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Spatial prediction is to predict the values of the targeted variable, such as PM2.5 values and temperature, at arbitrary

locations based on the collected geospatial data. It greatly afects the key research topics in geoscience in terms of obtaining

heterogeneous spatial information (e.g., soil conditions, precipitation rates, wheat yields) for geographic modeling and decision-

making at local, regional, and global scales. In-situ data, collected by ground-level in-situ sensors, and remote sensing data,

collected by satellite or aircraft, are two important data sources for this task. In-situ data are relatively accurate while sparse

and unevenly distributed. Remote sensing data cover large spatial areas but are coarse with low spatiotemporal resolution

and prone to interference. How to synergize the complementary strength of these two data types is still a grand challenge.

Moreover, it is diicult to model the unknown spatial predictive mapping while handling the trade-of between spatial

autocorrelation and heterogeneity. Third, representing spatial relations without substantial information loss is also a critical

issue. To address these challenges, we propose a novel Heterogeneous Self-supervised Spatial Prediction (HSSP) framework

that synergizes multi-source data by minimizing the inconsistency between in-situ and remote sensing observations. We

propose a new deep geometric spatial interpolation model as the prediction backbone that automatically interpolates the

values of the targeted variable at unknown locations based on existing observations by taking into account both distance and

orientation information. Our proposed interpolator is proven to both be the general form of popular interpolation methods

and preserve spatial information. The spatial prediction is enhanced by a novel error-compensation framework to capture the

prediction inconsistency due to spatial heterogeneity. Extensive experiments have been conducted on real-world datasets and

demonstrated our model’s superiority in performance over state-of-the-art models.
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1 INTRODUCTION

The problem of spatial prediction is to utilize available values at locations to estimate the values of a targeted
variable at these locations or other locations [53]. It is also known as predictive mapping. As one of the key
research topics in geoscience, spatial prediction plays a vital role in obtaining heterogeneous spatial information
(e.g., soil conditions, precipitation rates, wheat yields) for geographic modeling and decision-making at local,
regional, and global scales [39]. Take ambient air pollution concentration as an example: estimating the full
coverage of air pollution in high spatiotemporal resolution could be beneicial in understanding the spatiotemporal
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patterns of air pollution distribution and discovering the precursors of extreme air pollution events for hazard
preparedness and mitigation eforts [44].
Generally, spatial prediction consists of three steps. Firstly, a set of sample datasets are collected at discrete

locations in the study area. Secondly, the relationships between the targeted and independent variables are
discovered by analyzing the collected samples. Finally, the learned relationships are used to predict the values of
the targeted variable at locations we are interested in [53]. Thus, collecting sample data and characterizing the
relationships between independent and targeted variables play a vital role in the spatial prediction task.

Regarding data collection for spatial prediction, in-situ data and satellite observations are two important data
sources due to the prominent development of in-situ sensors and remoting sensing instruments. In-situ sensors
directly contact the medium that they measure, such as temperature, wind, and precipitation. The measured
values are relatively accurate and available with a high temporal resolution, e.g., every hour or even a few minutes.
However, in-situ monitoring stations are inevitably sparsely and unevenly distributed due to the high cost of
deployment. Hence, only limited observations could be collected for situation awareness and spatial analysis,
which would result in biased predictions. Regarding remote sensing data, remote sensors could measure the
medium they sensed at a large scale. Since remote sensors measure value by satellite or aircraft at a distance
from the ground, the collected data are often coarse with low spatiotemporal resolution. They are also prone to
interference (e.g., clouds and bad weather) and sensitive to weak light (e.g., in the nighttime). In all, considering
the respective drawbacks and complementary strengths of in-situ and remote sensing data, multi-source data
fusion has recently aroused wide attention and is an active yet challenging research problem.

Spatial prediction based on multi-source data fusion is still a highly open research domain due to several major
challenges: 1) Heterogeneity of in-situ and remote sensing data. As highlighted in the region surrounded by
the TSAgreen dotted line in Figure 1, in-situ data have high precision yet exist sparsely in discrete space, while
remote sensing data are coarse-grained but cover continuous space regions. Only the locations with both sources
will enjoy their integration, and most existing research adds values from satellite observations around locations
where in-situ sensors are located into data samples for relationship learning. However, this treatment ignores
valuable information in other grid cells of the satellite data, leading to substantial information loss especially
considering in-situ locations are highly sparse. 2) Complex, unknown, and spatial autoregressive relation

between input and targeted variables. As highlighted in the region surrounded by the yellow dotted line in
Figure 1, existing spatial prediction methods consist of i) statistical methods that learn the linear relationships
among variables [1, 36], and ii) machine learning methods that aim to discover the nonlinear relationships for
spatial prediction [20, 25]. Statistical methods usually require the preassumption of prescribed geostatistical
models, which may not be the true sophisticated and unknown data distribution. Machine learning-based methods
instead aim at itting the relation by the data, yet fall short in suiciently considering geographical principles,
especially spatial autoregressive, spatial heterogeneity, and their trade-of. Speciically, spatial autoregressive [5]
says that diferent geo-locations are correlated according to their spatial relation, while spatial heterogeneity [17]
instead claims the pattern of an attribute at one location is diferent from its surrounding. It is imperative yet highly
challenging to propose a technique that can automatically learn and quantify the underlying efects of spatial
autoregressive and heterogeneity. 3) Information loss in spatial-relation representation. As highlighted in
the region surrounded by the orange dotted line in Figure 1, as spatial prediction requires predicting the value of
the targeted variable in a new location according to those observed in the existing locations, how to represent the
spatial relation between the existing locations and the new location is substantial yet currently not executed with
perfection. Existing works typically utilize spatial distance as the indicator of spatial relation, which cannot fully
relect the complete spatial relation among locations. For example, suppose a new location has the same distance
to four existing locations; hence, the existing ways consider it the average of the four locations’ values. However,
suppose three out of the four locations are very close to each other and far away from the other one, then actually
the neighborhood of the three locations are relatively overestimated, and hence their weights should have been
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normalized downward. However, existing works that only consider distance but not orientation cannot sense
such a situation in the irst place.
To address these challenges, we propose a novel Heterogeneous Self-supervised Spatial Prediction (HSSP)

framework that minimizes the inconsistency between in-situ and remote sensing observations. We propose a new
deep geometric spatial interpolation framework that automatically interpolates unknown locations’ values of the
targeted variable based on existing locations by leveraging both distance and orientation relations among spatial
locations. Our proposed interpolator is proven to both be the general form of popular interpolation techniques and
preserve spatial information. Moreover, we propose an error-compensation framework to capture the prediction
inconsistency due to spatial heterogeneity. In short, the key contributions of this paper are summarized as follows:

(1) Developing a new heterogeneous multi-source fusion framework for spatial prediction. A geo-
metric spatial interpolation model is built based on in-situ data, which is learned together with the spatial
pattern collected from remote sensing via self-supervised learning. Our framework synergizes the com-
plementary strengths of in-situ and remote sensing data and can predict with high spatial precision and
coverage simultaneously.

(2) Proposing a deep error-compensation model to jointly handle spatial relation and heterogeneity.

It leverages additional environmental ancillary attributes for diferent locations to characterize the error in
spatial interpolation due to spatial heterogeneity.

(3) Designing a deep geometric interpolation method to learn the underlying spatial distribution of

the targeted variable’s values. Instead of using prescribed distribution or predeined kernel functions,
the model we propose automatically interpolates the values of the targeted variable at unknown locations
based on existing observations by learning the underlying spatial relations. Such learning is achieved by
a new spatial relation representation based on distance and orientation information without substantial
geometric information loss with theoretical guarantees. Our proposed interpolator is proven to be the
general form of popular interpolation techniques.

(4) Conducting comprehensive experimental analysis to validate the efectiveness of the proposed

model. Extensive experiments on two real-world datasets, the PM2.5 Concentration Dataset and the
Ambient Temperature Dataset, demonstrate that our proposed framework achieves superior results in
spatial prediction both qualitatively (on average, a 20% decrease in RMSE and 24% decrease in MAE on
the PM2.5 Concentration Dataset and a 79% decrease in RMSE and 85% decrease in MAE on the Ambient
Temperature Dataset) and quantitatively (wider coverage of spatial locations).

The rest of the paper is organized as follows. We formulate the problem of spatial prediction and introduce the
in-situ data and remote sensing data in Section 2. Then, we present our Heterogeneous Self-supervised Spatial
Prediction (HSSP) framework in Section 3. We further elaborate on our point-based predictor in Section 4. We
evaluate the efectiveness of our model in Section 5 and report related work in Section 6. Finally, we conclude the
paper in Section 7.

2 PROBLEM SETTING

For the spatial prediction task, both in-situ data (point-based) and remote sensing data (raster-based) are widely
utilized as input to build up the model.
In-situ data can be treated as a inite set of points � , {�1, �2, ..., ��}, and for any arbitrary point �� in the set, we

are given 1) the geographical coordinate ���� of point �� ∈ R
2×1, which denotes the latitude and longitude, 2) the

value of the targeted variable �� ∈ R (it can be any variable in interest such as PM2.5 value and temperature), and
3) a set of � ancillary attributes �� , {��1, ��2, ..., ��� }, at point �� (the ancillary attributes can be any other feature
information such as wind, precipitation, etc.).
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Remote sensing data can be treated as pixelated (or gridded) images where each pixel is associated with a
speciic geographical location, and the pixel’s value can be any ancillary attribute. Thus, each input raster data in
our setting can be deined as a multi-channel image X ∈ R�×�×� , where � and� denote the length and width of
the image in pixels, respectively, and ��, �,� is the �-th feature of the pixel at �-th row and �-th column. We use

��, � ∈ R
2 to denote the coordinate of the center of this pixel.

However, challenges exist for both data sources: the sparse and uneven distribution of the in-situ data renders
the collected observations limited and biased, and remote sensing data are coarse with low spatiotemporal
resolution and prone to interference. How to synergize the complementary strength and conquer the respective
drawbacks of these two data types is still a grand challenge. Other challenges lie in the diiculty of modeling
the unknown spatial predictive mapping while handling the trade-of between spatial autocorrelation and
heterogeneity and perfectly representing spatial relations without substantial information loss.
Based on the above notation and challenges, the problem of spatial prediction is deined as follows:

Deinition 2.1. Spatial Prediction. Given a inite set of spatial points � , {�1, �2, ..., �� , ..., ��}, with geographical
coordinates C = [���1, ���2, ..., ���� , ..., ����]

� at each point, the � ancillary attributes Z = [�1, �2, ..., �� , ..., ��]
�

at each point (where �� = [��1, ��2, ..., ��� ]
� contains the values of the � ancillary attributes at point �� ), and the

corresponding targeted variable Y = [�1, �2, ..., �� , ..., ��]
� , the spatial prediction problem aims to learn a model

(or function)�(·) such that Y =�(C,Z). Once the model is learned, it can be used to predict the values of the
targeted variable at other spatial points based on their geographical locations and ancillary features.

3 THE HETEROGENEOUS SELF-SUPERVISED SPATIAL PREDICTION FRAMEWORK

3.1 Overall Framework

To handle both in-situ data (point-based) and remote sensing data (raster-based) as input, our model can be
treated as the fusion of two modules: deep spatial prediction using in-situ data (point-based predictor) and deep
spatial prediction using remote sensing data (raster-based predictor).

Deep Spatial Prediction Using In-Situ Data. Our point-based predictor, which is depicted in Figure 1(a), takes
any coordinate ∈ R2 as well as the given in-situ data as input and outputs the value of the targeted variable on
the targeted location. The ideas of deep geometric interpolation and error-compensation are leveraged in the
point-based predictor, where we propose a multilayer perceptron-based framework to interpolate the targeted
variable’s value on that location using its � neighbors (points in the in-situ data that are within �-th closest to
the targeted point). Besides, the same rationale is leveraged to interpolate the group of ancillary attributes on
that location, and the interpolated ancillary attributes are extended to provide an error-compensation, as shown
in Figure 1 "Error-compensation Framework," to make the predictions from the point-based predictor and the
raster-based predictor as similar as possible. The explanation of the point-based predictor is elaborated in Section
4.

Deep Spatial Prediction Using Remote Sensing Data. Our raster-based predictor, which is depicted in Figure
1(b), takes the remote sensing data as input and extends a convolutional neural network (CNN) to handle the
images, as CNN is powerful and eicient in terms of automatically detecting and extracting relevant ancillary
features and proximity of pixels to each other that assist in predicting the value of the targeted variable. The idea
of image-to-image translation is leveraged in our raster-based predictor. More speciically, for the raster-based
predictor, we take the remote sensing data X ∈ R�×�×� as input and output a heatmap of the targeted variable’s
values with size ∈ R�×�×1, where each pixel in the heatmap is associated with a speciic geographical location.
Each pixel can be treated as the center point of the associated small region of the entire raster image. The pixel’s
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Fig. 1. The Heterogeneous Self-Supervised Spatial Prediction Framework With Highlighted Challenges and Contributions

value is the value of the targeted variable at that location, and all the points within the associated regions share
the same value of the targeted variable as that of the region’s center point.

3.2 Training Objective

Our training objective consists of two segments: 1) given that the in-situ data have high precision yet exist
sparsely and remote sensing data are coarse with a low spatiotemporal resolution, the irst training objective
aims to synergize the complementary strengths of both two data sources. To fully utilize the spatial dependencies
of the targeted variable, for instance, air pollution, captured by both in-situ observation and remotely sensed data,
our model considers point data and raster data separately and synergizes their strengths via the loss function.
In fact, these two types of data can be merged in the data processing step using spatiotemporal collocation
methods. This involves assigning the value of a point data to the grid cell that contains it, allowing the creation
of train and test data sets consisting of remotely sensed values, ancillary values, and in-situ values. However, it is
important to note that merging raster and point data comes with a cost, as important information may be lost in
the process. Speciically, the spatial dependencies of the targeted area, for instance, air pollution, captured by
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Table 1. Notation Table

Symbols:

� A inite set of geographical points that have ground-truth values of the targeted
variable

�� A geographical point with corresponding geographical coordinate
�� Ground-truth value of the targeted variable at point ��
�̂� Predicted value of the targeted variable at point ��
�� Ground-truth values of a set of � ancillary attributes at location ��
�̂� Predicted values of a set of � ancillary attributes at location ��
��� Ground-truth value of the �-th ancillary attribute at location ��
�̂�� Predicted value of the �-th ancillary attribute at location ��
�� � Weight (contribution) of the neighbor point � � to the targeted point ��
�� � Distance from the neighbor point � � to the targeted point ��
�� �� Angle among the points �� , � � , and �� , where �� is the targeted point, � � is the neighbor

point of �� , and �� is the neighbor point of � �
Proposed Models:

� (·) Function of our point-based predictor
�(·) Function of our raster-based predictor
�(·) Function of our point-based interpolator
�(·) Function of our weight computation framework
� (·) Function of our proposed framework to compute distance information
� (·) Function of our proposed framework to compute orientation information
� (·) Function of our error estimation model
Parameters:

� Balancing factor
� Exponent factor

satellite observations cannot be fully utilized if these two types of data sets are merged together. The proposed
loss function necessitates the alignment of the predictions via two data sources as strong as possible, speciic to
every point in space. Moreover, the outputs of two data sources are the same physics variables; hence, we require
them to be the same. We cannot give such strong enforcement for hidden layers because we do not have their
physical meaning. If we want to enforce the alignment of hidden layers, the expressiveness of the model will be
reduced.
Thus, we aim to minimize the self-supervision loss between the predictions using the in-situ data and that

using the remote sensing data, and 2) to take advantage of the in-situ data, which have ground-truth values of the
targeted variable, for each point �� in the set of the in-situ data � , we treat it as unknown and utilize other points
in the set � � ∈ � − {�� } to conduct deep spatial prediction using the point-based predictor. We try to minimize the
loss of the output with respect to the given ground-truth labels. The training objective can be written as:

arg min
� ( ·),� ( ·)

︁
� ∈� (� )

L(�� , [�(� )]� ) +
︁
�

L(�� , � (�� , {� � , � � , � � }� � ∈�−{�� })) (1)

where �(� ) denotes the spatial region that the raster data X covers, �� denotes the ground-truth value of the
targeted variable at pixel � , and the function of our raster-based predictor is deined as �(·), �� denotes the ground-
truth value of the targeted variable at point �� , �� denotes a group of � ancillary attributes, and the function
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of our point-based predictor is deined as � (·), which consists of deep geometric interpolation framework and
error-compensation framework and is detailed later in Section 4.

However, �� is not directly learnable because we do not have observation data on every pixel but only at stations,
so we lack labeled data. To address this problem, we resort to the upper bound of

∑
� L(�� , [�(� )]� ) according to

the triangle inequality theorem in Euclidean geometry as follows:︁
� ∈� (� )

L(�� , [�(� )]� ) ≤
︁

� ∈� (� )

L([�(� )]� , � (�� , {� � , � � , � � }� � ∈�−{�� }) +
︁
�

L(�� , � (�� , {� � , � � , � � }� � ∈�−{�� })) (2)

By inducing Equation 2 into Equation 1, we have an upper bound for Equation 1:

arg min
� ( ·),� ( ·)

︁
� ∈� (� )

L([�(� )]� , � (�� , {� � , � � , � � }� � ∈�−{�� }) + 2 ·
︁
�

L(�� , � (�� , {� � , � � , � � }� � ∈�−{�� })) (3)

as L(�� , � (�� , {� � , � � , � � }� � ∈�−{�� })) is considered as an unknown constant to �(·)

We can further �(·) into:

arg min
� ( ·),� ( ·)

� ·
︁

� ∈� (� )

L([�(� )]� , � (�� , {� � , � � , � � }� � ∈�−{�� }) +
︁
�

L(�� , � (�� , {� � , � � , � � }� � ∈�−{�� })) (4)

where � is a tunable balancing factor.

4 DEEP SPATIAL PREDICTION USING IN-SITU DATA

Spatial interpolation is an open research problem with two big challenges that have not been well addressed by
existing works. The irst one is that the true spatial distribution of the targeted variable is typically sophisticated
and unknown, which signiicantly challenges the existing works that use prescribed distribution or predeined
kernel functions. Second, the targeted variable’s value of a spatial location is also dependent on other spatial
attributes and confounding, but such spatial heterogeneity is necessary yet challenging to be considered in spatial
interpolation. To address both these two challenges, we propose a deep spatial prediction network where we
irst propose a deep geometric spatial interpolation network that can automatically learn the underlying spatial
distribution for spatial interpolation. This part is elaborated in Section 4.1 and in Figure 1 "Deep Geometric
Spatial Interpolator." Then the consideration of spatial heterogeneity is further leveraged to ill the gap between
the interpolated value from the deep spatial interpolation network and the true value. To achieve this, we develop
an error-compensation mechanism that predicts and then maps the ancillary attributes of a spatial location to its
interpolation error, which also help explains spatial heterogeneity.

4.1 Deep Geometric Spatial Interpolation Framework

In this section, we propose our new deep geometric spatial interpolation framework that can take into account
both distance and orientation information to fully relect the complete spatial relations among locations. Diferent
from popular spatial interpolation methods, which use prescribed distribution or predeined kernel functions, our
model leverages the power of neural networks to automatically learn the underlying spatial distribution of the
targeted variable. Hence this demonstrates our model’s expressive power in automatically selecting and learning
distributions among or beyond traditional prescribed-based spatial interpolation methods.
We propose a novel multilayer perceptron-based deep geometric spatial interpolation framework �(·) to

interpolate the value of the targeted variable �� at any arbitrary location �� , which is relected in Figure 1 "Deep
Geometric Spatial Interpolator." Our new deep geometric interpolationmethod automatically learns the underlying
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spatial distribution of the value of the targeted variable, which can be expressed as:

�̂� = �(�� , {� � , � � }� � ∈�−{�� }) (5)

where �̂� denotes the interpolated value of the targeted variable at targeted point ��
As indicated in Equation 5, we leverage the known values at the neighbor points � � ∈ � − {�� } of the targeted

point �� to interpolate the value of the targeted variable. Therefore, our deep geometric spatial interpolator can be
generalized as the computation of weights of each neighbor point and weighted sum followed by normalization,
which can be expressed as:

�̂� =

∑�
�=1�� �� �∑�
�=1�� �

(6)

where�� � denotes the weight (contribution) of the neighbor point � � to the targeted point �� and � � denotes the
value of the targeted variable at the neighbor point � � . The numerator is the weighted sum of the values of the
targeted variable at these � neighbor locations. The denominator applies normalization.

As our proposed deep geometric spatial interpolator leverages the known information of the neighbor points,
how to fully represent the geometric relations between the neighbors and the targeted point without substantial
information loss is a critical issue. Our proposed interpolator leverages a new spatial relation representation
based on distance and orientation information.
The reasons behind the consideration of both distance and orientation information are illustrated as follows.

The distance information considers the ideas behind spatial autocorrelation and spatial heterogeneity, which
state that 1) everything in space is connected and 2) the closer the distance, the larger the connection.

The orientation information considers that input distance only measures the relative diference between each
neighbor and the interpolated point. Two neighbors sharing the same distance to the interpolated point but
located at diferent places may have diferent weights. For example, suppose a new location has the same distance
to four existing locations �1, �2, �3, �4, as expressed in Figure 1(a), and hence the existing ways consider equal
weight for all four neighbors. However, suppose three out of the four locations �2, �3, �4 are very close to each
other and far away from the other one �1, then actually, the neighborhood of the three locations are relatively
overestimated, and hence their weights should have been normalized downward. Thus, the inclusion of the angle
discounts the weight of less important neighbors by taking direction into consideration.

To achieve the goal of fully relecting the complete spatial relation among locations by taking into account both
distance and orientation information, our proposed deep geometric interpolator consists of a novel framework
�(·) to compute the weight of each neighbor, which can be written as:

�
(� )
� � = �(� (�� , � � ), � (�� , � � , �� )) (7)

where the output�
(� )
� � is the weight of the neighbor point � � to the interpolated point �� , � (·) is the function to

compute distance information and � (·) is the function to compute orientation information, � � is the neighbor of
the targeted point �� where � � ∈ � − {�� }, �� is the neighbor of the neighbor point � � where �� ∈ � − {�� , � � }.
More speciically, our distance computation function � (·) and orientation computation � (·) function can be

respectively written as,

�
�
� � = � (�� , � � ) = | |� � − �� | |

�
2 (8)

which is the Euclidean norm of the vector �� � , which measures the distance from neighbor point � � to interpolated
point �� , to the power of � , where � is a hyperparameter, denoting the exponent factor.
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The input angle �� �� can be expressed as:

�� �� = � (�� , � � , �� ) = ������ (⟨
�� �

�� �
,
� ��

� ��
⟩) · ⟨�� �� , ���⟩

�� �� =

�� � × � ��

| |�� � × � �� | |2
, ��� = �� × ��, �� � =

−−→��� � , � �� =
−−→� ��� (9)

where point �� is the neighbor of point � � that forms the smallest �� �� ∈ [−�, �), × denotes the cross product
operation.
After computation of �

�
� � and �� �� by function � (·) and function � (·) respectively, our weight computation

framework �(·) consists of a stack of� fully connected layers ��� , where � = 1, 2, ...,� , followed by nonlinear
activation function � , where the input to the irst linear layer is the concatenated output of function � (·) and
function � (·), the computed distance �

�
� � and angle �� �� , and it can be written as:

�
(� )
� � = �(� (�� , � � ), � (�� , � � , �� ))

= �(�
�
� � | |�� �� ) = ��� (� (��� −1...� (��2 (� (��1 (�

�
� � | |�� �� )))))) (10)

Then, we introduce two important theorems that relect the outstanding properties of our proposed interpolator.

Theorem 4.1. Our proposed deep geometric spatial interpolation framework �(·) is the general form of popular

spatial interpolation methods.

Proof of Sketch: We prove that popular spatial interpolation methods are the special cases of our proposed
interpolator under special parameter settings. By adjusting the parameters of our deep geometric interpolation
framework, we enable our proposed model to output the same values of popular spatial interpolation methods.
The details will be elaborated in Appendix A.1. ■

Theorem 4.2. Our proposed weight computation framework �(·) in terms of computing the weight (contribution)

of any neighbor point � � to the targeted point �� are rotation and translation invariant.

Proof of Sketch: We prove that our proposed weight computation framework �(·) is rotation and translation
invariant by proving that all the inputs to �(·), the computed distance �

�
� � ∈ [0,∞) and angle �� �� ∈ [−�, �), are

rotation and translation invariance by imposing generalized rotation and translation in 2D space on them. The
details will be elaborated in Appendix A.2. ■

4.2 Error-compensation Framework

The spatial interpolation of the targeted variable’s values based on our deep geometric spatial interpolation
method efectively learns and leverages the spatial correlation and distribution. As mentioned above, spatial
correlation may not explain all the spatial patterns because diferent spatial locations may have diferent char-
acteristics, so spatial distribution and rule may not be homogeneous. To further ill this gap, we propose an
error-compensation framework that leverages additional environmental ancillary attributes for diferent locations
to characterize the error in spatial interpolation due to spatial heterogeneity. More concretely, point-based
predictor � (�� , {� � , � � , � � }� � ∈�−{�� }) is expressed as the sum of the output of our deep geometric interpolation

model �(�� , {� � , � � }� � ∈�−{�� }) and the estimated error � , which is the output of the error estimation model � (�̂� ),
as follows:

� (�� , {� � , � � , � � }� � ∈�−{�� }) = �(�� , {� � , � � }� � ∈�−{�� }) + � (�̂� ) (11)
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where �̂� contains the estimated values of the group of � ancillary attributes, namely {�̂�1, �̂�2, ..., �̂�� }, at location
�� .

The error estimation model � (·) is a framework with a stack of fully connected layers; more speciically, it
consists of ancillary attributes interpolation and error prediction. For ancillary attributes interpolation, as we aim
to interpolate the value of the targeted variable at any location �� , the ancillary attributes may not be available.

Thus, our model is extended to interpolate the unknown group of ancillary attributes �̂� at point �� . For each
ancillary attribute, the idea of deep geometric interpolation is leveraged to compute the value of the ancillary

attribute at the targeted location �� , and therefore, the entire group of interpolated ancillary attributes �̂� can be
expressed as:

�̂� = �(�� , {� � , � � }� � ∈�−{�� }) (12)

where � � contains the ground-truth values of the group of � ancillary attributes at the known locations.
The model architecture to interpolate each ancillary attribute is the same as that in Section 4.1. We leverage

the idea of deep geometric spatial interpolation to interpolate the ancillary attributes by leveraging the weighted

sum and normalization, as expressed in Equation 6. To compute the weight�
(� )
� � of neighbor point � � , the model

irst leverages function � (·), expressed in Equation 8, and function � (·), expressed in Equation 9, to compute
the geometric information �

�
� � and angle �� �� based on the geographical location of the targeted location and

its neighbors, which are further treated as inputs into the weight computation framework �(·), expressed in

Equation 10, and the corresponding output is the weight�
(� )
� � of each neighbor � � to the targeted point �� .

Thus, the strengths of acting as the general form of the popular interpolation methods, which automatically
learns the underlying spatial distribution without using prescribed data distribution and kernel functions, and
the full representation of geometric spatial relations are preserved.
For error prediction, we assume that the interpolated ancillary attributes may afect the distribution of the

values of the targeted variable and therefore provide extra information which would beneit our model. Thus, the
interpolated ancillary attributes are extended to predict the estimated error � in spatial interpolation due to spatial

heterogeneity, which is written as � (�̂� ), where �̂� is the set of interpolated ancillary attributes {�̂�1, �̂�2, ..., �̂�� } at
point �� .

5 EVALUATION

In this section, the performance of the proposed model HSSP is evaluated using two real-world datasets. First, the
experimental setup is introduced. The efectiveness of HSSP is then evaluated against eleven existing methods.
Then, several ablation studies are conducted to validate the efectiveness of diferent components of our HSSP
framework. Finally, the impact of important parameters on our HSSP framework and its scalability is explored.

5.1 Experimental Setup

Data. We evaluate our proposed methods using two real-world datasets in the United States: the PM2.5 Concen-
tration Dataset (AQ-PM2.5) and the Ambient Temperature Dataset.

(1) PM2.5 Concentration Dataset: This dataset is derived from fusing in-situ purple air sensor data, the
Moderate Resolution Imaging Spectroradiometer (MODIS) TERRA and AQUA satellite observations [34],
and MERRA-2 reanalysis data [15] across the continental united states. It contains MAIAC [38] Aerosol
optical depth (AOD) value, meteorological variables such as humidity, surface pressure, wind speed, and
the corresponding ambient PM2.5 value in the location. Interpolation methods could help create high
spatiotemporal coverage of ambient PM2.5 products for better air pollution mitigation strategies and urban
planning.
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Table 2. Datasets Summary

Dataset AQ-PM2.5 Temperature
Data Source Type Point Raster Point Raster

Targeted Variable PM2.5 PM2.5 Temperature Temperature
Location Representation Coordinate (latitude, longitude) Pixel position in raster Coordinate (latitude, longitude) Pixel position in raster
Number of Ancillary Attributes 9 9 9 9

Dataset Size 155 points 2485 ∗ 5781 pixels 90 points 70 ∗ 70 pixels
Average Train Size 124 points 1.149 ∗ 107 pixels 71 points 3920 pixels
Average Test Size 31 points 1.437 ∗ 106 pixels 19 points 490 pixels

(2) Ambient Temperature Dataset: Ambient temperature datasets are collected in the Los Angeles region to
analyze the spatiotemporal pattern of extreme heat events in one of the largest cities in the world [34]. The
sparsely distributed in-situ air temperature data are collected from Weather Underground. Land surface
temperature (LST) values are derived from MODIS satellite observations. Meteorological variables such as
wind and humidity are also collected from the MERRA-2 dataset.

We report the average performance of all days in December 2019. The summary of both in-situ data and remote
sensing data is shown in Table 2. The size of the two datasets is relatively small as they were obtained from
two sources: in-situ sensors and satellite observations. In-situ sensors are known to be expensive to install and
maintain, resulting in sparse and uneven distribution, particularly in rural regions. As a result, access to in-situ
sensor observations is restricted, and in our study, we have gathered data from all sensors situated in California
State. To mitigate the problems caused by limited dataset size, we adopt an 80/20 split for train and test sets in
terms of data splitting. 10-fold cross-validation is leveraged for hyperparameter tuning.

Comparison Methods. We compare our proposed framework to three types of state-of-the-art approaches for
spatial prediction. Firstly, our point-based predictor can be treated as the fusion of a deep geometric spatial inter-
polation framework and an error-compensation framework. Our proposed deep geometric spatial interpolation
framework is proven to be the general form of popular spatial interpolation methods and, therefore, theoretically
outperforms them by automatically selecting and learning underlying spatial distributions instead of using
prescribed distributions or predeined kernel functions. For veriication, we compare our proposed framework
to a group of popular spatial interpolation methods, including Inverse Distance Weighting (IDW) [27], Kriging
[13], Radial Basis Function Interpolation (RBF) [22], and Nearest Neighbor Interpolation (Nearest Neighbor) [13].
Moreover, we add two recently published interpolator methods reported as advanced interpolators. They are
Value Propagation-based Spatial Interpolation (VPint) [2] and Random Forest Spatial Interpolation (RFSI) [45].

Then, both our raster-based predictor, which leverages additional environmental ancillary attributes to estimate
the values of the targeted variable, and error-compensation framework, which takes into account the inconsistency
in spatial interpolation frommulti-source data due to spatial heterogeneity, extend the power of ancillary attributes
to spatial prediction. For veriication, we compare our proposed method to three ML-based spatial prediction
methods, including Geographically Weighted Regression (GWR), Random Forest (RF), and Gradient Boosting
(GB) [7, 20, 25], which use ancillary attributes to conduct spatial prediction. However, as we aim to estimate
the values of the targeted variable at any location �� , the ancillary attributes may not be available at that
location. The unavailability of the ancillary attributes at any arbitrary location invalidates these ML-based spatial
prediction methods that necessitate the knowledge of them. For a fair comparison, we irst use the popular spatial
interpolation method Inverse Distance Weighting to interpolate the ancillary attributes on all the test locations.
Next, we test the performance of these three ML-based spatial prediction methods on the test set.
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Finally, we compare our proposed method to two neural networks-based state-of-the-art spatial prediction
methods: Artiicial Neural Network (ANN) [51] and Geographically and Temporally Weighted Neural Network
(GTWNN) [14]. Similar to the property of ML-based approaches, these two methods also require additional
environmental ancillary attributes on the test locations. Thus, we use Inverse Distance Weighting to interpolate
the ancillary and then use these models to conduct spatial prediction for a fair comparison.

In short, the following elevenmethods are included in the performance comparison. For eachmodel, we leverage
10-fold cross-validation for hyperparameter tuning. The detailed settings are reported after the introduction of
each baseline method.

• Inverse DistanceWeighting (IDW) [27]: the values of the targeted variable to unknown points are calculated
as a weighted average of the values available at the known points. The weight of each known point is
derived by the inverse of the corresponding distance. The number of neighbors is set to 20 for the PM2.5
Concentration Dataset and 15 for the Ambient Temperature Dataset; for both datasets, power is set to 1.0,
reg is set to 0.0, and eps is set to 0.2.

• Kriging [13]: given a set of points S, with s is the vector containing the value of the target variable y of all
the points ∈ S, it constructs a covariance matrix � . Then, a covariance vector c for the interpolated point ��
relative to the given set of points S is deined. It inally computes the weight vector w, which contains the
weights of all the points in the in-situ data with respect to the interpolated point �� , by solving a linear
least square problem. Kriging typically starts with a prior distribution over functions, and this prior takes
the form of a Gaussian process. For the PM2.5 Concentration Dataset, variogram model is set to linear,
weight is set to False, and nlags is set to 6; for the Ambient Temperature Dataset, variogram model is set to
hole-efect, weight is set to True, and nlags is set to 2.

• Radial Basis Function Interpolation (RBF) [22]: a univariate radial function that maps distance to weight
is utilized. The weights for each neighbor are computed by solving a linear system of equations. The
multiquadric kernel is typically used by RBF interpolation. For the PM2.5 Concentration Dataset, smoothing
is set to 0.5, and the number of neighbors is set to 8; for the Ambient Temperature Dataset, smoothing is
set to 3, and the number of neighbors is set to 16. Kernel is set to linear for both two datasets.

• Nearest Neighbor Interpolation (Nearest Neighbor) [13]: the value of the targeted variable at an unknown
point is determined by the value of the known point that has the shortest distance to the targeted point.
Rescale is set to True for both two datasets.

• Value Propagation-based Spatial Interpolation (VPint) [2]: VPint operates locally but applies recursion to
implicitly account for global spatial relationships in the entire system via Markov reward processes. N is
set to 5 for the PM2.5 Concentration Dataset and 6 for the Ambient Temperature Dataset.

• Random Forest Spatial Interpolation (RFSI) [45]: RFSI takes spatial autocorrelation between observations
into consideration and incorporates covariates representing neighbors’ information in the random forest
model. For the PM2.5 Concentration Dataset, the number of neighbors is set to 30, criterion is set to
squared_error, max features is set to log2, bootstrap is set to True, oob_score is set to False, n_estimators
is set to 500, max_depth is set to None, min_samples_split is set to 2, min_samples_leaf is set to 1,
min_weight_fraction_leaf is set to 0.0, max_leaf_nodes is set to None, and min_impurity_decrease is
set to 0.0. For the Ambient Temperature Dataset, the number of neighbors is set to 30, criterion is set to
absolute_error, max_features is set to sqrt, bootstrap is set to True, oob_score is set to True, n_estimators
is set to 400, max_depth is set to None, min_samples_split is set to 2, min_samples_leaf is set to 1,
min_weight_fraction_leaf is set to 0.0, max_leaf_nodes is set to None, and min_impurity_decrease is
set to 0.0.

• Geographically Weighted Regression (GWR) [7]: GWR extends the ordinary least squares regression
and adds a level of modeling sophistication by enabling the relationships between the independent and
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dependent variables to vary by locality. GWR constructs a separate ordinary least squares equation for
every location in the dataset, which incorporates the dependent and explanatory variables of locations
falling within the bandwidth of each targeted location. For both datasets, bandwidth is obtained using
Sel_BWwith criterion set to AIC for the PM2.5 Concentration Dataset and CV for the Ambient Temperature
Dataset. For the PM2.5 Concentration Dataset, ixed is set to False, kernel is set to exponential, and constant
is set to True; for the Ambient Temperature Dataset, ixed is set to False, kernel is set to exponential,
constant is set to True.

• Random Forest (RF) [20]: it is an ensemble learning method that operates by constructing a multitude of
decision trees at training time. The mean or average prediction of the individual trees is returned. For the
PM2.5 Concentration Dataset, criterion is set to squared_error, max_features is set to sqrt, bootstrap is set
to True, oob_score is set to False, n_estimators is set to 100, max_depth is set to None, min_samples_split
is set to 2, min_samples_leaf is set to 1, min_weight_fraction_leaf is set to 0.0, max_leaf_nodes is set
to None, and min_impurity_decrease is set to 0.0. For the Ambient Temperature Dataset, criterion is
set to friedman_mse, max_features is set to None, bootstrap is set to True, oob_score is set to True,
n_estimators is set to 100, max_depth is set to None, min_samples_split is set to 2, min_samples_leaf is set
to 1, min_weight_fraction_leaf is set to 0.0, max_leaf_nodes is set to None, and min_impurity_decrease is
set to 0.0.

• Gradient Boosting (GB) [25]: it gives a prediction model in the form of an ensemble of weak prediction
models, which are typically decision trees. For the PM2.5 Concentration Dataset, loss is set to absolute_error,
learning_rate is set to 0.1, n_estimators is set to 400, and criterion is set to friedman_mse; for the Ambient
Temperature Dataset, loss is set to squared_error, learning_rate is set to 0.1, n_estimators is set to 100, and
criterion is set to friedman_mse.

• Artiicial Neural Network (ANN) [51]: the spatial variables (i.e., latitude and longitude) could be regarded
as two general variables as other variables like temperature, wind speed, and pressure to make a prediction
of the values of the targeted variable. For both datasets, the Adam optimizer and ReLU activation function
are leveraged. The number of hidden layers is set to 4.

• Geographically and Temporally Weighted Neural Network (GTWNN) [14]: it integrates artiicial neural
networks into geographically and temporally weighted regression to capture the spatial and temporary
non-stationarity in identifying the relationship between predictors and the response variables. GTWNN
consists of two fully connected neural networks. It starts with a weight estimation neural network learning
the spatial-temporal weight of each independent variable from coordinates. Then, the learned weights are
multiplied by the corresponding independent variables and serve as input to the second neural network
which performs the nonlinear transformation on the input variables to obtain the output as the response
value. For both datasets, the number of spatial features is set to 2, and the number of non-spatial features is
set to 9. The Adam optimizer is leveraged.

Implementation Details. We leverage MLP frameworks with 4 hidden layers. In terms of optimization, we
use the Adam optimizer with a learning rate of 0.001. The mean squared error (MSE) serves as the training
loss function. The number of hidden units is set to 512, and the number of epochs is set to 100 for all datasets.
Our model demonstrates lexibility by being able to accommodate diferent targeted variables via the activation
function. Given that the range of the targeted variable is non-negative, such as PM2.5, precipitation, and traic
low, we leverage ReLU as the nonlinear activation function; given that the targeted variable can be negative,
such as temperature and wind speed, Leaky ReLU is leveraged.
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Evaluation Metrics. We report the average statistics of three metrics to evaluate the performance of our
proposed model. 1) Root-mean-square error (RMSE): the objective of the spatial prediction problem can be treated
as minimizing the diferences between values predicted by the model and the true values observed. The RMSE
represents the square root of the second sample moment of the diferences between predicted values and observed
values or the quadratic mean of these diferences. 2) Mean absolute error (MAE): similar to RMSE, it is a measure
of errors between paired observations expressing the same phenomenon. MAE is computed as the sum of absolute
errors divided by the sample size. 3) Coeicient of determination (�2): it denotes the proportion of the variation
in the true values that are predictable from the predictions, which measures how diferences in the predictions
can be explained by the diference in true values, assessing the strength of the linear relationship between the
predictions and the true values.

5.2 Efectiveness Comparison with the State-of-the-arts

We present the performance comparison of all methods in Table 3. Based on the table, our proposed model
performs consistently the best over all the metrics on both datasets.

Efectiveness on Spatial Prediction. On the PM2.5 Concentration Dataset, it is apparent from the left segment
of Table 3 that HSSP excels other approaches regarding MAE, RMSE, and �2. For instance, HSSP outperforms
other methods with, on average, a 20% decrease in RMSE and a 24% decrease in MAE. HSSP achieves the best
result by excelling the second-best method in terms of an 8% decrease in MAE, a 6% decrease in RMSE, and a 27%
increase in �2. Speciically, HSSP achieves RMSE as low as 3.3, while the average RMSE of other methods is over
4.1. HSSP achieves MAE as low as 2.3, while the average MAE of other methods is over 3.0. The �2 of most of the
baselines are around 0.2, even with some of them lower than 0, and HSSP consistently achieves �2 over 0.4.

On the Ambient Temperature Dataset, as can be seen from the right segment of Table 2, HSSP still achieves the
best performance among all methods in each evaluation metric. Speciically, HSSP outperforms other methods
with, on average, a 79% decrease in RMSE and an 85% decrease in MAE. HSSP performs 25% better than the
second-best model in MAE, 9% in RMSE, and 3% in �2. For MAE, HSSP achieves a value as low as 0.36, which is
0.12 lower than the second-best method and 2.04 lower than the average of all methods. For RMSE, HSSP achieves
a value as low as 0.6, which is 0.05 lower than the second-best method and 2.25 lower than the average of all
methods.

Stability. On both datasets, the average RMSE, MAE, and �2 of all days in December 2019, followed by standard
deviation, are reported. The standard deviation is an efective metric to relect the stableness of the method. Being
able to consistently produce predictions without big luctuation is an important criterion for spatial prediction
approaches. It is apparent that HSSP excels over other approaches in terms of stability.
On the PM2.5 Concentration Dataset, the standard deviations of HSSP on three metrics are in the lowest

category. In particular, for MAE, HSSP performs at least 20% better than the second-best stable method in terms
of standard deviation and 70% than the average of all the baselines. Regarding RMSE, HSSP performs at least 2%
better than the second-best stable method in terms of standard deviation and 20% than the average of all the
baselines.
On the Ambient Temperature Dataset, HSSP has the lowest standard deviation on RMSE, MAE, and �2.

Regarding MAE, HSSP excels over the second-best stable method 8% in standard deviation and outperforms
the average of other methods in terms of a 70% decrease in standard deviation. Regarding �2, HSSP achieves a
standard deviation as low as 0.03, while the second-best stable method is higher than 0.06.
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Table 3. Experimental results on two real-world datasets. The best performance is in boldface.

AQ-PM2.5 Temperature

Interpolation Method MAE RMSE �2 MAE RMSE �2

IDW 2.543±0.765 3.493±1.057 0.327±0.319 0.476±0.109 0.647±0.151 0.779±0.058
Kriging 3.800±1.174 4.894±1.376 -0.239±0.283 1.180±0.268 1.439±0.348 -0.055±0.064
RBF 2.469±0.698 3.489±1.025 0.286±0.468 0.529±0.134 0.686±0.162 0.749±0.073
Nearest Neighbor 2.810±0.656 4.097±1.042 -0.086±0.963 0.762±0.093 1.090±0.129 0.322±0.272

VPint 4.945±1.773 6.308±2.096 -1.237±1.170 16.260±1.095 18.491±1.116 -226.924±154.933
RFSI 2.492±0.727 3.468±1.056 0.335±0.316 0.811±0.114 1.232±0.166 0.046±0.602

IDW+GWR 2.918±0.987 3.875±1.266 0.208±0.201 0.852±0.136 1.042±0.168 0.467±0.057
IDW+RF 2.855±0.880 3.895±1.151 0.206±0.212 0.767±0.203 0.974±0.234 0.449±0.331
IDW+GB 2.946±0.892 4.008±1.162 0.161±0.222 0.791±0.209 1.008±0.233 0.416±0.323

IDW+ANN 2.586±0.986 3.620±1.402 0.051±0.957 2.813±0.325 3.265±0.351 -6.407±5.424
IDW+GTWNN 2.789±0.900 3.851±1.238 -0.099±0.988 1.118±0.450 1.468±0.549 -1.051±3.828

HSSP 2.276±0.525 3.274±1.004 0.424±0.270 0.357±0.086 0.592±0.111 0.800±0.031

Flexibility. Although our point-based predictor leverages additional environmental ancillary attributes to predict
the values of the targeted variable, it can estimate the values of the targeted variable at arbitrary locations, at
which the ancillary attributes may not be available, since we propose a novel deep geometric spatial interpolation
framework to irst automatically learn the underlying spatial distribution of all the ancillary environmental
attributes and then interpolate them. Consequently, our point-based predictor demonstrates more lexibility than
all the ML-based spatial prediction methods and the two neural networks-based state-of-the-art methods, as
these methods necessitate the knowledge of ancillary attributes at the targeted locations. Thus, these baselines
cannot perform individually but require the assistance of spatial interpolation methods irst to interpolate the
required ancillary attributes.

Moreover, HSSP demonstrates more lexibility by being able to take both point data and raster data as inputs,
compared with popular traditional spatial interpolation methods that cannot handle raster data as input data
sources.

5.3 Ablation Study

Efectiveness of the Proposed Deep Geometric Spatial Interpolator.We compare the performance of our
proposed interpolator with the interpolation methods, which are IDW, Kriging, RBF, and Nearest Neighbor, as
well as the state-of-the-art VPint and RFSI on our datasets. The results are summarized as follows and are also
illustrated in Table 4. Our proposed deep geometric spatial interpolator consistently outperforms the baselines
on both datasets.
As shown in the upper segment of Table 4, on the PM2.5 Concentration Dataset, our proposed interpolator

outperforms the traditional interpolation models by at least 7% and on average 28% in MAE. Our proposed
interpolator also has the best performance in terms of RMSE and �2 (outperforms the second-best method by 5%
and 19%, respectively). Similarly, on the Ambient Temperature Dataset, our proposed interpolator outperforms
the second-best method by 22% and 89% on average regarding MAE. In terms of RMSE, our proposed interpolator
outperforms the second-best by 6% and 85% on average. In terms of the comparison with the more recent
interpolators (VPint and RFSI), as shown in the middle segment of Table 4, our interpolator consistently performs
the best in all the metrics. More speciically, on the PM2.5 Concentration Dataset, our proposed interpolator
outperforms RFSI by 8% in MAE, 5% in RMSE, and 0.06 in terms of an increase in �2. Our proposed interpolator
outperforms VPint by 3 in terms of a decrease in MAE and RMSE. Moreover, on the Ambient Temperature Dataset,
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Table 4. Ablation study of our proposed deep geometric spatial interpolator on two real-world datasets. The best performance

is in boldface and the second best is underlined.

AQ-PM2.5 Temperature

Interpolation Method MAE RMSE �2 MAE RMSE �2

IDW 2.543±0.765 3.493±1.057 0.327±0.319 0.476±0.109 0.647±0.151 0.779±0.058
Kriging 3.800±1.174 4.894±1.376 -0.239±0.283 1.180±0.268 1.439±0.348 -0.055±0.064
RBF 2.469±0.698 3.489±1.025 0.286±0.468 0.529±0.134 0.686±0.162 0.749±0.073
Nearest Neighbor 2.810±0.656 4.097±1.042 -0.086±0.963 0.762±0.093 1.090±0.129 0.322±0.272

VPint 4.945±1.773 6.308±2.096 -1.237±1.170 16.260±1.095 18.491±1.116 -226.924±154.933
RFSI 2.492±0.727 3.468±1.056 0.335±0.316 0.811±0.114 1.232±0.166 0.046±0.602

Our Interpolator 2.293±0.411 3.305±1.021 0.397±0.279 0.372±0.091 0.609±0.124 0.786±0.044
HSSP 2.276±0.525 3.274±1.004 0.424±0.270 0.357±0.086 0.592±0.111 0.800±0.031

our proposed interpolator outperforms RFSI by 54% in MAE, 51% in RMSE, and 0.7 in terms of an increase in �2.
Our proposed interpolator outperforms VPint by 16 in terms of a decrease in MAE and RMSE. VPint generates
the worst result as it can only take squared gridded data as input; therefore, huge information loss exists during
the transformation of the data points to the gridded version, which results in the worst performance. It also
relects our model’s lexibility that can take both point data and raster data as input without a strict requirement
of data format.
Additionally, as indicated in the lower segment of Table 4, our HSSP consistently outperforms our proposed

interpolator on two datasets in terms of all the metrics, which relects the efectiveness of our error-compensation
framework.

Efectiveness of Leveraging Both the Distance Information and the Orientation Information in the

Proposed Deep Geometric Spatial Interpolator. As introduced in section 4.1, we leverage the distance
and orientation information in our proposed deep geometric spatial interpolator. To verify the efectiveness of
introducing both pieces of information, we conduct another ablation study on our proposed deep geometric
spatial interpolator by removing one piece of information at a time, where the irst one removes the orientation
information (named "Our Interpolator-orientation"), and the second one removes the distance information (named
"Our Interpolator-distance").
As indicated in Table 5, we can see that our proposed interpolator consistently outperforms the two base-

lines with the incomplete input information. On the PM2.5 Concentration Dataset, our proposed interpolator
outperforms the baselines by, on average, 4% in MAE, 3% in RMSE, and 3% in �2. Moreover, on the Ambient
Temperature Dataset, our proposed interpolator outperforms the baselines by achieving MAE as low as 0.37; the
average MAE of the two baselines is 0.45. Regarding RMSE, our proposed interpolator reaches 0.61, while the
average of the two baselines is 0.63.

Efectiveness of the Error-compensation Framework.We compare our HSSP against two new comparison
methods, where the irst one combines our proposed interpolator with ANN (named "Our Interpolator+ANN"),
and the second one combines our proposed interpolator with GTWNN (named "Our Interpolator+GTWNN").
As shown in Table 6, our HSSP consistently outperforms "Our Interpolator+ANN" and "Our Interpola-

tor+GTWNN" on both two datasets in terms of all the metrics. More speciically, on the PM2.5 Concentration
Dataset, our HSSP outperforms the second-best by 6% in MAE and 0.04 in an increase in �2. On average, our
HSSP outperforms all the models by 13% in MAE and 11% RMSE. On the Ambient Temperature Dataset, our
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Table 5. Ablation study of leveraging both the distance information and the orientation information in our proposed deep

geometric spatial interpolator. The best performance is in boldface.

AQ-PM2.5 Temperature

Method MAE RMSE �2 MAE RMSE �2

Our Interpolator-orientation 2.436±0.432 3.463 ±1.037 0.341±0.354 0.466±0.107 0.640±0.133 0.780±0.051
Our Interpolator-distance 2.349±0.551 3.332±1.061 0.385±0.399 0.441±0.103 0.623±0.132 0.782±0.047
Our Interpolator 2.293±0.411 3.305±1.021 0.397±0.279 0.372±0.091 0.609±0.124 0.786±0.044

Table 6. Ablation study of our error-compensation framework on two real-world datasets. The best performance is in boldface.

In each segment of the table, the beter performance is underlined.

AQ-PM2.5 Temperature

Method MAE RMSE �2 MAE RMSE �2

IDW+ANN 2.586±0.986 3.620±1.402 0.051±0.957 2.813±0.325 3.265±0.351 -6.407±5.424
Our Interpolator+ANN 2.424±0.863 3.425±1.226 0.382±0.963 1.256±0.813 2.255±1.102 -0.218±2.449

IDW+GTWNN 2.789±0.900 3.851±1.238 -0.099±0.988 1.118±0.450 1.468±0.549 -1.051±3.828
Our Interpolator+GTWNN 2.617±0.974 3.741±1.221 0.040±0.833 0.873±0.470 1.125±0.529 0.453±2.339

HSSP 2.276±0.525 3.274±1.004 0.424±0.270 0.357±0.086 0.592±0.111 0.800±0.031

HSSP outperforms the second-best by 59% in MAE, 47% in RMSE, and 0.35 in terms of an increase in �2. On
average, our HSSP outperforms all the models by 76% in MAE and 71% in RMSE.

More speciically, we can see the trend that the combination of IDW and ANN/GTWNN consistently performs
the worst, the combination of our proposed interpolator and ANN/GTWNN is consistently ranked in the middle,
and our HSSP consistently performs the best, which relects not only the potency of our error-compensation
framework that provide additional information for spatial prediction but also the efectiveness of our proposed
interpolator than the typical traditional interpolation method.

5.4 Impact of Important Parameters

We conduct experiments to explore the impact of important parameters on our model’s performance. We leverage
the metrics, RMSE, MAE, and �2, as the measurement of model performance and report the statistics in Figure
2(a) and Figure 2(b).

Exponent Factor �. As shown in equation 8, the exponent factor � afects the value of the computed distance
information. To explore the impact of diferent exponent factors on the model performance, we take a wide range
of � from -3 to 3 and explore the model performance, relected by RMSE, MAE, and �2.
As indicated in Figure 2(a), the model performs consistently better when � ranges from -2 to 1, with the

performance of all three metrics achieving the best. As the value of � increases to a number greater than 1 or
decreases to less than 2, the model’s accuracy starts to decrease.

Balancing Factor �. The performance of our raster-based predictor is the worst when the balancing factor
� = 0, which makes sense as the factor � controls the loss of the raster-based predictor as expressed in the irst
term in Equation 4. Given � = 0, our point-based predictor still enjoys the availability of ground-truth labels,
as indicated in the second term in Equation 4, but our raster-based predictor receives no training, resulting in
the worst performance. However, as � increases from 0 to 1, our raster-based predictor’s accuracy increases,
enabling our model to take remote sensing data as input and enjoy its strength in covering large spatial areas. To
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(a) Point-based predictor’s performance w.r.t the expo-

nent factor �

(b) Raster-based predictor’s performance w.r.t the bal-

ancing factor �

Fig. 2. Model performance w.r.t important parameters � and �

(a) HSSP’s scalability versus number of neighbors (b) HSSP’s scalability versus training size

Fig. 3. HSSP’s predictor’s scalability testing against the number of neighbors and training size

demonstrate that the increase in the balancing factor � allows the improvement in accuracy of the raster-based
predictor via quantitative analysis, we set the balancing factor � with a wide range of values and record the
performance of our raster-based predictor in terms of MAE and RMSE. As supported by Figure 2(b), when we
increase the balancing factor from 10−5 to 104, the RMSE of our raster-based predictor drops from 134 to 6, and
the corresponding MAE drops from 101 to 1. The downward trend relected by Figure 2(b) veriies our claim.

5.5 Model Scalability

As the idea of deep geometric spatial interpolation is leveraged in our point-based predictor, where we propose a
multilayer perceptron-based framework to interpolate the value of the targeted variable on the targeted location
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(a) Point-based predictor’s scalability versus number of

neighbors

(b) Point-based predictor’s scalability versus training size

Fig. 4. Point-based predictor’s scalability testing against the number of neighbors and training size

using its � neighbors (points in the in-situ data that are within �-th closest to the targeted point). Thus, the impact
of the number of neighbors is crucial. We conduct a scalability test that measures our proposed model’s ability
to scale up or down, relected by its training and testing time, as a reaction to the variation of the number of
neighbors selected. Besides, the impact of the variation of the train set’s size on our proposed model’s training
and testing time is investigated.

HSSP’s Scalability. For our proposed model HSSP, Figure 3(a), indicating the variation of the training time
(seconds per epoch) with respect to the change in the number of neighbors selected, relects their linear relationship.
The invariance property (a horizontal line) of inference time per instance as a reaction to the increase in neighbors
is also relected in the same igure.

Similar patterns are relected in our proposed framework’s reaction to an increase in the number of train set’s
size, where a linear relationship between the training time per epoch with respect to the increase in train set’s
size and the invariance of the testing time are both relected in Figure 3(b).

Point-based Predictor’s Scalability. As an indispensable component of HSSP, the point-based predictor inherits
the entire HSSP’s patterns in terms of the model Scalability. More speciically, as relected in Figure 4(a) and Figure
4(b), the point-based predictor reacts to an increase in the number of neighbors and the increase in the train set’s
size by demonstrating a linear relationship in terms of training time and invariance in terms of inference time.

6 RELATED WORK

6.1 Spatial Prediction and Interpolation

Many approaches have been proposed to construct the relationships between the targeted variable and indepen-
dent variables in a spatial prediction task, which could be categorized into two main types, including statistical
methods that learn the linear relationships among variables and machine learning methods aiming to discover the
nonlinear relationships for spatial prediction. In terms of statistical methods, several interpolation and regression
methods have been developed to predict the values of the targeted variable in the same location or other locations
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based on available values in some locations according to the irst law [48] and the second law of geography [17].
Traditional interpolation methods contain Kriging, Inversed Distance Weighting (IDW), Radial Basis Function
Interpolation (RBF), Nearest Neighbor Interpolator, and so on [1, 36]. The interpolant of all these methods can be
formatted as a weighted sum of values on known points [10, 13]. Speciically, IDW computes a weighted average
of the values at the known locations for unknown locations [9, 27, 35]. Kriging also applied a weighted average
of known values to calculate values at unknown locations[13]. The Nearest Neighbor Interpolation method
assigns the value of the nearest neighbor to the targeted point [13, 49]. The Radial Basis Function Interpolation
(RBF) approach computes interpolation value by utilizing a weighted sum of radial basis functions [22]. In terms
of regression methods, geographically weight regression performs a local form of linear regression to model
spatially varying relationships [7]. Spatial autoregressive regression [28] models spatial dependency by adding
spatial lags of targeted variables. Although these traditional methods focus on modeling spatial dependency and
heterogeneity with mathematical expressions, they ignore the nonlinear nature of spatial relationships.
A growing number of related research adopt machine learning models to learn the nonlinear relationship

for spatial prediction [20]. Random forests and gradient boosting shares are commonly applied for predicting
unknown variables given available variable values at the same location [20, 25]. With the development of deep
learning technologies, the Artiicial Neural Network (ANN) model and its variants have been widely utilized
due to their learning capability to capture the real world’s complex relationships. For a general ANN model, the
spatial variables (i.e., latitude and longitude) could be regarded as two general variables as other variables like
temperature, wind speed, and pressure to make a prediction [51]. Geographically and TemporallyWeighted Neural
Network (GTWNN) integrated artiicial neural networks into geographically and temporally weighted regression
to capture the spatial and temporary non-stationarity in identifying the relationship between predictors and
the response variables [14]. GTWNN consists of two fully connected neural networks. It starts with a weight
estimation neural network learning the spatial-temporal weight of each independent variable from coordinates.
Then, the learned weights are multiplied by the corresponding independent variables and serve as input to the
second neural network which performs the nonlinear transformation on the input variables to obtain the output
as the response value.

6.2 Self-supervised Learning

Self-supervised learning learns representations of unlabeled data that can be used for downstream tasks by
leveraging the data’s inherent co-occurrence relationships as the self-supervision. As a promising alternative to
supervised learning, self-supervised learning has drawn massive attention for its ability to take advantage of
massive amounts of unlabeled data. The self-supervision can be categorized into three main types [37], including
1) Generative: train an encoder to encode input into an explicit vector and a decoder to reconstruct the input
from the explicit vector, 2) Contrastive: train an encoder to encode input into an explicit vector to measure
similarity, and 3) Generative-Contrastive: train an encoder-decoder to generate fake samples and a discriminator
to distinguish them from real samples.
In terms of generative self-supervised learning, many important methods have been developed, including

auto-regressive (AR) models, low-based models, auto-encoding (AE) models, and hybrid generative models.
Auto-regressive (AR) models [41, 43, 50] can be viewed as a directed graph model where the joint distribution
can be factorized as a product conditional and the probability of each variable is dependent on the previous
variables. The low-based models [11, 30] stacks a series of transforming functions to estimate the complex
high-dimensional densities from data. The auto-encoding models reconstruct inputs from inputs and further
contain basic AE model [3], context prediction model [4], denoising AE model [46], and variational AE model
[31]. The hybrid generative models can either combine AR and AE models [29] or combine AE and low-based
models [24].
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Contrastive self-supervised learning aims to "learn to compare" through a Noise Contrastive Estimation
objective [19] and can be divided into two types [37]: context-instance contrast and instance-instance contrast.
The context-instance contrast methods [12, 16, 23] models the belonging relationship between the local feature of
a sample and its global context representation, where the mutual information is maximized. The instance-instance
contrast methods [8, 18, 21, 47] ignore mutual information and directly learn the relationships between diferent
samples’ instance-level local representations.
Generative-contrastive self-supervised learning is also called adversarial representation learning, which

leverages the discriminative loss function as the objective to reconstruct the original data distribution. There are
two types of models under this category: 1) Generate with complete input, which is represented by Generative
Adversarial Networks (GAN) [42] and its variants [6, 26, 40]. 2) Recover with partial input, which asks models to
recover the remaining parts given partial input [32, 33, 52].

7 CONCLUSION

Spatial prediction is an essential yet challenging task. The fusion of in-situ data and remote sensing observations
to synergize the complementary strength is still a highly open research domain due to the heterogeneity of
multi-source data. Besides, the complex, unknown, and spatial autoregressive relation of the targeted variable and
the information loss in spatial-relation representation invalidate the existing spatial prediction approaches. This
paper proposes a novel yet generic framework, namely HSSP, that synergizes multi-source data while efectively
conquering the problems of spatial heterogeneity. Speciically, HSSP leverages a novel error-compensation
framework to capture the prediction inconsistency to enhance the efectiveness of spatial prediction. This paper
proposes a new deep geometric spatial interpolation model as the prediction backbone that automatically learns
the underlying spatial distribution and interpolates the values of the targeted variable at unknown locations
based on existing observations. Popular interpolation methods are proven to be the special cases of our proposed
interpolator under special parameter settings. Moreover, spatial relation is fully represented without substantial
information loss by HSSP, which takes into account both distance and orientation information. Extensive
experiments and case studies conducted on two real-world datasets demonstrate the consistent and superior
performance of HSSP in spatial prediction. HSSP excels in existing works by generating more accurate, stable,
and generalizable performance. Speciically, HSSP outperforms other approaches with, on average, a 20% decrease
in RMSE and 24% decrease in MAE on the PM2.5 Concentration Dataset and a 79% decrease in RMSE and 85%
decrease in MAE on the Ambient Temperature Dataset.
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A PROOF OF THEOREMS

Theorem A.1. Our proposed deep geometric spatial interpolation framework �(·) is the general form of popular

spatial interpolation methods.

Proof. Based on Equation 5, Equation 6, and the illustration in Section 4.1, we can prove that the same
techniques, weighted sum and normalization, are leveraged for both the popular interpolation methods and our
proposed interpolator. Thus, we only need to prove that our proposed weight computation framework, expressed
in Equation 10, of the neighbors to the targeted point can be generalizable to compute the weights of popular
spatial interpolation methods.
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We irst express our weights computation scheme as:
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where ®� denotes the input vector ⟨�
�
� � , �� ��⟩ ∈ R

1×2,� (1) , ®� (1) ,� (2) , ®� (2) are our model’s parameters, � is the

activation function, � denotes the hidden-layer variable, � denotes the output, and h denotes the hidden size.
Although we leverage more complicated MLP framework with more hidden layers, we only need to show the

simplest case in Equation 13 is the general form of the weight computation schemes of popular interpolation
methods as the number of layers is one of the hyperparameters that we can control for.

(1) Nearest Neighbor Interpolation: all the weights are assigned to the nearest point and does not assign any
weight to other neighbor points

�� � =

{
1 if point � � is the nearest neighbor of ��
0 if point � � is not the nearest neighbor of ��

To prove that Nearest Neighbor Interpolation is one of the special cases of our proposed interpolator under
particular parameter settings, we irst set � = −1, as � is another hyperparameter of our model that we can
control for. Then, we set our framework’s parameters to be,
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where ���� and ����2 are the shortest distance and the second shortest distance between the neighbor point
in the in-situ data to the interpolated point �� respectively. Then, we can compute the weight of neighbor
point � � to the targeted point �� ,
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) (15)

We can see that if �� � is not equal to ���� , then every element in � will be zero after the ReLU activation
function; �� � must be equal to ���� so that the element in � is greater than 0. Thus, given �� � not equal to

���� , � = ®0 and therefore � = 0; given �� � = ���� , we have:
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� =
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= 1 (16)

Thus, we can conclude that when �� � is equal to ���� , the output will be 1 and otherwise, the output will

be 0. In short, we can prove that Nearest Neighbor Interpolation is one of the special cases of our proposed
inteprolator under special parameter settings.

(2) Inverse Distance Weighting (IDW): the weight�� � is the inverse distance �� � between the neighbor point
� � and interpolated point �� , and p is a hyperparameter

�� � = �
−�
� � (17)

To prove that IDW is also a special case of our proposed interpolator under special parameter settings, we

set our framework’s parameters to be:
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= 0 (18)

Thus, we have,
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We can conclude that the output will be �
−�
� � and therefore prove that IDW is one of the special cases of our

proposed interpolator under special parameter settings.
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In short, we can prove that popular interpolation methods, Nearest Neighbor Interpolation and IDW, are special
cases of our proposed interpolators under special parameter settings.

To conclude, these popular traditional interpolation methods assume a particular distribution of the targeted
variable and therefore use a predeined kernel function to compute the weight of each neighbor location. The
comparison demonstrates our model’s expressive power in automatically selecting and learning distributions
among or beyond traditional prescribed-based spatial interpolation methods. Thus, our proposed deep spatial
interpolation theoretically outperforms popular traditional spatial interpolation methods in terms of automatically
selecting and learning underlying spatial distributions, instead of using prescribed distributions or predeined
kernel functions.

■

Theorem A.2. Our proposed weight computation framework �(·) in terms of computing the weight (contribution)

of any neighbor point � � to the targeted point �� are rotation and translation invariant.

Proof. We prove that our proposed weight computation framework �(·) is rotation and translation invariant
by proving that all the inputs to �(·), the computed distance �

�
� � ∈ [0,∞), expressed in Equation 8 and angle �� �� ∈

[−�, �), expressed in Equation 9, are rotation and translation invariance. For any translation transformations T in
2D space, since only relative coordinates are used in terms of distance and angle, instead of speciic coordinates,
the input distance and angle of our model �(·) are invariant.

Now we show �
�
� � and �� �� are invariant for any rotation R in 2D space. We set � to 1 for proving purpose, as �

is the hyperparameter of our framework that we can control for. Given the identity equations,

⟨�,�⟩ = ⟨��, ��⟩

�(� × �) = (��) × (��)
(20)

we can prove that,

�� � = | |�� � | |2 = ⟨�� � , �� � ⟩ = ⟨��� � , ��� � ⟩

������ (⟨
�� �

�� �
,
� ��

� ��
) = ������ (⟨

��� �

�� �
,
�� ��

� ��
)

⟨�� �� , ���⟩ = ⟨��� �� , ����⟩

(21)

Given Equation 9 and that both two factors of the angle �� �� are rotation invariant, we prove that the input angle
is invariant under rotation.
In short, we prove that the input distance and angle are invariant under all translation and rotation. ■
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