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Abstract  Wood decomposition is regulated by 
multiple controls, including climate and wood traits, 
that vary at local to regional scales. Yet decomposi-
tion rates differ dramatically when these controls do 
not. Fungal community dynamics are often invoked 
to explain these differences, suggesting that knowl-
edge of ecosystem properties that influence fungal 
communities will improve understanding and pro-
jection of wood decomposition. We hypothesize that 

deadwood inputs decompose faster in forests with 
higher stocks of downed coarse woody material 
(CWM) because CWM is a resource from which lig-
nocellulolytic fungi rapidly colonize new inputs. To 
test this hypothesis, we measure decomposition of 
1,116 pieces of fine woody material (FWM) of five 
species, incubated for 13 to 49  months at five loca-
tions spanning 10°-latitude in eastern U.S. forest. We 
place FWM pieces near and far from CWM across 
observational transects and experimental common 
gardens. Soil temperature positively affects location-
level mean decomposition rates, but these among-
location differences are smaller than within-location 
variation in decomposition. Some of this variability is 
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caused by CWM, where FWM pieces next to CWM 
decompose more rapidly. These effects are greater 
with time of incubation and lower initial wood den-
sity of FWM. The effect size of CWM is of the same 
relative magnitude as for the known controls of tem-
perature, deadwood density and diameter. Abundance 
data for CWM is available for many forests and hence 
may be an ecosystem variable amenable for inclusion 
in decomposition models. Our findings suggest that 
conservation efforts to rebuild depleted CWM stocks 
in temperate forests may accelerate decomposition of 
fresh deadwood inputs.

Keywords  Basidiomycetes · Carbon cycling · 
Downed deadwood · Ecosystem controls · Scale · 
Wood-rot fungi

Introduction

A critical determinant of the carbon (C) balance of 
forests is the turnover rate of deadwood (Harris et  al. 
2021). Representing 73 ± 6 Pg C globally, which 
is ~ 17% of the total wood carbon in the world’s for-
ests, deadwood is a substantial C stock (Jia-bing et al. 
2005; Weedon et al. 2009; Pan et al. 2011). The decom-
position of this stock is a key intermediary step in the 
conversion of live tree biomass to soil organic C, the 
two largest C stocks in forests (Heath et al. 2003; EPA 
2013). Yet how the decomposition rate of deadwood 
is controlled remains highly uncertain (Keenan et  al. 
2013). Such uncertainty compromises the reliability 
of global and regional C-cycle model projections (Yin 
1999; Zell et al. 2009; Pugh et al. 2019), as well as our 
ability to anticipate the effects of environmental change 
on forest ecosystems (Cornwell et  al. 2009) because 
deadwood is a hotspot for nitrogen (N) accumulation 
and key habitat for many species of animals, plants 
and microbes (Lindenmayer et al. 2002; Harmon et al. 
2004; Stokland et al. 2012). Understanding the controls 
on wood decomposition can instrumentally inform how 
stocks of deadwood should be managed to sustain for-
est nutrient supplies, biodiversity, productivity and C 

storage (Lindenmayer et  al. 2002; Edman et  al. 2004; 
Olsson et al. 2011; Harmon et al. 2020).

Many C cycle models assume that decomposi-
tion rates of deadwood at regional-to-global scales 
are mainly a function of climate (Oleson et al. 2013). 
Empirical studies show that wood decomposition 
rates at these scales are also strongly controlled by the 
traits of deadwood (e.g., initial wood density), as well 
as its size and orientation (e.g., whether standing or 
downed) (Weedon et  al. 2009; Freschet et  al. 2012; 
Jackson et al. 2013; Bradford et al. 2021). Yet decom-
position rates can vary to the same extent locally as 
they do regionally even when deadwood traits, size 
and orientation are the same (Boddy and Swift 1984; 
Boddy et  al. 1989; Bradford et  al. 2014, 2021). The 
primary factor invoked to explain such dramatic 
local-scale differences in decomposition rates, at 
least in temperate forests, is the composition of the 
fungal community that colonizes deadwood (Boddy 
and Swift 1984; van der Wal et al. 2015; Smith and 
Peay 2021). This conclusion is consistent with myriad 
experimental and observational studies, suggesting 
the prominent role of fungal-life history strategies, 
functional trait expression and competitive interac-
tions in governing wood decomposition rates at local 
scales (Toljander et  al. 2006; Fukami et  al. 2010; 
Dickie et al. 2012; Smith and Peay 2021). One poten-
tial way to reduce the uncertainty associated with 
projecting wood decomposition rates may be to iden-
tify ecosystem properties that affect fungal coloniza-
tion of deadwood and then quantify their influence on 
decomposition rates at regional scales.

The abundance and distribution of downed, coarse 
woody material (CWM) in forest understories is an 
ecosystem property that might cause differences in 
decomposition rates because it serves as a source 
of wood decomposers such as basidiomycete fungi 
capable of brown- and white-rot decay. These fungi 
are considered primary agents of wood decompo-
sition (Boddy et  al. 2008; van der Wal et  al. 2015). 
Of importance are lignocellulolytic basidiomy-
cetes that aggregate their hyphae into thick mycelial 
cords or rhizomorphs (Crowther et  al. 2014). These 
hyphal-aggregating fungi are referred to as “non-unit 
restricted fungi” because their mycelia can extend 
from their existing substrates to access discrete wood 
resources. This ability to forage across the soil-litter 
interface and connect discrete pieces of deadwood, 
combines with their ability to translocate water, 
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nutrients and C among this resource network (Cair-
ney 2005). These abilities confer a strong competi-
tive advantage to non-unit restricted fungi because 
they can leverage their high abundances and abilities 
to redistribute energy and nutrients from one piece of 
deadwood to rapidly colonize fresh deadwood inputs. 
As such, non-unit restricted fungi often outcom-
pete other wood-rot fungi (Boddy 2000; Crowther 
et al. 2014) and facilitate rapid decomposition of the 
fine and CWM classes in which they predominate 
(Thompson and Rayner 1983; Coates and Rayner 
1985). However, foraging of these lignocellulolytic 
fungi is likely to be maximal nearer (e.g., < 1  m) to 
CWM because invertebrate grazing, such as by iso-
pods and millipedes, increasingly limits fungal for-
aging with greater distance from CWM (Crowther 
et al. 2011). The abundance and distribution of CWM 
may then be a key ecosystem property influencing the 
decomposition rates of deadwood inputs. If found to 
be the case, such knowledge could be immediately 
leveraged to more confidently project wood decompo-
sition rates given the availability of national datasets 
on CWM stocks (Woodall et  al. 2013; Wilson et  al. 
2013).

We hypothesized that decomposition of new 
deadwood inputs is faster when they are adjacent to, 
as opposed to away from, downed CWM because 
wood-rot fungi rapidly colonize and decompose the 
proximal resource. As well as foraging by non-unit 
restricted fungi, more rapid colonization adjacent to 
CWM might also occur via spores and fragments of 
hyphae dispersed, for example, by animals such as 
beetles (Edman et  al. 2004; Olsson et  al. 2011). We 
do not attempt to resolve these different colonization 
mechanisms but do attempt to separate them from 
other mechanisms of CWM effects such as modifica-
tion of the microclimate and soil nutrient availabil-
ity (Harmon et  al. 2004; Edman et  al. 2004; Hafner 
et  al. 2005; Olsson et  al. 2011). To test the coloni-
zation hypothesis, we established study plots at five 
locations, spanning a mean soil temperature gradient 
of ~ 10 ℃, in eastern U.S. temperate, mixed forest. We 
then followed the decomposition of pieces of freshly 
cut boles from saplings of five tree species which dif-
fered in their initial wood traits. We used a structural 
causal modeling approach to estimate the effect size 
of CWM proximity on decomposition rates and to 
explore the potential for different causal pathways to 
explain our results. We find that proximity to downed 

CWM accelerates the decomposition of fresh dead-
wood inputs and that the alternate causal pathways 
did not account for the observed effects. Our study 
reinforces the expectation that local conditions which 
promote fungal colonization accelerate wood decom-
position rates and situates this knowledge in a broader 
spatial context, whereby ecosystem properties influ-
encing these fungi exert control on wood decomposi-
tion rates at regional scales.

Methods

Study locations and design

We worked at five locations which were, from north 
to south: (1) Hubbard Brook Experimental For-
est (HBR), New Hampshire; (2) Yale-Myers Forest 
(YMF), Connecticut; (3) Mountain Lake Biologi-
cal Station (MLB), Virginia; (4) Coweeta Hydro-
logic Laboratory (CWT), North Carolina; and (5) 
Whitehall Experimental Forest (WHF), Georgia. 
The locations spanned a regional climate gradient, 
with variation in macroclimate generated by latitudi-
nal and elevational differences among the locations 
(Table  S1). The stands in which we established our 
work at each location were dominated by Quercus-
Carya (i.e., oak-hickory) overstory species at the 
four most southerly locations, and by Fagus-Acer-
Betula (i.e., beech-maple-birch) at the most north-
erly location. All stands were second growth, which 
dominate eastern U.S. temperate forests, and the 
stand ages (80–100  years old) provided ample time 
for the accrual of dead wood. Table S1 provides fur-
ther details on location geography and ecosystem 
characteristics.

At each location in May 2016, we established 
observational transects and experimental common 
gardens. In each we followed the decomposition of 
pieces of freshly cut boles from saplings of five tree 
species, both next to and distant from CWM. The 
freshly cut boles had dimensions consistent with 
the diameter definition for large fine-woody debris 
(FWM: 2.54 to 7.6  cm dia.) and narrow pieces of 
CWM (i.e., dia. > 7.6  cm) (Woodall and Monleon 
2008). We describe their preparation in Sect. “FWM 
pieces” and, given their narrow diameter (ranging 
from 3.5 to 8.0  cm) and short length (i.e., 10  cm), 
refer to them going forward as FWM pieces.
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The observational transects consisted of a 140-m 
transect (or two transects summing to 140 m) that ran 
from the toe of a slope to the ridge to capture vari-
ation in microclimate, particularly moisture avail-
ability given its importance as a control on decom-
position rates (Dix 1985; Lustenhouwer et al. 2020). 
Every 10  m, starting at 0  m on the transect (and 
hence at 15 points along the transect), one FWM 
piece of each of the five species was placed end-on-
end (each piece 5  cm apart) running parallel to a 
naturally occurring, downed tree bole (Fig. S1) that 
either crossed the transect or was the nearest observ-
able perpendicular to the transect position. We only 
placed FWM pieces next to downed wood if it met 
criteria for the definition of CWM following Woodall 
and Monleon (2008), where the downed wood was 
greater than 7.6 cm in dia. and more than 1-m long. 
Further, the downed wood had to be in decomposi-
tion stages II to IV (Waddell 2002), which are the 
dominant decomposition stages in eastern U.S. forests 
(Woodall et  al. 2013). A second set of FWM pieces 
was organized similarly but at least 5  m away from 
downed CWM. Cords and other hyphal aggregations 
of non-unit restricted fungi can potentially forage tens 
of meters but are presumed most abundant proximal 
to the deadwood source they colonized (Thompson 
and Rayner 1982, 1983).

Overall, the observational transect design involved 
placing 30 FWM pieces per species and there-
fore 150 FWM pieces total per location (750 FWM 
pieces across all locations: 15 microsite patches per 
transect × 2 CWM positions × 5 species × 5 loca-
tions). FWM pieces were placed flush with the litter 
layer and in contact with the surface soil. The short 
length of the FWM pieces (i.e., 10 cm) ensured that 
the entire underside of the FWM piece was in contact 
with the soil, permitting even access along the piece 
to the soil surface and hence a more standard micro-
site environment. The design ensured that no FWM 
pieces sat above the soil because such aerial place-
ment can severely limit wood moisture and hence fun-
gal-mediated decomposition (Bradford et al. 2021).

Common gardens consisted of six 25-m2 (5 × 5 m) 
plots in a paired design at each location. Gardens 
were established along the same slope as the obser-
vational transects to capture microclimate variation, 
with one pair of gardens at the toe, mid and top (i.e., 
ridge) of the slope. In each pair of gardens, CWM 
was manipulated to create zero versus high-density 

downed CWM (Fig. S2). Specifically, natural CWM 
in decay classes II to IV (and of approximately equal 
volumetric proportions) was collected adjacent to 
the transects and aggregated to create the high-den-
sity CWM gardens. We selected garden locations 
with minimal-to-no current CWM, to avoid select-
ing gardens already containing elevated abundances 
of hyphal biomass of wood-rot fungi. Gardens were 
periodically checked to remove any deadwood that 
fell into them across the course of the study.

FWM pieces of two of the species (i.e., red maple 
and eastern white pine) were placed in four micro-
sites within each common garden. In the high-density 
CWM gardens, FWM pieces were placed imme-
diately adjacent to downed CWM. A single maple 
and pine piece was placed in each garden microsite, 
and all FWM pieces were placed following the same 
spacing and soil-contact protocol as for the observa-
tional transects. At each common garden there were 
then 8 FWM pieces, and with three garden pairs per 
location, there were 24 FWM pieces per tree species 
and 48 total per location (yielding 240 FWM pieces 
total across the five locations). At the YMF location, 
we placed additional maple and pine FWM pieces in 
each microsite and harvested one of each species per 
microsite at 13 and 49, as well as 25, months after 
garden establishment.

FWM pieces

We used wood from five tree species which differ 
in trait values in ways that influence decomposition 
rates, such as wood density, initial N content and 
secondary chemicals (Weedon et  al. 2009; Russell 
et al. 2014). The species were: (1) northern red oak: 
Quercus rubra L.; (2) American beech: Fagus grandi-
folia Ehrh.; (3) black or sweet birch: Betula lenta L.; 
(4) red maple: Acer rubrum L.; and (5) eastern white 
pine, Pinus strobus L. These species are representa-
tive of common overstory species, that occur across 
the geographic range encapsulated by the locations 
and differ by growth habit (i.e., broadleaf, deciduous 
hardwood vs. needle, evergreen, softwood), mycor-
rhizal status (i.e., arbuscular or ectomycorrhizal asso-
ciations) and numerous wood traits (e.g., density; see 
Table  S1). Variation in wood traits among species 
was expected to translate to a pronounced range in 
decomposition rates (Lee et al. 2022).
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To prepare the FWM pieces, we first sourced ~ 20 
individuals of each tree species from only the YMF 
location to minimize potential within-species vari-
ation in wood traits associated with environmen-
tal and/or genotypic variation. Our study was not 
designed to test how the traits of woody species affect 
decomposition. Rather, we chose species that repre-
sented realistic trait variation to investigate the gener-
ality of our findings about CWM effects across wood 
traits. To further minimize within-species trait varia-
tion we also used only wood cut from the main bole 
(i.e., trunk) of the trees we harvested. We selected 
naturally regenerating saplings of each of the five 
species. Saplings with a diameter of between 6 and 
8  cm at 1.37  m above ground-level were selected, 
felled, stripped of branches and then transported to 
Yale’s main campus (New Haven, CT, USA) to be cut 
into 10-cm long FWM pieces within 5  days of har-
vest. Our choice to use smaller diameter trees meant 
heartwood formation was essentially absent and so 
did not create within- and among-FWM variation in 
decomposition rates (Noll et al. 2016).

We generated variation in deadwood volume by 
selecting FWM pieces from the boles that spanned 
a diameter range of 3.5  cm to 8.0  cm, generating 
fivefold variation in FWM volume. Deadwood vol-
ume strongly influences decomposition rates given 
that smaller deadwood surface area to volume ratios 
(i.e., wider diameters) impede rates of colonization 
by microbial and animal decomposers (Oberle et  al. 
2018). We measured the diameter of the ends of each 
cut FWM piece to the nearest 0.1  cm with calipers 
to determine volume of each piece. As with traits, 
we varied deadwood volume to look at the general-
ity of CWM effects on wood decomposition and not 
to investigate volume effects per se. We distributed 
FWM pieces based on their initial volume equally 
among locations and, within a location, matched 
FWM volumes in the microsites that were grouped 
spatially into a pair, one away from and one next to 
CWM. We used smaller rather than large diameter 
classes of downed deadwood because they are espe-
cially relevant to understanding field decomposition 
rates in managed forest because most woody debris 
inputs to the forest floor are often in the smaller size 
classes (< 15 cm dia.) (Kruys et al. 1999; Pedlar et al. 
2002). In eastern U.S. forests, small diameter classes 
(~ 10  cm or less) dominate downed woody material 
stocks (Woodall et al. 2013).

FWM pieces were cut on a bandsaw with bark left 
on, and then uniquely numbered with an aluminum 
tag affixed with a short screw. Tagged FWM pieces 
were placed in an oven for ~ 2 h at 72 °C, following 
U.S. National Firewood Task Force recommenda-
tions for heat treating FWM pieces to prevent move-
ment of pests and pathogens among forests. The aim 
of this treatment is to maintain internal wood tem-
peratures of 71.1 °C for a minimum of 75 min. The 
treatment does not influence the chemistry nor alter 
the moisture content of the wood because of its short 
duration. Although we deliberately chose our har-
vest location to minimize pest risk (e.g., both emer-
ald ash borer and Asian longhorn beetle—the two 
dominant hardwood insect pests in the region—were 
both undetected at our location at the time of tree 
harvest in April 2016), we heat-treated the FWM 
pieces as a precaution given that we were distribut-
ing them across the east coast. Once heat treated, the 
initial fresh mass (to 0.01 g) of the FWM pieces was 
measured at the same time as the end diameters were 
recorded. FWM pieces were then stored in paper bags 
before being placed in the field in May 2016.

When preparing the FWM pieces, between 7 and 
25 pieces per species (with the exact number deter-
mined by those in excess of the number needed for 
field placement) were returned to the ovens and dried 
to constant mass at 70 °C, to estimate the initial mois-
ture of the FWM pieces for field placement. Six of 
these FWM pieces per species were then used to 
determine total C and N concentrations. These data 
were used–along with the dimensions data–to esti-
mate the initial wood density, mass and C and N con-
tents for each species (Table S1). We used the initial 
moisture data, along with the fresh mass and dimen-
sions data for every FWM piece placed in the field, to 
estimate the initial density of each piece.

FWM decomposition

On retrieval of the FWM pieces, any adhering soil, 
leaves and fungal cords were brushed away before the 
pieces were placed into individual Ziploc bags and 
returned to the lab where they were stored at 5  °C 
until further processing. In the lab, the FWM pieces 
were gently brushed clean of any remaining external 
material, before fresh mass was recorded along with 
the piece’s length and end diameters (to estimate final 
volume for use in final density calculations), as well 
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as visual scores of termite activity and decomposition 
stage. Next, one third of the transect FWM pieces 
(10 per species per location) were selected from five 
paired microsites arrayed at the start, end and along 
the transects. These FWM pieces were drilled with 
an 8-mm dia. bit across the length of each piece to 
generate sawdust for additional measurements. All 
FWM pieces were then weighed and placed in an 
oven at 70 °C and dried to constant mass before being 
weighed again to determine wood dry mass and mois-
ture content.

Using the sawdust samples, we measured total C 
concentrations and an estimate of active microbial 
biomass in the decomposing wood. The sawdust was 
separated into two samples, with one set of sam-
ples dried to 70  °C, then ball milled to a fine pow-
der before analysis for total C (and N concentrations 
for initial FWM pieces) using an elemental analyzer 
(Costech ESC 4010, Costech Analytical Technolo-
gies Inc.,Valencia, CA). We used these total C meas-
urements to calculate mass C loss given the high 
prevalence of termites at our most southerly location 
(King et  al. 2013). Specifically, we were concerned 
that termite colonization of the decomposing FWM 
pieces could obscure density and mass loss estimates 
because termites bring mineral soil into decomposing 
wood. Determining percentage mass C loss corrects 
for mineral-soil contamination (Ulyshen and Wagner 
2013).

The second sawdust sample, which was kept fresh 
at 5  °C until analysis, was used to estimate active 
microbial biomass following Maynard et  al. (2018). 
Briefly, we used a modified substrate-induced respira-
tion approach (Beare et  al. 1990; Fierer et  al. 2003) 
that incubates at 20  °C a fresh sawdust subsample 
with autolyzed yeast-extract in DI water as a labile C 
substrate and measures respiration over a 4-h period 
with an infrared gas analyzer (IRGA; Model LI-7000, 
Li-Cor Biosciences, Lincoln, Nebraska, USA). Car-
bon dioxide concentrations were converted to rate 
of C–CO2 production, as mass C produced per hour 
per dry mass-equivalent wood. The short timescale 
of the assay has been shown to be a good proxy for 
total microbial biomass in soils and litters (Fierer 
et al. 2003; Frey et al. 2004) and is highly correlated 
with direct measures of fungal biomass (Beare et al. 
1990). However, we refer to the assay as a measure 
of total microbial activity since it does not separate 
fungal and bacterial activity in deadwood. The same 

set of additional assays was performed for one maple 
and one pine FWM piece from every microsite in 
the common gardens at YMF for both the 25- and 
49-month harvests.

Microclimate and soil measures

We measured the end diameters, length and decompo-
sition stage of the CWM adjacent to where we placed 
the FWM pieces and of all CWM in the common gar-
dens. For all microsites we took spot measurements 
of soil temperature and moisture to 5-cm depth. Per 
microsite, three spot soil measurements were taken 
and averaged for temperature using a stainless-
steel thermometer and for volumetric soil moisture 
with a time domain reflectometry probe (Campbell 
Hydrosense™), inserted at a ~ 45° angle with 12-cm 
rods. Microclimate measurements were taken at six 
additional time points and for different seasons over 
the 25-month field-incubation period. The repeated 
discrete point measurements were intended to cap-
ture relative differences in soil microclimate variables 
over space, which are considered robust across time 
(Vachaud et al. 1985; Vanderlinden et al. 2012).

At establishment of the observational transects, 
we sampled surface (0–5  cm depth) soils at each of 
the 30 microsites at each location by taking ~ 10 2-cm 
dia. cores and pooling them into a Ziploc bag, which 
yielded 150 soil samples total. Soil sampling for the 
common gardens was carried out the same way, with 
the exception that soils were pooled per garden and 
collected in June 2018 when the FWM pieces were 
harvested. All soils were characterized for pH, active 
microbial biomass, soil organic matter (SOM), total C 
and N concentrations, C mineralization rates, and net 
potential N mineralization and nitrification. Prior to 
analysis, we homogenized and then passed the soils 
through a 4-mm sieve. We did not use a 2-mm sieve 
because, to pass effectively through that sieve size, 
we would have had to air dry the soils and, along with 
re-wetting, this would have altered the microbial pro-
cess rates that we then measured.

For pH, we mixed each sample with water in a 
1-to-1 volumetric ratio and measured the pH of the 
supernatant after 10  min using a benchtop meter 
(VWR sympHony Sb70p; Allen 1989). For active 
microbial biomass (Wardle and Ghani 1995) we used 
a modified substrate-induced respiration method, sim-
ilar to that used for the wood samples, that measures 
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rates of CO2 efflux over a 4-h incubation period (West 
and Sparling 1986). Soil total C and N was estimated 
on ball-milled samples as described for the wood 
samples, and the ball-milled samples were also used 
to determine SOM concentrations via loss-on-igni-
tion, where we estimated SOM by calculating mass 
loss of soils heated at 375  °C for 18-h in a muffle 
furnace.

We estimated microbially-available C concentra-
tions using an assay that determines potential CO2 
production rates over a 28-d incubation period at 
20  °C (Bradford et  al. 2008). The resulting estimate 
of labile C is calculated as the cumulative CO2 efflux 
over the course of the incubation period through inte-
gration of five CO2 efflux measurement points (days 
1, 4, 11, 21 and 28). Soils were maintained at 65% 
water-holding capacity (WHC) over the incubation 
and were incubated between measurements at 20 °C 
under a humid atmosphere. Soil WHC was checked 
weekly to maintain 65% WHC, which is within the 
optimal range for microbial activity (Paul et al. 2001; 
Langenheder and Prosser 2008). Finally, to deter-
mine potential rates of net N mineralization and net 
nitrification, we used a 28-d N mineralization assay 
(Robertson et  al. 1999), with soils incubated as 
for the C-mineralization assays. Initial and 28-day 
extractions were analyzed for NH4

+ and NO3
− con-

centrations using a flow analyzer (Astoria 2, Asto-
ria‐Pacific, Clackamas, Oregon, USA). Net potential 
nitrification is the difference in [NO3

−] between the 
incubated and initial samples, and net potential N 
mineralization is the difference between the initial 
and final sum of [NH4

+] and [NO3
−] over the 28-d 

incubation period.

Inferential analyses

We constructed a structural causal model (SCM, 
Fig.  1) that depicted the causal pathways of CWM, 
climate and wood trait effects on decomposition rates. 
We used the SCM to guide our statistical modeling 
to robustly estimate the effect size of CWM proxim-
ity on decomposition rates. We also used the SCM to 
evaluate which causal pathways, mediated through the 
presence of CWM, most likely operated to influence 
wood decomposition rates by including and exclud-
ing causal predictors of wood decomposition, such as 
soil moisture, and assessing the influence on the size 
of the regression coefficient for CWM proximity. Our 

decision regarding which variables to include in the 
SCM, and hence the statistical models, was based on 
known biological mechanisms that relate each predic-
tor to the response variable rather than model selec-
tion (Hobbs et al. 2012).

For our statistical modeling we used hierarchical 
mixed models. The structure of these linear mixed 
models (LMMs) allowed us to represent the spatial 
structure of our observational transects and common 
gardens with FWM pieces clustered per microsite, 
and microsites clustered per location. We used the 
lme4 package (Bates et al. 2015) in the statistical pro-
gram R (version 4.2.0; R Core Development Team 
2023). For the random effects, microsite was nested 
within location. Fixed effects included proximity to 
CWM as a binary variable (i.e., 1 for proximate, 0 for 
distant), FWM traits (i.e., initial wood density or N 
content), FWM volume, and microclimate (i.e., soil 
temperature and moisture). To estimate FWM decom-
position rates, we used percentage mass, density and 
C loss as response variables. Given the distribution of 
the decomposition response variables, we fit models 
using the lmer function for Gaussian-distributed data.

There is potential for strong correlations among 
our climate predictors and so we evaluated the 
square-root of the variance inflation factors (VIFs) 
for the predictors in a model including only main 
effects. If values were < 2.0 we initially retained the 
predictors in the same model, given the expectation 
that collinearity was low enough to limit its influ-
ence on the coefficient estimates of the predictors. We 
next constructed models with the retained predictors 
that included ecologically relevant, two-way interac-
tions, such as initial wood density by soil tempera-
ture. To evaluate the robustness of the coefficient esti-
mates from these models, we conducted a sensitivity 
analysis following Bradford et  al. (2019) to evaluate 
how inclusion/exclusion of interactions, and differ-
ent forms of the same predictor (e.g., mean vs. low 
soil temperature) or response (e.g., density vs. mass 
C loss), influenced our conclusions. Following this 
sensitivity analysis, we calculated r2 values for the 
reported models following Nakagawa and Schielzeth 
(2013) to retain the random effects structure.

To examine the mean effect size of proximity to 
CWM on decomposition, we took two approaches. 
We first compared the size of the standardized coef-
ficients, where standardizing involved centering 
continuous and binary variables by subtracting the 
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mean and then dividing continuous variables by two 
standard deviations (Gelman 2008). This approach 
puts binary and continuous variables, including 
those with different units, on the same scale and 
permits unambiguous determination of the size 
and sign of interaction effects (Gelman 2008). Sec-
ond, we plotted the influence of changing proxim-
ity, microclimate, wood traits and FWM volume on 
decomposition. To do this, we used the unstandard-
ized regression relationships derived from our sta-
tistical models, held all other factors at their mean 
for the dataset (i.e., for all observations), and varied 
the predictors of interest across the range of values 
observed across the study.

Results

Observational transects

To estimate the conditional effect size of CWM prox-
imity on decomposition rates, we first constructed 
statistical models with only CWM proximity, FWM 
density, FWM volume and temperature as predictors. 
That is, we deliberately omitted any variables that we 
identified as “mediators” in our SCM (Fig. 1) because 
inclusion of mediator variables can obscure the effect 
of the causal predictors that act through them (McEl-
reath 2020). Effects of the known regional-scale 
controls on wood decomposition (i.e., initial wood 

Fig. 1   Structural causal model (SCM) of CWM proximity 
effects on decomposition rates of the FWM pieces. We use 
the causal assumptions depicted in the SCM to ensure that we 
are robustly estimating the causal effect size of CWM prox-
imity and to explore the mechanisms that may mediate this 
causal effect. Note that the two modifiers could interact with 

all other predictors shown, and the other predictors (including 
the mediators given the potential for them to have direct effects 
not driven by CWM proximity) plausibly could also interact. 
However, for clarity those dotted arrows are not shown but are 
tested in the statistical modeling
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density, FWM volume and temperature), as well as 
the control under test (i.e., proximity to CWM), were 
clearly influential given the size of the standard-
ized coefficients (Table 1). To evaluate these effects, 
we plotted these regression relationships using the 
unstandardized coefficients (Table 1).

Plotting the individual observations (Fig.  2a) and 
the regression relationships (Fig.  2b) revealed that 
there was considerable variation in the decomposition 
of the FWM pieces recovered from the observational 
transects, both within species and within locations. 
Within-species variation in decomposition of FWM 
pieces often exceeded among-location differences 
in mean decomposition rates for the species, as well 
as among-species variation in decomposition rates 
(Fig.  2). For example, at the warmest location, den-
sity loss of the individual beech FWM pieces varied 
from ~ 20% to more than 90% (Fig. 2a), whereas mean 
differences in beech decomposition were between 30 
and 50% across locations and, at the same location, 
mean species-level differences spanned ~ 20 to 50% 

density loss (Fig.  1b). Even at the coldest location, 
where the range in decomposition was muted, den-
sity loss of the individual beech FWM pieces varied 
from ~ 15% to ~ 60% (Fig. 2).

Despite the high local variation in decomposition 
rates, plotting the regression results revealed strong 
mean and interactive effects of the causal variables. 
For example, the negative interaction between ini-
tial density and proximity to CWM (Table  1) arose 
because proximity to CWM accelerated the decompo-
sition of less dense wood (i.e., pine and then maple) 
much more so than for denser-wood species like the 
oak and beech (Fig. 2b). The standardized coefficient 
of this interaction was approximately equivalent to 
the main effect of initial FWM volume, and about 
a third of the size of the main effect of initial wood 
density, which had the largest standardized coefficient 
(Table 1). The latter coefficient manifested as strong 
species-level differences in density loss, where pine 
FWM pieces (least dense) decomposed the slow-
est and oak FWM pieces (which were the densest; 

Table 1   Result of linear mixed modela for wood density loss from the observational transect FWM pieces after 25 months of field 
incubation at the five eastern U.S. forest locations

Coefficients (mean ± SE), significance and r2 values are reported and are used to evaluate the influence of proximity to coarse woody 
material (CWM), initial wood characteristics (density and volume), and microclimate (mean soil temperature across the field-incu-
bation period) on wood density loss. Unstandardized coefficients are used to plot regression relationships (see Fig. 2b), and standard-
ized coefficients are reported to facilitate comparisons of the effect size of predictor variables on different unit scales; and to facilitate 
interpretation of main effects involved in the two-way interactions. Significant (P < 0.05) coefficients are shown in bold font
a Mean coefficients and standard error (SE) estimated using an MCMC sampling approach, significance with the Satterthwaite 
approximation for REML models, and model r2 values using a method that retains the random effects structure. Random effects 
assumed a common slope and for the intercept Microsite (1 to 150) was nested within Location (5 total, with 30 microsites each). 
Five FWM pieces (one of each species) were placed in each microsite, meaning 750 FWM pieces total were deployed. The model 
used 745 observations given that five FWM pieces were not recovered. In the first column, continuous predictor variables are shown 
in regular font and binary predictors in italics. The model was fit with a Gaussian error distribution. Model r2 values are given for the 
fixed and full (i.e., fixed + random) effects. The largest square-root of the variance inflation factor (VIF) value was 1.002 for the main 
predictor variables when run in a model without interactions and with unstandardized predictors, indicating correlation among the 
predictors shown was low enough (i.e., VIF < 2.0) to be included in the same model. na = not applicable

Predictor Unstandardized Coefficients Standardized Coefficients
Variables Mean SE Mean SE

Intercept 4.254 11.7833 31.923 0.6818
Proximity to CWM 12.943 4.3699 2.805 1.3553
Initial wood density (g cm−3) 29.248 20.0322 14.279 0.9144
Initial wood volume (cm3)  − 0.004 0.0327  − 4.923 1.0911
Soil temperature (℃)  − 0.699 0.5412 9.958 1.3633
Proximity × density  − 18.286 7.4939  − 4.438 1.8188
Density × volume  − 0.058 0.0556  − 1.893 1.8179
Density × temperature 3.471 0.9311 6.847 1.8370
Fixed r2 30.1 na 30.1 na
Full r2 44.9 na 44.9 na
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Table  S1) the fastest (compare the intercepts of the 
slopes in Fig.  2b). The interaction between initial 
density and mean soil temperature (Table 1) revealed 
that relative—as well as absolute–species-level differ-
ences were greater at the warmer locations (Fig. 2b). 
The relative and absolute magnitude of the main and 
interactive effects of the controls we investigated 
were similar when we expressed decomposition as 
either percentage mass or C loss (compare Tables S2 
and S3). As such, potential translocation of mineral 
soil into decomposing FWM pieces by termites did 
not appear to influence modeled effects of trait, cli-
mate and proximity to CWM on decomposition. We 
therefore continue to focus our main results on den-
sity loss.

We next ran models where we included the media-
tor variables that we measured (Fig.  1) to evaluate 
if they influenced the coefficient estimate for CWM 

proximity, which would then suggest that the CWM 
proximity effect was, at least in part, mediated by the 
influence of CWM on these predictors. The measures 
related to soil nutrient cycling, such as potential net N 
mineralization rates, were minor or inconsistent pre-
dictors of decomposition rate and had no influence on 
the coefficient estimate for CWM proximity. Equally, 
inclusion of soil moisture as a predictor did not affect 
the influence of CWM proximity but it did for tem-
perature. Specifically, soil moisture and temperature 
were moderately correlated (Pearson’s r = −  0.542, 
df = 148) and strongly influenced one another’s coef-
ficient estimates. The correlation arose because the 
warmer locations had drier soils on average. Given 
that moisture and temperature are considered strong 
controls on wood decomposition rates (Moore et  al. 
1999), we ran models with either microsite soil tem-
perature or moisture to evaluate if inclusion of either 
influenced the proximity to CWM main and interac-
tion effects. They did not (Tables  1 and S4) and in 

Fig. 2   Wood decomposition of FWM pieces of five tree spe-
cies were strongly affected by main and interaction effects of 
microclimate, wood traits and proximity to downed coarse 
woody material (CWM) across observational transects. 
Decomposition is represented as wood density loss, as percent-
age of original density, after 25 months of field incubation at 
five locations spanning a climate gradient in eastern U.S. tem-
perate, mixed forest. FWM pieces were 10-cm long and placed 
far from (open symbols: far) or next to (closed symbols: near) 
existing CWM in the forest understories. Plate a shows the 
individual data points and plate b plots the mean effects of the 
predictors and their interactions as estimated from the regres-
sion models. That is, in (a) are observations from 745 FWM 
pieces, with the FWM pieces far from CWM on the left and 
next to CWM on the right grouped under each location name 
(e.g., HBR) and mean soil temperature (e.g., 10.7 °C). Obser-
vations are jiggered within each grouping so that they can be 
discerned. At each location, 150 FWM pieces were placed in 
groups of five (1 per species) in 15 paired microsites either 
far or next to CWM, meaning that each location had 30 FWM 
pieces per species, giving 750 FWM pieces total across the 
locations, of which 5 were not recovered. Symbol shapes 
depict tree species, with the four deciduous broad-leaf species 
shown in blue and green, and the evergreen, needle species 
shown in grey. The same symbol design is used in (b) which 
plots the linear model coefficients (Table 1), with symbols only 
shown in this plot to identify species and to identify the mean 
soil temperature of each location. Plotting the model using the 
conditional coefficients reveals how the effect of proximity 
to CWM is strongly dependent on the species identity of the 
FWM pieces, with oak decomposition very little influenced by 
proximity, whereas pine decomposition responded strongly. To 
estimate mean density loss, we used the predictor mean values 
for soil temperature and initial density for each species, along 
with proximity to CWM as a binary variable (0 = far, 1 = near), 
with all other predictors held at their mean values

▸
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subsequent analyses we used soil temperature as our 
climate predictor because that model explained more 
variation and because we found that FWM pieces 
within the same microsite could differ markedly 
in wood moisture content, suggesting a disconnect 
between soil moisture and the moisture content of 
surface-placed, downed wood.

Given the fact that soil moisture in a microsite 
responded minimally to CWM proximity and was a 
poor surrogate for observed moisture content of the 
FWM pieces, we considered running FWM mois-
ture content (at harvest) as a predictor. We did not 
pursue this analysis because wood moisture is both a 
predictor and outcome of decomposition (Dix 1985). 
Consequently, the causal direction(s) of the correla-
tion (Pearson’s r = 0.435) between wood moisture 
and density loss is uncertain. Equally, we did not run 
active microbial biomass as a predictor–which was 
correlated with mass C loss (Pearson’s r = 0.438)—
because we could not discern the causal role of micro-
bial biomass from the associated controls on decom-
position such as CWM proximity and temperature. 
Yet the positive correlations between decomposition 
and wood moisture content, as well as active micro-
bial biomass, are consistent with expected changes 
in wood biophysical variables as it is decomposed 
by wood-rot fungi (Dix 1985; Bradford et al. 2021). 
Further, the coefficients for the controls we evalu-
ated were robust to statistical model structure (e.g., 
inclusion of two-way interactions, Table  S4), the 
form of the predictor (e.g., low vs. mean soil tempera-
ture; initial wood density vs. initial wood N content, 
Table S4), as well as the form of the response variable 
(i.e., density, mass or C loss; compare Tables 1, S2, 
S3). As such, regardless of the analytical decisions 
that we made, our observational transect data were 
consistent in identifying proximity to CWM as a con-
trol that accelerates wood decomposition, and in find-
ing that the effect did not appear mediated via CWM 
influences on soil moisture or nutrient availability.

Common gardens and time course data

The common gardens gave us greater experimental 
control to attribute effects to CWM presence because 
they reduced the likelihood that unmeasured vari-
ables, which might be associated with accumulation 
of CWM, could instead explain the effects of CWM 
proximity in the observational transects. Again, 

following our SCM, we began analysis of the com-
mon garden data by evaluating the effects of predic-
tors that were not mediating variables of either CWM 
proximity or temperature. As with the transect data, 
maple decomposed faster than pine FWM pieces and 
pieces with larger initial volume decomposed more 
slowly (Fig. 3b). The standardized coefficient for ini-
tial density was ~ 4-times larger than any of the other 
predictors, likely reflecting the strong contrast in traits 
between the maple and pine FWM, which included 
the maple pieces having denser wood, higher %N 
content and presumably lower secondary chemical 
concentrations (Tables S1 and S5). The standardized 
coefficient for the main effect of proximity to CWM 
was essentially the same size as those for initial FWM 
volume and mean soil temperature, suggesting again 
that proximity effects can be as large as known pre-
dictors in a regional-scale analysis (Table S5).

Proximity accelerated the decomposition rate of 
the FWM pieces and its absolute influence on decom-
position was magnified as mean soil temperature 
across locations increased (Fig.  3b, Table  S5). The 
positive temperature relationship was dampened for 
FWM pieces of larger volume (Fig. 3b), altering the 
manifestation of the CWM proximity by temperature 
interaction. The dampening effect was so pronounced 
that the estimated mean effect of soil temperature 
on the FWM pieces with the widest diameters and 
hence largest volumes was slightly negative for FWM 
pieces away from CWM, whereas those FWM pieces 
proximal to CWM maintained a positive temperature-
decomposition relationship (Fig.  3b). As with the 
transect data, we analyzed proximity to CWM as a 
binary variable but the interpretation of the statistical 
models is essentially unchanged if CWM volume is 
used.

Despite the strong mean effects of the CWM prox-
imity, trait and temperature predictors, FWM pieces 
in the common gardens at each location varied exten-
sively in the amount to which they were decomposed 
after 25 months (Fig. 3a), mirroring the variation seen 
in the observational transects. Nevertheless, the con-
trolled experimental nature of the common gardens 
likely accounts for why the fixed effects explain more 
variation (43.9%) than with the transect data (30.1%), 
despite having only approximately one-third of the 
observation numbers (n = 238 FWM pieces recovered 
of 240 placed in the field versus 745 FWM pieces 
recovered of 750 placed in the field for the transects).
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As with the transects, we evaluated whether the 
CWM proximity effects were mediated by modifica-
tion of the microclimate or soil nutrient availabilities 
(Fig. 1). The soil nutrient variables neither obscured 
the CWM proximity effect nor had meaningful effect 
sizes on decomposition. Also, as seen with the tran-
sect data, soil moisture did alter the soil temperature 
effect given the correlation between the two predic-
tors (Pearson’s r = −  0.594, df = 118) but did not 
influence the CWM proximity effect.

Given that the influence of controls on wood 
decomposition can change with time of field incu-
bation (Oberle et  al. 2020), we placed additional 
maple and pine FWM pieces in the common gardens 
at the YMF location and harvested them at 13 and 
49  months, as well as 25  months. The influence of 
harvest time was of similar magnitude to initial wood 

density, and it interacted positively with initial den-
sity, wood volume and CWM proximity (Table  S6). 
These interactions meant that the influence of initial 
density and CWM proximity strengthened across 
time but that initial volume differences among the 
FWM pieces became less consequential for decom-
position (Fig.  4). Notably, as for the observational 
transect data, the influence of proximity to CWM was 
greater when decomposition was instead expressed as 
percentage mass C loss, and for that model the fixed 
effects explained more variation (~ 79%) than they did 
for density loss. As such, positive effects of proxim-
ity to CWM were consistently observed regardless 
of the statistical analysis decisions we made about 
which predictors and response variables to model 
(Table  S6). By contrast, our findings were depend-
ent on study design decisions, whereby this temporal 
analysis revealed that CWM proximity effects likely 
strengthen over time (as revealed by diverging near 
versus far lines in Fig. 4b).

Fig. 3   Wood decomposition of FWM pieces of both sampled 
tree species was strongly affected by main and interaction 
effects of microclimate, wood traits and presence of downed 
coarse woody material (CWM) in experimental common gar-
dens. Decomposition is represented as wood density loss, as 
percentage of original density, after 25  months of field incu-
bation at five locations spanning a climate gradient in eastern 
U.S. temperate, mixed forest. FWM pieces were 10-cm long 
and in common gardens with zero (open symbols) or high-den-
sity (closed symbols) CWM abundance in the forest understo-
ries. Plate a shows the individual data points and plate b plots 
the mean effects of the predictors and their interactions as esti-
mated from the regression models. That is, in (a) are observa-
tions from 238 maple and pine FWM pieces, with the FWM 
pieces in zero-CWM gardens on the left (‘far’) and high-CWM 
gardens on the right (‘near’) above each location name and 
mean soil temperature. Observations are jiggered within each 
grouping so that they can be discerned. At each location, 48 
FWM pieces were placed in groups of two (1 per species) in 24 
paired microsites, with 12 microsites in no-CWM gardens and 
12 in high-CWM gardens, meaning that each location had 24 
FWM pieces per species, giving 240 FWM pieces total across 
the locations, of which 2 were not recovered. The same symbol 
design is used in (b) which plots the linear model coefficients 
(Table  S5), with symbols only shown in this plot to identify 
species and the mean soil temperature of each location. Plot-
ting the model using the conditional coefficients reveals how 
decomposition is co-dependent on proximity to CWM, species 
identity, mean temperature of the location and FWM volume, 
where the greatest decomposition was observed with narrow 
maple FWM pieces, at the warmest location, which were next 
to CWM. To estimate mean density loss, we used the predic-
tor mean values for soil temperature and initial density for each 
species, along with proximity to CWM as a binary variable 
(0 = far, 1 = near), and FWM volumes reflecting the observed 
range for these experimental FWM pieces (where narrow = 119 
cm3, mean = 229 cm3 and wide = 410 cm), with all other pre-
dictors held at their mean values

▸
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Discussion

Given the importance of CWM as a resource from 
which wood-rot fungi can colonize new deadwood 
inputs, we hypothesized that FWM pieces adjacent as 
opposed to away from CWM would decompose faster. 
Our data are consistent with CWM proximity as a 
causal predictor that accelerates the decomposition of 
new deadwood inputs to forest floors (Figs. 2, 3 and 
4). The size of this proximity effect was dependent 
on the species identity of the deadwood inputs, where 
the decomposition of species with higher initial wood 
density and N content, such as red oak, responded lit-
tle to CWM proximity whereas those species with the 
lowest density wood, namely red maple and eastern 
white pine, responded strongly (Fig.  2). Our infer-
ences about these main and interactive effects of 
CWM proximity were robust to the analytical deci-
sions we made regarding how to represent decompo-
sition (e.g., mass C vs. density loss) and which pre-
dictors to include in our models (Tables S2-4). The 
fact that such decisions also consistently identified 
well-established regional controls such as climate and 
wood traits (Oberle et al. 2020; Seibold et al. 2021), 
within the milieu of high and unexplained local 
and regional variation in the decomposition rates 
of downed deadwood, should build confidence that 
CWM proximity will be reproducible as a regional-
scale control, at least within eastern U.S. temperate 
forests.

Fine-scale estimates of CWM density across the 
U.S. are available through the Forest Inventory and 
Analysis database (Woodall et al. 2013; Wilson et al. 
2013), and CWM stocks vary predictably with for-
est growth and management (Zhu et  al. 2017; Pugh 
et al. 2019; Woodall et al. 2021). Further, the density 
of CWM across a forest stand is relatively straight-
forward to measure (Waddell 2002). These databases 
and measurements, as well as those available in many 
other countries (Russell et al. 2015), could be lever-
aged to integrate and parameterize CWM proximity 
as a control within C cycle and ecosystem models that 
estimate wood decomposition. However, integration 
of our findings into models would likely benefit from 
an understanding of how increasing distance from 
CWM translates to decomposition rates, whereas we 
simply investigated proximity as a binary variable. 
Further, representation of new ecological variables 
in C cycle models requires that they meaningfully 

Fig. 4   Wood decomposition of FWM pieces of two tree species were 
strongly affected by main and interaction effects of time, wood traits 
and presence of downed coarse woody material (CWM) in experimen-
tal common gardens. Decomposition is represented as wood density 
loss after 13, 25 and 49 months of field incubation at one location in 
northeastern U.S. temperate, mixed forest. FWM pieces were 10-cm 
long and in common gardens with no- (open symbols) or high- (closed 
symbols) CWM abundance in the forest understory. Plate a shows the 
individual data points and plate b plots the mean effects of the predic-
tors and their interactions as estimated from the regression models. 
That is, in (a) are observations from 181 FWM pieces, with the FWM 
pieces in no-CWM gardens on the left (‘far’) and high-CWM gardens 
on the right (‘near’) above each collection point. Observations are jig-
gered within each grouping so that they can be discerned. When estab-
lishing the common gardens, 192 FWM pieces were placed in groups 
of eight (4 per species) in 24 paired microsites, with 12 microsites in 
no-CWM gardens and 12 in high-CWM gardens, meaning that each 
garden type had 48 FWM pieces per species. One FWM piece of 
each species was collected from each microsite at 13 and 25 months, 
and two per species at the 49-month collection, albeit 11 FWM pieces 
placed in the field could not be found. The same symbol design is used 
in (b) which plots the linear model coefficients (Table S6), with sym-
bols only shown in this plot to identify species and the months of field 
incubation. Plotting the model using the conditional coefficients reveals 
how the effect of proximity to CWM strengthens as field incubation 
time increases, regardless of species identity or FWM volume (i.e., 
width). To estimate mean density loss and FWM volumes see legend 
to Fig. 3
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change model predictions and confidence (Kyker‐
Snowman et al. 2022). For wood decomposition, con-
fidence in model projections is currently low (Keenan 
et al. 2013), suggesting ample need to resolve param-
eter and structural uncertainties. Our work helps to 
address these uncertainties, by identifying and quanti-
fying a heretofore underappreciated control that influ-
ences regional-scale wood decomposition dynamics.

We reasoned that we could not directly test, in 
the field and without introducing numerous experi-
mental artifacts, the hypothesized causal mechanism 
that CWM proximity effects were mediated through 
higher fungal colonization rates. Instead, we evaluated 
alternate mediating mechanisms that might explain 
the positive effects of CWM proximity (Fig.  1). By 
measuring soil moisture in each microsite, we tested 
the possibility that CWM creates favorable microcli-
mate conditions that facilitate higher wood-rot fun-
gal activity (Rayner and Boddy 1988). The low col-
linearity between soil moisture and CWM proximity 
in the regression models, and the fact that inclusion 
of moisture did not affect the CWM proximity coef-
ficient, suggested the mechanism of CWM effect was 
likely not mediated via modification of the microcli-
mate. Equally, none of the soil variables related to 
C and N availability emerged as a reliable predictor 
of field decomposition rates, and nor did their inclu-
sion in models obscure the CWM proximity effects. 
As such, there was little evidence that CWM created 
a more fertile microenvironment that in turn permit-
ted more rapid wood decomposition via translocation 
of nutrients via fungal hyphae into the decomposing 
FWM pieces (Cairney 2005). Lastly, there was no 
evidence for unmeasured variables that might have 
created a spurious association between CWM prox-
imity and decomposition rates in the observational 
transects, because the CWM proximity effects were 
positive and of similar magnitude in the common gar-
dens. As such, our work suggests that CWM proxim-
ity is a causal driver of faster wood decomposition 
rates. The precise mechanism(s) mediating this effect 
remain unresolved. However, the substantial literature 
on fungal community dynamics as drivers of marked 
differences in wood decomposition rates in boreal and 
temperate forests (Toljander et al. 2006; van der Wal 
et al. 2015; Lustenhouwer et al. 2020; Smith and Peay 
2021), builds evidence for the likelihood that CWM 
proximity effects are mediated via more rapid fungal 
colonization of new inputs of downed dead wood.

Regardless of the causal mechanism(s) underpin-
ning the CWM proximity effects, we observed within-
location variation in wood decomposition rates of the 
same tree species which was larger than the magni-
tude of among-location variation in mean decomposi-
tion rates. Marked within-location variation in wood 
decomposition rates is to be expected (Boddy et  al. 
1989; Bradford et  al. 2014, 2021), and our regres-
sion models consequently had relatively low explana-
tory power (e.g., 30% for the observational transects, 
Table  1) when compared to numerous other multi-
location studies (Moore et  al. 1999; Pietsch et  al. 
2014; Zhu et al. 2017). The difference in explanatory 
power most likely arises because our study had high 
within-location replication across local gradients in 
controls, whereas many prior studies focus instead on 
minimizing within-location variability and maximiz-
ing the number of locations (Bradford et al. 2016). To 
explore the potential implications of these differences 
in study design for understanding controls on wood 
decomposition, we conducted a post-hoc analysis by 
aggregating our observational transect data at three 
different spatial grains: (a) mean values per climate 
(at the level of location) or by species, (b) mean val-
ues per location per species, and (c) individual FWM 
pieces (i.e., not aggregated). We then ran univariate 
regressions with climate or initial wood density as 
predictors.

When microclimate was aggregated to a location-
level mean, or initial wood density to a species-
mean, ~ 90% and 65% of the variation in these data 
were explained, respectively (Fig.  5a, d). When 
aggregated at a finer resolution to represent mean val-
ues per species at each location (Fig. 5b, e), variation 
explained dropped to 17% for microclimate and ~ 42% 
for traits, and even further (8% and 17%, respectively) 
for the individual data (Fig. 5c, f). The analysis shows 
that aggregating data on climate and trait controls at 
increasingly coarse spatial grains – akin to a focus 
on only among-location predictors – can flip conclu-
sions based on variance explained about the relative 
influence of different controls (Hu et  al. 2018; Joly 
et al. 2023). The analysis equally highlights that care 
must be taken to match the scale of inference (e.g., 
means vs. individual observations) about controls to 
the grain at which they influence the response vari-
able (Ruel and Ayres 1999; Gelman et al. 2007; Brad-
ford et al. 2014). Consequently, by focusing our infer-
ence on individual observations we identified CWM 
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proximity as a causal predictor exerting and interact-
ing with known climate and trait controls on wood 
decomposition at a regional scale.

Our study adds to growing evidence that mul-
tiple controls operate collectively and condition-
ally on wood decomposition rates at regional scales 
(Oberle et  al. 2018, 2020; Hu et  al. 2018; Brad-
ford et  al. 2021). For example, the effects of initial 

wood density and proximity to CWM strengthened 
over time, whereas the influence of FWM volume 
decreased. This temporal conditionality in effect 
sizes, in addition to our identification of CWM prox-
imity as a control on wood decomposition, empha-
sizes that future work should be conducted at multi-
ple temporal and spatial grains (Harmon et al. 2020), 
and move beyond asking which control is dominant 

Fig. 5   Univariate regressions of wood decomposition of five 
tree species in relation to soil microclimate (a–c) and ini-
tial wood density (d–f). The amount of variance explained 
(adjusted r2) in these data (from the observational transects: 
Fig. 1a) decreases markedly as the predictor and response vari-
ables for the 745 FWM pieces are increasingly disaggregated 
from the location (a) or species (d) level means where n = 5, 

to representation as species by microclimate means (b and e, 
n = 15), to the 745 individual observations themselves (c and 
f). See Fig. 1 legend for details on the study design. Note that 
the regression coefficients (with standard error in parentheses) 
for the predictors are for the univariate relationships, making 
them non-conditional, and so they differ to those presented in 
the linear mixed model shown in Table 1 and plotted in Fig. 1
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(because the answer will be context dependent). Our 
study design likely also omitted some important con-
trols. For example, as described in the Methods we 
heat treated all FWM pieces prior to field placement 
to ensure we did not spread pests and pathogens. It 
is unclear as to whether this heating kills endophytic 
fungi, but their presence at the initial stages of wood 
decomposition can alter fungal colonization dynamics 
and decomposition rates (Cline et  al. 2018). Future 
work is therefore needed to quantify CWM proxim-
ity effects on the decomposition of new deadwood 
inputs that are matched to the location where the 
wood was growing, removing the need for heat treat-
ment. Such work should recognize the multicausal 
and scale-dependent regulation of wood decomposi-
tion rates, and how study design and analysis can dic-
tate which controls emerge as most important  (e.g., 
Fig. 5). Doing so will mean that future studies have 
a high likelihood of advancing knowledge of wood 
decomposition in a manner that can be used to build 
confidence in C cycle and forest ecosystem model 
projections.

If our results hold generally across eastern U.S. 
temperate forests, they suggest that depletion of 
CWM stocks in this system may have had conse-
quent ecological effects by slowing wood decompo-
sition rates at the ecosystem scale. Stocks of CWM 
in eastern U.S. forests have been depleted through 
overly intensive forest management, and management 
regimes are now being adapted in these and other for-
ests across the world to rebuild CWM stocks (Linden-
mayer et al. 2002; Pedlar et al. 2002; Woodall et al. 
2021). The focus of these efforts has been the protec-
tion and restoration of forest biodiversity that relies 
on dead wood as refuge (e.g., in droughts or fire), 
as sites of seedling regeneration, and as food and 
habitat for many understory invertebrates and verte-
brates (Stokland et  al. 2012). Such efforts are likely 
to restore energy flows through brown food webs in 
forests (Currie 2003). Our results suggest that higher 
CWM stocks may further enhance such flows through 
brown food webs because higher CWM abundance 
will likely accelerate decomposition rates of fresh 
deadwood inputs. The eventual consequences of this 
restoration of decomposition channels in forests is not 
fully known but is likely to lead to improved forest 
health and resilience.
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