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Coarse woody debris accelerates the decomposition
of deadwood inputs across temperate forest
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Abstract Wood decomposition is regulated by
multiple controls, including climate and wood traits,
that vary at local to regional scales. Yet decomposi-
tion rates differ dramatically when these controls do
not. Fungal community dynamics are often invoked
to explain these differences, suggesting that knowl-
edge of ecosystem properties that influence fungal
communities will improve understanding and pro-
jection of wood decomposition. We hypothesize that
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deadwood inputs decompose faster in forests with
higher stocks of downed coarse woody material
(CWM) because CWM is a resource from which lig-
nocellulolytic fungi rapidly colonize new inputs. To
test this hypothesis, we measure decomposition of
1,116 pieces of fine woody material (FWM) of five
species, incubated for 13 to 49 months at five loca-
tions spanning 10°-latitude in eastern U.S. forest. We
place FWM pieces near and far from CWM across
observational transects and experimental common
gardens. Soil temperature positively affects location-
level mean decomposition rates, but these among-
location differences are smaller than within-location
variation in decomposition. Some of this variability is
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caused by CWM, where FWM pieces next to CWM
decompose more rapidly. These effects are greater
with time of incubation and lower initial wood den-
sity of FWM. The effect size of CWM is of the same
relative magnitude as for the known controls of tem-
perature, deadwood density and diameter. Abundance
data for CWM is available for many forests and hence
may be an ecosystem variable amenable for inclusion
in decomposition models. Our findings suggest that
conservation efforts to rebuild depleted CWM stocks
in temperate forests may accelerate decomposition of
fresh deadwood inputs.

Keywords Basidiomycetes - Carbon cycling -
Downed deadwood - Ecosystem controls - Scale -
Wood-rot fungi

Introduction

A critical determinant of the carbon (C) balance of
forests is the turnover rate of deadwood (Harris et al.
2021). Representing 73+6 Pg C globally, which
is~17% of the total wood carbon in the world’s for-
ests, deadwood is a substantial C stock (Jia-bing et al.
2005; Weedon et al. 2009; Pan et al. 2011). The decom-
position of this stock is a key intermediary step in the
conversion of live tree biomass to soil organic C, the
two largest C stocks in forests (Heath et al. 2003; EPA
2013). Yet how the decomposition rate of deadwood
is controlled remains highly uncertain (Keenan et al.
2013). Such uncertainty compromises the reliability
of global and regional C-cycle model projections (Yin
1999; Zell et al. 2009; Pugh et al. 2019), as well as our
ability to anticipate the effects of environmental change
on forest ecosystems (Cornwell et al. 2009) because
deadwood is a hotspot for nitrogen (N) accumulation
and key habitat for many species of animals, plants
and microbes (Lindenmayer et al. 2002; Harmon et al.
2004; Stokland et al. 2012). Understanding the controls
on wood decomposition can instrumentally inform how
stocks of deadwood should be managed to sustain for-
est nutrient supplies, biodiversity, productivity and C
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storage (Lindenmayer et al. 2002; Edman et al. 2004;
Olsson et al. 2011; Harmon et al. 2020).

Many C cycle models assume that decomposi-
tion rates of deadwood at regional-to-global scales
are mainly a function of climate (Oleson et al. 2013).
Empirical studies show that wood decomposition
rates at these scales are also strongly controlled by the
traits of deadwood (e.g., initial wood density), as well
as its size and orientation (e.g., whether standing or
downed) (Weedon et al. 2009; Freschet et al. 2012;
Jackson et al. 2013; Bradford et al. 2021). Yet decom-
position rates can vary to the same extent locally as
they do regionally even when deadwood traits, size
and orientation are the same (Boddy and Swift 1984;
Boddy et al. 1989; Bradford et al. 2014, 2021). The
primary factor invoked to explain such dramatic
local-scale differences in decomposition rates, at
least in temperate forests, is the composition of the
fungal community that colonizes deadwood (Boddy
and Swift 1984; van der Wal et al. 2015; Smith and
Peay 2021). This conclusion is consistent with myriad
experimental and observational studies, suggesting
the prominent role of fungal-life history strategies,
functional trait expression and competitive interac-
tions in governing wood decomposition rates at local
scales (Toljander et al. 2006; Fukami et al. 2010;
Dickie et al. 2012; Smith and Peay 2021). One poten-
tial way to reduce the uncertainty associated with
projecting wood decomposition rates may be to iden-
tify ecosystem properties that affect fungal coloniza-
tion of deadwood and then quantify their influence on
decomposition rates at regional scales.

The abundance and distribution of downed, coarse
woody material (CWM) in forest understories is an
ecosystem property that might cause differences in
decomposition rates because it serves as a source
of wood decomposers such as basidiomycete fungi
capable of brown- and white-rot decay. These fungi
are considered primary agents of wood decompo-
sition (Boddy et al. 2008; van der Wal et al. 2015).
Of importance are lignocellulolytic basidiomy-
cetes that aggregate their hyphae into thick mycelial
cords or rhizomorphs (Crowther et al. 2014). These
hyphal-aggregating fungi are referred to as “non-unit
restricted fungi” because their mycelia can extend
from their existing substrates to access discrete wood
resources. This ability to forage across the soil-litter
interface and connect discrete pieces of deadwood,
combines with their ability to translocate water,
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nutrients and C among this resource network (Cair-
ney 2005). These abilities confer a strong competi-
tive advantage to non-unit restricted fungi because
they can leverage their high abundances and abilities
to redistribute energy and nutrients from one piece of
deadwood to rapidly colonize fresh deadwood inputs.
As such, non-unit restricted fungi often outcom-
pete other wood-rot fungi (Boddy 2000; Crowther
et al. 2014) and facilitate rapid decomposition of the
fine and CWM classes in which they predominate
(Thompson and Rayner 1983; Coates and Rayner
1985). However, foraging of these lignocellulolytic
fungi is likely to be maximal nearer (e.g.,<1 m) to
CWM because invertebrate grazing, such as by iso-
pods and millipedes, increasingly limits fungal for-
aging with greater distance from CWM (Crowther
et al. 2011). The abundance and distribution of CWM
may then be a key ecosystem property influencing the
decomposition rates of deadwood inputs. If found to
be the case, such knowledge could be immediately
leveraged to more confidently project wood decompo-
sition rates given the availability of national datasets
on CWM stocks (Woodall et al. 2013; Wilson et al.
2013).

We hypothesized that decomposition of new
deadwood inputs is faster when they are adjacent to,
as opposed to away from, downed CWM because
wood-rot fungi rapidly colonize and decompose the
proximal resource. As well as foraging by non-unit
restricted fungi, more rapid colonization adjacent to
CWM might also occur via spores and fragments of
hyphae dispersed, for example, by animals such as
beetles (Edman et al. 2004; Olsson et al. 2011). We
do not attempt to resolve these different colonization
mechanisms but do attempt to separate them from
other mechanisms of CWM effects such as modifica-
tion of the microclimate and soil nutrient availabil-
ity (Harmon et al. 2004; Edman et al. 2004; Hafner
et al. 2005; Olsson et al. 2011). To test the coloni-
zation hypothesis, we established study plots at five
locations, spanning a mean soil temperature gradient
of ~10 °C, in eastern U.S. temperate, mixed forest. We
then followed the decomposition of pieces of freshly
cut boles from saplings of five tree species which dif-
fered in their initial wood traits. We used a structural
causal modeling approach to estimate the effect size
of CWM proximity on decomposition rates and to
explore the potential for different causal pathways to
explain our results. We find that proximity to downed

CWM accelerates the decomposition of fresh dead-
wood inputs and that the alternate causal pathways
did not account for the observed effects. Our study
reinforces the expectation that local conditions which
promote fungal colonization accelerate wood decom-
position rates and situates this knowledge in a broader
spatial context, whereby ecosystem properties influ-
encing these fungi exert control on wood decomposi-
tion rates at regional scales.

Methods
Study locations and design

We worked at five locations which were, from north
to south: (1) Hubbard Brook Experimental For-
est (HBR), New Hampshire; (2) Yale-Myers Forest
(YMF), Connecticut; (3) Mountain Lake Biologi-
cal Station (MLB), Virginia; (4) Coweeta Hydro-
logic Laboratory (CWT), North Carolina; and (5)
Whitehall Experimental Forest (WHF), Georgia.
The locations spanned a regional climate gradient,
with variation in macroclimate generated by latitudi-
nal and elevational differences among the locations
(Table S1). The stands in which we established our
work at each location were dominated by Quercus-
Carya (i.e., oak-hickory) overstory species at the
four most southerly locations, and by Fagus-Acer-
Betula (i.e., beech-maple-birch) at the most north-
erly location. All stands were second growth, which
dominate eastern U.S. temperate forests, and the
stand ages (80—100 years old) provided ample time
for the accrual of dead wood. Table S1 provides fur-
ther details on location geography and ecosystem
characteristics.

At each location in May 2016, we established
observational transects and experimental common
gardens. In each we followed the decomposition of
pieces of freshly cut boles from saplings of five tree
species, both next to and distant from CWM. The
freshly cut boles had dimensions consistent with
the diameter definition for large fine-woody debris
(FWM: 2.54 to 7.6 cm dia.) and narrow pieces of
CWM (.e., dia.>7.6 cm) (Woodall and Monleon
2008). We describe their preparation in Sect. “FWM
pieces” and, given their narrow diameter (ranging
from 3.5 to 8.0 cm) and short length (i.e., 10 cm),
refer to them going forward as FWM pieces.
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The observational transects consisted of a 140-m
transect (or two transects summing to 140 m) that ran
from the toe of a slope to the ridge to capture vari-
ation in microclimate, particularly moisture avail-
ability given its importance as a control on decom-
position rates (Dix 1985; Lustenhouwer et al. 2020).
Every 10 m, starting at 0 m on the transect (and
hence at 15 points along the transect), one FWM
piece of each of the five species was placed end-on-
end (each piece 5 cm apart) running parallel to a
naturally occurring, downed tree bole (Fig. S1) that
either crossed the transect or was the nearest observ-
able perpendicular to the transect position. We only
placed FWM pieces next to downed wood if it met
criteria for the definition of CWM following Woodall
and Monleon (2008), where the downed wood was
greater than 7.6 cm in dia. and more than 1-m long.
Further, the downed wood had to be in decomposi-
tion stages II to IV (Waddell 2002), which are the
dominant decomposition stages in eastern U.S. forests
(Woodall et al. 2013). A second set of FWM pieces
was organized similarly but at least 5 m away from
downed CWM. Cords and other hyphal aggregations
of non-unit restricted fungi can potentially forage tens
of meters but are presumed most abundant proximal
to the deadwood source they colonized (Thompson
and Rayner 1982, 1983).

Overall, the observational transect design involved
placing 30 FWM pieces per species and there-
fore 150 FWM pieces total per location (750 FWM
pieces across all locations: 15 microsite patches per
transect X2 CWM positions X5 species X5 loca-
tions). FWM pieces were placed flush with the litter
layer and in contact with the surface soil. The short
length of the FWM pieces (i.e., 10 cm) ensured that
the entire underside of the FWM piece was in contact
with the soil, permitting even access along the piece
to the soil surface and hence a more standard micro-
site environment. The design ensured that no FWM
pieces sat above the soil because such aerial place-
ment can severely limit wood moisture and hence fun-
gal-mediated decomposition (Bradford et al. 2021).

Common gardens consisted of six 25-m? (5% 5 m)
plots in a paired design at each location. Gardens
were established along the same slope as the obser-
vational transects to capture microclimate variation,
with one pair of gardens at the toe, mid and top (i.e.,
ridge) of the slope. In each pair of gardens, CWM
was manipulated to create zero versus high-density
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downed CWM (Fig. S2). Specifically, natural CWM
in decay classes II to IV (and of approximately equal
volumetric proportions) was collected adjacent to
the transects and aggregated to create the high-den-
sity CWM gardens. We selected garden locations
with minimal-to-no current CWM, to avoid select-
ing gardens already containing elevated abundances
of hyphal biomass of wood-rot fungi. Gardens were
periodically checked to remove any deadwood that
fell into them across the course of the study.

FWM pieces of two of the species (i.e., red maple
and eastern white pine) were placed in four micro-
sites within each common garden. In the high-density
CWM gardens, FWM pieces were placed imme-
diately adjacent to downed CWM. A single maple
and pine piece was placed in each garden microsite,
and all FWM pieces were placed following the same
spacing and soil-contact protocol as for the observa-
tional transects. At each common garden there were
then 8 FWM pieces, and with three garden pairs per
location, there were 24 FWM pieces per tree species
and 48 total per location (yielding 240 FWM pieces
total across the five locations). At the YMF location,
we placed additional maple and pine FWM pieces in
each microsite and harvested one of each species per
microsite at 13 and 49, as well as 25, months after
garden establishment.

FWM pieces

We used wood from five tree species which differ
in trait values in ways that influence decomposition
rates, such as wood density, initial N content and
secondary chemicals (Weedon et al. 2009; Russell
et al. 2014). The species were: (1) northern red oak:
Quercus rubra L.; (2) American beech: Fagus grandi-
folia Ehrh.; (3) black or sweet birch: Betula lenta L.;
(4) red maple: Acer rubrum L.; and (5) eastern white
pine, Pinus strobus L. These species are representa-
tive of common overstory species, that occur across
the geographic range encapsulated by the locations
and differ by growth habit (i.e., broadleaf, deciduous
hardwood vs. needle, evergreen, softwood), mycor-
rhizal status (i.e., arbuscular or ectomycorrhizal asso-
ciations) and numerous wood traits (e.g., density; see
Table S1). Variation in wood traits among species
was expected to translate to a pronounced range in
decomposition rates (Lee et al. 2022).
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To prepare the FWM pieces, we first sourced ~20
individuals of each tree species from only the YMF
location to minimize potential within-species vari-
ation in wood traits associated with environmen-
tal and/or genotypic variation. Our study was not
designed to test how the traits of woody species affect
decomposition. Rather, we chose species that repre-
sented realistic trait variation to investigate the gener-
ality of our findings about CWM effects across wood
traits. To further minimize within-species trait varia-
tion we also used only wood cut from the main bole
(i.e., trunk) of the trees we harvested. We selected
naturally regenerating saplings of each of the five
species. Saplings with a diameter of between 6 and
8 cm at 1.37 m above ground-level were selected,
felled, stripped of branches and then transported to
Yale’s main campus (New Haven, CT, USA) to be cut
into 10-cm long FWM pieces within 5 days of har-
vest. Our choice to use smaller diameter trees meant
heartwood formation was essentially absent and so
did not create within- and among-FWM variation in
decomposition rates (Noll et al. 2016).

We generated variation in deadwood volume by
selecting FWM pieces from the boles that spanned
a diameter range of 3.5 cm to 8.0 cm, generating
fivefold variation in FWM volume. Deadwood vol-
ume strongly influences decomposition rates given
that smaller deadwood surface area to volume ratios
(i.e., wider diameters) impede rates of colonization
by microbial and animal decomposers (Oberle et al.
2018). We measured the diameter of the ends of each
cut FWM piece to the nearest 0.1 cm with calipers
to determine volume of each piece. As with traits,
we varied deadwood volume to look at the general-
ity of CWM effects on wood decomposition and not
to investigate volume effects per se. We distributed
FWM pieces based on their initial volume equally
among locations and, within a location, matched
FWM volumes in the microsites that were grouped
spatially into a pair, one away from and one next to
CWM. We used smaller rather than large diameter
classes of downed deadwood because they are espe-
cially relevant to understanding field decomposition
rates in managed forest because most woody debris
inputs to the forest floor are often in the smaller size
classes (<15 cm dia.) (Kruys et al. 1999; Pedlar et al.
2002). In eastern U.S. forests, small diameter classes
(~10 cm or less) dominate downed woody material
stocks (Woodall et al. 2013).

FWM pieces were cut on a bandsaw with bark left
on, and then uniquely numbered with an aluminum
tag affixed with a short screw. Tagged FWM pieces
were placed in an oven for~2 h at 72 °C, following
U.S. National Firewood Task Force recommenda-
tions for heat treating FWM pieces to prevent move-
ment of pests and pathogens among forests. The aim
of this treatment is to maintain internal wood tem-
peratures of 71.1 °C for a minimum of 75 min. The
treatment does not influence the chemistry nor alter
the moisture content of the wood because of its short
duration. Although we deliberately chose our har-
vest location to minimize pest risk (e.g., both emer-
ald ash borer and Asian longhorn beetle—the two
dominant hardwood insect pests in the region—were
both undetected at our location at the time of tree
harvest in April 2016), we heat-treated the FWM
pieces as a precaution given that we were distribut-
ing them across the east coast. Once heat treated, the
initial fresh mass (to 0.01 g) of the FWM pieces was
measured at the same time as the end diameters were
recorded. FWM pieces were then stored in paper bags
before being placed in the field in May 2016.

When preparing the FWM pieces, between 7 and
25 pieces per species (with the exact number deter-
mined by those in excess of the number needed for
field placement) were returned to the ovens and dried
to constant mass at 70 °C, to estimate the initial mois-
ture of the FWM pieces for field placement. Six of
these FWM pieces per species were then used to
determine total C and N concentrations. These data
were used—along with the dimensions data—to esti-
mate the initial wood density, mass and C and N con-
tents for each species (Table S1). We used the initial
moisture data, along with the fresh mass and dimen-
sions data for every FWM piece placed in the field, to
estimate the initial density of each piece.

FWM decomposition

On retrieval of the FWM pieces, any adhering soil,
leaves and fungal cords were brushed away before the
pieces were placed into individual Ziploc bags and
returned to the lab where they were stored at 5 °C
until further processing. In the lab, the FWM pieces
were gently brushed clean of any remaining external
material, before fresh mass was recorded along with
the piece’s length and end diameters (to estimate final
volume for use in final density calculations), as well
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as visual scores of termite activity and decomposition
stage. Next, one third of the transect FWM pieces
(10 per species per location) were selected from five
paired microsites arrayed at the start, end and along
the transects. These FWM pieces were drilled with
an 8-mm dia. bit across the length of each piece to
generate sawdust for additional measurements. All
FWM pieces were then weighed and placed in an
oven at 70 °C and dried to constant mass before being
weighed again to determine wood dry mass and mois-
ture content.

Using the sawdust samples, we measured total C
concentrations and an estimate of active microbial
biomass in the decomposing wood. The sawdust was
separated into two samples, with one set of sam-
ples dried to 70 °C, then ball milled to a fine pow-
der before analysis for total C (and N concentrations
for initial FWM pieces) using an elemental analyzer
(Costech ESC 4010, Costech Analytical Technolo-
gies Inc.,Valencia, CA). We used these total C meas-
urements to calculate mass C loss given the high
prevalence of termites at our most southerly location
(King et al. 2013). Specifically, we were concerned
that termite colonization of the decomposing FWM
pieces could obscure density and mass loss estimates
because termites bring mineral soil into decomposing
wood. Determining percentage mass C loss corrects
for mineral-soil contamination (Ulyshen and Wagner
2013).

The second sawdust sample, which was kept fresh
at 5 °C until analysis, was used to estimate active
microbial biomass following Maynard et al. (2018).
Briefly, we used a modified substrate-induced respira-
tion approach (Beare et al. 1990; Fierer et al. 2003)
that incubates at 20 °C a fresh sawdust subsample
with autolyzed yeast-extract in DI water as a labile C
substrate and measures respiration over a 4-h period
with an infrared gas analyzer (IRGA; Model LI-7000,
Li-Cor Biosciences, Lincoln, Nebraska, USA). Car-
bon dioxide concentrations were converted to rate
of C-CO, production, as mass C produced per hour
per dry mass-equivalent wood. The short timescale
of the assay has been shown to be a good proxy for
total microbial biomass in soils and litters (Fierer
et al. 2003; Frey et al. 2004) and is highly correlated
with direct measures of fungal biomass (Beare et al.
1990). However, we refer to the assay as a measure
of total microbial activity since it does not separate
fungal and bacterial activity in deadwood. The same
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set of additional assays was performed for one maple
and one pine FWM piece from every microsite in
the common gardens at YMF for both the 25- and
49-month harvests.

Microclimate and soil measures

We measured the end diameters, length and decompo-
sition stage of the CWM adjacent to where we placed
the FWM pieces and of all CWM in the common gar-
dens. For all microsites we took spot measurements
of soil temperature and moisture to 5-cm depth. Per
microsite, three spot soil measurements were taken
and averaged for temperature using a stainless-
steel thermometer and for volumetric soil moisture
with a time domain reflectometry probe (Campbell
Hydrosense™), inserted at a~45° angle with 12-cm
rods. Microclimate measurements were taken at six
additional time points and for different seasons over
the 25-month field-incubation period. The repeated
discrete point measurements were intended to cap-
ture relative differences in soil microclimate variables
over space, which are considered robust across time
(Vachaud et al. 1985; Vanderlinden et al. 2012).

At establishment of the observational transects,
we sampled surface (0-5 cm depth) soils at each of
the 30 microsites at each location by taking ~ 10 2-cm
dia. cores and pooling them into a Ziploc bag, which
yielded 150 soil samples total. Soil sampling for the
common gardens was carried out the same way, with
the exception that soils were pooled per garden and
collected in June 2018 when the FWM pieces were
harvested. All soils were characterized for pH, active
microbial biomass, soil organic matter (SOM), total C
and N concentrations, C mineralization rates, and net
potential N mineralization and nitrification. Prior to
analysis, we homogenized and then passed the soils
through a 4-mm sieve. We did not use a 2-mm sieve
because, to pass effectively through that sieve size,
we would have had to air dry the soils and, along with
re-wetting, this would have altered the microbial pro-
cess rates that we then measured.

For pH, we mixed each sample with water in a
1-to-1 volumetric ratio and measured the pH of the
supernatant after 10 min using a benchtop meter
(VWR sympHony Sb70p; Allen 1989). For active
microbial biomass (Wardle and Ghani 1995) we used
a modified substrate-induced respiration method, sim-
ilar to that used for the wood samples, that measures
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rates of CO, efflux over a 4-h incubation period (West
and Sparling 1986). Soil total C and N was estimated
on ball-milled samples as described for the wood
samples, and the ball-milled samples were also used
to determine SOM concentrations via loss-on-igni-
tion, where we estimated SOM by calculating mass
loss of soils heated at 375 °C for 18-h in a muffle
furnace.

We estimated microbially-available C concentra-
tions using an assay that determines potential CO,
production rates over a 28-d incubation period at
20 °C (Bradford et al. 2008). The resulting estimate
of labile C is calculated as the cumulative CO, efflux
over the course of the incubation period through inte-
gration of five CO, efflux measurement points (days
1, 4, 11, 21 and 28). Soils were maintained at 65%
water-holding capacity (WHC) over the incubation
and were incubated between measurements at 20 °C
under a humid atmosphere. Soil WHC was checked
weekly to maintain 65% WHC, which is within the
optimal range for microbial activity (Paul et al. 2001;
Langenheder and Prosser 2008). Finally, to deter-
mine potential rates of net N mineralization and net
nitrification, we used a 28-d N mineralization assay
(Robertson et al. 1999), with soils incubated as
for the C-mineralization assays. Initial and 28-day
extractions were analyzed for NH,* and NO;~ con-
centrations using a flow analyzer (Astoria 2, Asto-
ria-Pacific, Clackamas, Oregon, USA). Net potential
nitrification is the difference in [NO;™] between the
incubated and initial samples, and net potential N
mineralization is the difference between the initial
and final sum of [NH,*] and [NO;7] over the 28-d
incubation period.

Inferential analyses

We constructed a structural causal model (SCM,
Fig. 1) that depicted the causal pathways of CWM,
climate and wood trait effects on decomposition rates.
We used the SCM to guide our statistical modeling
to robustly estimate the effect size of CWM proxim-
ity on decomposition rates. We also used the SCM to
evaluate which causal pathways, mediated through the
presence of CWM, most likely operated to influence
wood decomposition rates by including and exclud-
ing causal predictors of wood decomposition, such as
soil moisture, and assessing the influence on the size
of the regression coefficient for CWM proximity. Our

decision regarding which variables to include in the
SCM, and hence the statistical models, was based on
known biological mechanisms that relate each predic-
tor to the response variable rather than model selec-
tion (Hobbs et al. 2012).

For our statistical modeling we used hierarchical
mixed models. The structure of these linear mixed
models (LMMs) allowed us to represent the spatial
structure of our observational transects and common
gardens with FWM pieces clustered per microsite,
and microsites clustered per location. We used the
Ime4 package (Bates et al. 2015) in the statistical pro-
gram R (version 4.2.0; R Core Development Team
2023). For the random effects, microsite was nested
within location. Fixed effects included proximity to
CWM as a binary variable (i.e., 1 for proximate, O for
distant), FWM traits (i.e., initial wood density or N
content), FWM volume, and microclimate (i.e., soil
temperature and moisture). To estimate FWM decom-
position rates, we used percentage mass, density and
C loss as response variables. Given the distribution of
the decomposition response variables, we fit models
using the Imer function for Gaussian-distributed data.

There is potential for strong correlations among
our climate predictors and so we evaluated the
square-root of the variance inflation factors (VIFs)
for the predictors in a model including only main
effects. If values were <2.0 we initially retained the
predictors in the same model, given the expectation
that collinearity was low enough to limit its influ-
ence on the coefficient estimates of the predictors. We
next constructed models with the retained predictors
that included ecologically relevant, two-way interac-
tions, such as initial wood density by soil tempera-
ture. To evaluate the robustness of the coefficient esti-
mates from these models, we conducted a sensitivity
analysis following Bradford et al. (2019) to evaluate
how inclusion/exclusion of interactions, and differ-
ent forms of the same predictor (e.g., mean vs. low
soil temperature) or response (e.g., density vs. mass
C loss), influenced our conclusions. Following this
sensitivity analysis, we calculated > values for the
reported models following Nakagawa and Schielzeth
(2013) to retain the random effects structure.

To examine the mean effect size of proximity to
CWM on decomposition, we took two approaches.
We first compared the size of the standardized coef-
ficients, where standardizing involved centering
continuous and binary variables by subtracting the
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Fig. 1 Structural causal model (SCM) of CWM proximity
effects on decomposition rates of the FWM pieces. We use
the causal assumptions depicted in the SCM to ensure that we
are robustly estimating the causal effect size of CWM prox-
imity and to explore the mechanisms that may mediate this
causal effect. Note that the two modifiers could interact with

mean and then dividing continuous variables by two
standard deviations (Gelman 2008). This approach
puts binary and continuous variables, including
those with different units, on the same scale and
permits unambiguous determination of the size
and sign of interaction effects (Gelman 2008). Sec-
ond, we plotted the influence of changing proxim-
ity, microclimate, wood traits and FWM volume on
decomposition. To do this, we used the unstandard-
ized regression relationships derived from our sta-
tistical models, held all other factors at their mean
for the dataset (i.e., for all observations), and varied
the predictors of interest across the range of values
observed across the study.
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Results
Observational transects

To estimate the conditional effect size of CWM prox-
imity on decomposition rates, we first constructed
statistical models with only CWM proximity, FWM
density, FWM volume and temperature as predictors.
That is, we deliberately omitted any variables that we
identified as “mediators” in our SCM (Fig. 1) because
inclusion of mediator variables can obscure the effect
of the causal predictors that act through them (McEI-
reath 2020). Effects of the known regional-scale
controls on wood decomposition (i.e., initial wood
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density, FWM volume and temperature), as well as
the control under test (i.e., proximity to CWM), were
clearly influential given the size of the standard-
ized coefficients (Table 1). To evaluate these effects,
we plotted these regression relationships using the
unstandardized coefficients (Table 1).

Plotting the individual observations (Fig. 2a) and
the regression relationships (Fig. 2b) revealed that
there was considerable variation in the decomposition
of the FWM pieces recovered from the observational
transects, both within species and within locations.
Within-species variation in decomposition of FWM
pieces often exceeded among-location differences
in mean decomposition rates for the species, as well
as among-species variation in decomposition rates
(Fig. 2). For example, at the warmest location, den-
sity loss of the individual beech FWM pieces varied
from ~20% to more than 90% (Fig. 2a), whereas mean
differences in beech decomposition were between 30
and 50% across locations and, at the same location,
mean species-level differences spanned~20 to 50%

density loss (Fig. 1b). Even at the coldest location,
where the range in decomposition was muted, den-
sity loss of the individual beech FWM pieces varied
from ~ 15% to~60% (Fig. 2).

Despite the high local variation in decomposition
rates, plotting the regression results revealed strong
mean and interactive effects of the causal variables.
For example, the negative interaction between ini-
tial density and proximity to CWM (Table 1) arose
because proximity to CWM accelerated the decompo-
sition of less dense wood (i.e., pine and then maple)
much more so than for denser-wood species like the
oak and beech (Fig. 2b). The standardized coefficient
of this interaction was approximately equivalent to
the main effect of initial FWM volume, and about
a third of the size of the main effect of initial wood
density, which had the largest standardized coefficient
(Table 1). The latter coefficient manifested as strong
species-level differences in density loss, where pine
FWM pieces (least dense) decomposed the slow-
est and oak FWM pieces (which were the densest;

Table 1 Result of linear mixed model® for wood density loss from the observational transect FWM pieces after 25 months of field

incubation at the five eastern U.S. forest locations

Predictor Unstandardized Coefficients Standardized Coefficients
Variables Mean SE Mean SE
Intercept 4.254 11.7833 31.923 0.6818
Proximity to CWM 12.943 4.3699 2.805 1.3553
Initial wood density (g cm™) 29.248 20.0322 14.279 0.9144
Initial wood volume (cm?®) —0.004 0.0327 —-4.923 1.0911
Soil temperature (C) -0.699 0.5412 9.958 1.3633
Proximity X density —18.286 7.4939 —4.438 1.8188
Density X volume —0.058 0.0556 —1.893 1.8179
Density X temperature 3471 0.9311 6.847 1.8370
Fixed 30.1 na 30.1 na
Full 7 44.9 na 44.9 na

Coefficients (mean =+ SE), significance and 72 values are reported and are used to evaluate the influence of proximity to coarse woody
material (CWM), initial wood characteristics (density and volume), and microclimate (mean soil temperature across the field-incu-
bation period) on wood density loss. Unstandardized coefficients are used to plot regression relationships (see Fig. 2b), and standard-
ized coefficients are reported to facilitate comparisons of the effect size of predictor variables on different unit scales; and to facilitate
interpretation of main effects involved in the two-way interactions. Significant (P <0.05) coefficients are shown in bold font

#Mean coefficients and standard error (SE) estimated using an MCMC sampling approach, significance with the Satterthwaite
approximation for REML models, and model 7* values using a method that retains the random effects structure. Random effects
assumed a common slope and for the intercept Microsite (1 to 150) was nested within Location (5 total, with 30 microsites each).
Five FWM pieces (one of each species) were placed in each microsite, meaning 750 FWM pieces total were deployed. The model
used 745 observations given that five FWM pieces were not recovered. In the first column, continuous predictor variables are shown
in regular font and binary predictors in italics. The model was fit with a Gaussian error distribution. Model /2 values are given for the
fixed and full (i.e., fixed + random) effects. The largest square-root of the variance inflation factor (VIF) value was 1.002 for the main
predictor variables when run in a model without interactions and with unstandardized predictors, indicating correlation among the
predictors shown was low enough (i.e., VIF <2.0) to be included in the same model. na=not applicable
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Fig. 2 Wood decomposition of FWM pieces of five tree spe- »
cies were strongly affected by main and interaction effects of
microclimate, wood traits and proximity to downed coarse
woody material (CWM) across observational transects.
Decomposition is represented as wood density loss, as percent-
age of original density, after 25 months of field incubation at
five locations spanning a climate gradient in eastern U.S. tem-
perate, mixed forest. FWM pieces were 10-cm long and placed
far from (open symbols: far) or next to (closed symbols: near)
existing CWM in the forest understories. Plate a shows the
individual data points and plate b plots the mean effects of the
predictors and their interactions as estimated from the regres-
sion models. That is, in (a) are observations from 745 FWM
pieces, with the FWM pieces far from CWM on the left and
next to CWM on the right grouped under each location name
(e.g., HBR) and mean soil temperature (e.g., 10.7 °C). Obser-
vations are jiggered within each grouping so that they can be
discerned. At each location, 150 FWM pieces were placed in
groups of five (1 per species) in 15 paired microsites either
far or next to CWM, meaning that each location had 30 FWM
pieces per species, giving 750 FWM pieces total across the
locations, of which 5 were not recovered. Symbol shapes
depict tree species, with the four deciduous broad-leaf species
shown in blue and green, and the evergreen, needle species
shown in grey. The same symbol design is used in (b) which
plots the linear model coefficients (Table 1), with symbols only
shown in this plot to identify species and to identify the mean
soil temperature of each location. Plotting the model using the
conditional coefficients reveals how the effect of proximity
to CWM is strongly dependent on the species identity of the
FWM pieces, with oak decomposition very little influenced by
proximity, whereas pine decomposition responded strongly. To
estimate mean density loss, we used the predictor mean values
for soil temperature and initial density for each species, along
with proximity to CWM as a binary variable (0= far, 1 =near),
with all other predictors held at their mean values

Table S1) the fastest (compare the intercepts of the
slopes in Fig. 2b). The interaction between initial
density and mean soil temperature (Table 1) revealed
that relative—as well as absolute—species-level differ-
ences were greater at the warmer locations (Fig. 2b).
The relative and absolute magnitude of the main and
interactive effects of the controls we investigated
were similar when we expressed decomposition as
either percentage mass or C loss (compare Tables S2
and S3). As such, potential translocation of mineral
soil into decomposing FWM pieces by termites did
not appear to influence modeled effects of trait, cli-
mate and proximity to CWM on decomposition. We
therefore continue to focus our main results on den-
sity loss.

We next ran models where we included the media-
tor variables that we measured (Fig. 1) to evaluate
if they influenced the coefficient estimate for CWM
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proximity, which would then suggest that the CWM
proximity effect was, at least in part, mediated by the
influence of CWM on these predictors. The measures
related to soil nutrient cycling, such as potential net N
mineralization rates, were minor or inconsistent pre-
dictors of decomposition rate and had no influence on
the coefficient estimate for CWM proximity. Equally,
inclusion of soil moisture as a predictor did not affect
the influence of CWM proximity but it did for tem-
perature. Specifically, soil moisture and temperature
were moderately correlated (Pearson’s r=— 0.542,
df=148) and strongly influenced one another’s coef-
ficient estimates. The correlation arose because the
warmer locations had drier soils on average. Given
that moisture and temperature are considered strong
controls on wood decomposition rates (Moore et al.
1999), we ran models with either microsite soil tem-
perature or moisture to evaluate if inclusion of either
influenced the proximity to CWM main and interac-
tion effects. They did not (Tables 1 and S4) and in
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subsequent analyses we used soil temperature as our
climate predictor because that model explained more
variation and because we found that FWM pieces
within the same microsite could differ markedly
in wood moisture content, suggesting a disconnect
between soil moisture and the moisture content of
surface-placed, downed wood.

Given the fact that soil moisture in a microsite
responded minimally to CWM proximity and was a
poor surrogate for observed moisture content of the
FWM pieces, we considered running FWM mois-
ture content (at harvest) as a predictor. We did not
pursue this analysis because wood moisture is both a
predictor and outcome of decomposition (Dix 1985).
Consequently, the causal direction(s) of the correla-
tion (Pearson’s r=0.435) between wood moisture
and density loss is uncertain. Equally, we did not run
active microbial biomass as a predictor—which was
correlated with mass C loss (Pearson’s r=0.438)—
because we could not discern the causal role of micro-
bial biomass from the associated controls on decom-
position such as CWM proximity and temperature.
Yet the positive correlations between decomposition
and wood moisture content, as well as active micro-
bial biomass, are consistent with expected changes
in wood biophysical variables as it is decomposed
by wood-rot fungi (Dix 1985; Bradford et al. 2021).
Further, the coefficients for the controls we evalu-
ated were robust to statistical model structure (e.g.,
inclusion of two-way interactions, Table S4), the
form of the predictor (e.g., low vs. mean soil tempera-
ture; initial wood density vs. initial wood N content,
Table S4), as well as the form of the response variable
(i.e., density, mass or C loss; compare Tables 1, S2,
S3). As such, regardless of the analytical decisions
that we made, our observational transect data were
consistent in identifying proximity to CWM as a con-
trol that accelerates wood decomposition, and in find-
ing that the effect did not appear mediated via CWM
influences on soil moisture or nutrient availability.

Common gardens and time course data

The common gardens gave us greater experimental
control to attribute effects to CWM presence because
they reduced the likelihood that unmeasured vari-
ables, which might be associated with accumulation
of CWM, could instead explain the effects of CWM
proximity in the observational transects. Again,

following our SCM, we began analysis of the com-
mon garden data by evaluating the effects of predic-
tors that were not mediating variables of either CWM
proximity or temperature. As with the transect data,
maple decomposed faster than pine FWM pieces and
pieces with larger initial volume decomposed more
slowly (Fig. 3b). The standardized coefficient for ini-
tial density was ~4-times larger than any of the other
predictors, likely reflecting the strong contrast in traits
between the maple and pine FWM, which included
the maple pieces having denser wood, higher %N
content and presumably lower secondary chemical
concentrations (Tables S1 and S5). The standardized
coefficient for the main effect of proximity to CWM
was essentially the same size as those for initial FWM
volume and mean soil temperature, suggesting again
that proximity effects can be as large as known pre-
dictors in a regional-scale analysis (Table S5).

Proximity accelerated the decomposition rate of
the FWM pieces and its absolute influence on decom-
position was magnified as mean soil temperature
across locations increased (Fig. 3b, Table S5). The
positive temperature relationship was dampened for
FWM pieces of larger volume (Fig. 3b), altering the
manifestation of the CWM proximity by temperature
interaction. The dampening effect was so pronounced
that the estimated mean effect of soil temperature
on the FWM pieces with the widest diameters and
hence largest volumes was slightly negative for FWM
pieces away from CWM, whereas those FWM pieces
proximal to CWM maintained a positive temperature-
decomposition relationship (Fig. 3b). As with the
transect data, we analyzed proximity to CWM as a
binary variable but the interpretation of the statistical
models is essentially unchanged if CWM volume is
used.

Despite the strong mean effects of the CWM prox-
imity, trait and temperature predictors, FWM pieces
in the common gardens at each location varied exten-
sively in the amount to which they were decomposed
after 25 months (Fig. 3a), mirroring the variation seen
in the observational transects. Nevertheless, the con-
trolled experimental nature of the common gardens
likely accounts for why the fixed effects explain more
variation (43.9%) than with the transect data (30.1%),
despite having only approximately one-third of the
observation numbers (n=238 FWM pieces recovered
of 240 placed in the field versus 745 FWM pieces
recovered of 750 placed in the field for the transects).
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Fig.3 Wood decomposition of FWM pieces of both sampled »

tree species was strongly affected by main and interaction
effects of microclimate, wood traits and presence of downed
coarse woody material (CWM) in experimental common gar-
dens. Decomposition is represented as wood density loss, as
percentage of original density, after 25 months of field incu-
bation at five locations spanning a climate gradient in eastern
U.S. temperate, mixed forest. FWM pieces were 10-cm long
and in common gardens with zero (open symbols) or high-den-
sity (closed symbols) CWM abundance in the forest understo-
ries. Plate a shows the individual data points and plate b plots
the mean effects of the predictors and their interactions as esti-
mated from the regression models. That is, in (a) are observa-
tions from 238 maple and pine FWM pieces, with the FWM
pieces in zero-CWM gardens on the left (‘far’) and high-CWM
gardens on the right (‘near’) above each location name and
mean soil temperature. Observations are jiggered within each
grouping so that they can be discerned. At each location, 48
FWM pieces were placed in groups of two (1 per species) in 24
paired microsites, with 12 microsites in no-CWM gardens and
12 in high-CWM gardens, meaning that each location had 24
FWM pieces per species, giving 240 FWM pieces total across
the locations, of which 2 were not recovered. The same symbol
design is used in (b) which plots the linear model coefficients
(Table S5), with symbols only shown in this plot to identify
species and the mean soil temperature of each location. Plot-
ting the model using the conditional coefficients reveals how
decomposition is co-dependent on proximity to CWM, species
identity, mean temperature of the location and FWM volume,
where the greatest decomposition was observed with narrow
maple FWM pieces, at the warmest location, which were next
to CWM. To estimate mean density loss, we used the predic-
tor mean values for soil temperature and initial density for each
species, along with proximity to CWM as a binary variable
(O=far, 1 =near), and FWM volumes reflecting the observed
range for these experimental FWM pieces (where narrow =119
cm’, mean=229 cm? and wide=410 cm), with all other pre-
dictors held at their mean values

As with the transects, we evaluated whether the
CWM proximity effects were mediated by modifica-
tion of the microclimate or soil nutrient availabilities
(Fig. 1). The soil nutrient variables neither obscured
the CWM proximity effect nor had meaningful effect
sizes on decomposition. Also, as seen with the tran-
sect data, soil moisture did alter the soil temperature
effect given the correlation between the two predic-
tors (Pearson’s r=— 0.594, df=118) but did not
influence the CWM proximity effect.

Given that the influence of controls on wood
decomposition can change with time of field incu-
bation (Oberle et al. 2020), we placed additional
maple and pine FWM pieces in the common gardens
at the YMF location and harvested them at 13 and
49 months, as well as 25 months. The influence of
harvest time was of similar magnitude to initial wood
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density, and it interacted positively with initial den-
sity, wood volume and CWM proximity (Table S6).
These interactions meant that the influence of initial
density and CWM proximity strengthened across
time but that initial volume differences among the
FWM pieces became less consequential for decom-
position (Fig. 4). Notably, as for the observational
transect data, the influence of proximity to CWM was
greater when decomposition was instead expressed as
percentage mass C loss, and for that model the fixed
effects explained more variation (~79%) than they did
for density loss. As such, positive effects of proxim-
ity to CWM were consistently observed regardless
of the statistical analysis decisions we made about
which predictors and response variables to model
(Table S6). By contrast, our findings were depend-
ent on study design decisions, whereby this temporal
analysis revealed that CWM proximity effects likely
strengthen over time (as revealed by diverging near
versus far lines in Fig. 4b).
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Fig. 4 Wood decomposition of FWM pieces of two tree species were
strongly affected by main and interaction effects of time, wood traits
and presence of downed coarse woody material (CWM) in experimen-
tal common gardens. Decomposition is represented as wood density
loss after 13, 25 and 49 months of field incubation at one location in
northeastern U.S. temperate, mixed forest. FWM pieces were 10-cm
long and in common gardens with no- (open symbols) or high- (closed
symbols) CWM abundance in the forest understory. Plate a shows the
individual data points and plate b plots the mean effects of the predic-
tors and their interactions as estimated from the regression models.
That is, in (a) are observations from 181 FWM pieces, with the FWM
pieces in no-CWM gardens on the left (‘far’) and high-CWM gardens
on the right (‘near’) above each collection point. Observations are jig-
gered within each grouping so that they can be discerned. When estab-
lishing the common gardens, 192 FWM pieces were placed in groups
of eight (4 per species) in 24 paired microsites, with 12 microsites in
no-CWM gardens and 12 in high-CWM gardens, meaning that each
garden type had 48 FWM pieces per species. One FWM piece of
each species was collected from each microsite at 13 and 25 months,
and two per species at the 49-month collection, albeit 11 FWM pieces
placed in the field could not be found. The same symbol design is used
in (b) which plots the linear model coefficients (Table S6), with sym-
bols only shown in this plot to identify species and the months of field
incubation. Plotting the model using the conditional coefficients reveals
how the effect of proximity to CWM strengthens as field incubation
time increases, regardless of species identity or FWM volume (i.e.,
width). To estimate mean density loss and FWM volumes see legend
to Fig. 3

Discussion

Given the importance of CWM as a resource from
which wood-rot fungi can colonize new deadwood
inputs, we hypothesized that FWM pieces adjacent as
opposed to away from CWM would decompose faster.
Our data are consistent with CWM proximity as a
causal predictor that accelerates the decomposition of
new deadwood inputs to forest floors (Figs. 2, 3 and
4). The size of this proximity effect was dependent
on the species identity of the deadwood inputs, where
the decomposition of species with higher initial wood
density and N content, such as red oak, responded lit-
tle to CWM proximity whereas those species with the
lowest density wood, namely red maple and eastern
white pine, responded strongly (Fig. 2). Our infer-
ences about these main and interactive effects of
CWM proximity were robust to the analytical deci-
sions we made regarding how to represent decompo-
sition (e.g., mass C vs. density loss) and which pre-
dictors to include in our models (Tables S2-4). The
fact that such decisions also consistently identified
well-established regional controls such as climate and
wood traits (Oberle et al. 2020; Seibold et al. 2021),
within the milieu of high and unexplained local
and regional variation in the decomposition rates
of downed deadwood, should build confidence that
CWM proximity will be reproducible as a regional-
scale control, at least within eastern U.S. temperate
forests.

Fine-scale estimates of CWM density across the
U.S. are available through the Forest Inventory and
Analysis database (Woodall et al. 2013; Wilson et al.
2013), and CWM stocks vary predictably with for-
est growth and management (Zhu et al. 2017; Pugh
et al. 2019; Woodall et al. 2021). Further, the density
of CWM across a forest stand is relatively straight-
forward to measure (Waddell 2002). These databases
and measurements, as well as those available in many
other countries (Russell et al. 2015), could be lever-
aged to integrate and parameterize CWM proximity
as a control within C cycle and ecosystem models that
estimate wood decomposition. However, integration
of our findings into models would likely benefit from
an understanding of how increasing distance from
CWM translates to decomposition rates, whereas we
simply investigated proximity as a binary variable.
Further, representation of new ecological variables
in C cycle models requires that they meaningfully
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change model predictions and confidence (Kyker-
Snowman et al. 2022). For wood decomposition, con-
fidence in model projections is currently low (Keenan
et al. 2013), suggesting ample need to resolve param-
eter and structural uncertainties. Our work helps to
address these uncertainties, by identifying and quanti-
fying a heretofore underappreciated control that influ-
ences regional-scale wood decomposition dynamics.
We reasoned that we could not directly test, in
the field and without introducing numerous experi-
mental artifacts, the hypothesized causal mechanism
that CWM proximity effects were mediated through
higher fungal colonization rates. Instead, we evaluated
alternate mediating mechanisms that might explain
the positive effects of CWM proximity (Fig. 1). By
measuring soil moisture in each microsite, we tested
the possibility that CWM creates favorable microcli-
mate conditions that facilitate higher wood-rot fun-
gal activity (Rayner and Boddy 1988). The low col-
linearity between soil moisture and CWM proximity
in the regression models, and the fact that inclusion
of moisture did not affect the CWM proximity coef-
ficient, suggested the mechanism of CWM effect was
likely not mediated via modification of the microcli-
mate. Equally, none of the soil variables related to
C and N availability emerged as a reliable predictor
of field decomposition rates, and nor did their inclu-
sion in models obscure the CWM proximity effects.
As such, there was little evidence that CWM created
a more fertile microenvironment that in turn permit-
ted more rapid wood decomposition via translocation
of nutrients via fungal hyphae into the decomposing
FWM pieces (Cairney 2005). Lastly, there was no
evidence for unmeasured variables that might have
created a spurious association between CWM prox-
imity and decomposition rates in the observational
transects, because the CWM proximity effects were
positive and of similar magnitude in the common gar-
dens. As such, our work suggests that CWM proxim-
ity is a causal driver of faster wood decomposition
rates. The precise mechanism(s) mediating this effect
remain unresolved. However, the substantial literature
on fungal community dynamics as drivers of marked
differences in wood decomposition rates in boreal and
temperate forests (Toljander et al. 2006; van der Wal
et al. 2015; Lustenhouwer et al. 2020; Smith and Peay
2021), builds evidence for the likelihood that CWM
proximity effects are mediated via more rapid fungal
colonization of new inputs of downed dead wood.
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Regardless of the causal mechanism(s) underpin-
ning the CWM proximity effects, we observed within-
location variation in wood decomposition rates of the
same tree species which was larger than the magni-
tude of among-location variation in mean decomposi-
tion rates. Marked within-location variation in wood
decomposition rates is to be expected (Boddy et al.
1989; Bradford et al. 2014, 2021), and our regres-
sion models consequently had relatively low explana-
tory power (e.g., 30% for the observational transects,
Table 1) when compared to numerous other multi-
location studies (Moore et al. 1999; Pietsch et al.
2014; Zhu et al. 2017). The difference in explanatory
power most likely arises because our study had high
within-location replication across local gradients in
controls, whereas many prior studies focus instead on
minimizing within-location variability and maximiz-
ing the number of locations (Bradford et al. 2016). To
explore the potential implications of these differences
in study design for understanding controls on wood
decomposition, we conducted a post-hoc analysis by
aggregating our observational transect data at three
different spatial grains: (a) mean values per climate
(at the level of location) or by species, (b) mean val-
ues per location per species, and (c) individual FWM
pieces (i.e., not aggregated). We then ran univariate
regressions with climate or initial wood density as
predictors.

When microclimate was aggregated to a location-
level mean, or initial wood density to a species-
mean, ~90% and 65% of the variation in these data
were explained, respectively (Fig. 5a, d). When
aggregated at a finer resolution to represent mean val-
ues per species at each location (Fig. 5b, e), variation
explained dropped to 17% for microclimate and ~42%
for traits, and even further (8% and 17%, respectively)
for the individual data (Fig. 5c, f). The analysis shows
that aggregating data on climate and trait controls at
increasingly coarse spatial grains — akin to a focus
on only among-location predictors — can flip conclu-
sions based on variance explained about the relative
influence of different controls (Hu et al. 2018; Joly
et al. 2023). The analysis equally highlights that care
must be taken to match the scale of inference (e.g.,
means vs. individual observations) about controls to
the grain at which they influence the response vari-
able (Ruel and Ayres 1999; Gelman et al. 2007; Brad-
ford et al. 2014). Consequently, by focusing our infer-
ence on individual observations we identified CWM
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Fig. 5 Univariate regressions of wood decomposition of five
tree species in relation to soil microclimate (a—c) and ini-
tial wood density (d—f). The amount of variance explained
(adjusted /) in these data (from the observational transects:
Fig. 1a) decreases markedly as the predictor and response vari-
ables for the 745 FWM pieces are increasingly disaggregated
from the location (a) or species (d) level means where n=5,

proximity as a causal predictor exerting and interact-
ing with known climate and trait controls on wood
decomposition at a regional scale.

Our study adds to growing evidence that mul-
tiple controls operate collectively and condition-
ally on wood decomposition rates at regional scales
(Oberle et al. 2018, 2020; Hu et al. 2018; Brad-
ford et al. 2021). For example, the effects of initial

Initial wood density (g cm2)

to representation as species by microclimate means (b and e,
n=15), to the 745 individual observations themselves (¢ and
f). See Fig. 1 legend for details on the study design. Note that
the regression coefficients (with standard error in parentheses)
for the predictors are for the univariate relationships, making
them non-conditional, and so they differ to those presented in
the linear mixed model shown in Table 1 and plotted in Fig. 1

wood density and proximity to CWM strengthened
over time, whereas the influence of FWM volume
decreased. This temporal conditionality in effect
sizes, in addition to our identification of CWM prox-
imity as a control on wood decomposition, empha-
sizes that future work should be conducted at multi-
ple temporal and spatial grains (Harmon et al. 2020),
and move beyond asking which control is dominant
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(because the answer will be context dependent). Our
study design likely also omitted some important con-
trols. For example, as described in the Methods we
heat treated all FWM pieces prior to field placement
to ensure we did not spread pests and pathogens. It
is unclear as to whether this heating kills endophytic
fungi, but their presence at the initial stages of wood
decomposition can alter fungal colonization dynamics
and decomposition rates (Cline et al. 2018). Future
work is therefore needed to quantify CWM proxim-
ity effects on the decomposition of new deadwood
inputs that are matched to the location where the
wood was growing, removing the need for heat treat-
ment. Such work should recognize the multicausal
and scale-dependent regulation of wood decomposi-
tion rates, and how study design and analysis can dic-
tate which controls emerge as most important (e.g.,
Fig. 5). Doing so will mean that future studies have
a high likelihood of advancing knowledge of wood
decomposition in a manner that can be used to build
confidence in C cycle and forest ecosystem model
projections.

If our results hold generally across eastern U.S.
temperate forests, they suggest that depletion of
CWM stocks in this system may have had conse-
quent ecological effects by slowing wood decompo-
sition rates at the ecosystem scale. Stocks of CWM
in eastern U.S. forests have been depleted through
overly intensive forest management, and management
regimes are now being adapted in these and other for-
ests across the world to rebuild CWM stocks (Linden-
mayer et al. 2002; Pedlar et al. 2002; Woodall et al.
2021). The focus of these efforts has been the protec-
tion and restoration of forest biodiversity that relies
on dead wood as refuge (e.g., in droughts or fire),
as sites of seedling regeneration, and as food and
habitat for many understory invertebrates and verte-
brates (Stokland et al. 2012). Such efforts are likely
to restore energy flows through brown food webs in
forests (Currie 2003). Our results suggest that higher
CWM stocks may further enhance such flows through
brown food webs because higher CWM abundance
will likely accelerate decomposition rates of fresh
deadwood inputs. The eventual consequences of this
restoration of decomposition channels in forests is not
fully known but is likely to lead to improved forest
health and resilience.
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