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A combined microscopy and single-cell sequencing approach 
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ABSTRACT Environmental DNA analyses of fungal communities typically reveal a much 
larger diversity than can be ascribed to known species. Much of this hidden diversity lies 
within undescribed fungal lineages, especially the early diverging fungi (EDF). Although 
these EDF often represent new lineages even at the phylum level, they have never 
been cultured, making their morphology and ecology uncertain. One of the methods 
to characterize these uncultured fungi is a single-cell DNA sequencing approach. In 
this study, we established a large data set of single-cell sequences of EDF by manually 
isolating and photographing parasitic fungi on various hosts such as algae, protists, and 
micro-invertebrates, combined with subsequent long-read sequencing of the ribosomal 
DNA locus (rDNA). We successfully obtained rDNA sequences of 127 parasitic fungal 
cells, which clustered into 71 phylogenetic lineages belonging to seven phylum-level 
clades of EDF: Blastocladiomycota, Chytridiomycota, Aphelidiomycota, Rozellomycota, 
and three unknown phylum-level clades. Most of our single cells yielded novel sequen­
ces distinguished from both described taxa and existing metabarcoding data, indicating 
an expansive and hidden diversity of parasitic taxa of EDF. We also revealed an unexpec­
ted diversity of endobiotic Olpidium-like chytrids and hyper-parasitic lineages. Overall, by 
combining photographs of parasitic fungi with phylogenetic analyses, we were able to 
better understand the ecological function and morphology of many of the branches on 
the fungal tree of life known only from DNA sequences.

IMPORTANCE Much of the diversity of microbes from natural habitats, such as soil 
and freshwater, comprise species and lineages that have never been isolated into pure 
culture. In part, this stems from a bias of culturing in favor of saprotrophic microbes 
over the myriad symbiotic ones that include parasitic and mutualistic relationships with 
other taxa. In the present study, we aimed to shed light on the ecological function 
and morphology of the many undescribed lineages of aquatic fungi by individually 
isolating and sequencing molecular barcodes from 127 cells of host-associated fungi 
using single-cell sequencing. By adding these sequences and their photographs into 
the fungal tree, we were able to understand the morphology of reproductive and 
vegetative structures of these novel fungi and to provide a hypothesized ecological 
function for them. These individual host-fungal cells revealed themselves to be complex 
environments despite their small size; numerous samples were hyper-parasitized with 
other zoosporic fungal lineages such as Rozellomycota.

KEYWORDS early diverging fungi, parasite, phylogeny, single-cell analysis

E stimates on the number and diversity of fungi have been radically altered by the 
widespread adoption of culture-independent methods, such as metabarcoding and 
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metagenomics (1–3). These studies highlight the gap between the formally described 
fungal taxa and the estimated diversity, suggesting perhaps only 5%–10% of all 
fungal species have been described (4, 5). Moreover, they often identify major gaps in 
our knowledge of fungal phylogeny, such as entirely new lineages of fungi that were 
previously undetected (6–9). As novel as these sequence-based discoveries can be, one 
of the major hurdles to really understanding fungal diversity is a phenotypic characteri­
zation of the novel fungal lineages that comprise the so-called dark matter fungi found 
in metabarcoding studies (10). One approach to breaking through this barrier is the 
development of single-cell sequencing methods that rely on direct observations of cells 
through microscopy that can then be isolated and subjected to DNA sequencing and 
phylogenetic comparison to novel lineages from environmental DNA surveys (11–15). 
This way, information on both the habitat (e.g., host or substrate) and morphology can 
be obtained for these dark matter lineages.

Single-cell methods are particularly appropriate for studying the early diverging fungi 
(EDF), which are primarily microscopic and often unicellular. Metabarcoding studies 
show that many habitats are rich in novel EDF (8, 9, 16). Knowledge of the full diversity 
of EDF is growing, and new phyla are continuing to be described in this part of the 
tree (17–19). The fact that the undescribed EDF have never been cultured is likely 
because many of these fungi are parasitic (20–22). These fungi comprise a large portion 
of communities and are thus also ecologically relevant (16, 23–25). EDF are involved 
in ecosystem functions such as organic matter decomposition and nutrient cycling, 
making ecosystems more complex, and thus contribute to food web stability (26, 27). 
However, the morphology and ecological role of these EDF are speculative because they 
are recognized based only on environmental sequences. In this study, we endeavored 
to illuminate the morphology of uncultured EDF by isolating, photographing, and DNA 
sequencing parasitic fungi from several different types of freshwater habitats.

Our data fill in gaps in the constantly improving phylogenetic overview of EDF, 
which in the last two decades has been dramatically changed by extensive molecu­
lar phylogenetic analyses. Chytridiomycota (so-called chytrids) was divided into four 
independent phyla, Blastocladiomycota, Neocallimastigomycota, Monoblepharidomy­
cota, and Chytridiomycota sensu stricto (28–30), plus the recent addition of phyla 
Olpidiomycota (18, 31) and Sanchytriomycota (17) (Fig. 1). In addition to chytrids 
sensu lato, Aphelidiomycota (=Aphelida, so-called aphelids, endoparasites of algae) and 
Rozellomycota (=Cryptomycota, so-called rozellids, endoparasites of fungi, animals, and 
protists) were recognized as the most basal lineages of fungi along with Microsporidia 
(5, 31). In some classifications, aphelids, rozellids, and Microsporidia have been treated as 
sister lineages of the true fungi because of the absence of a cell wall during the trophic 
phase and the presence of a phagotrophic nutrient strategy (although Microsporidia 
lack this feature) (22, 32, 33). The phylogeny and taxonomy of chytrids sensu lato have 
in the last two decades been biased toward culture-based observations and analyses 
mainly on saprotrophic chytrids (34). Parasitic chytrids as well as aphelids and rozellids 
can also be investigated by culture-based studies in which a parasite and its host are 
cultivated together and incorporated into phylogenetic analyses (20, 21, 35, 36), and 
these data have been vital for understanding host range across chytrid orders (Fig. 
1). These culture-based studies have shown that algal parasites often represent new 
orders, families, or genera (20, 21, 37–41). Importantly, the orders Mesochytriales (20) and 
Zygophlyctidales (21) brought into formal definition novel clades that had previously 
only been known from environmental sequences (23, 42). Although further investigation 
of parasitic taxa is important to clarify the diversity of EDF, culture-based studies of 
parasitic taxa are difficult and time-consuming. Single-cell sequencing approaches can 
overcome some of these challenges and can be scaled up to higher throughput (11, 15).

In this study, a single-cell isolation approach was employed along with long-read 
sequencing techniques (34, 43) to comprehensively isolate parasitic EDF on various hosts 
and determine their phylogenetic position based on ribosomal DNA (rDNA) sequences. 
Sequence data for 127 parasitic fungal cells were successfully obtained and revealed 71 

Research Article mBio

Month XXXX  Volume 0  Issue 0 10.1128/mbio.01313-23 2

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/m
bi

o 
on

 2
4 

Ju
ly

 2
02

3 
by

 1
37

.2
07

.2
32

.1
78

.

https://doi.org/10.1128/mbio.01313-23


lineages, many of which were phylogenetically distinguished from described taxa. 
Additionally, single-cell lineages were compared with long-read metabarcoding data 
from similar habitats (44) to assess the overlap between culture-independent methods.

RESULTS

Phylogenetic position of isolated single cells

Over 300 individual cells of chytrid-, aphelid-, and Microsporidia-like fungi associated 
with their various hosts such as green algae, diatoms, cyanobacteria, protists, and 
micro-invertebrates were isolated (Fig. 2 to 4). A single-cell pipeline was applied to 
259 isolated cells (excluding some duplicated samples and putative non-fungal cells 
such as oomycetes and cercozoans, data not shown), and fungal rDNA sequences were 
successfully obtained for 129 cells by the Oxford Nanopore Technologies (ONT) or Sanger 
method (see Table S1 in the supplemental material). Excluding the two zygomyce­
tous sequences (PSC016 and PSC279, Table S1), 127 sequences were used for subse­
quent analyses. Based on the phylogenetic analysis on the concatenated data set of 
18S-5.8S-28S rDNA sequences (Fig. 5 to 10, full tree along with the photos of isola­
ted cells is available as “pursuit_tree.html” at Deep Blue repository, https://dx.doi.org/

FIG 1 Schematic tree showing the phylogenetic relationships among the early diverging fungal phyla and orders in Chytridiomycota and their host range. 

Illustrations of each lineage indicate hosts of parasitic taxa. Red colored illustrations indicate hosts of single cells isolated in this study.
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10.7302/7000), the 127 cells were categorized into 71 lineages distributed among seven 
phylum-level clades of EDF: Blastocladiomycota, Chytridiomycota, Aphelidiomycota, 
Rozellomycota, and three clades of unknown phyla.

We found five single-cell lineages that could not be placed into any phylum (i.e., 
phylum incertae sedis) (Fig. 5). Two lineages were Olpidium-like endoparasites of adult 
rotifers (PSC-L1; Fig. 2A) and rotifer eggs (PSC-L2; Fig. 2B) and formed a novel clade 
named NC_OlpL-1 (Novel Clade of Olpidium-like-1, Fig. 6). This clade also includes three 

FIG 2 Microscopic images of isolated cells. (A) Olpidium-like chytrid PSC-L1 in rotifer. (B) Olpidium-like chytrid PSC-L2 in rotifer 

egg. (C) Olpidium-like chytrid PSC-L3 in rotifer. (D) Olpidium-like chytrid PSC-L4 in rotifer. (E–G) Chytrids PSC-L5 on Stephanodis­

cus spp. (E and G) and Stephanodiscus binderanus (F). (H) Chytrid PSC-L6 on Stephanodiscus sp. (I) Chytrid PSC-L7 on Pinnularia 

sp. (J) Chytrid PSC-L8 on Ulnaria sp. (K–O) Olpidium-like chytrids PSC-L9 in Cosmarium spp. (K–N) and Staurastrum sp. (O). (P 

and Q) Chytrid PSC-L10 on Oscillatoriales spp. (R) Hyper-parasitic chytrid PSC-L11 (arrows) attaching on elongated oomycete 

zoosporangium inside Spirogyra sp. (S) Chytrid PSC-L12 on Craticula sp. (T) Chytrid PSC-L13 on Conticribra sp. (U) Chytrid 

PSC-L14 on Stephanodiscus binderanus. (V) Chytrid on PSC-L15 on Aulacoseira sp. (W) Chytrid PSC-L16 on Desmidium sp. 

(X) Chytrid PSC-L17 on Aulacoseira sp. (Y) Chytrid PSC-L18 on Staurastrum sp. (Z) Chytrid PSC-L19 on Glaucocystis sp. (AA) 

Olpidium-like chytrid PSC-L20 in pine pollen. (AB) Chytrid PSC-L21 on Stauridium sp. All scale bars are 10 µm.
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environmental sequences and the unpublished sequence data of Olpidium vermicola. 
PSC-L52, an epibiotic chytrid on Desmodesmus sp. (Fig. 4F), was related to Rhizophy­
dium scenedesmi strain EPG01 on Grasiella sp. (45). Along with some environmental 
sequences, these chytrids formed a distinct clade named NC_ChyL-1 (Novel Clade of 

FIG 3 Microscopic images of isolated cells. (A and B) Chytrid PSC-L22 on Aulacoseira sp. (A) and Stephanodiscus sp. 

(B). (C) Olpidium-like chytrid PSC-L25 in Closterium sp. (D) Olpidium-like chytrid PSC-L23 in Micrasterias truncata. (E) Olpidium-

like chytrid PSC-L24 in Desmidium sp. (F) Olpidium-like chytrid PSC-L26 in Euastrum sp. (G) Olpidium-like chytrid PSC-L27 in 

Cosmarium sp. (H) Chytrid PSC-L29 on Fragilaria sp. (I) Chytrid PSC-L28 on Stephanodiscus binderanus. (J) Chytrid PSC-L30 on 

Aulacoseira ambigua. (K) Chytrid PSC-L31 on Sphaerocystis sp. (L) Chytrid PSC-L32 on Mougeotia sp. (M) Chytrid PSC-L33 on 

Mougeotia sp. (N) Two chytrids PSC-L32 and L33 on Mougeotia sp. (O) Chytrid PSC-L34 on Desmidium sp. (P) Chytrid PSC-L35 

on Bambusina sp. (Q) Chytrid PSC-L36 on Cosmarium sp. (R) Chytrid on Desmidium sp. (S) Chytrid PSC-L38 on Desmidium 

sp. (T) Hyper-parasitic chytrid PSC-L39 attaching on another chytrid on Stephanodiscus binderanus. (U) Chytrid PSC-L40 on 

Mougeotia sp. (V) Chytrid PSC-L41 on Spirogyra sp. (W) Chytrid PSC-L42 on Spirogyra sp. (X) Chytrid PSC-L43 on Mougeotia 

sp. (Y) Chytrid PSC-L44 on Desmidium sp. (Z) Chytrid PSC-L45 on Spirogyra sp. (AA) Chytrid PSC-L46 on Melosira varians. (AB) 

Chytrid PSC-L47 on unidentified heliozoan. All scale bars are 10 µm.
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Chytrid-like-1, Fig. 9), which is sister to Monoblepharidomycota, but statistical support 
for this relationship was not robust. Two lineages were placed in the clade FRESHOL1 
reported previously (6) (Fig. 10). PSC-L70 was the cell of Staurastrum sp. filled by 

FIG 4 Microscopic images of isolated cells. (A) Chytrid PSC-L48 on Oedogonium sp. (B) Chytrid PSC-L49 on Oedogonium sp. (C) Chytrid PSC-L50 in Oedogonium 

sp. (D and E) Chytrid PSC-L51 on Cosmarium sp. (D) and Oedogonium sp. (E). (F) Chytrid PSC-L52 on Desmodesmus sp. (G and H) Aphelid PSC-L53 in Scenedesmus 

sp. (G) and Desmodesmus sp. (H). (I and J) Aphelid PSC-L54 in Scenedesmus sp. (I) and Desmodesmus sp. (J). (K) Two aphelids PSC-L55 and L59 in Bambusina sp. 

(L) Aphelid PSC-L58 in Ankistrodesmus sp. (M) Aphelid PSC-L56 in Aulacoseira sp. (N) Aphelid PSC-L57 in Melosira varians. (O) Isolated cell of rozellid PSC-L60 

including Oedogonium sp. and endobiotic, tube-shaped zoosporangia. (P) Microsporidia-like rozellid PSC-L61 (indicated by arrows) in Arcella sp. (Q) Isolated 

cell of rozellids PSC-L62 including tardigrade and tube-shaped zoosporangia. (R) Isolated cell of rozellids PSC-L63 including putative broken rotifer body and 

endobiotic zoosporangium. (S−Y) Hyper-parasitic Rozella infecting parasitic chytrids: PSC-L64 in chytrids on Desmidium sp. (S) and Bambusina sp. (T), PSC-L65 in 

chytrid on Mougeotia sp. (U), PSC-L66 in chytrid on Spirogyra sp. (V), PSC-L67 in chytrid on Ulnaria sp. (W), PSC-L68 in chytrid in Oedogonium sp. (X), and PSC-L69 

in Olpidium-like chytrid in Micrasterias truncata (Y). (Z) Staurastrum sp. harboring unknown fungus PSC-L70. (AA) Isolated cell of unknown fungus PSC-L71 

including Spirogyra sp. and attaching chytrid-like sporangia.
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uncolored particles (Fig. 4Z). PSC-L71 was epibiotic chytrid-like cells on Spirogyra sp. (Fig. 
4AA).

Only two lineages, both endobiotic parasites of adult rotifers, were placed in the 
Blastocladiomycota (Fig. 5 and 6). PSC-L3 (Fig. 2C) was placed in the clade including 
Catenaria anguillulae and Catenophlyctis variabilis. PSC-L4 (Fig. 2D) was sister to two 
Catenaria spp. parasitic on midge eggs (46, 47).

Most (n = 47) lineages were placed in Chytridiomycota, distributed among five orders: 
Rhizophydiales, Zygophlyctidales, Chytridiales, Lobulomycetales, and Cladochytriales 
(Fig. 5). Rhizophydiales was the most abundant in our isolates including 23 lineages (Fig. 
7) on various hosts or substrates: 10 on diatoms (PSC-L5–8, 12–15, 17, 22; Fig. 2E through 
J, S through V, X, and 3A and B), 8 on zygnematophycean green algae (PSC-L9, 16, 18, 23–
27; Fig. 2K through O, W, Y and 3C through G), and 1 each on chlorophycean green algae 
(PSC-L21; Fig. 2AB), glaucophyte algae (PSC-L19; Fig. 2Z), cyanobacteria (PSC-L10; Fig. 2P 

Host/Substrate

Fungus / Oomycete

Protist

Vertebrate

Invertebrate

Green alga

Yellow-green alga

Diatom
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Blastocladiomycota

NC_OlpL-1
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Mucoromycota

Neocallimastigomycota

Kickxellomycotina

Monoblepharidomycota

Basidiobolus
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FIG 5 Maximum likelihood (ML) tree of 18S-5.8S-28S rDNA concatenated data set. Outer ring indicates the host/substrate of each culture or single cell. Brach 

color indicates sequence types (single cell, environmental DNA, PacBio OTU in this study, or culture/specimen). Blue circles on the tips indicate single-cell 

sequences obtained in this study. Red stars on the nodes indicate single-cell lineages reported in this study and the numbers correspond to the lineage numbers 

in the text (PSC-L1–71).
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and Q), pine pollen (PSC-L20; Fig. 2AA), and oomycetes (PSC-L11; Fig. 2R). PSC-L11 was 
a putative hyper-parasitic chytrid attached to an endobiotic oomycete zoosporangium 
parasitizing Spirogyra sp. (Fig. 2R, arrows). Of the Rhizophydiales lineages, 16 exhibited 
typical epibiotic zoosporangium morphology, but the other seven were endobiotic 
zoosporangia in zygnematophycean green algae (PSC-L9, 23–27; Fig. 2K through O and 
3C through G) or pine pollen (PSC-L20; Fig. 2AA). Most of our Rhizophydiales cells were 
distinguished from any cultivated chytrids, while three lineages (PSC-L8, 16, 18) were 
nearly identical to cultures of parasitic or saprotrophic chytrids.

In Zygophlyctidales (Fig. 8), three lineages of diatom parasites (PSC-L28–30; Fig. 
3H through J) formed a clade along with known diatom parasitic species, Zygophlyc­
tis asterionellae, Z. planktonica, and Z. melosirae. An additional lineage, PSC-L31, was 
parasitic on the green alga Sphaerocystis sp. (Fig. 3K) and closely related to the environ­
mental sequence AY2009A5 from a lake in France (48).

In Chytridiales (Fig. 8), 13 lineages were found, 12 of which were epibiotic chytrids 
on zygnematophycean green algae such as Bambusina (PSC-L35; Fig. 3P), Cosmarium 
(PSC-L36; Fig. 3Q), Desmidium (PSC-L34, 37, 38, and 44; Fig. 3O, R, S and Y), Mougeotia 
(PSC-L32, 33, 40, and 43; Fig. 3L through N, U, and X), and Spirogyra (PSC-L41 and 42; Fig. 
3V and W). Regarding the cell PSC289 (Fig. 3N), sequences of two independent lineages 
(PSC-L32 and 33) were obtained by ONT sequencing, indicating that two morphologi­
cally similar chytrids infected a single host. An additional lineage, PSC-L39 (Fig. 3T), was a 
putative hyper-parasitic chytrid on the Zygophlyctidales chytrid PSC-L28 on S. binderanus 
(see Discussion). Six lineages belonged to the known families Chytriomycetaceae (n = 
4) and Chytridiaceae (n = 2), but they were distinct from any described taxa. Outside of 
these families, four additional lineages (PSC-L36, 38, 39, and 40) related to environmental 
sequences were found. In contrast, three lineages were closely related to described taxa. 
PSC-L37 (Fig. 3R) could be morphologically identified as Polyphlyctis unispina which was 
originally found from the same location as our isolates (49). This lineage was sister to 

Blastocladiomycota

Olpidium brassicae DUH0009361 [OP / Plant]

Catenaria sp. JEL0913 [S]
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Catenaria sp. JEL0871 [S]
Catenophlyctis variabilis JEL0298 [S]
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52
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75
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77

99

56
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60

51

53

99

98

99
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76

NC_OlpL-1

Entomophthoromycotina
Kickxellomycotina

Zoopagomycotina
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GS18

Basidiomycota
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Mucoromycota

PSC-L1

PSC-L2

PSC-L3

PSC-L4
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❶

FIG 6 Portion of maximum likelihood (ML) tree of 18S-5.8S-28S rDNA concatenated data set including Ascomycota, Basidiomycota, Mucoromycota, Entomop­

thoromycotina, Kickxellomycotina, Zoopagomycotina, Blastocladiomycota, and the NC_OlpL-1 clade. ML bootstrap values higher than 50% were shown on each 

branch. Black dots on branches indicate 100% bootstrap value. Double and quadruple slashes on branches indicate that length is reduced by half and quarter, 

respectively. Cultured fungi are labeled in black; saprotrophs are indicated as [S], and obligate [OP] and facultative [FP] parasites are indicated as [O(F)P / its host]. 

Single cells isolated in this study are labeled in bold blue and previously published sequences of single cells are labeled in blue; annotations are indicated as 

[Endo (endobiotic) or Epi (epibiotic) / host / isolation source / figure number if available]. Published environmental DNA sequences are labeled in pink and PacBio 

OTU sequences in this study are labeled in bold red; source of each sequence is described in parentheses.
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Uncultured UMPB-8 [USA, MI: 0316G.Douglas Lake]

PSC182 [Epi / Aulacoseira sp. / Canada: Lake Erie]

PSC054 [Epi / Craticula sp. / USA, MI: Platt Pond] 

PSC295 [Endo / Desmidium sp. / USA, MI: Smith’s Fen]

PSC022 [Endo / Micrasterias truncata / USA, MI: Buck Hollow in ESGR / 2D]

Rhizophydiales sp. AST-CHY1 [OP / Asterionella formosa]

PSC271 [Endo / Closterium sp. / USA, MI: Smith’s Fen / 2C]

Uncultured UMPB-2967 [USA, MI: MA139.Huron Lake SB2]

Paranamyces uniporus WJD150 [S]

PSC008 [Epi / Staurastrum sp. / USA, MI: Herbarium Pond / 1Y]

Halomyces littoreus Barr263 [S]

812k3Ag [Epi / Aulacoseira granulata / Japan: Lake Inba]

PSC178 [Epi / Aulacoseira sp. / Canada: Lake Erie]

PSC266 [Endo / Desmidium sp. / USA, MI: Smith’s Fen / 2E]

PSC285 [Epi / Desmidium sp. / USA, MI: Smith’s Fen / 1W]

PSC034 [Endo / Cosmarium sp. / USA, MI: Herbarium Pond / 1N]  
PSC032 [Endo / Cosmarium sp. / USA, MI: Herbarium Pond  / 1M]  

Alphamyces sp. JEL0952 [S]

PSC179 [Epi / Stephanodiscus sp. / Canada: Lake Erie] 

SkChyt5 [Epi / Skeltonema sp. / UK: Marine plankton sample]

Rhizophydium megarrhizum Chy-Kol2008 [OP / Planktothrix sp.]

PSC177 [Epi / Aulacoseira sp. / Canada: Lake Erie]

Rhizophydium megarrhizum Chy-Lys2009 [OP / Planktothrix sp.]

PSC207 [Epi / Stephanodiscus sp. / Canada: Lake Erie] 

Uncultured PA2009B8 [France: lake water]

Uncultured AY2009D2 [France: lake water]

PSC186 [Epi / Stephanodiscus binderanus / Canada: Lake Erie]

Rhizophydiales sp. C3 [OP / Diatoms]

Uncultured PA2009E8 [France: lake water]

PSC201 [Epi / Stephanodiscus sp. / Canada: Lake Erie / 1G] 

Uncultured A_3_27 [Japan: paddy field soil] 

Uncultured Jp13Rp05E [Japan: lake water]

PSC184 [Epi / Stephanodiscus sp. / Canada: Lake Erie / 2B]

PSC049 [Epi / Craticula sp. / USA, MI: Platt Pond / 1S] 

PSC029 [Endo / Staurastrum sp. / USA, MI: Herbarium Pond / 1O]  

812k6Ag [Epi / Aulacoseira granulata / Japan: Lake Inba]

PSC204 [Epi / Stephanodiscus binderanus / Canada: Lake Erie / 1F]

Rhizophydium echinocystoides B8 [Epi/ Pine pollen / USA, MI: Bryant Bog]

Gorgonomyces haynaldii JEL0151 [S]

PSC028 [Endo / Cosmarium sp. / USA, MI: Herbarium Pond / 1L]  

Uncultured UMPB-137 [USA, MI: 0316G.Douglas Lake]

Stephanodiscus-MDA04 [Epi / Stephanodiscus sp. / Germany: Lake Stechlin]

Uncultured UMPB-228 [USA, MI: MA58.Lake Erie WLE2]

PSC021 [Endo / Micrasterias truncata / USA, MI: Buck Hollow in ESGR]

Boothiomyces macroporosus PLAUS21 [S]

Protrudomyces sp. JEL0578 [S]

PSC276 [Epi / Pinnularia sp. / USA, MI: Smith’s Fen / 1I]

Cosmarium-MDAExp1 [Epi / Cosmarium sp. / Germany, Lake Stechlin]

Angulomyces argentinensis WJD137 [S]

Aquamyces chlorogonii JEL0317 [S]

Entophlyctis sp. JEL0174 [S]

Urceomyces sphaerocarpus ARG129 [S]

Uncultured PFH9SP2005 [France: lake water]
Uncultured AY2009D3 [France: lake water]

PSC047 [Epi / Stephanodiscus sp. / USA, MI: Ford Lake] 

PSC188 [Epi / Stephanodiscus binderanus / Canada: Lake Erie]

Polyrhizophydium stewartii JEL0888 [S]

Rhizophydiales sp. Fragilaria-B6 [OP / Fragilaria sp.]

PSC018 [Endo / Cosmarium sp. / USA, MI: Big Experimental Pond in ESGR / 2G]

PSC216 [Epi / Oscillatoriales sp. / USA, MI: Herbarium Pond / 1P]  

PSC046 [Epi / Stephanodiscus sp. / USA, MI: Ford Lake / 1H] 

Homolaphlyctis polyrhiza JEL0142 [S]

PSC205 [Epi / Stephanodiscus sp. / Canada: Lake Erie] 

Uebelmesseromyces harderi JEL0171 [S]

PSC027 [Endo / Cosmarium sp. / USA, MI: Herbarium Pond / 1K]  

PSC166 [Epi / Conticribra sp. / Canada: Lake Erie / 1T]

Kappamyces sp. JEL0356 [S]

PSC174 [Epi / Stephanodiscus sp. / Canada: Lake Erie] 

Uncultured UMPB-132 [USA, MI: 0296D.Woodland Lake soil]

PSC023 [Endo / Micrasterias truncata / USA, MI: Buck Hollow in ESGR]

PSC026 [Endo / Cosmarium sp. / USA, MI: Herbarium Pond]  

PSC039 [Epi / Ulnaria sp. / USA, MI: Ford Lake]

PSC219 [Epi / Oscillatoriales sp. / USA, MI: Herbarium Pond / 1Q]  

Uncultured PFB4SP2005 [France: lake water]

Batrachochytrium dendrobatidis JEL0197 [FP / Amphibians]

Uncultured UMPB-160 [USA, NC: 0338V.Bird Shoal sand flats]

Uncultured UMPB-2119 [USA, MI: MA58.Lake Erie WLE2]

Collimyces mutans KS100 [OP / Microglena spp.]

Uncultured UMPB-1297 [USA, MI: MA135.Woodland Lake]

PSC112 [Epi / Zoosporangium in Spirogyra sp. / USA, MI: SG Pond / 1R]

PSC162 [Epi / Stephanodiscus sp. / Canada: Lake Erie / 1E] 

Fragilaria-MDA54 [Epi / Fragilaria sp. / Germany, Lake Stechlin]

PSC024 [Endo / Micrasterias truncata / USA, MI: Buck Hollow in ESGR]

Uncultured STFeb_269 [Germany: lake water]

PSC272 [Endo / Desmidium sp. / USA, MI: Smith’s Fen]

PSC303 [Endo / Pine pollen / USA, MI: Bryant Bog / 1AA]

PSC189 [Epi / Stephanodiscus binderanus / Canada: Lake Erie / 1U]

Staurastromyces oculus STAU-CHY3 [OP / Staurastrum sp.]

PSC168 [Epi / Conticribra sp. / Canada: Lake Erie]

PSC190 [Epi / Stephanodiscus binderanus / Canada: Lake Erie]

PSC037 [Epi / Ulnaria sp. / USA, MI: Ford Lake / 1J]

PSC129 [Epi / Aulacoseira sp. / Canada: Lake Erie / 1X]

Rhizophydium brooksianum JEL0136 [S]

PSC187 [Epi / Aulacoseira sp. / Canada: Lake Erie / 2A]

Rhizophydiales sp. E1 [OP / Ulnaria sp.]

Operculomyces laminatus JEL0233 [S]

Entophlyctis helioformis JEL0326 [S]

Angulomyces sp. JEL0845 [S]

PSC176 [Epi / Stephanodiscus binderanus / Canada: Lake Erie]

PSC197 [Epi / Aulacoseira sp. / Canada: Lake Erie / 1V]

Terramyces sp. JEL0393 [S]

Synedra-MDA23 [Epi / Ulnaria sp. / Germany, Lake Stechlin]

Globomyces pollinis-pini JEL0291 [S]

Betamyces sp. UM1568 [S]

PSC196 [Epi / Glaucocystis sp. / Canada: Lake Erie / 1Z]

Kappamyces laurelensis PL98 [S]

PSC033 [Endo / Cosmarium sp. / USA, MI: Herbarium Pond]  

PSC253 [Epi / Stauridium sp. / USA, MI: Herbarium Pond / 1AB]

Uncultured MPE2-18 [Antarctica: aquatic moss pillars]

Uncultured PFB1AU2004 [France: lake water]

PSC301 [Endo / Euastrum sp. / USA, MI: Smith’s Fen / 2F]
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Novel Clade II (Lefèvre et al. 2008)
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FIG 7 Portion of maximum likelihood (ML) tree of 18S-5.8S-28S rDNA concatenated data set including order Rhizophydiales in Chytridiomycota.
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another species of the genus, P. willoughbyi. PSC-L41 and 42 (Fig. 3V and W) were sister to 
the saprotrophic chytrid Delfinachytrium mesopotamicum.

In Lobulomycetales (Fig. 9), three lineages were found: PSC-L45 on Spirogyra sp. (Fig. 
3Z), PSC-L46 on Melosira varians (Fig. 3AA), and PSC-L47 on an unidentified heliozoan 

Uncultured GL02816_032_S002 [Madagascar: soil]

Irineochytrium annulatum JEL0729 [S]

PSC004 [Epi / Sphaerocystis sp. / USA, MI: Herbarium Pond / 2K]

PSC149 [Epi / Stephanodiscus binderanus / Canada: Lake Erie]

Obelidium mucronatum JEL0802 [S]

Uncultured KRL01E7 [Greece: lake water] 

PSC156 [Epi / Stephanodiscus binderanus / Canada: Lake Erie / 2I]

Dangeardia mamillata SVdW-EUD2 [OP / Yamagishiella unicocca]

PSC288 [Epi / Mougeotia sp. / USA, MI: Bryant Bog / 2L]

Uncutured CH1_2B_29 [France: lake water]

PSC287 [Epi / Mougeotia sp. / USA, MI: Bryant Bog / 2M]

Cyclotella-MDA01 [Epi / Cyclotella sp. / Germany: Lake Stechlin]

PSC309 [Epi / Bambusina sp. / USA, MI: Smith’s Fen / 2P]

819o12Aa [Epi / Aulacoseira ambigua / Japan: Lake Inba]

PSC286 [Epi / Desmidium sp. / USA, MI: Smith’s Fen / 2O]

Chytridium olla ARG100 [OP / Oedogonium capilliforme]

Uncultured UMPB-2212 [USA, MI: 0325S.Bryant Bog]

PSC157 [Epi / Stephanodiscus binderanus / Canada: Lake Erie]

Uncultured UMPB-32 [USA, MI: 0270G.North Lake]

PSC284 [Epi / Desmidium sp. / USA, MI: Smith’s Fen / 2S]

Spizellomyces punctatus ATCC48900 [S]

Uncultured_T3P1AeG12 [high-elevation soil]

PSC289A [Epi / Mougeotia sp. / USA, MI: Bryant Bog / 2N]

Rhizophlyctis rosea JEL0532 [S]

PSC297 [Epi / Desmidium sp. / USA, MI: Smith’s Fen / 2R]

Chytriomyces hyalinus MP4 [S]

Synchytrium decipiens DUH0009362 (OP / Plant)

Chytriomyces appendiculatus JEL0967 [S]

Uncultured UMPB-2233 [USA, MI: 0325S.Bryant Bog]

Zygophlyctis asterionellae KS98 [OP / Asterionella formosa]

PSC103 [Epi / Spirogyra sp. / USA, MI: BM Pond / 2W]

Borealophlyctis nickersoniae WJD170 [S]

PSC040 [Epi / Fragilaria sp. / USA, MI: Ford Lake / 2H]

Entophlyctis luteolus JEL0129 [S]

Dendrochytridium crassum JEL0354 [S]

715o15Ag [Epi / Aulacoseira granulata / Japan: Lake Inba]

BiwaFcA1 [Epi / Fragilaria crotonensis / Japan: Lake Biwa]

PSC140 [Epi / Aulacoseira granulata / Canada: Lake Erie]

Polyphlyctis willoughbyi PLAUS26 [S]

Uncultured AY2009C3 [France: lake water]

PSC161 [Epi / Chytrid on Stephanodiscus binderanus / Canada: Lake Erie]

Uncultured T1P1AeF04 [high-elevation soil]

Wheelerophlyctis interior JEL0524 [S]

Thoreauomyces humboldtii JEL0095 [S]

PSC159 [Epi / Aulacoseira ambigua / Canada: Lake Erie / 2J]

Physocladia obscura JEL0137 [S]

PSC298 [Epi / Desmidium sp. / USA, MI: Smith’s Fen]

Chytridiales sp. JEL0812 [S]

PSC153 [Epi / Chytrid on Stephanodiscus binderanus / Canada: Lake Erie / 2T]

Uncultured UMPB-230 [USA, MI: MA135.Woodland Lake]

Uncultured UMPB-1409 [USA, MI: 0314N.Hogback Bog sediment]

Rhizoclosmatium sp. JEL0347-h [S]

Zygophlyctis melosirae C1 [OP / Aulacoseira ambigua] 

Dinochytrium kinnereticum KLL_TL_060613 [FP / Peridinium gatunense]

Uncultured ESS220206.048 [Luxembourg: lake water]

PSC264 [Epi / Desmidium sp. / USA, MI: Smith’s Fen / 2Y]

Uncultured UMPB-2316 [USA, MI: 0326G.Smith’s Fen]

PSC154 [Epi / Stephanodiscus binderanus / Canada: Lake Erie]

Uncultured P34.43 [France: lake water]

PSC275 [Epi / Cosmarium sp. / USA, MI: Lile Pond / 2Q]

Phlyctochytrium planicorne JEL0388 [S]

Rhizophydium planktonicum AstB5 [OP / Asterionella formosa]

Rhizoclosmatium pessaminum JEL0823 [S]
Uncultured UMPB-2339 [USA, MI: MA135.Woodland Lake]

Zygophlyctis planktonica SVdW-SYN-CHY1 [OP / Ulnaria sp.]

Asterophlyctis sp. JEL0934 [S]

Brevicalcar kilaueaense JEL0355 [S]

PSC299 [Epi / Mougeotia sp. / USA, MI: Smith’s Fen / 2X]

Pedulichytrium sphaericum KS93 [OP / Aulacoseira granulata]

PSC160 [Epi / Stephanodiscus binderanus / Canada: Lake Erie]

Uncultured UMPB-232 [USA, MI: 0325S.Bryant Bog]

PSC001 [Epi / Sphaerocystis sp. / USA, MI: Herbarium Pond]

PSC115 [Epi / Spirogyra sp. / USA, MI: SG Pond]

Synchytrium macrosporum DUH0009363(OP / Plant)

Delfinachytrium mesopotamicum ARG116 [S]

Uncultured AY2009A5 [France: lake water]

Zygophlyctis melosirae KS99 [OP / Aulacoseira granulata]

Uncultured UMPB-669 [USA, MI: 0302G.Lile Pond]

Catenomyces sp. JEL0342 [S]

Odontochytrium sp. JEL0942 [S]

PSC193 [Epi / Stephanodiscus binderanus / Canada: Lake Erie]

PSC116 [Epi / Spirogyra sp. / USA, MI: SG Pond / 2V]

Zygorhizidium willei KS97 [OP / Gonatozygon brebissonii]

PSC290 [Epi / Mougeotia sp. / USA, MI: Bryant Bog / 2U]

Diatoma-MDA07 [Epi / Diatoma sp. / Germany: Lake Stechlin]

Pseudorhizidium endosporangiatum JEL0221 [S]

PSC289B [Epi / Mougeotia sp. / USA, MI: Bryant Bog / 2N]

Uncultured PA2009D11 [France: lake water]

Rodmanochytrium sp. UM1564 [S]

Rhizophlyctis rosea JEL0318 [S]

Chytridiales sp. JEL0812 [S]

PSC191 [Epi / Stephanodiscus binderanus / Canada: Lake Erie]

Gaertneriomyces semiglobiferus UCB-91-10 [S]

Blyttiomyces sp. JEL0837 [S]

Rodmanochytrium pyriforme WB235A [S]
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FIG 8 Portion of maximum likelihood (ML) tree of 18S-5.8S-28S rDNA concatenated data set including orders Zygophlyctidales, Zygorhizidiales, Rhizophlycti­

dales, Spizellomycetales, Synchytriales, and Chytridiales in Chytridiomycota.
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(Fig. 3AB). These lineages were related to environmental sequences and separated from 
the core Lobulomycetaceae clade including the type genus Lobulomyces.

Three lineages of putative saprotrophs on dead green algae were placed in Clado­
chytriales (Fig. 9). PSC-L48 (Fig. 4A) and PSC-L49 (Fig. 4B) on Oedogonium spp. were 
characterized by an epibiotic zoosporangium with a conspicuous endobiotic apophysis, 
resembling described taxa such as Chytridium lagenaria and C. schenkii (50, 51). PSC-L50 
(Fig. 4C) could be an endobiotic zoosporangium with a discharge tube inhabiting the cell 
of dead Oedogonium sp. PSC-L51 on Cosmarium sp. (Fig. 4D) and Oedogonium sp. (Fig. 4E) 
was sister to Cladochytrium spp.

We found seven lineages in Aphelidiomycota (Fig. 10). Aphelid cells were recogniza­
ble based on host algal cells filled by a parasite cell with a conspicuous, red-colored 
residual body (Fig. 4G through N). Two lineages were parasitic on Desmodesmus and 
Scenedesmus and separated into independent clades: PSC-L53 (Fig. 4G and H) was placed 
in the clade including Paraphelidium spp. on Tribonema gayanum (52, 53) and PSC-L54 
(Fig. 4I and J) was nearly identical to Aphelidium desmodesmi on Desmodesmus armatus 
(54). Similar to the cell PSC289 in Chytridiales, PSC267 on Bambusina sp. (Fig. 4K) included 
two distinct lineages: PSC-L55 sister to Amoeboaphelidium occidentale on Scenedesmus 
dimorphus (55, 56) and PSC-L59 sister to Aphelidium spp. parasitic on T. gayanum (57–60). 
Two lineages of diatom parasites, PSC-L55 on A. granulata (Fig. 4M) and PSC-L56 on M. 

Polyphagus parasiticus Pp [OP/ Tribonema gayanum]

Uncultured UMPB-1342 [USA, MI: MA139.Huron Lake SB14]

Endochytrium ramosa JEL0402 [S]

Zygorhizidium affluens CCAP-4086-1 [OP / Asterionella formosa]

Uncultured UMPB-168 [USA, MI: 0316G.Douglas Lake]

Gromochytrium mamkaevae CALU_X-51 [OP / Tribonema gayanum]

Nowakowskiella elegans JEL0127 [S]

Cyllamyces aberensis EO14 [S]

Maunachytrium keaense AF021 [S]

Cladochytrium sp. JEL0900 [S]

Lacustromyces hiemalis JEL0938 [S]

PSC252 [Endo / Oedogonium sp. / USA, MI: Herbarium Pond / 3C]

PSC128 [Epi / Desmodesmus sp. / USA, MI: Herbarium Pond]

PSC248 [Epi / Spirogyra sp. / USA, MI: First Sister Bog / 2Z]

Endocoenobium eudorinae SVdW-EUD1 [OP / Yamagishiella, Eudorina]

Uncultured Jp13Mc01E [Japan: lake water]

Neocallimastix sp. GE13 [S]

Uncultured AY2009B4 [France: lake water]

Gonapodya sp. JEL0183 [S]

Rhizophydium scenedesmi EPG01 [OP / Graesiella sp.]

Lobulomyces angularis JEL0045 [S]

Nephrochytrium aurantium JEL0907 [S]

Oedogoniomyces sp. CR84 [S]

PSC233 [Epi / Unidentified heliozoan / USA, MI: Herbarium Pond / 2AB]

Allochytridium luteum JEL0324 [S]

Uncultured Elev_18S_563 [USA, WI: trembling aspen rhizosphere]

Lobulomyces poculatus JEL0343 [S]

Uncultured PA2009B5 [France: lake water]

Uncultured L73_ML_156 [USA, LA: lake water]

Apiochytrium granulosporum X-124 [OP / Tribonema gayanum]

Uncultured PFE7AU2004 [France: lake water]

Nowakowskiella sp. JEL0078 [S]

Cladochytriales sp. JEL0072 [S]

PSC122 [Epi / Desmodesmus sp. / USA, MI: Herbarium Pond / 3F]

Lobulomycetales sp. AF011 [S]

PSC242 [Epi / Oedogonium sp. / USA, MI: First Sister Bog / 3A]

PSC228 [Epi / Oedogonium sp. / USA, MI: First Sister Bog / 3E]

Monoblepharella mexicana BK78-1 [S]

Septochytrium sp. JEL0785 [S]

Nephrochytrium sp. JEL0125 [S]

Harpochytrium sp. JEL0094 [S]

PSC090 [Epi / Melosira varians / USA, MI: Black River]

Algomyces stechlinensis SVdW-EUD3 [OP / Yamagishiella unicocca, Eudorina elegans]

722o15Ag [Epi / Aulacoseira granulata / Japan: Lake Inba]

Mesochytrium penetrans CALU_X-10 [OP / Chlorococcum minutum]

729o11Aa [Epi / Aulacoseira ambigua / Japan: Lake Inba]

Monoblepharis polymorpha JEL0488 [S]
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FIG 9 Portion of maximum likelihood (ML) tree of 18S-5.8S-28S rDNA concatenated data set including Monoblepharidomycota, Neocallimastigomycota, the 

NC_ChyL-1 clade, and orders Lobulomycetales, Gromochytriales, Mesochytriales, Polyphagales, Cladochytrilaes, and Polychytriales in Chytridiomycota.
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varians (Fig. 4N), were distinct from described species. PSC-L58 on Ankistrodesmus sp. 
(Fig. 4L) was closely related to A. parallelum parasitic on selenastracean green alga (61).

In Rozellomycota, 10 single-cell lineages were found (Fig. 10). Many of them were 
recognized as epibiotic or endobiotic zoosporangia on algae (Fig. 4O, S through Y) 
or micro-invertebrates (Fig. 4Q and R). PSC-L61 was a cell of Arcella sp. harboring 
a sac-like structure including Microsporidia-like spores (arrows in Fig. 4P). This appear­
ance is similar to endoparasites of amoebae such as Paramicrosporidium (62) and 
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FIG 10 Portion of maximum likelihood (ML) tree of 18S-5.8S-28S rDNA concatenated data set including Aphelidiomycota, Rozellomycota, the NCLC1 and 

FRESHOL1 clade, Nuclearia simplex, and outgroup taxa (two holozoan taxa).

Research Article mBio

Month XXXX  Volume 0  Issue 0 10.1128/mbio.01313-23 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/m
bi

o 
on

 2
4 

Ju
ly

 2
02

3 
by

 1
37

.2
07

.2
32

.1
78

.

https://doi.org/10.1128/mbio.01313-23


Morellospora (63), which produce Microsporidia-like spores but are phylogenetically 
placed in Rozellomycota and much shorter branched than canonical Microsporidia. 
PSC-L61 was distinguished from these previously reported Microsporidia-like taxa. Five 
lineages (PSC-L64–68) were isolated as epibiotic chytrids on green algae (Fig. 4S through 
V, X) and diatoms (Fig. 4W). However, they were positioned in the Rozella clade, which 
comprises endoparasites of chytrids and oomycetes, suggesting they were hyper-para­
sites of chytrids. PSC-L69 (Fig. 4Y), which showed the same morphology as PSC-L23 
(Fig. 3D) in Rhizophydiales, was sister to all other Rozellomycota taxa. This lineage is 
also a putative Rozella-like hyper-parasite (see Discussion). PSC-L60 was a tube-shaped 
zoosporangium in Oedogonium sp. (Fig. 4O) and placed in the LKM11 clade (64). PSC-L62 
in a tardigrade (Fig. 4Q) and PSC-L63 in a putative broken rotifer body (Fig. 4R) were 
related to Paramicrosporidium spp. These zoosporangium-like structures in PSC-L60, L62, 
and L63 may not correspond to rozellids, and the sequences could be derived from 
hyper-parasites of these zoosporangia or undetected contaminated cells.

Phylogenetic relationship between single cells and environmental sequences

The concatenated data set analysis showed that many of our single cells represented 
novel lineages distinguished from described taxa (Fig. 6 to 10). This result complements 
many environmental DNA studies that have reported unknown fungal lineages (23, 48). 
To examine overlap between our single-cell lineages and sequences only known from 
environmental DNA, we conducted a phylogenetic analysis on a comprehensive 18S 
rDNA data set including described taxa, environmental sequences available from NCBI 
database, with a focus on the phylum Chytridiomycota and phylum incertae sedis clades 
(see Fig. S1 in the supplemental material). In this analysis, new sequences of PacBio 
metabarcoding analyses primarily from Michigan, USA (44), were also used. Many of 
these PacBio sequences are derived from the same locations as the single cells isolated in 
this study, which gives a good opportunity to compare the two methods, metabarcoding 
and single-cell analysis, for exploring novel fungal diversity. The ML tree (see Fig. S1) 
showed that the vast majority of PacBio sequences represent entirely new lineages. 
Only a few of the single-cell lineages were closely related to PacBio environmental 
sequences. The PSC-L8 clade, in Rhizophydiales, included sequence UMPB-228 from Ford 
Lake, the same place where the two diatom parasites were isolated. In Chytridiales, 
PSC-L39 included UMPB-32 detected from multiple freshwater environments including 
Lake Erie (see Data S1 in the supplemental material) where some of the single cells were 
isolated. This lineage was also found in lakes in Japan (15) and France (48). Sequence 
UMPB-232 was the most abundant in Bryant Bog (see Data S1) and was related to 
PSC-L33 isolated from the same location. Although overlap of lineages in the PacBio and 
single-cell data sets was low in terms of species, multiple lineages of single cells had 
as their most closely related sequence an OTU from the PacBio data set, e.g., PSC-L13 
and 21 in Rhizophydiales; PSC-L33, 35, 38, 43, and 44 in Chytridiales; PSC-L45 and 46 in 
Lobulomycetales; PSC-L49 in Cladochytriales; and PSC-L71 in the FRESHOL1 clade (see 
Fig. S1). On the other hand, both Mesochytriales and Polyphagales were represented by 
multiple OTUs in the PacBio data set but were absent in the single-cell data. Despite 
these exceptions, the general pattern was one of significant overlap of taxonomic genera 
and families in these two culture-independent approaches.

DISCUSSION

By utilizing single-cell techniques, 71 EDF lineages were sampled, many of which were 
newly recognized branches in the phylogeny of EDF, even at the phylum-level. The 
approach in the present study focused on targeting and sequencing individual EDF 
cells one at a time. Photographs of the isolated cells have implications for the ecology, 
morphology, and life cycle of these newly discovered EDF lineages. Using these data, we 
discuss the (i) ecological role of these uncultivated lineages, (ii) ecology and morphology 
of novel phylum-level clades, (iii) phylogenetic diversity of an enigmatic chytrid genus 
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Olpidium, and (iv) unexpected recovery of hyper-parasitic lineages. Finally, technical 
advances and challenges of single-cell approaches used in this study are also discussed.

Shedding light on the ecological role of dark matter fungi

The cells isolated in this study were from diverse hosts, ranging from amoebae to 
invertebrates and especially algae. Some lineages are readily recognized as obligate 
algal parasites belonging to known parasite-specific groups such as Zygophlyctidales 
and Aphelidiomycota. Also found were many lineages of alga-associated cells in well 
studied orders such as Rhizophydiales, whose diversity has long been investigated based 
on numerous strains of saprotrophic taxa (65–67). Recently though several families of 
obligate algal parasites were described (37–39, 68). Our data revealed further hidden 
diversity of putative parasitic lineages, representing new families or genera in the order. 
Although the isolated cells in this study were initially identified as “parasitic fungi,” some 
lineages we sampled in Chytridiales and Cladochytriales are putatively saprotrophic. 
When parasitic chytrids infect colonial algae, only dead cells are infected while living 
cells are uninfected (Fig. 2F, U, V and 3I, AA). In contrast, in some colonies, all algal cells 
are uncolored, or their chloroplasts are exhausted (Fig. 3O, P, R and Y), indicating the 
attaching chytrids grow on dead or moribund algae. Moreover, chytrids corresponding to 
PSC-L33 (Fig. 3M) in Chytridiales and PSC-L48 (Fig. 4A) in Cladochytriales were success­
fully isolated as pure cultures (data not shown).

These data also inform hypothetical ecological functions of lineages that were only 
known from metabarcoding approaches. For example, algal parasitic lineages PSC-L21 
and 22 in Rhizophydiales formed independent clades along with some environmental 
sequences from aquatic environments, implicating a role for this clade as parasites of 
algae. Similarly, PSC-L45–47 in Lobulomycetales formed a novel clade including some 
environmental sequences from aquatic and soil environments, indicating that these 
lineages are parasites of algae and protists. Although Zygophlyctidales was previously 
thought to be composed only of diatom parasites (21), a lineage of a green algal 
parasite (PSC-L31) sister to an environmental sequence from a lake was found. This 
result indicates that other environmental sequence lineages in the order could exist as 
parasites of algae other than diatoms.

Generally, however, most of the single-cell sequences were poor matches at the 
species level to sequences from cultures or environmental DNA. This speaks to just 
how poorly we understand the true species level diversity of EDF, and how much work 
remains to be done in describing these fungi. In some cases, sequences from clades that 
were readily recovered with metabarcoding were not detected. The most striking case 
is Gromochytriales and Mesochytriales, together containing a total of three described 
species, all of which are obligate parasites (20, 69, 70). Despite limited described species, 
Mesochytriales is represented by numerous environmental DNA sequences (20). In this 
study, chytrids belonging to these orders were not identified with a single-cell approach. 
Instead, additional diversity was revealed based on phylogenetic analysis using PacBio 
metabarcoding data (see Fig. S1). Many of the sequences from lakes or ponds and some 
OTUs from Lake Erie, were related to Mesochytrium penetrans. This species is a parasite of 
a small green alga, Chlorococcum minutum (71), yet the collection strategy adopted for 
Lake Erie samples biased for larger colonial and filamentous forms. Further, most effort 
on Lake Erie was aligned with a winter science initiative (72), a season where diatoms 
are the dominant taxa associated with ice-cover in the lake (73). Thus, chytrids parasitic 
on smaller single cells or on taxa more prevalent during the summer may have been 
overlooked. More single-cell analyses on parasitic chytrids on various algae are necessary 
to reveal hidden taxa in the order.

While the pictures of the isolated cells can be informative in inferring their ecological 
role, sometimes they may be misleading. Specifically, each “cell” is actually a number 
of cells that include host, parasite, associated bacteria, and hyper-parasites. The latter 
were particularly common with some cells, such as PSC023, giving both an obvious 
chytrid pathogen as well as a likely Rozella hyper-parasite (74). Indeed, the majority of 
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the Rozellomycota detected in this study were found as “by-catch” present in samples 
appearing as normal chytrids infecting algae (Fig. 4S through W). This result provides a 
slight cautionary tale that some of the sequences emerging from this approach may be 
most appropriately assigned not as parasites of the primary host but as hyper-parasites, 
an observation consistent with earlier results (15).

Discovery of novel clades of early diverging fungi

Our approach was successful in revealing novel diversity at many taxonomic levels: 
species, genera, families, and even phyla. The novelty at the phylum level is consistent 
with recent phylogenetic analyses that have revealed that some parasitic fungi represent 
novel lineages worthy of phylum-level distinction (17, 18). We found and characterized 
three phylum incertae sedis clades (Fig. 5), two of which are newly reported in the 
present study. The NC_OlpL-1 clade includes two single-cell lineages of Olpidium-like 
chytrids on rotifers and O. vermicola parasitic on nematode eggs (75), indicating that 
this clade represents animal-associated endobiotic chytrids. NC_OlpL-1 was sister to a 
previously reported undescribed phylum-level clade represented by a single-cell isolate 
of a Rhizosiphon-like chytrid on the cyanobacterium Dolichospermum from a lake in 
Germany (11). In the tree by Van den Wyngaert et al. (11), Dolichospermum parasites 
were sister to the Chytridiomycota + Monoblepharidomycota + Neocallimastigomycota 
clade without strong statistical support. Although these putative novel phylum clades 
are related to Kickellomycotina, Zoopagomycotina, and Entomophthoromycotina in our 
tree (Fig. 6), the exact phylogenetic position is uncertain. Phylogenomic analysis would 
clarify the evolutionary history and taxonomy of these enigmatic lineages.

The NC_ChyL-1 clade, which included isolates of epibiotic chytrids on Desmodesmus 
(PSC-L52) and Rhizophydium scenedesmi strain EPG01 on Graesiella sp (45), was sister 
to Monoblepharidomycota without strong statistical support. Previously, R. scenedesmi 
was shown to be sister to the genus Zygophlyctis in Chytridiomycota (45). However, 
another analysis showed that R. scenedesmi along with some environmental sequences 
were placed sister to Monoblepharidomycota (21) as with the present study. This clade 
could correspond to the clade GS13 defined by Tedersoo et al. (8) because one of their 
environmental sequences (GL02368_027_G2750 from Australian soil) was positioned 
within NC_ChyL-1.

The clade FRESHOL1 was originally defined by Arroyo et al. (6) in their metabarcod­
ing analysis of the Paraná River in Argentina. This clade was sister to all other fungi 
including Aphelidiomycota and Rozellomycota as with our analysis. PSC-L70 was a cell 
of Staurastrum sp. filled with a putative endoparasite (Fig. 4Z). The isolate correspond­
ing to PSC-L71 included chytrid zoosporangium-like cells on Spirogyra sp. (Fig. 4AAA). 
Although information on the life cycles of these two lineages is currently limited, there 
is the possibility that they are endoparasites of algae or chytrid-like organisms in these 
samples. Two deep-branching groups of fungi, Aphelidiomycota and Rozellomycota, are 
known as endoparasites of other organisms (22). The previously defined phylum-level 
clade NCLC1 is sister to Rozellomycota in our tree (Fig. 10) and is also comprised of 
putative endoparasites of marine diatoms (76). Given the phylogenetic position and host 
of the FRESHOL1 lineage, our findings strengthen the recently suggested hypothesis 
that the ancestor of Fungi sensu lato (including aphelids, rozellids, microsporidians, and 
canonical fungi) had a symbiotic relationship with cellulose-based cell-walled taxa (77). 
Further observations and phylogenetic analyses of the FRESHOL1 clade are pivotal to 
elucidate the early evolution of Holomycota lineages.

Phylogenetic diversity of Olpidium-like chytrids

We found Olpidium-like chytrids parasitic on various hosts such as adult rotifers (Fig. 2A, 
C, and D), rotifer eggs (Fig. 2B), desmid algae (Fig. 2K through O and 3C through G), 
and pine pollen (Fig. 2AA). The genus Olpidium is characterized by a holocarpic thallus, 
namely a simple thallus composed of only a zoosporangium without rhizoids (78). All 
species are endobiotic parasites of algae, plants, fungi, protists, and micro-invertebrates 
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(78). Early molecular phylogenetic analyses (79, 80) revealed that plant root parasitic 
species are separated from core chytrid clades (e.g., Chytridiomycota and Blastocladio­
mycota) and related to zygomycetous fungi. A recent phylogenomic analysis showed 
that O. bornovanus parasitic on cucumber roots is sister to all terrestrial fungi (Dikarya 
+ Mucoromycota + Zoopagomycota) (18). Olpidium-like chytrids obtained in the present 
study were not related to plant parasitic species (Olpidiomycota in Fig. 5) and were 
instead distributed among three other phylum-level clades.

Four lineages of rotifer parasites were placed in the NC_OlpL-1 clade (PSC-L1 and 2) 
and Blastocladiomycota (PSC-L3 and 4). The NC_OlpL-1 clade also included O. vermicola 
parasitic on nematode eggs. Apart from the plant parasitic lineage sister to Dikarya + 
zygomycetes (18), the NC_OlpL-1 clade is an additional putative independent phylum 
of Olpidium-like fungi. In Blastocladiomycota, PSC-L3 and 4 were related to taxa of 
the polyphyletic family Catenariaceae (81), which is characterized by polycentric thalli, 
consisting of catenulated zoosporangia connected by isthmuses (82). In both PSC-L3 and 
4, multiple zoosporangia were seen in a single rotifer body but connections between 
zoosporangia were not visible. Some Olpidium species are known as rotifer parasites 
and often produce multiple zoosporangia in a single host, but early developmental 
stages have not been fully described (83–85). Some of these species could be related to 
Catenariaceae as with our rotifer parasites.

The other seven lineages of Olpidium-like chytrids were positioned in Rhizophydiales 
in Chytridiomycota (Fig. 7). Six of them were endoparasites of desmid algae: PSC-L9 
related to Angulomycetaceae and PSC-L23–27 related to Batrachochytriaceae. PSC-L26 
and 27 resemble O. untricuriforme in producing a branched tube-like zoosporangium 
(51). PSC-L24 on Desmidium sp. is similar to O. hyalothecae on Hyalotheca dissiliens (51); 
both infect algae of a filamentous clade in Desmidiaceae (86). Another lineage, PSC-L20 
was an endobiotic chytrid in pine pollen and was related to Terramycetaceae. Rhizo­
phydiales chytrids typically produce monocentric and epibiotic thalli with endobiotic 
rhizoidal systems (65). Exceptionally, Batrachochytrium dendrobatidis and Entophlyctis 
helioformis produce endobiotic thalli in amphibian skin cells and moribund green algal 
cells, respectively (87, 88). In B. dendrobatidis, rhizoids are rarely seen on zoosporangia 
in host skin in comparison to culture conditions (88). Simplification of thalli could occur 
easily in the endobiotic lifestyle. PSC-L23–27 were sister to E. helioformis, and these 
alga-associated endobiotic chytrids could be pivotal in investigating the evolution of 
nutritional modes and thallus morphology in Batrachochytriaceae.

Our phylogenetic analysis clearly showed that the genus Olpidium is polyphyletic, 
and that host generally tracks phylogeny. Tedersoo et al. (31) suggested accommodating 
Olpidium in the phylum Olpidiomycota based on the phylogenetic position of plant 
parasitic species of Olpidium. However, this taxonomic treatment should be examined by 
investigating more taxa, especially the type species, O. endogenum, which is known as a 
parasite on green algae of the genus Closterium.

Unexpected findings of hyper-parasites

In the present study, we found putative hyper-parasites within Chytridiomycota and 
Rozellomycota. The two lineages in Chytridiomycota were clearly recognizable as a 
chytrid zoosporangium on top of another parasite. PSC-L11 in Rhizophydiales was 
parasitic on an elongated zoosporangium inside Spirogyra sp. (Fig. 2R). The host of 
this chytrid could be an endoparasitic oomycete in algae. Regarding similar described 
species, Rhizophydium carpophilum is known as a parasite of oogonia and oospores 
of Saprolegnia and Achlya (89) and also reported as a hyper-parasite of endoparasitic 
Olpidiopsis infecting Achlya (90). Another hyper-parasitic chytrid isolated in the present 
study is PSC-L39 in Chytridiales, a spherical zoosporangium on an epibiotic chytrid 
parasite on S. binderanus (Fig. 3T). Its host could be the chytrid of PSC-L28 (Fig. 3I) in 
Zygophlyctidales because the shape of the zoosporangium is similar, and they were 
found in the same sample collected at Lake Erie. Currently, some 15 species are known 
as epibiotic chytrid parasites of other chytrids (78, 91). One of them, Septosperma 
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anomalum, was reported as a hyper-parasite infecting diatom parasite such as Chytriomy­
ces tabellariae on Tabellaria flocculosa (92) and Zygophlyctis asterionellae on Asterionella 
formosa (93). Our isolates are distinguished from S. anomalum based on the shape of 
zoosporangium. Also, S. anomalum produces a unique resting spore with septation, 
which was not observed in our sample. Unfortunately, DNA sequence data are currently 
not available for any chytrid species parasitic on other chytrids, preventing comparison 
with our isolates. PSC-L39 corresponds to the clade CH_D including single-cell isolates 
from Lake Inba in Japan (15). These isolates were recorded as a chytrid parasite on 
Aulacoseira spp. but there is a possibility that its hyper-parasitic nature was overlooked.

The other single-cell lineages of hyper-parasites were found in Rozellomycota. These 
were isolated as epibiotic or endobiotic chytrid parasites of green algae or diatoms, 
but they were phylogenetically related to Rozella spp. (PSC-L64–69). The genus Rozella 
is well known as an endoparasite of chytrids or oomycetes (94). Rozella invades the 
host as an unwalled cell, consumes host cytoplasm by phagocytosis, and ultimately 
fills the entire host cell. Due to this endoparasitic nature, chytrid zoosporangia infected 
by Rozella might be difficult to detect, although some species cause hypertrophy or 
abnormal septation of the host cell (36, 95). Therefore, infections by Rozella were likely 
overlooked in our isolates. The putative hosts of our Rozella isolates were speculated: 
PSC-L64 (Fig. 4S) on Chytridiales chytrid PSC-L38 on Desmidium sp. (Fig. 3S); PSC-L66 (Fig. 
4V) on Lobulomycetales chytrid PSC-L45 on Spirogyra sp. (Fig. 3Z); PSC-L67 (Fig. 4W) on 
Rhizophydiales chytrid PSC-L8 on Ulnaria sp. (Fig. 2J); and PSC-L69 (Fig. 4Y) on Olpi­
dium-like chytrid PSC-L23 on Micrasterias truncata (Fig. 3D). Indeed, single-cell genomic 
analysis on the amplified genome of isolate PSC023 (lineage PSC-L23) revealed that the 
genome included both the host as well as the putative hyper-parasite corresponding 
to PSC-L69 (74). However, in our ONT sequencing, only a chytrid rDNA sequence was 
obtained in PSC023. We assume that biased PCR amplification occurred in this sample. 
Phylogenomic analysis showed that the Rozellomycota genome in PSC023 was sister to 
Rozella spp. although PSC-L69 separated from the Rozella clade in the present study. Our 
finding of hyper-parasitic Rozella indicates cryptic diversity of endoparasites infecting 
chytrids. These findings need to be taken into consideration when using single-cell 
approaches to infer nutritional mode from the recovered genomes.

Technical advances and challenges using single-cell technique

The approach outlined presents both advances over traditional methods of single-cell 
genomics that involve fluorescence-activated cell sorting (96) as well as challenges. 
The primary advantages are that the method allows images of the target species 
to be obtained and that the success rate of going from cell to sequence is higher. 
Among the 259 cells processed with multiple displacement amplification (MDA), DNA 
sequence data were successfully generated for 139 cells (54%) in total. Excluding 
putative contaminants (e.g., cercozoans) and fungus-like organisms (e.g., oomycetes and 
hyphochytrids), 129 cells (50%) were categorized as fungal sequences (Table S1). This 
rate is higher than previous single-cell sequencing studies (single-cell sorting + whole 
genome amplification + PCR and sequencing) on planktonic prokaryotes and protists, 
which had a 5%–38% success rate (97–101). Moreover, photos accompanied these cells. 
While these cells are no longer available for morphological analysis, their amplified DNA 
with high concentration (147–1,600 ng/µL, Table S1) is present, which is facilitating 
ongoing genome sequencing. We believe that the high success rate of amplification 
and sequencing of the target cells is likely due to the fact that these fungal cells are 
actually comprised of multiple nuclei, in many cases representing the near mature 
reproductive stages of the chytrid zoosporangia that may contain 5–50 or more nuclei. 
A final technical advance is the combination of single-cell approaches with long rDNA 
PCR. Amplification of the majority of the coding bases of the rRNA operon in addition 
to the highly variable internal transcribed spacer region allows for robust phylogenetic 
placement as well as discrimination at the species level (102). Amplification of both 18S 
and 28S regions allows the data to be compared to multiple data sets, given that there 
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are disparate uses of the two regions in both environmental DNA and systematics studies 
(48, 103).

There are also some disadvantages of the method. First, it is hard to scale up to a 
large number of cells because this is a manual approach in which each cell requires as 
much as an hour to find, clean, and pipette into a sample tube. Second, this approach 
requires considerable taxonomy, microscopy, and microbial natural history skills. These 
skills are lacking in most microbiology and mycology training. Third, there are biases in 
the targeting of hosts. Most of the isolated cells in this study were parasites of algae, 
although a few protists and micro-invertebrates were isolated. More diverse taxa could 
host parasitic EDF, but they may have been undersampled due to our limited ability 
to find them and diagnose them as infected. These biased isolations potentially hinder 
clarifying the diversity of EDF; such a limitation is less applicable to metabarcoding and 
metagenomic approaches. Finally, our samples are far from single cells, and often contain 
host cells, bacterial cells, and in several cases, hyper-parasites. This is both an advantage 
and disadvantage because it identifies interesting symbioses, but it also makes ascribing 
ecological function more complicated. Presence of host and bacterial DNA could limit 
the ability to sequence fungal genomes from these samples. In some cases, we were 
able to amplify host DNA in order to confirm species identity (data not shown), but in 
other cases, host DNA could not be recovered as presumably the parasite had already 
consumed it. Despite these disadvantages, the target single-cell isolation is a powerful 
method to investigate uncultured parasitic fungi, and its use will expand our understand­
ing of the ecology and phylogeny of EDF.

MATERIALS AND METHODS

Sample collection and single-cell isolation

We collected 50–250 mL of water samples with detritus and/or plant material from 
ponds or lakes in Michigan in 2019–2021 (see Table S2 in the supplemental material). 
For Lake Erie, seston was collected by boat with a plankton net (≥20 µm) deployed 
1–3 m from the surface, after which the collected material was transferred to a 50 mL 
conical centrifuge tube maintained at in situ water temperature in the dark. The samples 
were transferred to University of Michigan and incubated for ~1 month, at 20°C, under 
LED lighting. Water samples were observed using a Nikon TMS Inverted microscope 
(Nikon, Tokyo, Japan) to detect fungi associated with algae, micro-invertebrates, and 
protists. Detected fungal cells were photographed using Moticam X Camera (Motic, 
Hong Kong, China) or Dino-Eye Edge S Eyepiece Camera (AnMo Electronic Corporation, 
Taipei, Taiwan) digital cameras. Representative images were edited and assembled into 
plates using Adobe Photoshop. The cells were isolated manually using a manually 
prepared drawn-out glass capillary pipette. The isolated cells were washed by serial 
transfer in small drops (more than five) of UV-sterilized water, transferred into 200 µL PCR 
tubes with 1–2 µL of water, and kept at −80°C until DNA extraction.

Whole genome amplification, PCR, and sequencing

To conduct DNA extraction and whole genome amplification of isolated cells by multiple 
displacement amplification (MDA), we used the Qiagen REPLI-g Single Cell Kit (Qiagen, 
Germantown, Maryland, USA) and processed the samples as described in Davis et al. (14). 
The DNA concentrations of some of the MDA products were measured with the Qubit 
4 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). To obtain rDNA sequences, 
we utilized the Oxford Nanopore Technology sequencing pipeline for zoosporic eufungi 
(34). To amplify the 18S-ITS1-5.8S-ITS2-28S rDNA operon, we performed long-range 
PCR with fungal specific primers, NS1short and RCA95m (43). We used TaKaRa LA Taq 
DNA polymerase (Takara Bio USA, San Jose, CA, USA) with the protocol described in 
Simmons et al. (34). For some samples, we used KOD Xtreme Hot Start DNA Polymerase 
(Merck Millipore, Burlington, MA, USA). We prepared 12.5 µL amplifications composed 
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of the following: (i) 0.25 µL KOD extreme, (ii) 6.25 µL 2X Xtreme Buffer, (iii) 2.5 µL 
dNTPs, (iv) 0.75 µL each 5 µM barcoded primer NS1short/RCA95m, and (v) 2 µL 1/50 
or 1/100 diluted MDA products. We performed PCR on an Eppendorf Mastercycler Pro 
S with the following conditions: (i) 95°C for 2 minutes, (ii) 10 cycles of denaturation at 
98°C for 10 minutes, annealing at 55–50°C (0.5°C decrease per cycle) for 30 seconds, 
and extension at 68°C for 5 minutes, (iii) 30 cycles of 98°C for 10 seconds, 50°C for 
30 seconds, and 68°C for 5 minutes. The PCR products (4.5–6 kbp) were assessed by 
electrophoresis. We generated long-read sequences with an Oxford Nanopore Technol­
ogies MinION device and MinKNOW software (Oxford Nanopore Technologies, Oxford, 
United Kingdom). We prepared pooled barcoded amplicon libraries with the ONT 
Ligation Sequencing Kit (LSK-109), following the manufacturer’s protocol. We generated 
fast5 sequencing reads in MinKNOW that we base-called in Guppy (ONT). With the 
resulting fastq reads, we quality filtered (104) with NanoFilt (105) and converted them to 
fasta files with Seqtk (https://github.com/lh3/seqtk). We demultiplexed the pooled data 
with MiniBar (106), assembled sequences in Canu 1.9 (107) with defined cut-off criteria 
(34, 104), polished sequences with Medaka (https://github.com/nanoporetech/medaka), 
and removed barcodes to produce the final rDNA operon sequences in Geneious 9.1.7 
(Biomatters, Auckland, New Zealand). For samples that failed the long-range PCR for ONT 
sequencing, we attempted short-range PCR using primers: SR1.5 (108)/AU4v2 (109) and 
CRYPTO2-2F (109)/AU4v2 for partial 18S, ITS5 (110)/RCA95m for ITS and partial 28S, and 
LR0R (111)/RCA95m for partial 28S. PCR products were purified using ExoSAP-IT (Thermo 
Fisher Scientific, USA). Sequencing analyses were performed with Genewiz sequencing 
service (NJ, USA) using the following primers: SR1.5, CRYPTO2-2F, NS4 (110), and AU4v2 
for 18S, ITS3, ITS4, ITS5 (110) for ITS, and LR0R and LR5 (112) for 28S.

Phylogenetic analysis

To clarify phylogenetic positions of single cell isolates, a phylogenetic analysis of a 
concatenated data set of 18S, 5.8S, and 28S rDNA sequences was performed (see Table 
S3 in the supplemental material). The 5.8S rDNA sequences were extracted from the 
data of ITS1-5.8S-ITS2 using ITSx (113). Sequences were aligned using MAFFT v7.487 
(114) with the “L-INS-I” method, and the alignment was trimmed using trimAl (115) with 
the “gappyout” method. The maximum likelihood (ML) tree was inferred with IQ-TREE 
2 (116). The best model of each alignment was examined using ModelFinder (117) 
implemented in the IQ-TREE 2. According to the corrected Akaike information criterion 
(AICc), GTR + F + R9, JC + R4, and TIM3 + F + R9 models were selected for 18S, 5.8S, 
and 28S, respectively. An ML analysis was run with a partitioned model (118). The 
branch supports were assessed with standard non-parametric bootstrap analysis (100 
replicates). The tree was visualized with FigTree (https://github.com/rambaut/figtree) and 
edited with Adobe Illustrator.

PacBio metabarcoding analysis

Single-cell sequence data were compared to a large collection of environmental 
DNA sequences utilizing a recently developed PacBio metabarcoding data set of 18S 
amplicons (44). These data are complementary because many of the sampling localities 
are shared (i.e., are from aquatic habitats in Michigan). For this analysis, we extracted 
reference sequences of 339 PacBio OTUs that were putatively identified as Chytridiomy­
cota using taxonomic assignment in Qiime v1.9.1 (119) with BLAST (120) and a curated 
version of the SILVA database (121), which was amended to include more EDF including 
Aphelidiomycota and Rozellomycota (available here as “Updated_Silva_Cryptos_Aphe­
lids.txt”: https://github.com/Michigan-Mycology/Lab-Code-and-Hacks/tree/master/Cryp­
tomycota_ecology/Data_files/). We performed further manual curation of the sequences 
identified as Chytridiomycota for putative chimeras by phylogenetic analyses. We 
prepared a reference data set of 18S rDNA of cultured Chytridiomycota species, single-
cell sequences from our and previous studies, and outgroup taxa (see Table S4 in the 
supplemental material). The sequences were aligned and trimmed as described above. 
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All OTU sequences were divided into two parts, the former and latter ~650 bp nucleoti­
des. The original and divided PacBio sequences were added into the reference alignment 
using MAFFT with the “--add” and “--keeplength” options. Maximum likelihood trees 
were inferred using FastTree (122) with the “-gtr” option. The trees were visualized using 
FigTree. The OTUs of the following results were excluded in the subsequent analyses: 
(i) the phylogenetic positions of divided sequences were clearly different and (ii) the 
sequence was extremely long branched. After manual curation, 123 OTUs were excluded 
leaving 216 OTUs in the final data set (see Table S5 in the supplemental material). 
To examine the phylogenetic position of these OTUs, we performed an ML analysis. 
We prepared the 18S data set of almost the entire Chytridiomycota by adding environ­
mental sequences available in GenBank (see Table S6 in the supplemental material) 
to the reference data set used above (see Table S4) and sequences were aligned and 
trimmed as above. Subsequently, the curated PacBio OTU sequences were added to this 
alignment as above. The ML tree was inferred using IQ-TREE 2 with the GTR + F + R6 
model selected by ModelFinder. A standard non-parametric bootstrap analysis of 100 
replicates was performed. The trees were visualized and edited as above.
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