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Abstract

Let G be a p-adic classical group. The representations in a given Bernstein compo-
nent can be viewed as modules for the corresponding Hecke algebra—the endomorphism
algebra of a pro-generator of the given component. Using Heiermann’s construction of
these algebras, we describe the Bernstein components of the Gelfand—Graev represen-
tation for G = SO(2n + 1) and Sp(2n).

1 Introduction

Let F' be a non-Archimedean local field of residue characteristic g. Let G be the group of F-
points of a connected, split reductive algebraic group defined over F'; in particular, the group
G contains a Borel subgroup. Let U be the unipotent radical of the Borel subgroup and fix
a non-degenerate (Whittaker) character ¢ : U — C*. The Gelfand—Graev representation
of G is c—indg(w) where c-ind stands for induction with compact support. The goal of this
paper is to give an explicit description of the Bernstein components of the Gelfand—-Graev
representation.

Let us briefly describe what is known. Let K be a special maximal compact subgroup
of G and I an Iwahori subgroup contained in K. Let H be the Iwahori-Hecke algebra of
I-biinvariant functions on G, and Hx the subalgebra consisting of functions supported on
K. Then H is isomorphic to the group algebra of the Weyl group W of G and thus it
has a one-dimensional representation € (the sign character). As an H-module, (c—indg )
is isomorphic to the projective H-module [10]

H QR €

If G = GL,, then a similar statement holds for all Bernstein components with appropriate
Hecke algebras arising from Bushnell-Kutzko types [11]. We build on methods of that paper.
We finish this paragraph by mentioning a recent article of Mishra and Pattanayak [18] that
considers Bernstein components of c—indg(w) corresponding to representations induced from
the Borel subgroup. Their result is formulated in terms of Hecke algebras arising from types
constructed by Roche.
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For a general G one does not have a complete theory of types and corresponding Hecke
algebras, but there is a replacement: endomorphism algebras of pro-generators of Bernstein
components.

It turns out that these algebras are more suited for the problem at hand. In more
detail, let P = M N be a parabolic subgroup of G, and let ¢ be an irreducible cuspidal
representation of M. Let M° be the subgroup of M consisting of all m € M such that
|x(m)| = 1 for all smooth characters x : M — C*. Let o¢ be an irreducible summand
of o restricted to M°. Then i (c-ind}%.(09)) is a projective G-module generating a single
Bernstein component. Here ig denotes normalized parabolic induction. Let

H = Endg(i%(c-ind}ks (00))).
Observe that we have a natural inclusion
A= EndM(c—ind%O(ao)) CH.

For every G-module ,
F(m) = Homg (1% (c-ind 3% (09)), 7)
is naturally a right H module. The functor § is an equivalence between the Bernstein
component generated by ig(c—indM o(0p)) and the category of right H-modules.
Now assume o is y-generic. Let

IT = §(c-indf ().

It is not difficult to see, using Bernstein’s second adjointness, that II = A, as A-modules.
Thus understanding IT reduces to understanding H modules isomorphic to A. This was done
for GL,, in [11]. We extend this computation to H for G = SO(2n + 1, F') and Sp(2n, F).
For classical groups the algebra H has been computed by Heierman [16]; more recently,
Solleveld [23] has studied the same algebra in a more general setting. If G = SO(2n+ 1, F)
or Sp(2n, F'), it turns out that the algebra H is a tensor product of Hecke algebras each
of which is isomorphic to the Iwahori-Hecke algebra GL,, or to an algebra of the type Ch,
with unequal parameters. Assume that # corresponds to Cy,. Its diagram has two special
vertices, denoted by 0 and n. Corresponding to them, we have two finite subalgebras H
and H,, of H. We prove that any H-module isomorphic to A is necessarily

H &, €o Or H QH, En

for a one-dimensional representation ¢y or €,. Here we moved to more familiar language
of left H-modules. This is harmless indeed, since H is isomorphic to its opposite algebra;
this follows from the Iwahori-Matsumoto relations. Finally, we determine precisely the
isomorphism class of II.

We expect a similar description to be available when G = O(2n), but we do not treat it
here. The case G = SO(2n) is significantly more involved due to the complicated structure
of the R-group [14].

We finish this paper with an application to the Gan-Gross-Prasad restriction problem,
and with an appendix where we show that H is isomorphic with the Hecke algebra arising
from the type constructed by Stevens.

We would like to thank K.-Y. Chan, Y. Sakellaridis, M. Solleveld and S. Stevens for
useful communications. G. Savin is partially supported by a grant from the National Science
Foundation, DMS-1901745.
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2 Preliminaries

2.1 Notation

Throughout the paper, F' will denote a non-Archimedean local field of residue characteristic
g and uniformizer w, equipped with the absolute value | - | normalized in the usual way.

We let G denote the group of F-points of a connected, split reductive algebraic group
defined over F. From §2.4 on, we specialize to the case where G is the special odd or-
thogonal group, or the symplectic group. If we want to emphasize the rank, we use G,, to
denote SO(2n + 1, F') or Sp(2n, F'). By Rep(G) we denote the category of smooth complex
representations of G.

For an arbitrary group H, we let X (H) denote the group of complex characters of H.

2.2 Unramified characters

If M is a Levi subgroup of G, we let M° = ﬂx ker | x|, the intersection taken over the set of
all rational characters x : M — F*. We say that a (complex) character y of M is unramified
if it is trivial on M°; we let X" (M) denote the group of all unramified characters on M.
Then M/M?° is a free Z-module of finite rank, and the group X™ (M) = X(M/M?°) has a
natural structure of a complex affine variety. For any element m € M, we denote by b, the
evaluation x — x(m).

Now let o be an irreducible cuspidal representation of M, and set M7 = {m € M :
Mg = g}. Then M/M? is a finite Abelian group, and we let A denote the ring of regular
functions on the quotient variety X (M /M°)/X (M /M?). Since M /M® is once again a free
Z-module (of the same rank as M/M°), we have A = C[M?/M°]. Furthermore, letting
oo denote an arbitrary irreducible constituent of |y, we have a canonical isomorphism
A = EndM(c-ind%oao). Indeed, this follows from a simple application of Mackey theory.
We refer the reader to [16, §1.17, §4] for additional details.

2.3 The Hecke algebra of a Bernstein component

If 7 is an irreducible representation of GG, there is a Levi subgroup M of G and an irreducible
cuspidal representation o of M such that 7 is (isomorphic to) a subquotient of ig(a). Here
P is a parabolic subgroup of G with Levi component M. The pair (M, o) is determined by
7 up to conjugacy; we call (M, o) the cuspidal support of 7.

We say that the two pairs (M;,01) and (Ma, 02) as above are inertially equivalent if
there exists an element g € G and an unramified character y of Ms such that

Yo1=02® X.

This is an equivalence relation on the set of all pairs (M, o). Given an equivalence class
[(M,0)], we denote by Rep(ys,)(G) the full subcategory of Rep(G) defined by the require-
ment that all irreducible subquotients of every object in Rep M,U)(G) be supported within
the inertial class [(M, o)]. A classic result of Bernstein then shows that the category Rep(G)
decomposes as a direct product

Rep(G) = [ Repu0)(G)
(M0)
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taken over the set of all inertial equivalence classes. We refer to Rep(; ,)(G) as the Bernstein
component attached to the pair (M, o). For a detailed discussion of the above results, see
[4] or [3].

For each Bernstein component Rep( MJ)(G) one can construct a projective generator
I'(ar,0) by setting

T (1,0) = i5(c-ind}fo (00)).
Here 09 is any irreducible component of the (semisimple) restriction o|yo. We now obtain
a functor from the category Rep(y;,)(G) to the category of right Endg(I'(ps,0))-modules
given by
7+ Hom(L'(37,5), 7).

The fact that I'(y/,,) is a projective generator implies that this is an equivalence of categories.
This is [3], Lemma 22; a detailed proof of this fact is also given in [20], Theorem 1.5.3.1.

Given a Bernstein component s = (M, o), we use Hs to denote Endg(I's) and refer to
it as the Hecke algebra attached to the component s. Furthermore, for any = € Rep(G) we
let 75 denote the corresponding Hs-module Hom(T's, 7).

Though we do not use it here, we point out that there is another highly useful approach
to analyzing Bernstein components, based on the theory of types developed by Bushnell
and Kutzko [8]. One can show that the Hecke algebra used by Bushnell and Kutzko is
in fact isomorphic to the algebra H; introduced above; we prove this fact in Appendix A.
Therefore—for the purposes of this paper—the two approaches are equivalent.

2.4 Cuspidal representations

Here we briefly recall some facts and introduce notation related to cuspidal representations.
For the sake of concreteness we now specialize to the case when G is a special odd orthogonal
group or a symplectic group. We use G,, to denote SO(2n + 1, F') or Sp(2n, F).

Let p and o be irreducible unitarizable cuspidal representations of GLy(F') and G,
respectively. We consider the representation v%p x o, where o € R. Here and throughout
the paper, we use v to denote the unramified character |det| of the general linear group. If
p is not self-dual, the above representation never reduces. If p is self-dual, then there exists
a unique a > 0 such that ¥*p x o is reducible; we denote it by «,.

The number «, has a natural description in terms of Langlands parameters. Let ¢ be
the L-parameter of 0. Set a, = max{a : p®S, appears in ¢}, where S, denotes the (unique)
irreducible algebraic a-dimensional representation of SLy(C). If the set is empty, we let

-1, if p is of the same type as ¢;
a, = i
0, otherwise.

_ ap+l
Then o, = 5=

2.5 The structure of the Hecke algebra

We now fix the setting for the rest of the paper. We retain the notation p,o from the
previous subsection, and consider the cuspidal component s attached to the representation

pPR---Qp Q0o
N—_———

n times
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of the Levi subgroup M = GLg(F) x - -- X GLg(F') X Gy, in G, where N = nk+ng. In the
rest of the paper, we restrict our attention to cuspidal components of the above form. This
does not present a significant loss of generality, since the Hecke algebra of a general cuspidal
component is the product of algebras corresponding to components described above. To
simplify notation, we set H = H.s.

The structure of the Hecke algebra H has been completely described by Heiermann
[15, 16]. In his work, Heiermann shows that  is a Hecke algebra with parameters (the type
of the algebra and the parameters depending on the specifics of the given case). When the
component in question is of the form described above, we have three distinct cases, which
we now summarize. For basic definitions and results on Hecke algebras with parameters,
we refer to the work of Lusztig [17].

In what follows, we let ¢ denote the order of the (finite) group {x € X™(M) : p®x = p}.
In all three cases, the commutative algebra A (see §2.2) is a subalgebra of H. In the
present setting, the rank of the free module M?/M° is equal to n. We can thus identify
A = C[M?/M°] with the algebra of Laurent polynomials C[XT,..., X;F]. We fix this
isomorphism explicitly: For ¢ = 1,...,n, let h; be the element of M which is equal to
diag(wo,1,...,1) on the i-th GL factor, and equal to the identity elsewhere. Then X; = b’;”.
The three cases are

(i) No representation of the form p ® y with x € X™ (M) is self-dual.

In this case, the algebra H is described by an affine Coxeter diagram of type A,_;
with equal parameters ¢t. In other words, it is isomorphic to the algebra H,, described
n [11]: there are elements T7,...,T,_1 which satisfy the quadratic relation

(T; +1)(T; —¢") =0, i=1,...,n—1

and commutation relations

f- 1

Tif — 5T = (¢ — 1) "

i=1,...,n—1,

where f* is obtained from f € A by swapping X; and X;11.

In the two remaining cases there is an unramified character xy of M such that p ® x is
self-dual. Without loss of generality, we may assume that p is self-dual. Then, up to
isomorphism, there is a unique representation of the form p ® x which is also self-dual; we
denote it by p~. We set a = a,, 8 = a,- (see §2.4 for notation). Since the situation is
symmetric, we may (and will) assume that o > 3. We then have the following two cases:

(ii) a=p=0.
In this case, H is described by an affine Coxeter diagram of type Ch:

The nodes correspond to operators Ty, ..., 7T, which satisfy the quadratic relations

T2=1, T?=1, (T;+1)(Ti—q¢")=0 fori=1...,n—1,
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(iii)

and the braid relations as prescribed by the diagram. The commutation relations for
T;,i=1,...,n —1 are the same as in case (i), whereas T,, satisfies

an - Tnfv =0
with fv(Xl, e ,anl,Xn) == f(Xl,. . .,anl, 1/Xn)

a > 0.
In this case, H is described by an affine Coxeter diagram of type Ch:

Here s = t(a — B) and r = t(a + ). Again, the nodes correspond to operators
To, . .., T, which satisfy quadratic relations analogous to those in (ii), along with the
braid relations. The commutation relations for 7;,7 = 1,...,n — 1 are the same as in
case (i), whereas T,, satisfies
1 - f=r
T —T \% — ro_ 1 o r+s rT—S L
1=t = (@ -0+ - T =) S

n

Cases (i)—(iii) correspond to the cases (I)—(III) listed in [15], Section 3.1. The above
results are collected in Section 3.4 of [15]. A detailed construction of the operators T;
(starting from standard intertwining operators) is the subject matter of [16]; we do not
need the details here, except in a special case discussed in the final part of Section 3.2.
To facilitate the comparison of the above summary to the works of Heiermann [15, 16], we
point out the way in which our summary deviates from them:

Remark 2.1. a) The explicit isomorphism C[M?/M°] = (D[Xli, ooy XE] we use is dif-

t

[ fori=1,...,n—1
7

i1

ferent than the one used in [15]; there, Heiermann sets X; = b
(and, in case (i), X, = b}, ;).

The operator Ty which appears in cases (ii) and (iii) above is not needed to describe H,
and is therefore not used in [15] and [16]. To be precise, the Hecke algebra is generated
over A by the operators 11, ..., T}, and determined by the quadratic and braid relations
they satisfy, along with the commutation relations listed above. Each of the operators
Ti,...,T, corresponds to a simple reflection in the Weyl group, whereas the operator
Ty corresponds to the reflection given by the (in this case, unique) minimal element
of the root system—see [17, §1.4]. In fact, we define Ty by setting

where Ty =T -+ - Tp1 T, Th—1 - - - Thi—see [17, §2.8,3.3]. We use Tj out of convenience,
as it allows a more symmetric description of certain H-modules.

The description of H in Case (ii) differs from the one given in [15], which views T,, as
the non-trivial element of the R-group. However, one can verify that the description
we use is equivalent. With our description, (ii) can be viewed as a special case of (iii)
(with » = s = 0); however, since our results in (ii) require additional analysis, we still
state the two cases separately.



P. Baki¢, G. Savin Gelfand—Graev representation

2.6 Generic representations

We recall only the most basic facts here; a general reference is e.g. [22].

Let B =TU denote the standard Borel subgroup of G, i.e. the group consisting of all
upper-triangular matrices in Gy. Here T' denotes the maximal torus (diagonal matrices),
and U is the group of all unipotent upper-triangular matrices. We fix a non-degenerate
character ¢ of U. We say that a representation (w, V') of G is 1)-generic if there exists a
so-called Whittaker functional—that is, a linear functional L : V' — C such that

L(m(u)v) = ¢(u)L(v), YueUwelV.

The key fact we use throughout is that the space of Whittaker functionals is at most one-
dimensional. If 7 is an irreducible representation with a Whittaker functional L, one can
consider the space V of all functions f, : G — C, where f,(g9) = L(n(g)v); we let G act on
this space by right translations. Then v — f, is a G-isomorphism; we say that V is the
Whittaker model for 7.

Now let P = M N be a parabolic subgroup of G. If ¢ is an irreducible generic repre-
sentation of M, then one can construct a Whittaker functional on iIGDa (see [22, Proposition
3.1] and equation (11) below); in other words, the induced representation is i)-generic as

well. We use this fact later, in Section 3.2.

3 The Gelfand—Graev representation

Let U be the group consisting of all unipotent upper-triangular matrices in Gy. We fix a
non-degenerate character ¢) : U — C* and consider the compactly induced representation
c-ind$(¢)). This is the so-called Gelfand-Graev representation. It is the “universal” -
generic representation: every 1-generic representation of G appears as a quotient (with
multiplicity one) of c-ind% ().

From this point on, we assume that the cuspidal representation o—used to define the
Bernstein component s in Section 2.5—is generic. We let II denote (c-ind% (1)) viewed as
an H-module. Our goal is to determine the structure of II.

We begin by investigating the structure of II as an A-module. We point out that the proof of
the following proposition applies, without modification, to any split reductive p-adic group.

Proposition 3.1. As A-modules, we have 11 = A.

Proof. The H-module TI is given by Homg(Is, c-ind$ (1)), where Ty = i&(c-ind}%. (00)).
Recall that oy was taken to be an arbitrary irreducible constituent of o|ye. However,
having now fixed the Whittaker datum for M (and thus for M°), there exists a unique
irreducible summand of o|yse which is ¥-generic. Thus, from now on, we assume oy is this
unique 1-generic constituent of o|pyo.

To view II as an A = Endj;(c-ind}f. (00))-module, we use the Bernstein version of
Frobenius reciprocity:

IT = Homg (% (c-ind}fe (00)), c-ind§ (1)) = Hom s (c-ind}fe (00), rir(c-ind§ (¥)));

here r5 denotes the Jacquet functor with respect to P = MN, the parabolic opposite to P.
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We now use the fact that r(c-ind$(¢)) is isomorphic to the Gelfand-Graev repre-
sentation of M, c-indM ., (1) (see [6, §2.2]). Furthermore, with the above choice of oy,
the representation c-ind{%. (o) is precisely the sum of all maximal (™eog)-isotypic compo-
nents of c—indj‘UZ[ﬂ m (), where ™o ranges over the set of all M-conjugates of op. Indeed,
c-indM ,,(¥) is itself induced from the Gelfand-Graev representation of M®, c-ind?,,(1)).
Since oy appears with multiplicity one, and no other m-conjugate of oq is generic, we have
C—ind%: v (¥) =2 09 @ oy, where o is a representation which contains no M-conjugate of og.
Inducing to M we get c-indji,, (1) = c-ind}fe (09) @ c-ind}fe (o), which proves the above
claim about isotypic components. Thus, viewed as an A-module, IT is isomorphic to

Hom), (c—ind%o (00), rﬁ(c—indg(w))) = HomM(c—ind%o (00), c—indg/[mM(w))

= Hom s (c-ind}%s (00), c-inddfe (09)) = A.
O

Remark 3.2. We point out that the above differs from the proof of the analogous statement
n [11]. It is shown there that any #H-module IT which is

(i) projective;
(ii) finitely generated; and which satisfies
(iii) dim Homy (IT, ) < 1 for any principal series representation

is isomorphic to A when viewed as an A-module (see [11], Lemma 2.2, 2.3). The Gelfand—
Graev representation can be shown to satisfy properties (i)—(iii): Property (i) is provided by
Corollary 8.6 of [11]; (ii) is proved in [6], and (iii) follows from the multiplicity one property
of generic representations. In Section 4 we present another useful application of the above
approach to proving that an H-module is isomorphic to A.

Proposition 3.1 suggests the following approach to determining the H-module structure
of II: First, we find all possible H-module structures on A. After that, we need only deter-
mine which one of those structures describes II. In the following subsection, we compute
the possible H-structures on A.

3.1 H-module structures on A

In order to treat the case of general Bernstein components—and not just those described
in §2.5—we work in a slightly more general setting in this section. We thus investigate
the possible H-module structures on A (where H is generated by Ty, ..., T, over A), but
we assume that A = A'[X7,..., X;F], where A’ is an integral domain containing C as a
subring. For Bernstein components described in §2.5 we have A’ = C; in general, A’ itself
is a (Laurent) polynomial ring over C.

First, assume that we are in Case (i) (see §2.5). Then the situation is precisely the one
treated in [11], and the possible H-module structures on 4 are determined in Section 2.2
there. We have the following:

Proposition 3.3 (Case (i)). Let IT be a H-module which is isomorphic to A as an A-module.
Then 11 = H @y €, where € is a 1-dimensional representation of Hsg,, .
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Here Hg, denotes the finite-dimensional algebra generated by 77,...,T,_1; we have H =
A ®¢ Hg, . Furthermore, Hg, has precisely two one-dimensional representations:

€1:T;——-1 fori=1,...,n—1; and
eqz:Ti»—>qt fori=1,...,n—1.

We now treat Cases (ii) and (iii), simultaneously. Recall that in these cases the algebra
H is described by an affine Coxeter diagram of type C,. We let Hy and H, denote the
algebra obtained by removing the vertices which correspond to Ty and T, respectively. In
other words, Hg is generated by Ti,...,T,, as an A-algebra, whereas H,, is generated by
To,...,T,—1. Note that we have H = A ®¢c H, = A @¢c Ho. We now prove the following
result.

Proposition 3.4 (Cases (ii) and (iii)). Let II be a H-module which is isomorphic to A as
an A-module. Then
MN=HRy, e or II=HRy, €n.

Here € (resp. €,) is a 1-dimensional representation of Ho (resp. Hn).

Proof of Proposition 3.4. We first restrict our attention to the subalgebra generated by
T1,...,T,—1, which is contained in both Hy and H,. This is precisely the algebra Hg,
discussed in [11]. The possible Hg, -structures on A are determined in §2.2 there. To
summarize the relevant results, there exists an invertible element gy € A on which the
operators T, ..., T, act by the same scalar, either ¢’ or —1.

We now determine how Ty and T;, act on gg. Since gg is invertible, we have T;,g0 = fgo
for some f € A. Recall that T,, satisfies the quadratic relation

T2 =(¢" - )T, +q"

as well as the commutation relation

Tof = f'Tn = <(q’" —1)+ ;n(\/gws _ \/ar—5)> 1f__1/fX2

Here, and throughout the proof, we let r = s = 0 if we are considering Case (ii). Recall
that fV denotes the function fV(Xi,...,X,) = f(X1,..., Xn_1, X%L) Using the above and
comparing the two sides of T2gy = (¢" — 1)Thgo + ¢"go, we get

X,V — L _ Vv
ff\/:(qr_l)N_(ﬁ+s_\/a'r—5))”+qr.
n Xn n Xn

To simplify notation, we now set b = ¢" — 1, ¢ = (/¢ s V4@ ~?). We also temporarily
drop the index n, writing X instead of X,,. Clearing out the denominators, we rearrange
the above equation into

() (X2 =) ffY=bX?fY = f)—e(Xf = Xf)+q"(X*=1).

Our first goal is to find the possible solutions f € A of this equation.
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Lemma 3.5. The above equation has the following solutions:

(i) f=b+ceX P 4+bX 244Xy gtx2d deZs
(ii) f=b+eX " +bX 24 . X2 x2 de 7
(iii) f=b+eX 1 pbX 244X My XML deZsg
(iv) f=TFVg=s X2 _px2d X2l X, deZsg
(v) f=—¢"X? X1 _pX? - X, deZ-g
(vi) f=Xx2_cx?2-1 _  _pX? X, d € Zsy.
along with the constant solutions f = ¢* and f = —1.

Proof. Each f € A can be written as
(1) f=ap X o X p o fagta X+ fay X!

for some functions a_g,...,a; € A/[Xli, e ,Xf_l], with ag,a_; # 0. We write maxdeg(f)
for k£ and mindeg(f) for —I. Now let f be a solution of (x). We begin our analysis of ()
by solving some special cases. We claim the following:

If f=ag, then ag = q" or ag = —1.
(1) If f=a X, then a] = :F\/Qris.
If f=ap+a_1X 'tanda_;#0, then ag=0banda_y= iﬁis.

To verify this, we first look at solutions f = agp. In this case the equation (x) reduces to
a% = bag + ¢". This equation has two constant solutions, ag = —1 and a9 = ¢". These
are also the only solutions, since A has no zero divisors. When f(X) = a; X, the equation
becomes a% + aic— q" = 0. Again, the only two solutions of this equation are the constant
ones: a; = :F\/Efis. Finally, when f = ag + a_1 X !, the equation reduces to the following
System:
a1b =ajap and a(% + a2_1 =agb+a_1c+4q".
Since we are assuming that a; # 0, the first equation gives us ag = b, and then the second
becomes a?; — ca_1 — ¢". Again, we have two solutions: a_; = :I:\/aris.
Next, when f is a solution of (x) given by (}), we observe:

(2) k and [ cannot both be positive.

Indeed, let LHS and RHS denote the left-hand side and the right-hand side of (%), respec-
tively. We then have maxdeg(LH S) = k+1+2, whereas maxdeg(RHS) < max{l+2, k+1,2}.
Therefore equality of degrees cannot be achieved unless £ < 0 or [ < 0. In fact, the same
argument gives us a slightly stronger statement in one case:

(3) If £ 2 0 then ap = 0.
Finally, we make use of the following fact, which is readily verified by direct computation:

For any positive integer d, f is a solution of (x) if and only if

X2 _ Ry is also a solution.

(4)

10
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bX?%+ X

Here Ry = X7 1

(X2 — 1) =bX2 4 X214 4 bX% 4 cX.

We are now ready to find all the solutions. By (2), any solution of f either contains
only positive powers of X, or only non-positive. We therefore consider two separate cases:

Case A: f has only non-positive powers, i.e. f =ag+a_1 X '+ - +a_; X"

Let d = [1/2]. We use (4) and look at another solution, g = X2¢f — Ry.

We first assume [ = 2d is even. In this case g only has non-negative powers of X, but
it has a non-zero constant term, a_;. Therefore (3) shows that the coefficients next to the
positive powers must be zero: ag —b=a-1—c=---=a_;y1 —c=0. Now (1) shows that
there are only two possibilities for the constant term: a_; = ¢ or a_; = —1. We thus get
two solutions:

f=b+eX "X 24, 4eX 724t X720 and f = bteX T X 244X T2 x 2,

Next, assume that | = 2d + 1 is odd. Now g has a non-zero coefficient (i.e. a_;) next to
X~1 so by (2) the coefficients next to positive powers must be equal to 0. This gives us
agp =b,a_1 =c,...,as_; = c. Furthermore, g is thus of the form a;_; + a_; X!, so we can
read off the coefficients a;_; and a_; from (1). We thus arrive at two more solutions:

f=b+eX V4 bX 24 4 bX 24 JgrEex 2l
Case B: f only has positive powers, i.e. f = apX¥ 4+ ... + a1 X.

1
This time, we set d = |k/2] and use (4) to obtain the solution g = ﬁ(f + Rg).

First, assume that £ = 2d + 1 is odd. Then g has a non-zero coefficient (i.e. ax) next to
X, so (2) and (3) imply that all the lower coefficients are zero. This immediately gives us
a3 = —c,ag = —b,...,asq = —b. Furthermore, we have g = a; X, so (1) shows that we have
two possibilities for ag. We therefore get two solutions:

Finally, assume that k& = 2d is even. First, if k¥ > 2, consider another solution ¢’ =
X2724(f 4+ Rog_5). Now ¢’ has a non-zero coefficient (i.e. ay) next to X2, so the coefficient
next to non-positive powers of X have to be 0 by (2), (3). This gives us a; = —c,a2 =
—b,...,a39_2 = —b. In particular, this shows that g = (ay + b) + (az_1 + ¢)X 1. Since
ar +b#b (ie. ar #0), (1) shows that we have only two possibilities:

ar—1+c¢=0, ap+be{q,—1}.
In other words, ap_1 = —c and a € {—¢",1}. We thus get the remaining solutions,
f=—q" X% —ex?1 X% —¢X and f=X%_cX¥ 1 | —pX?—cX.

O]

11
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We continue the proof of Proposition 3.4. We have just proved that T,,go = fgo where
f € A is one of the elements listed in Lemma 3.5. First, assume that f is one of the
constant solutions, i.e. f = —1 or f = ¢". Then gg is an invertible element of A on which
T1,...,Th_1,T, all act as scalars. In other words, we have a one-dimensional representation
€o of the algebra Hy. Since H = A ®¢ Ho, it follows that the corresponding H-module
structure on A is isomorphic to
H @74, €o-

Now, if f is of type (i) or (ii) listed in the statement of Lemma 3.5, set
g =(X1Xz- - Xn)"g0-

Since (X7 Xg - ---- Xn)_d commutes with T7,...,T,_1, g1 is still an eigenvector for each
of these operators. We claim that g; is an eigenvector for 7,, as well. Indeed, using the
appropriate commutation relation and the fact that T, commutes with X1,...,X,,_1, we
get

_ bXp,+c, . _
= (X1 Xp e X,_1)™® <Xng XQ" . (Xnd—X,ff)> 90
n
_ bX, +c, _
= (X1X2 ..... Xn—l) d (ng + in 1 (Xnd Xﬁf)) 90
n
_ bX, + ¢
— (X1X2 ..... Xn—l) d <X,r2ldf — ﬁ(){gd — 1)) gi.
n

Simplifying the expression in the parentheses, we obtain AX, ¢, so that T,,g1 = Ag1, where
A = ¢', resp. —1 when f is of type (i), resp. (ii). We have thus once more found a com-
mon eigenvector for Th,...,T,_1,T,. Again, we deduce that the corresponding H-module
structure is isomorphic to H ®4, €9, where €g is a one-dimensional representation of Hy.

When f is of type (v) or (vi), we use the same argument and arrive at the same con-
clusion. The only difference in this case is that we have to set g; = (X;Xg----- X,)%g0 in
order to obtain a common eigenvector for 17, ...,7T,_1,T}.

In the remaining cases—that is, when f is of type (iii) or (iv)—we cannot find such
an eigenvector, but we claim that we can find an invertible ¢y € A which is a common
eigenvector for Ty, Th,...,Tp—1. Just like in the previous cases, this will imply that the
‘H-structure on A is isomorphic to H ®y,, €, for some one-dimensional representation ¢, of
Hp.

If Thgo = fgo with f of type (iii), we set g1 = (X1 Xo----- X,)"%g0. If f is of type (iv),
let g1 = (X1 Xg----- Xn)ngo- In both cases, g1 is an eigenvector for T1,...,7T,_1 and a
computation analogous to the one we carried out in for cases (i) and (ii) shows that we have

Tugr = (b V7= X, ar.

The following lemma then shows that g; is also an eigenvector T and thus concludes the
proof of Proposition 3.4.

Lemma 3.6. Let g be an invertible element of A which is an eigenvector for Ty, ..., Ty_1
and such that T,g = (b + \/ﬁringl)g. Then g is also an eigenvector for Ty.

12
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Proof. Recall that Ty = /g* "=V X701 with Ty = Ty -+ - o1 T Tyt - -~ Th. In both
cases, all the operators T1,...,T,_1 act by the same scalar A € {—1,¢'}. We therefore have

Tog = \/as+2(nfl)t+r)\—(n—l)X1Tf1 e T{_11Tn_lg'

We now recall that T,;! = q%(Tn — b); this follows from the quadratic relation for T,,.
Therefore, by the assumption in the statement of the lemma, T, 1g = :I:\/ais_TXg L. Thus

(5) Tog = - A0 @G T T X,

with p € {—1,¢°}. Finally, it remains to notice that for every i = 1,...,n — 1 we have
e 1.

(6) T; 1Xi+11 = ?Xi 1Ti'

Indeed, from the quadratic relation we have T, ' = q—lt(TZ — (¢* = 1)). Combining this with

the commutation relation for T;, we get (6). Successively applying (6) to (5) (and taking
into account that each T; acts on g by \), we get

Tog = ng,

which we needed to prove. Notice that the possible eigenvalues are precisely the zeros of
(x — ¢°)(x + 1) = 0, the quadratic equation satisfied by Tj. O

The above lemma shows that in cases (iii) and (iv) we have an invertible element ¢g; € A
which is a common eigenvector for Ty, 11, ..., T,. Consequently, the H-module structure on
A is given by ‘H ®y,, €, for some one-dimensional representation €, of #H,. This concludes
the proof of Proposition 3.4. O

In view of Proposition 3.4, there are eight candidates for the H-structure (four, if n =
1): First, we may take the tensor product over Hy or H,; after that, there are four 1-
dimensional representations of Hg (resp. Hy) to choose from. To verify this, note that the
braid relations imply that—in any 1-dimensional representation—the operators 11, ...,7T,_1
act by the same scalar, which has to be a zero of the quadratic relation satisfied by T;:
(x — ¢")(z + 1) = 0. We therefore have two possibilities for the action of the operators Tj,
and two additional possibilities (again, the zeroes of the quadratic relation) for 7), (resp. Tp).
For example, the 1-dimensional representations of Hy are given by

€11 :{Th— —-1,T; — —1} er—1:{Tn—4q",T; — —1}
€ 1g: {Tn— —1,T;— ¢'} ergt T —d" T — '}

Corollary 3.7. General case. Let 11 be an H-module which is isomorphic to A as an A-
module. Then there exists a finite subalgebra Hyy = C[W], where W is a finite group, such
that H = A® Hw, and

II=H ®uyy €,

where € is a 1-dimensional representation of Hyy .

Proof. Recall that H is a tensor product of Hecke algebras each of which is isomorphic
to the Iwahori Hecke algebra of GL,, or an algebra of type C, with unequal parameters.
Propositions 3.3 and 3.4 deal with these two cases, with additional flexibility that allows
A= AXTE, ..., X}, where A’ = C[Y{5,...,Y,F]. Thus the corollary follows by repeated
application of these two propositions. O

13
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3.2 The Gelfand—Graev module

To complete the analysis of the Gelfand—Graev representation, we need to determine which
of the #-module structures from the previous section is isomorphic to II = (c-ind$(t)))s.
We consider the cases (i)—(iii) separately.

Case (i). Let ¢ be the unique irreducible subrepresentation of pynT_l X punT_3 X+ X pz/l_Tn
Then m = § x ¢ is an irreducible generic representation. The corresponding H-module is

1-dimensional: by the Bernstein version of Frobenius reciprocity, we have

. M 1—-n n—1
Homg (T's, 7) = Homps(c-indjo (p @+ @ pRo), v 2 pR--QU 2 pRo
rvepe - @vTp o)

Since pY is not an unramified twist of p in this case, the above Hom-space is only 1-
dimensional. By Proposition 3.3, Homg(T's,IT) is isomorphic to either II = H ®4, €1
or Il = H ®44 €. To determine which, we need only look at the action of H on the
1-dimensional module 7. We now need to examine the definition of the operators 13,7 =
1,...,n—1. In [16], T; is defined in §5.2 by the formula

Xi/Xiy1

Ti=Ri+ (¢ =)

The intertwining operator R; has a pole at 0, and a zero at the point of reducibility—see
[16, §1.8]. Since V%Tn_ip X I/S_Tn_iﬂp reduces, the operator R; acts by 0 in this case. It
therefore remains to determine the action of X;/X;1;. Equation (7) shows that it suffices
to determine the action of X;/X;y; on

1—n
Homy(c-ind}e(p®@ - @ p@0),v 2 pR---@v 2 pRo).
Recalling the definition of X; (§2.5), we immediately see that X;/X;;1 acts by

B qt(nT_:i""i) o
B qt("T*BJrzel) — 47

(Joo| 2" )t

*T’uiﬂ)t

(=

1= q*. Since 7 is a quotient of II, we conclude
q J—

This implies that 7T} also acts by (¢* —1)

that we must have Il = H Qg €4

Case (iii). In this situation, the s-component of the Gelfand-Graev representation has
two irreducible generic representations whose H-module is one-dimensional. These are the
two (generalized) Steinberg representations: 7 and 7', which are the unique irreducible
subrepresentations of

B+n—1 —

vl x ¥ e and v px---xVPp Mo

respectively. Recall that o (resp. ) is the unique positive real number such that v%p x o
(resp. P p~ x o) reduces (see §2.5). We now compare the action of the operators Ty, ..., T,
on these two representations—that is, on Homg(I's, 7) and Homg (T's, 77 ), where I's is the
projective generator defined in §2.3.

14
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We start by analyzing the action on w. We first focus on T;,7 = 1,...,n — 1. Again,
T; is defined by (8), and once more the operator R; acts by 0. By the Bernstein version of
Frobenius reciprocity, we have

Homg(Is, ) = Homys (c-ind¥e (p @ - @ p@ o), " pe .. v % ®0).

We immediately see that X;/X; ;1 acts by

’fafnJri)t t(a+n—1i)

(Jw q _
(Jeo|—a—nti+l)t - gtlatn—i=1) =4

qt

q'—1

tB _ ta
Xn<Xn—qT q >
q-—1

XZ 1

Again, this shows that T; acts by (¢ — 1) = ¢'. For T}, we have a similar formula:

(9) Tn=Rn+ (¢ -1

Once more, R, acts by 0, and X,, acts by (|w|™®)! = ¢**. Recalling that r = t(a + 3), we
see that T,, acts by ¢". Finally, since

T = ﬁ”t("*l)ﬁXlel e T7;11Tn_1Tr;11 R Tfl’

\[r+2t(n—1)+s

(a+n—1)t (a+n—1)t

and since X7 acts by ¢ , we see that Ty acts by

W‘] =q°.

We do the same with 7. Again, X;/X;41 acts by ¢' which shows that T; acts by
¢' as well. This time X, acts by —¢'?: recall that p~ = xo ® p with X, (x0) = —1, so
X,(xov™?) = —¢'®. Repeating the above calculations we now see that T}, acts by ¢,
whereas Tj acts by —1.

The above analysis allows us to single out the H-module structure on II. Since Ty does
not act by the same scalar on 7 and 7, we deduce that II = H ®4, € for some 1-dimensional
representation € of Hg. Now, since every T; (i = 1,...,n — 1) acts by ¢' and T}, acts by ¢",
we deduce that I = H ®4, €, 4 (see the end of §3.1 for notation).

Case (ii) The first part of our analysis remains the same as in Case (iii). The representation

Vo x "o x o xpXo
has two irreducible subrepresentations (both of which are in discrete series when n > 1,
and temepered when n = 1), only one of which is generic. Denote the generic subrep-
resentation by 7. Let m~ denote the generic representation resulting from an analogous
construction, when p is replaced by p~. Again, the H-modules corresponding to w and 7w~
are 1-dimensional, and the same calculations we used in Case (iii) show that the operators
T;,i=1,...,n—1 act by ¢'. This leaves us four possible H structures to consider

H Ry, €0, with eo(Ty,) =+1 (and (T;) =¢',i=1,...,n—1); and

10
(10) H @y, €n, with e,(To) =41 (and €,(T}) =¢i=1,...,n—1).

15
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So far, we have been able to view Case (ii) as a special instance of Case (iii) which occurs
when r = s = 0. However, to obtain an explicit description of the Gelfand—Graev module,
we need more information than we used above in Case (iii). The reason is that the standard
intertwining operator yp x o — x~!p" x ¢ no longer has a pole when X, (x) = £1. In Case
(iii), the operator R,, (see formula (9))—which is constructed from the standard intertwining
operator—vanishes at the point of reducibility, and the action of T}, is determined by the

action of the function
qtﬁ _ qta
X, <Xn - )
q —1
X2 -1

(¢"—1)

used to remove the poles of R,. In this case however, R, no longer vanishes and is reg-
ular at the point of reducibility; consequently, the above function does not appear in the
construction and we have T,, = R,,. We know that this operator acts by 1 or —1 on the
H-modules m and 7, but we still have a certain amount of freedom in our choices. Indeed,
as one verifies easily, the operator T/, = (—=1)°X}|T,, (where e € {0,1}, f € Z) satisfies the
same relations as T,,. Therefore, we obtain the same Hecke algebra if we replace T, by T},
but the action of T), on 7w obviously differs from the action of T},.

In fact, we know that X,, acts on w by 1, and on 7~ by —1. Therefore X2 acts by 1 on
both, so replacing T}, by X2T;, does not affect our description of the Gelfand-Graev module.
We thus have 4 choices that affect the description (e = 0 or 1; f even or odd), and as we
vary the four choices, the description of the Gelfand—Graev module varies through all four
possibilities described in (10) above.

This discussion shows that—to determine the action explicitly—we need to specify the
choices appearing in the construction of the operator R,. We now explain one possible
normalization using Whittaker models. To be concrete, we now focus on G = SO(2N + 1);
the same approach is possible when G is the symplectic group. We also specialize our
discussion to the case n = 1 to simplify notation (thus, the cuspidal representation which
defines the component is p ® o); the general case is analogous and follows from this one.
We thus drop the subscripts and write T', X instead of T, X,,.

We fix a non-degenerate character ¢ of the unipotent radical U of G = SO(2N +1). Let
V, denote the space of the representation p, and let A be a )-Whittaker functional on V):
Ap(u)v) = YP(u)A(v), for v € V,. Notice that A is then also a ¢)-Whittaker functional for
p @ x for any unramified character y € GLi(F'): we have

A(x ® p)(u)v) = x(u)ip(u)A(v) = Y (u)A(v),

since det v = 1 and thus u € ker x. Abusing notation, we also let A denote the ¥-Whittaker
functional of p ® o (or xp ® o for any unramified y, as we have just shown). Following
Proposition 3.1 of [22], we now form a 1)-Whittaker functional A, on the space of iG(xpR0)
by setting

(11) A(f) = /N A (f (wn)) (n) " dn,

where w is a representative of the non-trivial element of the Weyl group; in our case, we
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take w to be the block anti-diagonal matrix

I,

IyN—k)+1
Iy,

Since m and 7~ are generic, it suffices to determine the action of T" on their respective
Whittaker functionals if we want to determine how 7" acts on the H-modules Homg(I's, 7)
and Homg (T, 77).

For any unramified character x, we have the specialization map sp, : I's — ig(xp ® o)
(cf. [16, §3.1]). The unique (up to scalar multiple) element of Homg(T's, ) factors through
spy : I's = i%(p ® 0); similarly, any element of Homg(I's,7~) factors through Sp,, (recall
that p~ = xo ® p). Notice that A; and A,, are the Whittaker models of 7 and 7,
respectively.

To determine the action of T'on A, (for any ), we must compare Aysp, and Ay osp, oT.
The operator T is defined by the following property:

spy ' =¢o J(x Yo SPy -1

(cf. [16, §3.1,3.2]). Here J(x~!) denotes the standard intertwining operator i%(xy " 'p®@0) —
i%(xp¥ ® o). To explain ¢, recall that p is assumed to be self-dual. Therefore, we can fix
an isomorphism ¢ : p¥ + p and induce to an isomorphism i%(xp¥ ® ) — i%(xp ® o) for
any unramified y, which we again denote by ¢ by abuse of notation.

Let AY denote the Whittaker functional on i%(xp" ®@0) obtained using (11) from a fixed
Whittaker functional AV for p¥. By the uniqueness of Whittaker functionals, Ay o = c- A}
for some constant c. Furthermore, since ¢ is induced from an isomorphism ¢ : p¥ — p, it
follows immediately that ¢ does not depend on y. Therefore, we have

AXostoT:C-A;oJ(X_l)ost_l.

Note that there is a natural way to normalize ¢ in such a way that ¢ = 1. We denote by
g" the transpose of an element g € GLi(F') with respect to the anti-diagonal (and with
g~ " its inverse). One can then define a new representation p; by pi(g) = p(¢~7). This
representation is isomorphic to the contragredient of p; the advantage is that it acts on V),
the space of p. Furthermore, for any diagonal matrix (i.e. an element of the maximal torus)
t € GL(F), we may conjugate p1 to get p2(g9) = ‘p1(g) = p1(t~1gt). Then py = py, and
with a suitable choice of ¢, ps becomes 1-generic with the same Whittaker functional . For
example, assume ) is given by

P(u) = Yo(ure + -+ + up—1,k)

where g is a non-trivial additive character of F, and u is an upper-triangular unipotent
matrix with entries u12,...,ur—14 above the main diagonal. Then one checks immediately
that ¢t = diag(1, —1,...,(=1)*"1) gives

Alpa(u)v) = (u)A(v)

for any v € V). In short, we may assume Ay osp, oT = A;(/ oJ(x 1o SPy—1-
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This leads to the second choice we have to make in the construction of 7: that of the
normalization of the intertwining operator J. Here we choose the standard normalization
introduced by Shahidi; cf. Theorem 3.1, [22]. Under this assumption, we have

A;é oJ(x) = Ay

for every unramified character x. Thus
AyospyoT = A -108p,-1.

With this, we are ready to compare the action of T on m and 7#~. For m we specialize at
x = 1; this gives us
Avosp 0T = Ay ospy,

i.e. T acts trivially.

For 7~ we specialize at xo. We notice that x, 1= xon for some character n such that
nop = p. This shows that sp, -1 = ¢, osp,, where ¢, is the isomorphism p — 1 ® p defined
in [16, §1.17] (again, we induce to ¢, : i%(p ® o) — i%(np ® o) and abuse the notation).
Finally, using the uniqueness of Whittaker functionals again, we see that A\, o ¢, =d- A,
for some constant d which does not depend on x. We can normalize ¢, so that d = 1; then
we have

Ay o8py, 0T = AXEI 08Py 1 = Axon © @y 08Dy, = Ay © 5Dy,

Therefore, T' acts trivially on 7~ as well.

To summarize, if we use Shahidi’s normalization of the standard intertwining operator,
and normalize ¢ as we did above, it follows that T acts trivially on both 7 and 7#~. This
implies that the Gelfand—-Graev module is isomorphic to

H @n, €0

(see (10)), where €9(7,,) = 1. Note that this is analogous to our results in Case (iii), because
T, again acts by ¢", only this time r = 0.

This completes our analysis of the structure of H. We conclude the section by providing an
alternative proof for the following result of [6]:

Corollary 3.8. We have

the center of H.

Proof. Obviously, Z(H) is contained in Endy (II), so we need to prove that any element of
Endy (IT) is given by a multiplication with an element f € Z(H). We prove the corollary in
case (iii); the proof in cases (i) and (ii) is analogous.

We start by recalling that Z(H) = A", the Weyl group invariants of A. Now let
f € Endy(IT). We have Endy/(IT) C End4(II), but we know that IT = A as an .A-module.
Therefore, f € End4(A) = A. Thus, it remains to prove that f is invariant under the action
of the Weyl group.
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It suffices to prove that f is invariant under the set of simple reflections which generate
the Weyl group. In other words, we need to prove that

fY=f and fSi=Ff i=1,...,n—1,

using the notation of §2.5. This follows immediately from what we now know about the
structure of II as an H-module: Il = H ®4, €. In other words, we have shown that there
exists an element g € A = II (constructed in §3.1) on which the elements T1,...,7T,_1 and
T, act by scalar multiplication with ¢, and ¢", respectively.
We now look at the commutation relation
Tof = 'Tu = (6 =D+ (T =T )
n e X, V1 e 1-1/X2
satisfied by T, and f. Applying this to g (recall that T),g = ¢"¢g), and using the fact that f
is in Homy (IT) (so that T,,fg = fT,g), we get

1 - f=1
_ £V, T — r_l - 'r’+s_ r—S B —
(f=f)d" g ((q )+Xn(x/§ Vi) 1Y
This is an equality in A. Since ¢" # ((qr —-1)+ X%L(\/a“rs — \/6’_5)> ﬁ and g # 0, it
follows that f — fY must be 0. Therefore f = f¥. We get f = f% in the same way, using
the commutation relations satisfied by the operators T;. This proves the corollary. O

4 An application to the GGP restriction problem

The theory of Bernstein-Zelevinsky derivatives implies that the restriction of an irreducible
supercuspidal representation of GL(n 4+ 1) to GL(n) is isomorphic to the Gelfand-Graev
representation of GL(n). The goal of this short section is to show that, in the language of
Hecke algebra modules, a similar statement holds for representations of orthogonal groups.
More precisely, let SO(2n + 2) be an orthogonal group containing split SO(2n + 1). We
have:

Lemma 4.1. Let o be an irreducible representation of SO(2n + 2). For any inertial data s
of SO(2n + 1), let o[s| be the corresponding Bernstein summand of o. We have:

o [f o is supercuspidal then it is projective SO(2n + 1)-module.
e dim Homgg2,41)(0, ) < 1 for any irreducible representation 7 of SO(2n + 1).

e o[s| is finitely generated SO(2n + 1)-module.

Proof. The first statement is a known observation: o is a direct summand of C.(SO(2n+2))
(the space of locally constant and compactly supported functions on SO(2n + 2)) and this
module stays projective after restriction to SO(2n + 1). The second is the multiplicity one
theorem [2]. For the third, observe that we have a surjection

C.(SO(2n +2)) = 0¥ K o.

By Theorem A in [1] or Remark 5.1.7 in [21], the Bernstein components of C.(SO(2n + 2)),
considered an SO(2n+2) x SO(2n+ 1)-module, are finitely generated. The third bullet now
follows at once. 0
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Proposition 4.2. Let o be an irreducible supercuspidal representation of SO(2n + 2). Let
s be inertial data for SO(2n + 1) such that o[s] # 0. Let Z be the center of the Bernstein
component corresponding s. Then for every maximal ideal J in Z there exists unique
irreducible representation w of SO(2n+1) annihilated by J such that Homgo(ap41)(0, ) = C.

Proof. Let I's be the projective generator associated to the inertial data s, and H the algebra
of endomorphisms of I's. Since o[s] # 0, combining the above lemma and the Remark 3.2
one concludes that

Homgo(2n41)(T's, 0) = A

as A-modules, and then by Corollary 3.7
Homgo2541) (T's; 0) = H @3y, €

for some finite subalgebra Hyy = C[W], where W is a finite group, such that H =2 A® Hy
and AW is the center Z of H, that is, the center of the Bernstein component corresponding
to s.

Now recall that all irreducible representations annihilated by J are subquotients of a
single principal series representation

HRAXEHW

where x is a character of A. Observe that the principal series is isomorphic to Hyy =
C[W] as an Hy-module. Since the one-dimensional type € appears with multiplicity one in
Hw, there exists unique irreducible representation annihilated by J containing the type e.
But precisely these representations are irreducible quotients of H ®1,,, €, by the Frobenius
reciprocity. O

Note that the above result is compatible with Gan-Gross-Prasad conjectures [13], and
it sheds some light on them: two irreducible representations of SO(2n + 1) belonging to
the same L-packet (and the same Bernstein component) cannot both be quotients of o.
Of course, the above proposition holds for any ¢ that is projective as an SO(2n + 1)-
module. It would be interesting to classify irreducible o that are projective when restricted
to SO(2n + 1). Projectivity of restriction from GL(n + 1) to GL(n) was studied in [12] and
a complete classification of irreducible representations of GL(n + 1) that are projective as
GL(n)-modules was obtained in [9].

Appendix A An isomorphism of projective generators

Let G be a reductive group and s be an inertial class of cuspidal data (M, o), where M is a
Levi subgrop of G. By Bushnell and Kutzko [8], for any such s there should be a type (J, \),
where J is a compact subgroup of GG, and A is an irreducible representation of J such that
c—ind?)\ is a projective generator for Rep,(G). One is interested in the structure of the Hecke
algebra H(G,\) = Endg(c-ind§)). In this section we show that under certain conditions
(when (J, \) exists) that the Hecke algebra (G, \) = Endg(c-ind§\) is isomorphic to the
algebra Hs, = Endg(T's) constructed in Section 2.3. More precisely, we have the following:
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Theorem A.1l. Assume that G is a classical group and that the residue characteristic of F
is different from 2. Let s = [(M,o0)] be an inertial equivalence class in G. There exists an
s-type (J, \) such that the generators I's and c—ind?)\ are isomorphic.

Proof. We use the theory of covers developed by Bushnell and Kutzko. Any inertial
equivalence class s = [(M,0)] in G also determines a (cuspidal) inertial equivalence class
sy = [(M,o)] in M. Let (J,\) be a type for s and (Jas, Ays) a type for spr. We say that
the (J, A) is a cover of the type (Jar, Anr) if J decomposes with respect to M (in particular,
Jy = JN M and A\yy = M) and the equivalence of categories Rep,(G) — H(G, A)-Mod
commutes with parabolic induction and the Jacquet functor in the appropriate sense (see
Definition 8.1 and paragraph 5 of Introduction in [8]). We then have the following.

Lemma A.2 (Theorem 7.9 (iii) of [8]). Let P be any parabolic subgroup with Levi factor M.
For any smooth representation V€ Rep(G), the Jacquet functor with respect to P induces

an isomorphism
VA = (V).

Here V denotes the A-isotype of V, i.e. the sum of all G-invariant subspaces of V isomor-
phic to A.

We use this to reduce the proof of Theorem A.1 to the case of cuspidal components.

Lemma A.3. Let (J,\) be a type for s = [(M,n)] in G, and let (Jpr, Apr) be a type for
sy = [(M,m)] in M. Assume that (J,\) is a cover of (Jar, Anr)-

If the Bernstein generator I's,, is isomorphic to the Bushnell-Kutzko generator c—ind%w AN
for the cuspidal component Repg, (M), then we also have an isomorphism of generators for
the component Rep,(G).

Proof. Lemma A.2 shows that we have
ResfM((Reng/)’\) = (Resj}/][MTN(V))’\M

for any G-module V. Here Res$ denotes the restriction functor from G to H, and ry the
Jacquet functor with respect to P = M N. In other words, we get the following isomorphism
of functors Rep(G) — Rep(Jys):

(%) Res?,, o (A-iso) o Res§ = (Ap-iso) o Res)! ory,

where we have used A-iso (resp. Aps-iso) to denote taking the A- (resp. A\js-) isotype.
All of the above functors have left adjoints:

— c—ind§M and c—indf}/][w for Rest and Res%{, respectively;
— i% for ry (this is the Bernstein form of Frobenius reciprocity; here P = MN is the
parabolic subgroup opposite to P)

— M\-iso and Aps-iso are self-adjoint, because we are working with (necessarily semisimple)
representations of compact groups J and Jyy.
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Since adjoints are unique (up to equivalence), taking the adjoint of (x) we get

c-ind§ o (\iso) o c—indfM = z'% o c—ind%f o (Ap-iso).

We now apply both sides of the above equality to Ap;. On the right-hand side, we get

i%(c—indf}/[M Aur)- By the assumptions from the statement of the lemma, we have c—ind%w AM =

['s,,; therefore, i%(c—ind%l An) is exactly the Bernstein generator i%(I‘SM) = I';. Here we

used the fact that the construction of the Bernstein generator does not depend on the choice
of parabolic P (we choose P) with fixed Levi M (cf. [3, Proposition 35]).

On the left-hand side, we get c—ind?((c—indfM A1r)?). However, Frobenius reciprocity

gives us dim HomJ(c—inde A, A) = dimHomy,, (A, A|ar) = 1, which follows from A|y =
Arr. Therefore (c—indfM)\M))‘ = ), and the left-hand side becomes c-ind§()), i.e. the
Bushnell-Kutzko generator. Thus

c-ind§ () 2 T,
as claimed. 0

The above lemma allows us to focus on cuspidal components of the form sy, = [(M, 0)]
in M. If we want to prove the isomorphism of generators in general, it remains to prove
that the generators of the cuspidal components are isomorphic. In other words, we would
like to show that

c—ind%o o9 = c—ind%{ AM,

where ¢ is an (any) irreducible constituent of o|yro. We shall accomplish this under the
following assumptions. Assume that

o= c—ind%{ A M
where (see (5.5) in [8])
e Jy is compact modulo center subgroup of M such that Jy; = Jar N M,
e the restriction of 5\M to Jas is Ay,
e any z € M which intertwines the representation Aj; belongs to Jy;.

Lemma A.4. Let 0 = c—ind‘]]\ij\M be a cuspidal representation of M where the pair

(jM,S\M) satisfies the above three bullets. Then og = c—ind%:)\M is an irreducible M°-
summand of o, and we have a canonical isomorphism

c-ind}fo o = c—ind%{ AM-

Proof. Using Frobenius reciprocity and Mackey theory (provided by [26, §5.5] in this set-
ting), we get

o o . o
Hom e (09, 009) = Hom o (c—md%W AM s c-mdf}/][M Aur)

~ sadd I x
= Homy,, (A, @ c—deMmJIa\;/IReSJMOJiI)\M)
€T
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where the sum is taken over a set of double coset representatives in Jy/\M®°/Jpr. Fixing
one such x, we see that

s Jar T\ ~v x
HOmJM ()\M, C_lndJMmJﬁfReSJMﬁij{A ) = HOIHJMQJJDFw ()\M, /\M)

(here we are using Frobenius reciprocity for a compact group, so that restriction is also a
left adjoint for c-ind). Since only x € Jy; intertwine A7, and Jyy = Jyy N M°, we have

HOmMo(Uo,O'o) = HOmJM()\M, >\M) == (E,
which we needed to prove. O

According to (5.5) in [8], if M is a general linear group over a division algebra, then the
conditions of the above lemma are satisfied for every irreducible cuspidal representation o of
M. Clearly, if the conditions are satisfied for (Mj,01) and (Ma, 09) then they are satisfied
for M = M; x My and 0 = 01 ® 02. Recall that a Levi subgroup in a classical group is
a product of general linear groups and a smaller classical group. By a result of Stevens
[24] irreducible cuspidal representations of classical groups are induced from open compact
subgroups if F' has odd residue characteristic. Thus, in these cases, for every irreducible
cuspidal representation o of M there exists a type (j M,S\M) satisfying the three bullets
above. Moreover, by [7] and [25] (for general linear groups) and [19] (for classical groups),
G admits a type (J, \) which is a cover of type (Jar, Ar)-

This completes the proof of Theorem A.1. O

We remark that Theorem A.1 holds beyond classical groups, provided that the conditions
of two lemmas are satisfied. For exceptional G5 examples, see [5].
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