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A combined microscopy and single-cell sequencing approach
reveals the ecology, morphology, and phylogeny of uncultured
lineages of zoosporic fungi
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ABSTRACT Environmental DNA analyses of fungal communities typically reveal a much
larger diversity than can be ascribed to known species. Much of this hidden diversity lies
within undescribed fungal lineages, especially the early diverging fungi (EDF). Although
these EDF often represent new lineages even at the phylum level, they have never
been cultured, making their morphology and ecology uncertain. One of the methods
to characterize these uncultured fungi is a single-cell DNA sequencing approach. In
this study, we established a large data set of single-cell sequences of EDF by manually
isolating and photographing parasitic fungi on various hosts such as algae, protists, and
micro-invertebrates, combined with subsequent long-read sequencing of the ribosomal
DNA locus (rDNA). We successfully obtained rDNA sequences of 127 parasitic fungal
cells, which clustered into 71 phylogenetic lineages belonging to seven phylum-level
clades of EDF: Blastocladiomycota, Chytridiomycota, Aphelidiomycota, Rozellomycota,
and three unknown phylum-level clades. Most of our single cells yielded novel sequen-
ces distinguished from both described taxa and existing metabarcoding data, indicating
an expansive and hidden diversity of parasitic taxa of EDF. We also revealed an unexpec-
ted diversity of endobiotic Olpidium-like chytrids and hyper-parasitic lineages. Overall, by
combining photographs of parasitic fungi with phylogenetic analyses, we were able to
better understand the ecological function and morphology of many of the branches on
the fungal tree of life known only from DNA sequences.

IMPORTANCE Much of the diversity of microbes from natural habitats, such as soil
and freshwater, comprise species and lineages that have never been isolated into pure
culture. In part, this stems from a bias of culturing in favor of saprotrophic microbes
over the myriad symbiotic ones that include parasitic and mutualistic relationships with
other taxa. In the present study, we aimed to shed light on the ecological function
and morphology of the many undescribed lineages of aquatic fungi by individually
isolating and sequencing molecular barcodes from 127 cells of host-associated fungi Editor Arturo Casadevall, Johns Hopkins Bloomberg
using single-cell sequencing. By adding these sequences and their photographs into School of Public Health, Baltimore, Maryland, USA
the fungal tree, we were able to understand the morphology of reproductive and T v
vegetative structures of these novel fungi and to provide a hypothesized ecological tyjames@umich.edu.

function for them. These individual host-fungal cells revealed themselves to be complex
environments despite their small size; numerous samples were hyper-parasitized with
other zoosporic fungal lineages such as Rozellomycota.
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metagenomics (1-3). These studies highlight the gap between the formally described
fungal taxa and the estimated diversity, suggesting perhaps only 5%-10% of all
fungal species have been described (4, 5). Moreover, they often identify major gaps in
our knowledge of fungal phylogeny, such as entirely new lineages of fungi that were
previously undetected (6-9). As novel as these sequence-based discoveries can be, one
of the major hurdles to really understanding fungal diversity is a phenotypic characteri-
zation of the novel fungal lineages that comprise the so-called dark matter fungi found
in metabarcoding studies (10). One approach to breaking through this barrier is the
development of single-cell sequencing methods that rely on direct observations of cells
through microscopy that can then be isolated and subjected to DNA sequencing and
phylogenetic comparison to novel lineages from environmental DNA surveys (11-15).
This way, information on both the habitat (e.g., host or substrate) and morphology can
be obtained for these dark matter lineages.

Single-cell methods are particularly appropriate for studying the early diverging fungi
(EDF), which are primarily microscopic and often unicellular. Metabarcoding studies
show that many habitats are rich in novel EDF (8, 9, 16). Knowledge of the full diversity
of EDF is growing, and new phyla are continuing to be described in this part of the
tree (17-19). The fact that the undescribed EDF have never been cultured is likely
because many of these fungi are parasitic (20-22). These fungi comprise a large portion
of communities and are thus also ecologically relevant (16, 23-25). EDF are involved
in ecosystem functions such as organic matter decomposition and nutrient cycling,
making ecosystems more complex, and thus contribute to food web stability (26, 27).
However, the morphology and ecological role of these EDF are speculative because they
are recognized based only on environmental sequences. In this study, we endeavored
to illuminate the morphology of uncultured EDF by isolating, photographing, and DNA
sequencing parasitic fungi from several different types of freshwater habitats.

Our data fill in gaps in the constantly improving phylogenetic overview of EDF,
which in the last two decades has been dramatically changed by extensive molecu-
lar phylogenetic analyses. Chytridiomycota (so-called chytrids) was divided into four
independent phyla, Blastocladiomycota, Neocallimastigomycota, Monoblepharidomy-
cota, and Chytridiomycota sensu stricto (28-30), plus the recent addition of phyla
Olpidiomycota (18, 31) and Sanchytriomycota (17) (Fig. 1). In addition to chytrids
sensu lato, Aphelidiomycota (=Aphelida, so-called aphelids, endoparasites of algae) and
Rozellomycota (=Cryptomycota, so-called rozellids, endoparasites of fungi, animals, and
protists) were recognized as the most basal lineages of fungi along with Microsporidia
(5,31). In some classifications, aphelids, rozellids, and Microsporidia have been treated as
sister lineages of the true fungi because of the absence of a cell wall during the trophic
phase and the presence of a phagotrophic nutrient strategy (although Microsporidia
lack this feature) (22, 32, 33). The phylogeny and taxonomy of chytrids sensu lato have
in the last two decades been biased toward culture-based observations and analyses
mainly on saprotrophic chytrids (34). Parasitic chytrids as well as aphelids and rozellids
can also be investigated by culture-based studies in which a parasite and its host are
cultivated together and incorporated into phylogenetic analyses (20, 21, 35, 36), and
these data have been vital for understanding host range across chytrid orders (Fig.
1). These culture-based studies have shown that algal parasites often represent new
orders, families, or genera (20, 21, 37-41). Importantly, the orders Mesochytriales (20) and
Zygophlyctidales (21) brought into formal definition novel clades that had previously
only been known from environmental sequences (23, 42). Although further investigation
of parasitic taxa is important to clarify the diversity of EDF, culture-based studies of
parasitic taxa are difficult and time-consuming. Single-cell sequencing approaches can
overcome some of these challenges and can be scaled up to higher throughput (11, 15).

In this study, a single-cell isolation approach was employed along with long-read
sequencing techniques (34, 43) to comprehensively isolate parasitic EDF on various hosts
and determine their phylogenetic position based on ribosomal DNA (rDNA) sequences.
Sequence data for 127 parasitic fungal cells were successfully obtained and revealed 71
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FIG 1 Schematic tree showing the phylogenetic relationships among the early diverging fungal phyla and orders in Chytridiomycota and their host range.

lllustrations of each lineage indicate hosts of parasitic taxa. Red colored illustrations indicate hosts of single cells isolated in this study.

lineages, many of which were phylogenetically distinguished from described taxa.
Additionally, single-cell lineages were compared with long-read metabarcoding data
from similar habitats (44) to assess the overlap between culture-independent methods.

RESULTS
Phylogenetic position of isolated single cells

Over 300 individual cells of chytrid-, aphelid-, and Microsporidia-like fungi associated
with their various hosts such as green algae, diatoms, cyanobacteria, protists, and
micro-invertebrates were isolated (Fig. 2 to 4). A single-cell pipeline was applied to
259 isolated cells (excluding some duplicated samples and putative non-fungal cells
such as oomycetes and cercozoans, data not shown), and fungal rDNA sequences were
successfully obtained for 129 cells by the Oxford Nanopore Technologies (ONT) or Sanger
method (see Table S1 in the supplemental material). Excluding the two zygomyce-
tous sequences (PSCO16 and PSC279, Table S1), 127 sequences were used for subse-
quent analyses. Based on the phylogenetic analysis on the concatenated data set of
185-5.85-28S rDNA sequences (Fig. 5 to 10, full tree along with the photos of isola-
ted cells is available as “pursuit_tree.html” at Deep Blue repository, https://dx.doi.org/

Month XXXX Volume 0 Issue O

10.1128/mbio.01313-23 3

Downloaded from https://journals.asm.org/journal/mbio on 24 July 2023 by 137.207.232.178.


https://dx.doi.org/10.7302/7000
https://doi.org/10.1128/mbio.01313-23

Research Article

FIG 2 Microscopic images of isolated cells. (A) Olpidium-like chytrid PSC-L1 in rotifer. (B) Olpidium-like chytrid PSC-L2 in rotifer
egg. (C) Olpidium-like chytrid PSC-L3 in rotifer. (D) Olpidium-like chytrid PSC-L4 in rotifer. (E-G) Chytrids PSC-L5 on Stephanodis-
cus spp. (E and G) and Stephanodiscus binderanus (F). (H) Chytrid PSC-L6 on Stephanodiscus sp. (1) Chytrid PSC-L7 on Pinnularia
sp. (J) Chytrid PSC-L8 on Ulnaria sp. (K-O) Olpidium-like chytrids PSC-L9 in Cosmarium spp. (K-N) and Staurastrum sp. (O). (P
and Q) Chytrid PSC-L10 on Oscillatoriales spp. (R) Hyper-parasitic chytrid PSC-L11 (arrows) attaching on elongated oomycete
zoosporangium inside Spirogyra sp. (S) Chytrid PSC-L12 on Craticula sp. (T) Chytrid PSC-L13 on Conticribra sp. (U) Chytrid
PSC-L14 on Stephanodiscus binderanus. (V) Chytrid on PSC-L15 on Aulacoseira sp. (W) Chytrid PSC-L16 on Desmidium sp.
(X) Chytrid PSC-L17 on Aulacoseira sp. (Y) Chytrid PSC-L18 on Staurastrum sp. (Z) Chytrid PSC-L19 on Glaucocystis sp. (AA)
Olpidium-like chytrid PSC-L20 in pine pollen. (AB) Chytrid PSC-L21 on Stauridium sp. All scale bars are 10 pm.

10.7302/7000), the 127 cells were categorized into 71 lineages distributed among seven
phylum-level clades of EDF: Blastocladiomycota, Chytridiomycota, Aphelidiomycota,
Rozellomycota, and three clades of unknown phyla.

We found five single-cell lineages that could not be placed into any phylum (i.e.,
phylum incertae sedis) (Fig. 5). Two lineages were Olpidium-like endoparasites of adult
rotifers (PSC-L1; Fig. 2A) and rotifer eggs (PSC-L2; Fig. 2B) and formed a novel clade
named NC_OIpL-1 (Novel Clade of Olpidium-like-1, Fig. 6). This clade also includes three
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FIG 3 Microscopic images of isolated cells. (A and B) Chytrid PSC-L22 on Aulacoseira sp. (A) and Stephanodiscus sp.
(B). (C) Olpidium-like chytrid PSC-L25 in Closterium sp. (D) Olpidium-like chytrid PSC-L23 in Micrasterias truncata. (E) Olpidium-
like chytrid PSC-L24 in Desmidium sp. (F) Olpidium-like chytrid PSC-L26 in Euastrum sp. (G) Olpidium-like chytrid PSC-L27 in
Cosmarium sp. (H) Chytrid PSC-L29 on Fragilaria sp. () Chytrid PSC-L28 on Stephanodiscus binderanus. (J) Chytrid PSC-L30 on
Aulacoseira ambigua. (K) Chytrid PSC-L31 on Sphaerocystis sp. (L) Chytrid PSC-L32 on Mougeotia sp. (M) Chytrid PSC-L33 on
Mougeotia sp. (N) Two chytrids PSC-L32 and L33 on Mougeotia sp. (O) Chytrid PSC-L34 on Desmidium sp. (P) Chytrid PSC-L35
on Bambusina sp. (Q) Chytrid PSC-L36 on Cosmarium sp. (R) Chytrid on Desmidium sp. (S) Chytrid PSC-L38 on Desmidium
sp. (T) Hyper-parasitic chytrid PSC-L39 attaching on another chytrid on Stephanodiscus binderanus. (U) Chytrid PSC-L40 on
Mougeotia sp. (V) Chytrid PSC-L41 on Spirogyra sp. (W) Chytrid PSC-L42 on Spirogyra sp. (X) Chytrid PSC-L43 on Mougeotia
sp. (Y) Chytrid PSC-L44 on Desmidium sp. (Z) Chytrid PSC-L45 on Spirogyra sp. (AA) Chytrid PSC-L46 on Melosira varians. (AB)
Chytrid PSC-L47 on unidentified heliozoan. All scale bars are 10 pm.

environmental sequences and the unpublished sequence data of Olpidium vermicola.
PSC-L52, an epibiotic chytrid on Desmodesmus sp. (Fig. 4F), was related to Rhizophy-
dium scenedesmi strain EPGO1 on Grasiella sp. (45). Along with some environmental
sequences, these chytrids formed a distinct clade named NC_ChyL-1 (Novel Clade of
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FIG 4 Microscopic images of isolated cells. (A) Chytrid PSC-L48 on Oedogonium sp. (B) Chytrid PSC-L49 on Oedogonium sp. (C) Chytrid PSC-L50 in Oedogonium
sp. (D and E) Chytrid PSC-L51 on Cosmarium sp. (D) and Oedogonium sp. (E). (F) Chytrid PSC-L52 on Desmodesmus sp. (G and H) Aphelid PSC-L53 in Scenedesmus
sp. (G) and Desmodesmus sp. (H). (I and J) Aphelid PSC-L54 in Scenedesmus sp. () and Desmodesmus sp. (J). (K) Two aphelids PSC-L55 and L59 in Bambusina sp.
(L) Aphelid PSC-L58 in Ankistrodesmus sp. (M) Aphelid PSC-L56 in Aulacoseira sp. (N) Aphelid PSC-L57 in Melosira varians. (O) Isolated cell of rozellid PSC-L60
including Oedogonium sp. and endobiotic, tube-shaped zoosporangia. (P) Microsporidia-like rozellid PSC-L61 (indicated by arrows) in Arcella sp. (Q) Isolated
cell of rozellids PSC-L62 including tardigrade and tube-shaped zoosporangia. (R) Isolated cell of rozellids PSC-L63 including putative broken rotifer body and
endobiotic zoosporangium. (S—Y) Hyper-parasitic Rozella infecting parasitic chytrids: PSC-L64 in chytrids on Desmidium sp. (S) and Bambusina sp. (T), PSC-L65 in
chytrid on Mougeotia sp. (U), PSC-L66 in chytrid on Spirogyra sp. (V), PSC-L67 in chytrid on Ulnaria sp. (W), PSC-L68 in chytrid in Oedogonium sp. (X), and PSC-L69
in Olpidium-like chytrid in Micrasterias truncata (Y). (Z) Staurastrum sp. harboring unknown fungus PSC-L70. (AA) Isolated cell of unknown fungus PSC-L71
including Spirogyra sp. and attaching chytrid-like sporangia.

Chytrid-like-1, Fig. 9), which is sister to Monoblepharidomycota, but statistical support
for this relationship was not robust. Two lineages were placed in the clade FRESHOL1
reported previously (6) (Fig. 10). PSC-L70 was the cell of Staurastrum sp. filled by
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uncolored particles (Fig. 4Z). PSC-L71 was epibiotic chytrid-like cells on Spirogyra sp. (Fig.
4AA).

Only two lineages, both endobiotic parasites of adult rotifers, were placed in the
Blastocladiomycota (Fig. 5 and 6). PSC-L3 (Fig. 2C) was placed in the clade including
Catenaria anguillulae and Catenophlyctis variabilis. PSC-L4 (Fig. 2D) was sister to two
Catenaria spp. parasitic on midge eggs (46, 47).

Most (n = 47) lineages were placed in Chytridiomycota, distributed among five orders:
Rhizophydiales, Zygophlyctidales, Chytridiales, Lobulomycetales, and Cladochytriales
(Fig. 5). Rhizophydiales was the most abundant in our isolates including 23 lineages (Fig.
7) on various hosts or substrates: 10 on diatoms (PSC-L5-8, 12-15, 17, 22; Fig. 2E through
J, Sthrough V, X, and 3A and B), 8 on zygnematophycean green algae (PSC-L9, 16, 18, 23—
27; Fig. 2K through O, W, Y and 3C through G), and 1 each on chlorophycean green algae
(PSC-L21; Fig. 2AB), glaucophyte algae (PSC-L19; Fig. 2Z), cyanobacteria (PSC-L10; Fig. 2P
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and Q), pine pollen (PSC-L20; Fig. 2AA), and oomycetes (PSC-L11; Fig. 2R). PSC-L11 was
a putative hyper-parasitic chytrid attached to an endobiotic oomycete zoosporangium
parasitizing Spirogyra sp. (Fig. 2R, arrows). Of the Rhizophydiales lineages, 16 exhibited
typical epibiotic zoosporangium morphology, but the other seven were endobiotic
zoosporangia in zygnematophycean green algae (PSC-L9, 23-27; Fig. 2K through O and
3C through G) or pine pollen (PSC-L20; Fig. 2AA). Most of our Rhizophydiales cells were
distinguished from any cultivated chytrids, while three lineages (PSC-L8, 16, 18) were
nearly identical to cultures of parasitic or saprotrophic chytrids.

In Zygophlyctidales (Fig. 8), three lineages of diatom parasites (PSC-L28-30; Fig.
3H through J) formed a clade along with known diatom parasitic species, Zygophlyc-
tis asterionellae, Z. planktonica, and Z. melosirae. An additional lineage, PSC-L31, was
parasitic on the green alga Sphaerocystis sp. (Fig. 3K) and closely related to the environ-
mental sequence AY2009A5 from a lake in France (48).

In Chytridiales (Fig. 8), 13 lineages were found, 12 of which were epibiotic chytrids
on zygnematophycean green algae such as Bambusina (PSC-L35; Fig. 3P), Cosmarium
(PSC-L36; Fig. 3Q), Desmidium (PSC-L34, 37, 38, and 44; Fig. 30, R, S and Y), Mougeotia
(PSC-L32, 33, 40, and 43; Fig. 3L through N, U, and X), and Spirogyra (PSC-L41 and 42; Fig.
3V and W). Regarding the cell PSC289 (Fig. 3N), sequences of two independent lineages
(PSC-L32 and 33) were obtained by ONT sequencing, indicating that two morphologi-
cally similar chytrids infected a single host. An additional lineage, PSC-L39 (Fig. 3T), was a
putative hyper-parasitic chytrid on the Zygophlyctidales chytrid PSC-L28 on S. binderanus
(see Discussion). Six lineages belonged to the known families Chytriomycetaceae (n =
4) and Chytridiaceae (n = 2), but they were distinct from any described taxa. Outside of
these families, four additional lineages (PSC-L36, 38, 39, and 40) related to environmental
sequences were found. In contrast, three lineages were closely related to described taxa.
PSC-L37 (Fig. 3R) could be morphologically identified as Polyphlyctis unispina which was
originally found from the same location as our isolates (49). This lineage was sister to
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2]

66}

PSC162 [Epi / Stephanodiscus sp. | Canada: Lake Erie / 1E]
PSC204 [Epi / Stephanodiscus binderanus | Canada: Lake Erie / 1F]
PSC179 [Epi / Stephanodiscus sp. / Canada: Lake Erie]
PSC190 [Epi / Stephanodiscus binderanus | Canada: Lake Erie]
PSC186 [Epi / Stephanodiscus binderanus | Canada: Lake Erie]
PSC188 [Epi / Stephanodiscus binderanus | Canada: Lake Erie] PSC-L5
PSC174 [Epi / Stephanodiscus sp. / Canada: Lake Erie]
PSC201 [Epi / Stephanodiscus sp. | Canada: Lake Erie / 1G]
PSC207 [Epi / Stephanodiscus sp. | Canada: Lake Erie]
PSC176 [Epi / Stephanodiscus binderanus | Canada: Lake Erie]
PSC205 [Epi / Stephanodiscus sp. | Canada: Lake Erie]
812k6Ag [Epi / Aulacoseira granulata [ Japan: Lake Inba]

Uncultured A_3_27 [Japan: paddy field soil] Halomycetaceae
PSC046 [Epi / Stephanodiscus sp. | USA, MI: Ford Lake / 1H] PSC-L6 _related
58 PSC047 [Epi / Stephanodiscus sp. | USA, MI: Ford Lake] -

Uncultured Jp13Rp05E [Japan: lake water]
Rhizophydiales sp. Fragilaria-B6 [OP / Fragilaria sp.]
Stephanodiscus-MDAO4 [Epi / Stephanodiscus sp. / Germany: Lake Stechlin]
PSC276 [Epi / Pinnularia sp. | USA, MI: Smith’s Fen / 1] | PSC-L7
Halomyces littoreus Barr263 [S]
PSCO039 [Epi / Ulnaria sp. | USA, MI: Ford Lake]
Uncultured UMPB-228 [USA, MI: MA58.Lake Erie WLE2]
812k3Ag [Epi / Aulacoseira granulata / Japan: Lake Inba] #pSC-L8
1 Rhizophydi sp. C3 [OP / Diatoms]
PSC037 [Epi / Ulnaria sp. | USA, MI: Ford Lake / 1J]
—  Paranamyces uniporus WJD150 [S]
PSC027 [Endo / Cosmarium sp. | USA, MI: Herbarium Pond / 1K]
PSC029 [Endo / Staurastrum sp. | USA, MI: Herbarium Pond / 10]
PSC028 [Endo / Cosmarium sp. | USA, MI: Herbarium Pond / 1L]
PSC033 [Endo / Cosmarium sp. | USA, MI: Herbarium Pond] PSC-L9
PSC032 [Endo / Cosmarium sp. | USA, MI: Herbarium Pond / 1M]
PSC034 [Endo / Cosmarium sp. | USA, MI: Herbarium Pond / 1N]
PSC026 [Endo / Cosmarium sp. | USA, MI: Herbarium Pond]
PSC216 [Epi / Oscillatoriales sp. / USA, MI: Herbarium Pond / 1P] PSC-L10
PSC219 [Epi / Oscillatoriales sp. / USA, MI: Herbarium Pond / 1Q] I -
Rhizophydium megarrhizum Chy-Lys2009 [OP / Planktothrix sp.]
Rhizophydium megarrhizum Chy-Kol2008 [OP / Planktothrix sp.]
Angulomyces argentinensis WJD137 [S]
PSC112 [Epi / Zoosporangium in Spirogyra sp. / USA, MI: SG Pond / 1R] |-| Angulomycetaceae
Angulomyces sp. JEL0845 [S] PSC-L11
Aquamyces chlorogonii JEL0317 [S] ] Aquamycetaceae
Protrudomyces sp. JEL0578 [S] | Protrudomycetaceae
PSC049 [Epi / Craticula sp. / USA, MI: Platt Pond / 1S] I PSC-L12
PSC054 [Epi / Craticula sp. | USA, MI: Platt Pond]
Synedra-MDA23 [Epi / Ulnaria sp. | Germany, Lake Stechlin]
Fragilaria-MDAGS4 [Epi / Fragilaria sp. /| Germany, Lake Stechlin]
Rhizophydiales sp. E1 [OP / Ulnaria sp.]
Uncultured AY2009D2 [France: lake water]
PSC166 [Epi / Conticribra sp. | Canada: Lake Erie / 1T] I PSC-L13
PSC168 [Epi / Conticribra sp. | Canada: Lake Erie] -
Uncultured UMPB-8 [USA, MI: 0316G.Douglas Lake]
Uncultured STFeb_269 [Germany: lake water]
Rhizophydiales sp. AST-CHY1 [OP / Asterionella formosa]
63 Betamyces sp. UM1568 [S] PSC-L:]4 Alphamycetaceae
PSC189 [Epi / Stephanodiscus binderanus | Canada: Lake Erie / 1U]
Uncultured UMPB-132 [USA, MI: 0296D.Woodland Lake soil] Kabpamycetaceae
Uncultured UMPB-137 [USA, MI: 0316G.Douglas Lake]
Uncultured PFB4SP2005 [France: lake water]
PSC197 [Epi / Aulacoseira sp. | Canada: Lake Erie / 1V] IPSC-L15
Kappamyces laurelensis PL98 [S]
Kappamyces sp. JEL0356 [S]
Alphamyces sp. JEL0952 [S]
PSC285 [Epi / Desmidium sp. | USA, MI: Smith’s Fen / 1IW] I PSC-L16
SkChyt5 [Epi / Skeltonema sp. / UK: Marine plankton sample]
PSC129 [Epi / Aulacoseira sp. | Canada: Lake Erie / 1X] FPSC-L17
Collimyces mutans KS100 [OP / Microglena spp.] fCollimycetaceae
Staurastromyces oculus STAU-CHY3 [OP / Staurastrum sp.]
PSC008 [Epi / Staurastrum sp. | USA, MI: Herbarium Pond / 1Y]JIPSC-L18 IStau'aS'rOnﬁyﬁﬂaceae
Uncultured UMPB-1297 [USA, MI: MA135.Woodland Lake]
Rhizophydium brooksianum JEL0136 [S] | Rhizophydiaceae
Operculomyces laminatus JEL0233 [S] lOpercqumycetaceae
Globomyces pollinis-pini JEL0291 [S]
Urceomyces sphaerocarpus ARG129 [S] Globomycetaceae
PSC196 [Epi / Glaucocystis sp. / Canada: Lake Erie / 1Z] | PSC-L19
Uebelmesseromyces harderi JEL0171 [S] fUebelmesseromycetaceae

93r Terramyces sp. JEL0393 [S]
—*— |9[|-:8 Boothiomyces macroporosus PLAUS21 [S] Terramycetaceae
72

| %]

62

PSC303 [Endo / Pine pollen / USA, MI: Bryant Bog / 1AA] | PSC-L20
» Rhizophydium echinocystoides B8 [Epi/ Pine pollen / USA, MI: Bryant Bog]
76

Uncultured UMPB-2119 [USA, MI: MA58.Lake Erie WLE2]
_99:: Uncultured UMPB-2967 [USA, MI: MA139.Huron Lake SB2]
PSC253 [Epi / Stauridium sp. | USA, MI: Herbarium Pond / 1AB]§PSC-L21

2 o [ Cosmarium-MDAExp1 [Epi / Cosmarium sp. / Germany, Lake Stechlin]
Uncultured PFB1AU2004 [France: lake water]
71

Uncultured UMPB-160 [USA, NC: 0338V.Bird Shoal sand flats]

T %Ermyl\t:re;j MPE_Z—18 [A??rcw;:- aﬁust\cEm_os/szgi\i\]Iars] Rhizophydiales
pi / Aulacoseira sp. | Canada: Lake Erie o

PSC177 [Epi / Aulacoseira sp. | Canada: Lake Erie] (Chyt"dlomyCOta)

PSC182 [Epi / Aulacoseira sp. | Canada: Lake Erie] PSC-L22

PSC178 [Epi / Aulacoseira sp. | Canada: Lake Erie]
PSC184 [Epi / Stephanodiscus sp. | Canada: Lake Erie / 2B]
Gorgonomyces haynaldii JEL0O151 [S] B Gorgonomycetaceae

Entophlyctis sp. JEL0174 [S]

o1 Uncultured PA2009ES8 [France: lake water]
Uncultured PA2009B8 [France: lake water] N
—EUncu\tured AY2009D3 [France: lake water] Novel Clade Il (Lefévre et al. 2008) )
Uncultured PFHOSP2005 [France: lake water] Batrachochytriaceae-related

PSC021 [Endo / Micrasterias truncata | USA, MI: Buck Hollow in ESGR]
PSC023 [Endo / Micrasterias truncata | USA, MI: Buck Hollow in ESGR]
PSC022 [Endo / Micrasterias truncata | USA, MI: Buck Hollow in ESGR / 2D]
PSC024 [Endo / Micrasterias truncata | USA, MI: Buck Hollow in ESGR]
PSC266 [Endo / Desmidium sp. | USA, MI: Smith’s Fen / 2E] PSC-L23
PSC295 [Endo / Desmidium sp. | USA, MI: Smith’s Fen] IPsc.L24
PSC272 [Endo / Desmidium sp. | USA, MI: Smith’s Fen]
PSC271 [Endo / Closterium sp. | USA, MI: Smith’s Fen / 2C]| PSC-L25
PSC301 [Endo / Euastrum sp. | USA, MI: Smith’s Fen / 2F] | PSC-L26
PSC018 [Endo / Cosmarium sp. | USA, MI: Big Experimental Pond in ESGR / 2G]j] PSC-L27
Entophlyctis helioformis JEL0326 [S]
6 +F B ytrit idis JELO197 [FP / Amphibians]
+ H lyctis polyrhiza JEL0142 [S]
Polyrhizophydium stewartii JEL0888 [S]

mBio

0.05

FIG7 Portion of maximum likelihood (ML) tree of 185-5.85-28S rDNA concatenated data set including order Rhizophydiales in Chytridiomycota.

Month XXXX  Volume 0

Issue 0

10.1128/mbio.01313-23 9

Downloaded from https://journals.asm.org/journal/mbio on 24 July 2023 by 137.207.232.178.


https://doi.org/10.1128/mbio.01313-23

Research Article

PSC154 [Epi | Stephanodiscus binderanus | Canada: Lake Erie]
PSC160 [Epi / Stephanodiscus binderanus | Canada: Lake Erie]
PSC157 [Epi / Stephanodiscus binderanus | Canada: Lake Erie]
Cyclotella-MDAO1 [Epi / Cyclotella sp. | Germany: Lake Stechlin]
PSC156 [Epi / Stephanodiscus binderanus | Canada: Lake Erie / 21] JPSC-L28
PSC191 [Epi / Stephanodiscus binderanus | Canada: Lake Erie]
PSC149 [Epi / Stephanodiscus binderanus | Canada: Lake Erie]
PSC193 [Epi / Stephanodiscus binderanus | Canada: Lake Erie]
PSC040 [Epi / Fragilaria sp. /| USA, MI: Ford Lake / 2H] | PSC-L29
BiwaFcA1 [Epi / Fragilaria crotonensis / Japan: Lake Biwa]
Zygophlyctis asterionellae KS98 [OP / Asterionella formosa]

Diatoma-MDAQ?7 [Epi / Diatoma sp. / Germany: Lake Stechlin]

Zygophlyctis melosirae C1 [OP / Aulacoseira ambigua]

Zygophlyctis melosirae KS99 [OP / Aulacoseira granulata]

54) 72 PSC140 [Epi / Aulacoseira granulata | Canada: Lake Erie] PSC-L30
PSC159 [Epi / Aulacoseira ambigua | Canada: Lake Erie / ZJ]I -
PSC001 [Epi / Sphaerocystis sp. | USA, MI: Herbarium Pond]

PSC004 [Epi / Sphaerocystis sp. | USA, Mi: Herbarium Pond / 2K] I PSC-L31
Uncultured AY2009A5 [France: lake water]

Uncutured CH1_2B_29 [France: lake water]

Uncultured KRLO1E7 [Greece: lake water]

Uncultured PA2009D11 [France: lake water]

73 99 Rhizophlyctis rosea JEL0318 [S]
65 Rhizophlyctis rosea JEL0532 [S] a A
l‘q__i Borealophlyctis nickersoniae WJD170 (5] | Rhizophlyctidales

Catenomyces sp. JEL0342 [S]

57, Dangeardia mamillata SVdW-EUD2 [OP / Yamagishiella unicocca]l .
_L Uncultured P34.43 [France: lake water] Dangeard’a clade
o Spizellomyces punctatus ATCC48900 [S]

Thoreauomyces humboldtii JEL0095 [S] .
- Brevicalcar kilaueaense JEL0355 [S] Spizellomycetales
Gaertneriomyces semiglobiferus UCB-91-10 [S] nchytri
Uncultured GL02816_032_S002 [Madagascar: soill | GS14 Synchyt
[ Synchytrium decipiens DUH0009362 (OP / Plant)
| S

V)

77
57 Rhizoclosmatium sp. JEL0347-h [S]

Rhizoclo [ i JEL0823 [S]

PSC288 [Epi / Mougeotia sp. | USA, Ml

Obelidium mucronatum JEL0802 [S]
Odontochytrium sp. JEL0942 [S]

- : Entophlyctis luteolus JEL0129 [S]

Physocladia obscura JEL0O137 [S]

Chytriomyces appendiculatus JEL0967 [S]
PSC287 [Epi / Mougeotia sp. | USA, MI: Bryant Bog / 2M] IPSC L33
PSC289B [Epi / Mougeotia sp. /| USA, MI: Bryant Bog / 2N] -
Uncultured UMPB-232 [USA, MI: 0325S.Bryant Bog]
Chytriomyces hyalinus MP4 [S]
Rodmanochytrium sp. UM1564 [S]
Rodmanochytrium pyriforme WB235A [S]

71

o
1S

Uncultured T1P1AeF04 [high-elevation soil]
PSC309 [Epi / Bambusina sp. | USA, MI: Smith’s Fen / 2P] JPSC-L35
Uncultured UMPB-2316 [USA, MI: 0326G.Smith’s Fen]
Pedulichytrium sphaericum KS93 [OP / Aulacoseira granulata)
Asterophlyctis sp. JEL0934 [S]

Wheslerophlyctis interior JEL0524 [S] Asterophlyctaceae

Uncultured UMPB-2233 [USA, MI: 0325S.Bryant Bog]
PSC297 [Epi / Desmidium sp. | USA, MI: Smith’s Fen / 2R] PSC-L37
PSC298 [Epi / Desmidium sp. | USA, MI: Smith’s Fen] I h
Polyphlyctis willoughbyi PLAUS26 [S]
Blyttiomyces sp. JEL0837 [S]
PSC284 [Epi / Desmidium sp. | USA, MI: Smith’s Fen / 2S] I PSC-L38
Uncultured UMPB-2212 [USA, MI: 0325S .Bryant Bog]
Rhizophydium planktonicum AstB5 [OP / Asterionella formosa]
Uncultured UMPB-32 [USA, MI: 0270G.North Lake]
715015Ag [Epi / Aulacoseira granulata / Japan: Lake Inba]
Uncultured AY2009C3 [France: lake water]
819012Aa [Epi / Aulacoseira ambigua | Japan: Lake Inba]
PSC161 [Epi / Chytrid on Stephanodiscus binderanus | Canada: Lake Erie]
PSC153 [Epi / Chytrid on Stephanodiscus binderanus | Canada: Lake Erie / 2T]
PSC290 [Epi / Mougeotia sp. / USA, MI: Bryant Bog / 2U] | PSC-L40
Uncultured_T3P1AeG12 [high-elevation soil]
Uncultured UMPB-1409 [USA, MI: 0314N.Hogback Bog sediment]
Chytridiales sp. JEL0812 [S]
PSC115 [Epi / Spirogyra sp. / USA, MI: SG Pond]
PSC116 [Epi / Spirogyra sp. | USA, MI: SG Pond / 2V] IPSC"-41
Uncultured UMPB-230 [USA, MI: MA135.Woodland Lake]
PSC103 [Epi / Spirogyra sp./ USA, MI: BM Pond / 2W] | PSC-L42

93]
89.

53
84

72| Delfinachytrium mesopc i ARG116 [S]

Pseudorhizidium endosporangiatum JEL0221 [S]

PSC299 [Epi / Mougeotia sp. | USA, MI: Smith’s Fen / 2X]|-|
Uncultured UMPB-669 [USA, MI: 0302G.Lile Pond] ~ PSC-L43
PSC264 [Epi /| Desmidium sp. | USA, MI: Smith’s Fen /2Y] JPSC-L44
Irineochytrium annulatum JELO729 [S]

Dendrochytridium crassum JEL0354 [S]

Phlyctochytrium planicorne JEL0388 [S]

Dinochytrium kinnereticum KLL_TL_060613 [FP / Peridinium gatunense]
Chytridium olla ARG100 [OP / Oedogonium capilliforme]

00 09

Uncultured UMPB-2339 [USA, MI: MA135.Woodland Lake]
: Bryant Bog / 2L]
PSC289A [Epi / Mougeotia sp. / USA, MI: Bryant Bog / 2N]

PSC286 [Epi / Desmidium sp. | USA, MI: Smith’s Fen / 20]§ PSC-L34

77 PSC275 [Epi / Cosmarium sp. /| USA, MI: Lile Pond / 2Q]lH

PSC-L39

Family
Chytridiales sp. JEL0812 [S] incertae sedis

(Chytridiomycota)

Zygophlyctis planktonica SVdW-SYN-CHY1 [OP / Ulnaria sp.] Zygophlyctidales

81 Zygorhizidium willei KS97 [OP / Gonatozygon brebissonii] P
—— L (ncultured ESS220206.048 [Luxembourg: lake water] Zygorhizidiales

ales

Synchytrium macrosporum DUH0009363(OP / Plant)

PSC-L32

Chytriomycetaceae

PSC-L36

Chytridaceae

Chytridiales

mBio

7

FIG 8 Portion of maximum likelihood (ML) tree of 185-5.85-28S rDNA concatenated data set including orders Zygophlyctidales, Zygorhizidiales, Rhizophlycti-

dales, Spizellomycetales, Synchytriales, and Chytridiales in Chytridiomycota.

another species of the genus, P. willoughbyi. PSC-L41 and 42 (Fig. 3V and W) were sister to
the saprotrophic chytrid Delfinachytrium mesopotamicum.

In Lobulomycetales (Fig. 9), three lineages were found: PSC-L45 on Spirogyra sp. (Fig.
3Z7), PSC-L46 on Melosira varians (Fig. 3AA), and PSC-L47 on an unidentified heliozoan

Month XXXX Volume 0 Issue O

10.1128/mbio.01313-23 10

Downloaded from https://journals.asm.org/journal/mbio on 24 July 2023 by 137.207.232.178.


https://doi.org/10.1128/mbio.01313-23

Research Article mBio

84) PSC248 [Epi/ Spirogyra sp. ! USA, MI: First Sister Bog / 2Z] | PSC-L45

e' 6 ea Uncultured UMPB-1826 [USA, MI: MA139.Huron Lake SB14]

Uncultured UMPB-1342 [USA, MI: MA139.Huron Lake SB14]

PSCO082 [Epi / Melosira varians | USA, MI: Black River / 2AA] PSC-L46

PSCO090 [Epi / Melosira varians | USA, MI: Black River] -

Uncultured UMPB-168 [USA, MI: 0316G.Douglas Lake]

Uncultured Jp13Mc01E [Japan: lake water]

PSC233 [Epi / Unidentified heliozoan / USA, MI: Herbarium Pond / 2AB]| PSC-L47

Chytridium polysiphoniae Chy-Pyl-IR-14 [OP / Pylaiella littoralis]

78 Zygorhizidium affluens CCAP-4086-1 [OP / Asterionella formosal)
Fragilaria-MDA2 [Epi / Fragilaria corotonensis /| Germany, Lake Stechlin]
Algomyces stechlinensis SVAW-EUD3 [OP / Yamagishiella unicocca, Eudorina elegans]

Lobulomycetales sp. AF011 [S]

Maunachytrium keaense AF021 [S]

Lobulomyces angularis JEL0045 [S]
Lobulomyces poculatus JEL0343 [S]
Clydaea vesicula JEL0476 [S]
722015Ag [Epi / Aulacoseira granulata / Japan: Lake Inba]

56
o |86 [ 729011Aa [Epi / Aulacoseira ambigua / Japan: Lake Inba]
Uncultured PA2009B5 [France: lake water]
Uncultured AY2009B4 [France: lake water] Lobulomycetales
60. Gromochytrium mamkaevae CALU_X-51 [OP / Tribonema gayanum]

Apiochytrium granulosporum X-124 [OP / Tribonema gayanum]lGromochytrlales
Mesochytrium penetrans CALU_X-10 [OP / Chlorococcum minutum] | Mesochytriales
Polyphagus parasiticus Pp [OP/ Tribonema gayanum]
Endocoenobium t;udorinae SVdW-EUD1 [OP / Yamagishiella, Eudorina]
Quaeritorhiza haematococci JEL0916 [FP / Haematococcus lacustris] BQuaeritorhizaceae
97— Cladochytriales sp. JEL0072 [S] Polyphagales
PSC242 [Epi / Oedogonium sp. | USA, MI: First Sister Bog / 3A] | PSC-L48
PSC247 [Epi / Oedogonium sp. | USA, MI: First Sister Bog / 3B] I PSC-L49
Uncultured UMPB-269 [USA, MI: 0303P.Smith’s Fen aquatic plant]
Allochytridium luteum JEL0324 [S]
Nephrochytrium aurantium JEL0907 [S]
Septochytrium sp. JELO785 [S]
Nowakowskiella elegans JEL0127 [S] :
& ol s JELU078 (5] Cladochytriales
Endochytrium ramosa JEL0402 [S]
PSC252 [Endo / Oedogonium sp. | USA, MI: Herbarium Pond / 3C] | PSC-L50

Cladochytrium replicatum JEL0180 [S]
95 Cladochytrium sp. JEL0900 [S]
8. PSC226 [Epi / Cosmarium sp. | USA, MI: First Sister Bog / 3D] IPSC-L51
4 C228 [Epi / Oedogonium sp. | USA, MI: First Sister Bog / 3E]

PSi
I— Nephrochytrium sp. JEL0125 [S]

p er.-r Polychytrium aggregatum JEL0109 [S]
Lacustromyces hiemalis JEL0938 [S! - P
e IPonchytrlaIes (Chytridiomycota)
| Karlingiomyces asterocystis JEL0572 [S] ¢
Rhizophydium scenedesmi EPGO01 [OP / Graesiella sp.]
Uncultured Elev_18S_563 [USA, WI: trembling aspen rhizosphere]
PSC122 [Epi / Desmodesmus sp. | USA, MI: Herbarium Pond / 3F] IPSC-L52
PSC128 [Epi / Desmodesmus sp. | USA, MI: Herbarium Pond]
Uncultured PFE7AU2004 [France: lake water]
Uncultured GL02368_027_G2750 [Australia: soil] |l GS13 NC ChyL.1
Uncultured L73_ML_156 [USA, LA: lake water] -
90y Monoblepharella mexicana BK78-1 [S]
Monoblepharis polymorpha JEL0488 [S]
Gonapodya sp. JEL0183 [S] .
Oedogoniomyces sp. CR84 [S] Monoblepharidomycota
Harpochytrium sp. JEL0094 [S]
Hyaloraphidium curvatum SAG235-1 [S]

98 Neocallimastix sp. GE13 [S] —
89 Pecoramyces ruminantium C1A [S] . .
00 Orpinomyces sp. OUST [S] Neocallimastigomycota 0.05
Cyllamyces aberensis EO14 [S]

FIG 9 Portion of maximum likelihood (ML) tree of 185-5.85-28S rDNA concatenated data set including Monoblepharidomycota, Neocallimastigomycota, the

1=

67,

67|

NC_ChyL-1 clade, and orders Lobulomycetales, Gromochytriales, Mesochytriales, Polyphagales, Cladochytrilaes, and Polychytriales in Chytridiomycota.

(Fig. 3AB). These lineages were related to environmental sequences and separated from
the core Lobulomycetaceae clade including the type genus Lobulomyces.

Three lineages of putative saprotrophs on dead green algae were placed in Clado-
chytriales (Fig. 9). PSC-L48 (Fig. 4A) and PSC-L49 (Fig. 4B) on Oedogonium spp. were
characterized by an epibiotic zoosporangium with a conspicuous endobiotic apophysis,
resembling described taxa such as Chytridium lagenaria and C. schenkii (50, 51). PSC-L50
(Fig. 4C) could be an endobiotic zoosporangium with a discharge tube inhabiting the cell
of dead Oedogonium sp. PSC-L51 on Cosmarium sp. (Fig. 4D) and Oedogonium sp. (Fig. 4E)
was sister to Cladochytrium spp.

We found seven lineages in Aphelidiomycota (Fig. 10). Aphelid cells were recogniza-
ble based on host algal cells filled by a parasite cell with a conspicuous, red-colored
residual body (Fig. 4G through N). Two lineages were parasitic on Desmodesmus and
Scenedesmus and separated into independent clades: PSC-L53 (Fig. 4G and H) was placed
in the clade including Paraphelidium spp. on Tribonema gayanum (52, 53) and PSC-L54
(Fig. 41 and J) was nearly identical to Aphelidium desmodesmi on Desmodesmus armatus
(54). Similar to the cell PSC289 in Chytridiales, PSC267 on Bambusina sp. (Fig. 4K) included
two distinct lineages: PSC-L55 sister to Amoeboaphelidium occidentale on Scenedesmus
dimorphus (55, 56) and PSC-L59 sister to Aphelidium spp. parasitic on T. gayanum (57-60).
Two lineages of diatom parasites, PSC-L55 on A. granulata (Fig. 4M) and PSC-L56 on M.
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PSC055 [OP / Scenedesmus sp. | USA, MI: Platt Pond / 3G]
PSCO059 [OP / Desmodesmus sp. | USA, MI: Platt Pond] PSC-L53
PSC060 [OP / Desmodesmus sp. | USA, MI: Platt Pond / 3H] 2
PSC065 [OP / Scenedesmus sp. | USA, MI: Platt Pond]
Uncultured PRS2_4E_31 [Switzerland: peat bog]
Uncultured TE210D [USA, AK: glacial debris]
Paraphelidium letcheri X-129 [OP / Tribonema gayanum]
Uncultured ESS220206.038 [Luxembourg: lake water]
Paraphelidium tribonematis X-103 [OP / Tribonema gayanum]
Uncultured CCW24 [USA, MA: suboxic marine water]
2L [ Amoeboaphelidium protococcarum CALU_X-5 [OP / Tetradesmus obliquus]
4 Y Amoeboaphelidium protococcarum FD095 [OP / Tetradesmus dimorphus]
PSC051 [OP / Scenedesmus sp. | USA, MI: Herbarium Pond / 31]
PSC063 [OP / Desmodesmus sp. /| USA, MI: Herbarium Pond / 3J] | PSC-L54
PSCO064 [OP / Desmodesmus sp. | USA, MI: Herbarium Pond]
Uncultured UMPB-207 [USA, MI: KLL4.Herbarium Pond]
Aphelidium desmodesmi FD104 [OP / Desmodesmus armatus]
74 Amoeboaphelidium occidentale FDO1 [OP / Tetradesmus dimorphus]
PSC267B [OP /| Bambusina sp. | USA, MI: Smith’s Fen / 3K]AIPSC-L55
1 PSC070 [Endo / Aulacoseira granulata | Canada: Lake Erie / 3M]
PSC131 [Endo / Aulacoseira granulata | Canada: Lake Erie] PSC-L56
PSC069 [Endo / Aulacoseira granulata | Canada: Lake Erie]
725k1Ag [Endo? / Aulacoseira granulata | Japan: Lake Inba]
729k1Ag [Endo? / Aulacoseira granulata | Japan: Lake Inba]
PSCO087 [Endo / Melosira varians | USA, MI: Black River]
PSCO089 [Endo / Melosira varians | USA, MI: Black River] PSC-L57
PSC085 [Endo / Melosira varians | USA, MI: Black River / 3N]
Uncultured TAGIRI-24 [Japan: anoxic sediment]
92) PSC042 [Endo / Ankistrodesmus sp | USA, MI: Herbarium Pond] PSC-L58
%8 PSC044 [Endo / Ankistrodesmus sp. | USA, MI: Herbarium Pond / 3L] -
Uncultured UMPB-239 [USA, MI: KLL4.Herbarium Pond]
Aphelidium parallelum KS114 [OP / Selenatraceae spp.]
99 Uncultured OL48 [Kenya: lake water]
Uncultured KRLO3EO6 [Greece: lake water] P
Aphelidium aff. melosirae P-1 [OP / Tribonema gayanum] AphelldlomyCOta
Aphelidium insulamus O-11 [OP / Tribonema gayanum]
Aphelidium tribonematis X-102 [OP / Tribonema gayanum]
Aphelidit dl X-132 [OP / Tribonema gayanum]
PSC267A [OP | Bambusina sp. | USA, MI: Smith’s Fen / 3K] | PSC-L59
Aphelidium collabens APH2 [OP / Coccomyxa sp.]

80,

Uncultured HRT6hrs_A5_euk_21 [Thailand: domestic sewage]
Uncultured LKM11 [Netherland: lake water and detritus]
—8f 63; PSC258 [Endo / Arcella sp. | USA, MI: Bryant Bog / 3P] | PSC-L61
99| Uncultured HRT3hrs_A5_euk_3 [Thailand: domestic sewage]
Uncultured UMPB-184 [USA, MI: 0322G.Bryant Bog]
Uncultured AD_S14clone19 [Japan: anaerobic sludge digester]

1

92

I Mitosporidium_daphniae_UGP3
L Morellospora_saccamoebae_KSL6

78, Rozella sp. [OP / Pythium sp.]

Uncultured B28 [Australia: activated sludge]

PSC259 [Endo / Chytrid on Desmidium sp. / USA, MI: Smith’s Fen / 3S]

PSC269 [Endo / Chytrid on Bambusina sp. | USA, MI: Smith’s Fen / 3T] | PSC-L64

Rozella sp. JEL0347 [OP / Rhizoclosmatium globosum]

Rozella rhizoclosmatii JEL0863 [OP / Rhizoclosmatium globosum]

Rozella allomycis UCB 47-054 [OP / Allomyces sp.]

Uncultured Pa2007A1 [France: lake water]

PSC230 [Endo / Chytrid on Mougeotia sp. | USA, MI: First Sister Bog / 3U] |PSC.L65

624k4Ag [Endo / Chytrid on Aulacoseira granulata / Japan: Lake Inba]

Uncultured ESS270706.089 [Luxembourg: lake water]

PSC249 [Endo / Chytrid on Spirogyra sp. | USA, MI: First Sister Bog / 3V] | PSC-L66

Rozella multimorpha JEL0883 [OP / Pythium sp.]
PSCO038 [Endo / Chytrid on Ulnaria sp. | USA, MI: Ford Lake / 3W]| PSC-L67
Uncultured UMPB-2275 [USA, MI: 0330S.Hebron Swale]
PSC238 [Endo / Chytrid on Oedogonium sp. | USA, MI: First Sister Bog / 3X] | PSC-L68
Uncultured PR5_4E_71 [Switzerland: peat bog]
PSC025 [Endo / Chytrid in Micrasterias cf. truncata | USA, MI: Buck Hollow in ESGR / 3Y] JPSC-L69
Uncultured UMPB-697 [USA, MI: 0302G.Lile Pond]

61

b——— Uncultured DSGM63 [Japan: metahne cold seep sediment] =NCLC1 (Richard et al. 2015)
Uncultured PA2009ES6 [France: lake water]
Uncultured S9-3 [France: reserver water]
PSC124 [Endo / Staurastrum sp. | UISA, MI: Herbarium Pond / 3Z] PSC-L70
PSC117 [Epi / Spirogyra sp. | USA, MI: BM Pond / 3AA]l PSC-L71
Uncultured UMPB-2663 [USA, MI: MA135.Woodland Lake] F RESHOL1 (Arroyo et al. 2018)
Nuclearia simplex CCAP1552/4
—] Amoebidium parasiticum FRA-1-14
ra owczarzaki 10-R2

mBio

=

78, Uncultured UMPB-344 [USA, MI: KLL1.Gosling Lake sediment]

68 Uncultured UMPB-608 [USA, MI: KLL1.Gosling Lake sediment]
5182 PSC243 [Endo / Oedogonium sp. | USA, MI: Herbarium Pond / 30][| PSC-L60
99 Uncultured Zeuk2 [USA, OK: sulfide-rich Zodletone spring water]

Uncultured UMPB-558 [USA, MI: KLL7.Barton Pond]

[ Uncultured SS1-E-01-42 [Norway: marine sediment] jBasal Clone Group | (Nagahama et al. 2011)

PSC-L62

PSC281 [Endo / Tardigrade / USA, MI: Mud Lake Bog / 3Q]|J
Uncultured UMPB-786 [USA, MI: 0322G.Bryant Bog]
Uncultured LS_CM2 [UK: lily stem scraping]
Paramicrosporidium saccamoebae KSL3 [OP / Saccamoeba sp.]
Paramicrosporidium vannellae KAUN [OP / Vannella sp.]

53 PSC211 [Endo / Rotifer? / USA, MI: First Sister Bog / 3R] | PSC-L63
| 99I |

Uncultured HRT3hrs_A5_euk_16 [Thailand: domestic sewage]
Uncultured A21_ek_13 [Japan: domestic sewage]

Rozellomycota

0.05

FIG 10 Portion of maximum likelihood (ML) tree of 185-5.85-28S rDNA concatenated data set including Aphelidiomycota, Rozellomycota, the NCLC1 and

FRESHOLT1 clade, Nuclearia simplex, and outgroup taxa (two holozoan taxa).

varians (Fig. 4N), were distinct from described species. PSC-L58 on Ankistrodesmus sp.
(Fig. 4L) was closely related to A. parallelum parasitic on selenastracean green alga (61).

In Rozellomycota, 10 single-cell lineages were found (Fig. 10). Many of them were
recognized as epibiotic or endobiotic zoosporangia on algae (Fig. 40, S through Y)
or micro-invertebrates (Fig. 4Q and R). PSC-L61 was a cell of Arcella sp. harboring
a sac-like structure including Microsporidia-like spores (arrows in Fig. 4P). This appear-
ance is similar to endoparasites of amoebae such as Paramicrosporidium (62) and
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Morellospora (63), which produce Microsporidia-like spores but are phylogenetically
placed in Rozellomycota and much shorter branched than canonical Microsporidia.
PSC-L61 was distinguished from these previously reported Microsporidia-like taxa. Five
lineages (PSC-L64-68) were isolated as epibiotic chytrids on green algae (Fig. 4S through
V, X) and diatoms (Fig. 4W). However, they were positioned in the Rozella clade, which
comprises endoparasites of chytrids and oomycetes, suggesting they were hyper-para-
sites of chytrids. PSC-L69 (Fig. 4Y), which showed the same morphology as PSC-L23
(Fig. 3D) in Rhizophydiales, was sister to all other Rozellomycota taxa. This lineage is
also a putative Rozella-like hyper-parasite (see Discussion). PSC-L60 was a tube-shaped
zoosporangium in Oedogonium sp. (Fig. 40) and placed in the LKM11 clade (64). PSC-L62
in a tardigrade (Fig. 4Q) and PSC-L63 in a putative broken rotifer body (Fig. 4R) were
related to Paramicrosporidium spp. These zoosporangium-like structures in PSC-L60, L62,
and L63 may not correspond to rozellids, and the sequences could be derived from
hyper-parasites of these zoosporangia or undetected contaminated cells.

Phylogenetic relationship between single cells and environmental sequences

The concatenated data set analysis showed that many of our single cells represented
novel lineages distinguished from described taxa (Fig. 6 to 10). This result complements
many environmental DNA studies that have reported unknown fungal lineages (23, 48).
To examine overlap between our single-cell lineages and sequences only known from
environmental DNA, we conducted a phylogenetic analysis on a comprehensive 18S
rDNA data set including described taxa, environmental sequences available from NCBI
database, with a focus on the phylum Chytridiomycota and phylum incertae sedis clades
(see Fig. S1 in the supplemental material). In this analysis, new sequences of PacBio
metabarcoding analyses primarily from Michigan, USA (44), were also used. Many of
these PacBio sequences are derived from the same locations as the single cells isolated in
this study, which gives a good opportunity to compare the two methods, metabarcoding
and single-cell analysis, for exploring novel fungal diversity. The ML tree (see Fig. S1)
showed that the vast majority of PacBio sequences represent entirely new lineages.
Only a few of the single-cell lineages were closely related to PacBio environmental
sequences. The PSC-L8 clade, in Rhizophydiales, included sequence UMPB-228 from Ford
Lake, the same place where the two diatom parasites were isolated. In Chytridiales,
PSC-L39 included UMPB-32 detected from multiple freshwater environments including
Lake Erie (see Data S1 in the supplemental material) where some of the single cells were
isolated. This lineage was also found in lakes in Japan (15) and France (48). Sequence
UMPB-232 was the most abundant in Bryant Bog (see Data S1) and was related to
PSC-L33 isolated from the same location. Although overlap of lineages in the PacBio and
single-cell data sets was low in terms of species, multiple lineages of single cells had
as their most closely related sequence an OTU from the PacBio data set, e.g., PSC-L13
and 21 in Rhizophydiales; PSC-L33, 35, 38, 43, and 44 in Chytridiales; PSC-L45 and 46 in
Lobulomycetales; PSC-L49 in Cladochytriales; and PSC-L71 in the FRESHOL1 clade (see
Fig. S1). On the other hand, both Mesochytriales and Polyphagales were represented by
multiple OTUs in the PacBio data set but were absent in the single-cell data. Despite
these exceptions, the general pattern was one of significant overlap of taxonomic genera
and families in these two culture-independent approaches.

DISCUSSION

By utilizing single-cell techniques, 71 EDF lineages were sampled, many of which were
newly recognized branches in the phylogeny of EDF, even at the phylum-level. The
approach in the present study focused on targeting and sequencing individual EDF
cells one at a time. Photographs of the isolated cells have implications for the ecology,
morphology, and life cycle of these newly discovered EDF lineages. Using these data, we
discuss the (i) ecological role of these uncultivated lineages, (ii) ecology and morphology
of novel phylum-level clades, (iii) phylogenetic diversity of an enigmatic chytrid genus
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Olpidium, and (iv) unexpected recovery of hyper-parasitic lineages. Finally, technical
advances and challenges of single-cell approaches used in this study are also discussed.

Shedding light on the ecological role of dark matter fungi

The cells isolated in this study were from diverse hosts, ranging from amoebae to
invertebrates and especially algae. Some lineages are readily recognized as obligate
algal parasites belonging to known parasite-specific groups such as Zygophlyctidales
and Aphelidiomycota. Also found were many lineages of alga-associated cells in well
studied orders such as Rhizophydiales, whose diversity has long been investigated based
on numerous strains of saprotrophic taxa (65-67). Recently though several families of
obligate algal parasites were described (37-39, 68). Our data revealed further hidden
diversity of putative parasitic lineages, representing new families or genera in the order.
Although the isolated cells in this study were initially identified as “parasitic fungi,” some
lineages we sampled in Chytridiales and Cladochytriales are putatively saprotrophic.
When parasitic chytrids infect colonial algae, only dead cells are infected while living
cells are uninfected (Fig. 2F, U, V and 3I, AA). In contrast, in some colonies, all algal cells
are uncolored, or their chloroplasts are exhausted (Fig. 30, P, R and Y), indicating the
attaching chytrids grow on dead or moribund algae. Moreover, chytrids corresponding to
PSC-L33 (Fig. 3M) in Chytridiales and PSC-L48 (Fig. 4A) in Cladochytriales were success-
fully isolated as pure cultures (data not shown).

These data also inform hypothetical ecological functions of lineages that were only
known from metabarcoding approaches. For example, algal parasitic lineages PSC-L21
and 22 in Rhizophydiales formed independent clades along with some environmental
sequences from aquatic environments, implicating a role for this clade as parasites of
algae. Similarly, PSC-L45-47 in Lobulomycetales formed a novel clade including some
environmental sequences from aquatic and soil environments, indicating that these
lineages are parasites of algae and protists. Although Zygophlyctidales was previously
thought to be composed only of diatom parasites (21), a lineage of a green algal
parasite (PSC-L31) sister to an environmental sequence from a lake was found. This
result indicates that other environmental sequence lineages in the order could exist as
parasites of algae other than diatoms.

Generally, however, most of the single-cell sequences were poor matches at the
species level to sequences from cultures or environmental DNA. This speaks to just
how poorly we understand the true species level diversity of EDF, and how much work
remains to be done in describing these fungi. In some cases, sequences from clades that
were readily recovered with metabarcoding were not detected. The most striking case
is Gromochytriales and Mesochytriales, together containing a total of three described
species, all of which are obligate parasites (20, 69, 70). Despite limited described species,
Mesochytriales is represented by numerous environmental DNA sequences (20). In this
study, chytrids belonging to these orders were not identified with a single-cell approach.
Instead, additional diversity was revealed based on phylogenetic analysis using PacBio
metabarcoding data (see Fig. S1). Many of the sequences from lakes or ponds and some
OTUs from Lake Erie, were related to Mesochytrium penetrans. This species is a parasite of
a small green alga, Chlorococcum minutum (71), yet the collection strategy adopted for
Lake Erie samples biased for larger colonial and filamentous forms. Further, most effort
on Lake Erie was aligned with a winter science initiative (72), a season where diatoms
are the dominant taxa associated with ice-cover in the lake (73). Thus, chytrids parasitic
on smaller single cells or on taxa more prevalent during the summer may have been
overlooked. More single-cell analyses on parasitic chytrids on various algae are necessary
to reveal hidden taxa in the order.

While the pictures of the isolated cells can be informative in inferring their ecological
role, sometimes they may be misleading. Specifically, each “cell” is actually a number
of cells that include host, parasite, associated bacteria, and hyper-parasites. The latter
were particularly common with some cells, such as PSC023, giving both an obvious
chytrid pathogen as well as a likely Rozella hyper-parasite (74). Indeed, the majority of
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the Rozellomycota detected in this study were found as “by-catch” present in samples
appearing as normal chytrids infecting algae (Fig. 4S through W). This result provides a
slight cautionary tale that some of the sequences emerging from this approach may be
most appropriately assigned not as parasites of the primary host but as hyper-parasites,
an observation consistent with earlier results (15).

Discovery of novel clades of early diverging fungi

Our approach was successful in revealing novel diversity at many taxonomic levels:
species, genera, families, and even phyla. The novelty at the phylum level is consistent
with recent phylogenetic analyses that have revealed that some parasitic fungi represent
novel lineages worthy of phylum-level distinction (17, 18). We found and characterized
three phylum incertae sedis clades (Fig. 5), two of which are newly reported in the
present study. The NC_OIpL-1 clade includes two single-cell lineages of Olpidium-like
chytrids on rotifers and O. vermicola parasitic on nematode eggs (75), indicating that
this clade represents animal-associated endobiotic chytrids. NC_OIpL-1 was sister to a
previously reported undescribed phylum-level clade represented by a single-cell isolate
of a Rhizosiphon-like chytrid on the cyanobacterium Dolichospermum from a lake in
Germany (11). In the tree by Van den Wyngaert et al. (11), Dolichospermum parasites
were sister to the Chytridiomycota + Monoblepharidomycota + Neocallimastigomycota
clade without strong statistical support. Although these putative novel phylum clades
are related to Kickellomycotina, Zoopagomycotina, and Entomophthoromycotina in our
tree (Fig. 6), the exact phylogenetic position is uncertain. Phylogenomic analysis would
clarify the evolutionary history and taxonomy of these enigmatic lineages.

The NC_ChyL-1 clade, which included isolates of epibiotic chytrids on Desmodesmus
(PSC-L52) and Rhizophydium scenedesmi strain EPGO1 on Graesiella sp (45), was sister
to Monoblepharidomycota without strong statistical support. Previously, R. scenedesmi
was shown to be sister to the genus Zygophlyctis in Chytridiomycota (45). However,
another analysis showed that R. scenedesmi along with some environmental sequences
were placed sister to Monoblepharidomycota (21) as with the present study. This clade
could correspond to the clade GS13 defined by Tedersoo et al. (8) because one of their
environmental sequences (GL02368_027_G2750 from Australian soil) was positioned
within NC_ChyL-1.

The clade FRESHOL1 was originally defined by Arroyo et al. (6) in their metabarcod-
ing analysis of the Parand River in Argentina. This clade was sister to all other fungi
including Aphelidiomycota and Rozellomycota as with our analysis. PSC-L70 was a cell
of Staurastrum sp. filled with a putative endoparasite (Fig. 4Z). The isolate correspond-
ing to PSC-L71 included chytrid zoosporangium-like cells on Spirogyra sp. (Fig. 4AAA).
Although information on the life cycles of these two lineages is currently limited, there
is the possibility that they are endoparasites of algae or chytrid-like organisms in these
samples. Two deep-branching groups of fungi, Aphelidiomycota and Rozellomycota, are
known as endoparasites of other organisms (22). The previously defined phylum-level
clade NCLC1 is sister to Rozellomycota in our tree (Fig. 10) and is also comprised of
putative endoparasites of marine diatoms (76). Given the phylogenetic position and host
of the FRESHOL1 lineage, our findings strengthen the recently suggested hypothesis
that the ancestor of Fungi sensu lato (including aphelids, rozellids, microsporidians, and
canonical fungi) had a symbiotic relationship with cellulose-based cell-walled taxa (77).
Further observations and phylogenetic analyses of the FRESHOL1 clade are pivotal to
elucidate the early evolution of Holomycota lineages.

Phylogenetic diversity of Olpidium-like chytrids

We found Olpidium-like chytrids parasitic on various hosts such as adult rotifers (Fig. 2A,
C, and D), rotifer eggs (Fig. 2B), desmid algae (Fig. 2K through O and 3C through G),
and pine pollen (Fig. 2AA). The genus Olpidium is characterized by a holocarpic thallus,
namely a simple thallus composed of only a zoosporangium without rhizoids (78). All
species are endobiotic parasites of algae, plants, fungi, protists, and micro-invertebrates
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(78). Early molecular phylogenetic analyses (79, 80) revealed that plant root parasitic
species are separated from core chytrid clades (e.g., Chytridiomycota and Blastocladio-
mycota) and related to zygomycetous fungi. A recent phylogenomic analysis showed
that O. bornovanus parasitic on cucumber roots is sister to all terrestrial fungi (Dikarya
+ Mucoromycota + Zoopagomycota) (18). Olpidium-like chytrids obtained in the present
study were not related to plant parasitic species (Olpidiomycota in Fig. 5) and were
instead distributed among three other phylum-level clades.

Four lineages of rotifer parasites were placed in the NC_OlpL-1 clade (PSC-L1 and 2)
and Blastocladiomycota (PSC-L3 and 4). The NC_OlIpL-1 clade also included O. vermicola
parasitic on nematode eggs. Apart from the plant parasitic lineage sister to Dikarya +
zygomycetes (18), the NC_OlIpL-1 clade is an additional putative independent phylum
of Olpidium-like fungi. In Blastocladiomycota, PSC-L3 and 4 were related to taxa of
the polyphyletic family Catenariaceae (81), which is characterized by polycentric thalli,
consisting of catenulated zoosporangia connected by isthmuses (82). In both PSC-L3 and
4, multiple zoosporangia were seen in a single rotifer body but connections between
zoosporangia were not visible. Some Olpidium species are known as rotifer parasites
and often produce multiple zoosporangia in a single host, but early developmental
stages have not been fully described (83-85). Some of these species could be related to
Catenariaceae as with our rotifer parasites.

The other seven lineages of Olpidium-like chytrids were positioned in Rhizophydiales
in Chytridiomycota (Fig. 7). Six of them were endoparasites of desmid algae: PSC-L9
related to Angulomycetaceae and PSC-L23-27 related to Batrachochytriaceae. PSC-L26
and 27 resemble O. untricuriforme in producing a branched tube-like zoosporangium
(51). PSC-L24 on Desmidium sp. is similar to O. hyalothecae on Hyalotheca dissiliens (51);
both infect algae of a filamentous clade in Desmidiaceae (86). Another lineage, PSC-L20
was an endobiotic chytrid in pine pollen and was related to Terramycetaceae. Rhizo-
phydiales chytrids typically produce monocentric and epibiotic thalli with endobiotic
rhizoidal systems (65). Exceptionally, Batrachochytrium dendrobatidis and Entophlyctis
helioformis produce endobiotic thalli in amphibian skin cells and moribund green algal
cells, respectively (87, 88). In B. dendrobatidis, rhizoids are rarely seen on zoosporangia
in host skin in comparison to culture conditions (88). Simplification of thalli could occur
easily in the endobiotic lifestyle. PSC-L23-27 were sister to E. helioformis, and these
alga-associated endobiotic chytrids could be pivotal in investigating the evolution of
nutritional modes and thallus morphology in Batrachochytriaceae.

Our phylogenetic analysis clearly showed that the genus Olpidium is polyphyletic,
and that host generally tracks phylogeny. Tedersoo et al. (31) suggested accommodating
Olpidium in the phylum Olpidiomycota based on the phylogenetic position of plant
parasitic species of Olpidium. However, this taxonomic treatment should be examined by
investigating more taxa, especially the type species, O. endogenum, which is known as a
parasite on green algae of the genus Closterium.

Unexpected findings of hyper-parasites

In the present study, we found putative hyper-parasites within Chytridiomycota and
Rozellomycota. The two lineages in Chytridiomycota were clearly recognizable as a
chytrid zoosporangium on top of another parasite. PSC-L11 in Rhizophydiales was
parasitic on an elongated zoosporangium inside Spirogyra sp. (Fig. 2R). The host of
this chytrid could be an endoparasitic oomycete in algae. Regarding similar described
species, Rhizophydium carpophilum is known as a parasite of oogonia and oospores
of Saprolegnia and Achlya (89) and also reported as a hyper-parasite of endoparasitic
Olpidiopsis infecting Achlya (90). Another hyper-parasitic chytrid isolated in the present
study is PSC-L39 in Chytridiales, a spherical zoosporangium on an epibiotic chytrid
parasite on S. binderanus (Fig. 3T). Its host could be the chytrid of PSC-L28 (Fig. 3I) in
Zygophlyctidales because the shape of the zoosporangium is similar, and they were
found in the same sample collected at Lake Erie. Currently, some 15 species are known
as epibiotic chytrid parasites of other chytrids (78, 91). One of them, Septosperma
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anomalum, was reported as a hyper-parasite infecting diatom parasite such as Chytriomy-
ces tabellariae on Tabellaria flocculosa (92) and Zygophlyctis asterionellae on Asterionella
formosa (93). Our isolates are distinguished from S. anomalum based on the shape of
zoosporangium. Also, S. anomalum produces a unique resting spore with septation,
which was not observed in our sample. Unfortunately, DNA sequence data are currently
not available for any chytrid species parasitic on other chytrids, preventing comparison
with our isolates. PSC-L39 corresponds to the clade CH_D including single-cell isolates
from Lake Inba in Japan (15). These isolates were recorded as a chytrid parasite on
Aulacoseira spp. but there is a possibility that its hyper-parasitic nature was overlooked.

The other single-cell lineages of hyper-parasites were found in Rozellomycota. These
were isolated as epibiotic or endobiotic chytrid parasites of green algae or diatoms,
but they were phylogenetically related to Rozella spp. (PSC-L64-69). The genus Rozella
is well known as an endoparasite of chytrids or oomycetes (94). Rozella invades the
host as an unwalled cell, consumes host cytoplasm by phagocytosis, and ultimately
fills the entire host cell. Due to this endoparasitic nature, chytrid zoosporangia infected
by Rozella might be difficult to detect, although some species cause hypertrophy or
abnormal septation of the host cell (36, 95). Therefore, infections by Rozella were likely
overlooked in our isolates. The putative hosts of our Rozella isolates were speculated:
PSC-L64 (Fig. 4S) on Chytridiales chytrid PSC-L38 on Desmidium sp. (Fig. 3S); PSC-L66 (Fig.
4V) on Lobulomycetales chytrid PSC-L45 on Spirogyra sp. (Fig. 3Z); PSC-L67 (Fig. 4W) on
Rhizophydiales chytrid PSC-L8 on Ulnaria sp. (Fig. 2J); and PSC-L69 (Fig. 4Y) on Olpi-
dium-like chytrid PSC-L23 on Micrasterias truncata (Fig. 3D). Indeed, single-cell genomic
analysis on the amplified genome of isolate PSC023 (lineage PSC-L23) revealed that the
genome included both the host as well as the putative hyper-parasite corresponding
to PSC-L69 (74). However, in our ONT sequencing, only a chytrid rDNA sequence was
obtained in PSC023. We assume that biased PCR amplification occurred in this sample.
Phylogenomic analysis showed that the Rozellomycota genome in PSC023 was sister to
Rozella spp. although PSC-L69 separated from the Rozella clade in the present study. Our
finding of hyper-parasitic Rozella indicates cryptic diversity of endoparasites infecting
chytrids. These findings need to be taken into consideration when using single-cell
approaches to infer nutritional mode from the recovered genomes.

Technical advances and challenges using single-cell technique

The approach outlined presents both advances over traditional methods of single-cell
genomics that involve fluorescence-activated cell sorting (96) as well as challenges.
The primary advantages are that the method allows images of the target species
to be obtained and that the success rate of going from cell to sequence is higher.
Among the 259 cells processed with multiple displacement amplification (MIDA), DNA
sequence data were successfully generated for 139 cells (54%) in total. Excluding
putative contaminants (e.g., cercozoans) and fungus-like organisms (e.g., oomycetes and
hyphochytrids), 129 cells (50%) were categorized as fungal sequences (Table S1). This
rate is higher than previous single-cell sequencing studies (single-cell sorting + whole
genome amplification + PCR and sequencing) on planktonic prokaryotes and protists,
which had a 5%-38% success rate (97-101). Moreover, photos accompanied these cells.
While these cells are no longer available for morphological analysis, their amplified DNA
with high concentration (147-1,600 ng/pL, Table S1) is present, which is facilitating
ongoing genome sequencing. We believe that the high success rate of amplification
and sequencing of the target cells is likely due to the fact that these fungal cells are
actually comprised of multiple nuclei, in many cases representing the near mature
reproductive stages of the chytrid zoosporangia that may contain 5-50 or more nuclei.
A final technical advance is the combination of single-cell approaches with long rDNA
PCR. Amplification of the majority of the coding bases of the rRNA operon in addition
to the highly variable internal transcribed spacer region allows for robust phylogenetic
placement as well as discrimination at the species level (102). Amplification of both 18S
and 28S regions allows the data to be compared to multiple data sets, given that there
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are disparate uses of the two regions in both environmental DNA and systematics studies
(48, 103).

There are also some disadvantages of the method. First, it is hard to scale up to a
large number of cells because this is a manual approach in which each cell requires as
much as an hour to find, clean, and pipette into a sample tube. Second, this approach
requires considerable taxonomy, microscopy, and microbial natural history skills. These
skills are lacking in most microbiology and mycology training. Third, there are biases in
the targeting of hosts. Most of the isolated cells in this study were parasites of algae,
although a few protists and micro-invertebrates were isolated. More diverse taxa could
host parasitic EDF, but they may have been undersampled due to our limited ability
to find them and diagnose them as infected. These biased isolations potentially hinder
clarifying the diversity of EDF; such a limitation is less applicable to metabarcoding and
metagenomic approaches. Finally, our samples are far from single cells, and often contain
host cells, bacterial cells, and in several cases, hyper-parasites. This is both an advantage
and disadvantage because it identifies interesting symbioses, but it also makes ascribing
ecological function more complicated. Presence of host and bacterial DNA could limit
the ability to sequence fungal genomes from these samples. In some cases, we were
able to amplify host DNA in order to confirm species identity (data not shown), but in
other cases, host DNA could not be recovered as presumably the parasite had already
consumed it. Despite these disadvantages, the target single-cell isolation is a powerful
method to investigate uncultured parasitic fungi, and its use will expand our understand-
ing of the ecology and phylogeny of EDF.

MATERIALS AND METHODS
Sample collection and single-cell isolation

We collected 50-250 mL of water samples with detritus and/or plant material from
ponds or lakes in Michigan in 2019-2021 (see Table S2 in the supplemental material).
For Lake Erie, seston was collected by boat with a plankton net (=20 um) deployed
1-3 m from the surface, after which the collected material was transferred to a 50 mL
conical centrifuge tube maintained at in situ water temperature in the dark. The samples
were transferred to University of Michigan and incubated for ~1 month, at 20°C, under
LED lighting. Water samples were observed using a Nikon TMS Inverted microscope
(Nikon, Tokyo, Japan) to detect fungi associated with algae, micro-invertebrates, and
protists. Detected fungal cells were photographed using Moticam X Camera (Motic,
Hong Kong, China) or Dino-Eye Edge S Eyepiece Camera (AnMo Electronic Corporation,
Taipei, Taiwan) digital cameras. Representative images were edited and assembled into
plates using Adobe Photoshop. The cells were isolated manually using a manually
prepared drawn-out glass capillary pipette. The isolated cells were washed by serial
transfer in small drops (more than five) of UV-sterilized water, transferred into 200 uL PCR
tubes with 1-2 pL of water, and kept at —80°C until DNA extraction.

Whole genome amplification, PCR, and sequencing

To conduct DNA extraction and whole genome amplification of isolated cells by multiple
displacement amplification (MDA), we used the Qiagen REPLI-g Single Cell Kit (Qiagen,
Germantown, Maryland, USA) and processed the samples as described in Davis et al. (14).
The DNA concentrations of some of the MDA products were measured with the Qubit
4 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). To obtain rDNA sequences,
we utilized the Oxford Nanopore Technology sequencing pipeline for zoosporic eufungi
(34). To amplify the 185-ITS1-5.85-ITS2-28S rDNA operon, we performed long-range
PCR with fungal specific primers, NST1short and RCA95m (43). We used TaKaRa LA Taq
DNA polymerase (Takara Bio USA, San Jose, CA, USA) with the protocol described in
Simmons et al. (34). For some samples, we used KOD Xtreme Hot Start DNA Polymerase
(Merck Millipore, Burlington, MA, USA). We prepared 12.5 pL amplifications composed
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of the following: (i) 0.25 pyL KOD extreme, (ii) 6.25 pL 2X Xtreme Buffer, (iii) 2.5 pL
dNTPs, (iv) 0.75 pL each 5 puM barcoded primer NS1short/RCA95m, and (v) 2 uL 1/50
or 1/100 diluted MDA products. We performed PCR on an Eppendorf Mastercycler Pro
S with the following conditions: (i) 95°C for 2 minutes, (ii) 10 cycles of denaturation at
98°C for 10 minutes, annealing at 55-50°C (0.5°C decrease per cycle) for 30 seconds,
and extension at 68°C for 5 minutes, (iii) 30 cycles of 98°C for 10 seconds, 50°C for
30 seconds, and 68°C for 5 minutes. The PCR products (4.5-6 kbp) were assessed by
electrophoresis. We generated long-read sequences with an Oxford Nanopore Technol-
ogies MinlON device and MinKNOW software (Oxford Nanopore Technologies, Oxford,
United Kingdom). We prepared pooled barcoded amplicon libraries with the ONT
Ligation Sequencing Kit (LSK-109), following the manufacturer’s protocol. We generated
fast5 sequencing reads in MinKNOW that we base-called in Guppy (ONT). With the
resulting fastq reads, we quality filtered (104) with NanoFilt (105) and converted them to
fasta files with Seqtk (https://github.com/Ih3/seqtk). We demultiplexed the pooled data
with MiniBar (106), assembled sequences in Canu 1.9 (107) with defined cut-off criteria
(34, 104), polished sequences with Medaka (https://github.com/nanoporetech/medaka),
and removed barcodes to produce the final rDNA operon sequences in Geneious 9.1.7
(Biomatters, Auckland, New Zealand). For samples that failed the long-range PCR for ONT
sequencing, we attempted short-range PCR using primers: SR1.5 (108)/AU4v2 (109) and
CRYPTO2-2F (109)/AU4v2 for partial 18S, ITS5 (110)/RCA95m for ITS and partial 28S, and
LROR (111)/RCA95m for partial 28S. PCR products were purified using ExoSAP-IT (Thermo
Fisher Scientific, USA). Sequencing analyses were performed with Genewiz sequencing
service (NJ, USA) using the following primers: SR1.5, CRYPTO2-2F, NS4 (110), and AU4v2
for 18S, ITS3, ITS4, ITS5 (110) for ITS, and LROR and LR5 (112) for 28S.

Phylogenetic analysis

To clarify phylogenetic positions of single cell isolates, a phylogenetic analysis of a
concatenated data set of 18S, 5.8S, and 28S rDNA sequences was performed (see Table
S3 in the supplemental material). The 5.8S rDNA sequences were extracted from the
data of ITS1-5.85-ITS2 using ITSx (113). Sequences were aligned using MAFFT v7.487
(114) with the “L-INS-I"” method, and the alignment was trimmed using trimAl (115) with
the “gappyout” method. The maximum likelihood (ML) tree was inferred with IQ-TREE
2 (116). The best model of each alignment was examined using ModelFinder (117)
implemented in the IQ-TREE 2. According to the corrected Akaike information criterion
(AlCc), GTR + F + R9, JC + R4, and TIM3 + F + R9 models were selected for 18S, 5.8S,
and 28S, respectively. An ML analysis was run with a partitioned model (118). The
branch supports were assessed with standard non-parametric bootstrap analysis (100
replicates). The tree was visualized with FigTree (https://github.com/rambaut/figtree) and
edited with Adobe lllustrator.

PacBio metabarcoding analysis

Single-cell sequence data were compared to a large collection of environmental
DNA sequences utilizing a recently developed PacBio metabarcoding data set of 18S
amplicons (44). These data are complementary because many of the sampling localities
are shared (i.e., are from aquatic habitats in Michigan). For this analysis, we extracted
reference sequences of 339 PacBio OTUs that were putatively identified as Chytridiomy-
cota using taxonomic assignment in Qiime v1.9.1 (119) with BLAST (120) and a curated
version of the SILVA database (121), which was amended to include more EDF including
Aphelidiomycota and Rozellomycota (available here as “Updated_Silva_Cryptos_Aphe-
lids.txt”: https://github.com/Michigan-Mycology/Lab-Code-and-Hacks/tree/master/Cryp-
tomycota_ecology/Data_files/). We performed further manual curation of the sequences
identified as Chytridiomycota for putative chimeras by phylogenetic analyses. We
prepared a reference data set of 18S rDNA of cultured Chytridiomycota species, single-
cell sequences from our and previous studies, and outgroup taxa (see Table S4 in the
supplemental material). The sequences were aligned and trimmed as described above.
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All OTU sequences were divided into two parts, the former and latter ~650 bp nucleoti-
des. The original and divided PacBio sequences were added into the reference alignment
using MAFFT with the “--add” and “--keeplength” options. Maximum likelihood trees
were inferred using FastTree (122) with the “-gtr” option. The trees were visualized using
FigTree. The OTUs of the following results were excluded in the subsequent analyses:
(i) the phylogenetic positions of divided sequences were clearly different and (ii) the
sequence was extremely long branched. After manual curation, 123 OTUs were excluded
leaving 216 OTUs in the final data set (see Table S5 in the supplemental material).
To examine the phylogenetic position of these OTUs, we performed an ML analysis.
We prepared the 18S data set of almost the entire Chytridiomycota by adding environ-
mental sequences available in GenBank (see Table S6 in the supplemental material)
to the reference data set used above (see Table S4) and sequences were aligned and
trimmed as above. Subsequently, the curated PacBio OTU sequences were added to this
alignment as above. The ML tree was inferred using IQ-TREE 2 with the GTR + F + R6
model selected by ModelFinder. A standard non-parametric bootstrap analysis of 100
replicates was performed. The trees were visualized and edited as above.
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