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H O W E  D U A L I T Y  A N D  D I C H O T O M Y
F O R  E X C E P T I O N A L  T H E T A  C O R R E S P O N D E N C E S

W E E  T E C K  G AN AND  G O R D A N  S AV IN

A b s t r a c t .  We study three exceptional theta correspondences for p-adic groups, where one
member of the dual pair is the exceptional group G2 . We prove the Howe duality conjecture for
these dual pairs and a dichotomy theorem, and determine explicitly the theta lifts of all non-
cuspidal representations.

1. Intro duct ion

Let F  be a non-archimedean local eld of characteristic 0 and residue characteristic p. In this
paper, we study the local theta correspondence furnished by the following diagram of dual
pairs:

PGSp6

G2

P D P G L 3  o  Z=2Z
where D  denotes a cubic division F -algebra, so that P D  is the unique inner form of PGL 3 .
More precisely, one has the dual pairs

> ( P G L 3  o  Z=2Z)  G2  E 6  o  Z=2Z
P D   G2  E D

G2  PGSp6  E 7

where the exceptional groups of type E  are all of adjoint type. In each of the three cases, the
centralizer of G2 is a group H J  =  Aut(J ),  where J  is a Freudenthal-Jordan algebra of degree
3. One can thus consider the restriction of the minimal representation  (see [GS05] or [LS]) of
E  to the relevant dual pair and obtain a local theta correspondence.

More precisely, if  2  Irr(G2 ) is an irreducible smooth representation of G2, then the
maximal -isotypic quotient of

= \2 H o m G 2 ( ; )  ker():

can be expressed as
 ()  for some smooth representation () of H J  [MVW, Lemme 2.III.4]. The representation ()  is
called the big theta lift of , and its maximal semi-simple quotient (cosocle) is denoted (). We
say that  has nonzero theta lift to H J  if ()  =  0, or equivalently HomG (; ) =  0. Similarly, one
can consider the theta lift from H J  to G2 and have the analogous notions.

2000 Mathematics Subject Classication. 11F27, 11F70, 22E50. 1



2 W E E  T E C K  G A N  A N D  G O R D A N  S AV I N

The rst main result of this paper is the following dichotomy theorem (for the statement
in the theory of classical theta correspondences, see [KR],  [HKS] and [SZ]):

Theorem 1.1. Let  2  Irr(G2 (F )). Then  has nonzero theta lift to exactly one of P D  or
PGSp6 (F ).

The group P G L 3  o  Z=2Z is not featured in the dichotomy theorem, but it is needed for
some ner aspects of the theta correspondences. For example, every irreducible discrete series
representation of G2 lifts to a discrete series representation of precisely one of the three groups.
After the above dichotomy theorem, we consider the problem of understanding these theta
correspondences more precisely. These local theta correspondences have all been studied to
some extent by Maggard-Savin [MS], Gross-Savin [GrS2], Gan [G99], Savin [Sa], Gan-Savin
[GS99, GS04] and Savin-Weissman [SWe]. Though various neat results were obtained in the
various cases, they fall short of determining the theta correspondences completely. One of the
main results of this paper is the completion of the analysis begun in these papers.

The main diculty in studying these exceptional theta correspondences is that, unlike the
classical theta correspondence, one does not know a priori the analog of the Howe duality
conjecture. Namely, one does not know that ()  has nite length with unique irreducible
quotient (that is, ()  is irreducible if ()  is nonzero). In this paper, we show that the analog of
the Howe duality conjecture holds for these dual pairs. To  summarize, we have:

Theorem 1.2. The Howe duality conjecture holds for the three dual pairs considered here.
Namely, for 1; 2 2  Irr(G2 (F )), ( i )  has nite length and

dim HomHJ ((1 ); (2 ))  dim HomG2 (1; 2):

Likewise, for  2  Irr(HJ ) ,  ()  has nite length with unique irreducible quotient (if nonzero). More

precisely, we have:

( i )  The theta correspondence for P D   G2 denes an injective map

D  : I rr ~ (P D )  , !  Irr(G2 (F ));

where I rr ~ (P D )   Irr(P D) is the subset of representations which have nonzero theta lift to
G2 . If p =  3, then I rr ~ (P D )  =  Irr(P D), so that one has an injective map:

D  : Irr(P D) , !  Irr(G2 (F ))

( i i )  The theta correspondence for (PGL 3 (F )  o  Z=2Z)  G2 denes an injective map B  :

I rr ~ (PGL 3 (F )  o  Z=2Z) , !  Irr(G2 (F ));

where I rr ~ (PGL 3 (F )  o  Z=2Z)  Irr(PGL3 (F )  o  Z=2Z) is the subset of representations which
have nonzero theta lift to G2 . Moreover, one can determine the subset I r r ~ (PGL 3 (F ) o Z=2 Z)
explicitly, and the image of B  is disjoint from that of D  by the dichotomy theorem.

(i i i)  The theta correspondence for G2  PGSp6 denes an injection  :

Irr(G2 (F )) r  Im(D )  , !  Irr(PGSp6 (F )):
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For an irreducible representation  of P D ,  the non-vanishing of  ()  is equivalent to the
existence of non-zero vectors in  xed by a maximal torus in P D .  The existence of such
vectors has been checked by Lonka and Tandon [LT ,  Thm. 2.4] in the tame case, where p =  3.
Thus, if p =  3, we do not know that all irreducible representations of P D  lift to G2 (though one
certainly expects this to hold), but the lift is still one-to-one on the subset of those
representations that have nonzero lift.

In fact, for the three dual pairs, we determine the theta lift of all non-supercuspidal repre-
sentations of G2, and the lift of supercuspidal representations whose lift is not supercuspidal.
The detailed statements are in the main text, and we simply state the following qualitative
result here:

Theorem 1.3. The three theta correspondences satisfy the following properties:

( i )  The correspondences preserve tempered representations.

( i i )  Any discrete series representation of G2 lifts to a discrete series representation of precisely
one of the three groups.

(i i i)  The correspondences are functorial for non-tempered representations.

The main motivation for showing the results of this paper is the application to the local
Langlands correspondence for the exceptional group G2. A  proof of the local Langlands
conjecture for G2 is given in our followup work [GS22].

We would now like to explain the general idea and strategy for proving the Howe duality
theorem. We begin with a discussion of the statement:

(a) ()  has nite length.
This niteness result is fundamental and it was shown by Kudla [K] for the classical theta
correspondence. The main tools used are his computation of the Jacquet modules of the
Weil representation (relative to maximal parabolic subgroups of the two members of the dual
pair) and his exploitation of the doubling see-saw identity. One key consequence of the nite
length of ()  is

(b) If ()  =  0, then it has an irreducible quotient.
For the dual pairs considered in this paper, we will in fact rst prove statement (b) and then
use it with other inputs to show (a).

Let us elaborate on this slightly subtle point and our strategy of proof. By Bernstein’s
decomposition, we may decompose

() =  ()c  ()nc

as the sum of its cuspidal part and non-cuspidal part. If ()c is nonzero, then it certainly has
an irreducible quotient, since it is semisimple. On the other hand, we shall show using
Jacquet module computations that

(c) ()nc has nite length and hence has an irreducible quotient if it is nonzero.
The necessary Jacquet module computations are already available in the literature [MS, Sa]
when H J  =  P D  or P G L 3 o Z = 2 Z  and are partially available [MS, GrS2] for H J  =  PGSp . In x13,
we complete the remaining Jacquet module computations. We stress that the material in
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x13 is independent of the rest of the paper and could have been discussed earlier in the paper; we
have refrained from doing so, as the computations are rather technical. Consequences of the
results of x13 are then discussed in x14.

In any case, we show statement (b) by showing (c) via Jacquet modules; the proof is written
in x14.2. The statement (b) is used in the proof of the dichotomy theorem (i.e. Theorem 1.1)
for tempered representations in x6. For nontempered representations, the Jacquet module
computations (of [MS, GrS2] and x13-14) will tell us everything about their theta lifts.

For the statement (a) (nite length of ()), it remains to show that ()c is of nite length. We
shall show this together with the Howe duality conjecture, by showing that ()c is either
irreducible or 0. This part of the argument may be considered the analog of the doubling
see-saw argument, though one would legitimately question what that means in the setting of
exceptional dual pairs.

It will be instructive to rst recall the argument for a classical dual pair Sp(W )  O(V ), where
W is a symplectic space and V a quadratic space (see [Mi] and [GT16]). The Howe duality
theorem was shown by examining the so-called doubling see-saw diagram:

O(V )

O(V )  O(V )

Sp(W )  Sp(W )

Sp(W )

where V  =  V +  V   is the doubled quadratic space. Starting from ;0 2  Irr(O(V )), the
resulting see-saw identity gives

dim HomS p( W )((0); ())  dim HomO ( V ) O ( V )((1); 0

 _ ):

where (1) is the big theta lift of the trivial representation of Sp(W ) to O(V ). By the local
analog of the Siegel-Weil formula, one identies (1) with a submodule of a certain degenerate
principal series representation I  on O(V ). This implies that, for  outside a small family of
representations,

dim HomO ( V ) O ( V )((1); 0

 _ )   dim HomO ( V ) O ( V )(I ; 0

 _ ):

Using Mackey theory, one can analyze the latter space and show that, for  outside another
small family of representations,

dim HomO ( V ) O ( V )(I ; 0

 _ )   dim HomO ( V )(0; ): Taken together, one obtains the desired inequality

dim HomS p( W )((0); ())  dim HomO ( V )(0; )

for  outside a small family of representations. For this small family of representations, one
needs to do a separate argument.

Now for the exceptional dual pairs G   H  studied in this paper, there is no analog of the
doubling see-saw; this is ultimately tied to the sporadic nature of the geometry underlying
exceptional groups. There is thus no direct analog of the above argument. However, the
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above argument is a particular manifestation of a general principle:

Theta correspondence typically relates or transfers a period on G  to a period on H .

More precisely, given a subgroup G1  G  and  2  Irr(G), we may consider the space HomG
(; ) for some one-dimensional character  of G1. Let us call this Hom space the G1-period for .
Now assume that  is a quotient of ()  for some  2  Irr(H ). Then one typically obtains a
statement of the form

G1-period of   G1-period of ()  =  H1-period of _

for some subgroup H 1  of H .
Now one can turn the table around. For an irreducible quotient  of (), one can

consider the G1-period of (_ ),  which has _  as an irreducible quotient. One typically gets a
statement

H1-period of _   H1-period of ( _ )  =  G2-period of  for

some subgroup G2 of G.

Iterating this process, one obtains a family of periods relative to subgroups G i   G  and
H i   H  such that

Gi-period of   Gi-period of ()  =  Hi-period of _ ;

and
Hi-period of _   Hi-period of ( _ )  =  Gi+1-period of ;

thus leading to a chain of containment of periods of  and . One may call this a game of
ping-pong with periods. Now an (empirical) observation is that the subgroups G i  and H i
become more and more reductive (as i  increases) and one ultimately obtains a reductive
period. When that happens, the next iteration will result in a seesaw diagram analogous to
that in the classical case above and the consideration of an appropriate degenerate principal
series representation.

Now the miracle is that a Mackey theory argument with this degenerate principal series
representation then returns us the initial G1-period! In other words, for some i  >  1, one has G i
=  G1, and this allows one to complete the chain of containment of periods into a cycle. In
particular, if one of these period spaces is nite-dimensional, then this cycle of containment is a
cycle of equalities. This is the key step in our proof of the Howe duality theorem for the dual
pairs treated here. We shall play this game of ping-pong with periods on two occasions, in x6
and x12. This seems to us to be a rather robust method for proving the Howe duality
conjecture and should be applicable to other exceptional dual pairs, though the precise details
will undoubtedly be dierent in each case.

We nish the introduction by presenting the key case of this period ping-pong for this paper. Let
G  be the exceptional group of type G2, and H  =  Aut(J ),  for a Freudenthal-Jordan algebra J .
The group G  has two conjugacy classes of maximal parabolic subgroups, one of which is the
Heisenberg parabolic subgroup whose unipotent radical N  is a 5-dimensional Heisenberg
group. The conjugacy classes of generic characters E  : N  !  C  are parameterized by cubic
etale algebras E  over F .  For such an E ,  x  an embedding i  : E  !  J  (if it exists). Then we
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have a see-saw of dual pairs (in E 6  or E 7 )

G E  : =  Spin8

G

Aut(J )  =  H

Aut(i : E  !  J )  = :  H J ; E

With  the minimal representation, a twisted Jacquet module computation gives N ;  E  =
ind H E ; J  

(1). This implies a chain of containments

HomN (; E )   HomN ((); E )  =  HomN H (; E

 )  =  HomH E ; J  (
_ ; 1)

where the rst is a natural inclusion, since  is a quotient of (), and the last follows by the
twisted Jacquet module computation and Frobenius reciprocity. Now, in order to do the next
step, we need to compute HE;J -coinvariants of . This was done in our paper [GS21], where it
was shown that H E ; J  is a submodule of a degenerate principal series representation I E  of SpinE .
The miracle here is that, as a G-module, I E  contains ind (  E )  as a large G-submodule.
Thus, the seesaw identity associated to the above seesaw diagram gives the next chain of
containments is

HomH E ; J  (
_ ; 1)  HomH E ; J  ((_ ); 1) =  HomN (; E ) ;

that is, we arrive where we started.

To  be honest, just as in the classical case, this last step will hold for representations of G
outside a small family, roughly those that are in the quotient of I E  by indG (  E ) .  One can
characterize this exceptional family precisely, but we prefer not to do it, and simply observe
that tempered irreducible representations of G  do not lie in this exceptional family. (As
mentioned earlier, the theta lifts of nontempered representations can be explicitly determined
using the Jacquet module computations of [MS, GrS2] and x13-14.) Thus, with that caveat in
mind, we conclude that

HomN (; E )  =  HomN ((); E )

for all E ,  and this implies that  =  (). This is the argument which replaces the doubling
seesaw argument in classical theta correspondence.

Finally, let us remark that many of the arguments in our paper work over nonarchimedean
local elds of characteristic p >  0 as well, at least when p is not too small (say p =  2; 3).
However, many of the prior results we rely on were only written in the context of characteristic 0
local elds. An example is the construction of the minimal representation itself. Hence,
though our arguments should in principle work for positive characteristic local elds, many
details require careful verication.

2. T h e  G r o u p  G2

We begin by introducing the algebraic group G2 over F .
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2.1. Octonion algebra. Let O be the split octonion algebra over F .  Thus, O is an 8-
dimensional non-associative and non-commutative F -algebra. It comes equipped with a con-
jugation map x  !  x  with associated norm N (x )  =  x   x  =  x   x  and trace T r(x) =  x  +  x.
Moreover, N  : O !  F  is a nondegenerate quadratic form.

Every element x  of O is a zero of its characteristic polynomial t2   T r(x)t +  N (x) .  A
nonzero element x  2  O is said to be of rank 1 if N (x )  =  0. Otherwise it is of rank 2, in which case
the subalgebra F [x] of O generated by x  over F  is isomorphic to the separable quadratic F -
algebra F [t]=(t2 T r(x)t +  N (x)) .  We denote by O0 the 7-dimensional subspace of trace 0
elements in O.

2.2. Automorphism group. The group G2 is the automorphism group of the F -algebra O.
It is a split simple linear algebraic group of rank 2 which is both simply connected and
adjoint. If we x a maximal torus T contained in a Borel subgroup B ,  then we obtain a
system of simple roots f; g of G2 relative to (T ; B), with  short and  long. The resulting root
system is given by the following diagram.

6

Qk
Q

Q
Q

J
J

 3
 Q

-

J  Q
+

J
Ĵ Q

Qs

?

The highest root is 0 =  3 +  2.

2.3. Maximal torus. Following Muic, we will x  the isomorphism T =  Gm by t

!  ((2 +  )(t); ( +  )(t)):

Any pair of characters (1; 2) of F  thus dene a character 1  2 of T by composition with the
above isomorphism.

2.4. Parabolic subgroups. Up to conjugation, G2 has 2 maximal parabolic subgroups



which may be described as follows. Let V1  V2  O0 be subspaces of dimension 1 and 2
respectively on which the octonion multiplication is identically zero. Let P  and Q be the
stabilizers of V2 and V1 respectively. Then P  =  M N and Q =  L U  are the two maximal
parabolic subgroups of G2. Moreover, their intersection B  =  P  \  Q is a Borel subgroup of G2.
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The Levi factor M of P  is given by

M =  GL(V2 ) =  GL2 :

The isomorphism of M with G L  can be xed so that the modulus character of M is =
j det j3. Its unipotent radical N  is a 5-dimensional Heisenberg group with 1-dimensional
center Z  =  U . The action of M on N =Z  is isomorphic to Sym3 (F 2 )
 det 1. Moreover, the generic M (F )-orbits on N ( F ) =Z (F )  is naturally parametrized by the set
of isomorphism classes of separable cubic F -algebras.

The Levi factor L  of Q is given by

L  =  GL(V3 =V1) =  GL 2

where

V3 =  f x  2  O0 : x   y =  0 for all y 2  V1g:

The isomorphism of L  with GL 2  can be xed so that the modulus character of L  is Q  =
j det j5. The unipotent radical U is a 5-dimensional 3-step nilpotent group:

U =  U0  U1  U2  U3 =  f1g;

such that

U0=U1 =  U  U+; U1=U2 =  U2+ U2=U3 =  U0  U0 : As

representations of L ,  one has

U0=U1 =  F 2 ; U1=U2 =  det; U2=U3 =  F 2

 det :

2.5. T h e  subgroup SL3 .  The subgroup of G2 generated by the long root subgroups is
isomorphic to SL3 . The normaliser of SL3  in G2 is a semidirect product SL 3  o Z=2Z,  with the
nontrivial element of Z=2Z acting on SL3  as a pinned outer automorphism. The subgroup
SL3  is the pointwise stabilizer of a quadratic subalgebra of O which is isomorphic to F   F ,
whereas the setwise stabilizer of such a subalgebra is SL3  o  Z=2Z.

More generally, given a subalgebra of O which is isomorphic to a quadratic eld extension
of F ,  the pointwise stabilizer of this subalgebra is isomorphic to the quasi-split special unitary
group SU3 ; the setwise stabilizer of this subalgebra is SU3 o  Z=2Z.

2.6. T h e  dual group. The Langlands dual group of G2 is the complex Lie group G2 (C). In
particular, one has the subgroups

SO3 (C)  SL 3 (C)   SL 3 (C)  o  Z=2Z  G2 (C):

The centralizer of SL 3 (C)  in G 2 (C)  is 3, and the centralizer of SO3 (C) in G2 (C)  is S3 =  3
o  Z=2Z. Let SL2; l (C) be a long root SL2 . Then the centralizer of SL2 ; l (C) in G 2 (C)  is
SL2;s (C), a short root SL2 , and vice versa. Thus we also have the subgroup

SL2; l (C) 2 SL2 ; s (C)  =  SO4 (C)  G2 (C):
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2.7. Ni lp otent orbits. Recall that the geometric nilpotent orbits (i.e. nilpotent orbits over
F )  of a simple group G  dened over F  form a partially ordered set, where O1  O2 if O1 is
contained in the Zariski closure of O2. Determining the G(F )-orbits in the set of F -points of
each of these orbits is an exercise in Galois cohomology. More precisely, if ’  : SL2  !  G  is a map
that corresponds to a nilpotent orbit O by the Jacobson-Morozov theorem, then the G(F )-
orbits of F -points in O are parametrized by

Ker H 1 ( F ; C ’ )  !  H 1 (F ; G)

where C ’  is the centralizer of ’ ( S L 2 )  in G.

For the group G2, the geometric nilpotent orbits form a chain

f0g  Ol  Os  Osr  Oreg

where Ol and Os are orbits of non-zero elements in long and short root spaces, that is
’ ( S L 2 )  =  SL2; l  and ’ ( S L 2 )  =  SL2;s  respectively, while Osr is the subregular orbit, with
’ ( S L 2 )  =  SO3  SL3 , and Oreg is the regular nilpotent orbit. The centralizers of the
respective ’ ( S L 2 )  are

G2; SL2;s ; SL2;l ; S3; and 1:
Since the Galois cohomology of p-adic simply connected groups is trivial, it follows at once
that the set of F -points is a single G2(F )-orbit except for Osr where the G2(F )-orbits are
parameterized by cubic etale F -algebras E ,

Os r (F )  =  [ E O E :

3. Representations of G2

In this section, we state some facts for the representations of G2 (F ).  In particular, we shall
describe all non-supercuspidal representations. The results in this section are sourced from
Muic [Mu, Thm. 3.1, Props 4.1, 4.2, 4.3 and 4.4, Thm 5.3] and organized for our purpose.

3.1. Representations of GL 2 .  Since the maximal parabolic subgroups of G2 have GL 2  as
Levi factors and we will be considering parabolic induction, let us begin by setting up some
notations for representations of GL2 (F ) .  If 1 and 2 are two characters of F ,  then 1  2 denotes
the parabolically induced representation of GL 2 (F )  constructed from the character
  of the diagonal split torus. This induced representation is irreducible unless 1=2 =  j
j1, in which case it is non-semisimple of length 2. In particular, for a character  of F  , one
has

0 !  st !  j j1=2  j j 1=2 !    det !  0
where det is a 1-dimensional character of GL 2 (F )  and st is a discrete series representation. If  =
1 is trivial, we will simply write st as st: this is the Steinberg representation. For nontrivial ,
one has st =  st
 (  det) and we call st a twisted Steinberg representation.

3.2. Pr inc ipal  series representations for P .  We rst consider the principal series repre-
sentations for the Heisenberg parabolic subgroup P  =  M N , where M =  GL2 .  Let  be an
irreducible representation of M with central character !  and set

I P  ()  =  IndP
2  and I P  (s; ) =  IndP

2 (j det js  )
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if we need to consider a family of induced representations. If I P  (s; ) is a standard module,
we will denote its unique Langlands quotient by J P  (s; ). Now we have:

Proposition 3.1. ( i )  If  is a unitary supercuspidal representation, then I  (s; ) is reducible if
and only if _  =   (so !  =  1) and one of the following holds:

 !  =  1 and s =  1=2, in which case there is a non-split short exact sequence of length 2,
0 !  P  () !  I P  (1=2; ) !  J P  (1=2; ) !

0; where P  () is a generic discrete series representation.

 !  =  1 and s =  0, in which case

I P  ()  =  I P  ()gen  I P  ()deg where

I P  ()gen is generic.

( i i )  If  =  st is a twisted Steinberg representation, then I P  (s; ) is irreducible except for the
following cases:

  =  1 and s =  3=2 or 1=2, in which case one has:

0 !  StG 2      !  I P  (3=2; st) !  J P  (3=2; st) !  0;

with StG     the Steinberg representation. On the other hand, I P  (1=2; st) has length 3,
with a unique irreducible submodule gen[1] which is a generic discrete series rep-
resentation, a unique irreducible Langlands quotient J P  (1=2; st) and a subquotient
JQ(1=2; st).

 2 =  1 but  =  1 and s =  1=2, in which case one has:

0 !  gen[] !  I P  (1=2; st) !  J P  (1=2; st) !  0

where gen[] is a generic discrete series representation.  3

=  1 but  =  1 and s =  1=2, in which case one has:

0 !  gen[] !  I P  (1=2; st) !  J P  (1=2; st) !

0: where gen[] =  gen[ 1] is a generic discrete series representation.

(i i i)  If  =   is 1-dimensional unitary, then I P  (s; ) is irreducible except in the following
cases:

  =  1 and s =  1=2 or 3=2, in which case one has:

0 !  JQ(5=2; st) !  I P  (3=2; 1) !  1G2      !  0;

whereas I P  (1=2; 1) is of length 3, with a unique irreducible submodule deg[1] which is a
nongeneric discrete series representation, a unique irreducible quotient JQ (1; (1; 1))
and a subquotient JQ(1=2; st).

 2 =  1 but  =  1 and s =  1=2, in which case one has:

0 !  JQ(1=2; st) !  I P  (1=2; ) !  JQ (1; (1; )) !  0:
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 3 =  1 but  =  1 and s =  1=2, in which case one has:

0 !  J P  (1=2; st     1 ) !  I P  (1=2; ) !  JQ (1; (;  1 )) !  0:

3.3. Pr inc ipal  series representations for Q. Now we consider the principal series repre-
sentations for the 3-step parabolic subgroup Q =  LU , where L  =  GL2 .  Let  be an irreducible
unitary representation of L  with L-parameter  and set

I Q ( )  =  IndQ
2  and IQ (s; ) =  IndQ

2 j det js

if we need to consider a family of induced representations. As before, we let JQ (s; )  denote
the unique Langlands quotient of IQ (s; ) if the latter is a standard module. Then we have:

Proposition 3.2. ( i )  If  is unitary supercuspidal, then IQ (s; ) is reducible if and only if
_  =   (so ! 2  =  1) and one of the following holds:

 !  =  1 and s =  1=2, in which case one has:

0 !  Q ()  !  IQ (1=2; ) !  JQ (1=2; ) !

0; where Q ()  is a generic discrete series representation.

 !  =  1 (so  is dihedral), Im( ) =  S3 (the symmetric group on 3 letters, regarded as a
subgroup of GL 2 (C ) )  and s =  1,in which case one has:

0 !  gen[] !  IQ (1; ) !  JQ (1; )  !

0; where gen[] is a generic discrete series representation.

 !  =  1, Im( ) =  S3 (the symmetric group on 3 letters, regarded as a subgroup of
GL 2 (C ) )  and s =  0, in which case one has:

I Q ( )  =  IQ ()gen  IQ ()deg where
IQ ()gen is generic.

( i i )  If  =  st is a twisted Steinberg representation, the IQ (s; ) is irreducible except for the
following cases:

  =  1 and s =  5=2 or 1=2, in which case one has

0 !  StG 2      !  IQ(5=2; st) !  JQ(5=2; st) !

0; and

0 !  gen[1]  deg[1] !  IQ(1=2; st) !  JQ(1=2; st) !  0:

Here gen[1] is the generic discrete series representation already dened in Proposition
3.1(ii) (rst bullet point) and deg[1] is the nongeneric discrete series representation
already dened in Proposition 3.1(iii) (rst bullet point).

 2 =  1 but  =  1 and s =  1=2, in which case one has:

0 !  gen[] !  IQ(1=2; st) !  JQ(1=2; st) !  0:

Here, gen[] is the generic discrete series representation dened in Proposition 3.1(ii)
(second bullet point).
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(i i i)  If  =   is 1-dimensional unitary, then IQ (s; ) is irreducible except in the following
cases:

  =  1 and s =  1=2 or 5=2, in which case one has:

0 !  J P  (3=2; st) !  IQ(5=2; 1) !  1G2      !  0;

whereas IQ (1=2; 1) is of length 3, with unique irreducible submodule JQ(1=2; st), a
unique irreducible quotient JQ (1; (1; 1)) and subquotient J P  (1=2; st).

 2 =  1 but  =  1 and s =  1=2, in which case one has:

0 !  J P  (1=2; st) !  IQ (1=2; ) !  JQ (1; (1; )) !  0:

3.4. Pr inc ipal  series representations for B .  We now consider the principal series repre-
sentations induced from the Borel subgroup B .  More precisely, suppose that  is a Langlands
quotient of a standard module

I (s1; s2; 1; 2)   with

s1  s2  0
and i  unitary characters of F .  Here, recall the convention about characters of T which we
have xed in x2.3. Then

 , !  I (  s1;  s2; 1 
1; 2 

1) =  I P  ((1 
1j j s1 ; 2 

1j j s2 )):

Now the representation (1 
1j j s1 ; 2 

1j j s2 ) of M =  GL 2  is reducible if and only if

2=1  j js2  s1  =  j j 1;      i.e. 1 =  2 and s1 =  s2 +  1  1,

in which case one has

 , !  I P  (  s +  
2

; 1 
1); with s  1:

There is another, convenient, way to bookkeep the principal series IndG2 (). Let 1; 2; 3 be
three long roots such that 1 +  2 +  3 =  0. This triple is unique up to the action of the Weyl
group of G  . Then the corresponding co-roots  : F !  T generate T , in particular,
the character  denes three characters of F  by i  =    _  (and is determined by them). Clearly,
these characters satisfy 1  2  3 =  1.

Proposition 3.3. The induced representation IndG2 () is irreducible unless one of the fol-
lowing two conditions hold:

 i  =  j  j1 for some i  or i =j  =  j  j1 for a pair i  =  j .

 The three characters i  are quadratic, non-trivial and pairwise dierent. Then

IndB
2 () =  IndB

2 ()gen  IndB
2 ()deg where

IndB
2 ()gen is generic.
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3.5. Conjectural  L-packets of G2 . The above results allow one to give an enumeration of
the non-cuspidal representations of G2.     Using the desiderata of the conjectural local
Langlands correspondence ( L L C )  for G2, we explain how one can assign L-parameters to the
noncuspidal representations of G2, and hence partition them into L-packets. Recall that an L-
parameter of G2 is an admissible homomorphism

’  : W D F   !  G2 =  G 2 (C)

of the Weil-Deligne group W D F
conjugacy by G2 (C). Let

=  WF  SL 2 (C)  to the dual group G2 (C), taken up to

A ’  =  0 ( Z G 2 ( ’ ) )

be the associated component group of ’ .  Then one expects that there should be an L-packet

’  =  f ( )  :  2  A ’ g   Irr(G2 )

associated to each ’ ,  whose members are indexed by the characters of A ’ ,  such that

Irr(G2 ) =  
[

’ :
’

The non-tempered irreducible representations of G2 are uniquely realized as Langlands
quotients of standard modules, so have the form J P  (), J Q ( )  or J B ( ) .  The Levi factors of the
parabolic subgroups P , Q aand B  are isomorphic to GL 2  and GL 1  GL1 .  Since the L L C  for these
groups are known, one can assign L-parameters to the nontempered representations. For
example, if  =  J P  (), and ’  : W D F   !  M _ =  GL 2 (C )  is the L-parameter of , then the L-
parametrer of  =  J P  () is the composite

’  : W D F   !  M _ , !  G _  =  G2 (C):

Since the L-packets on the Levi subgroups are singletons, we see also that the nontempered
L-packets of G2 are singletons, and A ’  is correspondingly trivial.

In other words, the non-tempered irreducible representations of G2 are naturally parametrized
by the nontempered L-parameters of G2; these are the L-parameters ’  such that ’ ( W F  ) is
unbounded. In the following, we will use this partial L L C  to describe the eect of the various
theta correspondences on nontempered representations.

By the same token, since irreducible tempered representations which are not square-
integrable are uniquely realized as summands of principal series representations induced
from unitary square-integrable representations of Levi factors, one can attach L-parameters to
these tempered (but not square-integrable) representations of G2. The resulting L-parameters ’
have the property that ’ ( W F  ) is bounded but ’ ( W D F  ) is contained in a proper Levi sub-
group. The size of such a tempered L-packet now depends on the number of irreducible
summands in the corresponding parabolically induced representations. From the results re-
called in this section, one sees that the size of a tempered L-packet ’  is 1 or 2. One can verify
that this is the same as the size of A ’ .  Moreover, in each tempered L-packet, there is a unique
generic representation, and this is assigned to the trivial character of A ’ .  Thus, the L L C  for
tempered non-discrete series representations of G2 is also known, and we may refer to this
partial L L C  for describing these representations.
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Hence, the main issue with the L L C  for G2 comes down to the classication of the square-
integrable or discrete series representations by discrete series L-parameters; these are the L-
parameters ’  which do not factor through any proper Levi subgroup, or equivalently whose
centralizer C ’  =  Z G  ( ’ )  is nite. Guided by the desiderata of the L L C ,  we can now describe the
various families of discrete series L-parameters, according to ’ ( S L 2 ) ,  and list all non-
supercuspidal members.

(1) ’ ( S L 2 )  is the principal SL2 . Then A ’  =  1 and the packet consists of the Steinberg
representation:

’  =  fStG 2 g

(2) ’ ( S L 2 )  =  SO3  SL3   G2; this is the subregular SL2 . The centralizer of SO3 in G2 is the
nite symmetric group S3, so that ’  gives by restriction a map  : WF !  S3. There are
four cases to discuss:

 (WF )  =  1. Then A ’  =  S3. Let 1; r;  be the three irreducible representations of
S3: the trivial, 2-dimensional and the sign character respectively. Then

’  =  f(1)  =  gen[1]; (r )  =  deg[1]; ()  =  sc[1]g

where gen[1] is dened in Proposition 3.1(ii) (rst bullet point) and deg[1] is given
in Proposition 3.1(iii) (rst b.p.). The representation () is a depth 0 supercuspidal
representation induced from a cuspidal unipotent representation of G2 (Fq ), inated
to a hyperspecial maximal compact group [HMS]. The cuspidal unipotent
representation is denoted in the literature by G2[1] and hence our notation sc[1].

 (W ) =   . Then, by the local class eld theory,  denes a quadratic character  of F .  Let
1 and  1 denote the trivial and non-trivial characters of A ’  =  2. Then

’  =  f(1)  =  gen[]; (  1)g;
where gen[] is as dened in Proposition 3.1(ii) (second b.p.). If the character  is
unramied, then ( 1) =  sc[ 1] is a depth 0 supercuspidal representation. It is
induced from a cuspidal unipotent representation of G2 (Fq ), denoted by G2 [ 1],
inated to a hyperspecial maximal compact group.

 (W ) =   . Then, by local class eld theory,  denes a cubic character  of F .  Let 1,
!  and ! 2  denote the characters of A ’  =  3. Then

’  =  f(1)  =  gen[]; ( ! ) ;  (! 2 )g;

where gen[] is as dened in Proposition 3.1(ii) (third b.p.). If the character  is
unramied, then ( ! )  =  sc [! ] and ( ! 2 )  =  sc [!2 ] are induced from a cuspidal
unipotent representations of G2 (Fq ), denoted by G2 [! ]  and G 2 [ !  ], inated to a
hyperspecial maximal compact group.

 (WF )  =  S3. Then r   corresponds to a supercuspidal representation  of GL 2  (where
we recall that r  denotes the two-dimensional irreducible representation of S3 ). In
this case A ’  is trivial and

’  =  fgen[]g;
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where gen[] is as dened in Proposition 3.2(i) (second b.p.).
(3) ’ ( S L 2 )  =  SL2;s , a short root SL2 . The centralizer of SL2;s  in G2 is SL2;l , a long root

SL2 . Then ’  gives, by restriction, a map form the Weil group  : WF !  SL2;l , that
corresponds to supercuspidal representation  of G L  with the trivial central character
(and hence  =  _ ). In this case A ’  =  2, and

’  =  f(1)  =  P  (); (  1)g;

where P  ()  is as dened in Proposition 3.1(i) (rst b.p.) and ( 1) is supercuspidal.
(4) ’ ( S L 2 )  =  SL2;l , a long root SL2 . The centralizer of SL2; l  in G2 is SL2;s , a short root

SL2 . Then ’  gives, by restriction, a map from the Weil group  : WF !  SL2;s , that
corresponds to supercuspidal representation  of G L  with the trivial central character
(and hence  =  _ ). In this case A ’  =  2, and

’  =  f(1)  =  Q (); (  1)g;

where Q ()  is as dened in Proposition 3.2(i) (rst b.p.) and ( 1) is supercuspidal.
(5) ’ ( S L 2 )  =  1. Then ’  : WF !  G2 (C)  gives rise to an L-packet consisting entirely of

supercuspidal representations of G2.

There has been some work towards the above conjectural L L C  for G2, most notably [SWe]
and [HKT]. At the moment, we simply wish to point out that all the noncuspidal discrete
series representations are fully accounted for by the above classication scheme.

3.6. Lo cal  Four ier  coecients. It will be useful to consider the twisted Jacquet modules of a
representation  of G2 along the unipotent radical N  of P . The M-orbits of 1-dimensional
characters of N  are naturally indexed by cubic F -algebras, with the generic orbits corre-
sponding to etale cubic F -algebras. For any such cubic F -algebra E ,  we shall write E  for a
character of N  in the corresponding M-orbit. Then one may consider N ; . In particular,
we note:

Proposition 3.4. For any irreducible, innite dimensional representation  of G2 , there exists
an etale cubic F -algebra E  such that N ; =  0. Moreover, if  is degenerate, then N ;

E  is nite-dimensional for any etale E .

Proof. Wave front sets of irreducible representations of G2 are supported on special orbits,
that is, f0g, Osr and Oreg, see [LS] and [JLS]. Thus, if  is degenerate (not Whittaker
generic), and not the trivial representation, its wave-front set is supported on subregular
nilpotent orbits.     If OE  is in the wave-front set of  then N ; is non-zero and nite-
dimensional, by the main result of [MW] and [Va].

Assume now that  is generic. The restriction of a Whittaker character to U is a character
supported on the simple root space U. Hence U;        =  0. Let N 0 be obtained by adding

U  to U and removing U+, so that N  is conjugate to N  (by the simple Weyl reection w ).
Abusing notation, let be the character of N  supported on the simple root space U
N 0. Now we claim that there is an isomorphism (a root exchange)

HomU (; )  =  HomN 0 (; ):
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which sends ‘  on the LHS to an element ‘0 on the RHS dened by the convergent integral Z
‘0(v) = ‘((u)  v) du U

Conversely, we can recover ‘  from ‘0 by integrating over U+.
Assuming the claim, let U0 be the conjugate of U by w . Let Z0  be two-

dimensional center of U0. Observe that [U0 ; U0]=Z0 =  U. Since [U0; U0]  N 0, it follows that
[U0;U0]; =  0. But this means that the
Fourier-Jacobi functor of  with respect to the 3-step unipotent U is non-trivial, and N ;  E  =  0
for some E  =  F  +  K ,  by [ JLS,  Proposition 6.1].

To  justify the root exchange argument in the claim, we observe that U  and U +  generate a
Heisenberg group with center U, modulo higher order commutators. More precisely,
consider the group

V 0 =  U  U  =  N 0  U+;

which is a maximal unipotent subgroup of G  and hence conjugate to V (by the simple
reection w). If we consider the lower central series of the unipotent group V 0:

V 0  [V 0;V 0] =  V 0  V 0 =  [V 0;V 0]  V 0  f1g;

then V=V 0 is the Heisenberg group in question with center V 0=V 0 =  U . Note moreover that the
elements ‘  and ‘0 in the two Hom spaces in the claim both factors through V 0 (which is a
module for the Heisenberg group V 0=V 0 ). With this observation, the justication of the claim
is given by the following lemma, included as a convenience to the reader.

Lemma 3.5. Let H  be a Heisenberg group. Let  be a smooth H-module. Let X  and Y be two
maximal abelian subgroups of H .  Let X  and Y  be characters of X  and Y , agreeing on
the intersection X  \  Y , and non-trivial on the center of H .  Then we have an isomorphism
HomX (; X )  =  HomY (; Y  ), ‘  !  ‘0, dened by

Z
‘0(v) = ‘((y )v ) dy: Y = X \ Y

Proof. By the Frobenius reciprocity, we have

HomX (; X )  =  HomH (; IndX     X )  and HomY (; Y  )  =  HomH (; IndY Y  ):

We also have an isomorphism IndH     
X  =  IndY Y  , where every f  2  IndX      X  goes to f0

2  IndY Y  dened by
Z

f 0(h) = f (yh) Y  (y) dy:
Y = X \ Y

This integral is convergent, in fact, it is a nite sum. The lemma follows by combining this
isomorphism with the two Frobenius reciprocity isomorphisms.
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4. Exceptional  Dua l  Pairs

In this section, we briey describe the dual pairs which intervene in this paper and some
structural results which will be important in the study of the associated theta correspon-
dences.

If A  is an associative algebra over F ,  then A +  will denote the underlying Jordan algebra,
that is, A  with the Jordan multiplication a  b =  2 (ab +  ba).

4.1. T h e  group MJ . Let J  be a Freudenthal-Jordan F -algebra [ KMRT,  x37 and x38]. The
algebra J  comes equipped with a cubic norm form N J ,  and we let

MJ  =  fg  2  G L ( J )  : N J   g =  NJ g:

It contains the automorphism group Aut(J )  as a subgroup. Now we consider the F -vector
space

gJ  =  sl3  Lie(MJ )  (F 3

 J )   (F 3

 J )
Then gJ  can be given the structure of a simple exceptional Lie algebra (see, for example,
[GS05]). We have the following cases of interest:

dim J       1        3        9      15
gJ            G2      D 4       E 6       E 7

We observe:

 If dim J =  3, then J  is a cubic etale F -algebra E .

 If dim J =  9, then J  corresponds to a pair ( B K ; )  where B K  is a central simple algebra
over an etale quadratic F -algebra K  and  is an involution of the second kind. Thus, J
=  B      is the subspace of -symmetric elements. If K  =  F 2 , then J  =  B   B  for a
central simple algebra B  over F ,   permutes two summands, and J  =  B + .  The split
version is when B  =  M3, the algebra of 33 matrices, and Aut(M3 )  =  P G L 3  o Z=2Z.

 If dim J =  15, then J  is H 3 ( B F  ) is the space of all 33 hermitian-symmetric matrices,
where B F  is a quaternion algebra over F .  The split version is when B F  =  M2.

Let G J  be the identity component of Aut(gJ ). If dim J =  9 then

1 !  G J  !  Aut(gJ ) !  Z=2Z !

1: This short exact sequence may not be split in general.

4.2. Dua l  pair G2  Aut(J ) .  We can now describe some dual pairs in G J  or rather in
Aut(gJ ). It will be easier to do this on the level of Lie algebras.

The centralizer of Aut(J )  in gJ  is

sl3  F 3

 1J   (F 3

 1J )
which one recognizes to be gF (i.e. taking J  =  F ).  Thus this is a Lie subalgebra of type G2,
and we have a dual pair

G2  Aut(J )   Aut(GJ ):
If dim J =  9, we recall that Aut(J )  sits in a short exact sequence

1 !  Aut(J )0  !  Aut(J )  !  Z=2Z !  1:
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If J  is associated to a pair (B K ; ) ,  then Aut(J )0  =  P GU (B K ; )  is an adjoint group of type
A2.

4.3. Dua l  pair Aut(i : E  !  J )   G E .  Now we x an embedding i  : E   !  J ,  where E  is a
cubic etale F -algebra. We have the subgroup

Aut(i : E  !  J )   Aut(J ):

If dim J =  9, a detailed description of this group is in [GS14]. Its identity component is a
2-dimensional torus. The centralizer of Aut(i : E  !  J )  in g J  contains

g E  =  sl3  t E   F 3

 E   (F 3

 E )
where E  , !  J  via i  and t E  =  E 0  is the toral Lie subalgebra of trace 0 elements in E .  This Lie
algebra is isomorphic to L i e (G E )  (where G E  is the simply connected quasi-split group Spin8
), and we have the dual pair

Aut(i : E  !  J )   G E   !  Aut(GJ ):

Note that this map is not injective.

4.4. A  see-saw diagram. The two dual pairs we described above t together into a see-saw
diagram:

(4.1) G E  : =  Spin8 Aut(J )  = :  H J

G2 Aut(i : E  !  J )  = :  H J ; E

in Aut(GJ ).  The various J ’s of interest in this paper, and the corresponding groups H J  =
Aut(J )  and H J ; E  =  Aut(i : E  !  J )  are given in the table below.

J D + M + H3 (M2 )
H J P D P G L 3  o  Z=2Z PGSp

H J ; E P E P E  o  Z=2Z ResE = F  SL2 =2

Here, note that D +  denotes the Jordan algebra associated to a cubic division F -algebra D ,
in which case E  is necessarily a eld.

5. T h e  See-Saw Argument

In this section, we shall consider the see-saw identity arising from the seesaw diagram (4.1)
and pursue some of its consequences.

5.1. See-saw identity.  Suppose that  2  Irr(G2). Then we have the see-saw identity asso-
ciated with the seesaw (4.1):

(5.1) HomH J ; E  ((); C) =  HomG 2 (RJ (E ); )

where
R J ( E )  : =  (1)
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is the big theta lift of the trivial representation of H J ; E .  To  make use of this see-saw identity, we
need to understand the representation R J ( E )  of SpinE . This has been studied in [GS21] and
we recall the relevant results there.

5.2. Degenerate principal  series of SpinE . Let P E  =  ME  N E   SpinE be the Heisenberg
parabolic subgroup, so that its Levi factor is

ME  =  GL2 (E )d e t  =  fg  2  G L 2 ( E )  : det(g) 2  F g:

Then the determinant map denes an algebraic character M E  !  Gm which is a basis element
of Hom(ME ; Gm). We may consider the degenerate principal series representation

I E (s )  =  IndSpin8 j det js:

In [S] and [GS21, Cor. 12.11, Thm. 17.6, Thm 18.1, Prop. 18.5 and Prop. 18.6], the module
structure of this family of degenerate principal series representations has been determined. In
particular, we have:

Proposition 5.2.

where

R J ( E )  , !  I E ( s J )

(
 1=2; if J  =  D +  or M+ ;

J 1=2; if J  =  H3 (M2 ).

The representation IE (1=2) has length 3 when E  is a eld and has length 2 otherwise. More
precisely, it has a unique irreducible submodule V with quotient isomorphic to R M  ( E )
R D ( E )  (where R D ( E )  is interpreted to be 0 when E  is not a eld). Indeed, one has the short
exact sequence:

0 !  R H 3 ( M 2 ) (E )  !  IE (1=2) !  R D ( E )  !  0:

and
0 !  V !  R H 3 ( M 2 ) (E )  !  R M 3 (E )  !

0: In particular, when E  is not a eld, IE (1=2) =  R H 3 ( M 2 ) (E ) .

As a consequence of the above discussion, we see that it is useful to understand the Hom
space

HomG 2 (IE (s); ) for  2  Irr(G2 ).

We shall study this in two ways.

5.3. Vanishing of an Ext1 . In view of the proposition, we see that there is an exact sequence

0 !  HomG 2 (RD (E ); )  !  HomG2 (IE (1=2); ) !  HomG 2 (RH 3 ( M 2 ) (E ); )

y

ExtG 2 (R D (E ) ; ) :

Now we have the following useful fact:
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Proposition 5.3. Assume that E  is a eld. If  2  Irr(G2 ) is tempered or has cuspidal
support dierent from deg[1], then

Ext G 2 (R D (E ) ; )  =  0;

so that one has a short exact sequence

0 !  HomG 2 (RD (E ); )  !  HomG2 (IE (1=2); ) !  HomG 2 (RH 3 ( M 2 ) (E ); ) !  0:

Proof. One needs to understand R D ( E )  as a representation of G2, and this is essentially done in
[Sa, Conj. 4.1 and x6], where the dual pair correspondence for P D  G2 was studied. We shall
recall the results of [Sa] in greater detail later on. At this point, we simply note that as a
representation of G2, R D ( E )  is the direct sum of a supercuspidal representation (of innite
length) and the irreducible discrete series representation deg[1], which is a constituent of
IQ(1=2; st). From this, the vanishing of Ext1 ( R D ( E ) ; )  for those  with dierent cuspidal
support from deg[1] follows immediately. On the other hand, if  is tempered, then one also

has Ext1(deg[1]; ) =  0 since discrete series representations are projective in the category of
tempered representations.

5.4. I E (s )  as G2 -module. On the other hand, we may understand the restriction of I E (s )
to G2 using Mackey theory. The following is a key technical result:

Proposition 5.4. As a representation of G2 , I E (s )  admits an equivariant ltration 0

I0   I1   I2   I3   I4

with successive quotients described as follows:
 I0  =  indN

2 
E ;

 J 1  : =  I1 =I0  I P  ( 2 +  4 ; C 1 ( P G L 2 ) ) .

 J 2  : =  I2 =I1  m E   I P  ( s  +  1 ; indPGL2        )   J 3

: =  I3 =I2  m E   IQ (s  +  1).
 J 4  : =  I4 =I3  I P  (s +  1).

Here,

< 3 ;  if E  =  F 3 ;
m E  = 1; if E  =  F   K ;

0; if E  is a eld.

The proposition implies that one has a short exact sequence

0 !  indN
2 

E  !  I E (s )  !  E (s)  !

0; from which one deduces an exact sequence:

0 !  HomG2 (E (s); ) !  HomG2 (IE (s); ) !  HomN (_ ; E )  !  ExtG 2 (E (s); ):

We now specialize to s =  1=2, where we need to be more precise.
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Proposition 5.5. Suppose that  2  Irr(G2 ) is tempered or has cuspidal support along Q.
Then

HomG2 (IE (1=2); ) =  HomN (_ ; E ) :

Proof. We need to prove

HomG2 (E (1=2); ) =  0 =  ExtG2 (E (1=2); ): To

that end, it suces to prove the following lemma:

Lemma 5.6. For all i  and j ,  ExtG 2 ( J j ; )  =  0, with  as in Proposition 5.5.

Proof. Consider J 1  rstly. By the Frobenius reciprocity,

Ext i  
2 (J1 ; ) =  Ext i  (j det j1=2  C 1 ( P G L 2 ) ; r  ()):

Since  is tempered, the center of M =  GL 2  acts on R  ())  by characters  such that j(z)j
=  jzjt where t  0. On the other hand, the center of M acts on j det j1=2  C 1 ( P G L 2 )  by jzj. Thus
the right hand side is 0. The other cases are dealt with in the same way.

This completes the proof of Proposition 5.5.

6. Dichotomy

The goal of this section is to prove the following theorem:

Theorem 6.1. For any representation  2  Irr(G ),  has nonzero theta lift to exactly one of
P D  or PGSp6 .

To  prove this dichotomy theorem, we need some preliminary results which are consequences
of the computation of the Jacquet modules of the minimal representation J  with respect to
the various maximal parabolic subgroups of G  and H  . The required Jacquet module
computations were carried out in [Sa, Prop. 5.1] when H J  =  P D  and in [MS, Thm. 4.3 and
Thm. 7.6] when H J  =  P G L 3  (see also [GS04, Prop. 4 and Prop. 6]). For H J  =  PGSp , the
Jacquet module computations for some parabolic subgroups were carried out in [MS, Thm.
5.3 and Thm 7.6]. The remaining ones will be done in x13 and some implications of these
computations are discussed in x14. We note that x13 is a self-contained section independent
of the rest of this paper. Hence, we rst record some results from x13-14 and the earlier
references [Sa, MS, GS04] that we will use.

6.1. Consequences of Jacquet module computations. We rst note:

Lemma 6.2. Consider the theta correspondence for G2  H J  for the 3 cases of J .

( i )  Let  2  Irr(G2 ) and write

J ( )  =  J ()c   J ( )n c

as a sum of its cuspidal and noncuspidal components. Then J ()n c  has nite length. In
particular, if J ( )  =  0, then it has an irreducible quotient.
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( i i )  Likewise, let  2  Irr(HJ )  and write

J ( )  =  J ( )c   J ()nc :

Then J ()n c  has nite length. In particular, if J ( )  =  0, then it has an irreducible
quotient.

Proof. We consider the 3 cases of H J  in turn:
 The case of J  =  H3 (M2 ) is shown in x14, based on the results of x13. As we remarked

above, the results of x13 and x14 are independent of the rest of the paper.

 The case of J  =  D +  follows from results of [Sa, x6], proving [Sa, Conjecture 4.1(3)].

 For J  =  M+ , (ii) follows from [GS04, Prop. 7, Cor. 9(i), rst paragraph of proof of
Thm. 14 and last paragraph of x9]. The proof of (i) is analogous to that for the case
J  =  H3(M2), which we describe in x14.2, and uses the Jacquet module computation
for P G L 3  given in [GS04, Prop. 4] and Proposition 14.2.

In fact, the Jacquet module computations allow one to determine the theta lift of non-
tempered representations explicitly (see Theorem 14.1). We simply note the following here:

Lemma 6.3. ( i )  Let  2  Irr(G2 ) and  2  Irr(HJ )  be such that
  is a quotient of J .  Then

 is tempered ( )   is tempered:

( i i )  Let  2  Irr(G2 ) be non-tempered. Then  has nonzero theta lifting to PGSp6 .

Proof. For H J  =  P D  or P G L 3  o Z=2Z,  the desired results have been veried in [Sa, x6] and
[GS04, Cor. 9(i) and proof of Prop. 10] respectively. For the case when H J  =  PGSp , this is
shown in Theorem 14.1 in x14.

6.2. Reduct ion to non-generic tempered case. With the above inputs in place, we can
now begin the proof of the dichotomy theorem. We note:

 The dichotmy theorem holds for nontempered . Indeed, if  is non-tempered, then
Lemma 6.3(ii) says that  has nonzero theta lift to PGSp , whereas [Sa] shows that  has
zero theta lift to P D .

 The dichotmy theorem holds for generic . Indeed, it was shown in [GS04, Cor. 20] that
a generic  has nonzero theta lift to PGSp (see also Cor. 11.2 below) and it was
shown in [Sa] that  has zero theta lift to P D .

Thus, to prove the dichotomy theorem, it remains to deal with non-generic tempered .

6.3. Weak dichotomy. We rst prove that a non-generic tempered  has nonzero theta lift to
one of P D  or PGSp . Since  is non-generic and innite-dimensional, there exists an etale cubic
F -algebra E  such that HomN (_ ; E )  =  0. By Proposition 5.5, we have an isomorphism

HomG2 (IE (1=2); )  HomN (_ ; E )  =  0:
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This implies, by Proposition 5.3, that

HomG 2 (RD (E ); )  =  0 or HomG 2 (RH 3 ( M 2 ) (E ); )  =  0:

By the see-saw identity (5.1), we deduce that

HomH E  ( J ( ) ; C)  =  0

for J  =  D +  or H3(M2). In particular, J ( )  =  0 for J  =  D +  or H3 (M2). We have thus
veried that  has nonzero theta lift to at least one of P D or PGSp6 .

6.4. Cur ious  chain of containments. It remains to show that a nongeneric tempered
cannot lift to both P D  and PGSp . Let  be the complex conjugate of . If  is unitarizable (e.g. if
is tempered), then  =  _ . Thus

E  
=   E  =  ( _ )  E

where, in the second isomorphism, we assume that  is unitarizable. Since the minimal
representation J  used in this paper is dened over R,  we have a canonical isomorphism J  =  J .
It follows that J ( )  is the complex conjugate of J () .

We shall make use of the curious chain of containment given in the following lemma; this
is the rst instance of the game of ping-pong with periods discussed at the end of the
introduction.

Lemma 6.4. Let  2  Irr(G2 ) be tempered. For J  =  D + ,  M +  or H3 (M2 ), let  2  Irr(HJ )  be
tempered and such that

HomG 2 H J  ( J ;   )  =  0: Then

we have the following natural inclusions

HomN (; E )   HomN ((); E )  =  HomH J ; E  (
_ ; C)   HomH J ; E  ( (_ ) ; C)  =  HomG 2 (RJ (E ); _ ):  If one of

these spaces is nite-dimensional, then all inclusions are isomorphisms.

Proof. The rst inclusion arises from ()  . The second follows from

HomN ((); E )  =  HomH J  ( ( J )N ;  E  ; )

combined with (see [GrS2, Lemma 2.9, Pg 213])

( J )N ;  E  =  ind H J ; E  
(1)

and the Frobenius reciprocity. For the third, observe that  ()  is the complex conjugate of J () .
Since  =  _  and  =  _  and we have ( _ )   _ . The fourth is the see-saw identity (5.1).

If any of the spaces is nite-dimensional, then HomN (; E )  is nite-dimensional. If this
space is nite dimensional then, since  is tempered, by Propositions 5.3 and 5.5, one has

(6.5) dim HomG 2 (RJ (E ); _ )  dim HomG2 (IE (1=2); _ ) =  dim HomN (; E ) :

It follows that all spaces have the same dimension and the lemma is proved.
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6.5. Conclusion of proof. Using the lemma, we can now conclude the proof of Theorem
6.1.

Assume  is tempered nongeneric and has nonzero theta lift to P D .  Since P D  is
compact, one can nd  2  Irr(P D) such that  is an irreducible quotient of D () .  Moreover  is
tempered. Choose E  so that HomN (; E )  =  0. We may now apply Lemma 6.4 with the chosen
and E  to deduce that

d : =  dim HomG2 (IE (1=2); ) =  dim HomG 2 (RD (E ); ) =  dim HomN (; E )  =  0

Similarly, if  has nonzero theta lift to PGSp , then we may nd a tempered  2  Irr(PGSp )  such
that  is an irreducible quotient of ()  (by Lemma 6.2 and Lemma 6.3(i)). With E  as above,
an application of Lemma 6.4 shows that

d =  dim HomG2 (IE (1=2); ) =  dim HomG 2 (RH 3 ( M2 ) (E ); ) =  dim HomN (; E )  =  0

Moreover, since all these dimensions are nite, one deduces by Proposition 5.3 that

d =  dim HomG2 (IE (1=2); ) =  dim HomG 2 (RD (E ); ) +  dim HomG 2 (RH 3 ( M2 ) (E ); ) =  2d:

This gives the desired contradiction and completes the proof of Theorem 6.1.

6.6. Uniqueness results. As further applications of Lemma 6.4, we may now derive two
multiplicity one statements which will play a key role in the reminder of the paper. These
statements are the rst steps towards the proof of the Howe duality theorem.

Proposition 6.6. Let  2  Irr(HJ )  be tempered. Let  2  Irr(G2 ) be a tempered, non-generic
quotient of J ( ) .  Then J ( )  =  .

Proof. Since  is non-generic, for every E ,  the space HomN (; E )  is nite-dimensional. By
Lemma 6.4, HomN (J (); E )  =  HomN (; E ) ,  for every E .  Thus, by Proposition 3.4, the kernel
of the projection J ( )  !   has trivial action of G2. But this submodule would split o, giving a
trivial representation as a quotient of J ( ) .  This contradicts Lemma 6.3.

Proposition 6.7. Let  2  Irr(G2 ) be tempered and non-generic. Then J ( )  cannot have two
tempered irreducible quotients. In particular, the cuspidal representation J ()c  is irre-ducible or
0.

Proof. Let 1; 2 2  Irr(HJ ),  irreducible tempered, such that J ( )   1 2. Since  is non-generic, there
exists E  such that d =  dim Hom ( ; )  is nite and non-zero. By Lemma
6.4, applied to _ , _  and then to _ , _ ,

d =  dim HomH J; E  (1 ; C) =  dim HomH J; E  ( J ( ) ; C)  =  dim HomH J; E  (2 ; C): Since

1  2 is a quotient of (),

d =  dim HomH J; E  ( J ( ) ; C)   dim HomH J; E  (1 ; C) +  dim HomHJ; E  (2 ; C) =  2d;

a contradiction.

Combining Propositions 6.6 and 6.7 with Lemmas 6.2(i) and 6.3(i), we deduce the following
corollary which may be considered as a rst step towards the Howe duality theorem.
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Corol lary 6.8. Let  2  Irr(G2 ) be tempered and non-generic. Then J ( )  has nite length. If J ( )
=  0, then it has a unique irreducible quotient ()  and () is tempered. Moreover, for 1; 2 2  Irr(G2 )
tempered and non-generic,

0 =  (1 ) =  (2 ) = )  1 =  2:

Proof. Writing J ( )  =  J ()c  J ()nc , Proposition 6.7 tells us that J ()c  is irreducible or 0, whereas
Lemma 6.2(i) tells us that J ()n c  has nite length. Hence J ( )  has nite length, so that its cosocle
J ( )  is a nite sum of irreducible representations. Moreover, Lemma 6.3(i) says that J ( )  is
tempered, and Proposition 6.7 then shows the irreducibility of J ( )  if it is nonzero. The nal
implication now follows by Proposition 6.6.

In the rest of the paper, we shall examine each of the 3 dual pairs G2  H J  in turn and
complete the proof of the Howe duality conjecture.

7. Theta Correspondence for P D   G2

In this section, we discuss the theta correspondence for the dual pair P D   G2. A
preliminary study of this dual pair correspondence has been carried out by the second author in
[Sa]. We rst recall the results established there.

Let be the minimal representation of P D   G  . Then we have

D  =
M

  ():
2 I rr ( P D )

The following was shown in [Sa, x6]:

Proposition 7.1. ( i )  If  =  1 is the trivial representation of P D ,  then

(1) =  deg[1];

the unipotent discrete series representation introduced in Proposition 3.1(iii) (rst bullet
point).

( i i )  If  is not the trivial representation, then () is nongeneric supercuspidal of nite length
(possibly zero).

( i i i)  If  =   is a nontrivial unramied cubic character, then () =  sc[]

and (2 ) =  sc[2]

the two depth 0 supercuspidal representations introduced in x3.5 (2) (third bullet point).

(iv) For each cubic eld extension E = F ,

HomN ((); E )  =  HomP E (; C):

We can now easily extend the above results. More precisely,

Theorem 7.2. ( i )  For any  2  Irr(P D), ()  is an irreducible representation of G2 if it is
nonzero.

( i i )  If 1; 2 2  Irr(P D) are such that (1 ) =  (2 ) =  0, then 1 =  2.
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(i i i)  If p =  3, then the map  !  ()  denes an injection
Irr(P D) , !  Irr(G2):

Hence, the Howe duality theorem holds for P D   G2 , so that

dim HomG2 ((1); (2))  dim HomP D(1; 2)

for any 1; 2 2  Irr(P D). In particular, for any  2  Irr(G2 ), the representation () of P D is
irreducible or zero.

Proof. The rst two parts follow from Propositions 6.6 and 6.7. As for (iii) we use

HomN ((); E )  =  HomP E (; C);

so it suces to show that there exists a eld E  such that HomPE (; C) =  0. If p =  3, this was
proved for all irreducible  by [LT,  Thm. 2.4].

8. Theta Correspondence for ( P G L 3  o  Z=2Z)  G2

In this section, we consider the theta correspondence for the dual pair ( P G L 3  o Z=2Z) G 2  and
prove various results analogous to those in the last section. In fact, the theta correspon-dence
for P G L 3   G2 was almost completely studied in [GS04]. But the treatment there ignores the
outer automorphism group of PGL 3 ;  this is akin to working with special orthog-onal groups
instead of orthogonal groups in classical theta correspondence and is of course undesirable.
Thus, we shall complete the results of [GS04] in their natural setting here. We extend the
minimal representation of E 6  to E 6  o Z = 2 Z  so that Z=2Z xes the spherical vector.

8.1. Representations of H  =  P G L 3  o  Z=2Z.  We realize Z=2Z, acting on GL 3  as a pinned
automorphism preserving the standard pinning, i.e. acting via

1
A  !  w0  > A  1  w 1 with @  1 A

1

Let U  GL 3  be the maximal unipotent subgroup of upper triangular matrices and let      be a
Z=2Z-invariant Whittaker character of U. Then      extends to two characters of U o Z=2Z.  Let

1 be the extension such that Z=2Z acts trivially, and let
sign be the other extension.

If  2  Irr(PGL3 ), then there are two possibilities:

 if _   , then
+  : =  IndP G L 3  =  IndP G L 3

_  is
irreducible. If  is generic then

dim HomU o Z =2Z (+ ;
 1) =  dim HomU o Z =2Z (+ ;
 sign) =  1:

 if  =  _ , then  has two extensions to H ,  which dier from each other by twisting with the
unique quadratic character sign : H   !  h1i of H .  When  is generic (for example when
is tempered), we let +  denote the unique extension of  such that

dim HomU o Z =2Z (+ ;
 1) =  1;
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and let   denote the other extension.

The only nongeneric and self-dual representations of P G L 3  are the trivial repre-
sentation and Langlands quotients J B ( ) ,  where B  =  T U is the normalizer of U and

 =  j j1=2

 1
 j j 1=2

is a character of T such that 2 =  1. In this case, ()  is irreducible by [GS04, Thm. 11 and
Cor. 13], and we dene +  by setting ( + )  =  ()  and (  )  =  0. Observe that 1 +  is the trivial
representation of H .

It follows from the above discussion that any irreducible representation of H  is self-dual.

8.2. Whittaker  models. The following lemma summarizes some basic computations.

Lemma 8.1. Let  be the minimal representation of split E 6  o  Z=2Z.
( i )  Let V : V !  C  be a Whitaker character for G2 (so V is a maximal unipotent subgroup
of G2 ). Then

V; V      =  indU oZ=2Z

 1: In particular, for any  2  Irr(H ),
HomV ((); V )  =  HomU o Z =2Z(;
 1)

( i i )  For any etale cubic F -algebra, we have:
HomN ((); E )  =  HomP E o Z =2Z (; C):

8.3. O u r  earlier results. The following is a simple combination of the results of [GS04,
Thms. 11, 14, 15 and 21] and the previous discussion:

Theorem 8.2. For  2  Irr(PGL3 ),  let  : W D F   !  SL 3 (C)  denote the L-parameter of . If  is
non-supercuspidal, then () has nite length. If   is supercuspidal, then () is
irreducible supercuspidal. (This covers all  2  Irr (PGL )  if p =  2). In these cases, set ()  to be
the maximal semisimple quotient of ()  for  =  .

More precisely, we have:
( i )  If  =  _ ,  then ( + )  is irreducible and nonzero. If  is generic, or supercuspidal, or a discrete
series representation, or tempered, so is ( + ) .  When  is not supercuspidal, then ( + )  is not
supercuspidal and its L-parameter is obtained by composing  with the inclusion SL 3 (C)   G2 (C).

( i i )  If  =  _  and the parameter  contains the trivial representation, then (  )  =  0 and ( + )  is
nonzero irreducible, non-discrete-series and its L-parameter is obtained by composing  with the
inclusion SL 3 (C)   G2 (C).

( i i i)  If  =  _  and the parameter  does not contain the trivial representation, then we have the
following cases:

  =  St, the Steinberg representation. Then

(St+ )   (St )  =  gen[1]  sc[1]
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where gen[1] is the generic discrete series representation introduced in Proposition
3.1(ii) and sc[1] is the depth 0 supercuspidal representation introduced in x3.5 (2).

  is a tempered representation induced from a supercuspidal representation  =  _  of GL 2
with a non-trivial central character. Then

( + )   (  )  =  IndP
2 () =  IndP

2 ()gen  IndP
2 ()deg

  is a tempered principal series induced from a triple of non-trivial quadratic charac-
ters (1; 2; 3) such that 1  2  3 =  1 then

( + )   (  )  =  IndB
2 () =  IndB

2 ()gen  IndB
2 ()deg

where  is the quadratic character of T determined by (1; 2; 3) as in x3.4.
  is a self-dual supercuspidal representation (so p =  2). Then () is supercuspidal and

( + )   (  )  =  gen  deg

where gen is a generic irreducible supercuspidal representation, while deg is a non-
generic supercuspidal representation of unknown length.

Observe that the only case for which we do not know that ()  has nite length (and hence ()
is dened) is when  is a self-dual supercuspidal representation (so p =  2). In this case, however,
the last bullet point states that ()  is supercuspidal and hence semisimple. Hence, even in this
exceptional case, we may set ()  =  (). Moreover, observe that if  is nontempered, then () is
irreducible nontempered and is completely determined by Theorem 8.2. On the other hand,
when  is tempered, then so is every irreducible summand of (). In particular, the results
highlighted in Lemma 6.2 and 6.3 hold in this case.

In the rest of the section, we shall complete the results above by completing the unresolved
parts of the theorem.

8.4. A  miracle of Oberwolfach. Let  2  Irr(PGL3 ) be a self-dual supercuspidal repre-
sentation. The goal here is to show that ( )  =  0. Let Q =  L U  be the 3-step maximal
parabolic subgroup of G2. Recall that the group U has the 3-step ltration

U  [U; U]  Z U

where Z U  is the 2-dimensional center of U and U=ZU is a 3-dimensional Heisenberg group
with the center [U; U ]=ZU . Let be a non-trivial character of [U; U], trivial on ZU . Then
[U;U];      is naturally a ( P G L 3  o Z=2Z) SL2 -module, where SL2  =  [L; L].  In order to describe [U;U];
, we need some additional notation.

Consider the action of the group GL 2  o  Z=2Z on M2, the space of 2  2 matrices, with
elements in GL 2 (F )  acting by conjugation and the nontrivial element of Z=2Z acting via:

X  ! 1     0  X >  
1     0 :

This action preserves the determinant (quadratic) form on M2 (F ) and descends to the quo-
tient group

P G L 2 ( F )   Z=2Z =  f1g  SO3 =  O3:
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On the space Cc (M2 (F )), we have a Weil representation of O3  SL2 , which we may regard as a
representation of GL 2 ( F )  o  Z=2Z. Then the following lemma follows by a standard
computation:

Lemma 8.3. We have an isomorphism of (PGL 3  o  Z=2Z)  SL2-modules:

[U;U];      =  indPGL 3 oZ=2Z (Cc (M2 (F ))

where GL 2  is embedded in P G L 3  via
 
a c

0  
a

d !  @ 
c

1

b 
1

A :
d

Using the lemma, we can now prove:

Proposition 8.4. Let  (
)  =  0.

2  Irr(PGL3 ) be a self-dual supercuspidal representation. Then

Proof. It suces to show that   is a quotient of [U;U]; , in fact we shall show that   is a
quotient of SL2-coinvaraints of [U;U]; . Decompose M2 (F ) =  M (F )   F ,  where M2 (F ) is the
subspace of trace 0 elements and F  is the center. Accordingly, the Weil representation
of O3  SL2  on Cc (M2 (F )) decomposes as a tensor product

Cc (M2 (F )) =  Cc (M2 (F ))

 Cc (F )

where O3 acts trivially on Cc (F )  and SL2  acts by the Weil representations  . Recall that
as an SL2-module,      decomposes as a sum

 =  +

of even and odd Weil representations. Let ()  and () be the theta lifts of their
contragredients to O3, via the Weil representation on Cc (M(F ))  with respect to . Thus
the SL2-coinvariant of [U;U];      is given by

indP G L 3 oZ= 2 Z (())   indPGL 3 oZ=2Z (()):

Let st be the Steinberg representation of SO(3) =  P G L  . We extend st to two representations
st+ and st  of O(3) by letting  1 2  O(3) act by 1 and  1 respectively. Then () =  st
while ()  is the principal series representation with the trivial representation as a quotient and
st+ as a submodule. Since   is a supercuspidal representation, it suces to show that it is a
quotient of

indPGL 3 oZ= 2 Z (st+ )   indPGL 3 oZ=2Z (st ):

It is known that any generic representation of G L  , in particular st, is a quotient of . Hence
either st+  or st  is a quotient of  . Now the proposition follows from Frobenius reciprocity.
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8.5. Main  result. We shall now strengthen Theorem 8.2.

Theorem 8.5. For any  2  Irr(PGL3 ),  let  : W D F   !  SL 3 (C)  denote the L-parameter of
.

( i )  The representation () is zero if and only if  contains the trivial representation (so
=  _ )  and  =   .

( i i )  For any  =  , ()  has nite length with unique irreducible quotient ()  (if it is nonzero).

( i i i)  ()  is generic if and only if  is generic and  =  + .

(iv) Suppose that ()  =  0. If  is a discrete series (resp. tempered) representation, so is ().
Moreover, ()  is supercuspidal if and only if  is supercuspidal or  =  St .

(v) If (1 ) =  (2 ) =  0, then 1
1 =  2

2 .

In particular, the Howe duality theorem holds for the dual pair (PGL 3  o  Z=2Z)  G2:

dim HomG2 ((1
1 ); (2

2 ))  dim HomP G L 3 o Z =2Z (1
1 ; 2

2 )
for any 1 ; 2     2  Irr(PGL3  o  Z=2Z).  Moreover, for  2  Irr(G2 ), ()  is a nite length
representation of P G L 3  with a unique irreducible quotient (if nonzero).

Proof. (i) From Theorem 8.2, it remains to show that ()  is nonzero for those represen-tations
as in Theorem 8.2(iii) and any  =  . Consider rst the Steinberg representation. Recall that
gen[1] is generic while sc[1] is not. It follows, from Lemma 8.1 part (ii), that gen[1] is a
summand of (St ). Furthermore, by Proposition 6.6, sc[1] cannot be a summand of (St ). Hence

(St+ )  =  gen[1] and (St )  =  sc[1]:
The same argument works in the other three cases to show that ( + )  is the generic G2
summand and ( )  is the degenerate summand. Moreover, in the last case of Theorem 8.2,
where  is a self-dual supercuspidal representation (so p =  2), we deduce by Proposition 6.6
again that deg is nonzero irreducible.

(ii) This follows from Theorem 8.2 and the irreducibility of deg in the proof of (i) above.

(iii) and (iv): These summarize what we already know from Theorem 8.2.

(v) Suppose that
 : =  (1 ) =  (2 ) =  0:

If  is non-supercuspidal, then 1 and 2 are both non-supercuspidal. The desired equality
 1 =   2 follows from the results of [GS04, Thms. 11, 14 and 15] and our new understanding
in (i) (which determines ()  for those  in Theorem 8.2(iii))

Suppose that  is supercuspidal. Then i  is either supercuspidal or S t , in which case both 1
and 2 are generic discrete series representations. By (iii), we deduce that 1 =  2. Hence, it
remains to show that 1 =  2 or 2 . We now consider the following two cases:

(a) Suppose 1  _  and 2  _ . Then 1 =  2 =  +  and  is an irreducible generic
supercuspidal representation.
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Consider, for i  =  1 or 2, the induced representation IndPGSp6 (i ), where P3 is the
Siegel parabolic subgroup. Its normalized Jacquet functor with respect to P  is i  

_ .
Since i  =  _ , it follows that IndPGSp 6 (i )  is an irreducible generic tempered
representation.

By the computation of the Jacquet module of the minimal representation 0 of G2
PGSp6 along P3 given in [MS, Thm. 5.3], we deduce that
IndPGSp6 ( i ) is an irreducible quotient of  . By [GS04, Prop. 19 and Cor. 20], a generic
representation of G2 cannot lift to two dierent generic representations of PGSp .
Hence, we must have

IndPGSp6 (1 )  IndPGSp6 (2 ):
By consideration of the Jacquet modules with respect to P3, we see that 2  1 or 1 ,
as desired.

(b) Assume now that 1 =  1 . In this case, we know that (1 )

=  gen and (1 )  =  deg:

Moreover, the tempered representation IndPGSp6 (1 ) is the sum of two representa-
tions, one of which is generic and the other degenerate (see Proposition 10.3(i)). By
the Jacquet module of 0 again, we see that both gen and deg lifts to irreducible
summands of IndPGSp6 (1 ). Moreover, deg cannot lift to a generic representation of
PGSp and hence must lift to the degenerate summand [GS04, Prop. 19]. By
Proposition 6.6, it follows that gen cannot lift to the degenerate summand and thus
must lift to the generic summand.

Now suppose that 1 =  2 =  + ,  so that  =  ( + )  =  ( + )  is generic. Then as before, we
see that  lifts to the generic summand of IndPGSp 6 (i )  (regardless of whether 2 is self-
dual or not). By Jacquet module consideration, we see that 1 =  2. On the other hand, if
1 =  2 =   , so that  =  (  )  =  (  )  is nongeneric, then Proposition 6.7 implies that the
nongeneric summand of IndPGSp6 (1 ) is contained in IndPGSp6 (2 ). Again, Jacquet
module considerations show that 1 =  2.

The inequality at the end of the theorem is simply a restatement of (v). Finally, given
2  Irr(G2), we write

() =  ()c  ()nc

as a sum of its cuspidal and noncuspidal component. As we noted in Lemma 6.2, the results of
[GS04] imply that ()nc has nite length. The result in (v) shows that ()  has a unique
irreducible quotient if it is nonzero, implying in particular that ()c is either 0 or irreducible,
and hence ()  has nite length.

9. T h e  group PGSp6

Before discussing the last dual pair G2  PGSp , we need to devote the next few sections to a
discussion of the structure and representations of PGSp , as well as certain particular periods
on G2 and PGSp6 .



6

~ ~ ~
6

i 6
~i 6

6

6

6 6

2     3

1 2 3

2 2 3 1

32 W E E  T E C K  G A N  A N D  G O R D A N  S AV I N

Let e1; : : : ; e6 be the standard basis of F 6 , where we have a symplectic form dened by

!(e1 ; e6 ) =  !(e2 ; e5 ) =  !(e3 ; e4 ) =  1

and all other ! (e i ; e j )  =  0 with i  <  j  . Let GSp be the group of linear transformations g of
F 6 , such that for some (g) 2  F

!(gv; gw) =  (g)  ! (v ; w)

for all v; w 2  F 6 . Then  : GSp6 !  F  is the similitude character.

Let P1, P2 and P3 be maximal parabolic subgroups of GSp dened as the stabilizers of
subspaces

he1i  he1; e2i  he1; e2; e3i

respectively. For i  =  1; 2; 3, let P   PGSp be the quotient of P  by the center of GSp . The group
PGSp acts faithfully on J  =  ^2 F 6

  1, and we shall (partially) describe how the parabolic subgroups act on this module.

The group PGSp can be explicitly described in terms of its action on J  as follows. Let
x i j  =  ei ^  ej  2  J  for i  =  j .  On J ,  we have a natural trilinear form (x; y; z)

^2 F 6   ^2 F 6   ^2 F 6  !  ^6 F 6  =  F :

The group of linear transformations of J  preserving this form is SL6 =2 and PGSp =  Sp =2 is
the subgroup xing

e =  x16 +  x25 +  x34:
The Levi factor M3 of P3, as an algebraic group, is isomorphic to GL3 =2. Observe that
group acts faithfully on ^  F  , and since the latter is a three dimensional vector space, this
action gives an isomorphism GL3 =2 =  GL3 .  Thus we have an identication

M3 =  GL(hx12; x13; x23 i):

Under this identication, the maximal torus is given by diagonal matrices (t1; t2; t3). The
three simple co-roots of PGSp6 are, respectively,

_ (t) =  (1; t; t 1); _ (t) =  (t; t 1; 1); _ (t) =  (1; t; t):

An unramied character  of the maximal torus is given by a triple of complex numbers
(s1; s2; s3)

(t1; t2; t3) =  jt1js1 jt2js2 jt3js3 :
The Weyl group action on the characters is somewhat dierent in this picture. The simple
reections corresponding to the rst two roots 1 and 2 are the usual permutations of entries of
(s1; s2; s3), however, the simple reection corresponding to the third simple root 3 is given by

(s1; s2; s3) !  (s1 +  s2 +  s3;  s3;  s2):
Thus the root hyperplanes are si  sj  =  0 and s i + s j  =  0 for short and long roots, respectively.
This looks like a D 3  root system; however, the Weyl-invariant quadratic form in this case is

q(s1; s2; s3) =  s1 +  s2 +  s3   
4

(s1 +  s2 +  s3)2
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rather than the usual dot product, and with this form, we have a realization of the C3  root
system with simple roots

1 =  (0; 1;  1); 2 =  (1;  1; 0); 3 =  (0; 2; 2):

This somewhat unconventional description of the C3  root system is a source of potential
confusion, as one has the tendency to confound it with the more familiar description of the
root system of Sp , but what we have done here is denitely the natural way to set things up
for PGSp6 .

The character  is in the positive chamber if for every positive root , (_ (t))  =  jtjs for some
s 2  C  such that <(s)  >  0 (the real part). One checks that  is positive if

<(s1 ) >  <(s2 ) >  j<(s3)j:

The modulus character of M3 =  GL 3  is

P3 (m) =  j det(m)j2:

It follows that the Levi factor M13 of P13 =  P1 \  P3 is

M13 =  GL(hx12 ; x13 i)  GL(hx23 i):

The group P13 is the stabilizer of the space V2 =  hx12; x13i.

Consider now the group P2 and its Levi factor M2. The standard Levi factor of P2 is GL 2
GL 2  where the rst GL 2  acts on he1; e2i in the standard way, xes he3; e4i and acts by transpose-
inverse on he5; e6i. The second GL 2  acts on he3; e4i in the standard way, by det on he1; e2i and
xes he5; e6i. The group P2 is the stabilizer of the singular line V1 =  hx12i, and the Levi factor
M2 acts faithfully on the 4-dimensional subspace

V4 =  hx13; x23; x14; x24i

preserving the quadratic form x  !  (x; x; x56 ). If we identify x  =  ax14 +  bx13 +  cx24 +  d23
with the matrix

a     b
c     d

then (x; x; x56 ) =  2 det(x). Thus, with V4 identied with the set of 2  2 matrices, we have M2

=  GL 2   G L 2 = G L r where G L r  =  f(t; t 1) : t 2  GL1 g;

so that (; ) 2  M2 acts on x  2  V4 by x  !  x  where  is the transpose of . The element (; ) acts
on the line hx12i by det(). The modulus character is

P2 ((; )) =  j det()j5:

This sets up the necessary notation to discuss the representations of PGSp6 .

10. Representations of PGSp6

In this section, we list some irreducible non-supercuspidal representations of PGSp (F ),
relevant to this work. Observe that the local Langlands correspondence is known for the
Levi factors of all proper parabolic subgroups of PGSp (F )  (by Gan and Takeda [GT11] for M1
=  GSp ). Thus, following Shahidi [Sh1], reducibility points of generalized principal series can
be computed using L-functions of Langlands parameters.
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10.1. Pr inc ipal  series representations for P  . We rst consider certain principal series
representations for the parabolic subgroup P2 =  M2N2, where M2 =  GL 2   G L 2 = G L r .  Let  be
an irreducible representation of GL 2  with L-parameter  and central character !  . Set

I2 (
 )  =  IndPGSp6

  and I2 (s;
 )  =  IndPGSp6 (j det js )
 (j det js)

if we need to consider a family of induced representations. Then we have:

Proposition 10.1. ( i )  If  2  Irr(GL2 (F ))  is unitary supercuspidal, then I2 (s;
 )  is reducible if and only if =   (so !  =  1) and one of the following holds:

 !  =  1 and s =  1=2, in which case one has:

0 !  2 () !  I2(1=2;
 )  !  J2(1=2;
 )  !  0;

where 2() is a generic discrete series representation.
 !  =  1 (so  is dihedral), Im( ) =  S3 (the symmetric group on 3 letters, regarded as a

subgroup of GL 2 (C ) )  and s =  1, in which case one has:

0 !  gen[] !  I2 (1;
 )  !  J2 (1;
 )  !  0;

where gen[] is a generic discrete series representation.
 !  =  1, Im( ) =  S3 (the symmetric group on 3 letters, regarded as a subgroup of

GL 2 (C ) )  and s =  0, in which case one has:

I2 (
 )  =  I2 (
 )gen  I2 (
 )deg

where I2 (
 )gen is generic.

( i i )  If  =  st is a twisted Steinberg representation, then I2 (s;
 )  is irreducible except for the following cases:

  =  1 and s =  5=2 or 1=2, in which case one has

0 !  StPGSp 6      !  I2(5=2; st
 st) !  J2(5=2; st
 st) !  0;

and

0 !  IndPGSp6 (St)gen !  I2(1=2; st



P P3 3

 st) !  J2(1=2; st
 st) !  0;

where IndPGSp6 (St)gen is the generic summand of IndPGSp6 (St).
2 =  1 but  =  1 and s =  1=2, in which case one has:

0 !  gen[] !  I2(1=2; st
 st) !  J2(1=2; st
 st) !  0;

where gen[] is a generic discrete series representation.
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10.2. Pr inc ipal  series representations for P13. Now we consider certain principal series
representations for the parabolic subgroup P13 =  M13N13, where M13 =  GL 2   GL1 .  Let  be an
irreducible representation of GL 2  with the central character !  and L-parameter  .
Set

I13 (
 1) =  IndPGSp6

 1 and I13(s;
 1) =  IndPGSp6 (j det js )
 1

if we need to consider a family of induced representations. In the more familiar language of
representations of Sp , the restriction of I  (s;
 1) to Sp is a principal series induced from j  j2 s !
 j det js. In particular, if  is unitary tempered and s >  0, this is a standard module. We have:

Proposition 10.2. If  2  Irr(GL2 (F ))  is unitary supercuspidal, then I13(s;
1) is reducible if and only if =   (so !  =  1) and one of the following holds:

 !  =  1 and s =  1=2, in which case I13(1=2;
 1) has length 4 and has a unique irreducible submodule 13(), which is a generic
discrete series representation.

 !  =  1 and s =  0, in which case one has:

I13 (
 1) =  I13 (
 1)gen  I13 (
 1)deg where I13 (
 1)gen is generic.

10.3. Pr inc ipal  series representations for P3 . Now we consider certain principal series
representations for the parabolic subgroup P3 =  M3N3, where M3 =  GL3 .  Let  be an
irreducible representation of GL3 .  We set

I3 ()  =  IndPGSp6 :

Proposition 10.3. ( i )  Assume that  is discrete series representation with trivial central
character. Then we have two cases:

 If  =  _  then

is irreducible.

 If  =  _  then

I3 ()  =  I3 ( _ )

I3 ()  =  I3()gen  I3 ()deg

where I3()gen is generic.

( i i )  Let 1; 2; 3 be three characters of F  such that 1  2  3 =  1, and let  =  (1; 2; 3) be the
associated principal series representation of GL 3 ( F )  (which is possibly reducible). Then the
induced representation I3 ()  is irreducible unless one of the following two conditions hold:

 i  =  j  j1 for some i  or i =j  =  j  j1 for a pair i  =  j .

 The three characters i  are quadratic, non-trivial and pairwise dierent. Then I3 ()

=  I3()gen  I3 ()deg



where I3()gen is generic.



6

6

6
2

=

6 6

6

4

P P1 1

4

4 5

4

5

36 W E E  T E C K  G A N  A N D  G O R D A N  S AV I N

Proof. These are some old results for representations of GSp (F )  translated to our setting.
Following [Ta, x3], the Levi subgroup of the Siegel parabolic subgroup in GSp (F )  is isomor-
phic to GL 3 (F )   GL 1 ( F )  such that, under this isomorphism, the center of GSp (F )  corre-
sponds to the image of the map  : GL 1 (F )  !  GL 3 ( F )   GL 1 ( F )  dened by  !  (;  )  where  2
F  . It follows that

M3 (F ) =  (GL 3 (F )   GL1 (F ) )=GL 1 (F ) ;
a rather awkward description of a group isomorphic to GL3 (F ) .  However, by our identication M3
=  GL3 ,  the above isomorphism is given by the map g !  (g; det g). Keeping in mind that our
have the trivial central character, it follows that our I3 ()  is given by  o  1 in the notation
of Tadic.

With this translation, we now treat each part of the proposition in turn:
(i) By [Sh2], the representation  o 1  reduces if and only if   _  and the exterior square L-

function of  has no pole at s =  0. In [Sh2], however, the result is stated for representations of
Sp (F ).  The variant of that result for representations  o   of GSp (F )  involves a twist
by the character . Since, in our case,  =  1 we have what we stated. Now observe that the
exterior square L-function of  is the same as the standard L-function of _  (a simple
observation that the exterior square of the standard representation of SL 3 (C)  is the dual of the
standard representation). Since the standard L-function of a square integrable representation of
P G L 3 ( F )  has no pole at 0, it follows that I3 ()  reduces if and only if  =  _ .

(ii) This is [Ta, Example 7.7 and Theorem 7.9]. Observe that the condition i j  =  j  j1 is
redundant since 123 =  1.

Remark: Observe that the description of reducibility points in Proposition 10.3 (ii) matches
perfectly those for G2 in Proposition 3.3. In fact these, and many other reducibility results for
induced representations of PGSp (F )  stated in this section, can be derived using the theta
lifting from G2, see [GrS1] for an illustration of this idea.

10.4. Pr inc ipal  series representations for P1 . Now we consider certain principal series
representations for the parabolic subgroup P1 =  M1N1, where M1 =  GSp . Let  be an
irreducible representation of GSp4. We set

I1 ()  =  IndPGSp6  and I1 (s; ) =  IndPGSp6 jjs

where  is the similitude character of GSp . Let  be an irreducible supercuspidal repre-
sentation of GSp (F )  with trivial central character. Let ’  : W D F  !  Spin =  Sp(4) be its
Langlands parameter [GT11].

Proposition 10.4. Assume that  is a supercuspidal representation of GSp (F )  with trivial
central character such that the parameter std  ’  contains the trivial representation, where std
denotes the 5-dimensional standard representation of Spin . Then I1 (s; ) is reducible if and
only if s =  1=2, in which case one has:

0 !  1 () !  I1(1=2; ) !  J1(1=2; ) !

0; where 1() is a discrete series representation.
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11. Fourier-Jacobi  and Shalika periods

In this section, we introduce and study a Fourier-Jacobi-type model for the group G2 and
a Shalika period for PGSp . These are some of the periods that will appear when we consider
a game of ping-pong with periods for the dual pair G2  PGSp , as discussed at the end of
the introduction.

11.1. Whittaker  periods. We begin by recalling the following results about Whittaker
periods from [GS04, Prop. 19 and Cor. 20], see also the appendix of [HKT].

Proposition 11.1. Let  be the minimal representation of E  and let (V 0; 0 ) be a Whit-
taker datum for PGSp (so V 0 is a maximal unipotent subgroup and 0 a generic character
of V 0). Then we have an isomorphism of G2-modules:

V 0; V
 0 =  indV 

2      
V

where (V; V )  is a Whittaker datum for G2 .

Corol lary 11.2. ( i )  If  2  Irr(G2 ) is generic and ()  is its big theta lift to PGSp6 , then

dim HomV 0 ((); V 0 ) =  1

so that ()  contains a unique irreducible generic subquotient and thus is nonzero. ( i i )

If  2  Irr(G2 ) is non-generic and  2  Irr(PGSp6 ) is generic, then

HomG2 PGSp6 (;
 )  =  0:

11.2. Fourier-Jacobi  period of G2 . Let Q =  L U  be the 3-step maximal parabolic subgroup of
G2. Recall that [L ; L ]  =  SL2  corresponds to the long simple root . Thus V =  UU is the
unipotent radical of the standard Borel subgroup of G2. If we set J  =  [L; L]U , then the
quotient of J  by the two-dimensional center Z U  of U is the Jacobi group with one-dimensional
central subgroup [U; U ]=ZU =  U2+. F ix  a non-trivial additive character of U2+ =  F .
Let  be the unique irreducible representation of the 2-fold cover J ,  trivial on ZU , such that
U2+ acts by . If  is a genuine representation of SL2 , we have a representation of J  on
  . For  2  Irr(G2), the Fourier-Jacobi period of  with respect to  is the space

HomJ (;
  )  =  HomG2 (; IndJ 

2

  ):

The character       denes a Weil index, that is, a function      : F  !  C  with values in roots of
one such that  (a) (b) =  (a; b) (ab) where (a; b) is the Hilbert symbol. Let

be a smooth character of F .  Let I  (s) be a principal series representation of S L  obtained by
inducing  j js, via normalized induction. We can x our data so that, for s =  1=2, there is a short
exact sequence:

0 !  St !  I  (1=2) !  +  !  0;

where +  is the even Weil representation, i.e. a summand of  . The contragredient of I  (s) is
I (  s).
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As a representation of G2 , indJ 
2 ( I  (s)

 )  admits an equivariant

0  I0   I1

with successive quotients described as follows:

 I0  =  indV 
2      

V ;

 J 1  : =  I1 =I0  I P  ( s  +  1 ; indPGL2        )
Proof. Let B  =  TU  [L ; L ]   SL2  be a Borel subgroup, where T is the one-dimensional torus, the
image of the simple coroot  : GL 1   !  T . Observe that we have an isomorphism of J -modules

I  (s)
  =  indJ 

U ( j  js+1   )

where f
 v 2  I  (s)
  is mapped to a function on J  given by g !  f (g )   (g)(v). (Here f  is inated from SL2  to J . )

The later induction is not normalized.

Let N  be the unipotent radical of the maximal parabolic P . Let 2 +  be a character of N
nontrivial only on the root space U2+  N . Then , restricted to B U , is induced from a
character of TN equal to j j1=2 on T and 2 +  on N . Using transitivity of induction,
and    =  1, it follows that

I  (s)
  =  indJ

N (j  js+3=2  2+);
and hence

indJ 
2 ( I  (s)

 )  =  indT 
2
N (j  js+3=2  2+):

The next step requires the technique of root exchange, as in the proof of Proposition 3.4.
Let U0, a conjugate of U, be obtained by adding U  to N  and removing U3+ from N . The
root exchange is an isomorphism

indTN (j  js+3=2  2 + )  =  indT
U 0 (j  js+5=2  2+);

f  !  f 0 given by

where, abusing notation,
U2+.

Z
f 0(g) = f (ug) du

U

2 +  is also viewed a character of U0 supported on the root space

As the last step, let V 0 =  U0U 3 . Then V 0 is the unipotent radical of a Borel subgroup of
G2 such that the simple roots are 2 +  and  3 , and the highest root is . Consider

indT
U 0 (j  js+5=2  2 + )  =  Cc (U 3 ):

We can analyze this module using the Fourier transform on Cc (U 3 ). This gives an exact
sequence of TV -modules

0 !  indT 
0
V 0 ( V 0 ) !  indT

U 0 (j  js+5=2  2 + )  !  j  js+7=2  2 +  !  0

where     V 0 is a Whittaker character of V 0 and, in the last term,     2 +  a character of V 0 sup-
ported on the root space U2+. The lemma follows by induction in stages, giving indV
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as a submodule and the claimed quotient, after taking into account the relevant normalization
for the parabolic P 0 with unipotent radical N 0 such that V 0 =  N 0U2+.

Corol lary 11.4. Let  2  Irr(G2 ) be generic and tempered. If s >   1=2, then

HomG2 (indJ 
2 ( I  (s)

 ); ) =  C:

Proof. We need to show that we can avoid the top piece of the ltration in Proposition 11.3.
By the Frobenius reciprocity,

Ext i
G 2 ( I P  ( 2 

+  
4

; indPGL2        ); ) =  Exti
M (j det js+1=2  indPGL 2        ; r ()):

Since  is tempered, the center of M  GL 2  acts on r ()  by characters  such that jj =  j jt

with t  0. Since s >   1=2, all Ext  groups vanish and  is a quotient of HomG (indG 2 (I (s)
 )  since it is generic.

11.3. Shalika period on PGSp6 . We shall now discuss a Shalika period on PGSp6 .
Recall the maximal parabolic subgroup P2 =  M2N2 of PGSp6 , with identications of the

Levi factor M2 =  (GL 2   GL 2 )= GL and of the maximal abelian quotient N2=[N2; N2] of
the unipotent radical N2 with M2, the space of 2  2 matrices. With these identications, let

2 be a character of N 2 (F )  obtained by composing the trace on M2 (F ) with a non-trivial
additive character of F .  Then the stabilizer of 2 in the Levi group M2 is the diagonally
embedded P G L 2  . The Shalika subgroup of PGSp6 is the semi-direct product

S  =  P G L 2  n  N2

and the Shalika character S  is the character 2 extended to S ( F )  (trivially on PGL 2 (F ) ) .
For any smooth representation  of PGSp (F ),  the Shalika period of  is the coinvariant space
S; S  .

This Shalika period has already been exploited in [SWe]. Indeed, the following was shown
in [SWe, Lemma 4.5]:

Proposition 11.5. Let  be the minimal representation of E 7  and (V; V )  a Whittaker
datum for G2 . Then

V; V      =  indPGSp6      
S

as PGSp6-modules.

11.4. Shalika period of . We now consider the minimal representation  of the dual pair
G2 PGSp and determine its Shalika period S; as a representation of G2 (F ).  To  describe
the answer, we need to introduce some more notations.

The group P G L 2  acts by conjugation on M2 preserving the determinant (quadratic) form.
As we saw in x8.4, there is a Weil representation of P G L 2  SL2  on Cc (M2 (F )) which decom-poses
as a tensor product

Cc (M2 (F )) =  Cc (M2 (F ))
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where M(F ) is the space of trace zero matrices. We view Cc (M(F ))
 as a representation of the group J  =  [L; L]U  G2 introduced in x11.2, where the rst factor is a
representation of SL2  and is the irreducible representation of J  introduced in x11.2.
With the group P G L 2  acting trivially on  , we see that Cc (M2 (F )) becomes a representation of
P G L 2   J .

We are now ready to compute S; . Firstly, we need N  ; . This is a twisted variant
of N  , given by Proposition 13.7, and computed along the same lines. In fact, since the
character 2 is generic, instead of a ltration we end up with a single term:

N2 ;  2 =  indJ 
2 (Cc (M2 (F ))

  )
as G2 PGL2-modules. It remains to compute the PGL2-coinvariants of the right hand side.
We need the following:

Lemma 11.6. Let H   G  and L  be three p-adic groups. Let W be a smooth H   L-module, and
an irreducible representation of L .  Let ()
  be the maximal -isotypic quotient of W . If ExtL ( ; )  =  0 then

indH ()

is the maximal -isotypic quotient of indG W . Here ind stands for induction with compact
support.

Proof. Since Ext1 (; ) =  0, the kernel of the projection of W on ()
  does not have  as a quotient. Thus, it suces to prove that if HomL(W; ) =  0, then HomL(indG

W; ) =  0. We shall prove that
HomL ((indG W )K ; )  =  0

for any open compact subgroup K  of G. Write G  =  [ i 2 I H g i K  where I  is an index set, and set
K i  =  H  \  g i K g for every i  2  I .  Then, as an L-module, (ind W ) is a direct sum of
W K i .  Since W K i  is a direct summand of the L-module W , it follows that HomL (W K i ; ) =  0, and
this proves the lemma.

We apply Lemma 11.6 taking H   G  to be J   G2 and L  =  PGL 2 .  Since Ext1 (1; 1) =
0, the lemma implies that computing PGL2-coinvariants of N  ; boils down to computing
the PGL2-coinvariant of Cc (M (F )),  where it is the full degenerate principal series I (1=2).
We have shown:

Proposition 11.7. As a representation of G2 (F ),  one has:

S;  S  
 (N 2 ;  2 ) P G L 2  

 indJ 
2 (I (1=2)

  ):

12. Howe Dual i ty  for G2  PGSp6: Tempered Case

After the preparation of the previous 3 sections, we are now in a position to begin our study
of the theta correspondence for the dual pair G2 PGSp . In this section, we shall show the
Howe duality theorem for tempered representations of G2. The key is to show the analog of
Propositions 6.6 and 6.7 for generic representations of G2. This will rely on another curious
chain of containments given in the following lemma, which comes from a consideration of a
game of ping-pong with periods.
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Lemma 12.1. Let  be the minimal representation of E7 .  Let  2  Irr(G2 ) be tempered and let
V     : V !  C be a Whittaker character for G2 . Let H  =  PGSp and  2  Irr(H ) be

tempered such that
HomG2 H (;   )  =  0:

Then we have the following natural inclusions
HomV (; V )   HomV ((); V )  =  HomS (_ ; S )

 HomS ((_ ); S )  =  HomG2 (indJ 
2 I  (1=2)

 ; _ ): If  is generic, then all of these spaces are one-dimensional.

Proof. We examine each containment in turn:

 The rst inclusion arises from the surjection ()   .  The

second follows from the identity

HomV ((); V )  =  HomV H (;  V  )  =  HomH (V; V  ; ) combined

with Proposition 11.5 (i.e. [SWe, Lemma 4.5]):

V; V      =  indS S

and the Frobenius reciprocity.
 For the third, observe that ()  is the complex conjugate of (). Since  =  _  and

 =  _ , we have ( _ )   _ .

 The fourth follows from the identity,
HomS ((_ ); S )  =  HomS G2 (; S   _ )  =  HomG2 (S; S  

; _ )  combined with

Proposition 11.7:

S;  S  
=  indJ 

2 I  (1=2)

  and Frobenius reciprocity.

If  is generic, then the rst and the last spaces are one-dimensional, with the latter by
Corollary 11.4 applied to s =  1=2. Hence, all spaces in the chain are one-dimensional.

We can now obtain the following two propositions as consequences of Lemma 12.1.

Proposition 12.2. Let  2  Irr(PGSp ) be tempered. Then () cannot have two irreducible
tempered and generic quotients.

Proof. Let 1; 2 2  Irr(G2 ) be tempered and generic such that ()   1  2. Then dim ()V; V

2:

On the other hand, dim ()V; V      =  1 by Lemma 12.1, which is a contradiction.

Remark: This proposition is proved in [SWe] for generic supercuspidal representations using
the uniqueness of Shalika functional (shown in [SWe] for supercuspidal representations), but
the proof of this uniqueness given there is dicult. The proof here is based on Corollary 11.4.
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Proposition 12.3. Let  2  Irr(G2 ) be tempered and generic. Then () cannot have two
tempered irreducible quotients. In particular, its cuspidal component ()c is irreducible or 0.

Proof. Let 1; 2 2  Irr(PGSp ) be irreducible tempered and such that ()   1  2. By Lemma
12.1, applied to  , 1 and then to  , 2 , one has:

1 =  dim HomS (1; S )  =  dim HomS ((); S )  =  dim HomS (2; S ): Since

1  2 is a quotient of (),

1 =  dim HomS ((); S )   dim HomS (1; S )  +  dim HomS (2; S )  =  2;

which is a contradiction.

Combining Propositions 12.2 and 12.3 with the results of x6, we can now show the Howe
duality theorem for tempered representations of G2:

Theorem 12.4. Let  2  Irr(G2 ) be tempered and consider its big theta lift ()  on PGSp .
Then

(i)  ()  has nite length and a unique irreducible quotient ()  (if nonzero), which is
tempered.

( i i )  Moereover, for tempered 1; 2 2  Irr(G2 ),

0 =  (1 ) =  (2 ) = )  1 =  2:

Proof. (i) We have seen (i) for non-generic  in Corollary 6.8. The proof for generic  is the
same, using Lemmas 6.2(i) and 6.3(ii), as well as Proposition 12.3.

(ii) If one of 1 or 2 is nongeneric, then the desired result follows by Proposition 6.6. If 1 and
2 are both generic, then the desired result follows by Proposition 12.2.

We also point out the following corollary:

Corol lary 12.5. Let  2  Irr(G2 ) be generic, supercuspidal and not a theta lift from PGL 3 .
Then () is generic, supercuspidal and irreducible.

Proof. By [SWe], we have known that ()  is generic and supercuspidal (hence tempered and
semisimple), but now we know by Proposition 12.3 that it is also irreducible.

13. Jacquet Modules

The purpose of this section is to compute various Jacquet modules of the minimal repre-
sentation of E 7  with respect to the maximal parabolic subgroups of G2 and PGSp . We note
that the results of this section are entirely self-contained, and do not depend on any prior
results in this paper. As consequences of the results here, we deduce Lemmas 6.2 and 6.3 for the
dual pair G2  PGSp . Indeed, we shall determine in Theorem 14.1 the theta lifts of all non-
tempered representations of G2 and PGSp6 precisely.
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13.1. Jacquet functors for G2 . Recall that P  =  M N and Q =  L U  are the two maximal
parabolic subgroups of G2 as before, in standard position relative to a maximal split torus T
in G2 and a choice of positive roots, so that P  \  Q is a Borel subgroup. In particular, their
Lie algebras arise from Z-gradings given by two fundamental co-characters. Since G2 is
contained in E7 , as a memeber of the dual pair, the two co-characters give Z-gradings of the
Lie algebra of E7 , dening parabolic subgroups P  =  M N  and Q  =  L U  of E7 , whose
intersections with G2 are P  and Q, respectively. The Lie types of the Levi factors M  and L
are D 6  and A1   A5, as explained in [GS99]. In the rest of the paper, we shall x  the following:

 The group P  acts on Cc (GL 2 )  and Cc (GL1 )  by left translation by g and det(g),
respectively, via the identication M =  GL 2  .

 The group Q acts on Cc (GL2 )  and Cc (GL1 )  by left translation by g and det(g),
respectively, via the identication L  =  GL2 .

 Let B  be the group of lower-triangular matrices in GL2 .  Then B  acts on Cc (GL1 )  by
right translation by the (1; 1) matrix entry of g 2  B .

We identify M =  GL 2  such that the action of M on N=[N ; N ] is the symmetric cube of the
standard representation of GL 2  twisted by determinant inverse. In particular, a scalar matrix
(z; z) in GL 2  acts by z. We have [MS, Theorem 6.1],
Proposition 13.1. Let H  =  PGSp . As a GL 2  H-module, r P  ()  (the normalized Jacquet
functor) has a ltration with three successive subquotients (top to bottom):

(1)  1=2  N  =  D   j det j1=2  ;   j det j3=2.
(2) IndG L 2 H (   Cc (GL1 )) .
(3) IndP 1 3 Cc (GL2 ).

Here, note that:

- In (1), the center of M =  GL 2  acts trivially on both D      and ; ,  the minimal and the
trivial representation of the Levi M .

- In (2),  =  j j 1=2 j j is a character of the group B  of lower triangular matrices in GL2 .

For the computation of rQ (), we rst make some preparations. Let W be the Weil
representation for the similitude dual pair GL 2  GSO4; see [Ro] where theta correspondences for
similitude groups are treated in detail. Observe that GSO4 =  (GL 2   GL 2 )= GL  , with the
isomorphism realized by latter acting on the space M2 (F ) of 2  2 matrices by left and right
multiplication and the quadratic form given by the determinant. We identify the rst factor
GL 2  with L  so that the action of L  on U=[U; U] is the standard representation of GL2 .  The
irreducible quotients of W are

 , where  is an irreducible representation of GL2 .  We need a slight renement of this to obtain
the big theta lifts.
Lemma 13.2. Consider the similitude theta correspondence for the dual pair GL 2   GSO4 on
W . Let  be an irreducible generic representation of G L  . Then ( )  =
  and (
 )  =  _ .

Proof. Let V =  F  be a maximal unipotent subgroup of GL 2  and a non-trivial character of
V . We shall use the fact that WV;      =  Cc (GL2 ),  the regular representation of GL2 ,  where V
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is in any of the three GL2 .  Also, when we view Cc (GL2 )  as giving a theta correspondence
between two GL2 ,  the big theta lift of any irreducible  is either  or  , depending on
identications or convention [APS, Lemma 2.4].

We have (
)
(
)  as a quotient of W . Applying the functor of (V; )-coinvariants, with V sitting in one of GL 2
factors of GSO4, we conclude that (
 )
  is a quotient of the regular representation of GL2 .  This implies that (
 )  =   , as desired.

In the other direction, let
  be a quotient (if any) of the kernel of ( _ )  !
 . If 1 or 2 is generic, then we can take (V; )  twisted co-invariants of _

 (_ ), for the corresponding G L  , and obtain a contradiction to the fact that, for the regular
representation, the big theta lift of _  is . Thus both 1 and 2 are one-dimensional. By the
Kunneth formula [Ra]

ExtG L 2 G L 2 ( 1

 2;
 )  =  i + j = 1 ExtG L 2 ( 1 ; )
 ExtGL 2

(2 ; )

and this clearly vanishes since HomGL (i ; ) =  0, for i  =  1; 2. Thus 1
 2 is a quotient of (  ). Hence
 1
 2 is an irreducible quotient of W , contradicting the fact that all irreducible quotients are of
the form

 .

Proposition 13.3. Let H  =  PGSp . As a GL 2  H-module, rQ ()  (the normalized Jacquet
functor) has a ltration with three successive subquotients (top to bottom):

(1)  1=2  U =  A 5   j det j3=2  A 1   j det j2. (2)
IndG L 2 H (   Cc (GL1 )) .
(3) IndH W .

- In (1), the center of L  =  GL 2  acts trivially on both A      and A  , the minimal and a
principal series representation of the two factors of L .

- In (2)  =  j  j1=2  j  j is a character of the group B  of lower triangular matrices in
GL2 .

Proof. This proposition is entirely similar to [GS99, Prop. 6.8], which treated the case of non-
split form of H ,  except the character  was not determined there. This is done as follows. For a
generic character  of GL2 ,  representations I Q ( )  and I2 (
 )  are both irreducible and I Q ( )
I2 (
)  is a quotient of ; this follows from the bottom factor (3) of the ltration. Hence r Q ( I Q ( ) )
 I2 (
 )  is a quotient of r P  (). Now determining  is an easy exercise using rQ ( IQ () ) .

13.2. Non-tempered representations. We enumerate the nontempered irreducible repre-



Q

sentations of G2 using the discussion from Section 3. Let P  =  M N and Q =  L U  be the two
maximal parabolic subgroups in G2 as before. Their Levi groups are isomorphic to GL2 .  Let
be a representation of GL2 ,  and let I P  () and I Q ( )  be the corresponding normalized induced
representations of G2. Irreducible, non-tempered representations of G2 are described as follows,
where  is irreducible, and !  is the central character of .

(a) Unique irreducible quotient of I  ()  where  is an unramied twist of a tempered
representation such that j !  j =  j  js for some s >  0.
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(b) Unique irreducible quotient of I  ()  where  is an unramied twist of a tempered
representation such that j !  j =  j  js for some s >  0.

(c) Unique quotient of I  ()  where  is the unique quotient of a representation induced from
an ordered pair of characters 1; 2 such that j1j =  j  js1 , j2j =  j  js2 where s1 >  s2 >  0.

In (a) and (b), I Q ( )  and I P  () are standard modules, while in (c), I P  () is a quotient of a
standard module associated to the minimal parabolic P  \  Q. In any case, each of these
induced representations has a unique irreducible quotient which we denote by J Q ( )  in (a) and
by J P  () in (b) and (c). These representations J Q ( )  and J P  ()  exhaust the irreducible
nontempered representations of G2.

We also enumerate some relevant nontempered representations of PGSp . Let P i  =  Mi Ni ,
i  =  1; 2; 3 be the three maximal parabolic subgroups of PGSp . Let I i ( )  denote the represen-
tation of PGSp obtained by normalized parabolic induction from Pi , and let I j k ( )  denote
the representation of PGSp obtained by normalized parabolic induction from P j  \  Pk . We
shall consider the following non tempered representations of PGSp , corresponding to the
cases (a), (b) and (c) above:

(a’) If  is an irreducible representation of L  =  G L  satisfying the conditions of (a) above, let
=
  be a representation of M2 =  GL 2   G L 2 = G L r  =  GSO4. Then I2 ()  is a standard
module, with unique irreducible quotient J2 ( )  =  J 2 (
 ).

(b’) If  is an irreducible representation of M =  GL2 ,  satisfying the conditions of (b)
above, let  =
 1 be a representation of M1 \  M3 =  GL 2   GL1 .  Then I13 () is a standard module with
unique irreducible quotient J13 () =  J13 (
 1).

(c’) If  is an irreducible representation of M =  GL2 ,  satisfying the conditions of (c)
above, let  =
 1 be a representation of M1 \  M3 =  GL 2   GL1 .  Then I13 () is a quotient of a
standard module associated to the Borel subgroup, Hence, it has a unique
irreducible quotient which we denote by J13 () =  J13 (
 1).

13.3. Theta lifts from G2 . Now the following lemma attempts to compute the theta lifts
of the above non-tempered representations of G2 to PGSp6 .

Lemma 13.4. Let  2  Irr(G2 ) be non-tempered.
 If   I Q ( _ )  where  is as in (a) above, then ()  is a quotient of I2 (

 )  and hence has nite length. Moreover, ( J2 (
 ))  =  0 where J 2 (
 )  is the unique irreducible quotient of I  (
 ).

 If   I P  ( _ )  where  is as in (b) and (c) above, then ()  is a quotient of I13 (
1) and hence has nite length. Moreover, (J13 (
 1)) =  0 where J13 (
 1) is the unique irreducible quotient of I13 (
 1).

Proof. Let  be the minimal representation, and  2  Irr(G2). We shall use the fact that ()

=  HomG2 (; )

as non-smooth H  =  PGSp -modules, where the former is the linear dual of (). Assume
that   I Q ( _ ) .  Then



()  =  HomG2 (; )  HomG 2 (; IQ (_ )) =  HomL (rQ (); _ ):
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Now we shall use the ltration of rQ ()  from Proposition 13.3.
Let 1, 2 and 3 denote the three subquotients in the same order. Observe that

Ext (  ;  )  are trivial from the central character considerations, since the central char-acter
of _  is a negative power of jzj. Hence we have a long exact sequence

0 !  HomL (2 ; _ ) !  HomL (rQ (); _ ) !  HomL (3 ; _ ) !  Ext1 (2 ; _ ) Since 2 is

induced from B ,  by the second adjointness,

ExtL (2 ; _ )  =  ExtT  (IndH (   Cc (GL1 )) ; rB (_ ) )
where T =  GL 1   GL1 ,  the maximal torus in B .  Observe that the action of the second GL 1  on
Ind (Cc (GL1 ))  is j j, and this is dierent from the action on r B (  )  by our assumption on .
Hence Ext i  (2 ; _ ) =  0 for all i, and we can conclude that

HomL (rQ (); _ ) =  HomL (3 ; _ ) =  HomL (IndH W; _);

where, for the second isomorphism, we have simply substituted the explicit expression for
given in Proposition 13.3. By [GG06, Lemma 9.4], the maximal _  isotypic quotient of IndH

W is (IndH ( _ ) )
 _  where ( _ )  is the big theta lift for the similitude theta correspondence on W . Since  is
generic, Lemma 13.2 shows that ( _ )  =
  and it follows that

HomL (3 ; _ ) =  I2 (
 ):

Hence ()   I2 (
 ), and ( ) _   I2 (
 ) _  by taking smooth vectors. Thus ()  is a quotient of I2 (
 ). Observe that we have proved in the process that I2 (
 )  is a quotient of rQ (), so that ( J2 (
 ))  =  0. This establishes the rst bullet. The proof of the second is completely analogous.

13.4. Jacquet functors for PGSp . Recall that in PGSp , we have xed three standard
maximal parabolic subgroups P1, P2 and P3. They correspond to Z-gradings of the Lie
algebra of PGSp given by three fundamental co-characters. The action of each of these
three co-characters gives a Z-grading of the Lie algebra of E7 , and these gradings dene three
parabolic subgroups P1 , P2  and P3  of E7 . To  recognize these parabolic subgroups, perhaps
it is easiest to proceed as follows. Observe that the E 7  Dynkin diagram contains a unique D 4
subdiagram. We embed G2 into D4 . The centralizer of G2 in the split, adjoint E 7  is PGSp . Let
P  be the parabolic subgroup of E7 , whose Levi factor has the type D4 . This parabolic is
contained in precisely three maximal parabolic subgroups denoted by P1 , P2  and P3 , whose
Levi factor types are, D6 , A1 D 5  and E6 , respectively. The intersection of P i  and PGSp is Pi ,
for each i. We write P i  =  M i N i  and P i  =  Mi Ni  for the Levi decompositions for these
parabolic subgroups.

Case P3: This is treated in [MS, x5], and we summarize the results as follows. The unipotent
subgroups of P3 and P3  are abelian, M3 =  GL 3  and the modular character is

P3 (m) =  j det(m)j2:
Let O0 denote the space of trace 0 elements in the octonion algebra O. On the space O3, we
have the natural diagonal action (x; y; z) !  (gx; gy; gz) of g 2  G  and the row-vector action
(x; y; z) !  (x; y; z)m 1 of m 2  GL3 .  Let
  O3 be the set of all nonzero (x; y; z) such that



P 3

3

P 3

Q Q 1

P Q 2

6

3

4 4

3

0

4

H O W E  D U A L I T Y  A N D  D I C H O T O M Y 47

the linear subspace hx; y; zi  O0 is a null-space for octonion multiplication, i.e. the product of
any two elements in the space is 0. Such non-zero null-spaces in O0 are of dimension 1 or 2.

We have an exact sequence of G2  GL3-modules

0 !  Cc (

) !  N 3  !  N 3  !  0 where (g; m) 2  G2  GL 3  acts on f  2  Cc (

) by

((g; m)  f )(x; y; z ) =  j det(m)j2  f ((g  1x; g 1y; g 1z)m):

The group G2  GL 3  acts on
 with two orbits
1 and
2, where
i  is the subset of triples (x; y; z) such that hx; y; zi has dimension i. Thus Cc (
) has a ltration with Cc (
2) as a submodule and Cc (
1) as a quotient. Each of these can be explicitly described as G2 GL3-modules.

In order to state the result, let Q1 and Q2 be the maximal parabolic subgroups of GL 3
stabilizing subspaces consisting of row vectors (; 0; 0) and (; ; 0), respectively. Observe that
these are block lower-triangular groups with Levi factors isomorphic to GL 1   GL 2  and GL 2
GL1 , respectively. Their modular characters are

Q1 (g1; g2) =  jg1j 2  j det(g2)j and Q2 (g2; g1) =  j det(g2)j 1  jg1j2:

Recall that rP 3 ()  =   1=2  N 3  is the normalized Jacquet module. Then:

Proposition 13.5. As a G2  GL3-module, r P  ()  has a ltration with three successive
subquotients (from top to bottom):

(1)  1=2  N 3  =  E 6   ;   j det j. (2)
IndG 2 G L 3 (   Cc (GL1 )) .
(3) IndG 2 G L 3 (Cc (GL2 )).

Here, note that:
- In (1), the center of M3 =  GL 3  acts trivially on both E      and ; ,  the minimal and the

trivial representation of the Levi M  .
- In (2), (g1; g2) =  jg1j 1=2  j det(g2)j1=2 is a character of Q1.
- For i  =  1; 2, Qi acts on C c (GL i )  by right translations via the factor G L i .

Case P1: This case is not in the literature; however, it is similar to the computation of the
Jacquet module of the minimal representation of E 8  with respect to a maximal parabolic
subgroup of F4  in [SWo, x5]. The unipotent radical subgroups of P1 and P1  are Heisenberg
groups with M1 =  GSp . Let  be the similitude character of GSp . The modulus character of
M1 is

P1 (m) =  j(m)j :
Recall that O0 is the space of trace 0 octonions. On O4, we have the row-vector action

(x; y; x0; y0) !  (x; y; x0; y0)m 1 of m 2  GSp4

preserving the form O0 !  ^2O0 given by

(x; y; x0; y0) !  x  ^  x0 +  y ^  y0:
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Let
  O4 be the set of all nonzero (x; y; x0; y0) such that the linear subspace hx; y; x0; y0i  O0 is a null-
space for octonion multiplication and x  ^  x0 +  y ^  y0 =  0. We have an exact sequence of G2
GSp4-modules

0 !  Cc (

) !  N 1  !  N 1  !  0 where (g; m) 2  G2  GSp4 acts on f  2  Cc (

) by

((g; m)  f )(x; y; x0; y0)) =  j(m)j3  f ((g  1x; g 1y; g 1x0; g 1y0)m):

Now the group G   GSp acts on
 with two orbits
 and
 , where
 is the subset of quadruples (x; y; x0; y0) such that hx; y; x0; y0i has dimension i. Thus Cc (
) has a ltration with Cc (
2) as a submodule and Cc (
1) as a quotient. Each of these can be explicitly described as G2  GSp4-modules.

In order to state the result, let Q1 and Q2 be the maximal parabolic subgroups of GSp
stabilizing subspaces consisting of row vectors (; 0; 0; 0) and (; ; 0; 0), respectively. Let L 1
=  GL 1   GL 2  be the Levi subgroup of Q1 such that (g1; g2) 2  GL 1   GL 2  acts on the
quadruples, after rearranging the order, by

(x; x0; y; y0) !  (xg1 
1; x0g1 det(g2) 1; (y; y0)g2 

1):
Let L 2   GL 2   GL 1  be the Levi subgroup of Q2 such that (g2; g1) 2  GL 2   GL 1  acts on the
quadruples by

(x; y; x0; y0) !  ((x; y)g  1; (x0; y0)g 1 g> ):
The similitude character , restricted to L 1  and L2 , is given by

(g1; g2) =  det g2 and (g2; g1) =  g1

respectively, and the modulus characters are

Q1 (g1; g2) =  jg1j 4  j det(g2)j2 and Q2 (g2; g1) =  j det(g2)j 3  jg1j3:

Recalling that rP 1 ()  =   1=2  N 1  is a normalized Jacquet module, we have:

Proposition 13.6. As a G2  GSp -module, r P  ()  has a ltration with three successive
subquotients (from top to bottom):

(1)  1=2  N 1  =  D 6   jj1=2  ;   jj3=2 . (2)
IndG2 GSp4 (  Cc (GL1 )) .

(3) IndG 2 GSp 4 (Cc (GL2 )).
Here, note that

- In (1), the center of M1 =  GSp acts trivially on both D      and ; ,  the minimal and the
trivial representation of the Levi M  .

- In (2), (g1; g2) =  jg1j 1=2  j det(g2)j1=2, a character of Q1.
- For i  =  1; 2, Qi acts on C c (GL i )  by right translations via the factor G L i .

Case P2: A  variant of this case can be found in [GS99] for the non-split form of PGSp .
However, for the split case considered in this paper, the Jacquet module ltration contains an
additional \middle" term.
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The unipotent radical subgroups N2  P2 and N2   P2  are two-step nilpotent subgroups. Let
Z 2   N2  be the center of N2. We now explain how the kernel of the natural projection Z 2  !  N 2

contributes to N2 . We have

0 !  C c ( ! )  !  Z 2  !  N 2  !  0

where !  is the M2-highest weight orbit in

N2 =Z2  =  O
 M2 (F ) =  M2(O)

where N2  is the unipotent group opposite to N2, and M2 (F ) is the set of two-by-two matrices.
(In the non-split case M (F )  is replaced by a division algebra, so !  is empty; see the discussion on
[GS99, Pg. 137].) Recall that the type of M 2  is D 5   A1 and N2 =Z2  =  F 16

 F 2  where F is a spin-module of D5 . In the above isomorphism,
we assume that A1  acts from the right on M2(O), and columns are vectors in the spin-module.
Thus !  is the set of non-zero matrices  

x      x0

y y0

where the two columns are linearly dependent over F  and each column (if non-zero) is a
highest weight vector in the spin-module. Let
 be the subset of !  such that x; x0; y; y0 are traceless octonions. We have an exact sequence of
G2  M2-modules

0 !  Cc (
) !  ( Z 2 ) N 2  !  N 2  !  0

where (g; (; )) 2  G2  (GL 2   GL2 )=GL 1  acts on f  2  Cc (

) by ((g; (; ))  f )           x      x0              
=  0()  f             g

 1 x

g 1x0 
  

g
1y0

for some (unknown) character 0 and where    =  det(). The highest weight orbit in the 16-
dimensional spin module is described in [MS]. That result, applied to each column of
M2(O), implies that x; x0; y; y0 (of an element in
) generate a nil-subalgebra. The group G2  M2 acts on
 with two orbits
1 and
2, where
i  consists of elements such that hx; x ; y; y i  has dimension i. Thus Cc (
), as a G2  M2-module, has Cc (
2) as a submodule and Cc (
1) as quotient.

Proposition 13.7. As a G2  (GL 2   GL2 )=GLr -module, r P  ()  has a ltration with four
successive sub quotients:

(1)  1=2  N 2  =  D 5   j det j1=2  A 1   j det j3=2 . (2)

IndG 2 ( G L 2 G L 2 ) = G L 1  (   Cc (GL1 )) .

(3) IndG 2 G L 2 (Cc (GL2 )).
(4) IndG2 W .

Here, note that:
- In (1), the second SL2   M2 acts trivially on the rst summand, and the rst SL2   M2 acts

trivially on the second summand. The center of M2 acts trivially on both D      and A
, the minimal and a principal series representation of the two factors of M  .

- In (2)  =  j  j1=2  j  j on each B .
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- In (3), B  is the subgroup of the second factor GL 2  of M2. It acts on Cc (GL2 )  by right
translation by the scalar given by the (1; 1) matrix entry. The rst factor GL 2  of M2 acts
by right translations on Cc (GL2 ) .

- In (4), W is the Weil representation of GL 2   (GL 2   GL2 )=GL 1  =  GL 2   GSO4.

This proposition is a combination of [GS99, Proposition 8.1], which accounts for the bottom
piece of the ltration (4), and the above discussion. The pieces (2) and (3) are the spaces of
functions Cc (
1) and Cc (
2), respectively. This also assumes that we have explicated the character  appearing in the
action on Cc (
). To  that end, observe that (3) (or any unknown twist) gives a correspondence of generic
principal series representations of G  and PGSp that has to be compatible with the one in
Lemma 13.4, and this determines 0 uniquely.

13.5. Theta lifts from PGSp . Using Propositions 13.5, 13.6 and 13.7, we can now prove
the following analog of Lemma 13.4.

Lemma 13.8. Let  2  Irr(PGSp ) be non-tempered. Then () =  0 unless  is as described in
Lemma 13.4. More precisely,

 If   I 2 ( _

 _ ) ,  then ()  is a quotient of I Q ( )  and hence has nite length. Moreover, ( J Q ( ) )  =  0
where J Q ( )  is the unique irreducible quotient of I Q ( ) .

 If   I13 (
 1), then () is a quotient of I P  (), and hence has nite length. Moreover, ( J P  ())  =  0
where J P  () is the unique irreducible quotient of I P  ().

Proof. We set H  =  PGSp . Assume that  is a Langlands quotient of a standard module for
the maximal parabolic P2. Then   I 2 ( _

 _ )  where 1 and 2 have the same central character and are both tempered representations of
GL 2  twisted by a positive power of j det j.
Then

HomH (; )  HomH (; I2 (_

 _ )  =  HomM2 (rP2 (); _

 _ ):
Let i , i  =  1; 2; 3; 4 be the subquotients of r P  ()  as in Proposition 13.7, in the same order.
We claim that

HomM2 (rP2 (); _

 _ )  =  HomM2 (4; _

 _ ): Assume this claim for a moment. Then
HomM2 (rP2 (); 1

 2 )   HomM2 (4; 1

 2 )   HomM2 (IndQ
2 W; 1

 2 )

where W is the Weil representation of GL3 .  This implies that ()  =  0 unless 1 =  2, and if we
denote this representation as , then () is a non-zero quotient of the standard module IQ () .  In
order to prove the claim, we need to show that Extn      ( i ; _

 _ )  =  0 for all n and i  <  4. Consider i  =  3. Then, using the (second) Frobenius reciprocity for
induction from B  to GL2 ,  the rst factor of M2, we have

Ext i  
2 (IndG 2 GL 2 (Cc (GL2 )); 1

 2 )  =  ExtT G L 2 ( IndP
2 (Cc (GL2 )); rB (1  )



 2 )  where T  GL 1   GL 1  is the torus of diagonal matrices in GL2 .  Now recall that the second
GL 1  acts trivially on Ind 2 (Cc (GL2 )).  On the other hand, since 1 is tempered with a positive
twist of j det j, the second GL 1  acts on r B (  )  with characters  such that jj is a negative
power of absolute value. This proves the vanishing for i  =  3. The other two cases are just as
easy or even easier: for i  =  1 vanishing follows from central character considerations, and for
i  =  2 using Frobenius reciprocity where it suces that either 1 or 2 is twist of a tempered
representation by a positive power of j det j.
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Now assume that  is a Langlands quotient of a standard module for the parabolic P23 =  P2 \
P3. Then, by induction in stages, we get that   I2 (
  )  where 1 is a twist of a tempered representation by a positive power of j det j. This is
enough to show that HomM ( i ; _

 _ )  =  0 for i  <  4. Thus, if ()  =  0 then HomM (4 ; _

 _ )  =  0. This implies that 1 =  2, contradicting that  is a Langlands quotient of a standard
module for the parabolic P23. Hence ()  =  0.

If  is a Langlands quotient of a standard module for the parabolic P12 =  P1 \  P2 then, by
induction in stages, we get that   I2 (
  )  where now 2 is a twist of a tempered representation by a positive power of j det j. In this
case, HomM (i ;
  )  =  0 for i  =  3 by repeating the above arguments. For i  =  3 we have

HomM2 (IndG 2 GL 2 (Cc (GL2 )); _

 _ )   HomT GL 2 (IndP
2 (Cc (GL2 )); rB (_ )

 _ )  and the last space is isomorphic to

HomT GL2 (IndP
2 (2 )

 2 ; rB (1 )
 2 ):

Recall that T =  GL 1   GL 1  and the second GL 1  acts trivially on IndP
2 (Cc (GL2 )) and hence on

its quotient Ind 2 (2 )
  . The rst GL 1  acts on this space by the central character of 2, which is equal to the central
character of 1, hence it is a nontrivial character, say . Hence the above Hom space, if non-zero,
is non-trivial if and only if
 1 is an exponent of 1, and then it is isomorphic to

HomGL2 (IndP
2 (2 )

 _ ; _ )  =  Hom(IndP
2 (2 ); C) =  I P  (2):

Summarizing, ()  =  0 implies that ()  is a quotient of I P  (2). It follows that J P  (2 )
  is a quotient of , where J P  (2 ) is the unique irreducible quotient of I P  (2). But, by Lemma 13.4,
J P  (2 ) does not lift to . This is a contradiction, hence ()  =  0.

The remaining non-tempered representations of H  (associated to standard modules induced
from P123, P13, P1 or P3 ) are easily dealt with using r P  ()  and r P  (). We leave details to the
reader.

14. Consequences of Jacquet Mo dule Computations

We can now draw some denitive consequences of the Jacquet module computations of the
previous section. In particular, we shall determine the theta lift of nontempered repre-
sentations explicitly, and also complete the proofs of Lemmas 6.2 and 6.3 for the dual pair G2
PGSp6 .

14.1. L i f t  of nontempered representations. Taken together, Lemmas 13.4 and 13.8 allow
us to determine the theta lift of nontempered representations explicitly:

Theorem 14.1. We have:
(a) ( J Q ( ) )  is a nonzero quotient of I2 (

 )  and hence has nite length with unique irreducible quotient J 2 (



 ). Likewise, ( J2 (
 ))  is a nonzero quotient of I Q ( )  and hence has nite length with unique irreducible
quotient J Q ( ) .
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(b) ( J P  ()) is a nonzero quotient of I13 (
 1) and hence has nite length with unique irreducible quotient J13 (
1). Likewise, (J13 (
1)) is a nonzero quotient of I P  () and hence has nite length with unique irreducible
quotient J P  ().

(c) For all other nontempered  2  Irr(PGSp )  dierent from those in (a) and (b), ()  =  0.
In particular, if
  2  Irr(G2  PGSp ) is such that
  is a quotient of the minimal representation , then

 nontempered ( )   nontempered:
Hence, we have shown Lemma 6.2 for nontempered representations and also Lemma 6.3.

14.2. Finiteness of ()nc . To  complete the proof of Lemma 6.2, we need to show that for
tempered  2  Irr(G2 ) and  2  Irr(PGSp ), the noncuspidal components ()nc and ()nc are of nite
length.

To  show that ()nc has nite length, it suces to show that for each maximal parabolic subgroup
P i  =  Mi Ni  (with 1  i   3) of PGSp , the Jacquet module J P  (())  has nite length as an Mi-
module. In other words, we need to show that the multiplicity space of the maximal -isotypic
quotient of rP i ( )  has nite length as an Mi-module.

We have described in Propositions 13.5, 13.6 and 13.7 an equivariant ltration of r P  ()  as an
G2  Mi-module and described the successive quotients. It suces to show that, for each of these
successive quotients , the multiplicity space of the -isotypic quotient of  has nite length. We
shall explain how this can be shown, depending on whether  is a top piece of the ltration
or not. The dierence lies in the fact that the top piece of the ltration involves a minimal
representation of a smaller group M i  and hence one needs to consider theta correspondence
in lower rank situations. When  is not the top piece of the ltration, the nite length of the
multiplicity space of the maximal -isotypic quotient of  as an Mi-module follows readily from
the explicit description of . We give two examples as illustration:

 Consider the case of P3 =  GL 3  N3. The bottom piece of the ltration in Proposition
13.5 is

 =  IndG 2 GL 3 Cc (GL2 ):

Then for  2  Irr(G2),

()  : =  HomG2 (; )  HomM      IndM GL 3 Cc (GL2 ); r ()

where M =  GL2 .  Now r ()  is a nite length M-module and for any of its irreducible
subquotient ,

HomM      IndM GL 3 Cc (GL2 );   IndG L 3 _

using the fact that the maximal -isotypic quotient of the regular representation
Cc (GL2 )  is of the form _

 . On taking smooth vectors (which is a left exact functor), we see that  ()
has a nite ltration whose successive quotients are

submodules of IndG L 3 _  for some irreducible . In particular, ()  has nite length.
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 Consider the case of P2 =  M2  N2 with M2 =  (GL 2   G L 2 ) = G L r  =  GSO4. The
bottom piece of the ltration in Proposition 13.7 is

 =  IndQM2
2 W

where W is the Weil representation for GL 2   GSO4. Then for  2  Irr(G2), ()

: =  HomG2 (; ) =  HomLM2 (W; rQ ())

Now r ()  has nite length as L-module (where L  =  GL 2 )  and if  is an irreducible
subquotient, HomLM (W; ) =  W ()  where W ()  is the big theta lift of  2  Irr(GL2 ) to
GSO4, which has nite length by the Howe duality theorem for classical (similitude)
theta correspondence. From this, one deduces as above that ()  has nite length as an
M2-module.

Now let’s consider the case when  is the top piece of the ltration. From Propositions 13.5,
13.6 and 13.7, we see that we need to consider the following theta correspondences in lower
rank:

 G2 P G L 3  in E6 : for this case, the nite length of the big theta lift has been veried in
Theorem 8.5.

 G2  SO3  SO10 or G2  SO5  SO12; we shall now treat these two cases together in the
following proposition.

Proposition 14.2. Let n  be the minimal representation of SO(2n) for n =  5 or 6. Then
for tempered  2  Irr(G2 ), n ()  is a nite length Hn-module where H n  =  SO2n 7.

Proof. We shall use the fact that the minimal representation of SO2n (n =  5 or 6) is the big
theta lift of the trivial representation of SL2  (see [Y,  Prop. 8.4] for the irreducibility of this big
theta lift) and then appeal to the seesaw identity arising from the seesaw diagram:

SL2   SL2

SL2

From this, we see that

SO2n

G2  SO2n 7

(14.3) n ()  =  HomG2 (n; ) =  HomSL2 (
2n 7;

 (); C) =  HomSL2
(

2n 7; ;  ())  as Hn-modules, where

2n 7; is the Weil representation of SL2   SO2n 7 (with respect to a nontrivial
additive character of F );

  ()  denotes the big -theta lift of  to SL2 , with respect to the Weil representation
     of SL2   SO7  SL2   G2.

We see in particular that if n ()  is nonzero, then  has nonzero -theta lift to SL2 . More-
over, it remains now to show that  ()  has nite length as an SL2-module; the desired result
would then follow from this and the Howe duality theorem for SL2   Hn .
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Now the theta correspondence for SL2   G2 has been completely determined in [GG06],
though the niteness of  ()  was not formally stated there. Let us see how this niteness can be
deduced from [GG06].

As before, let us write  ()  =  ()c  ()nc as a sum of its cuspidal and noncuspidal component. To
show that ()nc has nite length as a SL2-module, it suces to show that the Jacquet module of ()
with respect to a Borel subgroup B  =  T  N  of SL2  has nite length as a T -module. Now [GG06,
Prop. 8.1] gives a short exact sequence of G2-modules:

0 !  IndQ
2 Cc (GL1 ) !

N  !  C  !  0

where the action of L  =  GL 2  on GL 1  is via det. The nite length of ( ) N  follows from this via
a similar argument as above, by examining HomG2 (
N ; ).

It remains to show that ()c has nite length. In fact, it was shown in [GG06, Thm. 9.1(c) and
(d)] that for genuine supercuspidal representations 1  2 of SL2 , one has  (1 )   (2). In other
words, ()c is irreducible or 0. This shows that  ()  has nite length.

14.3. Finiteness of ()nc . For tempered  2  Irr(PGSp ), the nite length of ()nc as a G2-module
is shown in the same way, using Propositions 13.1 and 13.3. We leave the details to the reader
and only consider the top pieces in the ltration of the two Jacquet modules.

 For the maximal parabolic subgroup P , we have to consider the theta correspondence for
PGSp P G L 2  with respect to the minimal representation 6 of PGSO12. For the purpose
of showing niteness, there is no harm in working with Sp  SL2 . Hence, the theta
correspondence in question arises as follows. If V2 and V6 denote the 2-dimensional
and 6-dimensional symplectic vector spaces, then we are considering the map

Sp(V2)  Sp(V6)  !  SO(V2

 V6)
and pulling back the minimal representation 6 of SO(V2
 V6). As before, we shall use the fact that this minimal representation is the big theta
lift of the trivial repre-sentation of SL2 . More precisely, let V 0 be another symplectic
space of dimension 2, then we have the map

Sp(V2 )  Sp(V2)  Sp(V6)  !  Sp(V2 )
 SO(V2

 V6)  !  Sp(V2

 V2

 V6):
Given the Weil representation
 of Sp(V 0)  SO(V2
 V6) and  2  Irr(Sp(V6)), we have

()  =  HomS p( V6 )(6; ) =  HomS p( V2
) S p( V6 ) (

; 1S p( V2
)

 )  =  Hom(0(); 1S p( V2 ))

where 0() is the big theta lift of  to SO(V 0
 V2). Note that there is a natural isogeny

Sp(V 0)  Sp(V2)  !  SO(V 0



2

 V2)
whose image is of nite index. Hence, by the classical Howe duality theorem, 0() is a
nite length representation of Sp(V 0) Sp(V2). This implies that ()  has nite length.
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 For the maximal parabolic subgroup Q, we need to consider the restriction of A  , a
minimal representation of SL6  to Sp . Note that A      is a degenerate principal series
representation induced from a maximal parabolic subgroup which stabilizes a line in
the standard representation. Since Sp acts transitively on such lines, we see that the
restriction of A      to Sp is simply a degenerate principal series representation of Sp . This
implies the desired niteness.

We have thus completed the proofs of Lemmas 6.2 and 6.3.

15. Howe Dual i ty  for G2  PGSp6: General Case

Finally, by combining Theorem 12.4 and Theorem 14.1, we can establish the Howe duality
theorem for G2  PGSp6 .

Theorem 15.1. Let  2  Irr(G ).
( i )  ()  is nonzero if and only if  has zero theta lift to P D .

( i i )  If ()  =  0, then () is a nite length representation of PGSp with a unique
irreducible quotient ().

( i i i )  For 1; 2 2  Irr(G2 ),

(1 ) =  (2 ) =  0 = )  1 =  2:

(iv) If ()  =  0, then () is tempered if and only if  is tempered.

(v) If  is non-tempered, then () is nonzero and the L-parameter of ()  is obtained from
that of  by composing with the natural inclusion G 2 (C)   Spin7 (C).

15.1. E x p l i c i t  correspondence. We can in fact determine the theta lift ()  explicitly if  is
tempered and noncuspidal. Indeed, we may also determine ()  for those tempered  which has
nonzero theta lift to PGL 3 .  To  achieve this, we shall use the following four facts:

 If  does not appear in the correspondence with P D ,  then ()  =  0 (Theorem
15.1(i)).

 If  is tempered and () =  0, then ()  is irreducible and tempered (Theorem
15.1(iv)).

 If  is nongeneric, then () is nongeneric (Corollary 11.2(ii)).

 The cuspidal support of ()  can be computed (from the Jacquet module computa-
tions of x13).

More precisely we have:

Theorem 15.2. Let  be an irreducible tempered representation of G  . Assume that  is a lift
of a (necessarily tempered) representation  of PGL 3 ,  that is,  =  B ( )  for some  =  . Then we have
the following:

( i )  If   _  then ()  =  I3 ()  =  I3 ( _ )  2  Irr(PGSp6 ).

( i i )  If  =  _  and the parameter of  contains a trivial summand, then () =  I3 ().
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(i i i)  If  =  _  and the parameter of  does not contain a trivial summand, then  is one of
the two representations gen =  B ( + )  and deg =  B (  ). In this case I3 ()  =  I3 ()gen  I3 ()deg ,

(gen) =  I3 ()gen and (deg) =  I3()deg:

We now deal with the remaining tempered representations of G2. Non-supercuspidal rep-
resentations are mostly constituents of the principal series I Q ( )  where  is a discrete series
representation. These representations lift to constituents of the principal series I2 (
 ). More precisely, we have:

Theorem 15.3. Let  be an irreducible tempered representation of G2 which is not a lift
from PGL 3 .  Then we have the following:

( i )  Let  be a unitary discrete series representation of GL 2 .  Then I Q ( )  is irreducible if and
only if I2 (
 )  is irreducible. We have:

 If I Q ( )  is irreducible, then

( I Q ( ) )  =  I2 (
 ):

 If I Q ( )  is reducible, then

(IQ ()gen ) =  I2 (
 )gen and (IQ ()deg ) =  I2 (
 )deg:

( i i )  Assume that  =  _  is a supercuspidal representation of GL 2  with the trivial central char-acter.
Let Q ()  and P  ()  be the square integrable constituents of IQ (1=2; ) and I P  (1=2; ). Then

(Q ())  =  2() and (P  ()) =  13()
where 2 () and 13() are the square integrable constituents of I2(1=2;
) and I13(1=2;
 1).

( i i i)  Assume that  =  _  is a supercuspidal representation of GL 2  whose Langlands parameter has
the image S3 . Recall that IQ (1; ) has a square integrable constituent denoted by gen[]. Then

(gen[]) =  gen[]
where gen[] is the square integrable constituent of I2 (1;
 ).
(iv) Assume that 2 =  1 and  =  1. Recall that IQ(1=2; st) has a square integrable con-
stituent denoted by gen[]. Then

(gen[]) =  gen[]

where gen[] is the square integrable constituent of I2(1=2; st
 st).

(v) Steinberg lifts to Steinberg:
(StG 2 ) =  StPGSp6 :

Finally we need to deal with supercuspidal representations. In view of Theorem 15.1(i)
and Theorem 15.2, we only need to consider those supercuspidal representations which do not
lift to P G L 3  or P D .  We rst introduce a thin family of supercuspidal representatons of G2,
namely those which participate in the theta correspondence for SL2   G2. We have already
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encountered this theta correspondence in the proof of Proposition 14.2. As mentioned there,
this theta correspondence has been studied in detailed in [GG06].

We rst introduce some notation. For each cuspidal representation  of P G L 2  =  SO3, let J L ( )
be its Jacquet-Langlands lift to the anisotropic inner form P B =  SO3 (where B  is the
quaternion division algebra) and let  be the -theta lift of J L ( )  to SL2  (where is a xed
nontrivial additive character of F  and the theta lift is induced by the Weil representation !

associated to ). Then  is an irreducible supercuspidal genuine representation of SL2 .
Consider now the     -theta lift

 : =  ()  2  Irr(G2 )

of  from SL2  to G2. Now we recall some results from [GG06, Thm. 9.1]:

Lemma 15.4. With the above notations, we have:

( i )  The representation  is nonzero irreducible supercuspidal. Moreover, ()  =   under the theta
correspondence for SL2   G2 .
( i i )  The map  !   is an injective map from the set Irrsc (PGL2 ) of supercuspidal represen-
tations of P G L 2  to Irrsc (G2 ).

( i i i)  Any  2  Irrsc (G2 ) which lifts to SL2  but not P G L 3  or P D  is of the form  for some  2
Irrsc (PGL2 ).

For  2  Irr(SL2 ) as above, we may also consider its -theta lift from SL2  to SO5 and set

=  ()  =  ()  2  Irr(SO5):

Then  is a nongeneric supercuspidal representation of SO5 belonging to a so-called Saito-
Kurokawa A-packet. The representations  and  are related as follows:

Lemma 15.5. Consider the restriction of the minimal representation of SO12 to G2  SO5.
Then for  2  Irrsc (PGL2 ),

()  =  :

Proof. We shall use the seesaw diagram in the proof of Proposition 14.2. The ensuing seesaw
identity (14.3) and Lemma 15.4(i) give:

()  =  HomSL2
(

5; ) =  :
Hence ()  =  .

Now we have:

Proposition 15.6. Let  be an irreducible supercuspidal representation of G  that is not a
lift from P G L 3  or P D .  Then we have the following two possibilities:

 If  =   for some  2  Irrsc (PGL2 ) (as in Lemma 15.4), then () =

1 ()

where 1() is the (nongeneric) square integrable subquotient of I1(1=2; ) given in
Proposition 10.4.

 If  is not of the above form, then ()  is supercuspidal.
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Proof. Let  be the minimal representation of E7 . Recall that r P  is the normalized Jacquet
functor with respect to the maximal parabolic P i  in PGSp . Then
r P  (())  is a quotient of rP i ().

By the assumption that  does not lift to PGL 3 ,  it follows that r P  (())  =  0 for i  =  2; 3. Thus
either r P  (())  =  0, in which case ()  is supercuspidal, or r P  (())  is a supercuspidal representation
of the Levi factor L 1  =  GSp . In fact, from Proposition 13.6, it follows that r P  (())  =
 jj1=2 where  is a (possibly reducible) supercuspidal representation of PGSp =  SO5 such that
  appears as a quotient of the minimal representation of SO12. By the seesaw in the proof of
Proposition 14.2, we see that  must have nonzero theta lift to
SL2  and hence is of the form  for some  2  Irr(PGL2 ) by Lemma 15.4(iii). Then Lemma 15.5
implies that  =  . By Frobenius reciprocity and the fact that ()  is tempered, we see that ()  =
1(), as desired.

As a consequence of the explicit results in this section, we have:

Corol lary 15.7. If  2  Irr(G2 ) is a discrete series representation which does not lift to P G L 3  or
P D  , then () is an irreducible discrete series representation of PGSp . As a result, any discrete
series representation of G2 lifts to a discrete series of exactly one of P D ,  P G L 3  or PGSp6 .
That lift is Whittaker generic if and only if  is.

Finally, we have the following consequence, proving a case of a conjecture of Prasad [Pr,
Remark 4, page 624].

Corol lary 15.8. Every  2  Irr(G2 ) that lifts to PGSp is self dual. In particular, every
Whittaker generic irreducible representation of G2 (F )  is self-dual.

Proof. By inspection, it suces to prove for tempered . Then () is also tempered. Recall that the
complex conjugate of a tempered irreducible representation is isomorphic to its dual.
Furthermore, since theta lift commutes with taking complex conjugates, we have

( _ )  =  ()  =  ()  =  ()_ :

As irreducible representations of PGSp are self dual [MVW, page 91], it follows that ( ) _  =
() and  =  _ , since the theta correspondence is one to one.
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