HOWE DUALITY AND DICHOTOMY
FOR EXCEPTIONAL THETA CORRESPONDENCES

WEE TECK GAN AND GORDAN SAVIN

Abstract. We study three exceptional theta correspondences for p-adic groups, where one
member of the dual pair is the exceptional group G2. We prove the Howe duality conjecture for
these dual pairs and a dichotomy theorem, and determine explicitly the theta lifts of all non-
cuspidal representations.

1. Introduction

Let F be a non-archimedean local eld of characteristic 0 and residue characteristic p. In this
paper, we study the local theta correspondence furnished by the following diagram of dual
pairs:

PGSpg

G
PD PGL3 0 Z=2Z
where D denotes a cubic division F-algebra, so that P D is the unique inner form of PGLjs.
More precisely, one has the dual pairs

g(PGLgo Z=27) G, Eg o0 2=2Z
PD G, EPD
'> Gy PGSp6 E-
where the exceptional groups of type E are all of adjoint type. In each of the three cases, the
centralizer of G, is a group H; = Aut(J), where ) is a Freudenthal-Jordan algebra of degree

3. One can thus consider the restriction of the minimal representation (see [GS05] or [LS]) of
E to the relevant dual pair and obtain a local theta correspondence.

6

More precisely, if 2 Irr(G;) is an irreducible smooth representation of G,, then the
maximal -isotypic quotient of

=\2HomGZ(;) ker():
can be expressed as
() for some smooth representation () of H; [MVW, Lemme 2.111.4]. The representation () is
called the big theta lift of , and its maximal semi-simple quotient (cosocle) is denoted (). We
say that has nonzero theta lift to H; if () = 0, or equivalently Homg (;) = 0. Similarly, one
can consider the theta lift from H, to G, and have the analogous notions.
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The rst main result of this paper is the following dichotomy theorem (for the statement
in the theory of classical theta correspondences, see [KR], [HKS] and [SZ]):

Theorem 1.1. Let 2 Irr(G,(F)). Then has nonzero theta lift to exactly one of P D or
PGSpg(F).

The group PGL3 o Z=2Z is not featured in the dichotomy theorem, but it is needed for
some ner aspects of the theta correspondences. For example, every irreducible discrete series
representation of G, lifts to a discrete series representation of precisely one of the three groups.
After the above dichotomy theorem, we consider the problem of understanding these theta
correspondences more precisely. These local theta correspondences have all been studied to
some extent by Maggard-Savin [MS], Gross-Savin [GrS2], Gan [G99], Savin [Sa], Gan-Savin
[GS99, GS04] and Savin-Weissman [SWe]. Though various neat results were obtained in the
various cases, they fall short of determining the theta correspondences completely. One of the
main results of this paper is the completion of the analysis begun in these papers.

The main diculty in studying these exceptional theta correspondences is that, unlike the
classical theta correspondence, one does not know a priori the analog of the Howe duality
conjecture. Namely, one does not know that () has nite length with unique irreducible
quotient (that is, () is irreducible if () is nonzero). In this paper, we show that the analog of
the Howe duality conjecture holds for these dual pairs. To summarize, we have:

Theorem 1.2. The Howe duality conjecture holds for the three dual pairs considered here.
Namely, for ;5 2 Irr(G2(F)), (i) has nite length and

dim Homy, ((1); (2)) dim Homeg,(1;2):
Likewise, for 2 Irr(H;), () has nite length with unique irreducible quotient (if nonzero). More

precisely, we have:

(i) The theta correspondence for P D G, denes an injective map
p :lrr(PD),! Irr(Ga(F));

where Irr”(P D) Irr(PD) is the subset of representations which have nonzero theta lift to
G,. If p= 3, then Irr (P D) = Irr(P D), so that one has an injective map:

p :lrr(PD),! Irr(G2(F))

(ii) The theta correspondence for (PGL3(F) o Z=2Z) G, denes an injective mapyp :
lrr” (PGL3(F) 0 2=2Z),! Irr(G,(F));

where Irr”(PGL3(F) o Z=2Z) Irr(PGL3(F) o Z=2Z) is the subset of representations which
have nonzero theta lift to G,. Moreover, one can determine the subset Irr” (PGL3(F)0Z=227)
explicitly, and the image of g is disjoint from that of p by the dichotomy theorem.

(iii) The theta correspondence for G, PGSpg denes an injection :

Irr(G2(F)) r Im(p),! Irr(PGSpg(F)):
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For an irreducible representation of P D, the non-vanishing of (), is equivalent to the
existence of non-zero vectors in xed by a maximal torus in PD. The existence of such
vectors has been checked by Lonka and Tandon [LT, Thm. 2.4] in the tame case, where p = 3.
Thus, if p= 3, we do not know that all irreducible representations of P D lift to G, (though one
certainly expects this to hold), but the lift is still one-to-one on the subset of those
representations that have nonzero lift.

In fact, for the three dual pairs, we determine the theta lift of all non-supercuspidal repre-
sentations of G,, and the lift of supercuspidal representations whose lift is not supercuspidal.
The detailed statements are in the main text, and we simply state the following qualitative
result here:

Theorem 1.3. The three theta correspondences satisfy the following properties:
(i) The correspondences preserve tempered representations.

(ii) Any discrete series representation of G, lifts to a discrete series representation of precisely
one of the three groups.

(iii) The correspondences are functorial for non-tempered representations.

The main motivation for showing the results of this paper is the application to the local
Langlands correspondence for the exceptional group G,. A proof of the local Langlands
conjecture for G, is given in our followup work [GS22].

We would now like to explain the general idea and strategy for proving the Howe duality

theorem. We begin with a discussion of the statement:
(a) () has nite length.

This niteness result is fundamental and it was shown by Kudla [K] for the classical theta
correspondence. The main tools used are his computation of the Jacquet modules of the
Weil representation (relative to maximal parabolic subgroups of the two members of the dual
pair) and his exploitation of the doubling see-saw identity. One key consequence of the nite
length of () is

(b) If () = 0, then it has an irreducible quotient.
For the dual pairs considered in this paper, we will in fact rst prove statement (b) and then
use it with other inputs to show (a).

Let us elaborate on this slightly subtle point and our strategy of proof. By Bernstein’s
decomposition, we may decompose

() = Oc Onc

as the sum of its cuspidal part and non-cuspidal part. If ()¢ is nonzero, then it certainly has
an irreducible quotient, since it is semisimple. On the other hand, we shall show using
Jacquet module computations that

(c) ()nc has nite length and hence has an irreducible quotient if it is nonzero.

The necessary Jacquet module computations are already available in the literature [MS, Sa]
whenH; = PD orPGL30Z=2Z and are partially available [MS, GrS2] forH;, = PGSp . In6x13,
we complete the remaining Jacquet module computations. We stress that the material in
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x13 is independent of the rest of the paper and could have been discussed earlier in the paper; we
have refrained from doing so, as the computations are rather technical. Consequences of the
results of x13 are then discussed in x14.

In any case, we show statement (b) by showing (c) via Jacquet modules; the proof is written
in x14.2. The statement (b) is used in the proof of the dichotomy theorem (i.e. Theorem 1.1)
for tempered representations in x6. For nontempered representations, the Jacquet module
computations (of [MS, GrS2] and x13-14) will tell us everything about their theta lifts.

For the statement (a) (nite length of ()), it remains to show that (). is of nite length. We
shall show this together with the Howe duality conjecture, by showing that (). is either
irreducible or 0. This part of the argument may be considered the analog of the doubling
see-saw argument, though one would legitimately question what that means in the setting of
exceptional dual pairs.

It will be instructive to rst recall the argument for a classical dual pair Sp(W) O(V ), where
W is a symplectic space and V a quadratic space (see [Mi] and [GT16]). The Howe duality
theorem was shown by examining the so-called doubling see-saw diagram:

o(V) Sp(W) Sp(W)

>

o(V) O(V) Sp(W)

where V. = V + V is the doubled quadratic space. Starting from ;%2 Irr(O(V)), the
resulting see-saw identity gives

dim Homs ,(w)((°); ()) dim Homo (y) o (v)((1);°

_):
where (1) is the big theta lift of the trivial representation of Sp(W) to O(V). By thelocal
analog of the Siegel-Weil formula, one identies (1) with a submodule of a certain degenerate

principal series representation | on O(V ). This implies that, for outside a small family of
representations,

dim Homo (y) o (v)((1);°

-) dimHomo (y)o (v)(l;°

_):
Using Mackey theory, one can analyze the latter space and show that, for outside another
small family of representations,

dim HomO(\,)o(v)(l;O
-) dim Homo(v)(o; ): Taken together, one obtains the desired inequality
dim Homs p(W)((O); ()) dim Homo(v)(o;)

for outside a small family of representations. For this small family of representations, one
needs to do a separate argument.

Now for the exceptional dual pairs G H studied in this paper, there is no analog of the
doubling see-saw; this is ultimately tied to the sporadic nature of the geometry underlying
exceptional groups. There is thus no direct analog of the above argument. However, the
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above argument is a particular manifestation of a general principle:
Theta correspondence typically relates or transfers a period on G to a period on H.

More precisely, given a subgroup G1 G and 2 Irr(G), we may consider the space Homg
(;) for some one-dimensional character of G;. Let us call this Hom space the Gi-period for .
Now assume that is a quotient of () for some 2 Irr(H). Then one typically obtains a
statement of the form

Gi-period of Gj-period of () = Hi-period of -

for some subgroup H;1 of H.

Now one can turn the table around. For an irreducible quotient of (), one can
consider the Gi-period of (-), which has - as an irreducible quotient. One typically gets a
statement

H,-period of - Hj-period of (-) = Gy-period of for
some subgroup G, of G.

Iterating this process, one obtains a family of periods relative to subgroups G; G and
H; H such that

Gij-period of Gj-period of () = Hj-period of -;

and
Hi-period of - Hj-period of (-) = Gj+1-period of ;

thus leading to a chain of containment of periods of and . One may call this a game of
ping-pong with periods. Now an (empirical) observation is that the subgroups G; and H;
become more and more reductive (as i increases) and one ultimately obtains a reductive
period. When that happens, the next iteration will result in a seesaw diagram analogous to
that in the classical case above and the consideration of an appropriate degenerate principal
series representation.

Now the miracle is that a Mackey theory argument with this degenerate principal series
representation then returns us the initial G;-period! In other words, for some i > 1, one has Gj
= Gi, and this allows one to complete the chain of containment of periods into a cycle. In
particular, if one of these period spaces is nite-dimensional, then this cycle of containmentis a
cycle of equalities. This is the key step in our proof of the Howe duality theorem for the dual
pairs treated here. We shall play this game of ping-pong with periods on two occasions, in x6
and x12. This seems to us to be a rather robust method for proving the Howe duality
conjecture and should be applicable to other exceptional dual pairs, though the precise details
will undoubtedly be dierent in each case.

We nish the introduction by presenting the key case of this period ping-pong for this paper. Let
G be the exceptional group of type G,, and H = Aut(J), for a Freudenthal-Jordan algebra J.
The group G has two conjugacy classes of maximal parabolic subgroups, one of which is the
Heisenberg parabolic subgroup whose unipotent radical N is a 5-dimensional Heisenberg
group. The conjugacy classes of generic characters ¢ : N | C are parameterized by cubic
etale algebras E over F. For such an E, x an embedding i : E | ) (if it exists). Then we
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have a see-saw of dual pairs (in Eg or E7)

Ge := Spin§ Aut(J) = H

=

G Aut(i:E ! J)=:Hj¢

With the minimal representation, a twisted Jacquet module computation gives n; , =
incﬁHE.J (1). This implies a chain of containments

Homn(; e) Homn((); e) = Homnu(;
)= Homy, (- 1)

where the rst is a natural inclusion, since is a quotient of (), and the last follows by the
twisted Jacquet module computation and Frobenius reciprocity. Now, in order to do the next
step, we need to compute Heg.j-coinvariants of . This was done in our paper [GS21], where it
was shown that 4, is a submodule of a degenerate principal series representation | ¢ of SpinE.
The miraclge here is that, as a G-module, I contains ind ( ¢) as a Iaﬁge G-submodule.
Thus, the seesaw identity associated to the above seesaw diagram gives the next chain of
containments is

Homy, (-;1) Homy, ((-);1) = Homn(; €);

that is, we arrive where we started.

To be honest, just as in the classical case, this last step will hold for representations of G
outside a small family, roughly those that are in the quotient of I¢ by ind{ ( ¢). One can
characterize this exceptional family precisely, but we prefer not to do it, and simply observe
that tempered irreducible representations of G do not lie in this exceptional family. (As
mentioned earlier, the theta lifts of nontempered representations can be explicitly determined
using the Jacquet module computations of [MS, GrS2] and x13-14.) Thus, with that caveatin
mind, we conclude that

Homn(; e) = Homn((); )

for all E, and this implies that = (). This is the argument which replaces the doubling
seesaw argument in classical theta correspondence.

Finally, let us remark that many of the arguments in our paper work over nonarchimedean
local elds of characteristic p > 0 as well, at least when p is not too small (say p = 2;3).
However, many of the prior results we rely on were only written in the context of characteristic 0
local elds. An example is the construction of the minimal representation itself. Hence,
though our arguments should in principle work for positive characteristic local elds, many
details require careful verication.

2. The Group G
We begin by introducing the algebraic group G, over F.
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2.1. Octonion algebra. Let O be the split octonion algebra over F. Thus, O is an 8-
dimensional non-associative and non-commutative F-algebra. It comes equipped with a con-
jugation map x ! X with associated norm N(x) = x X = X x and trace Tr(x) = x + X.
Moreover, N : O ! F is a nondegenerate quadratic form.

Every element x of O is a zero of its characteristic polynomial t2 Tr(x)t + N(x). A
nonzero element x 2 O is said to be of rank 1if N (x) = 0. Otherwise it is of rank 2, in which case
the subalgebra F [x] of O generated by x over F is isomorphic to the separable quadratic F-
algebra F[t]=(t2 Tr(x)t+ N(x)). We denote by Og the 7-dimensional subspace of trace 0
elements in O.

2.2. Automorphism group. The group G, is the automorphism group of the F-algebra O.
It is a split simple linear algebraic group of rank 2 which is both simply connected and
adjoint. If we x a maximal torus T contained in a Borel subgroup B, then we obtain a
system of simple roots f; g of G, relative to (T; B), with short and long. The resulting root
system is given by the following diagram.

The highest root is g= 3+ 2.

2.3. Maximal torus. Following Muic, we will x the isomorphism T = G,,%by t

o2+ )(t); (+ )(1):

Any pair of characters (1;2) of F thus dene a character ; ; of T by composition with the
above isomorphism.

2.4. Parabolic subgroups. Up to conjugation, G, has 2 maximal parabolic subgroups



which may be described as follows. Let Vi V; Og be subspaces of dimension 1 and 2
respectively on which the octonion multiplication is identically zero. Let P and Q be the
stabilizers of V, and V; respectively. Then P = MN and Q = LU are the two maximal
parabolic subgroups of G,. Moreover, their intersection B = P \ Q is a Borel subgroup of G,.
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The Levi factor M of P is given by
M = GL(V2) = GL;:

The isomorphism of M with GL, can be xed so that the modulus character of M is , =
jdetj3. Its unipotent radical N is a 5-dimensional Heisenberg group with 1-dimensional
center Z = U . The action of M on N=Z is isomorphic to Sym3(F?)

det 1. Moreover, the generic M (F)-orbits on N (F)=Z (F) is naturally parametrized by the set
of isomorphism classes of separable cubic F-algebras.

The Levi factor L of Q is given by
L = GL(V3:V1) = GLZ
where
V3=fx2Og:x y= 0forally2Vg:
The isomorphism of L with GL, can be xed so that the modulus character of L is q =
jdetj>. The unipotent radical U is a 5-dimensional 3-step nilpotent group:

U= Uo U; Up U3= flg;

such that
Uog=U1 = U Uy; Ui=Uy = Uy U,=Us3 = U0 U0 tAs

representations of L, one has

Uo=U; = F2; U;=U, = det; Uy=Us= F?
det:

2.5. The subgroup SL3. The subgroup of G, generated by the long root subgroups is
isomorphic to SL3. The normaliser of SL3 in G, is a semidirect product SL3 0Z=2Z, with the
nontrivial element of Z=2Z acting on SL3 as a pinned outer automorphism. The subgroup
SL3 is the pointwise stabilizer of a quadratic subalgebra of O which is isomorphic to F F,
whereas the setwise stabilizer of such a subalgebra is SL3 0 Z=2Z.

More generally, given a subalgebra of O which is isomorphic to a quadratic eld extension
of F, the pointwise stabilizer of this subalgebra is isomorphic to the quasi-split special unitary
group SUX ; the setwise stabilizer of this subalgebra is SUX o z=2Z.

2.6. The dual group. The Langlands dual group of G, is the complex Lie group G,(C). In
particular, one has the subgroups

SO_D,(C) SL3(C) SL3(C)O =217 Gz(C)Z

The centralizer of SL3(C) in G,(C) is 3, and the centralizer of SO3(C) in G,(C) is S3 = 3
0 Z=2Z. Let SLy;/(C) be a long root SL,. Then the centralizer of SL;./(C) in G,(C) is
SLy.5(C), a short root SL;, and vice versa. Thus we also have the subgroup

SL2;i1(C) , SL2;s(C) = SO4(C) G2(C):
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2.7. Nilpotent orbits. Recall that the geometric nilpotent orbits (i.e. nilpotent orbits over
F) of a simple group G dened over F form a partially ordered set, where O; O if Oj is
contained in the Zariski closure of O,. Determining the G(F)-orbits in the set of F-points of
each of these orbits is an exercise in Galois cohomology. More precisely, if* :SL, ! G isa map
that corresponds to a nilpotent orbit O by the Jacobson-Morozov theorem, then the G(F)-
orbits of F-points in O are parametrized by

Ker HY(F;C) ! HY(F;G)
where C- is the centralizer of (SL;) in G.
For the group G;, the geometric nilpotent orbits form a chain
fog O Os Osr Oreg

where O and O are orbits of non-zero elements in long and short root spaces, that is
"(SLz) = SLy; and "(SLy) = SLy.s respectively, while Os, is the subregular orbit, with
"(SL2) = SO3 Sl3, and Oyeg is the regular nilpotent orbit. The centralizers of the
respective '(SL;) are
Gz; SLa;s; SLyy; S3; and 1:

Since the Galois cohomology of p-adic simply connected groups is trivial, it follows at once
that the set of F-points is a single G,(F)-orbit except for O, where the G,(F)-orbits are
parameterized by cubic etale F-algebras E,

Os(F) = [eOk:

3. Representations of G,

In this section, we state some facts for the representations of G, (F). In particular, we shall
describe all non-supercuspidal representations. The results in this section are sourced from
Muic [Mu, Thm. 3.1, Props 4.1, 4.2, 4.3 and 4.4, Thm 5.3] and organized for our purpose.

3.1. Representations of GL,. Since the maximal parabolic subgroups of G, have GL; as
Levi factors and we will be considering parabolic induction, let us begin by setting up some
notations for representations of GL,(F). If 1 and , are two characters of F, then ; , denotes
the parabolically induced representation of GL,(F) constructed from the character

of the dilagon%l split torus. This induced representation is irreducible unless 1=, = j
j%, in which case it is non-semisimple of length 2. In particular, for a character of F , one
has

0 I st Loj o j72j j 172 I det I 0
where det is a 1-dimensional character of GL, (F ) and st is a discrete series representation. If =
1is trivial, we will simply write st as st: this is the Steinberg representation. For nontrivial,

one has st = st
( det) and we call st a twisted Steinberg representation.

3.2. Principal series representations for P. We rst consider the principal series repre-
sentations for the Heisenberg parabolic subgroup P = MN, where M = GL,. Let be an
irreducible representation of M with central character ! and set

lp () = Indp® and Ip (s;) = Indp2(jYet® )
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if we need to consider a family of induced representations. If 1p (s;) is a standard module,
we will denote its unique Langlands quotient by Jp (s;). Now we have:

Proposition 3.1. (i) If is a unitary supercuspidal representation, then | {s;) is reducible if
and only if - = (so ! = 1} and one of the following holds:
! _

1 and s = 1=2, in which case there is a non-split short exact sequence of length 2,
0 Fop() Folp (1=2;) oJp (1=2;) !
0; where p () is a generic discrete series representation.

! = 1and s= 0, in which case

lp()=1p ()gen Ip ()degWhere
I'p ()gen is generic.

(ii) If = st is a twisted Steinberg representation, then Ip (s;) is irreducible except for the
following cases:

= 1 and s = 3=2 or 1=2, in which case one has:

0 I Stg, I 1p (3=2;st) I Jp (3=2;st) I 0

with Stg, the Steinberg representation. On the other hand, Ip (1=2; st) has length 3,
with a unique irreducible submodule gen[1] which is a generic discrete series rep-
resentation, a unique irreducible Langlands quotient Jp (1=2;st) and a subquotient

Jq(1=2; st).
2= 1but = 1and s = 1=2, in which case one has:

0 I genl] I 1p (1=2; st) I Jp (1=2;st) I 0

where gen[] is a generic discrete series representation. 3

= 1but = 1and s = 1=2, in which case one has:

0 | genl] I 1p (1=2; st) I Jp (1=2; st) !

0: where gen[] = gen[ !]is a generic discrete series representation.
(iii) If =

is 1-dimensional unitary, then Ip (s;) is irreducible except in the following
cases:

= 1 and s = 1=2 or 3=2, in which case one has:
0 I Jq(5=2;st) I 1p(3=2;1) I 1g, I 0

whereas |p (1=2;1) is of length 3, with a unique irreducible submodule geg[1] which is a

nongeneric discrete series representation, a unique irreducible quotient Jq(1;(1; 1))
and a subquotient Jq(1=2; st).

2= 1but = 1and s = 1=2, in which case one has:

0 I Jq(1=2;st) I 1p (1=2;) ' Jal(1;(25)) I 0:
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3=1but = 1and s= 1=2, in which case one has:
0 I Jp (1=2;st 1) I 1p(1=2;) oJa(; G 1Y) 10

3.3. Principal series representations for Q. Now we consider the principal series repre-
sentations for the 3-step parabolic subgroup Q = LU, whereL = GL,. Let be an irreducible
unitary representation of L with L-parameter and set

la() = Indg® and Iq(s;) = Indy?j et j°

if we need to consider a family of induced representations. As before, we let Jqo(s; ) denote
the unique Langlands quotient of Iq(s; ) if the latter is a standard module. Then we have:

Proposition 3.2. (i) If is unitary supercuspidal, then Iq(s;) is reducible if and only if
- = (so !? = 1) and one of the following holds:

I = 1and s= 1=2, in which case one has:
0 P oal) Lo la(1=2;) I Jal(1=2;) !
0; where () is a generic discrete series representation.

I = 1 (so is dihedral), Im() = Sz (the symmetric group on 3 letters, regarded as a
subgroup of GL,(C)) and s = 1,in which case one has:

0 ! gen[] ! IQ(]-;) ! JQ(l;) !
0; where gen[] is a generic discrete series representation.

I = 1, Im() = S3 (the symmetric group on 3 letters, regarded as a subgroup of
GL,(C)) and s = 0, in which case one has:

la() = |Q()gen |Q()degwhere
la()gen is generic.

(ii) If = st is a twisted Steinberg representation, the Iq(s;) is irreducible except for the
following cases:

= 1 and s = 5=2 or 1=2, in which case one has
0 I Stg, I 1q(5=2;st) I Jq(5=2;st) !
0; and
0 I genll1] degll] I Iq(1=2; st) I Ja(1=2; st) I 0:

Here gen[1] is the generic discrete series representation already dened in Proposition

3.1(ii) (rst bullet point) and geg[1] is the nongeneric discrete series representation
already dened in Proposition 3.1(iii) (rst bullet point).

2= 1but = 1and s= 1=2, in which case one has:
0 I genll I 1g(1=2; st) I Jq(1=2; st) I 0

Here, gen[] is the generic discrete series representation dened in Proposition 3.1(ii)
(second bullet point).
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(iii) If = is 1-dimensional unitary, then Iq(s;) is irreducible except in the following
cases:

= 1 and s = 1=2 or 5=2, in which case one has:
0 I Jp (3=2;st) I 1q(5=2;1) I 1g, I 0

whereas 1q(1=2;1) is of length 3, with unique irreducible submodule Jq(1=2;st), a
unique irreducible quotient Jq(1; (1; 1)) and subquotient Jp (1=2; st).

2= 1but = 1and s = 1=2, in which case one has:

0 I Jp (1=2;st) I 1g(1=2;) ' Jal(;(25)) I 0:

3.4. Principal series representations for B. We now consider the principal series repre-
sentations induced from the Borel subgroup B. More precisely, suppose that is a Langlands
quotient of a standard module

I(s1;s2;1;2) with

s1 s 0

and ; unitary characters of F. Here, recall the convention about characters of T which we
have xed in x2.3. Then

T e PR L X (P iyt )
Now the representation (; 1 iy, 1 j 52) of M = GL; is reducible if and only if
271 ] j2r=j j Y e 1=zandsi=s;+ 11,

in which case one has

1
0 ( s+ ;711); with s 1:

2

There is another, convenient, way to bookkeep the principal series IrgdGz(). Let 1;2;3 be
three long roots such that 1 + ; + 3 = 0. This triple is unique up to the action of the Weyl
group of G . Theh the corresponding co-roots : F - I T generate T, in particular,
the character denes three characters of F by ; = - (and i§ determined by them). Clearly,
these characters satisfy 1 2 3= 1.

Proposition 3.3. The induced representation Indgz() is irreducible unless one of the fol-
lowing two conditions hold:

i = j j! for somei or i=j = j j! for a pairi = j.
The three characters ; are quadratic, non-trivial and pairwise dierent. Then

Ind(éz() = Indgﬁ)gen |ndBZ()d§gwhere

Indg?()genCis generic.
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3.5. Conjectural L-packets of G,. The above results allow one to give an enumeration of
the non-cuspidal representations of G,. Using the desiderata of the conjectural local
Langlands correspondence (LLC) for G,, we explain how one can assign L-parameters to the
noncuspidal representations of G, and hence partition them into L-packets. Recall that an L-
parameter of G, is an admissible homomorphism

! :W D¢ ! G—ZZGz(C)

of the Weil-Deligne group WDf = Wi SL,(C) to the dual group G,(C), taken up to
conjugacy by G,(C). Let

A = o0(Zs,("))
be the associated component group of *. Then one expects that there should be an L-packet

= f(): 2 Arg Ifr(Gy)

associated to each ’, whose members are indexed by the characters of A+, such that

Irr(G,y) =

The non-tempered irreducible representations of G, are uniquely realized as Langlands
quotients of standard modules, so have the form Jp (), Jq() or Jg(). The Levi factors of the
parabolic subgroups P, Q aand B are isomorphicto GL, and GL; GL;. Since the LLC for these
groups are known, one can assigh L-parameters to the nontempered representations. For
example, if = Jp (), and’ :WDg | M- = GL,(C) is the L-parameter of , then the L-
parametrer of = Jp () is the composite

' :WDf ! M-,! GH= Gy(C):

Since the L-packets on the Levi subgroups are singletons, we see also that the nontempered
L-packets of G, are singletons, and A- is correspondingly trivial.

In other words, the non-tempered irreducible representations of G, are naturally parametrized
by the nontempered L-parameters of G,; these are the L-parameters ’ such that ' (W) is
unbounded. In the following, we will use this partial LLC to describe the eect of the various
theta correspondences on nontempered representations.

By the same token, since irreducible tempered representations which are not square-
integrable are uniquely realized as summands of principal series representations induced
from unitary square-integrable representations of Levi factors, one can attach L-parameters to
these tempered (but not square-integrable) representations of G,. The resulting L-parameters’
have the property that ' (W ) is bounded but (W D¢ ) is contained in a proper Levi sub-
group. The size of such a tempered L-packet now depends on the number of irreducible
summands in the corresponding parabolically induced representations. From the results re-
called in this section, one sees that the size of a tempered L-packet - is 1 or 2. One can verify
that this is the same as the size of A-. Moreover, in each tempered L-packet, there is a unique
generic representation, and this is assigned to the trivial character of A». Thus, the LLC for
tempered non-discrete series representations of G, is also known, and we may refer to this
partial LLC for describing these representations.
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Hence, the main issue with the LLC for G, comes down to the classication of the square-
integrable or discrete series representations by discrete series L-parameters; these are the L-
parameters ’ which do not factor through any proper Levi subgroup, or equivalently whose
centralizerC: = Zg 2(') is nite. Guided by the desiderata of the LLC, we can now describe the
various families of discrete series L-parameters, according to '(SL,), and list all non-
supercuspidal members.

(1) '(SLy) is the principal SL,. Then A: = 1 and the packet consists of the Steinberg
representation:

+ = fSte, g

(2) "(SLy) = SO3 SL3 Gjy; this is the subregular SL,. The centralizer of SOz in G5 is the
nite symmetric group Sz, so that ' gives by restriction a map : Wg ! Ss3. There are
four cases to discuss:

(WEg) = 1. Then A = S3. Let 1;r; be the three irreducible representations of
S3: the trivial, 2-dimensional and the sign character respectively. Then

»= f(1) = gen[]-]; (r) = deg[]-]; () = sclllg
where gen[1] is dened in Proposition 3.1(ii) (rst bullet point) and geg[1] is given
in Proposition 3.1(iii) (rst b.p.). The representation () is a depth 0 supercuspidal
representation induced from a cuspidal unipotent representation of G, (Fq), inated
to a hyperspecial maximal compact group [HMS]. The cuspidal unipotent
representation is denoted in the literature by G,[1] and hence our notation ¢[1].

(W ) g . Then, by the local class eld theory, denes a quadratic character of F. Let
1 and 1 denote the trivial and non-trivial characters of A» = ;. Then

»= f(1) = gen[]}( 1)g;
where gen[] is as dened in Proposition 3.1(ii) (second b.p.). If the character is
unramied, then ( 1) = [ 1] is a depth 0 supercuspidal representation. It is
induced from a cuspidal unipotent representation of G,(Fy), denoted by G,[ 1],
inated to a hyperspecial maximal compact group.

(W )= . Then, by local class eld theory, denes a cubic character of F. Let 1,
I and 12 denote the characters of A- = 3. Then

» = f(1) = gen[]; (1); (!Z)g;
where gen[] is as dened in Proposition 3.1(ii) (third b.p.). If the character is
unramied, then (!) = 4[!] and (!2) = [!?] are induced from a cuspidal
unipotent representations of G,(Fq), denoted by G,[!] and G,[? ], inated to a
hyperspecial maximal compact group.

(WE) = S3. Then r corresponds to a supercuspidal representation of GL, (where
we recall that r denotes the two-dimensional irreducible representation of S3). In
this case A is trivial and

r= fgen[]g;
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where gen[] is as dened in Proposition 3.2(i) (second b.p.).

(3) "(SLz) = SLa;s, a short root SL,. The centralizer of SLy;s in Gz is SLy;|, a longroot
SL,. Then ' gives, by restriction, a map form the Weil group : W | SLy,, that
corresponds to supercuspidal representation of GL with the trivial central character
(and hence = -). In this case A = ;, and

c=f(1)=»9();( 1g;
where p () is as dened in Proposition 3.1(i) (rst b.p.) and ( 1) is supercuspidal.

(4) "(SLz) = SLy;, along root SLy. The centralizer of SLy;; in Gy is SLy;s, a shortroot
SL,. Then ' gives, by restriction, a map from the Weil group : Wg | SL;s, that
corresponds to supercuspidal representation of GL with the trivial central character
(and hence = -). In this case A = ,, and

+ = (1) = al); ( 1)g;
where () is as dened in Proposition 3.2(i) (rst b.p.) and ( 1) is supercuspidal.

(5) '(SLy) = 1. Then’ : Wg I G,(C) gives rise to an L-packet consisting entirely of
supercuspidal representations of G;.

There has been some work towards the above conjectural LLC for G,, most notably [SWe]
and [HKT]. At the moment, we simply wish to point out that all the noncuspidal discrete
series representations are fully accounted for by the above classication scheme.

3.6. Local Fourier coecients. It will be useful to consider the twisted Jacquet modules of a
representation of G, along the unipotent radical N of P. The M-orbits of 1-dimensional
characters of N are naturally indexed by cubic F-algebras, with the generic orbits corre-
sponding to etale cubic F-algebras. For any such cubic F-algebra E, we shall write ¢ for a
character of N in the corresponding M-orbit. Then one may consider y; - In particular,
we note:

Proposition 3.4. For any irreducible, innite dimensional representation of G, there exists
an etale cubic F-algebra E such that y; .z 0. Moreover, if is degenerate, then y;

¢ is nite-dimensional for any etale E.

Proof. Wave front sets of irreducible representations of G, are supported on special orbits,
that is, f0g, Osr and Oyeg, see [LS] and [JLS]. Thus, if is degenerate (not Whittaker
generic), and not the trivial representation, its wave-front set is supported on subregular
nilpotent orbits. If Og is in the wave-front set of then y; ] is non-zero and nite-
dimensional, by the main result of [MW] and [Va].

Assume now that is generic. The restriction of a Whittaker character to U is a character

supported on the simple root space U. Hence y; = 0. Let N be obtained by adding
U to U and removing U,, so that N is(onjugate to N (by the simple Weyl reectionw ).
Abusing notation, let be the character of N (supported on the simple root space U

NO. Now we claim that there is an isomorphism (a root exchange)

Homy(; ) = Hompo(; ):
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which sends ‘ on the LHS to an element © on the RHS dened by the convergent integral Z
O(v) = “((u) v) duu

Conversely, we can recover ‘ from © by integrating over U,.

Assuming the claim, let U° be the conjugate of U by w, . Let ZO be two-
dimensional center of U%. Observe that [UO ; U%]=Z% = U. Since [U% U9 N9, it follows that
[UO;U0]; = 0. But this means that the
Fourier-Jacobi functor of with respect to the 3-step unipotent U is non-trivial, and y; . = 0
for some E = F + K, by [JLS, Proposition 6.1].

To justify the root exchange argument in the claim, we observe that U and U, generate a
Heisenberg group with center U, modulo higher order commutators. More precisely,
consider the group

vP= U U = N°uU,;

which is a maximal unipotent subgroup of G, and hence conjugate to V (by the simple
reection w). If we consider the lower central series of the unipotent group V©:

VO vovO= vOvO= [vovO yO fig

then Vzvgis the Heisenberg group in question with center V°:1V°:2 U . Note moreover that the
elements * and © in the two Hom spaces in the claim both factors through y o (which is a

module for the Heisenberg group V%=V 0 ). yVith this observation, the justication of 'Ehe claim
is given by the following lemma, included as a convenience to the reader.

Lemma 3.5. Let H be a Heisenberg group. Let be a smooth H-module. Let X and Y be two
maximal abelian subgroups of H. Let x and y be characters of X and Y, agreeing on
the intersection X \ Y, and non-trivial on the center of H. Then we have an isomorphism
Homx(; x) = Homy(; v), ‘! ‘O, dened by

Z

Ov) = “((y)v) dy:v=x\v

Proof. By the Frobenius reciprocity, we have

Homx(; x) = Homu(; Indy %) and Homy (; yv) = Homu(; Indy Hoy):
We also have an isomorphism IndQ x = Ind¥' y, where every f 2 Ind§ x goes to fO
2 Ifdyy dened by .
fO(h) = f(yh)y (y) dy:
Y=X\Y

This integral is convergent, in fact, it is a nite sum. The lemma follows by combining this
isomorphism with the two Frobenius reciprocity isomorphisms.
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4. Exceptional Dual Pairs

In this section, we briey describe the dual pairs which intervene in this paper and some
structural results which will be important in the study of the associated theta correspon-
dences.

If A is an associative algebra over F, then A* will denote the underlying Jordan algebra,
that is, A with the Jordan multiplication a b = 2@ab + ba).

4.1. The group Mj. Let J be a Freudenthal-Jordan F-algebra [KMRT, x37 and x38]. The
algebra J comes equipped with a cubic norm form N;, and we let

M, = fg 2 GL(J) :Ny, g= N;g:

It contains the automorphism group Aut(J) as a subgroup. Now we consider the F-vector
space

g = sl3 Lie(M;) (F3

J) (F3

J)
Then g, can be given the structure of a simple exceptional Lie algebra (see, for example,
[GS05]). We have the following cases of interest:

dim) 1 3 9 | 15
gl G, | D4 | Eg | E7

We observe:

If dimJ = 3, then J is a cubic etale F-algebra E.

If dimJ = 9, thenJ corresponds to a pair (Bg; ) where B ¢ is a central simple algebra
over an etale quadratic F-algebra K and is an involution of the second kind. Thus, J
=B iKs the subspace of -symmetric elements. If K = F2, then) = B B for a
central simple algebra B over F, permutes two summands, andJ = B*. The split
version is when B = Ms, the algebra of 33 matrices, and Aut(M; )= PGL30Z=27Z.

If dimJ = 15, thenJ is H3 (B ) is the space of all 33 hermitian-symmetric matrices,
where B¢ is a quaternion algebra over F. The split version is when B = M,.
Let G, be the identity component of Aut(g;). If dimJ = 9 then
1 I G, I Aut(g)) | z=2Z !
1: This short exact sequence may not be split in general.

4.2. Dual pair G, Aut(J). We can now describe some dual pairs in G; or rather in
Aut(g). It will be easier to do this on the level of Lie algebras.

The centralizer of Aut(J) in g; is
S|3 F3
1, (F3
1)
which one recognizes to be g¢ (i.e. takingJ = F). Thus this is a Lie subalgebra of type G,,
and we have a dual pair
G, Aut(J) Aut(G)):
If dimJ = 9, we recall that Aut(J) sits in a short exact sequence

1 I Aut(J)© I Aut(J) I Z=2Z oL
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If J is associated to a pair (Bg; ), then Aut(J)? = PGU (Bg; ) is an adjoint group of type
A

4.3. Dual pair Aut(i:E ! J) Gg. Now we x an embeddingi :E ! J, where E is a
cubic etale F-algebra. We have the subgroup
Aut(i:E ! J) Aut(J):

If dimJ = 9, a detailed description of this group is in [GS14]. Its identity component is a
2-dimensional torus. The centralizer of Aut(i : E ! J) in g, contains

ge = sls tg F?

E (F3

E)
where E ,! J viai and tg = EC is the toral Lie subalgebra of trace 0 elements in E. This Lie
algebra is isomorphic to Lie(Gg) (where Gg is the simply connected quasi-split group Sping
), and we have the dual pair

Aut(i:E ! J) Gg | Aut(Gy):
Note that this map is not injective.

4.4. A see-saw diagram. The two dual pairs we described above t together into a see-saw
diagram:

(4.1) Ge :=|Spin§ Aut(J)

=

GZ AUt(lE ! J)=ZHJ;E

=:HJ

in Aut(G;y). The various J’s of interest in this paper, and the corresponding groups H; =
Aut(J) and Hj.g = Aut(i: E | J) are given in the table below.

] D* M H3 (M)
H, |PD |PGLso Z=2Z PGSp,
Hi.e |PE | PE 0 Z=2Z |Resg-f Slo=

Here, note that D* denotes the Jordan algebra associated to a cubic division F-algebra D,
in which case E is necessarily a eld.
5. The See-Saw Argument

In this section, we shall consider the see-saw identity arising from the seesaw diagram (4.1)
and pursue some of its consequences.

5.1. See-saw identity. Suppose that 2 Irr(G;). Then we have the see-saw identity asso-
ciated with the seesaw (4.1):

(5.1) Homy, . ((); C) = Homg, (R, (E);)

where
Ry(E) := (1)
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is the big theta lift of the trivial representation of H;,¢. To make use of this see-saw identity, we
need to understand the representation R, (E) of SpinE. This has been studied in [GS21] and
we recall the relevant results there.

5.2. Degenerate principal series of Sping. Let Pe = Mg Ng Spinf ke the Heisenberg
parabolic subgroup, so that its Levi factor is
Mg = GL,(E)9®' = fg 2 GL,(E) : det(g) 2 Fg:

Then the determinant map denes an algebraic character Mg | Gy, which is a basis element
of Hom(Mg; G). We may consider the degenerate principal series representation

le(s) = Indy ® jdetj:

Spint
E

In [S] and [GS21, Cor. 12.11, Thm. 17.6, Thm 18.1, Prop. 18.5 and Prop. 18.6], the module
structure of this family of degenerate principal series representations has been determined. In
particular, we have:

Proposition 5.2.
Ry(E), ! le(sy)
where (
1=2; ifJ = D* or MZ;
s = . 3
1=2; if ] = H3(|V|2).

The representation Ig(1=2) has length 3 when E is a eld and has length 2 otherwise. More
precisely, it has a unique irreducible submodule V with quotient isomorphic to Rm (E)
Rp(E) (where Rp(E) is interpreted to be 0 when E is not a eld). Indeed, one has the short
exact sequence:

0 ' Ru,(my)(E) I 1g(1=2) | Rp(E) | o
and
0 Y, I Ru,(my(E) | Rwm,(E) !

0: In particular, when E is not a eld, Ie(1=2) = RH ,(m,)(E).

As a consequence of the above discussion, we see that it is useful to understand the Hom
space
Homg, (le(s);) for 2 Irr(Gs).

We shall study this in two ways.

5.3. Vanishing of an Ext!. In view of the proposition, we see that there is an exact sequence

0 ' Homg,(Rp(E);) ' Homeg,(le(1=2);) ! Homez(Rgg(Mz)(E);)
?
y

Extg, (Rp(E);):

Now we have the following useful fact:
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Proposition 5.3. Assume that E is a eld. If 2 Irr(Gy) is tempered or has cuspidal
support dierent from geg[1], then

Extg,(Ro(E);) = 0;
so that one has a short exact sequence

0! Homg,(Rp(E);) I' Homg,(le(1=2);) ' Homg,(RH,(m,)(E);) ! O:

Proof. One needs to understand Rp (E ) as a representation of G,, and this is essentially donein
[Sa, Conj. 4.1 and x6], where the dual pair correspondence for P D G, was studied. We shall
recall the results of [Sa] in greater detail later on. At this point, we simply note that as a
representation of G, Rp (E) is the direct sum of a supercuspidal representation (of innite
length) and the irreducible discrete series representation geg[1], which is a constituent of
lq(1=2; st). From this, the vanishing of Exthz(RD(E ); ) for those with dierent cuspidal
support from geg[1] follows immediately. On the other hand, if is tempered, then one also
has Extl(deg[l]; ) = 0 since discrete series representations are projective in the category of
tempered representations.

5.4. Ig(s) as Ga-module. On the other hand, we may understand the restriction of g (s)
to G, using Mackey theory. The following is a key technical result:

Proposition 5.4. As a representation of G,, Ig(s) admits an equivariant Itration 0
IO |1 |2 |3 |4

with successive quotients described as follows:
lg = il’]dNG E,
.= — . 1
Ji1 = 11=lp lp (2 +5,, a (EGLz))

- — s 1.; PGL;
Jo i=1=l1 mg |p( +2 ,|r)1d N ) J3
= |3=|2 Mme |=Q(S+ 1).
J4 .= |4=|3 |£ (S+ 1).
Here,
8

%3; ifE = F3;
mE=>1; ifE =F K;
©0; if E is a eld.

The proposition implies that one has a short exact sequence
0 ! inQNZE ! |E(S) ! E(S) !
0; from which one deduces an exact sequence:

0! Homg,(e(s);) ! Homg,(le(s);) ! Homy(-; g) ! Extg,(e(s);):

We now specialize to s = 1=2, where we need to be more precise.
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Proposition 5.5. Suppose that 2 Irr(G;) is tempered or has cuspidal support along Q.
Then

Home, (Ie(1=2);) = Homn(=; g):
Proof. We need to prove
Home, (e(1=2);) = 0= Extg,(#(1=2);): To
that end, it suces to prove the following lemma:
Lemma 5.6. For all i and j, Ext};z(Jj; ) = 0, with as in Proposition 5.5.
Proof. Consider J; rstly. By the Frobenius reciprocity,
Extg,(J1;) = Ext' (jdetj'™ CH(PGLy); #—()):

Since is tempered, the center of M = GL, acts on R—L)) by characters such thatj(z)j
= jzjt where t 0. On the other hand, the center of M acts on jdetj=2 C1(PGL;) by_jzj. Thus
the right hand side is 0. The other cases are dealt with in the same way.

This completes the proof of Proposition 5.5.

6. Dichotomy
The goal of this section is to prove the following theorem:

Theorem 6.1. For any representation 2 Irr(G ), has nonzero theta lift to exactly one of
PD or PGSpg.

To prove this dichotomy theorem, we need some preliminary results which are consequences
of the computation of the Jacquet modules of the minimal representation ; with respect to
the various maximal parabolic subgroups of G apd H . The required Jacquet module
computations were carried out in [Sa, Prop. 5.1 when H; = P D and in [MS, Thm. 4.3 and
Thm. 7.6] when H; = PGL3 (see also [GS04, Prop. 4 and Prop. 6]). For H; = PGSp - the
Jacquet module computations for some parabolic subgroups were carried out in [MS, Thm.
5.3 and Thm 7.6]. The remaining ones will be done in x13 and some implications of these
computations are discussed in x14. We note that x13 is a self-contained section independent
of the rest of this paper. Hence, we rst record some results from x13-14 and the earlier
references [Sa, MS, GS04] that we will use.

6.1. Consequences of Jacquet module computations. We rst note:
Lemma 6.2. Consider the theta correspondence for G, H; for the 3 cases of J.
(i) Let 2 Irr(Gz) and write
10 = 30¢ 10ne

as a sum of its cuspidal and noncuspidal components. Then ;()nc has nite length. In
particular, if ;() = 0, then it has an irreducible quotient.
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(ii) Likewise, let 2 Irr(H;) and write

10) = 30c¢ 10ne:

Then ;()nc has nite length. In particular, if ;() = 0, then it has an irreducible
quotient.

Proof. We consider the 3 cases of H; in turn:

The case of J = H3(M>) is shown in x14, based on the results of x13. As we remarked
above, the results of x13 and x14 are independent of the rest of the paper.

The case of ] = D* follows from results of [Sa, x6], proving [Sa, Conjecture 4.1(3)].

For ) = M+3 (ii) follows from [GS04, Prop. 7, Cor. 9(i), rst paragraph of proof of
Thm. 14 and last paragraph of x9]. The proof of (i) is analogous to that for the case
J = H3(M3;), which we describe in x14.2, and uses the Jacquet module computation
for PGL3 given in [GS04, Prop. 4] and Proposition 14.2.

In fact, the Jacquet module computations allow one to determine the theta lift of non-
tempered representations explicitly (see Theorem 14.1). We simply note the following here:

Lemma 6.3. (i) Let 2 Irr(G3) and 2 Irr(H,) be such that
is a quotient of ;. Then

is tempered ( ) is tempered:

(ii) Let 2 Irr(Gz) be non-tempered. Then has nonzero theta lifting to PGSpg.

Proof. For Hy = PD or PGL3 0Z=2Z, the desired results have been veried in [Sa, x6] and
[GS04, Cor. 9(i) and proof of Prop. 10] respectively. For the case when H, = PGSpG, this is
shown in Theorem 14.1 in x14.

6.2. Reduction to non-generic tempered case. With the above inputs in place, we can
now begin the proof of the dichotomy theorem. We note:

The dichotmy theorem holds for nontempered . Indeed, if is non-tempered, then
Lemma 6.3(ii) says that has nonzero theta lift to PGSp , wbhereas [Sa] shows that has
zero theta lift to PD.

The dichotmy theorem holds for generic . Indeed, it was shown in [GS04, Cor. 20] that
a generic has nonzero theta lift to PGSp (seg also Cor. 11.2 below) and it was
shown in [Sa] that has zero theta lift to P D.

Thus, to prove the dichotomy theorem, it remains to deal with non-generic tempered .
6.3. Weak dichotomy. We rst prove that a non-generic tempered has nonzero theta lift to

one of PD or PGSp . Since ti)s non-generic and innite-dimensional, there exists an etale cubic
F-algebra E such that Homy(-; ) = 0. By Proposition 5.5, we have an isomorphism

Homg, (le(1=2);) Homn(-; ¢) = O:
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This implies, by Proposition 5.3, that
Homg,(Rp(E);) = 0 or Homg,(RH, (m,)(E);) = O:
By the see-saw identity (5.1), we deduce that
Homy, (5();C) =0

forJ = D* or H3(My). In particular, ;() = 0forJ = D* or H3(M>). We have thus
veried that has nonzero theta lift to at least one of P D or PGSpg.

6.4. Curious chain of containments. It remains to show that a nongeneric tempered
cannot lift toboth P D and PGSp .6Let be the complex conjugate of . If is unitarizable (e.g. if
is tempered), then = -. Thus

o= =)
where, in the second isomorphism, we assume that is unitarizable. Since the minimal

representation ; used in this paper is dened over R, we have a canonical isomorphism; = ;.
It follows that () is the complex conjugate of ().

We shall make use of the curious chain of containment given in the following lemma; this
is the rst instance of the game of ping-pong with periods discussed at the end of the
introduction.

Lemma 6.4. Let 2 Irr(G;) be tempered. For J = D*, M+3or H3(My), let 2 Irr(Hy) be
tempered and such that

Homg,H,(y; ) = 0:Then
we have the following natural inclusions
Homn(; ) Homn((); e) = Homy . (-;C) Homy, ((-); C) = Homg,(R,(E);-): If one of

these spaces is nite-dimensional, then all inclusions are isomorphisms.

Proof. The rst inclusion arises from () . The second follows from
Homn((); e) = Homu, ((h)n; ¢5)
combined with (see [GrS2, Lemma 2.9, Pg 213])
(n; ¢ = indy2 (1)

and the Frobenius reciprocity. For the third, observe that () is the complex conjugate of ().
Since = - and = - and we have (-) -. The fourth is the see-saw identity (5.1).

If any of the spaces is nite-dimensional, then Homy(; ¢) is nite-dimensional. If this
space is nite dimensional then, since is tempered, by Propositions 5.3 and 5.5, one has

(6.5) dim Homg, (R (E); =) dim Homg,(lg(1=2);-) = dimHomp(; ¢):

It follows that all spaces have the same dimension and the lemma is proved.
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6.5. Conclusion of proof. Using the lemma, we can now conclude the proof of Theorem
6.1.

Assume is tempered nongeneric and has nonzero theta lift to PD. Since PD s
compact, one can nd 2 Irr(P D) such that is an irreducible quotient of p(). Moreover is
tempered. Choose E so that Homy(; ¢) = 0. We may now apply Lemma 6.4 with the chosen
and E to deduce that

d:=dimHomg,(le(1=2);) = dimHomg,(Rp(E);) = dimHomn(; ) =0

Similarly, if has nonzero theta lift to PGSp ,then we may nd a tempered 2 Irr(PGSp ) sugh
that is an irreducible quotient of () (by Lemma 6.2 and Lemma 6.3(i)). With E as above,
an application of Lemma 6.4 shows that

d= dimHomg,(le(1=2);) = dim Homg, (RH ;(m,)(E); ) = dimHomn(; ) = 0
Moreover, since all these dimensions are nite, one deduces by Proposition 5.3 that
d= dimHomg,(lg(1=2);) = dim Homg, (Rp(E); ) + dim Homg, (RH ,(\m,)(E);) = 2d:

This gives the desired contradiction and completes the proof of Theorem 6.1.

6.6. Uniqueness results. As further applications of Lemma 6.4, we may now derive two
multiplicity one statements which will play a key role in the reminder of the paper. These
statements are the rst steps towards the proof of the Howe duality theorem.

Proposition 6.6. Let 2 Irr(H;) be tempered. Let 2 Irr(G,) be a tempered, non-generic
quotient of (). Then ;() = .

Proof. Since is non-generic, for every E, the space Homy(; ) is nite-dimensional. By
Lemma 6.4, Hompn(;(); ) = Homp(; g), for every E. Thus, by Proposition 3.4, the kernel
of the projection ;() ! has trivial action of G,. But this submodule would split o, giving a
trivial representation as a quotient of ; (). This contradicts Lemma 6.3.

Proposition 6.7. Let 2 Irr(G;) be tempered and non-generic. Then ;() cannot have two
tempered irreducible quotients. In particular, the cuspidal representation () is irre-ducible or
0.

Proof. Let 1;5 2 Irr(Hy), irreducible tempered, such that ;() 1. Since is non-generic, there
exists E such that d = dimHom {( ; N - ) is nite and non-zero. By Lemma
6.4, applied to -, - ;ind then to -, -,

2
d= dimHomy  (1;C) = dimHomy, . (;(); C) = dimHomy,(2; C): Since
1 2 is a quotient of (),
d= dimHomy . (;(); C) dimHomy, (1;C)+ dim HomHJ;E(z;C) = 2d;
a contradiction.

Combining Propositions 6.6 and 6.7 with Lemmas 6.2(i) and 6.3(i), we deduce the following
corollary which may be considered as a rst step towards the Howe duality theorem.
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Corollary 6.8. Let 2 Irr(G;) be tempered and non-generic. Then ;() has nite length. If ; ()
= 0, then it has a unique irreducible quotient () and () is tempered. Moreover, for 1;, 2 Irr(G;)
tempered and non-generic,

0=1(1)=1(2)=) 1= 2:

Proof. Writing () = j()c y()nc, Proposition 6.7 tells us that (). is irreducible or 0, whereas
Lemma 6.2(i) tells us that ; ()¢ has nite length. Hence ; () has nite length, so that its cosocle
;() is a nite sum of irreducible representations. Moreover, Lemma 6.3(i) says that ; () is
tempered, and Proposition 6.7 then shows the irreducibility of ; () if it is nonzero. The nal
implication now follows by Proposition 6.6.

In the rest of the paper, we shall examine each of the 3 dual pairs G, H; in turn and
complete the proof of the Howe duality conjecture.
7. Theta Correspondence for PD G,

In this section, we discuss the theta correspondence for the dual pair PD G;. A
preliminary study of this dual pair correspondence has been carried out by the second authorin
[Sa]. We rst recall the results established there.

Let |, be the minimal representation of PD G . Then we have
M
D = ():
2lrr(PD)
The following was shown in [Sa, x6]:
Proposition 7.1. (i) If = 1 is the trivial representation of P D, then
(1) = deg[]-];'

the unipotent discrete series representation introduced in Proposition 3.1(iii) (rst bullet
point).

(ii) If is not the trivial representation, then () is nongeneric supercuspidal of nite length
(possibly zero).

(iii) If = is a nontrivial unramied cubic character, then () = ]

and (2) = sc[z]
the two depth 0 supercuspidal representations introduced in x3.5 (2) (third bullet point).
(iv) For each cubic eld extension E=F,

Homn((); e) = Hompe(; C):

We can now easily extend the above results. More precisely,

Theorem 7.2. (i) For any 2 Irr(PD), () is an irreducible representation of G, if itis
nonzero.

(ii) If 1;2 2 Irr(P D) are such that (1) = (2) = 0, then 1 = 5.
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(iii) If p= 3, then the map ! () denes an injection
Irr(PD),! Irr(Gy):

Hence, the Howe duality theorem holds for P D G,, so that
dim Homg,((1); (2)) dim Hompp(y;2)

for any 1;2 2 Irr(PD). In particular, for any 2 Irr(G,), the representation () of PD s
irreducible or zero.

Proof. The rst two parts follow from Propositions 6.6 and 6.7. As for (iii) we use
Homn((); e) = Hompe(; C);

so it suces to show that there exists a eld E such that Hompg(; C) = 0. If p = 3, this was
proved for all irreducible by [LT, Thm. 2.4].

8. Theta Correspondence for (PGL3 0 Z=2Z) G,

In this section, we consider the theta correspondence for the dual pair (PGL3 0Z2=2Z) G, and
prove various results analogous to those in the last section. In fact, the theta correspon-dence
for PGL3 G, was almost completely studied in [GS04]. But the treatment there ignores the
outer automorphism group of PGLs; this is akin to working with special orthog-onal groups
instead of orthogonal groups in classical theta correspondence and is of course undesirable.
Thus, we shall complete the results of [GS04] in their natural setting here. We extend the
minimal representation of Eg to Eg 0Z=2Z so that Z=2Z xes the spherical vector.

8.1. Representations of H = PGL3 0 Z=2Z. We realize Z=2Z, acting on GL3 as a pinned

automorphism preserving the standard pinning, i.e. acting via
0

1 1

Al wo A tw  with @ 1 A
1
Let U GLs be the maximal unipotent subgroup of upper triangular matrices and let be a
Z=27Z-invariant Whittaker character of U. Then extends to two characters of U 0Z=2Z. Let
1 be the extension such that Z=2Z acts trivially, and let
sign be the other extension.
If 2 Irr(PGL3), then there are two possibilities:
if - , then
* = |ndPIE|_;L3 = lndPGHLg_iS
irreducible. If is generic then
dimHomyoz-57(%;

1) = dimHomyoz-5(%;

sign) = 1:
if = -, then has two extensions to H, which dier from each other by twisting with the
unique quadratic character sign : H ! hliof H. When is generic (for example when

is tempered), we let * denote the unique extension of such that

dimHomyoz-57(%;
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and let denote the other extension.

The only nongeneric and self-dual representations of PGL3 are the trivial repre-

sentation and Langlands quotients Jg(), where B = TU is the normalizer of U and
=j 7
1

J j
is a character of T such that 2= 1. In this case, () is irreducible by [GS04, Thm. 11 and
Cor. 13], and we dene * by setting (*) = () and ( ) = 0. Observe that 1* is the trivial
representation of H.

1=2

It follows from the above discussion that any irreducible representation of H is self-dual.

8.2. Whittaker models. The following lemma summarizes some basic computations.

Lemma 8.1. Let be the minimal representation of split Eg 0 Z=2Z.

(i) Let v :V ! C be a Whitaker character for G, (so V is a maximal unipotent subgroup
of G,). Then

v; v = indyzoy;
1: In particular, for any 2 Irr(H),

Homy ((); v) = Homyoz_y;(;
1)

(ii) For any etale cubic F-algebra, we have:

Homn((); e) = Hompgoz_yz(; C):

8.3. Our earlier results. The following is a simple combination of the results of [GS04,
Thms. 11, 14, 15 and 21] and the previous discussion:

Theorem 8.2. For 2 Irr(PGL3), let : WD | SL3(C) denote the L-parameter of . If is
non-supercuspidal, then () has nite length. If - is supercuspidal, then () is
irreducible supercuspidal. (This covers all 2 Irr(PGL ) if p= 2). In these cases, set() to be
the maximal semisimple quotient of () for = .

More precisely, we have:

(i) If = -, then (*) is irreducible and nonzero. If is generic, or supercuspidal, or a discrete
series representation, or tempered, so is (*). When is not supercuspidal, then (*) is not
supercuspidal and its L-parameter is obtained by composing with the inclusion SL3(C) G, (C).

(ii) If = - and the parameter contains the trivial representation, then ( ) = 0 and (*) is
nonzero irreducible, non-discrete-series and its L-parameter is obtained by composing with the
inclusion SL3(C) G,(C).

(iii) If = - and the parameter does not contain the trivial representation, then we have the
following cases:

= St, the Steinberg representation. Then

(St+) (St )= gen[1] scl1]
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where gen[1] is the generic discrete series representation introduced in Proposition
3.1(ii) and sc[1] is the depth O supercuspidal representation introduced in x3.5 (2).

is a tempered representation induced from a supercuspidal representation = - of GL;
with a non-trivial central character. Then

(+) ()= Indpz() =qndp2()gen Pl"dpz()deg

is a tempered principal series induced from a triple of non-trivial quadratic charac-
ters (1;2;3) such that ; , 3= 1 then

(*) ()= Indg?() = Indg?(gen fdg?()aeg
where is the quadratic character of T determined by (1;2;3) as in x3.4.
is a self-dual supercuspidal representation (so p = 2). Then () is supercuspidal and
(+) ( )= gen deg

where gen is a generic irreducible supercuspidal representation, while g4eg is @ non-
generic supercuspidal representation of unknown length.

Observe that the only case for which we do not know that () has nite length (and hence ()
is dened) is when is a self-dual supercuspidal representation (so p = 2). In this case, however,
the last bullet point states that () is supercuspidal and hence semisimple. Hence, even in this
exceptional case, we may set () = (). Moreover, observe that if is nontempered, then () is
irreducible nontempered and is completely determined by Theorem 8.2. On the other hand,
when is tempered, then so is every irreducible summand of (). In particular, the results
highlighted in Lemma 6.2 and 6.3 hold in this case.

In the rest of the section, we shall complete the results above by completing the unresolved
parts of the theorem.

8.4. A miracle of Oberwolfach. Let 2 Irr(PGL3) be a self-dual supercuspidal repre-
sentation. The goal here is to show that ( ) = 0. Let Q = LU be the 3-step maximal
parabolic subgroup of G,. Recall that the group U has the 3-step Itration

U [U;U] Zy
where Zy is the 2-dimensional center of U and U=Zy is a 3-dimensional Heisenberg group
with the center [U; U]=Zy. Let be a non-trivial character of [U; U], trivial on Zy. Then
;u; isnaturallya(PGL3 0Z=2Z)SL,-module, whereSL; = [L; L]. In order to describe [y,u;;
, we need some additional notation.

Consider the action of the group GL, o Z=2Z on M;, the space of 2 2 matrices, with
elements in GL,(F) acting by conjugation and the nontrivial element of Z=2Z acting via:

01 o> 01
10 * 10

This action preserves the determinant (quadratic) form on M, (F) and descends to the quo-
tient group

X1

PGI—Z(F) =27 = flg 503 = 032
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On the space C.(M3(F)), we have a Weil representation of O3 SL,, which we may regard as a
representation of GL,(F) o Z=2Z. Then the following lemma follows by a standard
computation:

Lemma 8.3. We have an isomorphism of (PGL3 o Z=2Z) SL,-modules:

vy = ind S (Ce(Ma(F))
where GL; is embedded in PGL3 via 0 1
ac a b
3 | @ 1 A
c d

Using the lemma, we can now prove:

Proposition 8.4. Let ( 2 Irr(PGL3s) be a self-dual supercuspidal representation. Then
) = 0.

Proof. It suces to show that is a quotient of [y,y), , in fact we shall show that isa
quotient of SL,-coinvaraints of [y.y), . Decompose M3(F) = M (F) F, where M;(F) is the
subspace of trace 0 elements and F is the center. Accordingly, the Weil representation

of O3 SIf, on Cc(M,(F)) decomposes as a tensor product
Cc(M2(F)) = Cc(My(F))
Ce(F) f

where O3 acts trivially on C.(F) and SL, acts by the Weil representations . Recall that
as an $L,-module, decomposes as a sum

_ +

of even and odd Weil representations. Let ) and () be the theta lifts of their
contragredients to O3, via the Weil representation on C. (M(F )) with respect to . Thus
the SLy-coinvariant of .y is given by

Ind(,arms (0) Tnd™ 280,
Let st be the Steinberg representation of SO(3) = PGL ,. We extend st to two representations
st* and st of O(3) by letting 12 O(3) act by 1 and 1 respectively. Then () = st

while () is*the principal series representation with the trivial representation as a quotient and

st* as a submodule. Since is a supercuspidal representation, it suces to show that it is a
quotient of

PGL30Z=2Z, ,+\ . 4PGL30Z=27 .
IndGL 0Z=22 (st”) ind GLzoz=27§St ):

It is known that any generic representation of G} , in particular st, is a quotient of . Hence
either st* or st is a quotient of . Now the proposition follows from Frobenius reciprocity.
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8.5. Main result. We shall now strengthen Theorem 8.2.

Theorem 8.5. For any 2 Irr(PGL3), let : WDg ! SL3(C) denote the L-parameter of

(i) The representation () is zero if and only if contains the trivial representation (so
= -)and =

(ii) For any =, () has nite length with unique irreducible quotient () (if it is nonzero).

(iii) () is generic if and only if is generic and = +.

(iv) Suppose that () = 0. If is a discrete series (resp. tempered) representation, so is ().
Moreover, () is supercuspidal if and only if is supercuspidal or = St .
(v) If (1)1: (?) = (%, then ;' = ,2.

In particular, the Howe duality theorem holds for the dual pair (PGL3 0 Z=2Z) Gj:

dimHomg,((;'); (%)) dimHomprGL,0z-57(4%;,%)

for any *;2 2 Irr(PGL3 o Z=2Z). Moreover, for 2 Irr(G3), () is a nite length
representation of PGL3 with a unique irreducible quotient (if nonzero).

Proof. (i) From Theorem 8.2, it remains to show that () is nonzero for those represen-tations
as in Theorem 8.2(iii) and any = . Consider rst the Steinberg representation. Recall that
gen[1] is generic while ¢[1] is not. It follows, from Lemma 8.1 part (ii), that gen[1] is a
summand of (St ). Furthermore, by Proposition 6.6, sc[1] cannot be a summand of (St ). Hence

* (St+) = gen[l] and (St ) = s[1]:
The same argument works in the other three cases to show that (*) is the generic G
summand and ( ) is the degenerate summand. Moreover, in the last case of Theorem 8.2,

where is a self-dual supercuspidal representation (so p = 2), we deduce by Proposition 6.6
again that geg is nonzero irreducible.

(ii) This follows from Theorem 8.2 and the irreducibility of geg in the proof of (i) above.
(iii) and (iv): These summarize what we already know from Theorem 8.2.

(v) Suppose that

= ()=, () = 0
If is non-supercuspidal, then 1 and , are both non-supercuspidal. The desired equality
11 = szollows from the results of [GS04, Thms. 11, 14 and 15] and our new understanding
in (i) (which determines () for those in Theorem 8.2(iii))

Suppose that is supercuspidal. Then ' is either supercuspidal or St , in which case both ;
and , are generic discrete series representafions. By (iii), we deduce that ; = ;. Hence, it
remains to show that 1 = ; or , . We now cansider the following two cases:

(a) Suppose 1 - aqd 2 - Ther& 1= 2=+ and is an irreducible generic
supercuspidal representation.
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Consider, for i = 1 or 2, the induced representation IndPGPSpﬁ(i), where P3 is the
Siegel parabolic subgroup. Its normalized Jacquet functor with respect to P is5 -.

Since; ; = -, it follows that IndPGsf,‘;(i) is an irreducible generic tempered
representation.

By the computation of the Jacquet module of the minimal representation ° of G,
PGSpg along P3 given in [MS, Thm. 5.3], we F<):Ieduce that

IndPGSps(i) is an irreducfble quotient of . By [GS04, Prop. 19 and Cor. 320], a generic
representation of G, cannot lift to two dierent generic representations of PGSp .
Hence, we must have

Indp >Pe(1) kad" 508 (2):
By consideration of the Jacquet modules with respect to P3, we see that , i_or,
as desired.

(b) Assume now that 1 = ; .-In this case, we know that (; )
gen and (1 ) = deg-

Moreover, the tempered representation IndPPGSPG(l) is the sum of two representa-
tions, one of which is generic and the other cfegenerate (see Proposition 10.3(i)). By

the Jacquet module of 0 again, we see that both gen and geg lifts to irreducible

PGS . . .
summands of Ind’ ~>P¢(1). Moreover, deg cannot lift to a generic representation of

PGSp and hence’must lift to the degenerate summand [GS04, Prop. 19]. By
Proposition 6.6, it follows that gen cannot lift to the degenerate summand and thus
must lift to the generic summand.

Now suppose that 1 = , = +, sothat = (¥) = (+)1is generig. Then as before, we

see that lifts to the generic summand of IndPGSpG(i) (regardljgss of whether ; is self-
dual or not). By Jacquet module consideration, we see that ; = ;. On the other hand, if
1=2= ,sothat = ( ) = ( ) is nongeneric, then Propositizon 6.7 implies that the

nongeneric summand of IndPGSps(l) is contained in IndP(sSpG(z). Again, Jacquet
module considerations show that 1 = ». 3
P3
The inequality at the end of the theorem is simply a restatement of (v). Finally, given
2 Irr(G;), we write

()= 0c Onec
as a sum of its cuspidal and noncuspidal component. As we noted in Lemma 6.2, the results of
[GS04] imply that (). has nite length. The result in (v) shows that () has a unique
irreducible quotient if it is nonzero, implying in particular that (). is either 0 or irreducible,
and hence () has nite length.

9. The group PGSpg

Before discussing the last dual pair G2 PGSp , we need to devote the next few sections to a
discussion of the structure and representations of PGSp , as wgll as certain particular periods
on G, and PGSpg.
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l(e1;e6) = !(ez;e5) = !(e3;eq) =1

and all other !(ej; ;) = O with i < j . Let GSp be the group of linear transformations g of
F®, such that for some (g) 2 F

(gv;gw) = (g) '(v; w)
for all v;w 2 F®. Then :GSpg ! F is the similitude character.

Let P1, P2 and P3 be maximal parabolic subgroups of GSp . dened as the stabilizers of
subspaces
heii heq;ezi heq;ep;esi
respectively. Fori = 1;2;3,let P ,PGSp besthe quotient of P bythe center of GSp . Thegroup
PGSp ¢ acts faithfully on J = N2E6
1, and we shall (partially) describe how the parabolic subgroups act on this module.

The group PGSp, can be explicitly described in terms of its action on J as follows. Let
Xij = ejMej2 ) fori=j. OnJ, we have a natural trilinear form (x;y; z)
/\ZFG AZFG /\ZFG! A6F6= F:
The group of linear transformations of J preserving this form is SLg=; and PGSp 7 Sp =is
the subgroup xing
e = X1 + X25 + X34:

The Levi factor M3 of P3, as an algebraic group, is isomorphic to GL3=;. Observe that
group acts faithfully on A2F 3, and since the latter is a three dimensional vector space, this
action gives an isomorphism GL3=; = GL3. Thus we have an identication

M3 = GL(hx12; x13; X23i):

Under this identication, the maximal torus is given by diagonal matrices (t;;t;t3). The
three simple co-roots of PGSpg are, respectively,

) = (Lt ) ~(ty= (Gt 51); -() 5 (Ltt):
An unramied character of the maximal torus is given by a triple of complex numbers
(s1;52;83)
(t1;t2;t3) = jtaj*jtaj*2jtaj™:
The Weyl group action on the characters is somewhat dierent in this picture. The simple
reections corresponding to the rst two roots ; and ;, are the usual permutations of entries of
(s1; s2; s3), however, the simple reection corresponding to the third simple root 3 is given by
(s1;52;83) ! (s1+ s2+ s3; s3; S2):

Thus the root hyperplanesares; s; = 0ands;+s; = 0 for short and long roots, respectively.
This looks like a D3 root system; however, the Weyl-invariant quadratic form in this case is

2 3

1 2
q(s1;s2;83) = s2+ s3+ s3 gls1+ 52+ s3)
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rather than the usual dot product, and with this form, we have a realization of the C3 root
system with simple roots

1=(0;1; 1); 2= (1, 1;0); 3= (0;2;2):
This somewhat unconventional description of the C3 root system is a source of potential
confusion, as one has the tendency to confound it with the more familiar description of the

root system of Sp , but what we have done here is denitely the natural way to set things up
for PGSpg.

The character is in the positive chamber if for every positive root , (-(t)) = jtj° for some
s 2 C such that <(s) > 0 (the real part). One checks that is positive if
<(s1) > <(s2) > j<(s3)j:
The modulus character of M3 = GL3s is
ps(m) = jdet(m)j?:
It follows that the Levi factor M13 of P13 = P41\ P3 is
M1z = GL(hx12;x13i) GL(hx23i):
The group P13 is the stabilizer of the space V, = hxiy; X13i.

Consider now the group P, and its Levi factor M,. The standard Levi factor of P, isGL,
GL, where the rst GL, acts on hes;esi in the standard way, xes hes; esi and acts by transpose-
inverse on hes; egi. The second GL;, acts on hes; esi in the standard way, by det on hey; eyi and
xes hes; egi. The group P, is the stabilizer of the singular line V1 = hxq2i, and the Levi factor
M, acts faithfully on the 4-dimensional subspace

V4 = hx13; X23; X14; X24i

preserving the quadratic form x | (x; X; xsg). If we identify x = axis + bxiz + cX24 + da3
with the matrix

a b

c d

then (x; x; xsg) = 2 det(x). Thus, with V4 identied with the set of 2 2 matrices, we have M,
= GL, GL,=GL" ;| whereGL{ = f(t;t 1):t2 Glig;

sothat (;) 2 My actson x 2 V4 by x | x where is the transpose of . The element (;) acts
on the line hxy,i by det(). The modulus character is

p,((;)) = jdet()j>:
This sets up the necessary notation to discuss the representations of PGSpg.

10. Representations of PGSps

In this section, we list some irreducible non-supercuspidal representations of PGSp(F),
relevant to this work. Observe that the local Langlands correspondence is known for the
Levi factors of all proper parabolic subgroups of PGSp (f ) (by Gan and Takeda [GT11] for M
= GSp ). Thus, following Shahidi [Sh1], reducibility points of generalized principal series can
be computed using L-functions of Langlands parameters.
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10.1. Principal series representations for P, . We rst consider certain principal series
representations for the parabolic subgroup P, = M>N,, where M, = GL, GL,=GL". let be
an irreducible representation of GL, with L-parameter and central character ! . Set

|2( p
) = 1ndPEsPs ’
and I, (s;

) = Ind"®Ps(j det j°)

(jdetj®)
if we need to consider a family of induced representations. Then we have:

Proposition 10.1. (i) If 2 Irr(GL,(F)) is unitary supercuspidal, then I, (s;
) is reducible if and onlyif = (so2! = 1) and one of the following holds:

I = 1and s = 1=2, in which case one has:

0 o) Io1p(1=2;
) FoJa(1=2;
) Lo

where ,() is a generic discrete series representation.

I = 1 (so is dihedral), Im() = S3 (the symmetric group on 3 letters, regarded as a
subgroup of GL,(C)) and s = 1, in which case one has:

0 ! gen[] Fo1a(3;
) boJa(1;
) Lo

where gen[] is a generic discrete series representation.

I = 1, Im() = S3 (the symmetric group on 3 letters, regarded as a subgroup of
GL,(C)) and s = 0, in which case one has:

I2(
) = 12
)gen |2(
)deg
where |5 (
)gen is generic.

(ii) If = st is a twisted Steinberg representation, then I, (s;
) is irreducible except for the following cases:

= 1 and s = 5=2 or 1=2, in which case one has

0 ! Sthsp6 I 15(5=2;st
st) I J,(5=2;st

st) I 0
and

0 I Ing” P (St)gen I 15(1=2; st



st) I Jy(1=2; st
st) I 0

where IndEfS'T’G(St)gen is the generic summand of IndﬁfSPG(St).

2= 1but = 1and s= 1=2, in which case one has:

0 ' genl] I 1y(1=2;st
st) I Jy(1=2;st
st) I 0

where gen[] is a generic discrete series representation.
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10.2. Principal series representations for P;3. Now we consider certain principal series
representations for the parabolic subgroup P13 = Mi13N13, where M13 = GL, GL;. Let be an
irreducible representation of GL, with the central character ! and L-parameter .

Set

l13(

1) = Ind"®%Ps e e

1 and l;3(s;

1) = Ind?®*Ps(j det j°)

1
if we need to consider a family of induced representations. In the more familiar language of
representations of6 Sp , 13he restricléion of I (s;
1) to Sp is a principal series induced from j j2s!

jdetjs. In particular, if is unitary tempered and s > 0, this is a standard module. We have:
Proposition 10.2. If 2 Irr(GLy(F)) is unitary supercuspidal, then l;13(s;
1) is reducible it and only if2 = (so ! = 1) and one of the following holds:

I = 1 and s = 1=2, in which case l13(1=2;
1) has length 4 and has a unique irreducible submodule 13(), which is a generic
discrete series representation.

I = 1and s= 0, in which case one has:

l13(
1) = I13(
1)gen |13(
1)deg Wwhere 113(
1)gen is generic.

10.3. Principal series representations for P3. Now we consider certain principal series
representations for the parabolic subgroup P3 = M3N3, where M3 = GL3. Let be an
irreducible representation of GL3. We set

— 1ngPGPs.
I3() = Ind"33Pe:

Proposition 10.3. (i) Assume that is discrete series representation with trivial central
character. Then we have two cases:

If = - then

13() = 13(-)
is irreducible.
If = - then

13() = I13()gen 13()deg
where I3()gen is generic.

(ii) Let 1;2;3 be three characters of F such that 1 » 3 = 1, and let = (1;2;3) be the
associated principal series representation of GL3(F) (which is possibly reducible). Then the
induced representation I3() is irreducible unless one of the following two conditions hold:

i = j j! for somei or i=j = j j! for a pairi = j.
The three characters ; are quadratic, non-trivial and pairwise dierent. Then I3()

= |3()gen |3()deg



where I3()gen is generic.
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Proof. These are some old results for representations of GSp,(F) translated to our setting.
Following [Ta, x3], the Levi subgroup of the Siegel parabolic subgroup in GSpG(F) is isomor-
phic to GL3(F) GL1(F) such that, under this isomorphism, the center of GSpG(F) corre-
sponds to the image of the map : GLy(F) ! GL3(F) GL1(F) dened by ! (; ) where 2
F . It follows that

M3 (F) = (GL3(F) GL1(F))=GL1(F);
a rather awkward description of a group isomorphicto GL3 (F ). However, by our identication M3
= GLs, the above isomorphism is given by the map g ! (g;detg). Keeping in mind that our

have the trivial central character, it follows that our I3() is given by o 1 in the notation
of Tadic.

With this translation, we now treat each part of the proposition in turn:

(i) By [Sh2], the representation o 1 reduces if and only if - and the exterior square L-
function of has no pole at s = 0. In [Sh2], however, the result is stated for representations of
Sp (F). The variant of that result for representations o of GSp (F) involves a twist
by th% character . Since, in our case, = 1 we have what we stated. Now observe that the
exterior square L-function of is the same as the standard L-function of - (a simple
observation that the exterior square of the standard representation of SL3(C) is the dual of the
standard representation). Since the standard L-function of a square integrable representation of
PGL3(F) has no pole at 0, it follows that I3() reduces if and only if = -.

(ii) This is [Ta, Example 7.7 and Theorem 7.9]. Observe that the condition ;; = j jis
redundant since 123 = 1.

Remark: Observe that the description of reducibility points in Proposition 10.3 (ii) matches
perfectly those for G, in Proposition 3.3. In fact these, and many other reducibility results for
induced representations of PGSp (F) stated in this section, can be derived using the theta
lifting from G,, see [GrS1] for an illustration of this idea.

10.4. Principal series representations for P;. Now we consider certain principal series
representations for the parabolic subgroup P; = MiN;, where My = GSp . Let be an
irreducible representation of GSp,. We set

11() = Ind"33P¢ and I1(s; ) = Ind" s jj
where is the similitude character of GSp,. Let be an irreducible supercuspidal repre-
sentation of GSp4(F) with trivial central character. Let * : W D¢ ! Spin, = Sp(4) be its

Langlands parameter [GT11].

Proposition 10.4. Assume that is a supercuspidal representation of GSp,(F) with trivial
central character such that the parameter std ° contains the trivial representation, where std
denotes the 5-dimensional standard representation of Spin . 'I;hen I1(s;) is reducible if and
only if s = 1=2, in which case one has:

0 o) Fo1a(1=2;) bo)1(1=2;) !

0; where 1() is a discrete series representation.
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11. Fourier-Jacobi and Shalika periods

In this section, we introduce and study a Fourier-Jacobi-type model for the group G, and
a Shalika period for PGSp .. These are some of the periods that will appear when we consider
a game of ping-pong with periods for the dual pair G, PGSp , as discussed at the end of
the introduction.

11.1. Whittaker periods. We begin by recalling the following results about Whittaker
periods from [GS04, Prop. 19 and Cor. 20], see also the appendix of [HKT].

Proposition 11.1. Let be the minimal representation of E and let (V 0, vo) be a Whit-
taker datum for PGSp  (so V %is a maximal unipotent subgroup and y© @ generic character
of V9). Then we have an isomorphism of G,-modules:

— 2G
vo, Vo = indy* v

where (V; v) is a Whittaker datum for G,.

Corollary 11.2. (i) If 2 Irr(G3) is generic and () is its big theta lift to PGSpg, then
dimHomyo((); vo)=1
so that () contains a unique irreducible generic subguotient and thus is nonzero. (ii)

If 2 Irr(G3) is non-generic and 2 Irr(PGSpg) is generic, then

Homg,pasp, (;
) = O:

11.2. Fourier-Jacobi period of G,. Let Q= LU be the 3-step maximal parabolic subgroup of
G,. Recall that [L; L] = SL, corresponds to the long simple root . Thus V = UU is the
unipotent radical of the standard Borel subgroup of G,. If we set J = [L;L]U, then the
quotient of J by the two-dimensional center Zy of U is the Jacobi group with one-dimensional

central subgroup [U; U]=Zy = U,.. Fix a non-trivial additive character of Uy, = F.
Let be the unique irreducible representation of the 2-fold cover J, ~trivial on Zy, such that
U, acts by . If is a genuine representation of Slf;, we have a representation of J on

. For 2 Irr(G;y), the Fourier-Jacobi period of with respect to is the space

Hom; (; e

) = Homg, (; Ind,?
):
The character denes a Weil index, that is, a function :F ! C with values in roots of
one such that (a) (b) = (a;b) (ab) where (a;b) is the Hilbert symbol. Let
be a smooth character of F. Let | (s) be a principal series representation of SLf oPtained by

inducing jj®, via normalized induction. We can x our data so that, for s = 1=2, thereis a short
exact sequence:

0! St ! I (1=2)! * 1 o

where * is the even Weil representation, i.e. a summand of . The contragredient of | (s)is

I( s).
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Proposition 11.3. As a representation of G, indfz(l (s)
Itration ) admits an equivariant

01lg I7
with successive quotients described as follows:

lg = indVG vV,

J1:=11=lg |;§(§+21—,' ig\dPGi‘z )
Proof. Let B = TU [L; L] SL, be a Borel subgroup, where T is the one-dimensional torus, the
image of the simple coroot :GL; ! T. Observe that we have an isomorphism of J-modules

I (s)

= ind’y( §5°F)
where f
v21 (s) f ~
is mapped to a function onJ given by g! f(g) (g)(v). (Heref is inated from SL, toJ.)
The later induction is not normalized.

Let N be the unipotent radical of the maximal parabolic P. Let 5, be a character of N
nontrivial only on the root space U, N. Then , restricted to BU, is ind@iced from a

character of TNe equal to jj2 on T and 2+ on N. Using transitivity of induction,
and = 1, it follows that
I (s) T
= ind'y(j 27 24);
and hence
ind$2 (I (s) <
) = ind;?\ (] js+3:2 24):

The next step requires the technique of root exchange, as in the proof of Proposition 3.4.
Let U%, a conjugate of U, be obtained by adding U to N and removing Uz, from N. The
root exchange is an isomorphism

ind$z () i°**7% 24) = indTLo(i 2472 24);
O .
f 1 9 given by ya

fO(g) = f(ug) du
]

where, abusing notation, 2. is also viewed a character of U° supported on the root space
U2+.

As the last step, let V0= U 3 . Then V%is the unipotent radical of a Borel subgroup of
G, such that the simple roots are 2+ and 3 , and the highest root is . Consider

c _
indTy0(j 157 5.) = Cc(U 3 ):

We can analyze this module using the Fourier transform on C.(U 3 ). This gives an exact
sequence of TV -modules

0 C
0! indyo’ ( vo)! indfyolj 572 241 jj™772 51 0

where yois a Whittaker character of V%and, in the last term, . a character of V % sup-
ported on the root space U,.. The lemma follows by induction in stages, giving ind(f/?o Vo
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as a submodule and the claimed quotient, after taking into account the relevant normalization
for the parabolic PO with unipotent radical N° such that V%= NOU,,.

Corollary 11.4. Let 2 Irr(Gy) be generic and tempered. If s> 1=2, then
HomGz(ind?z(l (s)
;)= C:
Proof. We need to show that we can avoid the top piece of the Itration in Proposition 11.3.
By the Frobenius reciprocity,

EXtiGz(lp(;‘F %;in PGLz 1)) = Ext'm(jdetj?=2 indPGNL2 ;r()

Since is tempered, the center of M G acts on r () Qy characters such that jj = jjt

with t 0. Sinces > 1=2, all Ext groups vanish and is a quotient of Homg (inszZ(J (s)
) since it is generic.

11.3. Shalika period on PGSpg. We shall now discuss a Shalika period on PGSpg.

Recall the maximal parabolic subgroup P, = M;N; of PGSpg, with identications of the
Levi factor M; = (GL, GL;)=GL 0 and of the maximal abelian quotient N,=[N;; N3] of
the unipotent radical N, with M, the space of 2 2 matrices. With these identications, let

> be a character of N, (F) obtained by composing the trace on M, (F) with a non-trivial
additive character of F. Then the stabilizer of , in the Levi group M, is the diagonally
embedded PGL, . The Shalika subgroup of PGSpg is the semi-direct product

S=PGL, n N,
and the Shalika character ¢ is the character , extended to S(F) (trivially on PGL,(F)).
For any smooth representation of PGSp (F;), the Shalika period of is the coinvariant space
S; s

This Shalika period has already been exploited in [SWe]. Indeed, the following was shown
in [SWe, Lemma 4.5]:

Proposition 11.5. Let be the minimal representation of E; and (V; v) a Whittaker
datum for G,. Then

v; y = ind"$Pe
as PGSpg-modules.

11.4. Shalika period of . We now consider the minimal representation of the dual pair
G, PGSp %nd determine its Shalika period s; ,asa representation of G, (F). To describe
the answer, we need to introduce some more notations.

The group PGL, acts by conjugation on M, preserving the determinant (quadratic) form.
As we saw in x8.4, there is a Weil representation of PGL, SL, on C.(M3(F)) which decom-poses
as a tensor product

Cc(M2(F)) = Cc(M,(F))
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where M(F) is the space of trace zero matricgs. We view C.(M(F))

as a representation of the groupJ = [L; L]JU G, introduced in x11.2, where the rst factor is a
repfesentation of SL, and is the irreducible representation of J introduced in x11.2.
With the group PGL, acting trivially on , we see that C.(M,(F)) becomes a representation of
PGL, J.

We are now ready to compute s; . Firstly, we need y Sy - This is a twisted variant
of N ,,given by Proposition 13.7, and computed along the same lines. In fact, since the
character , is generic, instead of a Itration we end up with a single term:

N»; > = ind; HCc(M,(F))
)

as G, PGL,-modules. It remains to compute the PGL;,-coinvariants of the right hand side.
We need the following:

Lemma 11.6. Let H G and L be three p-adic groups. Let W be a smooth H L-module, and

an irreducible representation of L. Let ()
be the maximal -isotypic quotient of W. If Ext, (;) = O then
ind§ ()

is the maximal -isotypic quotient of indGNV. Here ind stands for induction with compact
support.

Proof. Since ,[Extl (7 = 0, the kernel of the projection of W on ()

does not have as a quotient. Thus, it suces to prove that if Hom (W;) = 0, then}_’-iomL(indG
W; ) = 0. We shall prove that

Hom(((indSW)%;) = 0

for any open compact subgroup K of G. Write G = [j>, HgiK where | is an index set, and set
Ki = H\ giKg : 1 for every i 2 |. Then, as an L-module, (indﬁW)K is a direct sum of
W Ki. Since W Xi is a direct summand of the L-module W, it follows that Hom (W Ki; ) = 0, and
this proves the lemma.

We apply Lemma 11.6 takingH G tobe) G, andL = PGL,. Since Ext? PGLZ(1; 1) =
0, the lemma implies that computing PGL,-coinvariants of y , boils down to computing
the PGL;,-coinvariant of CC(MZ(F )), where it is the full degenerate principal series | (1=2).
We have shown:

Proposition 11.7. As a representation of G, (F), one has:
s; s (m; 2)eaL, indjX(1(12)
):

12. Howe Duality for G, PGSpg: Tempered Case

After the preparation of the previous 3 sections, we are now in a position to begin our study
of the theta correspondence for the dual pair G, PGSp . Ln this section, we shall show the
Howe duality theorem for tempered representations of G,. The key is to show the analog of
Propositions 6.6 and 6.7 for generic representations of G,. This will rely on another curious
chain of containments given in the following lemma, which comes from a consideration of a
game of ping-pong with periods.
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Lemma 12.1. Let be the minimal representation of E;. Let 2 Irr(G,) be tempered and let
v : 'V I C be a Whittaker character for G,. Let H = PGSR and 2 Irr(H) be

tempered such that
Homg,u(; )= O:

Then we have the following natural inclusions
Homy (; v) Homy((); v)= Homs(-; s)
Homs((-); s) = Homg,(ind, 21 (%=2)

;—): If is generic, then all of these spaces are one-dimensional.

Proof. We examine each containment in turn:
The rst inclusion arises from the surjection () . The
second follows from the identity
Homy ((); v)= Homyu(; v )= Homul(y; , ;) combined
with Proposition 11.5 (i.e. [SWe, Lemma 4.5]):
v; y = indg "
and the Frobenius reciprocity.
For the third, observe that () is the complex conjugate of (). Since = - and
= -, we have (-) -.
The fourth follows from the identity,
Homs((-); s) = Homse,(; s =) = Homg,(s;  ; -) combined with
Proposition 11.7:
5., = ind;?F (1=2)
and Frobenius reciprocity.

If is generic, then the rst and the last spaces are one-dimensional, with the latter by
Corollary 11.4 applied to s = 1=2. Hence, all spaces in the chain are one-dimensional.

We can now obtain the following two propositions as consequences of Lemma 12.1.

Proposition 12.2. Let 2 Irr(PGSp ), be tempered. Then () cannot have two irreducible
tempered and generic quotients.

Proof. Let 1;2 2 Irr(G;) be tempered and generic such that () 1 ». Thendim()y; ,
2:
On the other hand, dim()y; , = 1 by Lemma 12.1, which is a contradiction.
Remark: This proposition is proved in [SWe] for generic supercuspidal representations using

the uniqueness of Shalika functional (shown in [SWe] for supercuspidal representations), but
the proof of this uniqueness given there is dicult. The proof here is based on Corollary 11.4.
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Proposition 12.3. Let 2 Irr(G;) be tempered and generic. Then () cannot have two
tempered irreducible quotients. In particular, its cuspidal component (). is irreducible or 0.

Proof. Let 1;2 2 Irr(PGSp ) be irreducible tempered and such that () 1 . By Lemma
12.1, applied to , ; and then-to ,,, one has: -

1= dimHoms(1; s)= dimHoms((); s) = dimHomsg(2; s): Since
1 2 is a quotient of (),
1= dimHoms((); s) dimHoms(y; s)+ dimHoms(2; s) = 2;

which is a contradiction.

Combining Propositions 12.2 and 12.3 with the results of x6, we can now show the Howe
duality theorem for tempered representations of G,:

Theorem 12.4. Let 2 Irr(G;) be tempered and consider its big theta lift () on PGSp .
Then

6

(i) () has nite length and a unique irreducible quotient () (if nonzero), which is
tempered.

(ii) Moereover, for tempered 1;2 2 Irr(Gy),
0=1(1)=1(2)=) 1= 2:

Proof. (i) We have seen (i) for non-generic in Corollary 6.8. The proof for generic is the
same, using Lemmas 6.2(i) and 6.3(ii), as well as Proposition 12.3.

(ii) If one of 1 or ; is nongeneric, then the desired result follows by Proposition 6.6. If ;and
> are both generic, then the desired result follows by Proposition 12.2.

We also point out the following corollary:

Corollary 12.5. Let 2 Irr(G;) be generic, supercuspidal and not a theta lift from PGLs3.
Then () is generic, supercuspidal and irreducible.

Proof. By [SWe], we have known that () is generic and supercuspidal (hence tempered and
semisimple), but now we know by Proposition 12.3 that it is also irreducible.

13. Jacquet Modules

The purpose of this section is to compute various Jacquet modules of the minimal repre-
sentation of E; with respect to the maximal parabolic subgroups of G, and PGSp,. We note
that the results of this section are entirely self-contained, and do not depend on any prior
results in this paper. As consequences of the results here, we deduce Lemmas 6.2 and 6.3 for the
dual pair G, PGSp . Indseed, we shall determine in Theorem 14.1 the theta lifts of all non-
tempered representations of G, and PGSpg precisely.
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13.1. Jacquet functors for G,. Recall that P = MN and Q = LU are the two maximal
parabolic subgroups of G, as before, in standard position relative to a maximal split torus T
in G, and a choice of positive roots, so that P \ Q is a Borel subgroup. In particular, their
Lie algebras arise from Z-gradings given by two fundamental co-characters. Since Gj is
contained in E7, as a memeber of the dual pair, the two co-characters give Z-gradings of the
Lie algebra of E;, dening parabolic subgroups P = MN and Q = LU of E;, whose
intersections with G, are P and Q, respectively. The Lie types of the Levi factors M andL
are Dg and A; As, as explained in [GS99]. In the rest of the paper, we shall x the following:

The group P acts on Cc(GL>) and C.(GL1) by left translation by g and det(g),
respectively, via the identication M = GL, .

The group Q acts on Cc(GLy) and C.(GL71) by left translation by g and det(g),
respectively, via the identication L = GL,.

Let B be the group of lower-triangular matrices in GL,. Then B acts on C¢(GL1) by
right translation by the (1; 1) matrix entry of g 2 B.

We identify M = GL, such that the action of M on N=[N; N] is the symmetric cube of the
standard representation of GL, twisted by determinant inverse. In particular, a scalar matrix
(z;z) in GL, acts by z. We have [MS, Theorem 6.1],

Proposition 13.1. Let H = PGSp .. As a GL, H-module, rp () (the normalized Jacquet
functor) has a Itration with three successive subquotients (top to bottom):

(1) ;7 n=op jdetj'=?; jdetj>
(2) IndZ;*" ( Cc(GLa)).
(3) Indf,,Cc(GLy).

Here, note that:

- In (1), the center of M = GL, acts trivially on both p émd ., the minimal and the
trivial representation of the Levi M.
-In (2), = jj ¥¥2jjis a character of the group B of lower triangular matrices in GL;.

For the computation of rq(), we rst make some preparations. Let W be the Weil
representation for the similitude dual pair GL, GSOy4; see [Ro] where theta correspondences for
similitude groups are treated in detail. Observe that GSO4 = (GL, GL,)=GL , \ﬁ/ith the
isomorphism realized by latter acting on the space M;(F) of 2 2 matrices by left and right
multiplication and the quadratic form given by the determinant. We identify the rst factor
GL, with L so that the action of L on U=[U; U] is the standard representation of GL,. The
irreducible guotients _ of w are

, Where is an irreducible representation of GL,. We need a slight renement of this to obtain
the big theta lifts.

Lemma 13.2. Consider the similitude theta correspondence for the dual pair GL, GSO4on
W. Let be an irreducible generic representation of GL . Then ( ) =
and (

Proof. Let V = F be a maximal unipotent subgroup of GL, and  a non-trivial character of
V. We shall use the fact that Wy, = C.(GL;), the regular representation of GL,, where V
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is in any of the three GL,. Also, when we view C.(GL,) as giving a theta correspondence
between two GL,, the big theta lift of any irreducible is either or -, depending on
identications or convention [APS, Lemma 2.4].

We have (
)
( _
) as a quotient of W. Applying the functor of (V; )-coinvariants, with V sitting in one of GL>
factors of GSOy, we conclude that (

)

is a quotient of the regular representation of GL,. This implies that (
) = , as desired.

In the other direction, let )

be a quotient (if any) of the kernel of (-) !
Af 1 orsis geneEic, then we can take (V; ) twisted co-invariants of -
(=), for the corresponding GL , and obtain a contradiction to the fact that, for the regular
representation, the big theta lift of - is . Thus both ; and , are one-dimensional. By the
Kunneth formula [Ra]

1
Extgi,eL, (1

2;

) = i+j=1Extg, (15)
EXtGLZ(Z; )

and this clearly vanishes since , Homg, (i;) = 0 for i = 1;2. Thus 1

2 - is - a guotient of ( ). Hence
1 _
2 is an irreducible quotient of W, contradicting the fact that all irreducible quotients are of

the form

Proposition 13.3. Let H = PGSp,. As a GL, H-module, rq() (the normalized Jacquet
functor) has a Itration with three successive subquotients (top to bottom):

(1) Y2y = A, jdetj32 o, jdetj2.(2)

Q
|ndGL2“B$ CZC(GLl)).
(3) Indf' W.

- In (1), the center of L = GL, acts trivially on both 4 gnd A , the minimal and a
principal series representation of the two factors of L.

-In (2) = j j¥2 j jis a character of the group B of lower triangular matrices in
GL,.

Proof. This proposition is entirely similar to [GS99, Prop. 6.8], which treated the case of non-
split form of H, except the character was not determined there. This is done as follows. For a
generic character of GL,, representations la() and o (
) are both irreducible and la()
I2

) is a quotient of ; this follows from the bottom factor (3) of the Itration. Hence rq(lq())
l2(

) is a quotient of rp (). Now determining is an easy exercise using rq(lq()).

13.2. Non-tempered representations. We enumerate the nontempered irreducible repre-



sentations of G, using the discussion from Section 3. Let P = MN and Q = LU be thetwo
maximal parabolic subgroups in G, as before. Their Levi groups are isomorphic to GL,. Let
be a representation of GL,, and let Ip () and Iq() be the corresponding normalized induced
representations of G,. Irreducible, non-tempered representations of G, are described as follows,
where is irreducible, and ! is the central character of .

(a) Unique irreducible quotient of | 4() where is an unramied twist of a tempered
representation such that j!j= j j° for some s > 0.
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(b) Unique irreducible quotient of | ,() where is an unramied twist of a tempered
representation such that j!j= j js for some s> 0.

(c) Unique quotient of | {) where is the unique quotient of a representation induced from
an ordered pair of characters 1;, such that jij = j j5, joj = j j°2 wheres; > s, > 0.

In (a) and (b), Iq() and Ip () are standard modules, while in (c), Ip () is a quotient of a
standard module associated to the minimal parabolic P \ Q. In any case, each of these
induced representations has a unique irreducible quotient which we denote by Jq() in (a) and
by Jp () in (b) and (c). These representations Jq() and Jp () exhaust the irreducible
nontempered representations of G,.

We also enumerate some relevant nontempered representations of PGSp ¢ Let Pi = MiN;j,
i = 1;2;3 be the three maximal parabolic subgroups of PGSp . Let Ii() denote the represen-
tation of PGSp6 obtained by normalized parabolic induction from P;, and let I;() denote
the representation of PGSp obtained by normalized parabolic induction from P; \ Py. We
shall consider the following non tempered representations of PGSp ¢ corresponding to the
cases (a), (b) and (c) above:

(a’) If is anirreducible representation of L = GL satisfying the conditions of (a) above, let

1
be a representation of M, = GL, GL,=GL" = GSO4. Then I,() is a standard
module, with unique irreducible guotient Jo() = Jo(

).

(b”) If is an irreducible representation of M = GL,, satisfying the conditions of (b)

above, let =
1 be a representation of M1\ M3z = GL; GL;. Then I13() is a standard module with
unique irreducible quotient J13() = J1s(
1).

(c’) If is an irreducible representation of M = GL,, satisfying the conditions of (c)
above, let =

1 be a representation of M1\ M3 = GL, GL;. Then I13() isa quotient of a
standard module associated to the Borel subgroup, Hence, it has a unique
irreducible quotient which we denote by J13() = J13(

1).

13.3. Theta lifts from G,. Now the following lemma attempts to compute the theta lifts
of the above non-tempered representations of G, to PGSpg.

Lemma 13.4. Let 2 Irr(G;,) be non-tempered.

If lq(-) where is as in (a) above, then () is a quotient of Iy
) and hence has nite length. Moreover, (J2(
)) =, 0 where Jo(
) is the unique irreducible quotient of I (
).

If Ip (-) where is as in (b) and (c) above, then () is a quotient of I;3(
1) and hence has nite length. Moreover, (J13(
1)) = 0 where Jis(
1) is the unique irreducible quotient of l13(
1).

Proof. Let be the minimal representation, and 2 Irr(G;,). We shall use the fact that ()
= Homg,(;)

as non-smooth H = PGSps—moduIes, where the former is the linear dual of (). Assume
that Iq(-). Then



() = Homg,(;) Homg,(;lq(-)) = Hom(rq();-):
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Now we shall use the Itration of rq() from Proposition 13.3.

Let 1, 2 and 3 denote the three subquotients in the same order. Observe that
ExtiL( ;1) are trivial from the central character considerations, since the central char-acter
of - is a negative power of jzj. Hence we have a long exact sequence

0! Hom(2;-)! Hom(rq();-)! Hom(3;-)! Extl(z;—) Since ; is
induced from B, by the second adjointness,
Exty(2;-) = Exty(lhd" (p€c(GL1)); re(-))

where T = GL; GLq, the maximal torus in B. Observe that the action of the second GL; on
Ind EZ(CC(GLl)) is jj, and this is dierent from the action on rg( ) by our assumption on .

Hence Ext' (2;—)L= 0 for all i, and we can conclude that
Homy(rq(); -) = Homy(3;-) = Hom_(Ind" W;;

where, for the second isomorphism, we have simply substituted the explicit expression for
giyen in Proposition 13.3. By [GG06, Lemma 9.4], the maximal - isotypic quotient of Ind"

W . is (Ind" (-))
- where (-) is the big theta lift for the similitude theta correspondence on W. Since is
generic, Lemma 13.2 shows that (-) =

and it follows that
Homy(3;-) = I

):

Hence () P
), and ()- 2 (
)- by taking smooth vectors. Thus () is a guotient of I (
). Observe that we have proved in the process that P
) is a quotient of ra(), o that (J2(

)) = 0. This establishes the rst bullet. The proof of the second is completely analogous.

13.4. Jacquet functors for PGSp,. Recall that in PGS , we have xed three standard
maximal parabolic subgroups P, P, and P3. They correspond to Z-gradings of the Lie
algebra of PGSp, given by three fundamental co-characters. The action of each of these
three co-characters gives a Z-grading of the Lie algebra of E;, and these gradings dene three
parabolic subgroups P1, P, and P35 of E;. To recognize these parabolic subgroups, perhaps
it is easiest to proceed as follows. Observe that the E; Dynkin diagram contains a unique D4
subdiagram. We embed G, into D4. The centralizer of G, in the split, adjoint E; is PGSp . Let
P be the parabolic subgroup of E;, whose Levi factor has the type Ds. This parabolic is
contained in precisely three maximal parabolic subgroups denoted by P;, P, and P3, whose
Levi factor types are, Dg, A1 Ds and Eg, respectively. The intersection of P; and PGSp is P;,
for each i. We write P; = M;N; and P; = M;N; for the Levi decompositions for these
parabglic subgroups.

Case P3: This is treated in [MS, x5], and we summarize the results as follows. The unipotent
subgroups of P3 and P3 are abelian, M3 = GL3 and the modular character is

ps(m) = jdet(m)j?:

Let Op denote the space of trace 0 elements in the octonion algebra O. On the space O3, we

have the natural diagonal action (x;y;z) ! (gx;gy;gz) of g 2 G, and the row-vector action

(x;y;2) ! (x;y;z)m 1 o of m 2 Gls. Let
03 be the set of all nonzero (x;y; z) such that
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the linear subspace hx;y; zi Og is a null-space for octonion multiplication, i.e. the product of
any two elements in the space is 0. Such non-zero null-spaces in Og are of dimension 1 or 2.

We have an exact sequence of G, GLz-modules
0! Cl

)! N ! N3 ! Owhere (g;m) 2 G, GLz actson f 2 C(
) by
((g;m) f)(x;y;2) = jdet(m)j* f((g 'x;g 'y;g 'z)m):

The group G, Gls acts on
with two orbits
1 and
2, where
i is the subset of triples (x;y;z) such that hx;y;zi has dimension i. Thus C¢(
) has a [tration with Cc(
2) as a submodule and Cel

1) as a quotient. Each of these can be explicitly described as G, GLz-modules.

In order to state the result, let Q; and Qy be the maximal parabolic subgroups of GL3
stabilizing subspaces consisting of row vectors (; 0;0) and (;;0), respectively. Observe that
these are block lower-triangular groups with Levi factors isomorphic to GL; GL, and GL;
GLq, respectively. Their modular characters are

ai(g1;82) = jeij ? jdet(ga)i  and  q,(82;81) = jdet(ga)j ' jeaj’:
Recall that rp,() = 1=P23 N; IS the normalized Jacquet module. Then:
Proposition 13.5. As a G, GLz-module, rp Q has a ltration with three successive
subquotients (from top to bottom):

(1) 7% Ny = e 5 Jdetj(2)

IndGng& Cc(GL1)).

(3) Ind22°" (Cc(GL2)).

Here, note that:
- In (1), the center of M3 = GL3 acts trivially on both ¢ and ;, the minimal and the
trivial representation of the Levi M
- In (2), (81;82) = jgaj '72 jdet(gy)j'=? is a character of Q.
- For i = 1;2, Q; acts on C.(GL;) by right translations via the factor GL;.

Case Py: This case is not in the literature; however, it is similar to the computation of the
Jacquet module of the minimal representation of Eg with respect to a maximal parabolic
subgroup of F4 in [SWo, x5]. The unipotent radical subgroups of P; and P; are Heisenberg
groups with My = GSp,. Let be the similitude character of GSp . ,The modulus character of
My is
p, (M) = j(m)j : 3

Recall that Og is the space of trace 0 octonions. On O‘(‘), we have the row-vector action

(y;x%y0) L 6y x%y%)m b of m2 GSp,
preserving the form O ! 720 given by

Gy x%y0) ! x A X+ y Ay
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Let
0
O* be the set of all nonzero (x; y; x%; y°) such that the linear subspace hx; y; x%; y%i Og is a null-
space for octonion multiplication and x ~ x9+ y A y0 = 0. We have an exact sequence of G,
GSp,-modules

0! C¢(
J! Ny ! Ny ! Owhere(g;m) 2 G, GSp, actson f 2 C
) by
((g;m) H)xy;x%y%) = i(m)i® f((g *x;8 'y;g %g yOm):

Now the group G, GSp gcts on 1 ) i
with two orbits

and

, Where

is the subset of quadruples (x; y; x%; y°) such that hx;y; x%; y% has dimension i. Thus C(
) has a Itration with C(
2) as a submodule and C(
1) as a quotient. Each of these can be explicitly described as G, GSp,-modules.

In order to state the result, let Q; and Q; be the maximal parabolic subgroups of GSp ,
stabilizing subspaces consisting of row vectors (;0;0;0) and (;;0;0), respectively. LetL;
= GL; GL;, be the Levi subgroup of Qi such that (g1;82) 2 GL; GL, acts on the
qguadruples, after rearranging the order, by

6 x%y;v0) U (xgy 15 x%g1det(g2) 5 (y;v0)e, b):
Let L, GL, GL; be the Levi subgroup of Qy such that (g2;81) 2 GL, GL; acts on the
quadruples by

(v x%y0) L ((xy)g, 5 (% v0)e, tey):
The similitude character , restricted to L; and L, is given by
(81;82) = detg, and (g2;81)= &1

respectively, and the modulus characters are
i (81;82) = igaj * jdet(g)i®  and  q,(g2;81) = jdet(ga)i * jgai*:
Recalling that rp, () = 1=P21 N, IS @ normalized Jacquet module, we have:

Proposition 13.6. As a G, GSp -gpodule, re () has a ltration with three successive
subquotients (from top to bottom):

(1) 22w = o, 025 72 (2)
IndGstgé( Ce(GLa)).

(3) Ind;3°°P*(Cc(GL)).

Here, note that
- In (1), the center of M1 = GSp, acts trivially on both p and ;, the minimal and the
trivial representation of the Levi M .
- In (2), (81;82) = jg1j '*2 jdet(g2)j'*2, a character of Q.
- For i = 1;2, Q; acts on C.(GL;) by right translations via the factor GL;.

Case P: A variant of this case can be found in [GS99] for the non-split form of PGSp,.
However, for the split case considered in this paper, the Jacquet module Itration contains an
additional \middle" term.



HOWE DUALITY AND DICHOTOMY 49

The unipotent radical subgroups N, P, and N, P, are two-step nilpotent subgroups. Let
Z, N; be the center of N;. We now explain how the kernel of the natural projectionz, ! ,
contributes to n,. We have

0! Cc()! 2z, N, 0 O
where | is the M;-highest weight orbit in

N2=22 =0

M3 (F) = M3(O)
where N5 is the unipotent group opposite to N, and M, (F) is the set of two-by-two matrices.
(In the non-split case M {F ) is replaced by a division algebra, so ! is empty; see the discussion on
[GS99, Pg. 137].) Recall that the type of M, is Ds A; and N,=Z, = F1°
F% where F is a spin-module of Ds. In the above isomorphism,

we assume that A; acts from the right on M;(O), and columns are vectors in the spin-module.
Thus ! is the set of non-zero matrices

x x°
y ¥
where the two columns are linearly dependent over F and each column (if non-zero) is a
highest weight vector in the spin-module. Let

be the subset of ! such that x;x% y;y? are traceless octonions. We have an exact sequence of
G, Mjy-modules

0! C¢(
)! (z,)n, ! N, ! O

1,0
where (g;(;)) 2 G2 (GL, GLy)=GL, actsonf 2 C.( & X 8

1,,0
x x° o g x Y
) by ((g;(;)) f%, v () f g 1y

for some (unknown) character © and where = det(). The highest weight orbit in the 16-
dimensional spin module is described in [MS]. That result, applied to each column of
M, (O), implies that x; X% y; y0 (of an element in
) generate a nil-subalgebra. The group G, M, acts on
with C two orbits
1 and
2, where
i consists of elements such that hx;x ;y;y i has dimension i. Thus C(
), as a G, M,-module, has Ccl
2) as a submodule and Ccl

1) as quotient.

Proposition 13.7. As a G, (GL; GL2)=GLr-quuIe, re () l21as a ltration with four
successive sub quotients:

(1) 772w, = 0, jdetj'=2 5, jdetj>2 . (2)

G,(GL,GL,)=GL y
Ind ! Q(ZBB;lGL ' (5 CelGLa)).
(3) Ind726(Cc(GLa)).

(4) Indg*W.

Here, note that:
- In (1), the second SL, M, acts trivially on the rst summand, and the rst SL, M, acts
trivially on the second summand. The center of M, acts trivially on bothp and 4

, thse minimal and a principal series representation of the two factors of M
-In{2) =] j1=2 j j on each B.
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- In (3), B is the subgroup of the second factor GL, of M5. It acts on C.(GL;) by right
translation by the scalar given by the (1; 1) matrix entry. The rst factor GL, of M5 acts
by right translations on C.(GL>).

- In (4), W is the Weil representation of GL, (GL, GL,)=GL; =rGL, GSOg,.

This proposition is a combination of [GS99, Proposition 8.1], which accounts for the bottom
piece of the Itration (4), and the above discussion. The pieces (2) and (3) are the spaces of

functions Cel
1) ¢ and Cel
2), respectively. This also assumes that we have explicated the character ,appearing én the
action on Ccl

). To that end, observe that (3) (or any unknown twist) gives a correspondence of generic
principal series representations of G and PGSp that has to be compatible with the one in
Lemma 13.4, and this determines ® uniquely.

13.5. Theta lifts from PGSp,. Using Propositions 13.5, 13.6 and 13.7, we can now prove
the following analog of Lemma 13.4.

Lemma 13.8. Let 2 Irr(PGSp );be non-tempered. Then () = 0 unless is as described in
Lemma 13.4. More precisely,
If  1y(-
-), then () is a quotient of Iq() and hence has nite length. Moreover, (Jq()) = 0
where Jq () is the unique irreducible quotient of Iq().

If 113
1), then () is a quotient of Ip (), and hence has nite length. Moreover, (Jp()) = 0
where Jp () is the unique irreducible quotient of Ip ().

Proof. We set H = PGSp . Assume that is a Langlands quotient of a standard module for

the maximal parabolic P2, Then (-

-) where ; and , have the same central character and are both tempered representations of
GL, twisted by a positive power of jdetj.
Then

Homy(;) Homy(; I2(- 12 12

=) = Homp, (re,(); -

_):
Let i, i = 1;2;3;4 be the subquotients of rp (2 as in Proposition 13.7, in the same order.
We claim that

Homm, (re,(); - 1 2 1 2
—) = H0m|v|2(4;—
-): Assume this claim for a moment. Then
Homm,(re,();1 - - = - - = G - -
2) Homm, (454
) Homp, (Indg?W; 4

2)
where W is the Weil representation of GL23. This implies that () = 0 unless ; = 5, and if we
denote this representation as , then () is a non-zero quotient of the standard module Iq(). In
order to prove the «claim, we need to show ,\xzhat Ext", (i; -
-) = 0 for all nandi < 4. Consider i = 3. Then, using the (second) Frobenius reciprocity for
induction from B to GL;, the rst factor of M5, we have
Ext), (IndS2%2(Ce(GLy));y - - | ¢ - -

2) = EXt='rG|_2(|ndp2(Cc(G|-2)); re(y)

~



, ) where T GL; GLj is the torus of diagonal matrices in GL,. Now recall that the second
GL; acts triviallyonInd ?(C.(GL;)). On the other hand, since ; is tempered with a positive
twist of jdetj, the second GL; acts on rg( ) with characters such that jj is a negative
power of absolute value. This proves the vanishing for i = 3. The other two cases are just as
easy or even easier: for i = 1 vanishing follows from central character considerations, and for
i = 2 using Frobenius reciprocity where it suces that either 1 or ; is twist of a tempered
representation by a positive power of jdetj.
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Now assume that is a Langlands quotient of a standard module for the parabolic P;3 = P, \
P3. Then, by induction in stages, we get that I, 5

) where ; is a twist of a tempered representation by a p05|t|ve power of jdetj. This is
enough2 N , to show that , Homym (i; -
-) = 0 for i < 4, Thus, if () = 0 then Homm (a;-
-) = 0. This implies that ; = ,, contradicting that is a Langlands quotient of a standard
module for the parabolic P,3. Hence () = 0.

If is a Langlands quotient of a standard module for the parabolic Py, = P\ P, then, by
induction in stages, we get that 15 I 5

) where now ; is a twist of a tempered representation by a positive ploweréafjdetj. In this
case, Homm (i;

) = 0 for i = 3 by repeating the above arguments. For i = 3 we have

Homm, (Ind®2¢H(Cc(GLa))i- ;= Ny

=) Homrgi,(Indp?(Cc(GL2)); ra(-)
-) and the last space is isomorphic to

Homr g, (Ind; &(2) - - -

25rs(1)
2 ):
Recall that T = GL; GL; and the second GL; acts trivially on Ind,2fC.(GL,)) and hence on
its S qugtient Ind 2(5)
. The rst GL; acts on this space by the central character of ,, which is equal to the central
character of 1, hence it is a nontrivial character, say . Hence the above Hom space, if non-zero,

is non-trivial if and only if
1 is an exponent of 1, and then it is isomorphic to

H0mG|_2(|nd92(2) 2 2 G
-;-) = Hom(Indp?(2); C) = Ip (2):
Summarizing, () = 0 implies that () is a quotient of Ip (2). It follows that Jp (32)

is a quotient of , where Jp (2) is the unique irreducible quotient of Ip (). But, by Lemma 13.4,
Jp (2) does not lift to . This is a contradiction, hence () = 0.

The remaining non-tempered representations of H (associated to standard modules induced
from P123, P13, P1 or P3) are easily dealt with using rpl() and rp (). We leave details to the
reader.

14. Consequences of Jacquet Module Computations

We can now draw some denitive consequences of the Jacquet module computations of the
previous section. In particular, we shall determine the theta lift of nontempered repre-
sentations explicitly, and also complete the proofs of Lemmas 6.2 and 6.3 for the dual pair G,
PGSpg.

14.1. Lift of nontempered representations. Taken together, Lemmas 13.4 and 13.8 allow
us to determine the theta lift of nontempered representations explicitly:

Theorem 14.1. We have:

(a) (Jal)) is a nonzero quotient of 15 (
) and hence has nite length with unique irreducible quotient J,(



). Likewise, (J2(
)) is a nonzero quotient of Iq() and hence has nite length with unique irreducible
quotient Jq ().
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(b) (Jp () is a nonzero quotient of l13(
1) and hence has nite length with unique irreducible quotient Ji3(
1). Likewise, (J13(

1)) is a nonzero quotient of Ip () and hence has nite length with unique irreducible
quotient Jp ().

(c) For all other nontempered 2 Irr(PGSp );dierent from those in (a) and (b), () = 0.
In particular, if
2 Irr(G, PGSp ) is such that
is a quotient of the minimal representation , then

nontempered ( ) nontempered:

Hence, we have shown Lemma 6.2 for nontempered representations and also Lemma 6.3.

14.2. Finiteness of (),c. To complete the proof of Lemma 6.2, we need to show that for
tempered 2 Irr(Gz) and 2 Irr(PGSp ), the noncuspidal components ()nc and ()nc are of nite
length.

To show that (), has nite length, it suces to show that for each maximal parabolic subgroup
Pi = MiN; (with 1 i 3) of PGSp , the Jacquet module Jp (()) has nite length as an M;-
module. In other words, we need to show that the multiplicity space of the maximal -isotypic
quotient of rp, () has nite length as an M;-module.

We have described in Propositions 13.5, 13.6 and 13.7 an equivariant ltration of rp () 3s an
G, Mi-module and described the successive quotients. It suces to show that, for each of these
successive quotients , the multiplicity space of the -isotypic quotient of has nite length. We
shall explain how this can be shown, depending on whether is atop piece of the Itration
or not. The dierence lies in the fact that the top piece of the Itration involves a minimal
representation of a smaller group M; and hence one needs to consider theta correspondence
in lower rank situations. When is not the top piece of the Itration, the nite length of the
multiplicity space of the maximal -isotypic quotient of as an M;-module follows readily from
the explicit description of . We give two examples as illustration:

Consider the case of P3 = GL3 N3. The bottom piece of the Itration in Proposition
13.5is
= |ndG;GQL3§:C(GL2):

Then for 2 Irr(G,),

() := Homg,(;) Homm d4nd™CCc(Ga)ir () .

where M = GL;. Now r () is a nite length M-module and for any of its irreducible
subquotient ,

Homp IndMCtiC (GL,); Ind®ts-
MQ » - Q>
using the fact that the maximal -isotypic quotient of the regular representation
Cc(GLy) is of the form -

On taking smooth vectars (which is a left exact functor), we see that ()
has a nite Itration whose successive quotients are

d®%:_ for some irreducible . In particular, () has nite length.

submodules of In
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Consider the case of P, = My N, with M, = (GL, GL,)=GL" =, GSOq4. The
bottom piece of the Itration in Proposition 13.7 is

= IndquMv
where W is the Weil representation for GL, GSOy4. Then for 2 Irr(G3), ()
:= Homg,(;) = Homim, (W; rq())

Now r () has nite length as L-module (where L = GL;) and if is an irreducible
subquotient, Hompm (W;) = w () where w () is the big theta lift of 2 Irr(GL;) to
GSOy4, which has nite 2Iength by the Howe duality theorem for classical (similitude)
theta correspondence. From this, one deduces as above that () has nite length as an
M5-module.

Now let’s consider the case when is the top piece of the Itration. From Propositions 13.5,
13.6 and 13.7, we see that we need to consider the following theta correspondences in lower
rank:

G, PGL3 in Eg: for this case, the nite length of the big theta lift has been veried in
Theorem 8.5.

G, SO3 SO1g or G, SOs SOj5; we shall now treat these two cases together in the
following proposition.

Proposition 14.2. Let , be the minimal representation of SO(2n) for n = 5 or 6. Then
for tempered 2 Irr(G,), n() is a nite length H,-module where H, = SO,, 7.

Proof. We shall use the fact that the minimal representation of SO, (n = 5 or 6) is the big
theta lift of the trivial representation of SL, (see [Y, Prop. 8.4] for the irreducibility of this big
theta lift) and then appeal to the seesaw identity arising from the seesaw diagram:

ng Ssz SoZn
From this, we see that
(14.3) n() = Homg,(n;) = Homsy,( ~ f ~
2n 7;
();C) = Homg ( .

2n 7: 5 ()) as Hy-modules, where

2n 7 is the Weil representation of SL, SO;, 7 (with respect to a nontrivial
additive character of F); f

() dendtes the big f -theta lift of to SL,, with respect to the Weil representation
of SLZ SO7 SLZ Gz.
We see in particular that if () is nonzero, then has nonzero -theta lift to §L2. More-
over, it remains now to show that T{) has nite length as an SLz-mf)duIe; the desired result
would then follow from this and the Howe duality theorem for SL, Hf.



54

WEE TECK GAN AND GORDAN SAVIN

Now the theta correspondence for fSL, G, has been completely determined in [GGO6],

though the niteness of () was not formally stated there. Let us see how this niteness can be
deduced from [GGO06].

As before, let us write (J = ()¢ ()nc as a sum of its cuspidal and noncuspidal component. To

show that ()nc has nite length as a SL,-module, it suces td show that the Jacquet module of ()
with respect to a Borel subgroup B = T N of SL, has nite length%s a T-modulef. Now [GGOS,
Prop. 8.1] gives a short exact sequence of Go-modules:

0 I In842Cc(GLy) !
nLC o

where the action of L = GL; on GL; is via det. The nite length of () follows from this via
a similar argument as above, by examining Homg, (

NG )

It remains to show that (). has nite length. In fact, it was shown in [GG06, Thm. 9.1(c) and

(d)] that for genuine supercuspidal representations 1 , of SL,, one has (1) (2).”In other
words, ()¢ is irreducible or 0. This shows that () has nite length. ~

14.3. Finiteness of ()nc. For tempered 2 Irr(PGSp ), the nite length of ()nc as a Ga-module
is shown in the same way, using Propositions 13.1 and 13.3. We leave the details to the reader
and only consider the top pieces in the Itration of the two Jacquet modules.

For the maximal parabolic subgroup P, we have to consider the theta correspondence for
PGSp PGL> with respect to the minimal representation ¢ of PGSO;,. For the purpose
of showing niteness, there is no harm in working with Sp SL,. Ig|ence, the theta
correspondence in question arises as follows. If V, and Vg denote the 2-dimensional
and 6-dimensional symplectic vector spaces, then we are considering the map

Sp(V2) Sp(Ve) ! SO(V2

Ve)
and pulling back the minimal representation 6 of SO(V;
Vg). As before, we shall use the fact that this minimal representation is the big theta

lift of the trivial repre-sentation of SL2, More precisely, let V 0 be another symplectic
space of dimension 2, then we have the map

Sp(Vy) Sp(V2) Sp(Ve) ! Sp(V,) ° 0
SO(V;

Ve) ! Sp(V,

Vs,

VG)I

Given the Weil representation
of Sp(V 9% SO(V,
Vg) and 2 Irr(Sp(Ve)), we have

() = Homs p(vg)(6;) = HOmMs () s plg)( 0 0
;15 p(VZ)
) = Hom(°(); 1s p(v,))

where 9() is the big theta lift of to SO(V?°
V3,). Note that there is a natural isogeny

Sp(Vy) Sp(Va) ! SO(V®,

2



V3)

whose image is of nite index. Hence, by the classical Howe duality theorem, 9() is a
nite length representation of Sp(V ?) Sp(z\lz). This implies that () has nite length.
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For the maximal parabolic subgroup Q, we need to consider the restriction of A, 2
minimal representation of SLe to Sp,. Note that o _ is a degenerate principal series
representation induced from a maximal parabolic subgroup which stabilizes a line in
the standard representation. Since Sp6 acts transitively on such lines, we see that the
restriction of to Sp isssimply a degenerate principal series representation of Sp .Th(iss
implies the desired niteness.

We have thus completed the proofs of Lemmas 6.2 and 6.3.

15. Howe Duality for G, PGSpg: General Case

Finally, by combining Theorem 12.4 and Theorem 14.1, we can establish the Howe duality
theorem for G, PGSpg.

Theorem 15.1. Let 2 Irr(G ),
(i) () is nonzero if and only if has zero theta lift to P D.

(ii) If () = 0, then () is a nite length representation of PGSp ¢ With a unique
irreducible quotient ().

(iii) For 1;2 2 Irr(G2y),
(1)=()=0=) 1= 2
(iv) If () = 0, then () is tempered if and only if is tempered.

(v) If is non-tempered, then () is nonzero and the L-parameter of () is obtained from
that of by composing with the natural inclusion G,(C) Spin(C).

15.1. Explicit correspondence. We can in fact determine the theta lift () explicitly if is
tempered and noncuspidal. Indeed, we may also determine () for those tempered which has
nonzero theta lift to PGL3. To achieve this, we shall use the following four facts:

If does not appear in the correspondence with P D, then () = 0 (Theorem
15.1(i)).

If is tempered and () = 0, then () is irreducible and tempered (Theorem
15.1(iv)).

If is nongeneric, then () is nongeneric (Corollary 11.2(ii)).

The cuspidal support of () can be computed (from the Jacquet module computa-
tions of x13).

More precisely we have:

Theorem 15.2. Let be an irreducible tempered representation of G .,Assume that is a lift
of a (necessarily tempered) representation of PGLs, thatis, = g() for some = . Then we have
the following:

(i) If - then () = I5() = I3(-) 2 Irr(PGSpg).

(ii) If = - and the parameter of contains a trivial summand, then () = I3().
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(iii) If = - and the parameter of does not contain a trivial summand, then is one of
the two representations gen = g(*) and geg = g8( ). In this case I3() = I3()gen [3()deg,

(gen) = |3()gen and (deg) = |3()deg:
We now deal with the remaining tempered representations of G,. Non-supercuspidal rep-
resentations are mostly constituents of the principal series Iq() where is a discrete series

representation. These representations lift to constituents of the principal series 15|
). More precisely, we have:

Theorem 15.3. Let be an irreducible tempered representation of G, which is not a lift
from PGL3. Then we have the following:

(i) Let be a unitary discrete series representation of GL,. Then Iq() is irreducible if and
only if 15 (
) is irreducible. We have:

If 1q() is irreducible, then

(la()) = 12
):

If 1q() is reducible, then

(lQ()gen) = |2(
)gen and (IQ()deg) = I
)deg:

(ii) Assume that = - is a supercuspidal representation of GL, with the trivial central char-acter.
Let q() and p () be the square integrable constituents of 1q(1=2;) and Ip (1=2;). Then

(a()) = 2() and (p () = 13()
where () and 13() are the square integrable constituents of 1,(1=2;
) and 113(1=2;
1).
(iii) Assume that = - is a supercuspidal representation of GL, whose Langlands parameter has
the image S3. Recall that Iq(1;) has a square integrable constituent denoted by gen[]. Then

(gen[]) = gen[]
where gen[] is the square integrable constituent of 1,(1;
).
(iv) Assume that 2 = 1 and = 1. Recall that Iq(1=2;st) has a square integrable con-
stituent denoted by gen[]. Then

(gen[]) = gen[]
where gen[] is the square integrable constituent of 1(1=2; st
st).
(v) Steinberg lifts to Steinberg:
(Stg,) = Stpasp,:
Finally we need to deal with supercuspidal representations. In view of Theorem 15.1(i)
and Theorem 15.2, we only need to consider those supercuspidal representations which do not

lift to PGL3 or PD. We rst introduce a thin family of supercuspidal representatons of G,,
namely those which participate in the theta correspondence for L, G;,. We have already
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encountered this theta correspondence in the proof of Proposition 14.2. As mentioned there,
this theta correspondence has been studied in detailed in [GGO06].

We rst introduce some notation. For each cuspidal representation of PGL, = SOs, letJ L()
be its Jacquet-Langlands lift to the anisotropic inner form P B = SOz (where B is the
qguaternion division algebra) and let be the -theta lift of J L() to Sf, (where is a xed
nontrivial additive character of F and the theta lift is induced by the Weil representation !

associated to ). Then is an irreducible supercuspidal genuine representation of §L,.
Consider now the -theta lift
= () 2 Irr(Gy)

of from SL£ to G,. Now we recall some results from [GG06, Thm. 9.1]:
Lemma 15.4. With the above notations, we have:

(i) The representation is nonzero irreducible supercuspidal. Moreover, () = under the theta
correspondence for SLy G,. f

(ii) The map ! is an injective map from the set Irrsc(PGL,) of supercuspidal represen-
tations of PGL; to Irrsc(G3).

(iii) Any 2 Irrs¢(G2) which lifts to Sif, but not PGL3 or P D is of the form for some 2
Irrsc(PGLz).

For 2 Irr(SLE) as above, we may also consider its -theta lift from §L2 to SOs and set
= ()= ()2 Irr(SOs):
Then is a nongeneric supercuspidal representation of SOs belonging to a so-called Saito-
Kurokawa A-packet. The representations and are related as follows:
Lemma 15.5. Consider the restriction of the minimal representation of SO, to G, SOs.
Then for 2 Irrsc(PGL3),
()=":

Proof. We shall use the seesaw diagram in the proof of Proposition 14.2. The ensuing seesaw
identity (14.3) and Lemma 15.4(i) give:

() = Homg, (¢
5;) = :
Hence () = .

Now we have:

Proposition 15.6. Let be an irreducible supercuspidal representation of G 3hat is not a
lift from PGL3 or PD. Then we have the following two possibilities:

If = for some 2 Irrsc(PGL;y) (as in Lemma 15.4), then () =

1()

where 1() is the (nongeneric) square integrable subquotient of 11(1=2;) given in
Proposition 10.4.

If is not of the above form, then () is supercuspidal.
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Proof. Let be the minimal representation of E;. Recall that re. is the normalized Jacquet
functor with respect to the maximal parabolic  Pi in . PGSp . Then
re (()) is a quotient of rp, ().

By the assumption that does not lift to PGL3, it follows that rp (()) = O0fori= 2;3.Thus
either rp (()) =0, in which case () is supercuspidal, orrp (()) is a suQercuspidaI representation
of the Levi factor L, = GSp . In fact, fro4m Proposition 13.6, it follows that rp (()) =
ji¥™2 where is a (possibly reducible) supercuspidal representation of PGSp = SOs such that

appealrs as a quotient of the minimal representation of SO1,. By the seesaw in the proof of
Proposition 14.2, we see that must have nonzero theta lift to
$L, and hence is of the form for some 2 Irr(PGL;) by Lemma 15.4(iii). Then Lemma 15.5
implies that = . By Frobenius reciprocity and the fact that () is tempered, we see that () =
1(), as desired.

As a consequence of the explicit results in this section, we have:

Corollary 15.7. If 2 Irr(G;) is a discrete series representation which does not lift to PG L3 or
P D , then () is an irreducible discrete series representation of PGSp . As a result, any discrete
series representation of G, lifts to a discrete series of exactly one of PD, PGL3 or PGSpg.

That lift is Whittaker generic if and only if is.

Finally, we have the following consequence, proving a case of a conjecture of Prasad [Pr,
Remark 4, page 624].

Corollary 15.8. Every 2 Irr(Gz) that lifts to PGSp s self dual. In particular, every
Whittaker generic irreducible representation of G, (F) is self-dual.

Proof. By inspection, it suces to prove for tempered . Then () is also tempered. Recall that the
complex conjugate of a tempered irreducible representation is isomorphic to its dual.
Furthermore, since theta lift commutes with taking complex conjugates, we have

-)=0=0=10-
As irreducible representations of PGSp . are self dual [MVW, page 91], it follows that ()- =
() and = -, since the theta correspondence is one to one.
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