
1

Towards Quantized Model Parallelism for
Graph-Augmented MLPs Based on Gradient-Free

ADMM Framework
Junxiang Wang†, Hongyi Li‡, Zheng Chai§, Yongchao Wang‡, Yue Cheng§ and Liang Zhao†

†Department of Computer Science and Informatics, Emory University, Atlanta, Georgia, USA, 30030
‡The State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an, Shaanxi, China, 710071

§ Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA, 22904

Abstract— While Graph Neural Networks (GNNs) are pop-
ular in the deep learning community, they suffer from several
challenges including over-smoothing, over-squashing, and gra-
dient vanishing. Recently, a series of models have attempted to
relieve these issues by first augmenting the node features and then
imposing node-wise functions based on Multi-Layer Perceptron
(MLP), which are widely referred to as GA-MLP models. How-
ever, while GA-MLP models enjoy deeper architectures for better
accuracy, their efficiency largely deteriorates. Moreover, popu-
lar acceleration techniques such as stochastic-version or data-
parallelism cannot be effectively applied due to the dependency
among samples (i.e., nodes) in graphs. To address these issues,
in this paper, instead of data parallelism, we propose a parallel
graph deep learning Alternating Direction Method of Multipliers
(pdADMM-G) framework to achieve model parallelism: parame-
ters in each layer of GA-MLP models can be updated in parallel.
The extended pdADMM-G-Q algorithm reduces communication
costs by introducing the quantization technique. Theoretical
convergence to a (quantized) stationary point of the pdADMM-
G algorithm and the pdADMM-G-Q algorithm is provided with
a sublinear convergence rate o(1/k), where k is the number of
iterations. Extensive experiments demonstrate the convergence of
two proposed algorithms. Moreover, they lead to a more massive
speedup and better performance than all state-of-the-art com-
parison methods on nine benchmark datasets. Last but not least,
the proposed pdADMM-G-Q algorithm reduces communication
overheads by up to 45% without loss of performance. Our code
is available at https://github.com/xianggebenben/pdADMM-G.

Index Terms—Model Parallelism, Graph Neural Networks,
Alternating Direction Method of Multipliers, Convergence, Quan-
tization

I. INTRODUCTION

Graph Neural Networks (GNNs) have accomplished state-
of-the-art performance in various graph applications such
as node classification and link prediction. This is because
they handle graph-structured data via aggregating neighbor
information and extending operations and definitions of the
deep learning approach [1]. However, their performance has
significantly been restricted via their depths due to the over-
smoothing problem (i.e. the representations of different nodes
in a graph tend to be similar when stacking multiple layers)
[2], the over-squashing problem (i.e. the information flow
among distant nodes distorts along the long-distance interac-
tions) [3], and the gradient vanishing problem (i.e. the signals

* Junxiang Wang and Hongyi Li contribute equally to this work, and
Yongchao Wang and Liang Zhao are corresponding authors.

of gradients decay with the depths of GNN models) [2].
These challenges still exist even though some models such
as GraphSAGE [4] have been proposed to alleviate them.

On the other hand, the Graph Augmented Multi-Layer
Perceptron (GA-MLP) models have recently received fast-
increasing attention as an alternative to deal with the aforemen-
tioned drawbacks of conventional GNNs via the augmentation
of graph features. GA-MLP models augment node represen-
tations of graphs and feed them into Multi-Layer Perceptron
(MLP) models. Compared with GNNs, GA-MLP models are
more resistant to the over-smoothing problem [2] and therefore
demonstrate outstanding performance. For example, Wu et al.
showed that a two-layer GA-MLP approximates the perfor-
mance of the GNN models on multiple datasets [5].

GA-MLP models are supposed to perform better with the
increase of their depths. However, similar to GNNs, GA-MLP
models still suffer from the gradient vanishing problem, which
is caused by the mechanism of the classic backpropagation
algorithm. This is because gradient signals diminish during
the transmission among deep layers. Moreover, while the
models go deeper, efficiency will become an issue, especially
for medium- and large-size graphs. Compared to the data
such as images and texts, where identically and independently
distributed (i.i.d.) samples are assumed, efficiency issues in
graph data are much more difficult to handle due to the de-
pendency among data samples (i.e., nodes in graphs). Such de-
pendency seriously troubles the effectiveness of using typical
acceleration techniques such as sampling-based methods, and
data-parallelism distributed learning in solving the efficiency
issue. Therefore, parallelizing the computation along layers is
a natural workaround, but the backpropagation prevents the
gradients of different layers from being calculated in parallel.
This is because the calculation of the gradient in one layer is
dependent on its previous layers.

To handle these challenges, recently gradient-free optimiza-
tion methods such as the Alternating Direction Method of
Multipliers (ADMM) have been investigated to overcome
the difficulties of the backpropagation algorithm. The spirit
of ADMM is to decouple a neural network into layerwise
subproblems such that each of them can be solved efficiently.
ADMM does not require gradient calculation and therefore
can avoid the gradient vanishing problem. Existing literature
has shown its great potential. For example, Talyor et al. and

ar
X

iv
:2

10
5.

09
83

7v
2

 [c
s.L

G
]

17
 N

ov
 2

02
2

https://github.com/xianggebenben/pdADMM-G

2

Wang et al. proposed ADMM to train MLP models [6], [7].
Extensive experiments have demonstrated that the ADMM
has outperformed most comparison methods such as Gradient
Descent (GD).

In this paper, we propose a novel parallel graph deep learn-
ing Alternating Direction Method of Multipliers (pdADMM-
G) optimization framework to train large-scale GA-MLP
models, and the extended pdADMM-G-Q algorithm reduces
the communication cost of the pdADMM-G algorithm by
the quantization techniques. Our contributions to this paper
include:

• We propose a novel reformulation of GA-MLP models,
which splits a neural network into independent layer
partitions and allow for ADMM to achieve model par-
allelism.

• We propose a novel pdADMM-G framework to train
a GA-MLP model. All subproblems generated by
the ADMM algorithm are discussed. The extended
pdADMM-G-Q algorithm reduces communication costs
by introducing the quantization technique.

• We provide the theoretical convergence guarantee of the
proposed pdADMM-G algorithm and the pdADMM-G-
Q algorithm. Specifically, they converge to a (quan-
tized) stationary point of GA-MLP models when the
hyperparameters are sufficiently large, and their sublinear
convergence rates are o(1/k).

• We conduct extensive experiments on nine benchmark
datasets to show the convergence, the massive speedup of
the proposed pdADMM-G algorithm and the pdADMM-
G-Q algorithm, as well as their outstanding performance
when compared with all state-of-the-art optimizers. More-
over, the proposed pdADMM-G-Q algorithm reduces
communication overheads by up to 45%.

The organization of this paper is shown as follows: In Section
II, we summarize recent related research work to this paper.
In Section III, we propose the pdADMM-G algorithm and
the pdADMM-G-Q algorithm to train deep GA-MLP models.
Section IV details the convergence properties of the proposed
pdADMM-G algorithm and the pdADMM-G-Q algorithm.
Extensive experiments on nine benchmark datasets to demon-
strate the convergence, speedup, communication savings, and
outstanding performance of the pdADMM-G algorithm and
the pdADMM-G-Q algorithm are shown in Section V, and
Section VI concludes this work.

II. RELATED WORK

This section summarizes existing literature related to this
research.

Distributed Deep Learning. With the increase of public
datasets and layers of neural networks, it is imperative to
establish distributed deep learning systems for large-scale ap-
plications. Many systems have been established to satisfy such
needs. Famous systems include Terngrad [8], Horovod [9],
SINGA [10] Mxnet [11], TicTac [12] and Poseidon [13]. They
applied some parallelism techniques to reduce computational
time, and therefore improved the speedup. Existing parallelism

techniques can be classified into two categories: data paral-
lelism and model parallelism. Data parallelism focuses on dis-
tributing data across different processors and then aggregating
results from them into a server. Scaling GD is one of the most
common ways to reach data parallelism [14]. For example,
the distributed architecture, Poseidon, is achieved by scaling
GD through overlapping communication and computation over
networks. The recently proposed ADMM [6], [7] is another
way to achieve data parallelism. However, data parallelism
suffers from the bottleneck of a neural network: for GD,
the gradient should be transmitted through all processors; for
ADMM, the parameters in one layer are subject to those in
its previous layer. As a result, this leads to heavy commu-
nication costs and time delays. Model parallelism, however,
can solve this challenge because model parallelism splits a
neural network into many independent partitions. In this way,
each partition can be optimized independently and reduce
layer dependency. For instance, Parpas and Muir proposed
a parallel-in-time method from the perspective of dynamic
systems [15]; Huo et al. introduced a feature replay algorithm
to achieve model parallelism [16]. Zhuang et al. broke layer
dependency by introducing the delayed gradient [17].

Deep Learning on Graphs. Graphs are ubiquitous struc-
tures and are popular in real-world applications. There is
a surge of interest to apply deep learning techniques to
graphs. For a comprehensive summary please refer to [18]. It
classified existing GNN models into four categories: Recurrent
Graph Neural Networks (RecGNNs), Convolutional Graph
Neural Networks (ConvGNNs), Graph Autoencoders (GAEs),
and Spatial-Temporal Graph Neural Networks (STGNNs).
RecGNNs learn node representation with recurrent neural
networks via the message passing mechanisms [19], [20], [21];
ConvGNNs generalize the operations of convolution to graph
data and stack multiple convolution layers to extract high-level
node features [22], [23], [24]; GAEs encode node information
into a latent space and reconstruct graphs from the encoded
node representation [25], [26], [27]; the idea of STGNNs
is to capture spatial dependency and temporal dependency
simultaneously [28], [29], [30].

III. THE PDADMM-G ALGORITHM

We propose the pdADMM-G algorithm to solve GA-MLP
models in this section. Specifically, Section III-A formulates
the GA-MLP model training problem , and Section III-B
proposes the pdADMM-G algorithm. Section III-C extends
the proposed pdADMM-G algorithm to the pdADMM-G-Q
algorithm for quantization.

A. Problem Formulation

Consider a graph G = (V,E), where V and E are sets of
nodes and edges, respectively, |V | is the number of nodes,
let Ψ = {ψ1(A), · · · , ψK(A)} be a set of (usually multi-
hop) operators ψi(A) : R|V | → R|V |(i = 1, · · · ,K) that
are functions of the adjacency matrix A ∈ {0, 1}|V |×|V |, and
R|V | is the domain of ψi(A) (i = 1, · · · ,K). Xk = Hψk(A)
is the augmentation of node features by the k-hop operator,
where H ∈ Rd×|V | is a matrix of node features, and d is the

3

Notations Descriptions
L Number of layers.
Wl The weight matrix for the l-th layer.
bl The intercept vector for the l-th layer.
zl The auxiliary variable of the linear mapping for the l-th layer.

fl(zl) The nonlinear activation function for the l-th layer.
pl The input for the l-th layer.
ql The output for the l-th layer.
X The node representation of the graph.
A The adjacency matrix of the graph.
y The predefined label vector.

R(zL, y) The risk function for the L-th layer.
nl The number of neurons for the l-th layer.
ul The dual variable for the l-th layer.

TABLE I: Important Notations

dimension of features. Xk(k = 1, · · · ,K) are stacked into
X = [X1; · · · ;XK] by column. Then the GA-MLP training
problem is formulated as follows [7]:

Problem 1.

minWl,bl,zl,pl R(zL; y),

s.t. zl = Wlpl + bl, pl+1 = fl(zl)(l = 1, · · · , L− 1),

where p1 = X ∈ Rn0×|V | is the input of deep GA-MLP
models, where n0 = Kd is the dimension of input and y is
a predefined label vector. pl ∈ Rnl×|V | is the input for the
l-th layer, also the output for the (l − 1)-th layer, and nl is
the number of neurons for the l-th layer. R(zL; y) is a risk
function for the L-th layer, which is convex and continuous;
zl = Wlpl + bl and pl+1 = fl(zl) are linear and nonlinear
mappings for the l-th layer, respectively, and Wl ∈ Rnl×nl−1

and bl ∈ Rnl are the weight matrix and the intercept vector
for the l-th layer, respectively.

In Problem 1, Ψ can be considered as a prepossessing step
to augment node features via A, and hence it is predefined.
One common choice can be Ψ = {I, A,A2, · · · , AK−1}.

Problem 1 can be addressed by deep learning Alternating
Direction Method of Multipliers (dlADMM) [7]. However,
parameters in one layer are dependent on its neighboring layers
and hence can not achieve parallelism. For example, the update
of pl+1 on the (l+ 1)-th layer needs to wait before zl on the
l-th layer is updated. In order to address layer dependency, we
relax Problem 1 to Problem 2 as follows:

Problem 2.

minp,W,b,z,q F (p,W, b, z, q) = R(zL; y)

+ (ν/2)(
∑L

l=1
‖zl −Wlpl − bl‖22 +

∑L−1

l=1
‖ql − fl(zl)‖22),

s.t. pl+1 = ql,

where p = {pl}Ll=1, W = {Wl}Ll=1, b = {bl}Ll=1, z =
{zl}Ll=1, q = {ql}L−1

l=1 , and ν > 0 is a tuning parameter. As
ν → ∞, Problem 2 approaches Problem 1. We reduce layer
dependency by splitting the output of the l-th layer and the
input of the (l + 1)-th layer into two variables pl+1 and ql,
respectively.

B. The pdADMM-G Algorithm

The high-level overview of the pdADMM-G algorithm is
shown in Figure 1. Specifically, the inputs of GA-MLP models

Fig. 1: The overall pdADMM-G optimization algorithm: it
splits GA-MLP models into layerwise components.

are augmented by Hψk(A) (k = 1, · · · ,K), and then GA-
MLP models are split into multiple layers, each of which can
be optimized by an independent client. Therefore, layerwise
training can be implemented in parallel. Moreover, the gradient
vanishing problem can be avoided in this way. This is because
the accumulated gradient calculated by the backpropagation
algorithm is split into layerwise components.

Now we follow the ADMM routine to solve Problem 2. The
augmented Lagrangian function is formulated mathematically
as follows:

Lρ(p,W, b, z, q, u)

=F (p,W, b, z, q)+
∑L−1

l=1
(uTl (pl+1−ql)+(ρ/2)‖pl+1 − ql‖22)

=R(zL; y)+φ(p1,W1, b1, z1)+
∑L

l=2
φ(pl,Wl, bl, zl, ql−1, ul−1)

+(ν/2)
∑L−1

l=1
‖ql−fl(zl)‖22,

where φ(p1,W1, b1, z1) = (ν/2)‖z1 − W1p1 − b1‖22,
φ(pl,Wl, bl, zl, ql−1, ul−1) = (ν/2)‖zl − Wlpl − bl‖22 +
uTl−1(pl−ql−1)+(ρ/2)‖pl−ql−1‖22, ul(l = 1, · · · , L−1) are
dual variables, ρ > 0 is a parameter, and u = {ul}L−1

l=1 . The
detail of the pdADMM-G algorithm is shown in Algorithm 1.
Specifically, Lines 5-9 update primal variables p, W, b, z and
q, respectively, while Line 11 updates the dual variable u.
Due to space limit, the details of all subproblems are shown
in Section A in the Appendix.

Our proposed pdADMM-G algorithm can be efficient for
training deep GA-MLP models via the greedy layerwise
training strategy [31]. Specifically, we begin by training a
shallow GA-MLP model. Next, more layers are increased to
the GA-MLP model and their parameters are trained, then we
introduce even more layers and iterate this process until the
whole deep GA-MLP model is included. The pdADMM-G
algorithm can achieve excellent performance as well as reduce
training costs by this strategy.

Last but not least, we compare the computational costs of
the proposed pdADMM-G algorithm with the state-of-the-art
backpropagation algorithm, on which the gradient descent is
based. We show that they share the same level of compu-

4

Algorithm 1 The pdADMM-G Algorithm to Solve Problem
2
Require: y, p1 = X , ρ, ν.
Ensure: p,W, b, z, q.

Initialize k = 0.
while pk,Wk, bk, zk, qk not converged do
pk+1
l ← arg minpl Lρ(p,Wk, bk, zk, qk, uk) for different
l in parallel.
W k+1
l ← arg minWl

Lρ(pk+1,W, bk, zk, qk, uk) for dif-
ferent l in parallel.
bk+1
l ← arg minbl Lρ(pk+1,Wk+1, b, zk, qk, uk) for dif-

ferent l in parallel.
zk+1
l ← arg minzl Lρ(pk+1,Wk+1, bk+1, z, qk, uk) for

different l in parallel.
qk+1
l ← arg minql Lρ(pk+1,Wk+1, bk+1, zk+1, q, uk)

for different l in parallel.
rkl ← pk+1

l+1 − q
k+1
l (l = 1, · · · , L) in parallel # Compute

residuals.
uk+1
l ← ukl + ρ(pk+1

l+1 − q
k+1
l) for different l in parallel.

k ← k + 1.
end while
Output p,W, b, z, q.

tational costs. For the backpropagation algorithm, the most
costly operation is the matrix multiplication zl = Wlpl + bl in
the forward pass, where Wl ∈ Rnl×nl−1 and pl ∈ Rnl−1×|V |,
which requires a time complexity of O(nlnl−1|V |) [32]; for
the proposed pdADMM-G algorithm, the most costly opera-
tion is to compute the derivative∇Wl

φ, and it also involves the
matrix multiplication, and hence its time complexity is again
O(nlnl−1|V |). However, the proposed pdADMM-G algorithm
trains the whole GA-MLP model in a model parallelism
fashion [33], and therefore all computational costs can be split
into different independent clients for parallel training; whereas
the backpropagation algorithm is implemented sequentially,
and thus it is less efficient than the proposed pdADMM-G
algorithm.

C. Quantization Extension of pdADMM-G (pdADMM-G-Q)

In the proposed pdADMM-G algorithm, pl and ql are trans-
mitted back and forth among layers (i.e. clients). However, the
communication overheads of pl and ql surge for a large-scale
graph G with millions of nodes. To alleviate this challenge,
the quantization technique is commonly utilized to reduce
communication costs by mapping continuous values into a
discrete set [34]. In other words, pl is required to fit into a
countable set ∆, which is shown as follows:

Problem 3.

minp,W,b,z,q F (p,W, b, z, q) = R(zL; y)

+ (ν/2)(
∑L

l=1
‖zl −Wlpl − bl‖22 +

∑L−1

l=1
‖ql − fl(zl)‖22),

s.t. pl+1 = ql, pl ∈ ∆ = {δ1, · · · , δm},

where δi(i = 1, · · · ,m) ∈ ∆ are quantized values, which
can be integers or low-precision values. m = |∆| is the

cardinality of ∆. To address Problem 3, we rewrite it into
the following form:

minp,W,b,z,q R(zL; y) +
∑L

l=2
I(pl)

+ (ν/2)(
∑L

l=1
‖zl −Wlpl − bl‖22 +

∑L−1

l=1
‖ql − fl(zl)‖22),

s.t. pl+1 = ql,

where the indicator function I(pl) is defined as follows:
I(pl) = 0 if pl ∈ ∆, and I(pl) = +∞ if pl 6∈ ∆. The
augmented Lagrangian of Problem 3 is shown as follows:

βρ(p,W, b, z, q, u) = Lρ(p,W, b, z, q, u) +
∑L

l=2
I(pl),

where Lρ is the augmented Lagrangian of Problem 2. The
extended pdADMM-G-Q algorithm follows the same routine
as the pdADMM-G algorithm, where Lρ is replaced with βρ.
Due to space limit, the solutions to all subproblems generated
by two proposed algorithms are shown in Section B in the
Appendix.

IV. CONVERGENCE ANALYSIS

In this section, the theoretical convergence of the proposed
pdADMM-G algorithm and the pdADMM-G-Q algorithm is
provided. Due to space limit, we only provide sketches of
proofs in this section, and their details are available in Section
C in the Appendix. Our problem formulations are more
difficult than existing ADMM literature: the term ‖ql−fl(zl)‖22
is coupled in the objective, while it is separable in the existing
ADMM formulations. To address this, we impose a mild
condition that ∂fl(zl) is bounded in Assumption 1, and prove
that ul is controlled via ql and zl in Lemma 5 in Section C in
the Appendix.

Firstly, the proper function, Lipschitz continuity, and coer-
civity are defined as follows:

Definition 1 (Proper Functions). [35]. For a convex function
g(x) : R→ R

⋃
{±∞}, g is called proper if ∀x ∈ R, g(x) >

−∞, and ∃x0 ∈ R such that g(x0) < +∞.

Definition 2. (Lipschitz Continuity) A function g(x) is Lips-
chitz continuous if there exists a constant D > 0 such that
∀x1, x2, the following holds

‖g(x1)− g(x2)‖ ≤ D‖x1 − x2‖.

Definition 3. (Coercivity) A function h(x) is coerce over the
feasible set F means that h(x)→∞ if x ∈ F and ‖x‖ → ∞.

Next, the definition of a quantized stationary point [34] is
shown as follows:

Definition 4. (Quantized Stationary Point) The pl is a quan-
tized stationary point of of Problem 3 if there exists τ > 0
such that

pl ∈ arg minδ∈∆ ‖δ − (pl −∇plF (p,W, b, z, q)/τ)‖.

The quantized stationary point is an extension of the sta-
tionary point in the discrete setting, and any global solution
pl to Problem 3 is a quantized stationary point to Problem

5

3 (Lemma 3.7 in [34]). Then the following assumption is
required for convergence analysis.

Assumption 1. fl(zl) is Lipschitz continuous with coefficient
S > 0, R(ZL; y) is proper, and F (p,W, b, z, q) is coercive.
Moreover, ∂fl(zl) is bounded, i.e. there exists M > 0 such
that ‖∂fl(zl)‖ ≤M .

Assumption 1 is mild to satisfy: most common activation
functions such as Rectified Linear Unit (ReLU) [33] and leaky
ReLU[36] satisfy Assumption 1. The risk function R(zl; y) is
only required to be proper, which shows that the convergence
condition of our proposed pdADMM-G is milder than that
of the dlADMM, which requires R(zl; y) to be Lipschitz
differentiable [7]. Due to the space limit, detailed proofs
are provided in Section C in the Appendix. The technical
proofs follow a similar routine as dlADMM [7]. The difference
consists in the fact that the dual variable ul is controlled by ql
and zl (Lemma 6 in Section C in the Appendix), which holds
under Assumption 1, while ul can be controlled only by zl
in the convergence proof of dlADMM. The first lemma shows
that the objective keeps decreasing when ρ is sufficiently large.

Lemma 1 (Objective Decrease). For both the pdADMM-
G algorithm and the pdADMM-G-Q algorithm, if ρ >
max(4νS2, (

√
17+1)ν/2), there exist C1 = ν/2−2ν2S2/ρ >

0 and C2 = ρ/2−2ν2/ρ−ν/2 > 0 such that it holds for any
k ∈ N that

Lρ(pk,Wk,bk,zk,qk,uk)−Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)

≥
∑L

l=2
(τk+1
l /2)‖pk+1

l −pkl ‖22+
∑L

l=1
(θk+1
l /2)‖W k+1

l −W k
l ‖22

+
∑L

l=1
(ν/2)‖bk+1

l −b
k
l ‖22+

∑L−1

l=1
C1‖zk+1

l −zkl ‖22

+(ν/2)‖zk+1
L − zkL‖22 +

∑L−1

l=1
C2‖qk+1

l − qkl ‖22, (1)

βρ(pk,Wk,bk,zk,qk,uk)−βρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)

≥
∑L

l=1
(θk+1
l /2)‖W k+1

l −W k
l ‖22+

∑L

l=1
(ν/2)‖bk+1

l −b
k
l ‖22

+
∑L−1

l=1
C1‖zk+1

l −zkl ‖22 +(ν/2)‖zk+1
L − zkL‖22

+
∑L−1

l=1
C2‖qk+1

l − qkl ‖22. (2)

Sketch of Proof. They can be proven via the optimality con-
ditions of all subproblems, and Assumption 1.

Lemma 2 shows that the objective is bounded from below
when ρ is large enough, and all variables are bounded.

Lemma 2 (Bounded Objective). (1). For the pdADMM-G
algorithm, if ρ > ν, then Lρ(pk,Wk, bk, zk, qk, uk) is lower
bounded. Moreover, pk,Wk, bk, zk, qk,and uk are bounded,
i.e. there exist Np, NW, Nb, Nz, Nq, and Nu > 0, such that
‖pk‖ ≤ Np, ‖Wk‖ ≤ NW, ‖bk‖ ≤ Nb, ‖zk‖ ≤ Nz, ‖qk‖ ≤ Nq,
and ‖uk‖ ≤ Nu.
(2). For the pdADMM-G-Q algorithm, if ρ > ν,
then βρ(pk,Wk, bk, zk, qk, uk) is lower bounded. Moreover,
Wk, bk, zk, qk,and uk are bounded, i.e. there exist NW, Nb,
Nz, Nq, and Nu > 0, such that ‖Wk‖ ≤ NW, ‖bk‖ ≤ Nb,
‖zk‖ ≤ Nz, ‖qk‖ ≤ Nq, and ‖uk‖ ≤ Nu.

Sketch of Proof. We only show the sketch proof of (1) because
(2) follows the same routine as (1). In order to prove the
boundness of Lρ, we should prove the following:

Lρ(pk,Wk, bk, zk, qk, uk)

≥ F (pk,Wk, bk, zk, q
′
) + ((ρ− ν)/2)‖pkl+1 − qkl ‖22

> −∞,

where pkl+1 = q
′

l . Therefore, F (pk,Wk, bk, zk, q
′
)

and ((ρ − ν)/2)‖pkl+1 − qkl ‖22 are upper
bounded by Lρ(pk,Wk, bk, zk, qk, uk) and hence
Lρ(p0,W0, b0, z0, q0, u0) (Lemma 1). The boundness
of variables can be obtained via Assumption 1.

Based on Lemmas 1 and 2, the following theorem ensures
that the objective is convergent.

Theorem 1 (Convergent Objective). (1). For the pdADMM-
G algorithm, if ρ > max(4νS2, (

√
17 + 1)ν/2),

then Lρ(pk,Wk, bk, zk, qk, uk) is convergent. Moreover,
limk→∞ ‖pk+1 − pk‖22 = 0, limk→∞ ‖Wk+1 − Wk‖22 = 0,
limk→∞ ‖bk+1 − bk‖22 = 0, limk→∞ ‖zk+1 − zk‖22 = 0,
limk→∞ ‖qk+1 − qk‖22 = 0, limk→∞ ‖uk+1 − uk‖22 = 0.
(2). For the pdADMM-G-Q algorithm, if ρ >
max(4νS2, (

√
17 + 1)ν/2), then βρ(pk,Wk, bk, zk, qk, uk)

is convergent. Moreover, limk→∞ ‖Wk+1 − Wk‖22 = 0,
limk→∞ ‖bk+1 − bk‖22 = 0, limk→∞ ‖zk+1 − zk‖22 = 0,
limk→∞ ‖qk+1 − qk‖22 = 0, limk→∞ ‖uk+1 − uk‖22 = 0.

Sketch of Proof. This theorem can be derived by taking the
limit on both sides of Inequality (1).

The third lemma guarantees that the subgradient of the
objective is upper bounded, which is stated as follows:

Lemma 3 (Bounded Subgradient). (1). For the pdADMM-
G algorithm, there exists a constant C > 0 and gk+1 ∈
∂Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1) such that

‖gk+1‖ ≤ C(‖pk+1 − pk‖+ ‖Wk+1 −Wk‖+ ‖bk+1 − bk‖
+ ‖zk+1 − zk‖+ ‖qk+1 − qk‖+ ‖uk+1 − uk‖).

(2). For the pdADMM-G-Q algorithm,
there exists a constant C > 0, gk+1

W ∈
∇Wk+1βρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1),
gk+1

b ∈ ∇bk+1βρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1),
gk+1

z ∈ ∂zk+1βρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1),
gk+1

q ∈ ∇qk+1βρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1),
gk+1

u ∈ ∇uk+1βρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1) such

6

that

‖gk+1
W ‖ ≤ C(‖Wk+1 −Wk‖+ ‖bk+1 − bk‖

+ ‖zk+1 − zk‖+ ‖qk+1 − qk‖+ ‖uk+1 − uk‖),
‖gk+1

b ‖ ≤ C(‖Wk+1 −Wk‖+ ‖bk+1 − bk‖
+ ‖zk+1 − zk‖+ ‖qk+1 − qk‖+ ‖uk+1 − uk‖),
‖gk+1

z ‖ ≤ C(‖Wk+1 −Wk‖+ ‖bk+1 − bk‖
+ ‖zk+1 − zk‖+ ‖qk+1 − qk‖+ ‖uk+1 − uk‖),
‖gk+1

q ‖ ≤ C(‖Wk+1 −Wk‖+ ‖bk+1 − bk‖
+ ‖zk+1 − zk‖+ ‖qk+1 − qk‖+ ‖uk+1 − uk‖),
‖gk+1

u ‖ ≤ C(‖Wk+1 −Wk‖+ ‖bk+1 − bk‖
+ ‖zk+1 − zk‖+ ‖qk+1 − qk‖+ ‖uk+1 − uk‖).

Sketch of Proof. To prove this lemma, the subgradient is
proven to be upper bounded by the linear combination of
‖pk+1 − pk‖, ‖Wk+1 − Wk‖, ‖bk+1 − bk‖, ‖zk+1 − zk‖,
‖qk+1 − qk‖, and ‖uk+1 − uk‖.

Now based on Theorem 1, and Lemma 3, the convergence
of the pdADMM-G algorithm to a stationary point is presented
in the following theorem.

Theorem 2 (Convergence of the pdADMM-G algorithm).
If ρ > max(4νS2, (

√
17 + 1)ν/2), then for the vari-

ables (p,W, b, z, q, u) in Problem 2, starting from any
(p0,W0, b0, z0, q0, u0), (pk,Wk, bk, zk, qk, uk) has at least
a limit point (p∗,W∗, b∗, z∗, q∗, u∗), and any limit point
is a stationary point of Problem 2. That is, 0 ∈
∂Lρ(p∗,W∗, b∗, z∗, q∗, u∗). In other words,

p∗l+1 = q∗l , ∇p∗Lρ(p∗,W∗, b∗, z∗, q∗, u∗)=0,

∇W∗Lρ(p∗,W∗,b∗, z∗, q∗, u∗)=0,∇b∗Lρ(p∗,W∗,b∗, z∗, q∗, u∗)=0,

0∈∂z∗Lρ(p∗,W∗, b∗, z∗, q∗, u∗),∇q∗Lρ(p∗,W∗, b∗, z∗, q∗, u∗)=0.

Sketch of Proof. This theorem can be derived directly from
Lemma 2 and Lemma 3.

Theorem 2 shows that our proposed pdADMM-G algorithm
converges for sufficiently large ρ, which is consistent with pre-
vious literature [7]. Similarly, the convergence of the proposed
pdADMM-G-Q algorithm is shown as follows:

Theorem 3 (Convergence of the pdADMM-G-Q algo-
rithm). If ρ > max(4νS2, (

√
17 + 1)ν/2), then for the

variables (p,W, b, z, q, u) in Problem 3, starting from any
(p0,W0, b0, z0, q0, u0), (pk,Wk, bk, zk, qk, uk) has at least
a limit point (p∗,W∗, b∗, z∗, q∗, u∗), and any limit point
(W∗, b∗, z∗, q∗, u∗) is a stationary point of Problem 3. More-
over, if τk+1

l is bounded, then p∗ is a quantized stationary
point of Problem 3. That is

p∗l+1 = q∗l , ∇W∗βρ(p∗,W∗, b∗, z∗, q∗, u∗) = 0,

∇b∗βρ(p∗,W∗, b∗, z∗, q∗, u∗) = 0,

0 ∈ ∂z∗βρ(p∗,W∗, b∗, z∗, q∗, u∗),
∇q∗βρ(p∗,W∗, b∗, z∗, q∗, u∗) = 0,

p∗l ∈ arg minδ∈∆ ‖δ − (p∗l −∇p∗l F (p∗,W∗, b∗, z∗, q∗)/τ∗l)‖.

where τ∗l is a limit point of τkl .

Dataset Node# Edge# Class# Feature# Training
Set#

Validation
Set#

Test
Set#

Cora 2,485 10,556 7 1,433 140 500 1,000

PubMed 19,717 88,648 3 500 60 500 1,000

Citeseer 2,110 9,104 6 3,703 120 500 1,000

Amazon
Computers

13,381 491,722 10 767 200 1,000 1,000

Amazon
Photo

7,487 238,162 8 745 160 1,000 1,000

Coauthor
CS

18,333 163,788 15 6,805 300 1,000 1,000

Coauthor
Physics

34,493 495,924 5 8,415 100 1,000 1,000

Flickr 89,250 899,756 7 500 44,625 22,312 22,313

Ogbn-Arxiv 169,343 1,166,243 40 128 90,941 29,799 48,603

TABLE II: Dataset statistics.

Sketch of Proof. This theorem is proven using a similar pro-
cedure as Theorem 2, and the definition of the quantized
stationary point.

The only difference between Theorems 2 and 3 is that p∗
is a stationary point in Problem 2 and a quantized stationary
point in Problem 3. Next, the following theorem ensures the
sublinear convergence rate o(1/k) of the proposed pdADMM-
G algorithm and the pdADMM-G-Q algorithm.

Theorem 4 (Convergence Rate). (1). For the pdADMM-G
algorithm and a sequence (pk,Wk, bk, zk, qk, uk), define ck =
min0≤i≤k(

∑L
l=2(τ i+1

l /2)‖pi+1
l −pil‖22 +

∑L
l=1(θi+1

l /2)‖W i+1
l −

W i
l ‖22 +

∑L
l=1(ν/2)‖bi+1

l − bil‖22 +
∑L−1
l=1 C1‖zi+1

l − zil‖22 +

(ν/2)‖zi+1
L − ziL‖22 +

∑L−1
l=1 C2‖qi+1

l − qil‖22) where
C1 = ν/2− 2ν2S2/ρ > 0 and C2 = ρ/2− 2ν2/ρ− ν/2 > 0,
then the convergence rate of ck is o(1/k).
(2). For the pdADMM-G-Q algorithm and
a sequence (Wk, bk, zk, qk, uk), define dk =
min0≤i≤k(

∑L
l=1(θi+1

l /2)‖W i+1
l −W i

l ‖22 +
∑L
l=1(ν/2)‖bi+1

l −
bil‖22 +

∑L−1
l=1 C1‖zi+1

l − zil‖22 + (ν/2)‖zi+1
L − ziL‖22 +∑L−1

l=1 C2‖qi+1
l − qil‖22) where C1 = ν/2− 2ν2S2/ρ > 0 and

C2 = ρ/2 − 2ν2/ρ − ν/2 > 0, then the convergence rate of
dk is o(1/k).

Sketch of Proof. (1). In order to prove the convergence rate
o(1/k), ck satisfies three conditions: (a) ck ≥ ck+1, (b)∑∞
k=0 ck is bounded, and (c) ck ≥ 0.

(2). dk can be proven using a similar procedure as (1).

V. EXPERIMENTS

In this section, we evaluate the performance of the proposed
pdADMM-G algorithm and the proposed pdADMM-G-Q al-
gorithm on GA-MLP models using nine benchmark datasets.
Convergence and computational overheads are demonstrated
on different datasets. Speedup and test performance are com-
pared with several state-of-the-art optimizers. All experi-
ments were conducted on the Amazon Web Services (AWS)
p2.16xlarge instance, with 16 NVIDIA K80 GPUs, 64vCPUs,
a processor Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz,
and 732GiB of RAM.

A. Datasets and Settings

Nine benchmark datasets were used for experimental eval-
uation, whose statistics are shown in Table II. Each dataset is
split into a training set, a validation set, and a test set. Due
to space limit, their details can be found in Section D1 in the
Appendix.

7

When it comes to experimental settings, we set K = 4 for
the multi-hop operator Ψ, and defined a diagonal degree matrix
D where Dii =

∑|V |
j=1Aij , and a renormalized adjacency

matrix Ã = (D + I)−1/2(A+ I)(D + I)−1/2 ∈ R|V |×|V |[1].
Moreover, we set Ψ = {I, Ã, Ã2, Ã3} [2]. For all GA-MLP
models, the activation function was set to ReLU. The loss
function was set to the cross-entropy loss. For the pdADMM-
G-Q algorithm, ∆ = {−1, 0, 1, · · · , 20} in Problem 3, and p
was quantized by default.

B. Comparison Methods
GD and its variants are state-of-the-art optimizers and hence

served as comparison methods. For GD-based methods, all
datasets were used for training models in a full-batch fashion.
All hyperparameters were chosen by maximizing the perfor-
mance of validation sets. Due to space limit, hyperparameter
settings of all methods are shown in Section D2 in the
Appendix. The following are their brief introductions:

1. Gradient Descent (GD) [37]. The GD and its variants are
the most popular deep learning optimizers. The GD updates
parameters simply based on their gradients.

2. Adaptive learning rate method (Adadelta) [38]. The
Adadelta is proposed to overcome the sensitivity to hyper-
parameter selection.

3. Adaptive gradient algorithm (Adagrad) [39]. Adagrad is
an improved version of GD: rather than fixing the learning
rate during training, it adapts the learning rate to the hyper-
parameter.

4. Adaptive momentum estimation (Adam) [40]. Adam
is the most popular optimization method for deep learning
models. It estimates the first and second momentum in order
to correct the biased gradient, and thus accelerates empirical
convergence.
C. Convergence

Firstly, in order to validate the convergence of two proposed
algorithms, we set up a GA-MLP model with 10 layers, each
of which has 1,000 neurons. The number of epochs was set
to 100. ν and ρ were set to 0.01 and 1, respectively.

Figure 2 demonstrates objectives and residuals of two
proposed algorithms on four datasets. Overall, the objectives
and residuals of the two proposed algorithms are convergent.
From Figure 2(a) and Figure 2(c), the objectives of the two
proposed algorithms decrease drastically at the first 50 epochs
and then drop smoothly to the end. The objectives on the
PubMed dataset achieve the lowest among all four datasets,
whereas these on the Coauthor CS dataset are the highest,
which still reach near 105 at the 100-th epoch. As for residuals,
even though the residuals of the pdADMM-G-Q algorithm
are higher than these of the pdADMM-G algorithm initially,
they both converge sublinearly to 0, which is consistent with
Theorem 2 and Theorem 3. Specifically, as shown in Figure
2(b) and Figure 2(d), the residuals on the Cora dataset decrease
more slowly with fluctuation than these on other datasets,
while residuals on the Amazon Computers and Amazon Photo
datasets demonstrate the fastest decreasing speed at the first 40
epochs before reaching a plateau less than 10−6. The residuals
on the PubMed dataset accomplish the lowest values among
all four datasets again with a value of less than 10−7.

D. Speedup

Next, we investigate the speedup of the pdADMM-G algo-
rithm in the large deep GA-MLP models. The running time
per epoch was an average of 10 epochs. ρ and ν were both set
to 10−3. We investigate the speedup concerning two factors:
the number of layers and the number of GPUs.

For the relationship between the speedup and the number
of layers, the pdADMM-G algorithm in the GA-MLP models
with 4,000 neurons was tested. The number of layers ranged
from 8 to 17. The speedup on small datasets and large datasets
are shown in Figure 3(a) and Figure 3(b), respectively. Overall,
the speedup of the proposed pdADMM-G increases linearly
with the number of layers. For example, the speedups on the
Cora dataset and the Amazon Computers dataset rise from
3 and 3.5 gradually to 4 and 4.5, respectively. The speedup
on the PubMed dataset achieves the lowest with a value of
less than 3, whereas that on the Coauthor CS dataset at least
doubles that on any other small dataset, with a peak of 6.
Moreover, the speedup is more obvious on large datasets. For
example, when the slopes of speedups are compared, the slope
on the Flickr dataset is at least five times much steeper than
that on the Coauthor CS dataset. The same trend is applied
to the Ogbn-Arxiv dataset. This means that our proposed
pdADMM-G algorithm is more suitable for large datasets.

For the relationship between the speedup and the number
of GPUs, we set up a large GA-MLP model with 16 layers
and 4,000 neurons and kept all hyperparameters in the pre-
vious experiment. The speedup of our proposed pdADMM-G
algorithm was compared with all comparison methods. Figure
4 shows all speedups on two large datasets. The proposed
pdADMM-G algorithm achieves a higher speedup than any
GD-based method. For example, the speedups of 8 GPUs are
nearly 8 on the Flickr dataset and the Ogbn-Arxiv dataset,
while the best speedups achieved via comparison methods are
in the vicinity of 6 and 5 on two datasets, respectively. We also
observe that while speedups of all methods scale linearly with
the number of GPUs, the slopes of our proposed pdADMM-G
algorithm are steeper than these of any comparison method.
For example, the slope of our proposed pdADMM-G algorithm
on the Flickr dataset is more than 10 times steeper than that of
Adam. All comparison methods show similar flat slopes, and
they achieve a higher slope of the speedup on the Ogbn-Arxiv
dataset than that on the Flickr dataset.

In summary, the speedup of our proposed pdADMM-G
algorithm scales linearly with the number of layers and the
number of GPUs. Moreover, its speedup is superior to any
other comparison method significantly by more than 10 times.

E. Communication Overheads

Then, it is necessary to explore how many communication
overheads can be reduced using the proposed quantization
technique on different quantization levels. To achieve this, we
established a large GA-MLP model with 10 layers, each of
which consists of 1,000 neurons. We set up three quantization
cases: no quantization, the quantization concerning p only,
and the quantization concerning both p and q. For every
quantization case, we also set up two different quantization

8

0 20 40 60 80
Epoch

102

103

104

105
Ob

je
ct

iv
e

Cora
PubMed
Citeseer
Coauthor CS

(a). pdADMM-G Objective.

0 20 40 60 80
Epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Re
sid

ua
l

Cora
PubMed
Amazon Computers
Amazon Photo

(b). pdADMM-G Residual.

0 20 40 60 80
Epoch

102

103

104

105

Ob
je

ct
iv

e

Cora
PubMed
Citeseer
Coauthor CS

(c). pdADMM-G-Q Objective.

0 20 40 60 80
Epoch

10 6

10 4

10 2

100

102

104

Re
sid

ua
l

Cora
PubMed
Amazon Computers
Amazon Photo

(d). pdADMM-G-Q Residual.

Fig. 2: Convergence curves of the pdADMM-G algorithm and the pdADMM-G-Q algorithm in four datasets: they both converge.

(a). The speedup
on small datasets.

8 9 10 11 12 13 14 15 16 17
Number of Layers

4

6

8

10

12

14
Sp

ee
du

p
Ogbn-Arxiv
Flickr

(b). The speedup
on large datasets.

Fig. 3: The speedup of the proposed pdADMM-G on dif-
ferent datasets concerning the number of layers: the speedup
increases linearly with the number of layers, and the slopes
of speedups are higher on large datasets than those on small
datasets.

4 8 16
Number of GPUs

2

4

6

8

10

12

Sp
ee

du
p

(a).…Flickr
4 8 16

Number of GPUs
2

4

6

8

10

12

14

Sp
ee

du
p

(b).…Ogbn-Arxiv

GD Adagrad Adadelta Adam pdADMM-G

Fig. 4: The speedup of all methods on two large datasets
concerning the number of GPUs: speedups of the proposed
pdADMM-G are higher than these of all comparison methods.

sizes: 8 bits and 16 bits. Figure 5 demonstrates the relationship
between the test accuracy and communication overheads for
different quantization cases and sizes on three datasets. Over-
all, communication overheads can be reduced significantly by
the proposed quantization technique. The amount of reduction
depends on different quantization cases and sizes. Generally
speaking, the more variables are quantized and the fewer bits
are compressed, then the more savings in communications can
be achieved. Take the Citeseer dataset as an example, while all
algorithms reach the same test accuracy above 70%, the pro-
posed pdADMM-G (i.e. no quantization) consumes the most
communication costs with the value of around 1.4×109 bytes.
If the variable p is quantized using 16 bits, the communication
overhead drops by 10%, and then using 8 bits saves another
5%. When variables p and q are both quantized, the commu-
nication overhead tumbles down to 1.2 × 109 bytes, which
means decreases by 16.7% when it is compared with the case
where only p is quantized. When variables are compressed to

Dataset Cora PubMed Citeseer
GD 0.730±0.022 0.638± 0.080 0.637±0.040

Adadelta 0.671±0.064 0.705±0.038 0.620±0.016
Adagrad 0.726±0.025 0.753± 0.015 0.601±0.037
Adam 0.725±0.036 0.742±0.007 0.631±0.018

pdADMM-G 0.784±0.003 0.784±0.004 0.709±0.003
pdADMM-G-Q 0.788±0.003 0.782±0.003 0.712± 0.001

Dataset Amazon
Computers

Amazon
Photo

Coauthor
CS

GD 0.646±0.032 0.735± 0.169 0.884±0.010
Adadelta 0.136±0.060 0.369± 0.045 0.787±0.086
Adagrad 0.688±0.023 0.813± 0.018 0.887±0.007
Adam 0.724±0.010 0.855±0.009 0.883±0.009

pdADMM-G 0.735±0.006 0.856±0.011 0.915±0.004
pdADMM-G-Q 0.687± 0.054 0.832±0.010 0.914±0.003

Dataset Coauthor
Physics Flickr Ogbn-Arxiv

GD 0.909±0.007 0.466±0.007 0.361±0.063
Adadelta 0.915±0.014 0.461±0.008 0.523± 0.030
Adagrad 0.916±0.012 0.481±0.003 0.567±0.016
Adam 0.912±0.016 0.512 ±0.004 0.674± 0.006

pdADMM-G 0.921±0.003 0.513±0.002 0.647±0.002
pdADMM-G-Q 0.919±0.002 0.507±0.003 0.655±0.002

TABLE III: The test performance of all methods when the
number of neurons is 100: two proposed algorithms outper-
form all comparison methods.

8 bits instead of 16 bits, the communication overhead slips
further to 1.1 × 109, a nearly 30% decline. The same trend
is applied to the other two datasets, and they accomplish
a shrink of communication overheads by 33% and 45%,
respectively. This demonstrates that our proposed quantization
technique is effective for reducing unnecessary communication
costs without loss of performance. We also observe that the
Coauthor CS dataset is the largest dataset among the three,
and it accomplishes the greatest communication reduction.

F. Performance

Finally, we evaluate the performance of two proposed
algorithms against all comparison methods on nine benchmark
datasets. We set up two standard GA-MLP models with 10
layers but different neurons: the first model has 100 neurons,
while the second model has 500 neurons. Following the greedy
layerwise training strategy [31], we firstly trained a two-layer
GA-MLP model, and then three more layers were added to
training, and finally, all 10 layers were involved. The number
of epochs was set to 200. We repeated all experiments five
times and reported their means and the standard deviations.
Due to space limit, hyperparameter settings and the perfor-
mance of validation sets are shown in Section D2 and D3 in
the Appendix, respectively.

Table III demonstrates the performance of all methods when

9

0.6 0.8 1.0 1.2 1.4
Uploaded bytes 1e9

0.50

0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

(a).…Citeseer

0.75 1.00 1.25 1.50 1.75
Uploaded bytes 1e9

0.64

0.66

0.68

Te
st

 A
cc

ur
ac

y

(b).…Amazon…Computers

1.5 2.0 2.5
Uploaded bytes 1e9

0.82

0.84

0.86

0.88

0.90

Te
st

 A
cc

ur
ac

y

(c).…Coauthor…CS

pdADMM-G pdADMM-G-Q(quantize q, 16bits) pdadmm-G-Q(quantize q, 8bits) pdADMM-G-Q(quantize p q, 16bits) pdadmm-G-Q(quantize p q, 8bits)

Fig. 5: Communication overheads of two proposed algorithms on three datasets: the quantization concerning both p and q
using 8 bits reduces the communication overheads by up to 45% without loss of performance.

Dataset Cora PubMed Citeseer
GD 0.757±0.024 0.699±0.655 0.680±0.014

Adadelta 0.717±0.063 0.722±0.696 0.564±0.028
Adagrad 0.776±0.013 0.759±0.761 0.650 ±0.038
Adam 0.771±0.020 0.778±0.767 0.662 ±0.021

pdADMM-G 0.786±0.005 0.786±0.786 0.713±0.007
pdADMM-G-Q 0.786±0.005 0.788±0.787 0.712±0.005

Dataset Amazon
Computers

Amazon
Photo

Coauthor
CS

GD 0.707±0.012 0.817±0.005 0.906±0.005
Adadelta 0.243±0.063 0.380±0.069 0.880±0.011
Adagrad 0.753±0.009 0.866±0.007 0.911±0.003
Adam 0.739±0.022 0.880± 0.016 0.898±0.013

pdADMM-G 0.751±0.008 0.873±0.004 0.920±0.002
pdADMM-G-Q 0.748±0.004 0.865±0.007 0.919±0.003

Dataset Coauthor
Physics Flickr Ogbn-Arxiv

GD 0.917±0.004 0.466±0.001 0.436±0.042
Adadelta 0.917±0.004 0.462±0.001 0.584±0.031
Adagrad 0.914±0.004 0.487±0.005 0.630±0.016
Adam 0.914±0.002 0.517±0.002 0.682±0.010

pdADMM-G 0.918±0.003 0.515±0.002 0.655±0.001
pdADMM-G-Q 0.918±0.002 0.512±0.003 0.657±0.002

TABLE IV: The test performance of all methods when the
number of neurons is 500: two proposed algorithms outper-
form all comparison methods.

the number of neurons is 100. In summary, the two proposed
algorithms outperform all comparison methods slightly: they
occupy the best algorithms on eight datasets out of the
total nine datasets. For example, they both achieve 78% test
accuracy on the Cora dataset, whereas the best comparison
method is GD, which only reaches 73% test accuracy, and is
at least 6% lower than the two proposed algorithms. As another
example, two proposed algorithms accomplish 78% test accu-
racy on the PubMed dataset, 4% better than that achieved by
Adagrad, whose performance is the best aside from the two
proposed algorithms. The Citeseer dataset shows the largest
performance gap between the two proposed algorithms and
all comparison methods. Two proposed algorithms reach the
level of 70% test accuracy, whereas all comparison methods
fall in the vicinity of 60% test accuracy. In other words, the
two proposed algorithms outperform all comparison methods
by more than 10%. For two proposed algorithms, the proposed
pdADMM-G algorithm outperforms marginally the proposed
pdADMM-G-Q algorithm due to the quantization technique.
Their largest performance gap is 5%, which is achieved on the
Amazon Computers dataset. The Adam is the best comparison
method overall, and it serves as the best algorithm on the

Ogbn-Arxiv dataset. The Adadelta performs the worst among
all comparison methods, whose performance is significantly
lower than any other method on several datasets such as the
Amazon Computers dataset, the Amazon Photo dataset, and
the Coauthor CS dataset. Last but not least, the standard
deviations of all methods remain low, and this shows that they
are robust to different initializations.

Table IV shows the performance of all methods when
the number of neurons is 500. In general, two proposed
algorithms still reach a better performance than all comparison
methods, but the gap is more narrow. For example, in Table
III, the proposed pdADMM-G algorithm achieves the best on
the Amazon Computers dataset. However, it is surpassed by
Adagrad slightly in Table IV. We also observe that a GA-MLP
model with 500 neurons performs better than that with 100
neurons, which are trained by the same algorithm. This makes
sense since the wider a model is, the more expressiveness it
is equipped with.

VI. CONCLUSION

The GA-MLP models are attractive to the deep learning
community due to potential resistance to some problems of
GNNs such as over-smoothing and over-squashing. In this
paper, we propose a novel pdADMM-G algorithm to achieve
parallel training of GA-MLP models, which is accomplished
by breaking the layer dependency. The extended pdADMM-
G-Q algorithm reduces communication overheads by the in-
troduction of the quantization technique. Their theoretical
convergence to a (quantized) stationary point of the problem is
guaranteed with a sublinear convergence rate o(1/k), where k
is the number of iterations. Extensive experiments verify that
the two proposed algorithms not only converge in terms of
objectives and residuals, and accelerate the training of deep
GA-MLP models, but also stand out among all the existing
state-of-the-art optimizers on nine benchmark datasets. More-
over, the pdADMM-G-Q algorithm reduces communication
overheads by up to 45% without loss of performance.

REFERENCES

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations (ICLR), 2017.

[2] L. Chen, Z. Chen, and J. Bruna, “On graph neural networks versus
graph-augmented mlps,” in Ninth International Conference on Learning
Representations, 2021.

10

[3] J. Topping, F. D. Giovanni, B. P. Chamberlain, X. Dong, and M. M.
Bronstein, “Understanding over-squashing and bottlenecks on graphs via
curvature,” in International Conference on Learning Representations,
2022.

[4] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, pp. 1025–1035,
2017.

[5] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger,
“Simplifying graph convolutional networks,” in International conference
on machine learning, pp. 6861–6871, PMLR, 2019.

[6] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, and T. Gold-
stein, “Training neural networks without gradients: A scalable admm
approach,” in International conference on machine learning, pp. 2722–
2731, 2016.

[7] J. Wang, F. Yu, X. Chen, and L. Zhao, “Admm for efficient deep
learning with global convergence,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 111–119, 2019.

[8] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
in Advances in neural information processing systems, pp. 1509–1519,
2017.

[9] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” preprint arXiv:1802.05799, 2018.

[10] B. C. Ooi, K.-L. Tan, S. Wang, W. Wang, Q. Cai, G. Chen, J. Gao,
Z. Luo, A. K. Tung, Y. Wang, et al., “Singa: A distributed deep learning
platform,” in Proceedings of the 23rd ACM international conference on
Multimedia, pp. 685–688, ACM, 2015.

[11] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient
machine learning library for heterogeneous distributed systems,” preprint
arXiv:1512.01274, 2015.

[12] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell, “Tictac: Accelerating
distributed deep learning with communication scheduling,” in Proceed-
ings of the 2nd SysML Conference, 2019.

[13] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu,
J. Wei, P. Xie, and E. P. Xing, “Poseidon: An efficient communica-
tion architecture for distributed deep learning on {GPU} clusters,” in
2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17),
pp. 181–193, 2017.

[14] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochas-
tic gradient descent,” in Advances in neural information processing
systems, pp. 2595–2603, 2010.

[15] P. Parpas and C. Muir, “Predict globally, correct locally: Parallel-in-time
optimal control of neural networks,” preprint arXiv:1902.02542, 2019.

[16] Z. Huo, B. Gu, and H. Huang, “Training neural networks using fea-
tures replay,” in Advances in Neural Information Processing Systems,
pp. 6659–6668, 2018.

[17] H. Zhuang, Y. Wang, Q. Liu, and Z. Lin, “Fully decoupled neural
network learning using delayed gradients,” IEEE Transactions on Neural
Networks and Learning Systems, 2021.

[18] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions
on neural networks and learning systems, 2020.

[19] C. Gallicchio and A. Micheli, “Graph echo state networks,” in The 2010
International Joint Conference on Neural Networks (IJCNN), pp. 1–8,
IEEE, 2010.

[20] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” International Conference on Learning Rep-
resentations (ICLR), 2016.

[21] H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song, “Learning steady-
states of iterative algorithms over graphs,” in International conference
on machine learning, pp. 1106–1114, PMLR, 2018.

[22] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” International Conference
on Learning Representations (ICLR), 2014.

[23] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” preprint arXiv:1506.05163, 2015.

[24] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proceedings
of the 30th International Conference on Neural Information Processing
Systems, pp. 3844–3852, 2016.

[25] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph
representations,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, 2016.

[26] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 1225–1234, 2016.

[27] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversarially
regularized graph autoencoder for graph embedding,” in IJCAI Interna-
tional Joint Conference on Artificial Intelligence, 2018.

[28] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured
sequence modeling with graph convolutional recurrent networks,” in
International Conference on Neural Information Processing, pp. 362–
373, Springer, 2018.

[29] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in International Con-
ference on Learning Representations, 2018.

[30] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-rnn:
Deep learning on spatio-temporal graphs,” in Proceedings of the ieee
conference on computer vision and pattern recognition, pp. 5308–5317,
2016.

[31] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” Advances in neural information pro-
cessing systems, vol. 19, 2006.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[33] J. Wang, Z. Chai, Y. Cheng, and L. Zhao, “Toward model parallelism
for deep neural network based on gradient-free admm framework,” in
Proceedings of the 20th IEEE International Conference on Data Mining,
ICDM ’20, 2020.

[34] T. Huang, P. Singhania, M. Sanjabi, P. Mitra, and M. Razaviyayn, “Alter-
nating direction method of multipliers for quantization,” in International
Conference on Artificial Intelligence and Statistics, pp. 208–216, PMLR,
2021.

[35] R. T. Rockafellar and R. J.-B. Wets, Variational analysis, vol. 317.
Springer Science & Business Media, 2009.

[36] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified
activations in convolutional network,” arXiv preprint arXiv:1505.00853,
2015.

[37] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010, pp. 177–186, Springer,
2010.

[38] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” preprint
arXiv:1212.5701, 2012.

[39] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.

[41] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM journal on imaging sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[42] J. Wang and L. Zhao, “Nonconvex generalization of alternating direction
method of multipliers for nonlinear equality constrained problems,”
Results in Control and Optimization, p. 100009, 2021.

[43] W. Deng, M.-J. Lai, Z. Peng, and W. Yin, “Parallel multi-block admm
with o (1/k) convergence,” Journal of Scientific Computing, vol. 71,
no. 2, pp. 712–736, 2017.

[44] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI magazine, vol. 29,
no. 3, pp. 93–93, 2008.

[45] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-based
recommendations on styles and substitutes,” in Proceedings of the 38th
international ACM SIGIR conference on research and development in
information retrieval, pp. 43–52, 2015.

[46] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of
graph neural network evaluation,” Relational Representation Learning
Workshop (R2L),NeurIPS, 2018.

[47] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
saint: Graph sampling based inductive learning method,” in International
Conference on Learning Representations, 2020.

[48] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning
on graphs,” in Advances in neural information processing systems,
pp. 22118–22133, 2020.

11

APPENDIX

A. Solutions to Subproblems of the pdADMM-G Algorithm

We discuss how to solve all subproblems generated by pdADMM-G in detail.

1) Update pk+1: The variable pk+1 is updated as follows:

pk+1
l ← arg minpl Lρ(p,Wk, bk, zk, qk, uk) = φ(pl,W

k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1).

Because Wl and pl are coupled in φ, solving pl should require the time-consuming operation of matrix inversion of Wl. To
handle this, we apply similar quadratic approximation techniques as used in dlADMM [7] as follows:

pk+1
l ← arg min

pl
Ul(pl; τ

k+1
l), (3)

where Ul(pl; τk+1
l) = φ(pkl ,W

k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1) +∇pkl φ

T (pkl ,W
k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1)(pl − pkl) + (τk+1

l /2)‖pl − pkl ‖22, and
τk+1
l > 0 is a parameter. τk+1

l should satisfy φ(pk+1
l ,W k

l , b
k
l , z

k
l , q

k
l−1, u

k
l−1) ≤ Ul(pk+1

l ; τk+1
l). The solution to Equation (3)

is: pk+1
l ← pkl −∇pkl φ(pkl ,W

k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1)/τk+1

l .

2) Update Wk+1: The variable Wk+1 is updated as follows:

W k+1
l ← arg minWl

Lρ(pk+1,W, bk, zk, qk, uk) = arg minWl

{
φ(pk+1

1 ,W1, b
k
1 , z

k
1), l = 1,

φ(pk+1
l ,Wl, b

k
l , z

k
l , q

k
l−1, u

k
l−1), 1 <l≤L.

Similar to updating pl, the following subproblem should be solved instead:

W k+1
l ← arg minWl

Vl(Wl; θ
k+1
l), (4)

where

V1(W1; θk+1
1) = φ(pk+1

1 ,W k
1 , b

k
1 , z

k
1) +∇Wk

1
φT (pk+1

1 ,W k
1 , b

k
1 , z

k
1)(W1−W k

1) + (θk+1
l /2)‖W1 −W k

1 ‖22,
Vl(Wl; θ

k+1
l) = φ(pk+1

l ,W k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1) +∇Wk

l
φT (pk+1

l ,W k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1)(Wl −W k

l) + (θk+1
l /2)‖Wl −W k

l ‖22,

and θk+1
l is a parameter, which should satisfy φ(pk+1

1 ,W k+1
1 , bk1 , z

k
1) ≤ V (W k+1

1 ; θk+1
1) and

φ(pk+1
l ,W k+1

l , bkl , z
k
l , q

k
l−1, u

k
l−1) ≤ V (W k+1

l ; θk+1
l)(1 < l < L). The solution to Equation (4) is shown as follows:

W k+1
l ←W k

l −

{
∇Wk

1
φ(pk+1

1 ,W k
1,b

k
1,z

k
1)/θk+1

l , l = 1,

∇Wk
l
φ(pk+1

l ,W k
l ,b

k
l,z

k
l ,q

k
l−1,u

k
l−1)/θk+1

l , 1< l≤L.

3) Update bk+1: The variable bk+1 is updated as follows:

bk+1
l ← arg minbl Lρ(pk+1,Wk+1, b, zk, qk, uk) = arg minbl

{
φ(pk+1

1 ,W k+1
1 , b1, z

k
1), l=1,

φ(pk+1
l ,W k+1

l , bl, z
k
l , q

k
l−1, u

k
l−1), 1 <l≤ L.

Similarly, we solve the following subproblems instead:

bk+1
1 ← arg minb1 φ(pk+1

1 ,W k+1
1 , bk1 , z

k
1) +∇bk1φ

T (pk+1
1 ,W k+1

1 , bk1 , z
k
1)(bl − bkl) + (ν/2)‖bl − bkl ‖22,

bk+1
l ← arg minbl φ(pk+1

l ,W k+1
l , bkl , z

k
l , q

k
l−1, u

k
l−1) +∇bkl φ

T (pk+1
l ,W k+1

l , bkl , z
k
l , q

k
l−1, u

k
l−1)(bl − bkl)

+ (ν/2)‖bl − bkl ‖22(1 < l ≤ L). (5)

The solution to Equation (5) is:

bk+1
l ← bkl −

{
∇bk1φ(pk+1

1 ,W k+1
1 , bk1 , z

k
1)/ν, l = 1,

∇bkl φ(pk+1
l ,W k+1

l , bkl , z
k
l , q

k
l−1, u

k
l−1)/ν, 1<l≤ L.

12

4) Update zk+1: The variable zk+1 is updated as follows:

zk+1
l ←arg minzl(ν/2)‖zl−W k+1

l pk+1
l −b

k+1
l ‖

2
2 +(ν/2)‖qkl −fl(zl)‖22+(ν/2)‖zl−zkl ‖22(l<L), (6)

zk+1
L ←arg minzlR(zL; y)+(ν/2)‖zL−W k+1

L pk+1
L −b

k+1
L ‖

2
2. (7)

where a quadratic term (ν/2)‖zl− zkl ‖22 is added in Equation (6) to control zk+1
l to close to zkl . Equation (7) is convex, which

can be solved by Fast Iterative Soft Thresholding Algorithm (FISTA) [41].
For Equation (6), nonsmooth activations usually lead to closed-form solutions [7], [42]. For example, for ReLU fl(zl) =
max(zl, 0), the solution to Equation (6) is shown as follows:

zk+1
l =

{
min((W k+1

l pk+1
l +bk+1

l +zkl)/2, 0), zk+1
l ≤ 0,

max((W k+1
l pk+1

l +bk+1
l +qkl +zkl)/3, 0), zk+1

l ≥ 0.

For smooth activations such as tanh and sigmoid, a lookup-table is recommended [7].

5) Update qk+1: The variable qk+1 is updated as follows:

qk+1
l ← arg minql Lρ(pk+1,Wk+1, bk+1, zk+1, q, uk) = arg minql φ(pk+1

l+1 ,W
k+1
l+1 , b

k+1
l+1 , z

k+1
l+1 , ql, u

k
l). (8)

Equation (8) has a closed-form solution as follows:

qk+1
l ← (ρpk+1

l+1 + ukl + νfl(z
k+1
l))/(ρ+ ν).

6) Update uk+1: The variable uk+1 is updated as follows:

uk+1
l ← ukl + ρ(pk+1

l+1 − q
k+1
l). (9)

B. Solutions to Subproblems of the pdADMM-G-Q Algorithm

Obviously, the only difference between the pdADMM-G-Q algorithm and the pdADMM-G algorithm is the pl-subproblem,
which is outlined in the following:

pk+1
l ← arg minpl Ul(pl; τ

k+1
l) + I(pl), (10)

where Ul follows Equation (3). The solution to Equation (10) is [34]: pk+1
l ← arg minδ∈∆ ‖δ − (pkl −

∇pkl φ(pkl ,W
k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1)/τk+1

l)‖.
For the pdADMM-G-Q algorithm, the variable p is only required to be quantized (i.e. pl ∈ ∆) when the pl-subproblem is

solved (i.e. Equation (10)), and the variable q can be any real number when it is updated (i.e. Equation (8)). However, q is
guaranteed to fit into ∆ by the linear constraint pl+1 = ql. This design is convenient for the convergence analysis, which is
detailed in the next section. One variant of the pdADMM-G-Q algorithm is to quantize p and q (i.e. pl, ql ∈ ∆) when they
are updated. In this case, the solution to Equation (8) is qk+1

l ← arg minδ∈∆ ‖δ − (ρpk+1
l+1 + ukl + νfl(z

k+1
l))/(ρ+ ν)‖.

C. Convergence Proofs

1) Preliminary Results:

Lemma 4. It holds for every k ∈ N and l = 1, · · · , L− 1 that

ukl = ν(qkl − fl(zkl)).

Proof. This follows directly from the optimality condition of qkl and Equation (9).

Lemma 5. It holds for every k ∈ N and l = 1, · · · , L− 1 that

‖uk+1
l − ukl ‖ ≤ ν‖qk+1

l − qkl ‖+ νS‖zk+1
l − zkl ‖.

Proof.

‖uk+1
l − ukl ‖

= ‖ν(qk+1
l − fl(zk+1

l))− ν(qkl − fl(zkl))‖(Lemma 4)

≤ ν‖qk+1
l − qkl ‖+ ν‖fl(zk+1

l)− fl(zkl)‖(triangle inequality)

≤ ν‖qk+1
l − qkl ‖+ νS‖zk+1

l − zkl ‖(Assumption 1).

13

Lemma 6. It holds for every k ∈ N and l = 1, · · · , L− 1 that

‖uk+1
l − ukl ‖22 ≤ 2ν2(‖qk+1

l − qkl ‖22 + S2‖zk+1
l − zkl ‖22).

Proof.

‖uk+1
l − ukl ‖22 = ν2‖qk+1

l − fl(zk+1
l)− qkl + fl(z

k
l)‖22(Lemma 4)

≤ 2ν2(‖qk+1
l − qkl ‖22 + ‖fl(zk+1

l)− fl(zkl)‖22)(mean inequality)

≤ 2ν2(‖qk+1
l − qkl ‖22 + S2‖zk+1

l − zkl ‖22)(Assumption 1).

Lemma 7. For every k ∈ N, it holds that

Lρ(pk,Wk, bk, zk, qk, uk)−Lρ(pk+1,Wk, bk, zk, qk, uk) ≥
∑L

l=2
(τk+1
l /2)‖pk+1

l − pkl ‖22, (11)

Lρ(pk+1,Wk, bk, zk, qk, uk)−Lρ(pk+1,Wk+1, bk, zk, qk, uk)≥
∑L

l=1
(θk+1
l /2)‖W k+1

l −W k
l ‖22, (12)

Lρ(pk+1,Wk+1, bk, zk, qk, uk)−Lρ(pk+1,Wk+1, bk+1, zk, qk, uk) ≥ (ν/2)
∑L

l=1
‖bk+1
l −b

k
l ‖22, (13)

Lρ(pk+1,Wk+1, bk+1, zk, qk, uk)−Lρ(pk+1,Wk+1, bk+1, zk+1, qk, uk) ≥ (ν/2)
∑L

l=1
‖zk+1
l −z

k
l ‖22, (14)

βρ(pk,Wk, bk, zk, qk, uk) ≥ βρ(pk+1,Wk, bk, zk, qk, uk), (15)

βρ(pk+1,Wk, bk, zk, qk, uk)−βρ(pk+1,Wk+1, bk, zk, qk, uk)≥
∑L

l=1
(θk+1
l /2)‖W k+1

l −W k
l ‖22, (16)

βρ(pk+1,Wk+1, bk, zk, qk, uk)−βρ(pk+1,Wk+1, bk+1, zk, qk, uk) ≥ (ν/2)
∑L

l=1
‖bk+1
l −b

k
l ‖22, (17)

βρ(pk+1,Wk+1, bk+1, zk, qk, uk)−βρ(pk+1,Wk+1, bk+1, zk+1, qk, uk) ≥ (ν/2)
∑L

l=1
‖zk+1
l −z

k
l ‖22. (18)

Proof. Generally, all inequalities can be obtained by applying optimality conditions of updating p, W, b and z, respectively.
We only prove Inequalities (11), (13), (14) and (15). This is because Inequalities (12) and (16) follow the same routine of
Inequality (11), Inequality (17) follows the same routine of Inequality (13), and Inequality (18) follows the same routine of
Inequality (14).

Firstly, we focus on Inequality (11). The choice of τk+1
l requires

φ(pk+1
l ,W k

l , b
k
l , z

k
l , q

k
l−1, u

k
l−1) ≤ Ul(pk+1

l ; τk+1
l). (19)

Moreover, the optimality condition of Equation (3) leads to

∇pkl φ(pkl ,W
k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1) + τk+1

l (pk+1
l − pkl) = 0. (20)

Therefore

Lρ(pk,Wk, bk, zk, qk, uk)−Lρ(pk+1,Wk, bk, zk, qk, uk)

=
∑L

l=2
(φ(pkl ,W

k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1)− φ(pk+1

l ,W k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1))

≥
∑L

l=2
(φ(pkl ,W

k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1)− Ul(pk+1

l ; τk+1
l))(Inequality (19))

=
∑L

l=2
(−∇pkl φ

T (pkl ,W
k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1)(pk+1

l − pkl)− (τk+1
l /2)‖pk+1

l − pkl ‖22)

=
∑L

l=2
(τk+1
l /2)‖pk+1

l − pkl ‖22(Equation (20)).

Next, we prove Inequality (13). Because ∇b1φ(p1,W1, b1, z1) and ∇blφ(pl,Wl, bl, zl, ql, ul) are Lipschitz continuous with
coefficient ν. According to Lemma 2.1 in [41], we have

φ(pk+1
1 ,W k+1

1 , bk+1
1 , zk1) ≤ φ(pk+1

1 ,W k+1
1 , bk1 , z

k
1) +∇bk1φ

T (pk+1
1 ,W k+1

1 , bk1 , z
k
1)(bk+1

1 − bk1)

+ (ν/2)‖bk+1
1 − bk1‖22, (21)

φ(pk+1
l ,W k+1

l , bk+1
l , zkl , q

k
l−1, u

k
l−1) ≤ φ(pk+1

l ,W k+1
l , bkl , z

k
l , q

k
l−1, u

k
l−1)

+∇bkl φ
T (pk+1

l ,W k+1
l , bkl , z

k
l , q

k
l−1, u

k
l−1)(bk+1

l − bkl) + (ν/2)‖bk+1
l − bkl ‖22. (22)

Moreover, the optimality condition of Equation (5) leads to

∇bk1φ(pk1 ,W
k
1 , b

k
1 , z

k
1) + ν(bk+1

1 − bk1) = 0, (23)

∇bkl φ(pkl ,W
k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1) + ν(bk+1

l − bkl) = 0. (24)

14

Therefore, we have

Lρ(pk+1,Wk+1, bk, zk, qk, uk)−Lρ(pk+1,Wk+1, bk+1, zk, qk, uk)

= φ(pk+1
1 ,W k+1

1 , bk1 , z
k
1)− φ(pk+1

1 ,W k+1
1 , bk+1

1 , zk1)

+
∑L

l=2
(φ(pk+1

l ,W k+1
l , bkl , z

k
l , q

k
l−1, u

k
l−1)− φ(pk+1

l ,W k+1
l , bk+1

l , zkl , q
k
l−1, u

k
l−1))

≥ −∇bk1φ
T (pk+1

1 ,W k+1
1 , bk1 , z

k
1)(bk+1

1 − bk1)− (ν/2)‖bk+1
1 − bk1‖22

+
∑L

l=2
(−∇bkl φ

T (pk+1
l ,W k+1

l , bkl , z
k
l , q

k
l−1, u

k
l−1)(bk+1

l − bkl)− (ν/2)‖bk+1
l − bkl ‖22)

(Inequalities (21) and (22))

= (ν/2)
∑L

l=1
‖bk+1
l − bkl ‖22(Equations (23) and (24)).

Then we prove Inequality (14). Because zk+1
l minimizes Equation (6) and Equation (7), we have

(ν/2)‖zk+1
l −W k+1

l pk+1
l − bk+1

l ‖22 + (ν/2)‖qkl − fl(zk+1
l)‖22 + (ν/2)‖zk+1

l − zkl ‖22
≤ (ν/2)‖zkl −W k+1

l pk+1
l − bk+1

l ‖22 + (ν/2)‖qkl − fl(zkl)‖22, (25)

and

R(zkL; y)+ (ν/2)‖zkL−W k+1
L pk+1

L −b
k+1
L ‖

2
2 −R(zk+1

L ; y)− (ν/2)‖zk+1
L −W k+1

L pk+1
L −b

k+1
L ‖

2
2

= R(zkL; y)−R(zk+1
L ; y) + (ν/2)‖zkL − zk+1

L ‖22 + ν(zk+1
L −W k+1

L pk+1
L − bk+1

L)T (zkL − zk+1
L)

(‖a− b‖22 − ‖a− c‖22 = ‖b− c‖22 + 2(c− a)T (b− c) where a = W k+1
L pk+1

L + bk+1
L , b = zkL, and c = zk+1

L)

≥ sT (zkL − zk+1
L) + (ν/2)‖zkL − zk+1

L ‖22 + ν(zk+1
L −W k+1

L pk+1
L − bk+1

L)T (zkL − zk+1
L)

(s ∈ ∂R(zk+1
L ; y) is a subgradient of R(zk+1

L ; y))

= (ν/2)‖zk+1
L − zkL‖22 (26)

(0 ∈ s+ ν(zk+1
L −W k+1

L pk+1
L − bk+1

L) by the optimality condition of Equation (7)).

Therefore

Lρ(pk+1,Wk+1, bk+1, zk, qk, uk)−Lρ(pk+1,Wk+1, bk+1, zk+1, qk, uk)

=
∑L−1

i=1
((ν/2)‖zkl −W k+1

l pk+1
l − bk+1

l ‖22 + (ν/2)‖qkl − fl(zkl)‖22
− (ν/2)‖zk+1

l −W k+1
l pk+1

l − bk+1
l ‖22 − (ν/2)‖qkl − fl(zk+1

l)‖22)

+R(zkL; y)+ (ν/2)‖zkL−W k+1
L pk+1

L −b
k+1
L ‖

2
2 −R(zk+1

L ; y)− (ν/2)‖zk+1
L −W k+1

L pk+1
L −b

k+1
L ‖

2
2

≥ (ν/2)
∑L

l=1
‖zk+1
l − zkl ‖22(Inequalities (25) and (26)).

Finally Inequality (15) follows directly the optimality condition of pk+1.

Lemma 8. For every k ∈ N , it holds that

Lρ(pk+1,Wk+1, bk+1, zk+1, qk, uk)−Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)

≥
∑L−1

l=1
((ρ/2− 2ν2/ρ− ν/2)‖qk+1

l − qkl ‖22 − (2ν2S2/ρ)‖zk+1
l − zkl ‖22) (27)

βρ(pk+1,Wk+1, bk+1, zk+1, qk, uk)−βρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)

≥
∑L−1

l=1
((ρ/2− 2ν2/ρ− ν/2)‖qk+1

l − qkl ‖22 − (2ν2S2/ρ)‖zk+1
l − zkl ‖22). (28)

15

Proof. We only prove Inequality (27) because Inequality (28) follows the same routine of Inequality (27).

Lρ(pk+1,Wk+1, bk+1, zk+1, qk, uk)−Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)

=
∑L−1

l=1
((ν/2)‖fl(zk+1

l)− qkl ‖22 − (ν/2)‖fl(zk+1
l)− qk+1

l ‖22 − (uk+1
l)T (qkl − qk+1

l)

+ (ρ/2)‖qk+1
l − qkl ‖22 − (1/ρ)‖uk+1

l − ukl ‖22)

=
∑L−1

l=1
((ν/2)‖fl(zk+1

l)− qkl ‖22 − (ν/2)‖fl(zk+1
l)− qk+1

l ‖22 − ν(qk+1
l − fl(zk+1

l))T (qkl − qk+1
l)

+ (ρ/2)‖qk+1
l − qkl ‖22 − (1/ρ)‖uk+1

l − ukl ‖22)(Lemma 4)

≥
∑L−1

l=1
(−(ν/2)‖qk+1

l − qkl ‖22 + (ρ/2)‖qk+1
l − qkl ‖22 − (1/ρ)‖uk+1

l − ukl ‖22)

(−ν(ql − fl(zk+1
l)) = −(ν/2)∇ql‖ql − fl(z

k+1
l)‖22 is lipschitz continuous concerning ql and Lemma 2.1 in [41])

≥
∑L−1

l=1
(−(ν/2)‖qk+1

l − qkl ‖22 + (ρ/2)‖qk+1
l − qkl ‖22 − (2ν2/ρ)‖qk+1

l − qkl ‖22 − (2ν2S2/ρ)‖zk+1
l − zkl ‖22)

(Lemma 6)

=
∑L−1

l=1
((ρ/2− 2ν2/ρ− ν/2)‖qk+1

l − qkl ‖22 − (2ν2S2/ρ)‖zk+1
l − zkl ‖22).

2) Proof of Lemma 1:

Proof. We sum up Inequalities (11), (12), (13), (14), and (27) to obtain Inequality (1), and we sum up Inequalities (15), (16),
(17), (18), and (28) to obtain Inequality (2).

3) Proof of Lemma 2:

Proof. (1) There exists q
′

such that pkl+1 = q
′

l and

F (pk,Wk, bk, zk, q
′
) ≥ minp,W,b,z,q{F (p,W, b, z, q)|pl+1 = ql} > −∞.

Therefore, we have

Lρ(pk,Wk, bk, zk, qk, uk) = F (pk,Wk, bk, zk, qk) +
∑L

l=1
(ukl)T (pkl+1 − qkl) + (ρ/2)‖pkl+1 − qkl ‖22

= R(zkL; y) + (ν/2)(
∑L

l=1
‖zkl −W k

l p
k
l − bkl ‖22 +

∑L−1

l=1
‖qkl − fl(zkl)‖22)

+
∑L−1

l=1
((ukl)T (pkl+1 − qkl) + (ρ/2)‖pkl+1 − qkl ‖22)

= R(zkL; y) + (ν/2)(
∑L

l=1
‖zkl −W k

l p
k
l − bkl ‖22 +

∑L−1

l=1
‖qkl − fl(zkl)‖22)

+
∑L−1

l=1
(ν(qkl − fl(zkl))T (q

′

l − qkl) + (ρ/2)‖pkl+1 − qkl ‖22)

(pkl+1 = q
′

l and Lemma 4)

≥ R(zkL; y) + (ν/2)(
∑L

l=1
‖zkl −W k

l p
k
l − bkl ‖22 +

∑L−1

l=1
‖q
′

l − fl(zkl)‖22)

−
∑L−1

l=1
(ν/2)‖q

′

l − qkl ‖22 +
∑L−1

l=1
(ρ/2)‖pkl+1 − qkl ‖22)

(ν(ql − fl(zk+1
l)) = (ν/2)∇ql‖ql − fl(z

k+1
l)‖22 is lipschitz continuous concerning ql and Lemma 2.1 in [41])

= F (pk,Wk, bk, zk, q
′
) + ((ρ− ν)/2)‖pkl+1 − qkl ‖22 > −∞.

Therefore, F (pk,Wk, bk, zk, q
′
) and ((ρ − ν)/2)‖pkl+1 − qkl ‖22 are upper bounded by Lρ(pk,Wk, bk, zk, qk, uk) and hence

Lρ(p0,W0, b0, z0, q0, u0) (Lemma 1). From Assumption 1, (pk,Wk, bk, zk) is bounded. qk is also bounded because (ρ −
ν)/2‖pkl+1 − qkl ‖22 is upper bounded. uk is bounded because of Lemma 4.
(2). It follows the same routine as (1).

4) Proof of Theorem 1:

16

Proof. (1). From Lemmas 1 and 2, we know that Lρ(pk,Wk, bk, zk, qk, uk) is convergent because a monotone bounded
sequence converges. Moreover, we take the limit on both sides of Inequality (1) to obtain

0 = limk→∞ Lρ(pk,Wk, bk, zk, qk, uk)

− limk→∞ Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)

≥ limk→∞(
∑L

l=2
(τk+1
l /2)‖pk+1

l −pkl ‖22

+
∑L

l=1
(θk+1
l /2)‖W k+1

l −W k
l ‖22 +

∑L

l=1
(ν/2)‖bk+1

l −b
k
l ‖22

+
∑L−1

l=1
C1‖zk+1

l − zkl ‖22 + (ν/2)‖zk+1
L − zkL‖22

+
∑L−1

l=1
C2‖qk+1

l − qkl ‖22) ≥ 0.

Because Lρ(pk,Wk, bk, zk, qk, uk) is convergent, then limk→∞ ‖pk+1 − pk‖22 = 0, limk→∞ ‖Wk+1 − Wk‖22 = 0,
limk→∞ ‖bk+1 − bk‖22 = 0, limk→∞ ‖zk+1 − zk‖22 = 0, and limk→∞ ‖qk+1 − qk‖22 = 0. limk→∞ ‖uk+1 − uk‖22 = 0 is
derived from Lemma 6 in Section C in the Appendix.
(2). The proof follows the same procedure as (1).

5) Proof of Lemma 3:

Proof. (1). We know that ∂Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1) = {∇pk+1Lρ,∇Wk+1Lρ,∇bk+1Lρ, ∂zk+1Lρ,∇qk+1Lρ,∇uk+1Lρ}
[7]. Specifically, we prove that ‖g‖ is upper bounded by the linear combination of ‖pk+1− pk‖,‖Wk+1−Wk‖, ‖bk+1− bk‖,
‖zk+1 − zk‖, ‖qk+1 − qk‖, and ‖uk+1 − uk‖.
For pk+1

l ,

∇pk+1
l

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)

= ∇pk+1
l

φ(pk+1
l ,W k+1

l , bk+1
l , zk+1

l , qk+1
l−1 , u

k+1
l−1)

= ∇pkl φ(pkl ,W
k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1) + τk+1

l (pk+1
l − pkl)− τk+1

l (pk+1
l − pkl)

+ ν(W k+1
l)TW k+1

l pk+1
l − ν(W k

l)TW k
l p

k
l + ν(W k+1

l)T bk+1
l − ν(W k

l)T bkl − ν(W k+1
l)T zk+1

l + ν(W k
l)T zkl

+ (uk+1
l−1 − u

k
l−1) + ρ(pk+1

l − pkl)− ρ(qk+1
l−1 − q

k
l−1)

= −τk+1
l (pk+1

l − pkl) + ν(W k+1
l)TW k+1

l pk+1
l − ν(W k

l)TW k
l p

k
l + ν(W k+1

l)T bk+1
l − ν(W k

l)T bkl

− ν(W k+1
l)T zk+1

l + ν(W k
l)T zkl + (uk+1

l−1 − u
k
l−1) + ρ(pk+1

l − pkl)− ρ(qk+1
l−1 − q

k
l−1).

So

‖∇pk+1
l

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)‖

= ‖τk+1
l (pk+1

l − pkl) + ν(W k+1
l)TW k+1

l pk+1
l − ν(W k

l)TW k
l p

k
l + ν(W k+1

l)T bk+1
l − ν(W k

l)T bkl

− ν(W k+1
l)T zk+1

l + ν(W k
l)T zkl + (uk+1

l−1 − u
k
l−1) + ρ(pk+1

l − pkl)− ρ(qk+1
l−1 − q

k
l−1)‖

≤ τk+1
l ‖pk+1

l − pkl ‖+ ν‖(W k+1
l)TW k+1

l pk+1
l − (W k

l)TW k
l p

k
l ‖+ ν‖(W k+1

l)T bk+1
l − (W k

l)T bkl ‖
+ ν‖(W k+1

l)T zk+1
l − (W k

l)T zkl ‖+ ‖uk+1
l−1 − u

k
l−1‖+ ρ‖pk+1

l − pkl ‖+ ρ‖qk+1
l−1 − q

k
l−1‖ (triangle inequality)

= τk+1
l ‖pk+1

l − pkl ‖+ ν‖(W k+1
l)TW k+1

l (pk+1
l − pkl) + (W k+1

l)T (W k+1
l −W k

l)pkl + (W k+1
l −W k

l)TW k
l p

k
l ‖

+ ν‖(W k+1
l)T (bk+1

l − bkl) + (W k+1
l −W k

l)T bkl ‖+ ν‖(W k+1
l)T (zk+1

l − zkl) + (W k+1
l −W k

l)T zkl ‖
+ ‖uk+1

l−1 − u
k
l−1‖+ ρ‖pk+1

l − pkl ‖+ ρ‖qk+1
l−1 − q

k
l−1‖

≤ τk+1
l ‖pk+1

l − pkl ‖+ ν‖W k+1
l ‖2‖pk+1

l − pkl ‖+ ν‖W k+1
l ‖‖W k+1

l −W k
l ‖‖pkl ‖+ ν‖W k+1

l −W k
l ‖‖W k

l ‖‖pkl ‖
+ ν‖W k+1

l ‖‖bk+1
l − bkl ‖+ ν‖W k+1

l −W k
l ‖‖bkl ‖+ ν‖W k+1

l ‖‖zk+1
l − zkl ‖+ ν‖W k+1

l −W k
l ‖‖zkl ‖

+ ν(‖qk+1
l−1 − q

k
l−1‖+ S‖zk+1

l−1 − z
k
l−1‖) + ρ‖pk+1

l − pkl ‖+ ρ‖qk+1
l−1 − q

k
l−1‖

(triangle inequality, Cauthy-Schwartz inequality and Lemma 5)

≤ τk+1
l ‖pk+1

l − pkl ‖+ νN2
W‖pk+1

l − pkl ‖+ 2νNWNp‖W k+1
l −W k

l ‖+ νNW‖bk+1
l − bkl ‖+ νNb‖W k+1

l −W k
l ‖

+ νNW‖zk+1
l − zkl ‖+ νNz‖W k+1

l −W k
l ‖+ 2ν2(‖qk+1

l−1 − q
k
l−1‖22 + S2‖zk+1

l−1 − z
k
l−1‖22) + ρ‖pk+1

l − pkl ‖+ ρ‖qk+1
l−1 − q

k
l−1‖

(Lemma 2).

17

For W k+1
1 ,

∇Wk+1
1

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)

= ∇Wk+1
1

φ(pk+1
1 ,W k+1

1 , bk+1
1 , zk+1

1)

= ∇Wk
1
φ(pk+1

1 ,W k
1 , b

k
1 , z

k
1) + θk+1

1 (W k+1
1 −W k

1) + ν(W k+1
1 −W k

1)pk+1
1 (pk+1

1)T + ν(bk+1
1 − bk1)(pk+1

1)T

− ν(zk+1
1 − zk1)(pk+1

1)T − θk+1
1 (W k+1

1 −W k
1)

= ν(W k+1
1 −W k

1)pk+1
1 (pk+1

1)T + ν(bk+1
1 − bk1)(pk+1

1)T − ν(zk+1
1 − zk1)(pk+1

1)T − θk+1
1 (W k+1

1 −W k
1)

(The optimality condition of Equation (4)).

So

‖∇Wk+1
1

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)‖

= ‖ν(W k+1
1 −W k

1)pk+1
1 (pk+1

1)T + ν(bk+1
1 − bk1)(pk+1

1)T − ν(zk+1
1 − zk1)(pk+1

1)T − θk+1
1 (W k+1

1 −W k
1)‖

≤ ν‖W k+1
1 −W k

1 ‖‖pk+1
1 ‖2 + ν‖bk+1

1 − bk1‖‖pk+1
1 ‖+ ν‖zk+1

1 − zk1‖‖pk+1
1 ‖+ θk+1

1 ‖W k+1
1 −W k

1 ‖
(triangle inequality and Cauthy-Schwartz inequality)

≤ ν‖W k+1
1 −W k

1 ‖N2
p + ν‖bk+1

1 − bk1‖Np + ν‖zk+1
1 − zk1‖Np + θk+1

1 ‖W k+1
1 −W k

1 ‖ (Theorem 1).

For W k+1
l (1 < l ≤ L),

∇Wk+1
l

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)

= ∇Wk+1
l

φ(pk+1
l ,W k+1

l , bk+1
l , zk+1

l , pk+1
l−1 , u

k+1
l−1)

= ∇Wk
l
φ(pk+1

l ,W k
l , b

k
l , z

k
l , p

k
l−1, u

k
l−1) + θk+1

l (W k+1
l −W k

1) + ν(W k+1
l −W k

l)pk+1
l (pk+1

l)T

+ ν(bk+1
l − bkl)(pk+1

l)T − ν(zk+1
l − zkl)(pk+1

l)T − θk+1
l (W k+1

l −W k
l)

= ν(W k+1
l −W k

l)pk+1
l (pk+1

l)T + ν(bk+1
l − bkl)(pk+1

l)T − ν(zk+1
l − zkl)(pk+1

l)T − θk+1
l (W k+1

l −W k
l)

(The optimality condition of Equation (4)).

So

‖∇Wk+1
l

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)‖

= ‖ν(W k+1
l −W k

l)pk+1
l (pk+1

l)T + ν(bk+1
l − bkl)(pk+1

l)T − ν(zk+1
l − zkl)(pk+1

l)T − θk+1
l (W k+1

l −W k
l)‖

≤ ν‖W k+1
l −W k

l ‖‖pk+1
l ‖2 + ν‖bk+1

l − bkl ‖‖pk+1
l ‖+ ν‖zk+1

l − zkl ‖‖pk+1
l ‖+ θk+1

l ‖W k+1
l −W k

l ‖
(triangle inequality and Cauthy-Schwartz inequality)

≤ ν‖W k+1
l −W k

l ‖N2
p + ν‖bk+1

l − bkl ‖Np + ν‖zk+1
l − zkl ‖Np + θk+1

l ‖W k+1
l −W k

l ‖ (Theorem 1).

For bk+1
1 ,

∇bk+1
1

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)

= ∇bk+1
1

φ(pk+1
1 ,W k+1

1 , bk+1
1 , zk+1

1)

= ∇bk1φ(pk+1
1 ,W k+1

1 , bk1 , z
k
1) + ν(bk+1

1 − bk1) + ν(zk1 − zk+1
1)

= ν(zk1 − zk+1
1) (The optimality condition of Equation (5)).

So ‖∇bk+1
1

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)‖ = ν‖zk+1
1 − zk1‖.

For bk+1
l (1 < l ≤ L),

∇bk+1
l

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)

= ∇bk+1
l

φ(pk+1
l ,W k+1

l , bk+1
l , zk+1

l , qkl−1, u
k
l−1)

= ∇bkl φ(pk+1
l ,W k+1

l , bkl , z
k
l , q

k
l−1, u

k
l−1) + ν(bk+1

l − bkl) + ν(zkl − zk+1
l)

= ν(zkl − zk+1
l) (The optimality condition of Equation (5)).

18

So ‖∇bk+1
l

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)‖ = ν‖zk+1
l − zkl ‖.

For zk+1
l (l < L),

∂zk+1
l

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)

= ∂zk+1
l

Lρ(pk+1,Wk+1, bk+1, zk+1, qk, uk) + ν(zk+1
l − zkl)− ν(zk+1

l − zkl)− ν∂fl(zk+1
l) ◦ (qk+1

l − qkl)(◦ is Hadamard product)

= −ν(zk+1
l − zkl)− ν∂fl(zk+1

l) ◦ (qk+1
l − qkl) (0 ∈ ∂zk+1

l
Lρ(pk+1,Wk+1, bk+1, zk+1, qk, uk) + ν(zk+1

l − zkl)).

So

‖∂zk+1
l

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)‖

= ‖ − ν(zk+1
l − zkl)− ν∂fl(zk+1

l) ◦ (qk+1
l − qkl)‖

≤ ν‖zk+1
l − zkl ‖+ ν‖∂fl(zk+1

l)‖‖qk+1
l − qkl ‖(Cauchy-Schwartz inequality and triangle inequality)

≤ ν‖zk+1
l − zkl ‖+ νM‖qk+1

l − qkl ‖(‖∂fl(zk+1
l)‖ ≤M).

For zk+1
L , ∂zk+1

L
Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1) = 0 by the optimality condition of Equation (7).

For qk+1
l ,

∇qk+1
l

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)

= ∇qk+1
l

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk) + uk+1
l − ukl

= uk+1
l − ukl (∇qk+1

l
Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk) = 0 by the optimality condition of Equation (8)).

So ‖∇qk+1
l

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)‖ = ‖uk+1
l − ukl ‖.

For uk+1
l ,

∇uk+1
l

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1) = (pk+1
l+1 − q

k+1
l) = (uk+1

l − ukl)/ρ.

So ‖∇uk+1
l

Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)‖ = ‖uk+1
l − ukl ‖/ρ.

In summary, we prove that ∇pk+1Lρ,∇Wk+1Lρ,∇bk+1Lρ, ∂zk+1Lρ,∇qk+1Lρ,∇uk+1Lρ are upper bounded by the linear
combination of ‖pk+1 − pk‖,‖Wk+1 −Wk‖, ‖bk+1 − bk‖, ‖zk+1 − zk‖, ‖qk+1 − qk‖, and ‖uk+1 − uk‖.
(2). It follows exactly the proof of (1) except for pk+1

l .

6) The proof of Theorem 2:

Proof. From Lemma 2(1), (pk,Wk, bk, zk, qk, uk) has at least a limit point (p∗,W∗, b∗, z∗, q∗, u∗) because a bounded sequence
has at least a limit point. From Lemma 3 and Theorem 1, ‖gk+1‖ → 0 as k → ∞. According to the definition of
general subgradient (Definition 8.3 in [35]), we have 0 ∈ ∂Lρ(p∗,W∗, b∗, z∗, q∗, u∗). In other words, every limit point
(p∗,W∗, b∗, z∗, q∗, u∗) is a stationary point.

7) The proof of Theorem 3:

Proof. From Lemma 2(2), (Wk, bk, zk, qk, uk) has at least a limit point (W∗, b∗, z∗, q∗, u∗) because a bounded sequence has
at least a limit point. pk has at least a limit point p∗ because pk ∈ ∆ and ∆ is finite. From Lemma 3(2) and Theorem 1,
‖gk+1

W ‖ → 0, ‖gk+1
b ‖ → 0, ‖gk+1

z ‖ → 0, ‖gk+1
q ‖ → 0, ‖gk+1

u ‖ → 0 as k → ∞. According to the definition of general
subgradient (Defintion 8.3 in [35]), we have ∇W∗βρ(p∗,W∗, b∗, z∗, q∗, u∗) = 0, ∇b∗βρ(p∗,W∗, b∗, z∗, q∗, u∗) = 0, 0 ∈
∂z∗βρ(p∗,W∗, b∗, z∗, q∗, u∗), ∇q∗βρ(p∗,W∗, b∗, z∗, q∗, u∗) = 0 and ∇u∗βρ(p∗,W∗, b∗, z∗, q∗, u∗) = 0 (i.e. p∗l+1 = q∗l). In
other words, every limit point (W∗, b∗, z∗, u∗) is a stationary point of Problem 3. Moreover, τkl has a limit point τ∗l because it
is bounded. Let τ k = {τkl }Ll=2. Consider a subsequence (ps,Ws, bs, zs, qs, us, τ s+1)→ (p∗,W∗, b∗, z∗, q∗, u∗, τ ∗). Because
us+1
l = usl + ρ(psl+1 − qsl) and us+1

l → usl , thus psl+1 → qsl , and ps+1
l+1 → qs+1

l . Because qs+1
l → qsl , then ps+1

l+1 → psl+1 for
any l. In other words, ps+1 → ps. Because ps → p∗, then ps+1 → p∗. The optimality condition of ps+1 (i.e. Equation (10))
leads to

ps+1
l ← arg minδ∈∆ ‖δ − psl −∇psl φ(psl ,W

s
l , b

s
l , z

s
l , q

s
l−1, u

s
l−1)/τ s+1

l)‖.

Taking s→∞ on both sides, we have

p∗l ← arg minδ∈∆ ‖δ − (p∗l −∇p∗l φ(p∗l ,W
∗
l , b
∗
l , z
∗
l , q
∗
l−1, u

∗
l−1)/τ∗l)‖.

Because ∇p∗l F (p∗,W∗, b∗, z∗, q∗) = νWT
l (z∗l −W ∗l p∗l − b∗l) = ∇p∗l φ(p∗l ,W

∗
l , b
∗
l , z
∗
l , q
∗
l−1, u

∗
l−1). Then

p∗l ← arg minδ∈∆ ‖δ − (p∗l −∇p∗l F (p∗,W∗, b∗, z∗, q∗)/τ∗l)‖.

Namely, p∗ is a quantized stationary point of Problem 3.

19

8) The proof of Theorem 4:

Proof. (1). To prove this, we will first show that ck satisfies two conditions: (1). ck ≥ ck+1. (2).
∑∞
k=0 ck is bounded. We

then conclude the convergence rate of o(1/k) based on these two conditions. Specifically, first, we have

ck=min0≤i≤k(
∑L

l=2
(τ i+1
l /2)‖pi+1

l −pil‖22 +
∑L

l=1
(θi+1
l /2)‖W i+1

l −W
i
l ‖22 +

∑L

l=1
(ν/2)‖bi+1

l −b
i
l‖22

+
∑L−1

l=1
C1‖zi+1

l − zil‖22 + (ν/2)‖zi+1
L − ziL‖22 +

∑L−1

l=1
C2‖qi+1

l − qil‖22)

≥min0≤i≤k+1(
∑L

l=2
(τ i+1
l /2)‖pi+1

l −pil‖22 +
∑L

l=1
(θi+1
l /2)‖W i+1

l −W
i
l ‖22 +

∑L

l=1
(ν/2)‖bi+1

l −b
i
l‖22

+
∑L−1

l=1
C1‖zi+1

l − zil‖22 + (ν/2)‖zi+1
L − ziL‖22 +

∑L−1

l=1
C2‖qi+1

l − qil‖22)

= ck+1.

Therefore ck satisfies the first condition. Second,∑∞

k=0
ck

=
∑∞

k=0
min0≤i≤k(

∑L

l=2
(τ i+1
l /2)‖pi+1

l −pil‖22 +
∑L

l=1
(θi+1
l /2)‖W i+1

l −W
i
l ‖22 +

∑L

l=1
(ν/2)‖bi+1

l −b
i
l‖22

+
∑L−1

l=1
C1‖zi+1

l − zil‖22 + (ν/2)‖zi+1
L − ziL‖22 +

∑L−1

l=1
C2‖qi+1

l − qil‖22)

≤
∑∞

k=0
(
∑L

l=2
(τk+1
l /2)‖pk+1

l −pkl ‖22 +
∑L

l=1
(θk+1
l /2)‖W k+1

l −W k
l ‖22 +

∑L

l=1
(ν/2)‖bk+1

l −b
k
l ‖22

+
∑L−1

l=1
C1‖zk+1

l − zkl ‖22 + (ν/2)‖zk+1
L − zkL‖22 +

∑L−1

l=1
C2‖qk+1

l − qkl ‖22)

≤ Lρ(p0,W0, b0, z0, q0, u0)− Lρ(p∗,W∗, b∗, z∗, q∗, u∗)(Lemma 1).

So
∑∞
k=0 ck is bounded and ck satisfies the second condition. Finally, it has been proved that the sufficient conditions of

convergence rate o(1/k) are: (1) ck ≥ ck+1, and (2)
∑∞
k=0 ck is bounded, and (3) ck ≥ 0 (Lemma 1.2 in [43]). Since we have

proved the first two conditions and the third one ck ≥ 0 is obvious, the convergence rate of o(1/k) is proven.
(2). It follows the same procedure as (1).

D. More Experimental Results

1) Datasets Details: 1. Cora [44]. The Cora dataset consists of 2708 scientific publications classified into one of seven
classes. The citation network consists of 5429 links. Each publication in the dataset is described by a 0/1-valued word vector
indicating the absence/presence of the corresponding word from the dictionary. The dictionary consists of 1433 unique words.
2. PubMed [44]. PubMed comprises 30M+ citations for biomedical literature that have been collected from sources such as
MEDLINE, life science journals, and published online e-books. It also includes links to text content from PubMed Central
and other publishers’ websites.
3. Citeseer [44]. The Citeseer dataset was collected from the Tagged.com social network website. It contains 5.6 million users
and 858 million links between them. Each user has 4 features and is manually labeled as “spammer” or “not spammer”. Each
link represents an action between two users and includes a timestamp and a type. The network contains 7 anonymized types of
links. The original task on the dataset is to identify (i.e., classify) the spammer users based on their relational and non-relational
features.
4. Amazon Computers and Amazon Photo [45]. Amazon Computers and Amazon Photo are segments of the Amazon co-
purchase graph, where nodes represent goods, edges indicate that two goods are frequently bought together, node features are
bag-of-words encoded product reviews, and class labels are given by the product category.
5. Coauthor CS and Coauthor Physics [46]. Coauthor CS and Coauthor Physics are co-authorship graphs based on the Microsoft
Academic Graph from the KDD Cup 2016 challenge 3. Here, nodes are authors, that are connected by an edge if they co-
authored a paper; node features represent paper keywords for each author’s papers, and class labels indicate the most active
fields of study for each author.
6. Flickr [47]. In Flickr, one node in the graph represents one image uploaded to Flickr. If two images share some common
properties (e.g., same geographic location, same gallery, comments by the same user, etc.), there is an edge between the nodes
of these two images. Node features are bag-of-word representation of the images and labels are classes of images.
7. Ogbn-Arxiv [48]. The Ogbn-Arxiv dataset is a directed graph, representing the citation network between all Computer
Science (CS) ARXIV papers indexed by MAG. Each node is an ARXIV paper and each directed edge indicates that one paper
cites another one. Each paper comes with a 128-dimensional feature vector obtained by averaging the embeddings of words in
its title and abstract. In addition, all papers are also associated with the year that the the corresponding paper was published.

20

2) The Settings of All Hyperparameters: This section provides more details on the hyperparameter settings of all datasets,
which are shown in the following tables.

Dataset Cora PubMed Citeseer
Learning Rate(GD) 10−1 5× 10−2 10−1

Learning Rate(Adadelta) 10−3 10−3 10−3

Learning Rate(Adagrad) 10−3 10−3 10−3

Learning Rate(Adam) 10−4 10−4 10−3

ρ, ν(pdADMM-G) 10−4 10−4 10−4

ρ, ν(pdADMM-G-Q) 10−4 10−3 10−3

Dataset Amazon
Computers

Amazon
Photo

Coauthor
CS

Learning Rate(GD) 10−2 10−2 10−1

Learning Rate(Adadelta) 10−3 10−3 10−3

Learning Rate(Adagrad) 10−3 10−3 10−3

Learning Rate(Adam) 10−3 10−3 10−3

ρ, ν(pdADMM-G) 10−3 10−3 10−2

ρ, ν(pdADMM-G-Q) 10−3 10−3 10−2

Dataset Coauthor
Physics Flickr Ogbn-Arxiv

Learning Rate(GD) 10−1 10−3 10−2

Learning Rate(Adadelta) 10−3 10−2 10−1

Learning Rate(Adagrad) 10−3 10−3 10−3

Learning Rate(Adam) 10−3 10−3 10−3

ρ, ν(pdADMM-G) 10−2 10−4 10−4

ρ, ν(pdADMM-G-Q) 10−2 10−4 10−4

TABLE V: Hyperparameter settings of all methods on nine
benchmark datasets when the number of neurons is 100.

Dataset Cora PubMed Citeseer
Learning Rate(GD) 10−1 5× 10−3 10−1

Learning Rate(Adadelta) 10−3 10−4 10−3

Learning Rate(Adagrad) 10−3 10−3 10−3

Learning Rate(Adam) 10−4 10−4 10−4

ρ, ν(pdADMM-G) 10−4 10−4 10−3

ρ, ν(pdADMM-G-Q) 10−4 10−3 10−3

Dataset Amazon
Computers

Amazon
Photo

Coauthor
CS

Learning Rate(GD) 10−2 10−2 10−1

Learning Rate(Adadelta) 10−3 10−3 10−3

Learning Rate(Adagrad) 10−3 10−3 10−3

Learning Rate(Adam) 10−4 10−4 10−4

ρ, ν(pdADMM-G) 10−3 10−3 10−3

ρ, ν(pdADMM-G-Q) 10−3 10−3 10−3

Dataset Coauthor
Physics Flickr Ogbn-Arxiv

Learning Rate(GD) 10−2 10−2 10−2

Learning Rate(Adadelta) 10−3 10−2 10−1

Learning Rate(Adagrad) 10−3 10−3 10−3

Learning Rate(Adam) 10−4 10−3 10−3

ρ, ν(pdADMM-G) 10−2 10−4 10−4

ρ, ν(pdADMM-G-Q) 10−2 10−4 10−4

TABLE VI: Hyperparameter settings of all methods on nine
benchmark datasets when the number of neurons is 500.

3) The Performance of Validation Sets: This section provides more experimental results on the validation sets of all
datasets, which are shown in the following tables.

Dataset Cora PubMed Citeseer
GD 0.704±0.037 0.626± 0.072 0.619±0.045

Adadelta 0.652±0.064 0.720±0.035 0.620±0.022
Adagrad 0.720± 0.022 0.762± 0.012 0.604 ±0.027
Adam 0.720±0.034 0.745± 0.014 0.624±0.014

pdADMM-G 0.750±0.005 0.788±0.004 0.724±0.005
pdADMM-G-Q 0.754± 0.002 0.793±0.002 0.722±0.002

Dataset Amazon
Computers

Amazon
Photo

Coauthor
CS

GD 0.654±0.033 0.730±0.165 0.875±0.007
Adadelta 0.136±0.062 0.343±0.046 0.781±0.084
Adagrad 0.750±0.095 0.808±0.018 0.889±0.006
Adam 0.740±0.010 0.850±0.006 0.887±0.009

pdADMM-G 0.753±0.005 0.846±0.014 0.913±0.003
pdADMM-G-Q 0.688±0.063 0.822±0.013 0.916±0.003

Dataset Coauthor
Physics Flickr Ogbn-Arxiv

GD 0.921±0.009 0.464±0.008 0.378±0.004
Adadelta 0.918±0.014 0.461±0.006 0.514±0.014
Adagrad 0.928±0.005 0.480±0.003 0.574±0.008
Adam 0.919± 0.010 0.512±0.004 0.681±0.003

pdADMM-G 0.933±0.001 0.514±0.001 0.649±0.012
pdADMM-G-Q 0.935±0.002 0.506±0.004 0.661±0.004

TABLE VII: The validation performance of all methods when
the number of neurons is 100.

Dataset Cora PubMed Citeseer
GD 0.731±0.018 0.651±0.034 0.679±0.008

Adadelta 0.716±0.061 0.688±0.024 0.597±0.025
Adagrad 0.765±0.014 0.776±0.006 0.668±0.028
Adam 0.758±0.013 0.778±0.008 0.668±0.020

pdADMM-G 0.753±0.004 0.792±0.004 0.729±0.003
pdADMM-G-Q 0.757±0.005 0.792±0.003 0.730±0.004

Dataset Amazon
Computers

Amazon
Photo

Coauthor
CS

GD 0.727± 0.012 0.809±0.012 0.897±0.003
Adadelta 0.246±0.073 0.371±0.075 0.884±0.003
Adagrad 0.766±0.011 0.860±0.003 0.912±0.004
Adam 0.750±0.017 0.872±0.020 0.893±0.013

pdADMM-G 0.778±0.007 0.861±0.005 0.912±0.003
pdADMM-G-Q 0.764±0.008 0.850±0.009 0.910±0.003

Dataset Coauthor
Physics Flickr Ogbn-Arxiv

GD 0.928±0.001 0.466±0.001 0.451±0.033
Adadelta 0.932±0.006 0.462±0.004 0.591±0.017
Adagrad 0.935±0.005 0.488±0.007 0.646±0.010
Adam 0.933±0.007 0.516±0.002 0.692±0.008

pdADMM-G 0.932±0.001 0.514±0.003 0.661±0.005
pdADMM-G-Q 0.933±0.002 0.514±0.001 0.667±0.003

TABLE VIII: The validation performance of all methods
when the number of neurons is 500.

	I Introduction
	II Related Work
	III The pdADMM-G Algorithm
	III-A Problem Formulation
	III-B The pdADMM-G Algorithm
	III-C Quantization Extension of pdADMM-G (pdADMM-G-Q)

	IV Convergence Analysis
	V Experiments
	V-A Datasets and Settings
	V-B Comparison Methods
	V-C Convergence
	V-D Speedup
	V-E Communication Overheads
	V-F Performance

	VI Conclusion
	References
	Appendix
	A Solutions to Subproblems of the pdADMM-G Algorithm
	A1 Update pk+1
	A2 Update Wk+1
	A3 Update bk+1
	A4 Update zk+1
	A5 Update qk+1
	A6 Update uk+1

	B Solutions to Subproblems of the pdADMM-G-Q Algorithm
	C Convergence Proofs
	C1 Preliminary Results
	C2 Proof of Lemma 1
	C3 Proof of Lemma 2
	C4 Proof of Theorem 1
	C5 Proof of Lemma 3
	C6 The proof of Theorem 2
	C7 The proof of Theorem 3
	C8 The proof of Theorem 4

	D More Experimental Results
	D1 Datasets Details
	D2 The Settings of All Hyperparameters
	D3 The Performance of Validation Sets

