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Abstract
The complex systems in the real-world are commonly associated with multiple types of
objects and relations, and heterogeneous graphs are ubiquitous data structures that can
inherently represent multimodal interactions between objects. Generating high-quality het-
erogeneous graphs allows us to understand the implicit distribution of heterogeneous graphs
and provides benchmarks for downstreamheterogeneous representation learning tasks. Exist-
ing works are limited to either merely generating the graph topology with neglecting local
semantic information or only generating the graph without preserving the higher-order struc-
tural information and the global heterogeneous distribution in generated graphs. To this end,
we formulate a general, end-to-end framework—HGEN for generating novel heterogeneous
graphs with a newly proposed heterogeneous walk generator. On top of HGEN, we further
develop a network motif generator to better characterize the higher-order structural distri-
bution. A novel heterogeneous graph assembler is further developed to adaptively assemble
novel heterogeneous graphs from the generated heterogeneous walks and motifs in a strati-
fied manner. The extended model is proven to preserve the local semantic and heterogeneous
global distribution of observed graphs with the theoretical guarantee. Lastly, comprehensive
experiments on both synthetic and real-world practical datasets demonstrate the power and
efficiency of the proposed method.

Keywords Heterogeneous graph · Graph generation · Deep generative models · Graph
neural network

1 Introduction

Graphs have emerged as an important data genre found in a wide class of applications.
Researchers have devoted themselves to studying various types of graph problems, resulting
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in a rich literature of related papers and methods [21, 22, 30, 35, 39, 40, 42] in recent years,
which can be primarily categorized into two directions: (1) graph representation learning aims
at encoding graph topological and semantic information into vector space [36]; and (2) graph
generation, which reversely aims at constructing graph-structured data from low-dimensional
space containing the graph generation rules or distribution [11]. Many efforts have been
devoted to studying both representation learning and graph generation on homogeneous
graphs. However, as the superclass of the homogeneous graph, heterogeneous graphs come
with different types of information attached to nodes and edges, which can contain consider-
ably richer semantic information than homogeneous graphs [37]. Figure1b shows a citation
network with author, paper, venue, and term as nodes and “authorship,” “containment,” and
“publishment” as edges. The local semantic information based on certain combinations of
node types and edge types reflects the key patterns of heterogeneous graphs [27, 28], and
such combinations of nodes and edges are typically referred to as meta-path. Meta-paths
characterize the rich and diverse relations among nodes [28, 31]. For example, as shown in
Fig. 1b, two authors can be connected via a meta-path since they both contribute to a paper,
while two authors can alternatively be connected because their papers are accepted at the
same venue.

As a more powerful, realistic, and generic superclass of traditional homogeneous graphs,
heterogeneous graphs have recently been intensively studied. Existing literature focuses gen-
erally on learning network representations and latent embeddings for various networkmining
and analytical tasks, such as meta-relation detection [6, 7], heterogeneous node embedding
learning [16, 33], and heterogeneous link prediction [41]. However, the other perspective of
heterogeneous graph study—heterogeneous graph generation—remains paucity. Other than
providing benchmarks for many heterogeneous graph studies, realistic heterogeneous graph
generation has at least two advantages: (1) generating high-quality heterogeneous graphs
requires us to comprehensively capture the latent graph distribution, which can significantly
enrich our understanding of the implicit properties of heterogeneous graphs; (2) generating
heterogeneous graphs is helpful in specific downstream applications (e.g., recommendation
system [25], knowledge graph reasoning [41], and node proximity search [27]). Given the
importance of the research problem, there is only one work [13] that has tried to generate
random heterogeneous graphs with hand-crafted rules, which fails to decode the real data
distribution underlying the observed graphs.

In the past few years, we have witnessed plenty of deep homogeneous graph generative
models [2, 11, 12, 26, 39] that can learn the observed graph distribution without prescribed
rules, which have shown advantages in preserving various static graph properties in the gen-
erated graphs. However, existing deep generative models designed for homogeneous graphs
cannot be trivially adapted to heterogeneous graphs due to the following technical difficul-
ties: (1) Difficulties in preserving heterogeneous semantic information. Current works for

Fig. 1 Examples of heterogeneous graphs in the academic field

123



Motif-guided heterogeneous graph deep generation 3101

homogeneous graphs have been either using random walks as a tool to learn the graph topo-
logical distribution as learning the distribution of random walks [2, 3] or directly modeling
an overall distribution of the edges [18, 26] over the homogeneous graphs. However, objects
in heterogeneous graphs are interconnected via various meta-paths, as shown in Fig. 1c.
As meta-paths carry the complex local semantic information, adapting current works to the
heterogeneous graph scenario without any elaborations on meta-path would bring difficul-
ties in learning and preserving the distribution of such complex semantic patterns spanning
different graph entities (i.e., edges and nodes) in the newly generated heterogeneous graphs.
(2)Difficulties in preserving heterogeneous higher-order structural information. In the study
of heterogeneous graphs, meta-paths may also fall short of expressing more intricate rela-
tionships among nodes in heterogeneous graphs. As marked in Fig. 1b, some common and
symmetric higher-order structures spanning meta-paths will likely be observed repeatedly,
which forms a triangle or orbit structure (e.g., one author writes two papers that are accepted
by the same venue, and two papers of an author focus on the same research topic). These
higher-order connectivity patterns are known to be important in understanding the structure
and organization of heterogeneous networks, andmanyworks [4, 19] have proposed to utilize
this information to boost the performance of downstream heterogeneous graph mining tasks.
In terms of generating high-quality and realistic heterogeneous graphs, it is also inevitable to
consider modeling the higher-order structural information. However, previous works either
are designed for homogeneous graph generation [2, 39] that neglected the importance of the
higher-order structural information or fail to consider integrating the higher-order structures
into the overall generation block [23]. The distributions of these higher-order graph struc-
tures are also hard to capture in heterogeneous graphs, bringing more challenges to effective
heterogeneous graph generation. (3)Difficulties in preserving heterogeneous global informa-
tion.Meta-paths are also well-recognized to play a fundamental role in preserving the global
patterns of heterogeneous graphs [27]. For example, the ratio of different node types and
edge types, and their meta-paths are apparently different between the citation networks of
the computer system domain and the data mining domain, as shown in Fig. 1a. It is essential
to preserve the global distribution of meta-path patterns during heterogeneous graph gener-
ation, which is again extremely difficult as it is entangled with the preservation of node type
ratios, edge type ratios, and graph topological patterns.

In coping with these challenges, we introduce an end-to-end graph generative framework,
namely Heterogeneous Graph Generation (HGEN), whose goal is to generate novel het-
erogeneous graphs by preserving all the complex local semantic and heterogeneous global
property through directly modeling the distribution of meta-paths in observed heterogeneous
graphs. Particularly, HGEN learns a joint distribution of the randomwalks and the associated
meta-paths from the observed heterogeneous graphs in order to capture the local semantic
distribution. In order to tackle the second difficulty, we extend the meta-path-based generator
in HGEN and make it capable of characterizing the higher-order structural distribution via
directly modeling and generating network motifs. On top of that, we encode heterogeneous
higher-order structural information into nodes via embedding learning and use it to guide the
generation of meta-paths and network motifs that form different high-order heterogeneous
structures. Finally, to tackle the third challenge, we develop a novel heterogeneous graph
assembly method, which is theoretically proved to preserve the global heterogeneous graph
patterns in node types, edge types, and meta-paths.

We conclude our major contributions as follows:
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• Problem formulation We propose to formulate a new paradigm of heterogeneous graph
generation, which can effectively identify and resolve its unique challenges in preserving
various heterogeneous graph properties.

• Framework design We propose an end-to-end generative framework for heterogeneous
graph generation. The proposed framework can effectively learn the underlying distri-
bution of heterogeneous graphs. It generates heterogeneous graphs with ensuring the
preservation of various heterogeneous graph properties.

• Model extensionWe further extend our proposedmodel to leverage networkmotifs to cap-
ture more intrinsic higher-order structural information as well as multiple meta-relations
on edges. We also adapt the proposed graph assembler to adaptively assemble novel
graphs by various generated instances.

• Evaluation We conduct extensive experiments on both synthetic and real-world hetero-
geneous graphs. Compared with state-of-the-art baselines, HGEN achieves competitive
results in preservingmost of the static graph properties. In addition, HGEN is shown to be
capable of generating realistic heterogeneous graphs by preserving important meta-path
information.

2 Related work

2.1 Graph generation

Generative models for graphs have a rich history due to the wide range of applications in dif-
ferent domains, such as link prediction [2, 26], protein structure analysis [5], and information
diffusion analysis in social networks [34]. Traditional graph generation methods (e.g., ran-
dom graphs, stochastic block models, and Bayesian network models) fail to model complex
dependencies in our real-world scenarios. In addition, they cannot effectively preserve the
statistical properties of the observed graphs. In the last few years, there has been a surge in
research focusing ondeepgraphgeneration.According toGuo andZhao [11], the current deep
graph generation can be divided into two categories: sequential-based and one-shot-based.
Sequential-based graph generation methods [2, 30, 39] autoregressively generate the nodes
and edgeswith the LSTMmodel. However, the sequential-based generation (e.g., GraphRNN
[39]) is limited in following a fixed node/edge permutation order, which greatly loses the
generation flexibility and model scalability. On the other hand, one-shot-based generation
methods [2, 5, 20, 23, 26, 32, 38] try to build a probabilistic graph model based on the matrix
representation that can generate graph topology as well as node/edge attributes in a one-shot,
but most of them cannot easily be applied in large graphs due to the large time complexity.
For example, GraphVAE [26] is a new and first-of-its-kind variational autoencoder for whole
graph generation, though it typically only handles very small graphs and cannot scale well to
large graphs in bothmemory and runtime. NetGAN [2] follows theGANmodel [1] and uses a
generator to generate synthetic randomwalks while discriminating synthetic walks from real
random walks sampled from a real graph. Finally, multi-attributed graph generation [10, 12,
14, 39] aims at generating homogeneous graphs by preserving node/edge attributes. Instead,
the key patterns of heterogeneous graphs are the higher-order local semantics reflected by
the combinatorial of the types of nodes and edges, which cannot be captured by methods for
homogeneous graphs.
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2.2 Heterogeneous networkmotif (meta-graph)

Compared to the commonly adopted homogeneous graph, the heterogeneous graph carries
much richer semantic information and has therefore gainedmuch attention in recent literature
[24]. The concept of meta-paths in a heterogeneous graph [27, 31] is one of the most impor-
tant concepts proposed to capture numerous semantic relationships across multiple types of
objects systematically. Compared to the commonly adopted heterogeneous meta-paths, het-
erogeneous network motifs (also known as meta-graph) [15] are proposed to capture more
complex structural information in heterogeneous graphs. Specifically, a meta-graph is a spe-
cial directed acyclic graph containing at least two embedded meta-paths, such as a DAG
containing as shown in Fig. 1b, where the higher-order structure one author may publish
two papers in a venue contains two meta-paths of author-paper-venue. Network motifs have
served as a building block for learning latent embeddings that contain higher-order rela-
tionships in a graph [29]. However, in terms of graph generation, graph generative models
are successful at retaining pairwise associations in the underlying networks but often fail to
capture higher-order connectivity patterns known as network motifs. To date, one attempt [8]
leverages network motifs as the basic unit to generate homogeneous graphs. However, this
method only learns the structural distribution but fails to capture the meta-relation within the
network motifs.

3 Problem formulation

A heterogeneous graph [24, 37] is a graph G = {V, E} with multiple types of objects and
relations. V is the set of objects (i.e., nodes), where each node vi ∈ V is associated with a
node type o = φ(vi ). E ⊆ V × V is the set of edges, where each edge ei j ∈ E is associated
with a relation type l = ψ(ei j ). All notations are summarized in Table 1.

In the study of heterogeneous graphs, the concepts of meta-paths are widely considered as
cornerstones and adopted to systematically capture numerous semantic relationships across
multiple types of objects, which are defined as a path over the graph [31, 37]. Hence, meta-
paths are indispensable to be considered as basic units for heterogeneous graph generation.
Concretely, a meta-path o is defined as a sequence of object types and edge types o =
(
(o1, o2, ..., on), (l1, l2, ..., ln−1)

) = o1
l1−→ o2

l2−→ ...
ln−1−−→ on , where each oi and l j are node

type and edge type in the sequence, respectively. Each meta-path captures the rich semantic
information between its two ends o1 and on . In heterogeneous graphs, the local semantic
information is carried on each of walks v = (v0, v1, ..., vn) and its associated meta-path o.
We again take Fig. 1c as an example, there exist two meta-paths between papers: (Paper,
Author, Paper) and (Paper, Venue, Paper). The utilization of different meta-paths allows the
heterogeneous graph to contain rich topological and semantics among diverse objects, which
has been shown beneficial to many real-world graph mining applications [16, 33, 37].

With the preliminary notion of the heterogeneous graph, we formalize the heterogeneous
graph generation problem as follows:

Problem 1 (Heterogeneous graph generation) The goal of the heterogeneous graph genera-
tion is to learn a distribution pdata(G) from the observed heterogeneous graphs such that a
new graph Ĝ can be obtained by sampling Ĝ ∼ pdata(G).

Challenge 1 (Difficulties in modeling the complex local semantic information) Although the
existence ofmeta-paths allows heterogeneous graph to characterize the combinatorial of node
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types and edge types, it is unclear how to model their distributions and generatively assemble
them into heterogeneous graphs.

Challenge 2 (Difficulties in characterizing the heterogeneous structural patterns) The local
structural patterns in heterogeneous graphs are often expressed in higher-order proximity
among the nodes and edges (e.g., triangles, orbits, and other higher-order structures). Such
a higher-order local structure may fuse multiple walks under one or more meta-paths with
richer semantic information, yet brings more difficulties in learning its distribution.

Challenge 3 (Difficulties in capturing heterogeneous global meta-path information) Meta-
paths indeed play a significant role in preserving the global patterns of heterogeneous graphs.
In heterogeneous graph generation, it is important yet challenging to preserve the global
distribution of meta-path patterns since the distribution of meta-path patterns often involves
node type ratios, edge type ratios, and graph topological patterns.

4 Heterogeneous graph generation

To address the above challenges, we propose a new heterogeneous graph generation frame-
work, named HGEN. To address the first and second challenge, we propose a heterogeneous
walk generator in Sect. 4.1 to jointly learn the distribution of local walks and the associ-
ated meta-paths so that both heterogeneous topological and local semantic information can
be well captured. To overcome the second challenge, we leverage the heterogeneous node
embedding to make the generator be aware of any potential higher-order structures that each
nodemay be involvedwith. Finally, for the third challenge, we propose a novel heterogeneous
graph assembler in Sect. 4.3, which can construct new heterogeneous graphs by capturing
the global heterogeneous property, namely different meta-path ratios. We further prove that
the global heterogeneous property can be well preserved through our Theorem 1 introduced
in Sect. 4.4.

4.1 Heterogeneous walk generator

In the observed graph G, a heterogeneous walk is defined as a tuple that consists of two com-
ponents: a walk v and an associatedmeta-path o. The proposed heterogeneous walk generator
G is defined as a probabilistic sequential learning model to generate synthetic heterogeneous
walks: (v̂, ô) = (

(v̂1, v̂2, ..., v̂n), ((ô1, ô2, ..., ôn), (l̂1, l̂2, ..., l̂n−1))
)
, where the v̂ and ô are

denoted as the generated walk and associated meta-path, respectively. We use v̂i , ôi , and l̂i to
denote each of the generated node, node type, and edge type in (v̂, ô), respectively. Figure2a
illustratively summarizes thewhole generative process of each synthetic heterogeneouswalk.
Heterogeneous walk generation We model G as a sequential learning process based on a
recurrent architecture, and each unit fθ in the sequential model is parameterized by θ so
that it can generate a node type ô and a corresponding node v̂ that belongs to this node type
in a hierarchical manner. Precisely, the node type ô is determined based on the previously
generated sequence, and the node v̂ is then coherently determined by the generated node type
as well as the generated sequence. Both generated node type ô and node v̂ together provide
information for the generation of the next node type and node instance.

Specifically, at each recurrent block (i.e., time step) t , fθ produces two outputs (mmmt ,hhht ),
where themmmt is the current memory state and the hhht is a latent probabilistic distribution (i.e.,
hidden output of fθ ) denoting the information carried from previous time steps. We first
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3106 C. Ling et al.

Fig. 2 The illustration of the heterogeneous walks generation in HGEN

sample the node type ôt ∼ go(hhht ) based on the probability distribution hhht , where the go(·)
is a node type decoding function. We then sample the node v̂t by a node decoding function
v̂t ∼ gv(hhht , ôt ) that takes hhht and ôt as inputs. Lastly, the generated node type ôt and node
hhht are fused by a heterogeneous node encoding function gc(ôt , v̂t ), which then serves as the
input of next recurrent block.

Heterogeneous node sampling To overcome the second challenge, we cannot uniformly
sample v̂t based on the node type ôt because such a way may cause the neglection of (1)
node structural distribution and (2) node semantic distribution. For example, wemay observe
an author always tends to cite a paper with high citation (namely, high node degree of this
paper node). Then, such distribution needs to be modeled with structural information. On the
other hand, we may observe a data mining paper is unlikely to cite a computer system paper,
and we may also need to characterize this tendency in the distribution. Both of the above
distributions cannot be tackled by uniformly sampling. Therefore, to tackle this challenge,
since latent node embedding could encode both topological and semantic information into
the node, we propose to calculate a latent embedding ṽt of the next node vt , then we select
with a higher probability the closer embedding among all the embeddings that belong to node
type ôt so that the next node vt can be determined by the sampled embedding.

More specifically, we first calculate the latent node embedding ṽt based on the sampled
node type ôt by a simple linear transformation. We then calculated the distance between ṽt

and other node embedding ṽ
(ôt )
i , meaning any node ṽi belonging to the sampled node type

ôt . In this case, given a total number of k embeddings that belong to the type ôt , the next
node v̂t can be sampled from a multinomial distribution:

v̂t ∼ Multi(ṽ(ôt )
1 , ṽ

(ôt )
2 , ..., ṽ

(ôt )
k ; p1, p2, ..., pk),

where each pi = −
∥∥∥d(ṽt , ṽ

(ôt )
i )

∥∥∥
2
and d(·, ·) is a distancemetric such as Euclidean distance.

Note that the node embedding ṽ
(ôt )
i can be obtained from a conventional heterogeneous node

embedding technique such as [7].
In order to generate a variable-length heterogeneous walk, we incorporate an end-of-

sequence token as an additional node type so that the heterogeneous walk generator stops
when the sampled node type is the token at any steps. Therefore, the proposed generator is able
to produce variable-length heterogeneous walks. Finally, the edge type lt can be predicted
by a simple edge decoding function ge(ôt , v̂t , ôt−1, v̂t−1) that takes its two end nodes v̂t−1

and v̂t as well as their node types ôt−1 and ôt as inputs. In all, we summarize the overall
generative process as follows:

aaa0 = 0, mmm0 = f0(zzz), zzz ∼ N (0, 1)
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Fig. 3 The process of heterogeneous graph assembler

aaa1 = gc(ô1, v̂1), v̂1 ∼ gv(hhh1, ô1), ô1 ∼ go(hhh1), (mmm1,hhh1) = fθ (mmm0,aaa0)

aaa2 = gc(ô2, v̂2), v̂2 ∼ gv(hhh2, ô2), ô2 ∼ go(hhh2), (mmm2,hhh2) = fθ (mmm1,aaa1)

l̂1 = ge(ô2, v̂2, ô1, v̂1)

· · ·
v̂n ∼ gv(hhhn, ôn), ôn ∼ go(hhhn), (mmmn,hhhn) = fθ (mmmn−1,aaan−1)

l̂n−1 = ge(ôn, v̂n, ôn−1, v̂n−1)

In thiswork,we utilize LSTMas the recurrent architecture, and fθ becomes a single LSTM
unit. To initialize the whole generative process, G takes a random noise zzz as input, which
is drawn from a standard Gaussian distribution. Additionally, for the node type decoding
function go(·), we apply the Gumbel-softmax trick [17] in go(·) to make the whole sampling
differentiable. Finally, in most of the real-world scenarios, the edge type lt can be determined
by the types of its two end nodes ôt and ôt−1 if there does not exist multi-typed relations
between two node types. In this case, the heterogeneous walk generator can be simplified
only to generate node sequences and associated node types.

4.2 Extension of heterogeneousmotif generator

In the previous section, the proposed heterogeneous walk generator can well characterize
pairwise relationships within the heterogeneous graph and associated heterogeneous graph
statistics via meta-paths; however, higher-order relationships (aka. heterogeneous network
motifs) in a heterogeneous graph are fundamental for our understanding of the network
behavior and function.

Definition 1 (Heterogeneous network motifs) A heterogeneous network motif (Meta Graph)
M is a directed acyclic graph (DAG) with a single source node vs (i.e., with in-degree 0) and
a single target node vt (i.e., with out-degree 0) defined on a heterogeneous graph G = {V, E}.
Then, we define a heterogeneous network motif asM = (VM, EM, vs, vt ), where VM ⊆ V
and EM ⊆ V .

As we emphasized in Sect. 3, meta-path is the natural way to represent local semantics in
heterogeneous networks; however, meta-path may not be the best way to characterize the rich
semantics, especially semantics encoded in higher-order structures. As can be clearly seen
in Fig. 4, separate meth-paths (i.e., author-paper-topic and author-paper-venue) can form an
orbit structure,which cannot be simplydescribedbymeta-paths.Current heterogeneousgraph
generation methods either rely on meta-paths as the basic generation unit [23] or completely

123



3108 C. Ling et al.

Fig. 4 Various graph motifs (meta-graphs) in academic heterogeneous network: one author publishes two
paper that one paper cites the other one; one author publishes two papers that related to the same topic; and
one author publishes two co-cited papers at one venue

ignore the rich semantics encoded in heterogeneous meta-structures [13], which is a major
shortcoming for applications that aim to generate heterogeneous graphs that realistically
mimic real-world heterogeneous networks or predict unobserved heterogeneous higher-order
structures.

In order to make our algorithm better preserve the higher-order structural distribution in
the generated graph, other than utilizing heterogeneous node embedding, we generalize the
proposed heterogeneous walk generator to be able to generate heterogeneous networkmotifs.
While a complete enumeration of the network motifs present in a large-scale heterogeneous
network is computationally prohibitive, we instead focus on three motif structures (e.g.,
triangle, orbit, overlapped triangle) as visualized in Fig. 4.

Since graph motifs contain DAG structure, we may not trivially generate them as varying-
length sequences and leverage the end-of-sequence token to indicate the stop. Instead, we
propose to sample from a learnable logit τ , where each τi ∈ τ represents the probability
of the motif chosen to be generated and ‖τ‖ = 1. Note that we initialize τ0 ∈ τ to be the
probability of choosing meta-path to generate so that the motif-based generation model can
be combined training with the meta-path-based generator. The updated model component is
demonstrated in Fig. 5.

4.3 Heterogeneous generator training and utilization

In the following, we will introduce how to train the above-mentioned generator and how to
use the heterogeneous walks and motifs generated by it to construct heterogeneous graphs.
Since we extend our framework to be able to generate both meta-paths and motifs, we refer
the generated meta-paths and motifs to heterogeneous instances for the sake of simplicity
in the following context. Concretely, we utilize a heterogeneous discriminator D to distin-
guish between real and fake heterogeneous instances, where the real instances are uniformly
sampled from the observed graph. We then propose a heterogeneous graph assembler to con-
struct new graphs based on the sampled heterogeneous instances. More details are presented
as follows.

We first introduce the overall objective function of the Wasserstein heterogeneous GAN
[1], which is written as:

LHGEN = max E(o,v)∼p(G)[Do(o) + Dv(v)]
−Ez∼p(z)[Do(ô) + Dv(v̂)], s.t . G(z) = (ô, v̂), (1)

where v and o are the randomwalk/motif and associated meta-path/meta-graph, respectively,
directly sampled from the observed heterogeneous graph G. They are the real data for training
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Fig. 5 The illustration of the extended heterogeneous walk/motif generation. We separate the generation unit
for meta-paths and heterogeneous network motifs, and we leverage the sampling-based method to choose each
unit

our heterogeneous generator G. Specifically, given an observed heterogeneous graph G =
{V, E}, we utilize random-walk-based method to uniformly sample a set of random walks
{v1, v2, ...}, where each vi is a node sequence s.t. vi = (v1, v2, ..., vn). In addition, we extract
the meta-information oi = (

(o1, o2, ..., on), (l1, l2, ln−1)
)
from each vi .

The heterogeneous discriminator D in Eq. (1) is designed as a parallel recurrent architec-
ture in order to individually distinguish whether each unit in the heterogeneous component
is valid or not. Specifically, at each recurrent block (i.e., each step) t , the discriminator D
takes two inputs: the generated node type ôt and node index v̂t , each of which is fed into an
individual recurrent unit. After processing both sequences, the discriminator returns a single
score Dv(v) + Do(o) that represents the probability of the heterogeneous component being
real.

4.3.1 Heterogeneous graph assembler

To assemble a heterogeneous graph from the generated heterogeneous instances, we further
propose a novel stratified heterogeneous edge sampling strategy to achieve the following
steps: (1) it first samples a node v̂i and its type ôi from all of the generated heterogeneous
walks; (2) based on the node type ôi , we then sample a meta-path that starts with ôi ; (3) we
iteratively sample the next node v̂i+1 in the sampled meta-path if both of the node type ôi+1

and edge type l̂i fits the meta-path pattern.
More specifically, the generator G firstly produces a sufficient number of heterogeneous

walks as shown in Fig. 3a. We then construct an symmetric adjacency matrix S with size
|V|×|V| to record the count of edges observed from the sampled heterogeneous walks in
each entry Si j , where the |V| is the size of the node set. Next, we collect all of the meta-path
patterns generated by the generated heterogeneous walks, as shown in Fig. 3b, c. For the first
step of the stratified heterogeneous edge sampling, we sample the a node v̂i and its type type

ôi based on the node degree distribution
∑

j Si j
|V| . For the second step, among all the meta-

paths {o( f )
1 , o( f )

2 , ...} that start with the node type ôi , we sample a meta-path o( f )
i based on the

probability
c(o( f )

i )

T ôi
, where T ôi is the total count of generated meta-paths that starts with node

type ôi and c(o( f )
i ) is the count of meta-path pattern o( f )

i . For the third step, by following
this meta-path pattern or = (o1, o2, ..., on), we iteratively sample all the nodes whose node
types are regulated by the the meta-path. Precisely, we sample the next node v j by sampling
all the neighbors of the current node vi with the probability pvi v j = (Si j )/(

∑
s Sis) such

that all the nodes vs belong to the specific node type o j following the meta-path o( f )
i . The

sampled node sequence vr = (v0, v1, ...) is then added to the score matrix S. We continue the
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stratified heterogeneous edge sampling strategy until the desired amount of edges is reached.
The final assembled graph is visualized in Fig. 3d.

Extension of heterogeneous graph assembler with motif consideration To assemble a hetero-
geneous graph from the generated heterogeneous instances, we further extend our stratified
heterogeneous graph assembler and leverage the learned logit τ in order to make the assem-
bler generate heterogeneous graph that has the closer higher-order structural distribution.
Specifically, after the generator G produces a sufficient number of heterogeneous instances,
we leverage the learned τ to firstly sample the exact heterogeneous instance pattern (i.e., walk,
triangle, or orbit). After collecting such a pattern, we then follow the aforementioned strati-
fied heterogeneous edge sampling strategy to sample exact nodes under the specific pattern.
This strategy allows us to more closely model the local semantic, higher-order, and global
distribution if the learned τ can correctly characterize the ratio of different heterogeneous
component patterns in the observed heterogeneous graph.

4.3.2 Complexity analysis

The computational complexity of HGEN is O(W · L), where W is the weights of a single
LSTMunit, and L is the length of the generated heterogeneous instances. However, the length
of our proposed heterogeneous walk is considerably small (1 ≤ L ≤ 3) while the walk length
in other random-walk-based graph generativemethod [2] is (≥ 16). For auto-regressive graph
generation models [39, 40], the time complexities are at least O(|V|2 · W ), where |V| is the
cardinality of the node set. They convert graph as a long sequence by performing a large
number of breadth-first-search (BFS) enumerations for each graph. Additionally, HGEN
also has linear complexity in graph assembly, it only needs to run the trained model Ts times
to sample heterogeneous walks for constructing the score matrix S. To sum up, the overall
complexity of HGEN can be reduced to O(W +Ts), whichmakes our proposedmodel highly
efficient for handling large graphs, since the overall process is not sensitive to the number of
nodes at all.

4.4 Meta-path information preservation analysis

As we discussed in Sect. 3, it is significant to preserve the meta-path information in our
generated graph. Taking Fig. 6as an example, although both graphs have exactly the same
structure, they are still regarded as two different heterogeneous graphs since their meta-path
distributions are different. Given the importance of the meta-path information in heteroge-
neous graph generation, we further show that our framework can successfully preserve this
meta-path information as proved in Theorem 1.

Theorem 1 The distribution ofmeta-path patternsO(r)
of the generated heterogeneous graph

equals the distribution of meta-path patternsO in the observed heterogeneous graph, namely

p(O(r)
) = p(O).

Proof Wewill prove that the ratio of themeta-path patterns can be preserved in three steps: (1)
the ratio of different meta-path patterns can be preserved during the sampling procedure; (2)
the ratio of generated meta-path patterns can be preserved during the generation procedure;
(3) the meta-path patterns can be preserved during the graph assembling procedure.

Meta-path ratio preservation in sampling Let O = (o1, o2, ...) be the collection of meta-
paths obtained from the observed heterogeneous graph G, each oi is a meta-path in one-hot
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Fig. 6 Example of two heterogeneous graphs with different semantic information: the observed meta-path
patterns are different, although the node and edge distribution are the same between two graphs. Specifically,
since we do not observe a direct link between (author, venue) and (paper, paper) in the observed graph figure
(a). It is not accurate for the generated graph figure b that generate such links

format oi ∈ {0, 1}1×R , where the R is the total number of different meta-path patterns.

O(τ ) = (o(τ )
1 , o(τ )

2 , ..., o(τ )
K ) is the sequence of sampled meta-paths with sampling size K ,

where each meta-path o(τ )
j ∈ {0, 1}1×R is drawn independent and identically distributed

(i .i .d) from O.
Suppose that µ = [μ1, μ2, ..., μR]T denotes the probability of each individual meta-path

pattern in O, it is obvious that E[oi |µ] = ∑
oi p(oi |µ)oi = [μ1, μ2, ..., μR]T = µ. Now

consider the total K observations O(τ ) = (o(τ )
1 , o(τ )

2 , ..., o(τ )
K ), the corresponding likelihood

function takes the form:

p(O(τ )|µ) =
R∏

i

K∏

j

μ
o(τ )
i j
j =

K∏

j

μ

∑
n o

(τ )
nj

j =
K∏

j

μ
m j
j (2)

We see that the likelihood function depends on the K data points only through the R quantities:
m j = ∑

n o
(τ )
nj . Since the number of observations of o(τ )

j equals 1, we achieved sufficient

statistics for this distribution. Therefore, p(O(τ )
) = p(O) can be proved.

Meta-path ratio preservation in generation Since we have proved the meta-path ratio can
be preserved during the sampling, the next step is to show that the distribution of generated

meta-paths p(O(g)
) is equal to p(O(τ )

). Proving p(O(g)
) = p(O(τ )

) is equivalent to prove
whether pdata = pg in the GAN setting. As being proved in the works of GANs and their
variants [1, 9], it showed that the objective functionof the generatorG is equivalent to optimize
the distribution distance between pdata and pg if the discriminator D is optimal. Therefore,
global optimality of pg = pdata can be achieved if both generator G and discriminator D

have enough capability. Therefore, p(O(g)
) = p(O(τ )

) if both G and D are optimal in our
framework.

Meta-path ratio preservation in assembling Finally, we show that our graph assem-

bling method can also preserve the meta-path ratio from the generated data O(g)
such that
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Table 2 Dataset overview

# of nodes # of edges Average degree # of node types # of edge types

Syn100 100 490 9.8 3 6

Syn200 200 1090 10.9 3 6

Syn500 500 2987 11.95 3 6

SynMulti 300 1352 12.13 3 8

PubMed 1565 13,532 17.29 4 10

IMDB 1653 4267 5.432 4 4

DBLP 11,240 47,885 8.52 4 3

p(O(g)
) = p(O(r)

). As discussed in Sect. 4.3, the new graph Ĝ is directly assembled bymeta-

paths (o(g)
1 , o(g)

2 , ..., o(g)
Q ) that are sampled i .i .d from O(g)

with sampling size Q, which is
exactly the reverse procedure of Eq. (2).

Therefore, if both generator G and discriminator D are optimal, the multinomial distribu-
tion p(O) of distinct meta-path patterns can be preserved in all three steps of our generation
framework. 	


5 Experiment

In this section,we compareHGEN to the adaption of closest state-of-the-art baselines, demon-
strating its effectiveness in generating realistic heterogeneous graphs in diverse settings. The
code and dataset can be found at: https://github.com/lingchen0331/HGEN.

5.1 Data

Weperform experiments on three synthetic heterogeneous graph datasets and three real-world
heterogeneous graph datasets. We summarize the statistics of datasets in Table 2.

Synthetic datasetsWe synthesis random heterogeneous graphs of different sizes through the
combination of N overlapping homogeneous graphs, where the overlap is accomplished by
node sharing. We generate three random heterogeneous graphs (named as Syn100, Syn200,
and Syn500) with node size 100, 200, and 500, respectively. The number of node types in each
of the synthetic heterogeneous graph is 3. In addition, we sample a random heterogeneous
graph SynMulti with node size 300 that contains multiple edge types between two nodes.

Real-world datasets We also employ three large-scale real-world heterogeneous graph
datasets in our experiment.

• PubMed This dataset consists of four classes of nodes: Gene (G), Disease (D), Chemical
(C), and Species (S). We construct a subgraph that relates to all Chemical nodes labeled
in [37]. There are 1, 565 nodes and 13, 532 edges.

• IMDB This movie-related heterogeneous graph is adopted from [33], which contains
three node types: Director (D), Actor (A), Movie (M), and Genre (G). We construct a
subgraph that contains all the movies with a score≥ 7.5. This graph contains 1653 nodes
and 4267 edges.
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• DBLPThis heterogeneous graph adopted fromWang et al. [33] contains Paper (P),Author
(A), Venue (V), and Term (T) as node types. We sample a subgraph that is related to five
computer science venues:KDD,WSDM,WWW, ICDM, and ICML. There are 1565 nodes
and 47, 885 edges.

5.2 Experiment setting

In our experiment, we focus on meta-paths with length 1, 2, and 3 as they are the most
common ones in heterogeneous graphs [27]. We sample 10 graphs from each of the trained
models and report their average results and standard deviation in Table 3.We randomly select
60% of the edges for training, and the remaining graph is used for testing.

Baselines Since no baseline is available for the novel task of heterogeneous graph generation,
we carefully adapt four state-of-the-art graph generation methods: NetGAN [2], GraphVAE
[26], VGAE [18], and GraphRNN [39]. We utilize node type information as node features of
the input graph in GraphVAE and VGAE. In addition, we modify NetGAN and GraphRNN
to make them available to generate node types. HGEN refers to the model that does not
generate network motifs for the proposed method. We further compare HGEN-Motif, which
generates network motifs along with meta-paths.

Evaluation metrics The evaluation of heterogeneous graph generation can be divided into
three aspects. (1) Graph statistical properties: we focus on six typical statistics as widely
used in [2, 10, 38] for measuring the structural similarity, including LCC (the size of the
largest connected component), TC (Triangle count), Clustering Coef. (clustering coefficient);
Powerlaw Coef. (power-law distribution of the node degree distribution), Assortativity, and
Degree Distribution Dist. (Node degree distribution MaximumMean Discrepancy distance).
(2)Graph novelty and uniqueness. Ideally, we would want the generated graphs to be diverse
and similar, but not identical. To quantify this aspect, we check the uniqueness between the
generated graphs by calculating their edit distances. Specifically, we align the node order
between the test graph and the generated graph, and calculate the EO Rate (edge overlapping
rate) between the generated graphs and the testing graphs for measuring the novelty of the
generated graphs. A higher EO Rate indicates the generation method tends to generate more
similar graphs than other approaches. The uniqueness is utilized to capture the diversity of
generated graphs. To calculate the uniqueness of a generated graph, we let each model to
generate 100 graphs, and the generated graphs that are subgraph isomorphic to some other
generated graphs are first removed. The percentage of graphs remaining after this operation
is defined as uniqueness. For example, if the model generates 100 graphs, all of which are
identical, the uniqueness is 1/100 = 1%. (3) Meta-path ratio properties: we measure the
preservation of meta-path distribution in two metrics. Firstly, we measure the meta-path
length ratio preservation. Secondly, under different meta-path lengths, we also measure the
distribution of the frequent meta-path patterns.

5.3 Quantitative analysis

Preservation of graph statistical properties We evaluate the performance of HGEN and its
extended model HGEN-Motif against all the baselines on the standard graph statistics, and
the results are shown in Table 3. Overall, HGEN and HGEN-Motif achieve competitive per-
formance with very few exceptions on all metrics over synthetic and real-world datasets. We
report several observations from the table: (1) Node-level similarity: HGEN-based models
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are the dominant performer in most node-level metrics. Although there are no significant dif-
ferences in both Assortativity and Powerlaw Coef. among all the algorithms, HGEN rank top
with very few exceptions in the node degree distribution distance with at least 40% improve-
ment, which indicates that HGEN can effectively capture the degree distribution of all types
of nodes through jointly learning both meta-path and random walk distribution. (2) Graph
level similarity: HGEN-based models still exceed other baselines by effectively preserv-
ing the community distribution. Specifically, for all the datasets with rich local community
information (e.g., PubMed and synthetic datasets), HGEN-based models can utilize the het-
erogeneous node embedding for preserving the higher-order structural information in the
generated heterogeneous walks, which leads to better performance in metrics like LCC, TC,
and Clustering Coef.. However, in heterogeneous graphs with rare high-order structures, the
performance of HGEN-basedmodels is comparatively less impressive. (3) As shown in Table
3, the random-walk based method HGEN and NetGAN can generally achieve stable perfor-
mance than one-shot based (e.g., VGAE and GraphVAE) and sequential-based (GraphRNN)
generative models across all datasets. The reason is that random-walk-based methods learn
the overall graph distribution by learning the distribution of its discrete random walks, which
is not sensitive to various graph characteristics. (4) Table 3 also shows that VGAE cannot
produce realistic graphs even though it achieves the best performance in somemetrics, which
is expected since the primary purpose of VGAE is learning node embeddings but not gener-
ating entire graphs. In addition, as the size of the graph increases, GraphRNN also fails to
generate realistic graphs because of the weak scalability of auto-regressive models.

Graph novelty and uniquenessThe results of graph novelty and uniqueness are reported in the
right two columns in Table 3. Specifically, HGEN achieves a generally lower EO rate across
all datasets, indicating that HGEN does not purely memorize the seen heterogeneous walks
in the training data. In contrast, GraphRNN has a higher EO rate, indicating GraphRNN
regenerates graphs it saw during training. In addition, VGAE achieves the lowest EO rate
since it fails to generate realistic heterogeneous graphs. For uniqueness, HGEN also exceeds
other one-shot and sequential-based algorithms by an evident margin, demonstrating the
generated graphs’ diversity.

Preservation of graph semantic propertiesTo further demonstrate the performance ofHGEN,
we evaluate the performance of meta-path distribution preservation with other baselines.
Specifically, we measure the meta-path distribution from two aspects: (1) the overall meta-
path length ratio preservation in generated graphs and (2) frequent meta-path patterns under
each length. In general, all the methods can approximately maintain the meta-path length
ratio except for VGAE. However, HGEN can constantly achieve a better performance as
shown in Fig. 7a, b. (2) As shown in Fig. 7c–e and f–h, HGEN can outperform other methods
by at least 10% in preserving the ratio of specificmeta-path patterns under each length, which
is expected since HGEN is able to learn and maintain the meta-path distribution from the
observed graphs while others cannot.

5.4 Link prediction

Link prediction is commonly used as an evaluation to predict the existence of unobserved
links (i.e., edges) in a given observed graph, andwe use it to evaluate the generalization power
of HGEN and other approaches. We randomly mask out 40% of the edges as a testing set and
report the performance with two commonly used metrics: area under the ROC curve (AUC)
and F1 score (F1). We conducted the experiments with other approaches on all datasets; note
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Motif-guided heterogeneous graph deep generation 3117

Fig. 7 The meta-path distribution comparison. a, and b are the generated meta-path length distribution for
Syn_500 dataset and PubMed dataset, respectively. c–e and f-h are frequent meta-path patterns distribution
with length 1–3 for Syn_500 dataset and PubMed dataset, respectively

that the Syn-Multi dataset contains multiple edge relations while other approaches cannot
handle the multi-typed edge generation job. We, therefore, only compare HGEN variants.

The results are reported in Table 4 . Although there is no overall dominant method,
HGEN-based methods still achieve comparably more impressive performance. With the
effort to preserve local semantic distribution and higher-order structural information, HGEN-
based models can leverage observed heterogeneous information to complement the rest. In
addition to the normal link prediction, HGEN-based models can still perform well in recov-
ering the multi-edge type information, proving HGEN can characterize different meta-path
distributions in the observed heterogeneous graph.

5.5 Ablation study

We further conduct ablation studies on the PubMed dataset to evaluate the effect of different
components in HGEN, and the results are exhibited in Table 5. The ablative experiments are
conducted based on each of the essential components in our architecture. Specifically, we
select a single large heterogeneous walk length - 8 to replace the heterogeneous walk length
1, 2, and 3 in our model, and the resulting model is called HGEN-S. We also independently
remove the heterogeneous node embedding to let the generator uniformly sample the next
node, and the resulting model is named HGEN-E. Moreover, we replace the heterogeneous
graph assembler with a probability-based graph assembler, namely HGEN-A. Lastly, we
add another evaluation metric—OC (orbit count) to quantify how HGEN and HGEN-Motif
perform when preserving higher-order structures.
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Table 5 Ablation study in PubMed dataset

HGEN-S HGEN-E HGEN-A HGEN HGEN-Motif Real

LCC 1563.76 824.14 819.32 825.6 897.3 948

TC 1453.23 784.34 863.53 1569.3 1972.3 2114

OC 512.38 379.63 432.67 453.28 509.45 576

Clustering coef 0.026 0.015 0.016 0.034 0.051 0.068

Powerlaw coef 1.649 1.652 1.621 1.634 1.505 1.75

Assortativity −0.09 −0.132 −0.131 −0.143 −0.162 −0.208

Node degree dist 0.0354 0.0388 0.0515 0.0392 0.0521 N/A

Bold indicates the best performance of each model achieved in each evaluation metric

As shown in Table 5, all the ablative models achieve similar results in node-level metrics
like Powerlaw Coef., Assortativity, which is because HGEN can well capture this node-
level information through learning the heterogeneous walk distribution. Other than that, we
observe: (1) HGEN-S can construct a larger subgraph since the length of the heterogeneous
walk is largely greater than HGEN, but the large subgraph does not make any improvements
in terms of capturing the heterogeneous structural information. The reason is there are rarely
long meta-paths in the heterogeneous graph since longer meta-paths are highly redundant
because of the shared sub-parts [27]. We instead choose 1–3 as our meta-path lengths to
make the whole generation more flexible. (2) Removing the heterogeneous node embedding
would make HGEN-E hard to capture the local graph structure since HGEN relies on the
encoded neighborhood information to make the node sampling aware of the local structure.
(3) As shown in the node degree distribution evaluation, replacing the heterogeneous graph
assembler with a probabilistic graph assembler would cause HGEN-A hard to capture the
latent heterogeneous node distribution because it uniformly samples edges from the generated
walks and completely neglects the generated meta-path information. However, HGEN takes
meta-paths as a basic unit to sample edges so that it can effectively preserve the overall
distribution of meta-paths as proved in Theorem 1. Therefore, the node degree distribution
under each type can be well preserved. Finally, HGEN-Motif performs better than HGEN
in generating the most similar triangle and orbit counts with the observed graph, which also
justifies the choice of adding motif as the based generation unit.

5.6 Running time comparison

Figure8shows the results of our running time experiments. The running times on both syn-
thetic and real-world datasets, including both training and inference time, are shown with
respect to the growth of the number of nodes in both synthetic and real-world datasets. All
running times are in the log − 10 scale. As shown in both figures, random-walk-based gen-
erative models (HGEN and NetGAN) have a constant running time growth in terms of the
number of nodes, which is especially important when dealing with large graphs. Even though
VGAE is much faster in running time, it is indeed a representation learning framework based
on GCN and lacks the ability to generate realistic heterogeneous graphs, and the results are
also reflected in Table 3. Both GraphRNN and GraphVAE fail to compare with HGEN in
model scalability because their designs require at least O(|V|2) to process the transformed
node sequence and adjacency matrix.
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3120 C. Ling et al.

Fig. 8 Running time comparison of different models in both synthetic and real-world datasets. It is clear that
GraphVAE is not scalable in generating graphs with more than 200 nodes. GraphRNN also fails in generating
large graphs (with more than 10, 000 nodes). The proposed HGEN exhibits a linear running time growth in
terms of the growth of graph size

5.7 Graph visualization

Since it is nearly impossible to judgewhether a graph is realistic only by statistics,wevisualize
the generated graph to further demonstrate the performance of HGEN (Fig. 9 ). Visually,
HGEN looks the most similar, while both GraphVAE and VGAE is the most dissimilar.
This result is consistent with the quantitative results obtained in Table 3. For one-shot based
generative models, GraphVAE and VGAE, they fail to capture the structural similarity of
the observed heterogeneous graph. For the sequential-based and random-walk-based graph
generativemethods, GraphRNN andNetGAN can successfullymimic the structure similarity
but fail to preserve the global heterogeneous graph properties (e.g., overall meta-path ratio).

6 Conclusion

This paper focuses on a new problem: heterogeneous graph generation. To achieve this, we
propose a novel framework—HGEN for the heterogeneous graph generation. Specifically,
the proposed method consists of a novel heterogeneous walk/motif generator that can hier-
archically generate meta-paths and a heterogeneous graph assembler that can construct new
graphs by sampling from the generated heterogeneous walks in a stratified manner. As the
extension of the meta-path-based HGEN, this paper proposes a novel module HGEN-Motif
that considers the network motif as one of the basic generation units in order to better cap-
ture the higher-order structural distribution. We further unified the training framework to
enable the generator to generate various heterogeneous instances to meet different statistics
of the observed heterogeneous graph. Compared to existing deep graph generation methods,
HGEN is tailored for heterogeneous graph generation and can provide more insights into
heterogeneous graph mining studies. It is evaluated from the experiments that existing deep
graph generation methods cannot well preserve the local semantic, higher-order structural,
and global distribution of an observed heterogeneous graph, and thus cannot handle the
unique job of heterogeneous graph generation. As the first-of-its-kind heterogeneous graph
generation method, HGEN can not only provide benchmarks for the many heterogeneous
graph-related studies, but it can also enrich our understanding of the implicit properties of
heterogeneous graphs.
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Fig. 9 a–f are the generated graph of the Syn_100 dataset, g–l are the generated graph of the Syn_200 dataset,
m–q are the generated graph of the Syn_500 dataset, and r–v are the generated graphs of the PubMed dataset
(better to see with color) (colour figure online)
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