and are trained to separate not just individual labels, but entire
sets of labels. As an example of how this is performed using the approach by [19], suppose
an image collection contains some images of rectangles, some of circles, and some of
both (see Figure 1). Then the embedding function f*® would induce three clusters in
the embedding space corresponding to {rectangle}, {circle} and {rectangle, circle}. In

addition to f°™P compositional embedding models have a composition function g that
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Figure 1: Conceptual overview of our paper: Scenario (1) shows clusters of images (containing rectangles,
circles, or both) and their assigned exemplars (for exemplar-based methods) or centroids (for centroid-based
methods) a, b, ¢, etc. Each arrow represents the assignment of an example to its cluster exemplar/centroid.
Standard clustering algorithms such as k-means or Affinity Propagation detect 3 clusters that are
independent of each other. Compositional clustering algorithms like CAP, CKM, and GCR can infer that
each example in the bottom/purple cluster is composed (via g) of examples from clusters a & b. Scenario
(2) illustrates how modeling compositionality can enable CAP and CKM to find purer clusters by not
lumping the two sets of images (some with triangles, and some with rectangles & circles) together.



takes the embedding vectors z,,z; of two examples and computes a set relationship
between them. For instance, g(z,, x5) might return another vector in the same embedding
space corresponding to where an example containing the union of the labels in the two
inputs would lie — see Figure 1 (lower left). In particular, the training objective is for
9(Ta, Tp) & xap, Where 4, is the embedding of an example containing both classes a and
b. By applying it recursively (e.g., g(xa, g(Tp, Zc)) = Tabe), the same function g can be
used to estimate the embeddings of larger sets of examples as well. At test time, feP
and g are used together (along with a support set of few-shot examples) to infer the set
of labels in an example. Other recent works have explored a similar idea of training the
embedding network for set operations such as union, difference, and containment [30, 37],
or to use the embedding space to synthesize feature vectors with specific properties [13].

Compositional clustering methods: In this paper we present and evaluate three
novel algorithms for tackling the “compositional clustering” problem: (1) Compositional
k-means (CKM), which is a centroid-based clustering method; (2) Compositional
Affinity Propagation (CAP), which is an exemplar-based method; and (3) Greedy
Compositional Reassignment (GCR), which can be used in tandem with any standard
clustering algorithm. All three of these methods have the ability to assign each example to
either a “singleton” cluster corresponding to a single class (e.g., a single speaker, or a single
object) or to a “compositional” cluster corresponding to the union of multiple classes
(e.g., a set of speakers, or a set of objects). CKM and CAP have the additional ability to
harness the compositional structure of the data to partition them more accurately than
is possible with standard clustering algorithms.

As a conceptual illustration, see Figure 1. In scenario (1) (left half of the figure),
there are three sets of images — some contain circles, some contain rectangles, and some
contain both. Standard clustering algorithms such as Affinity Propagation and k-means
can separate the data correctly into three clusters. However, a compositional clustering
algorithm such as CKM, CAP, or GCR can also infer that the cluster shown in purple
in the bottom-left is actually a compositional cluster in which each example contains
both objects from the first two clusters. Scenario (2) in the figure shows how modeling
the compositionality can yield a more accurate partition: whereas standard clustering

algorithms will lump together the images containing triangles with those containing
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a composition of rectangles and circles, CAP and CKM can identify this relationship
automatically and thereby obtain purer clusters.

General Workflow: Here is how a compositional clustering algorithm can be used
for open-world object recognition, speaker diarization, and similar tasks: The first step is
to (1) train a compositional embedding model [1, 19] with both an embedding function
femP (e.g., with triplet loss, ArcFace loss [8], etc.) as well as a composition function g
that computes the location in the embedding space corresponding to the set union of the
classes represented in its two input embeddings. Note that g can be trained recursively
[20] to enable the computation of set unions of arbitrary size; moreover, it needs to be
trained only once and can then be reused. Next, (2) compute the embeddings of all the
speaker utterances (or images) in the dataset; we denote the set of these embeddings
as X = {x1,...,x,}. (3) Pass X, as well as the composition network g, as input to the
compositional clustering algorithm (CAP, CKM, or GCR). The clustering algorithm then
(4) infers the cluster label — which could be either a singleton (a single speaker in isolation,
or a single object appearing by itself) or a set (multiple speakers in simultaneous speech,
or multiple objects co-occuring in an image) — of each example.

Contributions: (1) We consider the computational problem of clustering data with
compositional structure, particularly as afforded by compositional embedding models,
in the setting where (a) the test classes are disjoint from training classes, (b) each
example can belong to multiple classes, and (c¢) no information about the test classes
(neither a support set, nor a semantic description) is given. To our knowledge, this
particular task has not been tackled previously. We also define a new accuracy metric,
the Compositional Rand Index, for this problem. (2) We present three novel clustering
algorithms — CAP, CKM, and GCR — that can partition data and infer their compositional
structure automatically. (3) We illustrate how these new methods can infer the clusters, as
well as their compositional relationships, more accurately compared to standard clustering
algorithms (Affinity Propagation, k-means, Gaussian mixtures, etc.) in two challenging
application areas: speaker recognition from speech with multiple overlapping speakers,

and multi-label object recognition in open-world scenarios.?

IThe data and code are available at https://github.com /jwhitehill/CompositionalClustering.


https://github.com/jwhitehill/CompositionalClustering

2. Related Work
2.1. Multi-Label Few-Shot and Zero-Shot Learning

The past 5 years have seen significant growth in the fields of multi-label few-shot
and zero-shot learning (e.g., [18, 23, 7, 16]). Much of this work relies on the existence
of a knowledge graph such as WordNet [22], a word embedding space such as GloVe
[26], or external attribute vectors, to represent relationships among classes and thereby
enable the model to generalize to data from unseen classes at test time. In contrast, the
compositional embedding models of [1] and [19], and thus our work as well, make no
such assumption — each class can be completely independent of each other. To our best
knowledge, no prior work has investigated how to cluster examples automatically when
the test classes are disjoint from training classes, when no support sets are provided,
and when no semantic information about the test classes is provided. (Note that, when
few-shot examples are provided for the test classes, then the “clustering” problem becomes

trivial — the examples can be grouped based just on their estimated label vectors.)

2.2. Clustering

To our best knowledge, no previous clustering algorithm can both cluster a dataset
and infer the compositionality among clusters. (A recent paper [24] examines how to
cluster data that is “compositional” in the sense that they lie on a simplex and thus
the features within every example “compose” to 1, but this is very different from our
scenario.) Below we discuss the most similar work.

Mixture models, such as the Mixture of Gaussians fit using Expectation-Maximization,
the Dirichlet mixture process [5], and the fuzzy k-means clustering algorithm [3], extend
the standard k-means algorithm by “softly” assigning each data point to a probability
distribution over the mixture components instead of giving a “hard” assignment like in
k-means. Importantly, these approaches assume that each data point is generated by
a single cluster, and the probability distribution expresses the uncertainty over which
cluster it is. They can capture compositionality only in a limited sense by assuming that
examples that lie between two (or more) cluster centroids belong to both (or all) of these
clusters. These methods cannot distinguish between an example that is unconfidently
assigned to a single cluster (thus resulting in high entropy over the mixture components

for that example), from an example that is confidently assigned to multiple clusters.
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Moreover, they will fail if the compositional cluster (e.g., the purple cluster in the left
half of Figure 1) does not lie near the mean of its constituent singleton clusters (the red
and blue clusters in the figure).

Hierarchical clustering algorithms create a tree (dendrogram) such that the n
leaf nodes correspond 1-to-1 to the examples in the dataset, and each internal node 4
represents a cluster whose members consist of all the leaf nodes descending from 4. Internal
nodes closer to the root correspond to higher-level abstractions of the data. Hierarchical
clustering algorithms can work either top-down by splitting clusters or bottom-up by
merging clusters, until some clustering criterion is reached. One popular variant is
Agglomerative Clustering using the Ward Jr [32] criterion, which seeks to minimize the
variance within each cluster. In all cases, hierarchical clustering algorithms assign each
example to a sequence of clusters of increasing generality, starting from the internal node
just above the leaf all the way up to the root node, such that each parent cluster captures
the intersection of the characteristics of the child clusters. In contrast, our proposed
method can assign each example to contain the union of the properties in multiple clusters;
this is tantamount to a dendrogram where each example is connected by an edge to
multiple parent nodes, thus yielding a directed acyclic graph rather than a tree.

Multi-view clustering algorithms (e.g., Bickel and Scheffer [4]) partition the
feature space into multiple subsets, each corresponding to a different “view” of the data
(see [34, 11] for recent surveys). For instance, each example might be a video and thus have
both auditory and visual features associated with it. Since multiple views often contain
complementary information, harnessing all of them can often improve clustering accuracy.
Moreover, the structure of the data from one view can provide implicit supervision when
clustering using the other views. However, existing multi-view clustering methods do not
have the ability to model compositionality. Franklin and Frank [9] recently proposed a
method for “compositional clustering in task structure learning”, but their method is
more akin to multi-view clustering, and the compositionality pertains to how they tackled
a control problem (separately addressing the reward and transition functions), not the
clustering problem itself.

Exemplar-based clustering algorithms differ from centroid-based algorithms in

how clusters are represented: In the former, each cluster is represented by a specific
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example in the dataset; in contrast, the latter (e.g., k-means) may compute a function of
the examples (e.g., the mean) to represent the cluster. One of the mostly widely used

exemplar-based clustering algorithms is Affinity Propagation [10].

3. Approach I: Compositional Affinity Propagation (CAP)

Our first novel algorithm is Compositional Affinity Propagation, which is an exemplar-
based clustering method and based on standard Affinity Propagation (AP) algorithm
that is widely used for speaker diarization to group clusters of utterances into distinct
speakers [35, 20]. CAP is based on an undirected probabilistic graphical model whose
likelihood is approximately optimized using discrete optimization. Before presenting CAP,

we first review standard AP [10].

3.1. Review of Affinity Propagation

Let X = {x1,...,2,} C R? be a dataset, and let C = {1,...,n} = [n] be the set
of indices of the (embedded) examples in X. Next, let ¢1,...,¢, € C be the cluster
assignments: Each ¢; denotes the exemplar representing the cluster to which example
belongs; if example ¢ itself is the exemplar for some other example j # i, then we require
¢; = i. For instance, if X' contains n = 3 examples, the first two of which belong to
the same cluster and the third of which belongs to its own cluster, then we might have
1 =2,c0 =2,c3 =3 (or possibly ¢; = 1,c0 = 1,¢3 = 3). Let S: C x C — [—00,0] map
from a pair of example indices to the negative (squared) distance between the examples,
ie., S(i,j) = —|lz; — z;||* for i # j; and let S map to a constant value for i = j, i.e.,
S(i,4) =y, where « is the “preference” (a hyperparameter) that x; is an exemplar, where
larger negative values discourage those examples from becoming exemplars. From these
definitions, we can formulate the following constrained optimization problem:

arg max ZS(i,ci) st. (Fire;=k) = =k

C1,.n €C i=1

The objective is the sum of distances between each point and its assigned exemplar,
and the constraints enforce consistency that examples used by others as exemplars also
designate themselves as exemplars. The optimization has to weigh the cost v of creating

a new cluster against assigning examples to existing exemplars that are farther away.
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Ilustration: Given an appropriate choice for the v, Affinity Propagation would yield
the results shown in the top half of Figure 1. In particular, in scenario (1), the cluster
shown in purple would be identified as an independent cluster with examplar ¢, and in
scenario (2), the cluster shown in purple would contain the images with triangles as well
as those composed of rectangles and circles.

Inference: Frey and Dueck [10] showed a procedure to find approximately optimal
solutions by defining a factor graph to represent the variables and constraints, where S
is interpreted as containing log-likelihoods, and then applying loopy belief propagation.
This results in a new optimization problem where the goal is to find maximum a posteriori
(MAP) solutions to argmax,, . cc P(c1,...,¢q | S). where probability distribution P
is understood to encode the constraints. Specifically, the factor graph contains variable
nodes to represent ci,...,c, and factor nodes to represent both the log-likelihoods
S(1,-),...,5(n,-) and a set of constraints 01,...,0,. Each 0, encodes whether ¢ is
compatible with the other cpr.y:

Su(crr. . o) = —oo ifFi:(c;=k)N(cx £k) 1)

0 otherwise

Given the factor graph, a sequence of “messages” (functions «, p : [n] x [n] x C — [—00,0])
is passed back and forth between the variable and factor nodes. Each variable ¢ sends
a message p;—k(c;) to constraint k, and each constraint k sends a message o, (c;) to
variable i, about the likelihood of each possible value of ¢;. The values of « and p are
determined by the max-product algorithm for loopy belief propagation [33] applied to
the factor graph (see the Appendices). To find an approximate MAP estimate for all the
¢;, we alternate between computing the a’s and the p’s. Finally, after any number of
iterations, we compute ¢MAF = argmax,, [>°, cir(c;) + S(i, ¢;)]. Frey and Dueck [10]

also presented an efficient (O(n?)) method to calculate all the messages for each iteration.

8.2. Procedure: Compositional Affinity Propagation

Here we describe our proposed Compositional Affinity Propagation algorithm. At
a high level, CAP innovates on classic AP by allowing each cluster to be represented
by not just a single example (“singleton” cluster), but rather an entire set of examples
(“compositional” cluster). Importantly, the examples in this set need not be semantically
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similar or lie close to each other in the feature space; rather, the union of the characteristics
of the examples in this set should be present in each of the examples belonging to the
compositional cluster. In terms of the inference procedure, CAP is somewhat more
complex than standard AP due to the need, as part of the max-product algorithm, to
compute the maximum values of many subsets efficiently (FindAllMaxes).

Let X = {x1,...,2,} C R? be a dataset. Let C C 2["\ () be the set of compositions
of examples in X under consideration, where we assume C contains all the singletons, i.e.,
{i} €C,i=1,...,n. Let d = max.cc |c|, i.e., the size of the largest composition under
consideration. To identify which compositions contain (or do not contain) each example
k, define functions ¢, ¢ : [n] — 2 such that ¢(k) = {c € C:c >k} and ¢(k) =C\ ¢(k).

Let f be defined as in standard Affinity Propagation. We further assume there is a
function g : 2% \ ) — RP that consumes a set of examples and produces another vector
representing their composition; for singleton sets, we let g be the identity function, i.e.,
g({z}) = x. For instance, g could be the element-wise maximum to perform pixel-wise
superposition of the images; for word embeddings, it could be element-wise addition
[2]; or it could be a trained neural network within a compositional embedding model.
We define S : [n] x ¢ — [—00,0] to measure the distance between each example and
each composition: S(i,¢) = —||x; — g({zx : k € ¢})|| for ¢ # {i}, and S(3,{i}) = v is a
hyperparameter for each example.

Finally, define ¢y, ..., ¢, € C as the assignment of which example belongs to which
cluster. If ¢; = {k} (i.e., a singleton), then example i belongs to a singleton cluster with
exemplar zy. If |¢;] > 2, then example i belongs to the cluster with a compositional
exemplar g({zy : k € ¢;}), i.e., the composition of all the examples in ¢;. Note that,
in general, compositional exemplars are not members of X. In CAP, we require that,
whenever some example i designates its exemplar either to be example k (¢; = {k}),
or to include example k (¢; 3 k), then example k must designate itself as an exemplar
(ck = {k}). Example: if X = {x1,z2, 23,24} and we allow compositions of size at most 2,
then C = {{1},{2}, {3}, {4}, {1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}; if 21 and z5 each
constitutes its own cluster and the last two examples are both assigned to the composition

of the first two clusters, then we would have ¢; = {1}, 0 = {2}, ¢35 = ¢4 = {1,2}.
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Our new constrained optimization problem is thus:

arg max ZS(i,ci) st. (Fi:c;2k) = o ={k}

C1,...,Cn €C i—1

Importantly, the optimization objective incurs no additional cost when an example is
assigned to a compositional exemplar ¢; as long as all of the examples k¥’ € ¢, have
themselves already been designated as exemplars.

Tllustration: Given an appropriate choice for v, CAP would yield the results show
in the bottom half of Figure 1. In scenario (1), the cluster shown in purple would be
identified as a cluster with a compositional exemplar. In scenario (2), the compositional
structure identified by the algorithm could help it to separate the images containing

triangles from those containing both a rectangle and a circle.

3.2.1. Inference
As with standard Affinity Propagation, we find a MAP estimate for each ¢; by defining
a factor graph and computing and passing messages between the variables and the factors.
We adjust the definition of d; to be:
—oo it Fi:(¢; 2 k) A (cx # {k})

Op(c1y..oyen) = . (2)
0 otherwise

In the Appendices, we derive a procedure to compute « and p efficiently; see Algorithm 1.

Theorem 3.1. Let n be the number of examples in a dataset X, and let d be the largest
element in the set C containing all compositions under consideration. Then Algorithm
1 implements message passing (i.e., computation of sufficient statistics of « and p) for
Compositional Affinity Propagation and operates in time O(dn®*!) per iteration.

Proof. See Appendices. O

Inferring the Number of Clusters: The hyperparameter « in CAP is the penalty
for creating a new cluster versus assigning data points to an existing one. It is similar to

the concentration hyperparameter (often denoted «) in the Dirichlet mixture process [5].

3.8. CAPC: An Approximation to CAP

To improve the scalability of CAP, we can apply it to a randomly selected subset of
examples X C X and infer the cluster assignments ¢y, . . ., 5@'. Let £ = {El}gll C C be

the set of unique exemplars (singleton or compositional) inferred for X. Then, for each
11



Algorithm 1 Compositional Affinity Propagation (CAP)

CAP(S,C):
¢(k) « {ceC:c>k},
q(i,c) < 0 Vi, ¢
a(i, k) < 0,
while not converged do

b,b, h < ComputeRhoStats(S,

a(i k)« 0 Vi k

a,qa,q + ComputeAlphaStatb(

end while

return arg max, (q(i,c;) + S(i,¢;))
ComputeRhoStats(S,C, ¢, ¢, a,a, q):

fori=1,...,n do

r,s <= FindAllMaxes(S(3, ) +

for k=1,...,ndo

b(i, k) + max(r(k) — a(i, k),

b(i, k) «
end for
end for
fork=1,...,

s(k) — a(i, k)

n do

q(,
s(k) —al(i, k))

d(k) < C\ ¢(k)

VEk
C,,9.a,a,q)
b,b, h)

Vi
')7cv¢v$)

h(k) < S(k,{k}) + qx({k}) — a(k, k)

end for
return b,b, h

ComputeAlphaStats(C, b, b, h):

for k=1,...,ndo
(k) ¢ S, b1, K)
B(k) & Yoy B K)
end for
fort=1,...,ndo
for k=1,...,ndo
if i = k then
a(i k) <+ e(k)
a(i, k) < e(k)
else
a(i, k) <+ h(k) +e(k) —
a(i, k) + max(b(k, k) +
end if
end for
end for
fori=1,...,n do
¢*(i) & Sy ali, k)
for ¢; € C do
q(i,¢;) +
end for
end for
return a,a,q

b(i k)

e(k) —

q" (1) + X, (ali K

)

—a(i, k)

12



Algorithm 2 Finding Maxima of Many Subsets

FindAllMaxes(q,C, ¢, ¢):
(k)  maxq((k) Vk
s(k) «+ —o0 VE
forj=1,...,ddo
for 7 = {tl, . 715]',1} s.t. Ht]’ > tj,1 : {tl, . 7tj} e€C do
Ur = {{tr, o tj1,ti et NC
cl,c? « arg maxi’gwr q(c)
for k=1,...,ndo
if ¢! € ¢(k) then
s(k) <« max(s(k), g(ch))
else if ¢? € ¢(k) then
s(k) < max(s(k), q(c?))
end if
end for
end for
end for
return r, s

example x; in the original dataset X', we designate its exemplar to be the ¢; € £ that is
closest to it x; according to f. Specifically, we assign ¢; = argming ¢ [|2s, g({z; : j € &})].

We call this method CAPC.

4. Approach II: Compositional k-means

The second compositional clustering algorithm we propose is called Compositional
k-means (CKM). In contrast to CAP, which uses discrete optimization to assign examples
to exemplars, CKM uses gradient descent to minimize a sum of squared distances by
adjusting the real-valued cluster centroids. Like CAP, the CKM method can potentially
cluster the data in Figure 1 more accurately by harnessing the composition function g to
infer which examples belong to singleton clusters versus compositional clusters. CKM is
a centroid-based method rather than an exemplar-based clustering method. Hence, each

cluster assignment variable ¢; is a subset of [k] (rather than of [n], like with CAP).

4.1. Review of classic k-means

Given the number of clusters k as input, classic k-means seeks to assign each of the
n examples to one of the k clusters (denoted ¢; € [k] for each ), so as to minimize the

sum of squared distances (SSD) SSD({m;}s_,, {e:}i=)) = Y1y & — me, ||?. Here, each
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m; € RP is a cluster centroid, and each ¢; € [k] is a cluster index. To (locally) minimize

the SSD, two steps are executed in alternation until convergence:

1. Assign each z; to the cluster j whose centroid m; € RP is closest to z;; and

2. Compute each centroid m; as the mean of the points assigned to cluster j.

In particular, the second step is the closed-form minimizer of the SSD w.r.t. the centroids
my;. Since each of these steps is guaranteed not to increase the SSD, and since a lower

bound on SSD is always 0, the algorithm is guaranteed to converge to a local minimum.

4.2. Procedure: Compositional k-means

Let the number of singleton clusters k (e.g., the number of individual speakers in
the audio, or the number of basic object classes in the image set) be known, and let
K c 2] be a set of possible compositions of the singleton clusters, where we require that
KC contains all the singletons, i.e., {i} € K,i=1,..., k. Assume composition function g is
differentiable. CKM seeks to assign each x; to either one of k singleton clusters (a single
person speaking in isolation, or a single object by itself) or to a compositional cluster
(the composition of multiple speakers in an audio, or multiple objects in an image) so as

to minimize the following sum of squared distances:
n
SSD({msy}imrs feiting) = ) llwi —me,|1° 3)
i=1

where each compositional centroid m,, = g({my;} }je,) (for n € K and || > 1) is computed
using the composition function g. (Note the small difference in notation compared to the
SSD in standard k-means in the subscript of m so as to emphasize that a cluster centroid
may represent the composition of other clusters.)

Like the classic k-means, the SSD is a function of the singleton cluster centroids (i.e.,
myiy, .-, myxy). Unlike classic k-means, the CKM method can assign each example to
either a singleton or a compositional cluster. By adjusting the singleton centroids, the
locations of the compositional centroids — and thus the SSD value itself — are also affected
due to their dependence via g.

At a high level, CKM works as follows: After initializing the singleton cluster centroids
randomly and computing the compositional centroids using g, a two-step alternating

procedure is executed whereby (a) each example x; is assigned to the closest centroid
14



(either singleton or compositional), and (b) the singleton centroids myiy,...,myy are
adjusted using gradient descent (with learning rate €) to reduce the SSD in Equation 3.
Since we assume g is a differentiable function (typically implemented as a neural network),
the gradient of the SSD w.r.t. each singleton centroid (keeping the weights of g fixed)
can be computed easily. During the optimization (see Algorithm 3), CKM dynamically
infers which clusters are singletons and which are compositional, and also estimates the
centroids of the singleton clusters so as to trade off between fitting the singletons and
the compositional clusters well. Note that (like with classic k-means) the initialization
in step 1 can affect which local minimum is reached, and thus it is often useful to try

multiple random seeds and to choose the best seed based on the lowest SSD.

Algorithm 3 Compositional k-means (CKM)
CKM(X, K, e€):
Set each my;y,j € [k] to a randomly drawn (without replacement) example in X'
Compute compositional centroids: m,, <— g({my;}}jen) Yn €K :|n| > 1.
while not converged do
¢i < argmin, i [z, —my[* Vi
My1}y e, MYE} < SGD (Z?:l ||:Cl — My,
end while
return {c¢;}"

2 {m Y ie)

Convergence: Unlike in classical k-means, the second step of the alternation (ad-
justment of cluster centroids) in CKM is conducted numerically rather than analytically.
However, assuming the learning rate of gradient descent is sufficiently small, it will not
increase the SSD. Since the first step of the alternation can also never increase the SSD,
and since the SSD is bounded below, the algorithm will converge to a local minimum.

Comparison to CAP: CKM requires that g be differentiable, and it uses gradient-
based optimization using neural network packages such as TensorFlow, PyTorch, etc. In
contrast, CAP, as it only involves computing maxes and sums, can be implemented in
simple Python or C code, and it does not require a differentiable g. FEach step of the
while-loop takes runtime O(nk?), where d is the size of the largest composition in K.
Since the number of singleton clusters k is typically much smaller than the number of
examples n, CKM can run much faster than CAP.

Inferring the Number of Clusters: While CKM takes the number of singleton
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clusters k as input, it infers the number of compositional clusters automatically based on
the data — if no examples are assigned to a particular composition, then that compositional
cluster does not exist. Moreover, the value k itself can be estimated by techniques such

as the Gap statistic [31] that is commonly used for standard k-means clustering.

5. Approach IIT: Greedy Compositional Reassignment (GCR)

The third approach that we explored for compositional clustering is based on the idea
of using any standard clustering algorithm to partition the data X into clusters, and
then using the composition function g to find the optimal “reassignment” of the inferred
clusters so that some of them are considered to be compositions of others. Suppose
we first obtain (e.g., from Agglomerative Clustering) a set & = {myy,...,my} of k
cluster centroids. Then we could iterate over every possible subset ECE ; these represent
the compositional clusters. For each £, we conduct an inner-loop to iterate over every
possible 1-to-1 map from € to the set of compositions (via g) of £ \ &; these are the
singleton/singleton clusters. We would finally select £ and its map to &\ € so as to
minimize the sum of distances between the examples and their assigned cluster centroids
(either singletons or compositional).

Unfortunately, due to the factorial time cost, this brute-force approach quickly be-
comes completely impractical (e.g., for || = 15 and d = 2, there are 107770296705436
possibilities). However, the idea gave us inspiration for a tractable greedy heuristic that
we call Greedy Compositional Reassignment (GCR). Like CKM, GCR is a centroid-based
clustering method. It uses g and the distances between cluster centroids to determine the

compositional relationships in a greedy manner and thereby avoid the factorial time cost.

5.1. Procedure: Greedy Compositional Reassignment

Assume that a standard clustering method (we use Agglomerative Clustering) has
produced a clustering with k centroids myy, ..., my;y and cluster assignments cy, ..., cp,
where each ¢; € [k]. Let K be the set of compositions under consideration.GCR first uses
g to compute the location of the compositional centroid for every n € KC. It then finds, for
each putative singleton cluster j € [k], the distance d; to the closest compositional centroid
b; € K; if d; is below a threshold 7, then cluster j is concluded to actually be a composition

of the two other clusters in b;, and all the examples that were previously assigned to
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cluster j are reassigned to the compositional cluster b;. The process is repeated for each
singleton cluster j according to the distances d; sorted from smallest to largest until one
of several possible termination conditions are reached (so as to maintain consistency, e.g.,
avoid cycles of compositionality); once this point is reached, all the remaining clusters
that were not reassigned to be compositional are deemed to be singletons. The algorithm
uses sets S and T to keep track of which clusters have been assigned as singletons and
which are assigned as compositions, respectively. The final assignment of an example to a

cluster index is denoted ¢, € K for each example i € [n]. See Algorithm 4 for details.

Algorithm 4 Greedy Compositional Reassignment (GCR)

GCR(X,K,7):
S0, T+0.
Obtain preliminary clustering: {m{j}}le, {ci}?, < AgglomerativeClustering(X).
Compute compositional centroids: m,, <= g({my;}}jen) Vn€K.
bj < argmin, [[mg;; —myl Vi€ [k].
dj — ||m{j} - mch Vj e [k‘]
for j € [k] according to argsort({d,}) do
ifdj>7orjeSorb;NT #0 then
Assign remaining clusters j° > j to singletons: ¢, « {j'} Vi:c¢;=j5,7 >j.
break
end if
Assign cluster j to composition: ¢ < b; Vi:c; =j.
Add the clusters in b; to the set of singletons: S - S U b;.
Add the current cluster () to the set of compositions: T < T U {j}.
end for
return {c/} ;.

Comparison to CAP and CKM: Excluding the runtime cost of the initial clustering
using Agglomerative Clustering, GCR method is much faster than CAP and CKM since it
iterates over the k singleton clusters at most once, and each iteration is simple. Note that,
whereas CKM and CAP can use the compositionality to partition the data into clusters
more cleanly (see the right half of Figure 1), GCR cannot — it only has the ability to infer
the compositional relationships among already-formed clusters (left half of Fig. 1).

Inferring the Number of Clusters: Since GCR first runs a standard clustering
algorithm as a subroutine, then any technique that can estimate the number of clusters

for that clustering algorithm (e.g., Gap statistic) can also be used for GCR.
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6. Experiments

To evaluate the proposed algorithms, we conducted experiments, using standard
datasets that are widely used for few-shot learning research, on both multi-object image
recognition and multi-person speaker diarization with overlapping speech. We follow the
workflow described in the Introduction, i.e., for each problem domain, we use few-shot
learning to train an embedding function f¢™P to separate examples by their classes, as well
as a composition function g [1, 19] that can estimate the location in the embedding space
of the union of multiple sets of classes. We train these models jointly and episodically,
where the episodes contains examples from different set of classes. Evaluation: Since
standard clustering metrics such as the Adjusted Rand Index (ARI) do not capture

compositionality, we devise a new evaluation metric called the Compositional Rand Index.

6.1. Ewvaluation Metric: the Compositional Rand Index (CRI)

Suppose dataset X = {x1,...,2,} contains [ singleton clusters and some number
(possibly 0) of compositional clusters. Then Y = 21\ § is the set of all possible ground-
truth cluster labels, and y1,...,y, € Y are the cluster assignments. A sensible evaluation
criterion of some inferred labels ¢q,...,¢, € C w.r.t. ground-truth should capture the
number of clusters, their purity, and their compositional relationships. It should not
depend on the particular naming of cluster labels (the identifiability issue). With these
goals in mind, we propose the Compositional Rand Index (CRI) to compute the probability,
over all pairs i # j, that the inferred labels agree with the ground-truth about whether

the cluster assignment of example ¢ subsumes the cluster assignment of example j:

CRI(C1, -y Y1y ) = ﬁ S le;s 2 ¢5] =Ty 2 5] (4)
i#£j

where I[-] is a 0-1 indicator function. For datasets without compositionality (i.e., ¥ = [I]),

CRI is equivalent to the standard Rand Index [27].

0.2. Baseline Methods

We chose several baselines that seemed the most reasonable alternative approaches,
even if they had no explicit ability to model compositionality.
Ignore compositionality: One approach is simply to ignore the compositional

relationships among clusters and consider each cluster as completely independent; this
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Figure 2: Some audio examples from LibriSpeech. From left to right are the waveforms from speaker 1,
speaker 2, and overlapping speech from both speakers.

is illustrated in Figure 1 (top row). Any standard clustering method can thus be used.
While it will pay a penalty under the CRI metric since it misses the compositional
relationships, it can sometimes (Figure 1 upper-left, but not upper-right) still do a good
job overall by correctly forming coherent clusters. With this motivation, we use standard
Affinity Propagation (AP) as well as Agglomerative Clustering (AC) with the
Ward criterion as two baselines.

Infer compositionality from “soft” label assignments: Mixture models such as
the classic Mixture of Gaussians and fuzzy k-means [3] (it is more commonly called “fuzzy
c-means” in the literature) assign to each example a vector of probabilities that express
the likelihood that it belongs to each of the k clusters. By thresholding these probabilities
with some threshold 7, one can obtain a set of cluster labels for each example. This
method can work if the embedding space is structured so that examples whose cluster
label set is {a, b} lie near the midpoint between those examples whose label set is {a} and
those whose label set is {b}. Based on this approach, we tested both Fuzzy c-Means
(FCM) and Gaussian Mixture Models (GMM) as baselines.

Oracle singleton clustering: To assess how well a perfect clustering method would
work that can determine the cluster memberships exactly but not infer compositionality,
we include an Oracle Singleton Clustering (OSC) baseline. Note it is not meaningful

when measuring ARI (since it would be 100%); hence, we use it only for the CRI.

6.3. Experiment I: LibriSpeech

Real-world conversations and meetings often contain moments when multiple people
are speaking simultaneously (due to interruptions, sub-group conversations, etc.). Hence,
an important few-shot learning problem is to identify the set of people speaking at
any given moment in time, where the classes (people) at test time usually differ from
the classes at training time. We thus used the LibriSpeech [25] dataset to explore how

well each clustering method can cluster speech samples into speaker sets and infer the
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compositional relationships between sets. LibriSpeech is a corpus of approximately 1000
hours of English audiobook speech from 2484 speakers. While it contains only individual
speakers, we can synthesize simultaneous speech by combining individual tracks, similarly
to work by [12, 15, 21]. See Figure 2 for some examples of the audio waveforms.

Embedding model: We used LibriSpeech to train a compositional embedding model
(f™P and g) for speaker verification using an LSTM neural network on top of MFCC
audio features (see Appendices for details). Importantly, none of the classes (speakers)
that were used for optimizing these networks were used in the clustering experiments. 2

Procedure: Our first experiment considers compositionality of degree at most d = 2.
We created datasets X of size n € {150, 750, 1500, 7500, 15000}; each dataset contained
speech segments from 5 different speakers (picked from 100 speakers which were not seen
during training). Some of the segments contained single speakers, and some contained
combinations of two speakers. Hence, there were (?) + (g) = 15 different unique speaker
sets in total. The test set contains 10 data trials for each n and the validation set has
10 trials when n = 150 (hyperparameters are picked based on n = 150 and used for
all ns). For each n, we compared all three compositional clustering algorithms and all
the baselines described above and then compared the resulting CRI (Section 6.1) and
Adjusted Rand Index (ARI) scores. For CAP, we used the full inference procedure for
n = 150, and we used CAPC with a random subset of 150 examples for n > 150. All
results of all clustering methods are averaged over 10 trials for each n.

To illustrate compositional clustering for d = 3 (i.e., up to 3 speakers speaking
simultaneously), we performed a second experiment using the same composition function
g as for d = 2 (i.e., it does not need to be retrained for different d). There are 25 classes
in total (5 singletons, 10 2-sets, and 10 3-sets). We adopted the same hyperparameters
for each method that were optimized in the previous experiment for d = 2. Due to the
high computational cost, we varied n only up to 2500, and we did not try CAP.

Hyperparameter optimization: CAP, CAPC, and AP have one hyperparameter,
which is the cost v of creating a new singleton cluster. GCR has two hyperparameters: the

first is the number of clusters in the first step of clustering and the second is the threshold

2For the baseline clustering methods, we also tried training a simpler embedding model fe™b without
jointly training g to check whether that gave better performance. However, we found that this actually
resulted in worse performance for the baselines, and hence we abandoned it.
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LibriSpeech Results (2 Spkrs, CRI%)

n 150 750 1500 7500 15000

GCR | 94.6 (1.1) | 95.8 (0.7) | 96.0 (0.8) |96.5 (0.5) | 96.6 (0.5)
CAP | 94.8 (1.4) | 93.8 (1.4) | 93.7 (15) | 93.4 (1.3) | 92.6 (2.1)
CKM |95.7 (0.8) |96.3 (0.6) |96.1 (0.6) | 96.2 (0.4) | 96.1 (0.5)
AP | 87.9 (0.6) | 87.0 (0.2) | 86.1 (0.1) | 85.0 (0.1) | 84.8 (0.0)
AC | 884 (0.3) | 86.4 (0.2) | 85.6 (0.1) | 84.7 (0.0) | 84.6 (0.0)
FCM | 88.0 (0.5) | 88.3 (0.5) | 88.1 (0.4) | 88.3 (0.4) | 88.4 (0.4)
GMM | 87.8 (0.4) | 83.9 (0.4) | 88.7 (0.4) | 88.8 (0.3) | 88.6 (0.5)
0SC | 91.1 (0.0) | 91.1 (0.0) | 91.1 (0.0) | 91.1 (0.0) | 91.1 (0.0)

LibriSpeech Results (2 Spkrs, ARI%)

n 150 750 1500 7500 15000

GCR | 77.2 (4.0) |82.1 (3.4) |82.3 (3.7) |85.1 (2.9)|85.8 (2.6)
CAP | 765 (5.5) | 74.2 (4.9) | 74.1 (5.4) | 73.2 (4.8) | 72.5 (6.2)
CKM |78.5 (3.7) | 81.8 (2.8) | 81.4 (2.9) | 83.4 (2.2) | 83.1 (2.2)
AP | 725 (5.1) | 54.9 (2.9) | 39.6 (2.2) | 15.3 (0.9) | 9.2 (0.6)

AC | 742 (3.7) | 43.1 (2.5) | 28.6 (1.8) | 8.4 (0.6) | 4.7 (0.3)

FCM | 70.0 (4.3) | 70.5 (3.8) | 69.0 (3.8) | 70.7 (4.0) | 71.8 (3.7)
GMM | 70.5 (4.0) | 80.3 (3.6) | 78.6 (3.6) | 79.0 (3.2) | 78.8 (3.5)

Table 1: Results of LibriSpeech experiments (2 speakers) in CRI%/ARI% along with s.e.

T to stop compositional label assignment. CKM has four hyperparameters: the number
of singleton clusters k; the number of random initializations; the maximum number of
alternations; and the learning rate. AC uses a distance threshold hyperparameter that
determines whether to merge two clusters. GMM has one hyperparameter to decide
the number of components. FCM has the number of clusters ¢ and the corresponding
threshold 1/c on the vector of probabilities that determines when the model infers that an
example belongs to a compositional cluster; it also has a temperature m that can make the
estimated class probabilities more or less entropic. The hyperparameter sets were decided
separately for each method, based on pilot exploration, to give each method a good
chance of succeeding. The hyperparameter values were then optimized so as to maximize
the average (over 10 trials) CRI. Experiments were conducted using the Python code in
the Github repository; the sklearn implementations of AgglomerativeClustering and
AffinityPropagation; and the SciKit-Fuzzy of FCM.

Results: The mean CRI% and ARI% (along with standard error) for d = 2 are
shown in Table 1. For all values of n, all the compositional clustering algorithms (the

first three lines of the table) worked better than all of the standard clustering methods in
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LibriSpeech Results (3 Spkrs, CRI%)

n 250 1250 2500

GCR | 87.4 (0.5) | 88.6 (1.1) | 89.6( 1.3)
CKM |95.1 (0.4) [93.1 (0.7) | 94.7 (0.4)
AP | 80.8 (0.2) | 84.2 (0.4) | 84.9 (0.2)
AC | 84.8(0.1) | 84.0 (0.1) | 83.7 (0.0)
FCM | 84.0 (0.1) | 83.8 (0.3) | 84.4 (0.2)
GMM | 84.3 (0.2) | 84.5 (0.4) | 85.0 (0.2)
0SC | 87.1 (0.0) | 87.2 (0.0) | 87.2 (0.0)
LibriSpeech Results (3 Spkrs, ARI%)
n 250 1250 2500

GCR | 55.7 (2.0) | 59.0 (4.6) | 69.3 (3.0)
CKM |72.6 (2.0) |64.1 (3.1)|71.6 (1.8)
AP | 32.8 (1.5) | 57.0 (4.6) | 62.7 (2.6)
AC | 542 (27) | 32,9 (2.1) | 22.6 (0.7)
FOM | 51.2 (2.0) | 50.4 (3.6) | 57.0 (2.4)
GMM | 53.3 (3.3) | 60.4 (4.9) | 67.8 (3.1)

Table 2: Results of LibriSpeech experiments (3 speakers) in CRI%/ARI% along with s.e.

terms of CRI; the differences (as assessed with matched-pair t-tests between methods
over the 10 test trials, at the 0.05 significance level) were all stat. sig. GCR and CKM
usually gave the highest accuracy. CAP comes in second place for n = 150 but as n
increases, its accuracy decreases; this is likely because, for the larger n values, CAPC sees
a relatively smaller fraction of the total dataset as n increases. All the proposed methods
outperformed the Oracle Singleton Clustering baseline, suggesting that they can both
form coherent clusters and correctly infer the compositional relationships between them.
Among the traditional methods, either FCM or GMM usually performed best: while it
does have some ability to infer compositionality via the probability vector assigned to
each example, it does not use the embedding model’s composition function g; hence, it
must rely on compositional clusters lying close to their constituent singleton clusters in
the embedding space, which does not always happen in practice.

In terms of ARI — which can measure the purity of inferred clusters but not the accuracy
of the inferred compositional relationships — both GCR and CKM always outperformed
the best standard clustering method (though the differences were not always stat. sig.).
This suggests that the g function enabled the compositional methods to obtain purer
clusters. CAP outperformed all the standard clustering methods for n = 150 but not for
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Figure 3: Some LibriSpeech clusters (for d = 2), according to different methods. Circles belong to
singleton clusters; plusses belong to compositional clusters. Best viewed in color.

larger n (when CAPC was used). Note that some ARI scores, particularly for the AC and
AP methods, were very low for larger n; this is likely because the hyperparameters for all
methods were optimized for CRI, not ARI, and because ARI adjusts for the accuracy
obtained by just guessing. Manual inspection of the results suggests that some methods
(e.g., AC for n = 15000) incorrectly deduced a very large number of clusters, which was
heavily penalized by the ARI metric.

For d = 3 (Table 2), the trends were mostly similar to d = 2. The accuracy differences
with the best-performing standard clustering method were stat. sig. for both GCR and
CKM for CRI for all n; for ARI, the significance tests were mixed.

Inferred Clusters: Figure 3 shows some clustering results of the 4 different methods;
in each plot (generated using PCA applied to X)), circles and plusses represent examples
from singleton and compositional clusters, respectively. (To avoid clutter, we show just 3
singleton clusters and their compositions, and the inferred relationships of which clusters
are composed to yield other clusters are not shown.) All three compositional clustering
methods are largely successful in inferring both the clusters and their compositionality.
AP and AC can approximately infer the clusters but sometimes lump groups of examples
together that actually come from distinct clusters. FCM and GMM do manage to infer

some compositionality correctly, but not as well as the compositional methods.

6.4. Experiment II: OmniGlot

Here we considered a multi-object image recognition problem using the OmniGlot

[17] dataset. OmniGlot contains images of handwritten symbols from many languages. It
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Figure 4: Some representative examples from OmniGlot images: the first three columns show examples
from singleton clusters, whereas the latter show images from compositional clusters.

has 1623 different handwritten characters from 50 different alphabets. We can synthesize
images with multiple symbols by element-wise superposition; Figure 4 shows 4 groups of
examples used in the experiment, where each group contains images with cluster labels
{1},{2}, {3}, {1,2},{1, 3}, {2, 3}. Because of the intertangling of the different symbols in
each compositional image, the recognition problem is quite challenging. We created 10
trials for each n in the test set and 10 trials when n = 150 in the validation set.

Embedding model: In our experiment, all characters are augmented with random
scaling and shifting, and random Gaussian noise is added to the background. We pre-
trained a compositional embedding model f™" using a ResNet18 [14] network; the
composition function g is the same as for LibriSpeech (see Appendices).

Procedures are analogous to the experiments on LibriSpeech (see Section 6.3).

Results are in Table 3. CKM gave the highest accuracy for almost all values of n.
With CKM (both on LibriSpeech and OmniGlot), we found that trying different random
initializations of the singleton cluster centroids, and then choosing the final clustering based
on the sum of squared distances after training, was important to get good performance.
Nonetheless, CKM’s accuracy was not just due to randomly “guessing” which of the
clusters were singleton clusters — the number of random seeds in our experiments (we
used 100) was far smaller than the total number of possible choices of 5 singleton clusters
out of 15 total clusters ((155) = 3003), suggesting that CKM uses g and the numerical
SSD-minimization procedure to deduce compositional structure. After CKM, GCR was
usually second best, followed by CAP (which was sometimes slightly worse than the best
standard clustering methods, in terms of ARI). Among the traditional clustering methods,
FCM usually performed best. The CRI accuracy improvement compared to the best
standard clustering method was stat. sig. for all the compositional clustering algorithms.

For ARI, the results of the t-tests were mixed.
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OmniGlot Results (CRI%)

n 150 750 1500 7500 15000

GCR [94.9 (0.4) | 95.9 (0.3) | 96.0 (0.2) | 96.3 (0.3) | 96.3 (0.3)
CAP | 93.3 (0.4) | 92.8 (0.5) | 92.6 (0.5) | 92.7 (0.5) | 92.8 (0.2)
CKM | 94.3 (1.2) |97.1 (0.4) |96.7 (0.5) |96.9 (0.4) |96.9 (0.5)
AP | 87.9(0.1) | 86.3 (0.1) | 85.6 (0.1) | 84.8 (0.0) | 84.7 (0.0)
AC | 87.9(0.1) | 85.7 (0.1) | 85.2 (0.0) | 84.7 (0.0) | 84.6 (0.0)
FCM | 88.1 (0.1) | 8.0 (0.1) | 87.9 (0.2) | 88.0 (0.1) | 87.9 (0.3)
GMM | 85.7 (0.4) | 86.4 (0.5) | 86.0 (0.9) | 87.9 (0.3) | 87.1 (0.7)
0SC | 91.1 (0.0) | 91.1 (0.0) | 91.1 (0.0) | 91.1 (0.0) | 91.1 (0.0)

OmniGlot Results (ARI%)

n 150 750 1500 7500 15000

GCR | 76.0 (1.3) | 81.0 (1.2) | 814 (1.0) | 84.6 (0.0) | 84.9 (0.9)
CAP | 63.1 (2.2) | 64.9 (2.5) | 64.3 (2.2) | 64.7 (1.9) | 66.1 (0.9)
CKM |77.7 (4.1) |86.1 (1.3) |85.5 (1.5) |85.7 (1.3)|85.8 (1.6)
AP | 60.8 (1.3) | 438 (1.7) | 29.3 (1.3) | 9.3 (04) | 6.3 (0.1)

AC | 65.4 (1.8) | 20.1 (1.6) | 18.1 (0.9) | 5.8 (0.2) | 4.4 (0.1)

FCM | 60.7 (1.1) | 67.1 (1.0) | 66.6 (1.5) | 67.1 (1.4) | 67.7 (1.5)
GMM | 55.1 (2.2) | 63.1 (2.7) | 65.5 (4.4) | 75.0 (2.3) | 70.0 (3.3)

Table 3: Results of OmniGlot experiments in CRI%/ARI% along with s.e.

7. Conclusions

We presented three new algorithms (CAP, CKM,and GCR) that can both cluster data
and infer the compositional relationships between clusters. These algorithms can facilitate
data visualization and exploratory data analyses on datasets where the classes have not
been previously seen. Our experiments on the LibriSpeech and OmniGlot datasets suggest
that modeling compositionality explicitly is useful and enables the proposed methods to
identify coherent and distinctive clusters, and also to infer the compositional relationships
between them. The proposed methods deliver substantially higher accuracy than can be
achieved with standard methods (e.g., GMM, FCM), even when the latter have the ability
to assign examples “softly” to multiple clusters. Among CKM, GCR, and CAP, we found
that CKM and GCR gave higher accuracy and also scale better with dataset size n.

Limitations of proposed methods: In practice, training embedding function
jointly with composition function g can be challenging, especially when the compositional

degree d > 3. On the other hand, as few-shot learning is an active research field, more

powerful embedding approaches could arise that make this challenge less severe.
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Future work: We anticipate that, as multi-label few-shot learning research continues
to grow, there will be increasing interest for methods to cluster data from unseen classes.
Research on more accurate compositional embedding models, especially to the extent
that the composition function g can be increased in accuracy, will likely lead to accuracy
improvements in compositional clustering methods. One possible downstream application
of our work is a simplified pipeline for speaker diarization: instead of separate algorithms
to detect overlapping speech, separate speech segments into long vs. short turns, and
then cluster the utterances [6], it may be possible to apply a compositional clustering
algorithm that can diarize the set of all speech utterances in just one pass.
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Appendix A. Loopy Belief Propagation for Standard Affinity Propagation

When applying the max-product algorithm to the factor graph in standard Affinity
Propagation, a sequence of “messages” (functions «, p : [n] x [n] x C = R<g U {—00})
is passed back and forth between the variable and factor nodes. Each variable i sends
a message p;k(c;) to constraint k, and each constraint k sends a message o (c;) to
variable 4, about the likelihood of each possible value of ¢;. The max-sum algorithm (and
the related max-product algorithm for factor graphs) dictates that p;—x(c;) equals the
sum of messages over ¢;’s neighbors except 8y, (i.e., {0p }rr2k):

pisk(ci) = S(,ci) + Y i (ci) (A1)
k'#k
Also, for MAP estimation, «;, (c;) equals the maximum possible sum of the messages

from all of §;’s neighbors except i (i.e., {ci }i:), plus the value of §j itself:

aiek(ci) = ( m?x (5k(61, ey Cn) + Z pi’ak(ci’) (A2)
Cil Jil #i i #i

Appendix B. Derivation of Algorithm 1 (CAP) and Proof of Theorem 1

Here we derive Algorithm 1 from the definitions of « and p to optimize the Composi-
tional Affinity Propagation model. We also prove the time cost in Theorem 1. Recall the

definitions of «, p, and §:

pisk(ci) = S(Z’aci)+zaiek’(ci) (B.1)
k'£k
Qick(e) = (Jnax 5k(61,-~-70n)+Zﬂz‘/—>k(0w) (B.2)
Cil 5il #i i’ i

—oo if Fi:(¢; 2 k) A (cx # {k})
Op(cty. o yen) = (B.3)
0  otherwise
Each message a;«(c;) computes, for a given value of ¢; for variable 4, an (unnormalized)
log-likelihood of the best possible configuration of the assignments of all the other variables

{cir+:i }, given that constraint k is satisfied (i.e., dj is finite). There are four cases in

which this occurs; they mirror those in standard Affinity Propagation but differ slightly.
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For each case, the § term in the RHS of Eqn. B.2 vanishes; the only remaining terms
are the sum of the p’s. Also, since each summand in Eqn. B.2 depends on just a single

unique ¢;/, the max of the sum becomes the sum of the max. Cases:

1. i =k, ¢; = {k}: Since in this case example i = k designates itself as an exemplar,
then the constraint J; is immediately satisfied. Moreover, any of the other examples
' # i is free to choose (or not choose) example k as an exemplar, and therefore we

can take the maximum over any possible value for each c¢;. Hence,

Qick(c;) = max [0+ Z pir—k(ci) | = Z max py s (ci)
{eirtirpn i1k i1k Cit

2.4 = k,¢; # k: Since example i = k does not designate itself as an exemplar,
then none of the other examples i’ # i may choose k as its exemplar. Hence,
aiek(ci) = Zi/# maXe,, 3k pir—sk(cir).

3. 1 # k,c; © k: Since example i designates its exemplar either to be or to include
example k, then « is finite only if ¢, = {k}, and each remaining example i’ & {7, k}
is free to designate any example as its exemplar. Hence, o, r(¢;) = pr—r({k}) +
Zi’g{i,k} maxc,, pir—k(cir)-

4. 1 # k,cp # k: Since example i does not designate k as an exemplar, then example k

can either be an exemplar or not, and we take the max over both possibilities:

Qi k(ci) = max maX,Okak Ck) Z maX pi—k(cir),  proe({k}) + Z maXPz Sk(e)
kZk 7
ve{iky i’ @{i,k}
Note that a;x(¢;) = —o0 if i =k, ¢; i and ¢; # {i}. However, in practice we can avoid
this case by instead setting S(7,¢;) = —oo whenever ¢; 3 i and ¢; # {i}. Given the four

cases above, we have the following definition of a:

aiek(c) = {Crixll}a;;i dr(er, .. en) + i/zﬁpizﬁk(ci/) (B.4)
Doz MAXe, pir—sk(Cir) i=k,c; ={k}
Zi’;ﬁk maxe,, sk Pir—k(Cir) i=k,c; 2k
= Pr—k(k) + D 5 g 1y MAXe, Pir—i(Ci) i # k,c; IB.5)
max [maXckyk Pe—k(Ck) + D5 g 1} MAXe, 3k Pir—k (Cir )
prok () + gy %, ik ()| i#kcx Bk
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In the most naive implementation, evaluating « for each tuple (i, k, ¢;) would take
time O(n?) due to the summing over the max; the entire table of « values would thus
take time O(n* x |C|). However, there is massive redundancy that can be avoided: First,
for each tuple (i,%), only two possible values of ;. (¢;) exist: one for ¢; 3 k (i.e.,
ik (6(k))) and one for ¢; F k (i.e., a;r(¢(k))). Hence, instead of computing |C| values
for each tuple (i, k), we need to compute and store only 2 values. Second, the expressions
Zi,;‘ék max., pir—k(cir) and ngk max. ,zk Pi'—k(cir) depend on k but not on i; hence,

they can be reused for many tuples (i, k). Third:

Z max pir—k(cy) = Z max pir—k(Cir) —max pip(ci)
irg{ik} itk '

Z max pyi(cir) = Z max py 1 (cir) — max p; x(c;)
Tk} c;1 Fk 7k c;1 Fk ciZk

Hence, after computing each of the terms of the LHS above (just once for each k),
we need only to “adjust” them for each ¢, in O(1) time, by subtracting the corre-
sponding term on the RHS. At the end of all the CAP iterations, we set cM4F =
argmax,, [, aicr(ci) + S(4,¢;)]. Hence, as long as we can update a during each itera-
tion of message passing, then we never need to know p explicitly.

For convenience, define the following functions:

b(ik) = max pi—sk(ci)
b(i, k) = Igl% pisk(ci)
e(k) = Z Hgaxpi’—ﬂc(ci/) = Z b(i', k)
itk ik
E(k‘) = Z ma}é Pi/—>k(0i/) = Z B(i/, k)
ik 7 i £k

h(k) = pr—k(k)
() = aiceloh) = o ok
T et | RR) e(k) — (k) i # K
_ a(k) i=k
ik (0(k)) = _ B . , .
max(b(k, k) +e(k) — b(i, k), h(k) + e(k) = b(i, k) i#k

Q|
—
5B

B
N

Il

Visual inspection of Equation B.5 confirms that the a(i, k) and @(i, k) defined above

recover all 2n? degrees of freedom of . Below we show how we can compute e,e,b, b,
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and h in a total time of O(dn*!) per iteration. First, however, we need to derive the

computation of some intermediate quantities.

Appendiz B.1. Computing q(i,¢;) = > Qi () Vi, ¢

Define ¢(i,¢;) = Y, @i (ci). For each i, we can compute ¢(7,c¢;) for each ¢; by
splitting the sum over &’ into two parts: those &’ such that ¢(k’) 5 ¢; and those &’ such
that ¢(k’) > ¢;. We then substitute a; i (c;) = i ($(K')) for k' s.t. ¢(k') 3 ¢; (and
similarly for ¢(k’)) to yield:

glie) = > aew@®))+ D cicw(@(K))

k:p(k")>c; k:p(k')dc;
= D aew@k)+ D (e (d(K)) — aicw (k)
K kb (k')Se:

D iew(@K) + Y (@icw ($(K)) = aicw (B(K)))
T

k'Ec;
We can define ¢* (i) = Y, i ((K')). Then we have q(i, ¢;) = ¢* (i) + Yy e, (ali, k') —
a(i, k')). The term ¢*(¢) takes time O(n) for each 7 but is reused for all ¢;. The summation
on the RHS contains at most d terms (for a maximum composition size of d). Hence, for

each 4, the total computation (over all ¢;) is O(n + |C|d) = O(n + dn?) = O(dn?).
Appendiz B.2. Efficiently Finding Mazxima of Many Subsets

The next step we need is an efficient method to compute expressions of the forms (a)
maxe,eg(k) 4(i,¢i) and (b) max, .z q(i,¢;) for all k, in a total time of O(n+1).

Form (a): Since each such ¢; must contain k, then there are only d — 1 remaining
degrees of freedom for each ¢(k); hence, |¢(k)| < n?=! for each k, and directly computing
the maximum of q(i, ) over every ¢(k) takes a total time of O(n?) (summed over all k).

Form (b): Define aj(k) ={ce ¢(k): |c| = j}. Since max, <z ) (i, ¢;) = max;e(q) max, =i, q(i, ),
we can split the task into subtasks by j and then take the max over all of them. To com-
pute the max over each aj(k), we can iterate over all n/~! tuples (t1,...,t;-1) € [n}/71;
for each tuple, we can compute in O(n) time the largest and second-largest value of (i, -)
over the set (¢t —1,...,t;_1,t;) and then “adjust” the result in constant time to obtain
the update for each k. In particular, for each such tuple 7, let ¢, = {{t1,...,¢;} € C:

t1 < ... <t;}. (For instance, if j = 2, n =4, 7 = (1,2), and C contains all 3-tuples,
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then v, = {{1,2,3},{1,2,4}}.) In each iteration, let c!,c¢?> € 1, be the arguments
corresponding to the largest and second-largest elements in ¢(i,%,); if 10| = 1, then
define ¢ = (); if ;| = 0, then define both ¢! = ¢? = (). (Note that () & ¢(k) for any
k.) For any k, it must be the case that the number of elements in the set ¢, N Ej(k) is
either 0 (if any k € {t1,...,¢;-1}), [¥-| —1 (if £ > ¢;_1, such that we must ignore exactly
one element of ¢, for each k), or |¢,| (if & & {t1,...,t;_1} and k < t;_1). In the first
case (intersection is empty), we make no update to max, =i q(i,¢;). In the second

(intersection is of size |1 | — 1), we update max_ (i,¢;) with q(i,ct) if ¢! # k and

ie?(k) 4
with ¢(i, ¢®) otherwise. And in the third (intersection is of size |1, |), we always update

1 .2

ma *) q(i, c;) with q(i,c'). Since ¢!, c? can be computed in time |¢),;| < n and then

Xeicd’
reused for each of the k (in constant-time) for the updates, and since there are at most
n?~! such tuples 7 when scanning the entire C, then this amounts to a total time of
O(dn?) for each j. Summing over all j = 1,...,d, this yields a running time of O(dn?).
See Algorithm 2. The arg max!? function returns the ¢!, ¢? that give the largest and

second-largest values of the specified function, where ¢? = () if the input set is of size 1,

and ¢! = ¢ = () if the input set is empty.
Appendiz B.3. Computing Maxes of Sums Ezxcept Row k

We can now show how expressions of the form b(i/, k) = max,, pi—x(cy) and b(i’, k) =
maxe, k Pi—k(Cir) can be computed efficiently. We first examine the former, which by
definition is:

max pirj(cir) = max | S(i', cir) + E e p(cir)
C;r C;r
v k' #k

In other words, we need to find the ¢;; that maximizes S(¢’,¢;/) plus the sum (except the
kth term) of the ayp(cir) (see Figure B.5). As mentioned above, for each i, k, function
@i« () has only 2 degrees of freedom: one for ¢;; € ¢(k) (the blue regions in Figure
B.5) and one for ¢;; € (k) (the clear regions); hence, there exist numbers u, v such that
a1 (d(k)) = u and o 1(p(k)) = v. Assume we have already computed ¢(i,c;) =
> w Qirepr(cir) Ve (this is the sum over all k) and also, for each k, the values r(k) =
maXc, cp(k) 2p ik (Cir) and s(k) = max, <5 > p it (cir). Then, for any k, we

can ﬁnd, in 0(1) time, maxci/ Zk’#k [e77Pa ] (Ci’) by “adjusting” maxci, Zk/ ai’ek/(ci/) as
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a, ( G

a vlul v|] u |v

S(i) + Z,a, ) 2y
slrfs[ r [s]

Figure B.5: For each i, k, to compute the max (over c;/) of the sum of all rows k' # k, we can (1)
compute the max of the sum of all rows within region ¢(k) and (separately) within region ¢(k); (2)
adjust each maximum by subtracting the value of row k in region ¢(k) and the value of row k in region
o(k), respectively; (3) take the larger result.

follows:

max Z g (cy) = max(r(k) —u, s(k) —v)
7 gtk

The latter case (max., yx pi—k(civ)) is even easier since we ignore all ¢y € ¢(k) entirely:
max Z g (ci) =s(k) —v

Ak
C;1 3 k’;ﬁk

We have already defined u = a(i’, k) and v =a(i’, k); hence, we have:

b(i', k) = max(r(k) — a(i', k), s(k) —a(i', k)), b(i', k) = s(k) —a(i', k)

Appendiz B.4. Computing h(k) = pr—i(k)

As the last step, we can compute h(k) = pr—i(k) = S(k, {k}) + > 4 45 e (k) =
S(k,{k}) + ar({k}) — a(k, k). This completes the derivation of Algorithm 1.

Appendiz B.5. Time Cost Analysis

As explained in Section Appendix B.2, the FindAllMaxes takes time O(dn?) operations
for each i. The function ComputeRhoStats calls Find AllMaxes n times (and also executes
O(n?) further operations) for a cost of dn?t!. The function ComputeAlphaStats takes
O(n?) for the nested for-loops, and (as explained in Section Appendix B.1) a further
O(dn?) for the computation of each q(i,-), amounting to O(dn*!) in total.

This completes the proof.
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Appendix C. Brute-Force Reassignment

Here is how a brute-force reassignment could work: We first obtain a set of k singleton
clusters with associated exemplar indices £ C [n]. Then we iterate over every possible
subset £ C &; these represent the compositional clusters. For each &, we conduct an
inner-loop to iterate over every possible 1-to-1 map from € to the set of compositions of
EN\ &; these represent the singleton clusters. If we consider compositions of at most d
exemplars, then we have Zf:o C(k,7)P (Zi:z C(k—1,d), z) total possible maps, where
C(k,i) and P(k,t) are the numbers of combinations and permutations of ¢ objects from a
set of k, respectively. The P arises due to iterating over all 1-to-1 maps. Note that the
number of possible maps grows factorially with k, and hence it quickly becomes intractable

as k grows (e.g., for k = 15 and d = 2, the number of possibilities is 107770296705436).

Appendix D. LibriSpeech

LibriSpeech contains 10004 hours of recorded English-language speech of people
reading audiobooks. While the dataset contains speech from only individual speakers, we
can synthesize speech by adding the waveforms of multiple speakers. Figure 2 shows of
an example of how simultaneous speech data is synthesized from LibriSpeech data.

Compositional embedding model: Speaker embeddings were extracted from
mel-frequency cepstrum coefficient (MFCC) features (32 coefficients, 0.025s window size,
0.01s step size) using an embedding function f™P that contains a 2-layer LSTM with 256
hidden units. Composition function g is defined as g(z4, p) = Wiz + Wiz, +Wa(z,Oxp),
where Wy, Wy are learnable weights and x,, z;, are speaker embeddings. f*™P and g were
optimized jointly. During training, 15 audio samples from 5 unique speakers (5 labeled
with 1 speaker and 10 with 2 speakers) are used to extract reference speaker embeddings
using fe™P. 20 query speaker embeddings were extracted from the same 5 speakers using
femP &g, with audio or audio pairs. The distances between reference embeddings and
query embeddings are computed and the model is optimized using triplet loss so that the
distance between a reference-query pair share the same label is smaller then that of other
pairs. After training, the model achieves overall accuracy of 86.9% on a validation set

where each episode contains 20 queries as above.
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After function f°™® and g are trained, we selected hyperparameters based on a
separate validation set and then tested on test set. Both the validation set and test set
contain 10 groups of data, and all clusters have the same number of samples in each
group of data. (For example, in the setting of | = 3,n = 120, there are 6 clusters with
labels {1}, {2}, {3}, {1,2},{1,3},{2, 3} and each one has 20 samples.) For all methods,
hyperparameters are selected for { = 3 and for { = 5 (both n=150 and n=495) separately.
For CAP/CAPC and AP, there is only one hyperparameter, v, which we varied over the
set {1,2,...,7}. For AC, there is a distance threshold hyperparameter, which we varied
over {1,2,3,4,4}. These sets of values were chosen in pilot experimentation to give a
fair chance to each algorithm; in particular, they were chosen so that the best result,
during the validation process, did not fall on the boundary of these sets. During the
message-passing process, we dampened the values returned by ComputeAlphaStats and
ComputeRhoStats using a damping value of A = 0.65: Val = OldValx A+ NewValx* (1 — ).
This value for A\ was used for CAP, CAPC, and AP.

Appendix E. OmniGlot

OmniGlot contains images of handwritten symbols from a variety of languages. Figure
4 shows 4 groups of examples used in the experiment. Each group contains images with
cluster labels {1},{2},{3},{1,2},{1,3},{2,3}. Compositional embedding model:
For the image embedding function P we used ResNet18. Composition function g is
defined the same as for LibriSpeech. The training procedure of f*™P and g are the same
as for LibriSpeech. After training, the embedding model achieves overall accuracy of

fe™P and ¢ are trained, the hyperparameters are

75.0% on validation set. After function
selected in the same way, and from the same sets, as in the LibriSpeech experiment. We

used damping just like for LibriSpeech.
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