TWISTED COMPOSITION ALGEBRAS
AND ARTHUR PACKETS FOR TRIALITY Spin(8)
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1. Introduction

The purpose of this paper is to construct and analyze certain square-integrable automorphic
forms on the quasi-split simply-connected groups Spin, of type D4 over a number eld F.
Since the outer automorphism group of Spin s S ,these quasi-split groups are parametrised by
etale cubic F-algebras E and we denote them by Spinf (to indicate the dependence onE).
We shall specialize to the case when E is a cubic eld: this gives the so-called triality Sping.

The square-integrable automorphic forms we construct are associated to a family of discrete
Arthur parameters  which are quite degenerate. Indeed, apart from the A-parameters of the
trivial representation and the minimal representation of Spinf, the A-parameters we consider
here are the most degenerate among the rest. These A-parameters are analogs of the cubic
unipotent A-parameters for the exceptional group G, studied in [GGJ]. In particular, the
component groups associated to these A-parameters can be the non-abelian group Ss3, leading to
high multiplicities in the automorphic discrete spectrum, as in [GGJ].

For each such A-parameter, we shall give a construction of the local A-packets and establish
the global Arthur multiplicity formula. Both the local and global constructions are achieved
using exceptional theta correspondences for a family of dual pairs H¢ Sping in an ambient
adjoint group of type Eg (considered with its outer automorphisms); these dual pairs are
associated to E-twisted composition algebras of dimension 2 over E. We shall in particular
determine the local and global theta lifting completely. The automorphic forms constructed
via these theta correspondences, though quite degenerate, can be cuspidal and have some
special properties. For example, when one considers their Fourier coecients along the
Heisenberg maximal parabolic subgroup of Spin8E (corresponding to the branch vertex in the
Dynkin diagram), one sees that these automorphic forms support only one orbit of generic
Fourier coecients: they are distinguished in the sense of Piatetski-Shapiro. The relevant
Fourier coecients are parametrised by E-twisted composition algebras of E-rank 2, as shown in
our earlier work [GS2] on twisted Bhargava cubes. Such properties allow us to determine their
multiplicity in the automorphic discrete spectrum completely.

Because the objects mentioned above may be unfamiliar to the typical reader, and the
precise results require a substantial amount of notation and language to state, we will leave

2000 Mathematics Subject Classication. 11590, 17A75, 17C40.
Key words and phrases. triality Spin(8), minimal representation, theta correspondence.
1



2 WEE TECK GAN AND GORDAN SAVIN

the precise formulation of the results to the main body of the paper and content ourselves
with the rather cursory overview above.

We would however like to emphasize the pivotal role played by the notion of a twisted
composition algebra (of rank 2) and its relation to embeddings of the cubic algebra E into a
degree 3 Jordan algebra (of dimension 9). This algebraic theory was created and developed by
T. Springer (see [SV, Chap. 4] and [KMRT, x36]). Its relation with Sping has been
explored in our earlier paper [GS2] and we shall apply the algebraic results of [GS2] to the
study of automorphic forms here. In addition, we also need arithmetic results about twisted
composition algebras and their automorphism groups, such as local and global Tate dualities,
weak approximation and Hasse principles. These arithmetic results are supplied by the papers
of Tate [T], Voskresenskii [V1, V2] and Prasad-Rapinchuk [PR]. These algebraic and
arithmetic results, together with the representation theoretic results from exceptional theta
correspondence, combine in rather intricate and (to these authors) utterly amazing ways to
give the elegant Arthur multiplicity formula.

Given the length of the paper, it will be pertinent to provide a brief summary as a roadmap
for the reader:

- We introduce in x2 the group G¢ = Sping and its relevant structures, and give a
description of its A-parameters in x3, reviewing Arthur’s conjecture in the process.

- The theory of twisted composition algebras is introduced in x4. Though this theory is
due to Springer, we have needed to supplement it with some observations of our own.
In particular, Proposition 4.20 plays an important role in the interpretation of our
results in the framework of Arthur’s conjecture. We then recall in x5 our results from
[GS2] concerning nondegenerate twisted Bhargava cubes and supplement the
discussion with results about degenerate cubes.

- x6 is devoted to the construction of the various dual pairs that will be studied in this
paper. It is followed by a detailed description of the Levi subgroup (of type As) of the
Heisenberg parabolic subgroup of the adjoint group of type Eg in x7.

- The minimal representation of the adjoint group of type Eg is introduced in x8 and
its Jacquet module for the Heisenberg parabolic subgroup is determined in x9,

- In the spirit of the tower property of classical theta correspondence, we determine the
mini-theta correspondence for the Heisenberg Levi subgroup in x10. This is based on
relating it to a classical similitude theta correspondence for unitary groups. It is
needed for the study of the theta correspondence in Eg which is carried out in x12,
after introducing some notations for representations of Gg¢ in x11. In particular,
Theorem 12.1 is the main local result of this paper in the nonarchimedean case. We
recall in x13 the analogous result in the archimedean case, but the proofs of Theorems
13.1, 13.2 and 13.3 there will be deferred to a joint paper with J. Adams and A. Paul.

- After this, we move to the global setting, starting with x14 which is devoted to the
study of global theta correspondence. Here, we rst need to understand the space of
automorphic forms of the disconnected group Hc = Autg(C), where C is a twisted
composition algebra of rank 2. Not surprisingly, the automorphic multiplicity for H¢
can be 1 or 2. In x15, we relate the relevant A-parameters to the theory of twisted
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composition algebras. The important ingredients here are the local-global principlesin
Lemma 15.5, the consequence of local Tate-Nakayama duality in Proposition 15.12 and
the global Poitou-Tate duality in Proposition 15.16. After this preparation, we
interpret the space of global theta liftings in the framework of Arthur’s conjecture in
x16. More precisely, we construct the local A-packets as well as their bijection with
characters of the local component groups, and then establish the Arthur multiplicity
formula (AMF) for the space of global theta liftings in Theorem16.6. Finally, we show in
Theorem 16.8 that the number provided by the AMF is in fact the true discrete
multiplicity of the relevant representation in the automorphic discrete spectrum of
Ge. For the interest of the reader, the following are some examples of numbers which
arise as such multiplicities:

M+ 2( 1) 20+ ( 1)n*l

2";
’ 3 ’ 3

for n 0.

In particular, the multiplicities in the automorphic discrete spectrum are unbounded.
The main source of these high multiplicities comes from the failure of Hasse principle
for twisted composition algebras of E-dimension 2, or alternatively, the failure of
Hasse principle for Jordan algebras of dimension 9.

- We have included two appendices. In Appendix A, we consider an analogous theta
correspondence for a dual pair SL,(E)=2 G in E7, associated to a rank 4 twisted
composition algebra. This theta correspondence can be used to construct another
family of Arthur packets for Gg, but we do not pursue this here. Instead, we only
determine the theta lift of the trivial representation of SL, (E)=5 in Corollary 17.6; this
result is used in our paper [GS3]. The long Appendix B is devoted to the study of
unramied degenerate pricipal series representations of G¢ for the various maximal
parabolic subgroups and the various possibilities of E. Our approach is via the
Iwahori Hecke algebra, and in each case, we determine the points of reducibility and
the module structure at each such point. This allows us to introduce various
interesting representations of Gg with nonzero Iwahori-xed vectors which intervene in
the theta correspondence studied in the paper. In particular, we shall refer to the
terminology and results of Appendix B in the description of theta lifting, for examplein
Theorem 12.1.

We wrap up this introduction by mentioning some recent papers which are devoted to the
(automorphic) representation theory of triality Sping:

the paper [L] of C.H. Luo on determining the unitary dual of the adjoint form of G¢
over p-adic elds;

the papers [Sel] and [Se2] of A. Segal on the structure of degenerate principal series
representations (which builds upon and complements our results in Appendix B) and
poles of degenerate Eisenstein series of Gg;

the paper [La] of J.F. Lau on the determination of the residual spectrum of Gg.

It is interesting to relate the local and global A-packets we construct here with the results of
these other papers.
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2. Structure Theory of Sping

2.1. Etale cubic algebras. Let F be a eld of characteristic 0 and with absolute Galois
group Gal(F=F). An etale cubic algebra is an F-algebra E such that E - —

F F F3. More concretely, an etale cubic F-algebra is of the form:
8
2F F F;

E = S F K, where K is a quadratic eld extension of F; a
cubic eld.

Since the split algebra F F F has automorphism group S3 (the symmetric group on 3
letters), the isomorphism classes of etale cubic algebras E over F are naturally classied by the
set of conjugacy classes of homomorphisms

e :Gal(F=F) ! Sj3:

By composing the homomorphism ¢ with the sign character of S3, we obtain a quadratic
character (possibly trivial) of Gal(F=F) which corresponds to an etale quadratic algebra K¢ .
We call K¢ the discriminant algebra of E. To be concrete,

8
zF F; if E = F3 or a cyclic cubic eld;
Ke = K; ifE = F K;
>
* the unique quadratic subeld in the Galois closure of E otherwise.
We shall let ¢, denote the quadratic idele class character associated to K¢ .
The etale cubic F-algebra E possesses a natural cubic form Ng_r : E ! F known as its

norm form: for a 2 E, N¢_¢ (a) is the determinant of the multiplication-by-a map on the F-
vector space E. Then there is a natural quadratic map

(2.1) () :E 1 E
characterized by a a# = Ng_¢(a) foralla2 E.
2.2. Twisted form of S3. Fix an etale cubic F-algebra E. Then, via the associated ho-

momorphism g, Gal(F=F) acts on S3 (by inner automorphisms) and thus denes a twisted form
Se of the nite constant group scheme S3. For any commutative F-algebra A, we have

Se(A) = Auta(E
F A)Z
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2.3. D4 root system. Let be a root system of type Dy with a set of simple roots =
fo;1;2;38. The highest rootis g = 1+ 2+ 3+ 29. The corresponding Dynkin diagram is

Hence the group Aut() of diagram automorphisms is identied with S3 (the group of per-
mutations of f1; 2; 3g).

2.4. Quasi-split groups of type D4. Let G = Sping be a split, simply connected Chevalley
group of type Ds. We x a maximal torus T contained in a Borel subgroup B dened over F.
The group G is then generated by root groups U = G,, where 2 . Steinberg showed that one
can pick the isomorphisms x : G5 ! U such that

[x(u); xo(u)] = x40 (uu®)

whenever + %is a root. Fixing such a system of isomorphisms for 2 is xing an epinglage
(or pinning) for G. By the discussion on page 40 in [FK], commutators signs can be specied
by choosing an orientation of the Dynkin diagram. There is a short exact sequence:

1 | Gag = Inn(G) I Aut(G) I Aut() = S3 Il

As one can pick an orientation of the Dynkin diagram which is invariant under Aut(), one has a
splitting S3 = Aut() ! Aut(G), where the action of S3 permutes the root subgroups U and the
isomorphisms x.

Since Sz is also the automorphism group of the split etale cubic F-algebra F3, we see that
every cubic etale algebra E denes a simply-connected quasi-split form Gg of G, whose outer
automorphism group is the nite group scheme Sg. It comes equipped with a pairBg T¢
consisting of a Borel subgroup B¢ containing a maximal torus Tg, both dened over F.
Moreover, we inherit a Chevalley-Steinberg system of epinglage relative to this pair and a
splitting of the outer automorphism group

Se,! Aut(Gg):

If E is a cubic eld, then Gal(F=F) permutes the roots 1,  and 3 transitively. If
E = F K with K a quadratic eld, then without loss of generality, we assume that 1 is xed,
whereas ; and 3 are exchanged by the Galois action. If E is the split algebra, the Galois action
on is trivial.
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2.5. Center. The center of the split group G is

Z = f(z1;22;23) 2 2 2 2: 212223 = 1g: By
Galois descent, we deduce that the center of G¢ is

Zg = ResLF(z): Ker(Ng—r : Resg=g(2) ! 2):In

particular, from the short exact sequence

1 | Zg I Gg "I G I o1
we deduce that
(2.2) GEY(F)=p(Ge(F)) = Ker(H'(F; Ze) | H'(F;Ge)):
The nite group scheme Z¢ will play an important role in this paper and we will see several
other incarnations of it later on.
2.6. L-group. The Langlands dual group of G¢ is the adjoint complex Lie group

Gr = PGSOg(C):

It inherits a pinning from that of Gg. The L-group 'Gg is the semidirect product of

PGSOg(C) with Gal(F=F), where the action of Gal(F=F) on PGSOg(C) is via the homo-
morphism ¢ as pinned automorphisms. Thus there is a natural map

‘Gg ! PGSOg(C)o S3;

whose restriction to Gal(F=F) is g.

2.7. G, root system. The subgroup of Gg xed pointwise by Sg is isomorphic to the split
exceptional group of type G,. Observe that Bg = G, \ B¢ is a Borel subgroup of G, and Ty
= Te \ G, is a maximal split torus of G,. Via the adjoint action of Tg on Gg, we obtain the
root system g of Gzz, so that
Gy = ot

We denote the short simple root of this G, root system by and the long simple root by , so
that

= 0jTo and = 1j1, = 21, = 3iT0:
Thus, the short root spaces have dimension 3, whereas the long root spaces have dimension 1.
For each root 2 g , the gssociated root subgroup U is dened over F and the Chevalley-
Steinberg system of epinglage gives( isomorphisms:

Resg-f Ga; if is short;
Ga; if is long.

U =

When E is a cubic eld, Tg is in fact the maximal F-split torus of G¢ and ¢ iszthe relative
root system of Gg.

For each 2. ,, we shall also let N denote the root subgroup of G, corresponding to
In particular,
N = U\ Gz:
Because the highest root g of the D4-root system restricts to that of the G,-root system,
we shall let ¢ denote the highest root of the G,-root system also.
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2.8. Two parabolic subgroups. The G, root system gives rise to 2 parabolic subgroups of
GEe. One of these is a maximal parabolic P = Mg Ng known as the Heisenberg parabolic. Its
unipotent radical Ng is a Heisenberg group and its Levi subgroup Mg is spanned by the
3 satellite vertices in the Dynkin diagram. The other parabolic Qf = LgUg is a not-
necessarily-maximal parabolic (it is not maximal over FJ; its Levi subgroup L is spanned by
the branch vertex ¢ and its unipotent radical Ug is a 3-step unipotent group. We shall need
to examine the structure of these 2 parabolic subgroups more carefully.

2.9. The Heisenberg parabolic Pg. Let us begin with the Heisenberg parabolicP = M N of
G. Its unipotent radical N is a 2-step nilpotent group with the center Z = [N; N] = U . As we
explained in [GS2], The Levi factor M can be identied with

GL2(F3)9" = fg = (g1;82;83) j 8 2 GL2(F); det(gy) = det(gz) = det(gs)g:
We may also identify V. = N=Z with F?
F 2
F2, so that the action of M on V corresponds
to the standard action of GL, (F 3)det twisted by det(g) 1 := det(g;) ! (for any i). Moreover,
we can assume that the torus T M corresponds to the subgroup of GL (F 32)dEt consisting of g =
(g1;82;83) where g; are diagonal matrices, and the standard basis elements of F?
F 2
F 2 correspond to the basis of N=Z given by the xed pinning.

Thus, an element v 2 V can be conveniently represented by a cube

e4—f3
e
fy b
es—f

where a;:::;b 2 F, and the vertices correspond to the standard basis in F?2

F2. We shall assume that the vertex marked by a corresponds to o, and that the vertex
marked by b corresponds to ¢ o. The group Aut() acts as the group of symmetries of the
cube xing these two vertices. We shall often write the cube as a quadruple

(a;e;f;b)
where e = (e1;ep;e3) and f = (fy;fy;f3) 2 F3.

The quasi-split group G contains a maximal parabolic Pg = Mg Ng which is a form of P.
The structure of P¢ can be determined by Galois descent. The highest root ¢ is invariant
under Aut(), hence the center Z¢ is equal to the center Z of P. The Levi factor Mg can be
identied with

GL,(E)9t := fg 2 GL,(E) : det(g) 2 Fg;
and
Vg :=Ng=Zg = U U; Uyp Usis=F E E F
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can be identied with the space of \twisted cubes" i.e. quadruples (a;e;f;b) where a;b2 F
and e;f 2 E. The cube
ve = (3,0;0; 1)

is called the distinguished cube. Its stabilizer in Mg can be easily computed using Galois
descent:

Stabm, (ve) = E! o (2=22)
where E1 denotes the group of norm one elements in E. In this isomorphism, 2 E1
corresponds to

1 2 GLy(E)det

and the nontrivial element in Z=2Z corresponds to w
- 0 1
10
Note that P¢ \ G, is the Heisenberg maximal parabolic Po = MgNg of G5, with

Mg = Gz\ME:GLz and Ng = Gz\NEI

2.10. The 3-step parabolic Qg. Now we come to the parabolic Qg. The unipotent radical
Ue has a Itration
(1) ,(2)
fig U U Ue
such that
(1) _ ;
U = Uy U, is
the center of Ug. Further,

U = [Ug; Uel = U, U, Uas
is the commutator subgroup of Ug and is abelian. In particular, Ug is a 3-step unipotent

group; hence we call Qg the 3-step parabolic. Note that Qg = G, \ Q¢ = Lo Ug is the 3-step
maximal parabolic of G, with

L():Gz\LE:GLz and UOZ Gz\UE:
One has an isomorphism
Le = (GLy Resg-rGm)®" = f(g;e) : det(g) Ne-r (e) = 1g:

2.11. Nilpotent orbits. Assume that E is a eld. In this subsection, we shall describe the
nilpotent orbits of Lie(Gg)(F) = ge(F) and the centralizers of the nilpotent elements.

Let te(F) = Lie(Tg)(F) be the maximal toral subalgebra in g¢(F). Let e be a nilpotent
element in ge(F) belonging to a nilpotent Ge(F)-orbit
. By the Jacobson-Morozov theorem, the element e is a member of an sl,-triple (f; h; e) dened
over F, so that h is a semi-simple element such that [h; e] = 2e. We can assume that h 2 tg (F)
and lies in the positive chamber. Then the values of the simple roots on h are nonnegative
integers and give a marking of the Dynkin diagram of type D4; this marking parameterizes the
orbit
. Note that the marking of the Dynkin diagram must necessarily be invariant under Aut().
In fact, this condition
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is necessary and sucient (see [Dj]) for a nilpotent orbit in g¢(F) to be dened over F and to
have an F-rational point.

The semisimple element h gives a Z-grading g¢ = L ge.i, With e 2 gg.o. Let Pe = MeNg
be the parabolic group such that the Lie algebra of M is gg;0. By a result of Kostant, the
centralizer Zy (e)_of e in M. is the reductive part of Zg E(e). Moreover, by Galois
cohomology, the nilpotent Ge(F)-orbits contained in
(F) are parametrized by

Ker(H'(F; Zm.(e)) ! HY(F; Gg)):

We now list all nilpotent . orbits
dened over F and the corresponEding Zm (e) (the re-ductive part of the centralizer Zg (e)).
First, we have three Richardson orbits corresponding to the following diagrams:

€2
e ey ep €2
€0
2 & 2 & 0 £
J J J
Jez Jez JeO

The rst two diagrams correspond to the regular and the subregular orbit respectively, and the
reductive part of the centralizer is the center of G¢ in each case. The third case is the most
interesting. In this case Z (e) is generally disconnected and its identity component is a 2-
dimensional torus. In fact, Zp (e) = Autg(C) where C is an E-twisted composition algebra of
E-dimension 2 (see later for this notion). We also have the three orbits corresponding to the
following diagrams:

€1
€20
€p
1 €& 0 & eq 0 ¢ €p
J J J
) ey J e J &0

The rst two orbits correspond to a short root”’ :sl,(E)! gg(F) embedding and a long root
embedding ’ : sl,(F) ! gg(F) respectively. The reductive part of the centralizer is
isomorphic to SL,(F) Z and SL,(E), respectively. The last diagram corresponds to the
trivial orbit.

Summarizing our ndings, if F is a local eld, then
(F) consists of a single Gg(F)-orbit, except in one case when Gg(F)-orbits in
(F) are parameterized by E-isomorphism classes of E-twisted composition algebras C of E-
dimension 2.
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2.12. Unipotent orbits of "Gg. We also need a description of the conjugacy classes of
maps

SL(C) ! "G ! G- oS3

which are invariant under the S saction. These correspond to unipotent conjugacy classes of
G- = PGSOg(C) which are stable under the action of S3. As in the previous subsection, these
unipotent conjugacy classes in turn correspond to markings of the D4 Dynkin diagram which
are invariant under the Ss-action. In particular, such markings have been enumerated in the
previous subsection.

3. Arthur Parameters of Spin{

In this section, we shall enumerate the (elliptic) Arthur parameters for G¢ and single out
a particularly interesting family of Arthur parameters. Thus, in this section, we assume that
F is a number eld and E is a cubic eld extension of F.

3.1. A-parameters. An A-parameter for G is a G—conjugacy class of homomorphism
‘L SLa(C) ! "Ge = G-0, Gal(F=F) | Gg e S3;
such that prs, ji, = g, where prs, stands for the projection
prs; :Ggo Sz | S3:

In particular, jsi,(c) is of the type considered in Section 2.12.

For each place v of F, we have a conjugacy class of embeddings L¢ . ,! Lg, from which
we obtain by restriction a local A-parameter

V:LFV SLz(C) | GE—O S3:

3.2. Component groups. For an A-parameter , we set
S =0 Zg dIm())

This is the global component group of , and we say that s ellipticif S is nite. Likewise,
we have the local component group S ,. There is a natural diagonal map

Y
) 'S o= S v

Vv

Hence there is an induced pullback map
2lrrS .o R(S );

where R(S ) denotes the (Grothendieck) representation ring of S
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3.3. Arthur’s conjecture. We briey recall Arthur’s conjecture. Associated to each elliptic
A-parameter , one expects to have the following:

for each place v of F, a nite packet

=f, :y21rrS g

v \Z

of unitary representations of nite length (possibly zero), indexed by the irreducible
characters of the local component group S

v

set 0
=f = Lo =
v 2 IrrS .ag;v
and
m = h(); is
where is a certain quadratic character of S (whose denition we won’t recall

here). Then the automorphic discrete spectrum deisc of Gg contains a submodule
isomorphic to

Moreover, we have:

2 _ 2
Ldisc - L

where the sum runs over equivalence classes of elliptic A-parameters

3.4. Enumeration. In view of the above discussion, there are 6 families of A-parameters for
Gg, according to the type of jSLz(c). We list them below, together with the component

group S
(i) Jst,(c) is the regular orbit: S is trivial and the resulting A-packet consists of the
trivial representation (both locally and globally).
(ii) jSLZ(C) is the subregular orbit: S is trivial and the resulting local A-packet consists
of the minimal representation.

(iii)  jsi,(c) is given by:
:SLa(C) I SO3(C) SL3(C) G2(C) Gg: -

This is the case of interest in this paper and we shall give a more detailed discussion
in the next subsection.

(iv)  jsi,(c) is given by
ISLz(C) ,! SLz(C) SLz(C) SLz(C) ! ME GE; -

where the rst map is the diagonal embedding.
(v) jst,(c) is aroot SLy: we shall discuss this case briey as well.
(vi) Jsi,(c) is the trivial map: this is the tempered case.
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3.5. The case of interest. Now we examine the case of interest (case (iii) above) in greater
detail. The centralizer of (SL2(C)) in G¢ is isomorphic to the subgroup

SoS,=f(a;b;c)2 (C)3:abc= 1go0 Sy;

where the nontrivial element of S, acts on S by inverting. Moreover, the group S3 = Aut()
commutes with (SL,(C)) and S, and acts on S by permuting the coordinates. Thus we
have an embedding

50(52 53) ! GE-O 53:

To give an A-parameter of this type is thus equivalent to giving a map
ZLF ! 50(52 53)1

The composition of  with the projection to S, S3 gives a homomorphism L¢ ! S, Szand
thus determine an etale quadratic algebra K and the xed etale cubic algebra E. We shall say
that is of type (E; K).

To give an A-parameter of type (E; K) amounts to giving a L-homomorphism
Le ' So E K We:
Now the group S o, W¢ is the L-group of a torus
TE;K = fx 2 (E
F K) ZNE
k= (x) 2 Fg=K:

As shown in [GS2], this torus is the identity component of the E-automorphism group of any
rank 2 E-twisted composition algebra C with quadratic invariant K¢ satisfying

[Ke] [K] [Kc]= 12 F=F2%:
By an exceptional Hilbert Theorem 90 [GS2, Theorem 11.1], one has
Te;x = Te;k. :=fx 2 (E
F Kc) :Ng
Ke=e(x) = 1= Ng
KC =KC (x)g:
Thus to give an A-parameter of type (E; K) is to give a L-parameter for the torus Tg;,

taken up to conjugation by S o S,. In other words, it is to give an automorphic character of
TEe.x up to inverse.

This suggests that the A-packet , or can be constructed as a \lifting" from T¢ .k toGe.
The goal of this paper is to carry out such a construction, using the fact that there is a dual
pair

Hc Geg Aut(Eg)

where H ¢ is the automorphism group of a rank 2 E-twisted composition algebra (whose iden-
tity component is T¢.¢) and E! is an adjoint group of type Eg (depending on a Freudenthal-
Jordan algebra J with K; = K; see later).
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3.6. An example. The simplest A-parameter of type (E; K) is determined by the natural
map

Lr « il S, S3 ! So (52 53) ! GE o S3:
We denote this special A-parameter by ;. Its global component group is thus

(
30S,=S3ifK = F F;%F

S, if K is a eld.

The local component groups S e, area bit more involved to describe, as they depend
on the type of E, and K,. We list them in the following table.

Ev Ky S &k,

eld eld Sz

eld split S3
Fv Ke.v Ky splits or Ky = Kg.y S,
Fv Ke;v K = Kg,y isaeld 2 S2
Fv Fv Fy eld (2 2) S2
Fv Fv Fy split S»

Let’s see what Arthur’s conjecture implies for this particular A-parameter, specialising to
the case when K = F F is split:

if Ey is a eld, then
By fl;v;r;v;;vg
if Ey = Fy Kg,y or F,, then
ey = v v

For appropriate disjoint nite subsets , and of the set of places of F, we thus have the

representation 0 1
I I
0 ! !
0o v
0]
RY;
0]
@ 1A
v2r v2 v, [
in the global A-packet ., . The multiplicity attached to this representation is the mul-
tiplicity of the trivial representation of Ss3 in (r
JrJ)
( (

iI). A short computation using the character table of S3 shows that this multiplicity is equal
to

(20 + 2 (- 1)i4); if . is nonempty; L (1
( 1)i); if . is empty.

N4 Q=
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We shall see later how to construct this many automorphic realisations of ;, using
exceptional theta correspondence.

3.7. Root SL,. We consider briey the case when jSLZ(C) is a root SL,. We may assume
that (SL,(C)) is the SL, corresponding to the highest root which is Sz-invariant. Then the
centralizer of (SL,(C)) inLGg is

(*Mg)9e" = (SL2(C) SL2(C) SLy(C))=f(a;b;c) 2 , :abt = 1g:
This is the L-group of
H = GLy(E)9'=F:
Hence to give such an elliptic A-parameter is to give an L-parameter
:Lg ! 'H

which corresponds to an L-packet of H = GLZ(E)det=F, or more simply to a cuspidal
representation of GL, (E) (with trivial restriction to F).

As we shall see in x4.11, the group H is the E-automorphism group of a E-twisted compo-
sition algebra of E-rank 4. Indeed, given any E-twisted composition algebra C of E-rank 4, its
automorphism group H¢ is an inner form of H above and there is a dual pair (see x6.6)

Hc Geg E;; B

where E E; is a group of type E; (associated to a quaternion algebra B). This suggests that the

A-packets associated to as above can be constructed via exceptional theta lifting from
Hc. We do not discuss this construction in this paper, but in Appendix A, we shall lay some
algebraic and geometric groundwork to facilitate the further study of this case. In particular,
we determine in Appendix A the theta lifting of the trivial representation of H to G¢. This is
needed for our paper [GS3].

4. Twisted Composition and Freudenthal-Jordan Algebras

As we alluded to in the introduction and x3.5 above, the theory of twisted composition
algebras plays a fundamental role in this paper. In this section, we shall briey recall this
notion and its relation with Freudenthal-Jordan algebras. This theory is largely due to
Springer, though we shall need to supplement it with some results and observations of our
own needed for our application.

4.1. Twisted composition algebra. For a given etale cubic F-algebra E, an E-twisted
composition algebra C is a vector space over E, equipped with a pair of tensors (Q; ) where

Q:C | E is a non-degenerate quadratic form on C, and
:C ! C is a quadratic map
such that
(e x) = e*(x); Q((x)) = Q(x)*  and Nc(x) := ba(x; (x)) 2 F;

foralle2 E and x 2 C, where bq(x;y) = Q(x+y) Q(x) Q(y)ande® is dened in (2.1).
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Given two E-twisted composition algebras (C; Q;) and (C% QP;°), an E-morphism be-
tween them is an E-linear map : C ! CO such that
Q®=q and °=

The automorphism group Autg(C; Q;) of a twisted composition algebra (C; Q;) is an
algebraic group over F.

These algebras were introduced by Springer and it is a fact that dimg C = 1, 2, 4 or 8. In this
paper, we shall chiey be concerned with the case where dimg C = 2, though the case where
dimg C = 1 or 4 will also be considered.

4.2. Rank 1 case. When dimg C = 1, we may write C = E vg for a basis vector vp 2 C.
It is not dicult to see that the tensors (Q;) are of the form

2

Qa(x vo) = a¥ x and a(x vo)= a x* v

for some a 2 E. We shall denote this rank 1 E-twisted composition algebra by C,. Its
automorphism group is

Aut(C,) = Rest_;(2) = Ker(Ng-f :Resg=r(2)! 2):

We have encountered this group before in x2.5, as the center of the quasi-split group Gg,
whence it was denoted by Z¢. The various interpretations of Z¢ account for the intricate
and sometimes surprising connections between dierent objects we will encounter later on.

Lemma 4.1. The E-isomorphism classes of rank 1, E-twisted composition algebras are
parametrized by E=F E2 under the construction a! Cj,.

Proof. For a;b 2 E, C, is isomorphic to Cy if and only if there exists 2 E such that

Qu(vo) = Qalvo) and y(vo) = alvo);

at=p* =2 and a=b= *=:

In fact, the rst requirement above is implied by the second (on taking # on both sides).
Now observe that

F== Neg()=?2F E?
and conversely, forany e2 E and f 2 F,
_ (e*f)F

et f

e? f

Hence, we deduce that
F E>=ff=:2¢Eg;
so that
Ca=Cp() ash2 F E2:
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The lemma can also be shown via cohomological means. Namely, by considering the long
exact sequence associated to the short exact sequence of algebraic groups

Nego
1 | Zg = Red;_;» | Resgp2 1 2 I 1

one sees that
HI(F;ZE) = Ker(Ng-f :E:E2 | |:=|:2):

Then [KMRT, Prop. 18.34] shows that the map # gives an isomorphism of E=F E2 with the
kernel above.

4.3. Rank 2 case. Every twisted composition algebra (E; C; Q;) has a cubic invariant: the

etale cubic algebra E. On the other hand, when dimg C = 2, one can attach to it a
guadratic invariant, i.e. an etale quadratic F-algebra K¢. Indeed, K¢ is determined by the
requirement that the discriminant quadratic algebra of Q is E
F Kc. In fact, C can be realized on L 1= E
K¢ with Q and given by

Q(x) = e N¢
Ke=£ (X) and (x)=f e ! for

somee2 E and 2 K. satisfying

Ne-r(e) = Ng.=¢ ():

Here xand refer to the action of the non-trivial automorphism of K¢ on x and . We shall denote
this rank 2 E-twisted composition algebra by Ce;. For a more detailed discussion of this, see
[GS2].

Given an E-twisted composition algebra C = C., as above, consider its automorphism
group He = Autg(C) GLg(L). One has a short exact sequence

1 ! (AUtEC)O I Autg(C) IS, !
1 with
Aute(C)O(F) = Te;kc(F):=fx 2L :Ng(x)=1 and N__¢ (x)= 1g:

The identity component H OC = Autg(C)9 is a 2-dimensional torus over F depending only on E
and K¢ and as (e;) varies, the algebraic subgroups Hc_ OGLg (L) are physically the same

subgroup Tg;x . Thce conjugation action of S, on H g is by inversion. In particular,
the center of Hc is

(4.2) (H2)°2 = H2[2] = Rest_p2= Zg:

Hence, we see yet another incarnation of the nite algebraic group Zg; the consequence of
this incarnation will be explained in x4.9 and x4.10.

The torus Hg = Autg(C)O can be interpreted as the group Aut,(C) of L-linear automor-
phisms of C. It was observed in [GS2] that Ce; and Ceo,0 are L-linearly isomorphic if and only
if there exists x 2 L such that

(4.3) e=e®= Ny _g(x) and == N__¢(x);
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in which case, multiplication-by-x gives an L-linear isomorphism x : Ce; ! Ceo,0. More-
over, the isomorphism 4 induces an isomorphism

(4.4) Ad(x) : Aute(Ce;) ! Aute(Ceoso)

It is easy to check that the restriction of this isomorphism to the identity components is the
identity map on Tg k.. In any case, we have shown:

Lemma 4.5. The L-isomorphism classes of E-twisted composition algebras of rank 2 and
quadratic invariant K¢ are parametrized by

(E K¢ )%=Im(L)
where
(E Kc)%=f(e;) 2 E K¢ :Ne—g(e)= Ny _-¢()g and the
mapL ! E K is given by

x I (Np=g(x); Np=g (x)):

This lemma can also be seen cohomologically. As was observed in [GS2], there is a short
exact sequence of algebraic tori

N ¢ N

1 I | Res,_fGm "9 (Resg-f Gm Resg =f Gm)° Il
giving rise to an associated long exact sequence
1 I Te.k (F) L I (E Ko )° HY(F; Te ko) I

(E K¢ )°=Im(L)

There is a natural action of Aut (K¢ =F ) (as group automorphisms) on (E K)=Im(L) with the
action of the nontrivial element given by (e;) ! (e;). The orbits under this action
parametrize the E-isomorphism classes of E-twisted composition algebras of rank 2 with
guadratic invariant Kc. Observe that since Ng_¢ (e) = ,

(e;)=1(e 55 12 (E K¢ )%=Im(L):

Hence, the action of S, = Aut(Kc=F) on H1(F; TEiKc) is by inversion, and its xed subgroup
HL(F; Te;k )2 is the 2-torsion subgroup H(F; T,k )[2].

Finally, note that the map
Hc(F) := Aute(C)(F) ! Sy
need not be surjective. Indeed,
He(F) = HR(F) () [Cl2 HY(F; Te;x )2);

that is, the L-isomorphism class of C is xed by Aut(K¢=F).
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4.4. Freudenthal-Jordan algebras. Twisted composition algebras are closely related to
Freudenthal-Jordan algebras; see [KMRT, Theorem 37.10] for a precise denition. Let J be a
Freudenthal-Jordan algebra; it is a cubic Jordan algebra, so that every element a 2 J satises a
characteristic polynomial
X3 Ty(a)X?+ S;(a)X Ny(a)2 F[X]:

The maps T; and N, are called the trace and norm maps of J respectively. The element

a® = a?> Ty(a)a+ Ss(a)
is called the adjoint of a and satises a a” = Nj(a). The cross product of two elements
a;b 2 J is dened by

ab= (a+ b)* a® b
The trace form T, denes a nondegenerate bilinear form hx;yi = T,(xy) on J. We shall

identify J and J using this bilinear form. Let (x;y;z) be the symmetric trilinear form
associated to the norm form N, so that (x; x; x) = 6N;(x). For any x;y 2 J, one has

hx y;zi= (x;y;2):

An etale cubic algebra E is an example of a Freudenthal-Jordan algebra. In general, it is
a fact that dimgJ = 1, 3, 6,9, 15 or 27. In this paper, we shall largely be interested in the
case where dimg J = 9, though the case where dimg J = 15 will also be considered.

The split Freudenthal-Jordan algebra of dimension 9 is simply the Jordan algebra Mg of
3 3-matrices. Its automorphism group is

Aut(M3 ) = PGL3 0o Sy;
with the nontrivial element of S , actingby a ! a'. Hence, isomorphism classes of Freudenthal-
Jordan algebras are classied by H1(F; Aut(M; }). Since there is a natural homomorphism
HY(F; Aut(M3)*) 1 HY(F;S,);

one sees that to every Freudenthal-Jordan algebra J, one can attach an invariant which is an
etale quadratic algebra K | ; this quadratic invariant determines the inner class of the group
Aut(J)O of type A,. More generally, if J is a 9-dimensional Freudenthal-Jordan algebra, then
Aut(J) sits in a short exact

1 I (Aut))O I Aut) IS, |
1 where Aut(J)? is an adjoint group of type A,. Note that the map
Hy = Aut(J)(F) ! S3
need not be surjective.

As explained in [KMRT, Prop. 37.6 and Theorem 37.12] and [GS2, x4.2], a Freudenthal-
Jordan algebra J of dimension 9 over F is obtained from a pair (B;), where B is a central
simple algebra over K = K, of dimension 9 and is an involution of second kind on B, as the
subspace B of -symmetric elements, equipped with the Jordan product xy = (xy +yx)=2. For
a xed etale quadratic algebra K, this construction gives an essentially surjective faithful functor
of groupoids:

fK-isomorphism classes of (B;)g ! fF-isomorphism classes of J] with K; = Kg
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(where dimg B = 9= dimg J); itis fully faithful and thus an equivalence if we allow F -linear
isomorphisms on (B; ) and not just K-linear ones. Thus Aut(J) =0Auty(B;) and thereis an
S,-action on the source given by

(B;) ! (B°P;);

so that the bers of the map are precisely the S -prbits (and hence have size 1 or 2). Further,
Aut(J)O(F) = Aut(J)(F) if and only if the ber of J has size 2, i.e. (B;) (B°P;).
4.5. Springer decomposition. Twisted composition algebras are related to Freudenthal-
Jordan algebras by the Springer construction. Suppose we have an algebra embedding

i:E ! J:
Then, with respect to the trace form T, we have an orthogonal decomposition

J=EC
where C = E?. Fore2 E and x 2 C, one can check that e x 2 C. Thus, settinge

X:= ex
equips C with the structure of an E-vector space. Moreover, for every x 2 C, write
x* = ( Qx);(x))2E C=

where Q(x) 2 E and (x) 2 C. In this way, we obtain a quadratic form Q on C and a
guadratic map on C. Then, by [KMRT, Theorem 38.6], the triple (C; Q;) is an E-twisted
composition algebra over F. Conversely, given an E-twisted composition algebra C overF,
the space E C can be given the structure of a Freudenthal-Jordan algebra over F, by [KMRT,
Theorem 38.6] again. We recall in particular that for (a;x) 2 E C,

(4.6) (a;x)* = (a* Qx);(x) ax):

This construction gives a bijection
fE- isomorphism classes of E-twisted composition algebrasg
I
fH)-conjugacy classes of pairs (J;i:E ,! J)g

where J is a Freudenthal-Jordan algebra of dimension 9 andi : E ,! J is an algebra embed-
ding. Moreover, this bijection induces an isomorphism

Hc := Aute(C) = Aut(i:E ,! J);

where the latter group is the pointwise stabilizer in Aut(J) of i(E) J. In other words, the
Springer construction is an equivalence of groupoids. If an E-twisted composition algebra C
corresponds to an embedding i : E ,! J under this equivalence, then one has:

(4.7) [Ke] [Ke] [Ky] = 12 F=F2:

One consequence of the Springer construction is that it gives us an alternative description
of the torus TEFKc' It was shown in [GS2] that there is an isomorphism (an exceptional
Hilbert Theorem 90),

AUtE(Ce;)O = Te;xe = Te;, = fx 2 (E
FKy) :Ng
Kk, =E(x) 2 Fg=K|,
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whenJ = E Ce,. We will next recall how this isomorphism arises.

4.6. An isomorphism of tori. Given an E-twisted composition algebra C corresponding to
an embedding : E ,! J, let us pick a pair (B;) over K; such thatJ = B . The embedding
gives rise to an embedding of K;-algebras compatible with involutions of second kind:
~E
F KJ ! B,‘

where we have used the involution on E
K, induced by the nontrivial automorphism of K;=F . This induces an embedding of
algebraic groups

~:(E

Ky)=K, | PB = Auty,(B)
whose image is precisely the pointwise stabilizer of ~in Autk (B). The map ~ restricts to
give an isomorphism

Te;k, = Auty, (B;; Y Auty, (B;):
where
TE;KJ = Ker NKJ:F Z(E

Ky)=K ! E=F :Since

Autg, (B;;¥= Aute(J;)° = Aute(C)%;
we see that the choice of a (B; ) with J = B gives an isomorphism of algebraic groups

TE;KJ ! Hg = AUtE(C)OZ

If one had chosen (B°P;) instead, the resulting isomorphism is the composite of the one
for (B;) with the inversion map. If it turns out that (B;) = (B°P;), then these two
isomorphisms are conjugate by an element of Hc (F) n H‘C’ (F). Thus, each E-twisted com-

position algebra C with quadratic invariant K ¢ comes equipped with a pair of isomorphisms of
algebraic groups

J

c; cHY U TE;
where [Ke] [Kc] [Ky] = 12 F=F2. This gives a canonical isomorphism

[c] : HOAF)=H(F)? = TE;k, (F)=Tt;x, (F)%:

In particular, if we consider C = Ce; and J
phisms of algebraic tori

(4.8) e,'; e; :-F-E,Kc = TE,IZ‘J :We

have:

E Ce;, then we obtain a pair of isomor-

Lemma 4.9. The pair of isomorphisms in (4.8) is independent of the choice of (e;).

Proof. Suppose rst that Ce; and Ceo,0 are L-isomorphic, with an L-isomorphism given by a
multiplication-by-x map x as in (4.3) and (4.4). Then it follows by the functoriality of
Springer’s construction that

e; = eo;olAd(x)jTE;K c
Here the sign arises because of the possibility of using a central simple algebra B or B°Pin
the construction of . We have observed after (4.4) that Ad(x) is the identity map on Tg k.,
so that g; = .. !
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Now given any two Ce; and Ceo, one knows that They become L
¢ F-isomorphic over a nite Galois extension F of F. Hence the two pairs of isomorphisms e; and
00 Of algebraic tori become equal after a fase change to F. But then they are already equal

over F.

Thus we have a canonical pair of isomorphisms
(4.10) ; LiTek = Tek,:
This is the exceptional Hilbert 90 Theorem from [GS2]. It gives a canonical isomorphism

0:Te;ke (F)=Tek (F)? = TE;x, (F)=Te;x, (F)%:

One consequence of this alternative description of HOC is that its gives an alternative
computation of H1(F; Hg). In particular, it follows from [GS2, Prop. 11.2] that

(4.11) HY(F; Te,, )21 = E=F Ng
k, = ((E
Kiy)):

This description of HY(F; Te,k.)[2] = HY(F; Te;k,)[2] will be very helpful later on.

4.7. Examples. As an example, consider the case where E = F3, and J = Mj3(F) is the
Jordan algebra of 3 3 matrices. We have a natural embedding of F3 into M3(F) where
(a1;az;a3) 2 F 3 maps to the diagonal matrix with a;;a»;as on the diagonal. If x 2 M3(F),

then x# is the adjoint matrix. Thus it is easy to describe the structure of the twisted
composition algebra C in this case. An element x in C is given by a matrix

0 1
0 x3 V2
xX=@y3s 0 x; A:
X2 y1 O

If we write x = ((x1;y1); (X2;y2); (x3; y3)) then the structure of F3-space on C is given by
(a1;@2;a3) ((x1;y1); (x2;¥2); (x35¥3)) = ((a1xa; a1y1); (azx2; @2y2); (asxs; asys))
for all (ay;a2;a3) 2 F3. The structure of the twisted composition algebra on C is given by
Q((x1; y1); (x2;¥2); (X35 ¥3)) = (X1y1; X2¥2; X3Y3)

and

((x1;y1); (x2;¥2); (x3;¥3)) = ((y2y3; X2X3); (Y3y1; X3X1); (Y1y2; X1x2)):
This twisted composition algebra (C; Q;) has cubic invariant F3 and quadratic invariant
F2.

Here is another example. Assume that E is a cyclic cubic eld extension of F, with Galois
group generated by . Let D be a degree 3 central simple algebra over F containing E as a
subalgebra. Then as a vector space over E, D has a basis 1; $; $2, for some element $ 2 D
satisfying $x = (x)$, for all x 2 E, and $3 = 2 F. The corresponding E-twisted
composition algebra is isomorphic to C() = E E, with

Q(x;y) = xy and (x;y) = ( 'y*;x*):
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Moreover, C () has cubic invariant E and quadratic invariant F 2 and is associated to (e; ) = (1; (;
1)). The algebra D is split if and only if is a norm of an element in E. The group of E-
automorphisms of C(1) is

Aute(C(1)) = EY o (2=22)
where 2 E! acts on C(1) by (x;y) ! (x;y), and the nontrivial element in Z=2Z by
(y) ! (y;x), for all (x;y) 2 C(1).

4.8. When is J division? Following up on the last example above, one may consider the
question: under what conditions on (e;) is Je; = E Ce, associated to a division algebra? An
answer for the general case is provided by [KMRT, Thm. 38.8], but we provide an
alternative treatment adapted to the rank 2 case here.

Proposition 4.12. Fix (e;) 2 (E K)O, S0 that Ng_f(e) = N =F()'c Then the
following are equivalent:

(i) 2 N_-g, (L) (whereL = E

Kc); (i) (e;) = (e%1)2 (E K¢ )O=Im(L);

(iii) (e;) = (€%5°2 (E K¢ )%=Im(L), with 92 F; (iv) [(e;)]
2 HY(F; Te,k )I2];

(v) J = E Ce; is not a division Jordan algebra.

When these equivalent conditions hold for C, H .(F) = H%(F) 0 Z=2Z. Indeed, for any
C = Co, with 2 F,

AUtE(Ce;) = Tg;k. O Aut(Kc=F) GLg(L):

In other words, these automorphism groups are physically the same subgroup of GLg (L).

Proof. We rst show the equivalence of the rst four statements. The implications (i) =) (ii)
=) (iii) =) (iv) are clear. Assume that (iv) holds, so that [(e; )] = [(e;)]. Then there exists x 2
L such that

Ni_p(x)=xx=1 and = x x*:

Now the rst condition implies that x = zz for some z 2 L, which when substituted into the
second gives N _-¢ (z) 2 F. Hence, replacing (e; ) by an equivalent pair, we may assume that

2 F, so that Ng.r (e) = 2. But then
(e;)= (e Ni—g(e); Ni—x.(e)) = (e%%) 2 (E K¢ )%=Im(L): Since 3 =
N -, (), we conclude that (i) holds.

We note that the equivalent conditions (i)-(iv) always hold when E is not a eld, for then
the norm map N _¢,. :L ! K is surjective.

Finally, to check the equivalence with (v), note that J = E Ce; is not a division Jordan
algebra if and only if there exists nonzero (a; x) 2 E Ce. such that (a; x)# = 0. By (4.6), this is
equivalent to

(4.13) a*=Q(x)= e Nig(x) and ax=(x)=¢e ! &:
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When E is not a eld, we can always take nonzero (a; 0) with a# = 0, so that J is never a
division algebra in this case.

We may henceforth assume that E is a eld. Suppose that (ii) holds, so that = 1 and Ng_¢
(e) = 1. Then we may take (a;x) = (e; e®); one checks that this satises the two equations
in (4.13) and hence J is not division. We have thus shown (ii) =) (v).

Conversely, we shall show (v) implies (i) (when E is a eld). Assume that there is a nonzero
(a; x) such that the two equations in (4.13) hold. Then x must be nonzero (otherwise, we
deduce by the rst equation that a# = 0 and hence a = 0 since E is a eld). Multiplying the two
equations in (4.13), we obtain

Ne-r(a) x = Ni-x (X x;so
that
(4.14) x (Ng=¢(a) Ni-k.(¥) = O
Hence, if K¢ is a eld, so that L is a eld also, then we may cancel x (noting that x = 0) to
deduce that

= Ne-g(a) Npogo (x) 12 Np—g (L): On
the other hand, if K¢ = F F, then let
X=(x1;%2)2E E =1 and = (1;2)2 F F:The

two equations in (4.13) becomes:

#

a® = exixa and (axg;axa)=e ' (2 %, ;% x; ) *

From this, we see that a = 0 (otherwise, the second equation would give x; = x, = 0 also), and
hence x1;x2 2 E . Hence, we may cancel x in (4.14) as before and conclude that 2 N,

(L ), as desired.

4.9. Embeddings. We record here some results that we will need later, concerning embed-
dings of rank 1 twisted composition algebras into rank 2 ones.

Lemma 4.15. Let us x

a 2 E with corresponding rank 1 E-twisted composition algebra C; = E and
an E-twisted composition algebra C = Ce, of rank 2, corresponding to an embedding E
, 1 J, with resulting Springer decompositionJ = E C.
There are natural equivariant bijections between the following three Autg(C)-sets (possibly
empty)

(a) the set of E-morphisms f : C; ! C;

(b) the set of rank 1 elements x 2 J (i.e. x# = 0 but x = 0) of the form x = (a;v) 2
EC=1J;

(c) the set

Xa;C(F) = Xa;e;(F) =fx2L:=E
Ke :Ni—g(x) = e *a®and Nk (x) = Ne=g (a) g

The bijection between (a) and (b) is given by f ! (a; f(1)), whereas that between (b) and (c)
is given by x = (a;v) ! wv.
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Note that the 3 sets are possibly all empty. For example, if J is associated with a cubic
division algebra, then there are no rank 1 elements in J, so that the set in (b) is empty, and
hence so are the other 2 sets. On the other hand, we note:

Lemma 4.16. For any a 2 E, there exists a unique E
Kc-isomorphism class [C] such that Xa.c(F) is nonempty. This unique E
Kc-isomorphism class is represented by C .y Ty

Hence we have a group homomorphism
f:E=FE? | (E K.)%=Im(L)
given by
f(a) = (a%; Ne-¢ (a))

and characterized by the requirement that C, embeds into Ce. if and only if (e;) = f(a) 2
HL(F; Te;k, ). The image of f is equal to H1(F; TE;KC)[Z], i.e. consists precisely of those
twisted composition algebras C whose associated Jordan algebra is not division, whereas

Ker(f) = fx*=xx 2 L and Ni_k.(x)2 Fg=FE2:

Proof. It is clear that if C = Cat:Neo; (a) then 1 2 X5.c(F); this shows the existence of C
and that it has the desired form. For the uniqueness, suppose that Xa.e;(F) and Xj.e0.0(F) are

both nonempty. Then there exist x; x 2 10 such that
Ni-e(x) = e 'a* and Ni_g(x) = Ng-g(a) *
and
Nize(x®) = & *a* and Ni—¢(x°) = Neog(a) O %
On dividing one equation by the other, we see that
N og(x%=x) = e=e® and N ¢ (x°=x) = =
This implies that (e;) = (e%°) 2 HY(F; Tg,k.), as desired.

By Proposition 4.12, the image of f consists of twisted composition algebras associated to
non-division Jordan algebras J. On the other hand, to prove that any such C is in the image of
f, it suces by Proposition 4.12 to consider C = Ce¢;1, with Ng-f (e) = 1. We claim that f(e)
= [(e; 1)]. Indeed,

fle) = (e*;Ne-p(e)) = (e H1)= (e;1) 2 H (F; ey ):

We leave the statement about Ker(f) to the reader.

Since the image of the map f in the above lemma is H1(F; TE;KC)[Z], we deduce from
(4.11) that f can be simply interpreted as the natural map

(4.17) f :E=FE%2 | E=FNg
k,=e((E
Ky)):

Finally, we note that Xa.c = Xa,e; is an algebraic variety which is evidently a torsor
for the torus Hg = Te;k, - If Xa;e;(F) is nonempty, then HOéF) = Te;¢ (F) acts simply
transitively on it. Thus, the action of Hc (F) on Xa.e;(F) is transitive and the stabilizer
of a point x 2 Xj.e;(F) has order 2, with the nontrivial element hy 2 Hc(F) n H0£F).
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For example, the stabilizer of 1 2 Xa;Ca# 4N(a)(F) is Aut(Kc=F). Indeed, hy is the map on
Ce; = E '

Kc given by X

hy :z! z
X

If X2 Xa.e;(F) is another element, then x° = t x for a unique t2 H° (f) and

hx0= t h)( t 1= t2 hx:
Thus the element hy gives a well-dened class in (Hc(F)nH?© (F ))=H?O (F )2 as x 2 Xae;(F)
varies. We record this as a lemma.

Lemma 4.18. Suppose that f(a) = [C] 2 Hl(F;TE;Kc)[Z] so that X5;c(F) is nonempty.
Then one obtains a class
gc(a) 2 (Hc(F) nHO(F))=HA(F)?

consisting of elements which stabilize some points in X5;c(F).

4.10. Cohomological interpretation. The embedding problem studied in the previous
subsection can be given a rather transparent cohomological treatment. The map f in Lemma
4.16 is a surjective homomorphism H1(F; Zg) ! H1(F;TE,.|<C )[2]. This map can be ob-
tained from our observation in (4.2) that Te k. [2] = Zg. From the Kummer exact sequence

1 | Z¢ I Tee -0 Texe Loy
one deduces the following fundamental short exact sequence
(4.19)
1 | TE;KC(F)ZHTE;KC(F) b ! Hl(F;ZE) f | Hl(F;TE;KC)[Z] ! 1:

The map f here is precisely the one described in Lemma 4.16. This cohomological discussion
also gives us a more conceptual description of Ker(f):
Ker(f) = Te, k. (F)?nTe,x (F):
The map b can be described explicitly as follows. Given t 2 Tg.x c(F ) L, since N _¢(t) =1,
we can write
t= VY Wlth NL=KC(Y)2 F (Since NLch(t): 1)

Then

b(t) = y*=y2 E=FE?;
The reader can easily verify that b(t) is independent of the choice of y and is trivial if
t2 TE;KC(F)Z.

Here is another interesting observation arising from (4.19) and Lemma 4.18. Let us x [C]
2 HY(F; Tk )[2] and consider the ber f L([C]) whichisa Te.x (F )=Te;k (F)ZEtorsor. Then
we have:

Proposition 4.20. The map a! gc(a) (with gc(a) dened in Lemma 4.18) gives an iso-
morphism

f HC]) ! (Hc(F)nHO(F))=Tek (F)?
of Te;k. (F)=Tg;k. (F)2-torsor.
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Proof. Assume without loss of generality that C = Ce,. Since both f ([C]) and (Hc(F) n
HO(F))=Te k. (F)2 are torsors under Tg, . (F)=Tg,k. (F)2, it suces to show that if a’

= b(t) a2 f [C]);

then
gc(a®) = t gc(a) 2 (He(F) nHO(F))=Tex. (F)*:
Write
t=yy withN - (y)2F;
so that

b(t) = y¥=y and hence a’= a y¥=y

This implies in particular that
Ne-r (a%) = Neor (a) N -k (y) and a% = a* Ni-g(y):
Now suppose that x 2 X5.e:(F) L, so that
Ni—e(x) = e "a* and Ny_¢ (x) = Ne_p(a) ™

Then one checks that x0 := xy 2 Xzo,c(F). Hence, if hy and hy are the nontrivial elements
stabilizing x and x( respectively, then for any z 2 C,

(
hyo(z) = 9):—z= ¥z=&lt Thye(z):

Thus we have
hyo = t hy 2 (Hc(F) nHCYF))=Te;k (F)?:

Indeed, if [C] is a nontrivial element of H1(F; TE;KC)[Z], then [C] generates a subgroup of
order 2 and we have a short exact sequence of abelian groups

(4.21) 1 I Tek  (F)=Te;k (F)? I f Y(h[C]i) I h[C]i o1
On the other hand, with C = C¢;1 (without loss of generality), one has another extension:
(4.22) 1 I Tek  (F)=Tek (F)2 ' Hc(F)=Te,k(F)? IS, 11
Then the following is a consequence of Proposition 4.20:

Proposition 4.23. The two extensions (4.21) and (4.22) are isomorphic via a canonical
isomorphism of extensions dened as follows. For any a2 E=FEZ = H1(F;Z¢) withf(a) =
[C], the isomorphism sends a to gc(a).
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4.11. Rank 4 and 8 cases. We conclude with a brief sketch of the rank 4 and 8 cases. The
case dimg C = 4 corresponds to embeddings of Jordan algebras E ! J with dimgJ = 15.
Examples of such J are of the form H3(B), the Jordan algebra of 3 3-Hermitian matrices with
entries in a quaternion algebra B. This case is discussed in some detail in Appendix A
below. We simply note here that the automorphism group of such a C is

Autg(C) = Resg_f(B

. E)det=F

where the RHS consists of elements in (B
E) whose norm lies in F. See x6.6 below.

Finally, when dimg C = 8, one has dimgJ = 27, so that J is an exceptional Jordan
algebra. An example is J = H3(O), the Jordan algebra of 3 3-Hermitian matrices with
entries in an octonion algebra O. When the octonion algebra is split, the automorphism
group of such a C is isomorphic to the group

Ge = Sping:
Moreover, the action of Gg on C is (the Galois descent of) the sum of the 3 irreducible 8-
dimensional representations of Spin pver F. It is no wonder that the structure of the group G
is intimately connected with the theory of twisted composition algebras.

5. Twisted Bhargava Cubes

To connect the theory of twisted composition algebras with our earlier discussion on G¢ =
Spin§, let us recall the main result of [GS2].

5.1. Nondegenerate cubes. Recall the Heisenberg parabolic subgroup P = MgNg Gg and
the natural action of Mg = GL>(E) det on the space VE = Ng=[Ng; Ng] of E-twisted
cubes. Now we have [GS2, Prop. 10.4]:

Proposition 5.1. The nondegenerate Mg (F )-orbits on V¢ (F) are in natural bijection with E-
isomorphism classes of E-twisted composition algebras of rank 2. More precisely, to every
nondegenerate E-twisted cube , we attached in [GS2] a pair (Q;) giving a structure of E-
twisted composition algebra on E E, with an isomorphism

Stabm,(r)() = Aute(Q;):
If g2 Mg(F) = GLy(E)9et and = g(), then the pair (Qu;0) attached to is obtained from
(Q;) by the change of variables given by the matrix g, i.e.
Q=Q g and 0:tg1 tg:
Hence,
g2 Stabgy,(g)eet() GL2(E)?°" () ‘g '2 Aute(E%Q;):

In particular, if F is a local eld, then the Mg(F)-orbits of generic unitary characters
of Ng(F) are parametrized by E-twisted composition algebras (modulo E-isomorphisms).
Likewise, when F is a number eld, the Mg(F)-orbits of (abelian) Fourier coecients along N ¢
are parametrised by E-twisted composition algebras (modulo E-isomorphisms).

We shall not need the general procedure to pass from to (Q;), but only for the so-
called reduced cubes:



28 WEE TECK GAN AND GORDAN SAVIN

Proposition 5.2. (i) If = (1;0;f;b) 2 Ve(F) (such a is called a reduced cube), then its
associated pair (Q;) is given by:
Q(xy)= fx? bxy + f¥y?

and

(x;y) = ( by* (fx) y; x* + fy¥)
so that (1;0) = (0;1).
(ii) Conversely, let (C; Q;) be an E-twisted composition algebra of E-dimension 2. Forv
2 C, set (v) := Nc(v)2 4Ng=¢ (Q(v)) 2 F. Then there exists v 2 C such that (v) = 0.
Moreover, the set fv; (v)g is an E-basis of C if and only if (v) = 0. Given sucha v 2 C and

identifying C with E E using the basis fv; (v)g, the pair (Q;) corresponds to the reduced cube
(1;0; Q(v); Nc(v)) under the recipe in (i).

We record a corollary which will be used later, concerning isomorphisms between rank 2
twisted composition algebras:

Corollary 5.3. Let (C; Q;) be an E-twisted composition algebra of E-dimension 2. Letf
2 E and b2 F, such that b2+ 4Ng_¢ (f) = 0. Then the set of

cfb:=fv2C:Qv)= f and Nc(v)= bg

is a principal homogeneous space for Aut {C), which contains an F -rational point if and only if
(C; Q;) is isomorphic to the E-twisted composition algebra C = (EZ; Q;) dened by the reduced
cube = (1;0;f;b). Indeed, there is an Autg(C)-equivariant isomorphism

Isomg(C;C) !
C;f;b
dened by
I (1;0):
Proof. An E-linear isomorphism :C ! C is determined by v = (1;0) (for (0;1) has no

choice but to be equal to (v)) and this v 2 C must satisfy
Q(v)= f, and N¢c(v)= h.

Conversely, whenv 2 C satises these two conditions, one checks using [GS2, x3.1and Lemma 3.2,
egn. (3.4)] that the map given by (1;0) = v and (0;1) = (v) is an isomorphism of twisted
composition algebras.

Observe that Isomg(C; C) has an action of Autg(C) Autg(C) for which it is a torsor for
each of the two factors. Hence, assuming Isomg(C; C) is nonempty and after xing a base
point g 2 Isomg(C; C), one obtains an isomorphism

Ad(o) : Autg(C) = Autg(C):

By transport of structure, we also see that
c:f;b carries an action of Autg(C) Autg(C). Let us describe the action of Autg(C) =
StabGLz(E)det() on

c:f;b concretely.
Lemma 5.4. Given
- P q
g = r s 2 StabGLZ(E)det();
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so that 'fg 12 Autg(E2;Q;), and v 2
c;f;b associated to 2 Isomg(C;C), one hasg v= ‘'g (1;0) = (p;q) =
pv + q(v) 2
C;f;b

5.2. Degenerate cubes. It will be useful to have an understanding of the degenerate
Meg(F)-orbits on VE(F) = Ng(F)=Z(F). The nontrivial degenerate orbits correspond to
the nilpotent Gg-orbits which are denoted by Ai, 2A; and 3A; in the Bala-Carter classica-
tion. Accordingly, we shall say that the corresponding elements in Vg (F) are of rank 1, 2 or 3.
We may refer to generic elements (non-degenerate cubes) as rank 4 elements. The set of
elements in Vg of rank k is a Zariski closed subset. For example, the elements of rank 1 are
precisely the highest weight vectors, and the set of elements of rank 1 can be described by a
system of equations given in Proposition 8.1 below (see also [GS1, Prop. 11.2]).

We shall now describe the Mg (F )-orbits of elements of rank 2 and 3.

Proposition 5.5. (1) Every Mg(F)-orbit of rank 3 elements in Ve = F E E F
contains an element (0;0; e;0) where e 2 E . Two rank 3 elements (0;0; e;0) and
(0; 0; f; 0) belong to the same orbit if and only if e=f 2 FEZ2.

(2) Every Mg(F)-orbit of rank 2 elements in Vg = F E E F contains an element
(1;0;e;0) where e 2 E such that e= 0 and e# = 0. Two rank 2 elements (1;0;e; 0)
and (1;0; f; 0) belong to the same orbit if and only if e=f 2 (F)2.

Proof. (1) Consider = (0;0;1;0). This element has rank 3 since, over F, 1= (1;1;1) 2 F3sits
across three orthogonal root spaces, hence the notation 3A;. A long but fascinating
computation shows that the stabilizer Sy, () of in Mg consists of all elements
a0 b
d

where ad 2 F, d=d# = 1 and Tg_¢(bd#) = 0. Let Tg Mg be the maximal torus of diagonal
matrices in Mg. The stabilizer St () of in T; consists of matrices as above with b= 0. Since

HY(F;Sm (C)) = H*(F;St.(C))

it suces to classify the orbits of T _ on elements of the type (0;0;e;0) where e 2 E. On
these elements, the diagonal matrices act by multiplication by d=d*. Since the set of all d=d* is
FEZ2, (1) follows. Statement (2) is proved in the same way, and we leave details to the reader.

Remark: If E is a eld, the set of e 2 E such that e# = 0 consists only of 0, so that there are no
rank 2 elementsinV . If E =F K with K aeld, the set of such e’s is one F-line, and it consists
of three F-lines if E = F3. This reects the fact that G¢ (F ) has three orbits with Bala-Carter
notation 3A1, permuted by the group of outer automorphisms.
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6. Dual Pairs

In this section, we introduce the various dual pairs which we will study in this paper. In
particular, we shall see that given a E-twisted composition algebra C, with corresponding
embedding i : E ,! J under the Springer decomposition, one may construct a dual pair:

Hc Ge = Autg(C) Sping G;
where G, is a group we shall introduce in due course. We shall rst construct this dual pair
on the level of Lie algebras.

6.1. Lie algebras. Let us begin with an arbitrary Freudenthal-Jordan algebra J (not nec-
essarily of dimension 9). Let I, End(J) be the Lie subalgebra preserving the trilinear form (
; ;) associated to the norm form N, i.e. a2 End(J) lies in I, if and only if

(@axy;z)+ (x;a y;z)+ (x;y;a z)=0
for all x;y;z 2 J. The trace form denes an involutiona! a” onl; by

ha x;yi = hx;a” vyi

forall x;y 2 J.
With h = sl(V) for V a 3-dimensional vector space, the space
gy=hly (Vv
J) (Vv
J)
has the structure of a simple Lie algebra, such that the above decomposition arises from a
Z=3Z-grading. The, bragkets [hl 3V
J] and (hi Y
J] are given> by the natural action of h [ on \Y
J and \
J, with the action of a 2 [ on the second factor of V
J is given by that of a . The brackets
v
5V
are dened by Y
J and [V
5LV
respectively. J] Vv
J
[v
X; U
yl= (v*u)
(x y) v
X; U
yl= (v u)
(xy)
The remaining bracket (between \Y
J and Vv

J) is determined by the invariant Killing form. More precisely, the Killing form on g, is an
extension of the Killing form on h |, (we shall specify the normalization later), such that



X; U

yi = hv; ui hx;vyi
if v
X 2 Y
J and u
y 2 Vv

J, where hv; ui is the evaluation of u on v and hx; yi is the trace pairing on J. Then the bracket
v
L,V
J] h Iy is completely determined by:

hix; yl; zi = hlz;x]; yi
for any x;y;z 2 g;. We refer the reader to [Ru] for explicit formulae in this case. However, if
hv; ui = o0, the bracket of

v
X 2 \Y
J and u
y 2 V
J is contained in h, and is given by

[v

X; U

yl= hx;yi v

u?2slv)
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and/or
[u
o Y;
Explicitly, if i = j, x] = hx;yi u
v2sl(V)
[ej
X, ej
yl = hx;yiej;
[ej
Y €i
x] = hx;yie;;:

We highlight two cases here:

(a) If J = F, considered as a cubic algebra, so that 1 1 = 2 and T¢ (1) = 3, then this
construction returns the simple split algebra g of type G».

(b) If J = E is a cubic etale algebra, then | = EO, the subspace of trace 0 elements in
E. The actionof x 2 EQ one2 E isx e= 2xe. We x a symmetric bilinear form
on lg by hx;xi = 2 Tg(x2). Then the Lie algebra g is of type Dg; it is the Lie
algebra of the group Gg = Spin§.

6.2. Groups. In order to explain the two appearances of 2 in (b) above, let )] = E C, where
C is E-twisted composition algebra (of arbitrary rank). For 2 E, let c:J | J be dened by
c:(e;v) ! (*= e; v)for all

(e;v) 2 E C. By (38.6) in [KMRT], one has

Ny((e;v)) = Ne(e) + Nc(v) Te(e Q(v));
and it readily follows that
Nj(c(e;v)) = Ne() Ny(e;v);

so that c is a similitude map of N | with similitude factor N (). In particular, if has
norm 1, then ¢ preserves the norm N | Since B = L1(fN ()= 1), we can writec(e; v) =
( 2e;v). By passing to Lie algebras, we get an embedding I = E? |, wherex 2 E acts on
J = EOC by

X (e;v) = ( 2xe;v)+ (e;xv):

By setting v = 0, we get the previously dened action of Ig = E© on E.

On the other hand, we x the Aut(l;)-invariant form on |, so that the restriction to I¢ is

2 Te(x ). 2For example, suppose that ] = M3(F) and E = F 3 is diagonally embedded

in M3(F). Then |; = sl3 sl3, so that an element (x; z) 2 sl3 sl3 acts ony 2 M3(F) by xy
yz, and |g is the set of trace zero diagonal matrices x embedded in sl3 sl3 as ( x; x).

We embed Autg(C) Aut(J) so that it acts trivially on E, the rst summand inJ = E
C.

Proposition 6.1. Let J] = E C. Every F-rational similitude map of N cpmmuting with the
algebraic group Aut (C) is equal to c for some 2 E. Likewise, every F-rational
similitude map of N; commuting with the algebraic group Aut(J) is equal to c for 2 F.
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Proof. Let g be a F-rational similitude of N; commuting with Autg(C). Then g preserves
both summands E and C of J. The algebra of F-rational endomorphisms of C commuting
with the action of Aut,(C) is E. Thus g= ¢ on C, for some 2 E. Let g=c 1 8.
Clearly, g°belongs to the similitude group of N ;however, since g%(0;v) = (0;v)forallv2 C, the
similitude factor is 1, i.e. g% preserves N;.

Now x e 2 E. Then g%e;v) = (e%v) forall v2 C and some e?2 E. We want to show that e
= €0, It suces to do so over the algebraic closure F. Since g2 preserves N , use v = 0 to show rst
that N (e)= N (eOE), and then T (eQ(v))= T (e2Q(v)) forall v2 C. Since Q is surjective
over F, Te(ee%) = Te(e%0) for all e® 2 E
F. Hence e = €% Finally, if gis a similitude that commutes with Aut(J), then it commutes
with Autg(C) Aut(J), sog = c. Since Aut(J) acts absolutely irreducibly on J , the space
of trace 0 elements inJ, 2 F

Let G, = Aut(g)). We note that G, is not necessarily connected. From the construction
of the Lie algebra gy, it is evident that Aut(J) G,. Assume, furthermore, thatJ = E C and
J = E. The natural action of Autg(C) on C, extended trivially to E J gives an
embedding Autg(C) Aut(J). Hence we have a natural embeddings

Aute(C) Aut(J) Gy:
We have also constructed inclusions of g g g, of vector spaces.

Proposition 6.2. The inclusions g g¢ g, are homomorphisms of Lie algebras, thus
giving rise to inclusion of algebraic groups

G, G = Sping £Gy:

Proof. Let x;y 2 E. The cross product xy, computed in J, is the same as the one computed in

E. Hence the bracket v
E;V
E] in g coincides with the one in gk. The bracket [V
E;V

E], computed in g;, is xed by Autg(C)(F) hence it is contained in h |g. Since the Killing
form on h I¢ is the restriction of the Killing form on h |, it follows, from the denition of the Lie
brackets, that the two Lie brackets coincide. This shows that the inclusion g g is a
homomorphism. A similar argument shows that the inclusion g¢ g;. Indeed, the bracket [V
F; V

F], computed in g;, is xed by Aut(J) hence it is contained in h.

The inclusion of Lie algebras induce a corresponding inclusion of the corresponding con-
nected algebraic subgroups of G;, and we know what these algebraic subgroups are up to
isogeny. It is clear that the algebraic subgroup associated to gis G,. Over F, under the adjoint
action of gg, the algebra g, contains the three 8-dimensional fundamental representations of
Sping, each occurring with multiplicity dimg(C). This shows that the connected algebraic
subgroup corresponding to gg is simply-connected and is thus isomorphic to Gg¢ = Sping.

6.3. Relative root system. We x a basis ej;e;;es of V and let t h be the Cartan
subalgebra consisting of diagonal matrices, with respect to this basis of V. Under the adjoint

action of t,
M

g =810 ( 85)2
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where t is a root system of type G,. Note that gj;o

=tl:
The short i root spaces are Fe
J or Fe
J, so we have canonfal identications with given by x ! e
X and X ! e

x respectively. The long root spaces are one-dimensional and contained in h. In particular,
there are two choices for the basis vector : ej; or &ji (= ejj under the identications h = sl(V)

= sl(V )).

In particular, whenJ = E, gg;0 = tlg is a torus, and by choosing a set of positive roots in
, we have constructed a Borel subalgebra in gg, so that g¢ is quasi-split. Indeed, we have
mentioned before that g¢ is the Lie algebra of Sping. What we have done here is to give a
direct construction of this Lie algebra, recover some of the structure theory described in x2
from this construction and show that this Lie algebra ts into a family of such Lie algebras
which is associated to a Freudenthal-Jordan algebra J.

6.4. Two step parabolic subalgebra. Let s 2 sl(V) be the diagonal matrix (1;0; 1).
The adjoint action of s on g; gives a Z-grading

g1 = n2z gi(n):
Then g;(n) = 0only forn=2; 1;0;1;2. Let
m= g;(0) and n= g;(1) gs(2):

Then p = m n is a maximal parabolic subalgebra, with Levi subalgebra m and nilpotent
radical n. Let us examine the structure of each of these parts in turn.

The Levi subalgebra m has a decomposition

m=tl; e
J e
J:

The derived algebra
[m;m] =1, e
J e
J

is generated by short root spaces e;

J and e
J. The above decomposition also exhibits a (Siegel-type) parabolic subalgebra

2

s=(tly) e
J mwith abelian nilpotent radical e;

J.

Considering now the nilradical n, the center of nis [n;n] = g;(2) = Fei3. As an m-module,
the quotient n=[n; n] is isomorphic to

g1(1) = Feyy Fey
J Feg
J Fexzs=F J J F:
Henceforth, an element in g, (1) is a quadruple (a;y; z; d) wherea;d2 F andy;z 2 J. Usingour

formulae, we can describe this m-module. One sees that the Lie bracket of e;
X 2 e



J and (a;y; z;d) is
[e2
x;(a;y;z;d)] = (0; ax; x y; hx; zi) and the Lie bracket of e,
X2e,
J and (a;y; z;d) is

[ez
x;(a;y;z;d)] = (hx;yi;x z;dx; 0):
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If ] = E, a cubic etale algebra, then gg (1) is the space of E-twisted Bhargava cubes and
[m; m] is identied with sl,(E) by

gy ! 0 0
xandx0 I e,
X

Let P, = M, N; be the parabolic subgroup associated to p;. If we x an embedding E ,! J of
Jordan algebras, then we have a corresponding embedding pg ,! p, of parabolic subalgebras
such that

Ge \ Py = Pg
on the level of groups.

6.5. 3-step parabolic subalgebra. Now let s 2 sl(V) be the diagonal matrix (1;1; 2).
As above, the adjoint action of s on g; gives a Z-grading

g1 = n2z 8i(n):
Then g;(n) = 0only forn= 3;:::;3. Let
I=g;(0) and u= gs(1) g(2) g(3):

Then q= | uis a parabolic subalgebra whose nilradical u is 3-step nilpotent. Note that
g1(1) = Fey
J Fes
J; 81(2) = Fes
J and g;(3) = Feis Feys:

Let Q) = L; U; be the corresponding parabolic subgroup in G,. Thus, the unipotent radical
U, has a Itration
U= U; U, Uz such that U;j=Ui;1 = g, (i) for all i.
If we x an embedding E ,! J, then we have a corresponding embedding q¢ ,! q; of
parabolic subalgebras such that
Ge \ Q) = Q¢:
on the level of groups.

6.6. See-saw dual pairs. To summarise the discussion in this section, relative to an em-
bedding E ,! J, we have constructed the following see-saw of dual pairs in G;:

Ge H) = Aut(J)
@
@

@

G,y Hc = Autg(C)

We highlight two cases:

The particular case of interest in this paper is the case when dimg C = 2 or equiv-
alently dimg J = 9. In this case, G, and Autg(C) are disconnected and we have a
short exact sequence

1 é G s 1
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where the identity component G? is an adjoint group of type Eg and whose inner
class correspond to the quadratic algebra K; . Note that on taking F-points, we have a
map
Gj = QJ (F) | Sz

which need not be surjective.
When dimg C = 4 (i.e. dimgJ = 15), then G, is an adjoint group of type E;
associated to a quaternion F-algebra B. In this case,

Autg(C) = Resg_f(B

. E)det =F

where the RHS consists of elements in (B
E) whose norm lies in F.

7. Levi Factor

In this section, we investigate some further properties of the dual pair Hc Gg in G;, with
J = E C anddimgC = 2. The group G, has a (Heisenberg) maximal parabolic subgroup
P; = MyNy P, = M; Njwhos® Levi factor M, is of type As. Moreover,

(Hc Gg)\ Py = Hc Pg;

so that

He Mg | M,
is itself a dual pair in Mj. Indeed, if we intersect the seesaw diagram in x6.6 with M;, we
obtain the following seesaw diagram in M;:

GLo(E)det  H; = Aut(J)
@
@

%

GL,(F) Hc = Autg(C)

For our purposes, when J is not a division algebra, we need to describe the Levi subgroup M,
and the above embedding concretely. This is because of the need to relate the theta
correspondence associated to Hc Mg to a classical similitude theta correspondence. We

treat the various cases in turn.

7.1. Split case. Suppose rst that J = M3(F), so that G, Us split. In this case,
M = (GL1 Sle)=6
where ¢ is viewed as a subgroup of GL; SLg by the map x
L (x3;x):
A more convenient description is:
M? = (GL; Glg)=GLy
where GL4 is viewed as a subgroup of GL; GLg by the map x | (x3;x). The character

(x; g) = det(g)=x"
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of GL; GLg descends to M?© Jand is a generator of Hom(MO;JGm). The character arises
naturally when M? acts by conjugation on the center of N;.

If we identify F& = E2 (by choosing an F-basis of E), then M = GLdzet(E) is naturally
a subgroup of GLg. We dene an embedding GL,(E)det | M), by the map
g! (det(g);g):
Note that (det(g);g) = det(g) since the determinant of g, viewed as an element in GL
is det(g)®. On the other hand, since K, = F F, one has H® = E=F. The right-
multiplication action of e 2 E on E2 gives an embeddingE ! GLg, sothat any elemente 2 E
can be viewed as an element of GLg denoted by the same letter. Thus we have a
map E | GL; GLg given by
el (Ng=r(e);e):
If e 2 F, then the image is (e3; e). The map thus descends to an inclusionof E=F | Mjand
we have dened an embedding

H2 Mg = E=F GLy(E)%,! MO }
when J = M3(F). Note that the character of M, ¥ trivial on E=F.

7.2. Quasi-split case. Consider now the case when J = J3(K), so that G, is quasi-split
but not split. In this case,

Mﬁ) = (GLl SUG )<=R6516;|(

where Resle;K = Ker(Ng=f : Resx—gs ! ) is viewed as a subgroup of GL; SUK bytge
map x | (x3;x).

Fix an involution g ! g of GL {[K) that denes the quasi-split form UK.6In particular,
det(g) = det(g) ' and x = x ! for any scalar matrix x 2 GLg. Consider the involution

:(x;g) ! (xdet(g) *;g)
of GL1 GLg. Since (x3;x) = (x 3;x 1), for every x 2 GL1, the involution descends to the
qguotient (GL; GLg)=GL;.

Now MY is the subgroup of
Resk=F (MJ F K) = Resk=f(GL1 GLe=GL1)

xed under the Galois action twisted by . From our knowledge in the split case, we deduce an
exact sequence of algebraic groups,

11 US 1 (ResgepGm UK I M9) 1
where (Resg-f Gm UK)GV is the subgroup consisting of pairs (x; g) such that
x=(x) = det(g) with1= 2 Aut(K=F):
On the level of F-points, one has
1 oKL (K UK(E))Y I MO(F) I HY(F;YK) = F=Ngog (K):

Let
Mf = (K UN(F))¥=K":
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so that M (F)=M ., F=Ny-¢ (K). We claim that this is an isomorphism. The condition

x=(x) = det(g) implies that (x; g) 2 Ng-¢ (K), for all (x;g) 2 M?;K. On the other hand,
the character : MOjF) I F is surjective, and the claim follows. Thus, we have an exact
sequence of topological groups

1 Y I M, (F) | F=Ny-f (K) Io1

We would now like to describe the embedding of Autg (C)GL, (E)9et into M;. While this can
be done by writing down some explicit formulas, we would like to view this embedding
through the lens of a see-saw pair in the classical similitude theta correspondence. For this, let
us set up the relevant notation and recall the relevant background.

7.3. Similitude dual pairs. Here is the general setup. For a2 E, let
W, = Ee; Eey
be a 2-dimensional symplectic vector space over E equipped with the alternating form
hei; ezia =  hey;eqiy = a:

With respect to the basis fe; e;g, we have an identication of the symplectic similitude group
GSp(W,) with GL,(E). The subgroup GSp(W,)d9et of elements whose similitude factor lies in
F is then identied with Mg = GL,(E)d9et. For g 2 GL,(E)9et, the corresponding similitude
factor is

(g) = dete(g);
where det; (g) refers to the determinant of g considered an element of GL,(E). We write
GLZ(E)G'K‘at for the index 2 subgroup of elements whose similitudes lie in N¢_¢ (K). Hence,
we set

Mek = GL2(E)S = fg 2 Me = GLy(E)®®" : dete(g) 2 Ny-r (K)g:
From this symplectic space W,, we deduce the following 3 other spaces and groups:

(a) By restriction of scalars from E to F, we obtain a 6-dimensional symplectic space
Resg-f (W3) with alternating form Trg_¢ h ; i;. One has a natural inclusion of
similitude groups:

Me = GLo(E)®" = GSp(W,)?", ! GSp(Rese-r (Wa)) = GSpg(F):

We write GSp(Resg-f W3)k for the index 2 subgroup of elements whose similitudes
lie in NK=F (K)

(b) WithL = E
K, the 2-
dimensional L-vector
space Va, = W,
e L

is naturally equipped with a skew-Hermitian form induced by the alternating form on
W,, with h ; i given by the same formula as above on the basis fe;;e>g. Then we
have

GLy(E)?®" = GSp(Wa)®**, ! GU(V,)®

where the superscript det refers to those elements whose similitude (which a priori
lies in E) belongs to F.
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(c) As above, by considering restriction of scalars from L to K, we see that Res;_¢(Va)
is a 6-dimensional K-vector space equipped with the skew-Hermitian form Tr _.¢x h
; ia. This 6-dimensional skew-Hermitian space over K is also the one naturally
induced from the symplectic space Resg_f (W3;) over F, in the same way as V, is
obtained from W,. One has a natural inclusion of unitary similitude groups:

GU(Va)9et, 1 GU(Res -« (Va));

In fact, both similitude maps here have image equal to F, but we shall consider the
index 2 topological subgroups of elements whose similitude lies in N¢-¢ (K), denoted

by:
GU(Va)$, ! GU(Res ¢ (Va))k:
Observe that

GU(Res ¢ (Va))k = (K U(Res —¢(Va)))=rK*
withrK?! = f(z;z 1):z22 Klg.

Summarizing, starting with W,, we have the following containment diagram for the 4
groups we introduced:

(7.1) GU(Res -k (Va))k

/ \

GU(Va)dKet GSp(Resg-f (Wa))k

GSp(Wa)det = GLzdeet/

These groups appear in the classical similitude theta correspondence, and we proceed next to
describe the other member of the relevant dual pairs, namely those lying on the other side of a
seesaw diagram.

Regard K as a rank 1 Hermitian space (relative to K=F ) with the form (x;y)! x (y).Then
GU(K) = K and GU(Res -¢(Va))x form a similitude dual pair. Here it is neces-sary to
consider the index 2 subgroup GU(Res, _x(Va))k as opposed to GU(Res -¢(Va)), because
the similitude map on GU(K) has image Ny¢_-¢ (K). Starting from this rank 1 Hermitian
space, one deduces the following 3 spaces and groups:

(a’) By restriction of scalars from K to F, we regard K as a 2-dimensional F-vector space
with quadratic form Ny_¢, with similitude group

GO(K;NKzF): K o hl,

with acting on K as the unique nontrivial automorphism of K=F. Then
GO(K; Ng-¢) GSp(Resg=f (W3)) is a similitude dual pair.

(b”) By base change from F to E, we obtained a rank 1 Hermitian space (relative to L=E)
over L, so that GU(L)9¢" GU(V4)9e! forms a similitude dual pair.
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(c’) By restriction of scalars Resg_¢ on the space in (b’) or the base change from F to E of
the space (K; Ng-f ) in (a’), we obtain the quadratic space (L; N -¢) of dimension 2
over E, with similitude group

GO(L; N -g)9et := GSO(L; N__£)9®t 0 hi= (L)' o hi:

This group form a similitude dual pair with Mg;x = GLy(E)9¢t = GSp(Wa)%et.
Summarizing, starting from a rank 1 Hermitian space (relative to K=F), one have the fol-
lowing diagram
(7.2)

GO(L; N _g)det = (L)det o hi

\

GO(K,Nsz) = K o hi

/
\U(K): K //

As mentioned above, the groups in (7.2) form a seesaw diagram of dual pairs with the
corresponding group in (7.1). We shall only make use of the groups at the top and bottom of
the diagrams, so that we have a similitude seesaw pair:

(7.3)

GO(L; Ny=g)®et = (L)9t o hi GU(Res ¢ (Va))k = (K U(Res -x(Va)))=rK*

e

GU(K) = K Mg,k = GLy(E)det

GU(L) =L

7.4. Embedding. We can now describe the embedding
Aute(C)° GLy(E)9et 1 M2,
Recall that we are considering
[C12 HY(F; Te;x)[2] = E=F Ny =g (L) (by (4.11)).

Take any a 2 E representing the class of [C], so that we have the above constructions of
similitude dual pairs using a 2 E. Recall further that one has a natural isomorphism of
algebraic groups

M = (Resg-f Gm U(Res;-¢(Va)))Y=U"y
Now there is a natural map (with nite kernel) of algebraic groups
(7.4)
f :GU(Res -x(Va)) = (K U(Res -x(Va))k)=ruU® ;1 (K U(Res.-x(Va))k)=U*;

given by
(z;g) ! (z %g):
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The restriction of this map to the subgroup Mg (see (7.3)) gives the embedding of algebraic
groups

GLy(E)9e", 1 M)
When restricted to the topological subgroup Mg.x = GL,(E)9¢t, the map f is given by the
formula

g! (z %gz ')
where detg(g) = Ng-¢ (z). Observe that this is clearly well dened, as z is unique up to K1.
On the other hand, we have the natural isomorphism of algebraic groups
Aute(C) = (L)%%' 0 hi=K = GO(L; N -¢)9'=GU(K);

which is a quotient of the two algebraic groups appearing on the LHS of the seesaw diagram
in (7.3). Hence

(7.5) Aute(C)° = GU(L)9t'=GU(K) = U(L)=U(K):

The embedding
Aute(C)% = U(L)=U(K),! Mm?
is given by
e! (Ni=(e);e);
wheree 2 U(L) acts on Resg-f (V5) through its scalar multiplication action on V, = Le;lLe;.

It is useful to note the following lemma which says that the last isomorphism in (7.5)
continues to hold on the level of F-rational points.

Lemma 7.6. The inclusion L1 (L)det gives an isomorphism L1=K1 = (L)det=K.
Proof. We have a long exact sequence
11 KE LY (L)9et=k 1 HY(F; U(K)) ! HY(F;Resg_; U(L)) so
we need to show that the last arrow is injective. To that end, the map
N -¢ :Resg_pU(L) ! U(K)

gives
HY(F; U(K)) ! HY(F;Resg=p U(L)) I H*(F; U(K))
such that the composite is multiplication by 3. Since H1(F; U(K)) is a 2-group, the composite
is the identity. This proves the lemma.

The lemma implies that, for any x 2 (L)9¢t, N 2¢(x) 2 Ng=¢ (K). Thus, the embedding
(L)det=K ,1 MO(F)
takes value in the index 2 subgroup MJ;,? and is given by the formula x
' (N -x(x=2z);x=2); where N__g(x) = Ng-f (2).
Again this is well-dened as z is determined up to an element of K1.
We have thus described the embedding of algebraic groups
H Mg ,! M0
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This embedding depends only on a2 E=FN__g(L) = HY(F; Te.)2]. On the level of
points, it gives the embedding

HO(F) Mgk = (L)9€'=K GLo(E)®",! My:

Though the embedding could have been written down via formulas, without mention of the
framework of similitude dual pairs, this framework will help us in x10 to relate the mini-theta
correspondence associated to this commuting pair of groups by reducing it to the classical
similitude theta correspondence. So we shall have occasion to return to the material in x7.3
later on.

7.5. Siegel parabolic. Recall that the Lie algebra m has a Siegel parabolic subalgebra s.
This gives rise to a Siegel parabolic subgroup

S; M,

whose Levi factor is of type A, A, and whose unipotent radical can be identied with J.
Moreover, Hc S; and the intersection of Mg with S; is a Borel subgroup of Mg. If we
identify Mg with GL,(E)det, we may assume that S; \ M¢ is the Borel subgroup of upper
triangular matrices.

8. Minimal Representation

In this section, we assume that F is a non archimedean local eld. Let be the minimal
representation of G, (F) (see [GS1]). In this section, we recall the relevant properties of that
we need. We rst note that the algebraic group G js not connected, but the minimal
representation in [GS1] is a representation of the subgroup G° (F) of G,(F). Thus there are
two ways of extending to G, (F) and we shall rst need to specinythe extension we use below.

8.1. Extending the minimal representation. Recall the Heisenberg parabolic subgroup
P, = M N, of G;, with Z the center of N; and and let
. Mj I F

be the character of M, given by the action of M; on Z. By composition with , we may
regard any character of F as a character of M, (F). Henceforth, we shall write in place of
for a character of M, (F).

Now we consider the degenerate principal series representation of G, (F):
GY . . .
l)(sg) := Indc;jj = IndP 5 (unnormalized induction)
J

where

)= Yk=F ] i*

with !(_F the quadratic character associated to K = K, by local class eld theory and s,
given by the following table:

G, |Ee | E7 | Eg
S) 2 3 5
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The minimal representation of G° (JF ) is the unique irreducible subrepresentation of I;(sg),

regarded as a representation of GY (F). This unique irreducible submodule is thus stable under
the action of G, (F) and this denes the extension of to G, (F). When we regard I;(sg) as a
space of functions on G (F) ?’ansforming under (P (F); jJ9 on the left, the action of G (F) is

by right translation whereas the action of p 2 P, (F) is given by:
(p f)(h) = s(p) f(p ‘hp) forh2 GP(F) and f 2 I,(so).
This describes the action of G, (F) = P,(F) G,{F).

8.2. Restriction of to P;. The restriction of to P, sits in a short exact sequence 0

I C.t

where
N, =Z is the minimal nontrivial (highest weight) M,-orbit.
To describe the . action of P, on ciy
), let hpni be the natural pairing of Ny =Z and N, =Z and x a non-trivial additive character of
F. Thén the  action is given as  follows. For f 2 C. (

),
R N;=Z acts by
(if (n) = (hpni) f(n):
m 2 M; acts by
(m)f(n) = ;(m) f(m ‘nm):

8.3. The minimal orbit
. Recall from 6.4 that we have an identication

WJI:NJ:ZJ:F J J F:

By [GS1, Proposition 11.2], we have the following description of

Proposition 8.1. A non-zero element ! = (a;x;y;d) 2 Ny;=Z; is in the minimal M;-orbit
if and only if

x* = ay; y* = dx and I(x) I(y) = ad for all | 2 L,

where x y is the product in J, L ; the group of linear transformations of J preserving the
norm form, and | the dual action of L ;onJ = J, with the identication given by the trace
pairing. In particular, if a= 1, then ! = (1;x;x#; Ny (x)).

Erratum: In fact, [GS1, Proposition 11.2] asserts that it suces to use xy = ad in place of the
family of equations obtained by the L;-action. This is false. Writing W; = N;=Z;, the M -
module S (W 3 is a direct sum of an irreducible module whose highest weight is equal to twice
the highest weigh{ of W, and the adjoint representation of M;. The quadratic equations
given here span the latter summand and hence give a complete set of generators.

Note however that in [GS1, Proposition 11.2], only the proof of the \only if" statement
was given, as the other direction was not used in [GS1]. Hence this error does not aect any
result in [GS1].
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8.4. The M,-module y . A complete description of the Jacquet module y is given in

[GS1]. We have

N KEF ] it i wm,
for an M;-module ; , which is 0 if J is a division algebra and is a unitary minimal rep-
resentation of M; otherwise. We will assume that J is not division henceforth and describe the

M;-module n, in some detail.

Recall that M{(F) contains a subgroup Mf’;K of index 2. We rst describe a represen-
tation of MJO;K, using the classical theta correspondence for the pair

U(K) U(Resk=¢(Va)) = U1(F) Ug(F)

constructed in x7.3.

To give a Weil representation for this dual pair, we need to choose a character of K whose
restriction to F is the quadratic character !¢ _F, which gives a splitting of the meta-plectic

cover over Ug(F). Then we may consider the Weil representation !. for Uy Ug
associated to the pair of splitting characters (1;) and a nontrivial additive character of
F. With respect to the choice of (1;) and , the associated Weil representation !. canbe

realised on C (L), where L = Le; is a polarization of V5 = Lej Ley. The action of U(K) =
K and the, Siegel parabolic subgroup of U(Resk-¢ (Va)) stabilizing Le1 is given by the usual
formulas in the Schrodinger model:

The group U; = K?! acts geometrically on C(Le,): for z 2 K1,
(z f)(v) = f(z v):

If GLk(Ley) is the Levi subgroup that preserves the decomposition V; = Le; Le;, the
action of g2 GLg(Le>) is given by

(g F)(v) = (det(g)) jNy-r det(g)j > f(g 'v):
An element u in the unipotent radical of the Siegel parabolic subgroup stabilizing Le>
acts by:
(n f)(v) = (hn;viy) f(v):
In particular, we see the dependence on a 2 E in the last formula above. If we replace by
, Where is a character of K=F, then the splitting of U (F) changes by det, where is a

character of K1,determined by via: (z=(z)) = (z). Moreover, for a xed , the Weil
representation depends only on the orbit of under Ng_f (K).

We can now consider the classical theta lift (1) of the trivial representation of Uy, which is
an irreducible representation of Ug(F) realized on the subspace

Ci(Ley)*" Cl(ley):
Consider the representation of K UX(F,) on Cl(Lcez)K:l given by
My '= L (1):

It is a simple check that the restriction of pmJ., to the subgroup

K

f(x;g) 2 K UX(E) :x=(x) = det(g)g
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is independent of and that it descends to a representation of M. 0. We extend this repre-
sentation to M. by letting actonf 2 C 16( L)K" via

( f)(v) = f((v)):
Thus we have a representation mJ,, of My = MJ,_,Q o hion Cl(Lcez)Kl, which depends on
the orbit of under Nx-r (K ). Now we have:

(8.2) M, = Indy mi, = Indy M (1): This

K

representation is now independent of and .

8.5. Similitude theta lifting. It is in fact better to think of the representation ps | from
the viewpoint of the similitude theta correspondence for the pair '

GU(K) GU(Resk=f(Va))k = K GUs(F)k:

In particular, we may consider the similitude theta lift (1) of the trivial representation of
K; this representation is also realized on Cl(cLez)Kl, and is merely an extension of (1)
to GUg(F )k with the center K acting by the central character 3. Recall from (7.4) the
isogeny

f :GU(Res —¢(Va))k = (K Ug(F))=rk* 1 (K Ug(F))=K*
dened by
f(z;g) = (z %e):
Then we have;
(M=(1'Q)Ff=m, f
In other words, (1) factors through f and when restricted to (K Ug(F))Y is independent of .

From this viewpoint, the restriction of the Mj.x-module mi,, to the commuting pair
Hc(F) GL (E)9¢t can be transparently described using the seesaw diagram (7.3). More
precisely, we pick a 2 E so thatits classin E=F N ¢ (L) = HY(F; Te.x )[2] (gee (4.11) and
(4.17)) corresponds to [C]. From the seesaw identity arising from (7.3), the representation

(1) is naturally a representation of
(L)%t o hi)=K GSp(W4)%®' = Aute(C) GL,(E)9et:
to Autg (C) GL,(E)det,

This representation is precisely the restriction of mJ

8.6. Some formulas. We write down some formulas for pyJ.. which are relevant to us.

K

An element e 2 L1=K! = Autg(C) actson f 2 Cl(Lcez)Kl by
(e f)(v) = f(e v):

The element t(x)
- 0

= ) 1 2 GL,(E)9et;
X
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. 1
with x = Ny-¢ (z) for some z2 K, actsonf 2 Cl(Ley )" by

(t(x) f)(v) = jxj 2 f(z v):
The element

u(b) = 2 GLo(E)9°Y;

1 b
0 1
acts by

(u(b)f)(v) = (Tre=g(a Ni=e(v) b)) f(v):

The dependence of the Hc(F)GLz(E)dEt—lgnoduIe M, Ona2 E is thus evident from the

action of the unipotent radical of the upper triangular matrices in GL,(E)9et. In particular,
one sees that the Whittaker support (relative to ) of mJ,, as an GLz(E)detK—moduIe is on

the coset a N -¢ (L) E. Thus, the Whittaker support of the GL,(E)9et-module

_ GLZ(E)det
M, = |nC|GL2(E)dKet My ; k

is on the coset a FN__g(L). This is the coset corresponding to [C] 2 HY(F; T )[ZJ, by
our choice of a.

8.7. Split case. IfK = F2. ThenK?! = f(x;y)2 F2jxy=1g=F,L = E2andL! = E. In
this case, we can simplify the description of v, .

If we apply a partial Fourier transform to C1(L) = C1(E?) with respect to the second
factor E of L, the action of K1 = F on C 14 L) becomes the action by homotheties. The
representation vy, = - M, is the maximal F-invariant quotient of C1 LL), and is isomorphic
to the space of smooth functions f on L nfOg such that

f(xv) = jij3f(v) forallv2 L nfOg and x 2 F.
The restriction of m, to Mg Autg(C) is given as follows. If g 2 GL2(E)9®t then
m, (8)F(v) = jdet(g)i = F(g 'v);
where g v is the natural actionof g 12 GL,(E) onv2 E2 = L. Ife2 E then
m, (e)f(v) = jNe=p(e)j * fe 'v);

where e lv is the product of the scalar e 1 2 E and the vector v 2 E2. The involution
acts by the Fourier transform, viewing f as a distribution on C (L).

8.8. Schredinger model of \ . The description we have given above for ,  allows one to
relate the theta correspondence arising from its restriction to the dual pair Hc Mgin M, to
the classical theta correspondence. As a minimal representation, ps also has aJSchredinger
model adapted to the Siegel parabolic subgroup S; Mj, which we will describe next.

As a representation of Sy, v, sits in a short exact sequence

0 oG (Jrk=1) VY ors, (wm)) 0
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where Jr¢-1 denotes the set of rank 1 elements in J and rs ( ) denotes the (normalized)
Jacquet module with respect toS;. The action of some elementsof Hc Bg = (HcM¢)\S;0on C,
(Jrk=}) can be described as follows:

For b 2 E, the upper triangular unipotent element u(b) 2 Mg (F) = GL,(E)9et acts

by

(u(b) f)(x) = (Try(bx)) f(x) = (Tre-¢(b e)) f(x)
wherex = (e;v) 2 EC = J hasrank 1 and is a xed nontrivial additive character
of F.

For h2 Hc(F), h acts by
(h f)(x) = f(h 1x)

where we have identied H¢ with the pointwise stabilizer of E J, so that H¢
Aut(J)).

Observe that by Lemma 4.15, and Lemma 4.16, x = (e;v) 2 E C has rank 1 if and only if
the map f in Lemma 4.16 sends e to [C] 2 HY(F; Te.k )[:2] = E=FN_-g(L). In view of
(4.17), this is equivalent to the coset e F N -« (L) being equal to that of [C]. So the
Whittaker support of v as a GL,(E)9¢t-module is as we had determined in x8.6 via the
classical theta correspondénce.

The description of the minimal representation given here will be used for the study of
the theta correspondence for H¢c Mg in x10. This is necessary for the study of the theta
correspondence for Hc Gg, which will be carried out in x12.

9. Jacquet functors for Eg

In this section, we continue to assume that F is a nonarchimedean local eld. The goal

of this section is to describe the (un-normalized) Jacquet module . @s a representation
of Mg Autg(C). Here, recall that P = MgNg = P; \ Gg is the Heisenberg parabolic
subgroup in Gg and N; and N¢ share the center Z. Let

P = fx 2

: x is perpendicular to Ng=Zg: Then we have an exact sequence
0! c{

7)1 ne ! N, ! OThus, we need to:

determine the set
? and describe C 1 (
?) as a module for Mg Autg(C); we shall do this in this section.

C

study the theta correspondence for Mg Aute(C) with respect to m : we shall
study this in the next section.

Now as a GLdZEt(E)—moduIe, the orthogonal complement of N =Z in N=Z is given by the
natural action of GLYet(E) on C C = E2
E C via its action on E2. Thus, an ! 2

? js of the form (0; x; y; 0) where x, y 2 C such that
x¥ = ( Q(x);(x)=0=y";, and xy=021:
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Now we note the following proposition, which uses the structure theory of twisted composition
algebras:

Proposition 9.1. If x 2 C is such that Q(x) = 0 and N¢c(x) = bq(x;(x)) = 0, thenx =0
except when
(1) E = F3 andJ = M3(F).
(2) E = F K, where K is aeld, andJ = M3(F). (3)
E=F K, where K is aeld, andJ = J3(K).
Hence
? is empty unless we are in the three cases above.

Proof. It suces to look at the cases when Q is isotropic. If K¢ is a eld, then the norm N
K =E ics isotropic only when E = F K and K¢ = K. Since K¢ = K, it follows thatK,; =
F2. Hence we are in the second case. If K¢ = F2, then Q is always isotropic. The cases E =

F 3and E = F K correspond to the rst and third cases, respectively, in the
statement of the proposition.
If E is a eld, then C =

F2 = E E and, up to an invertible scalar, Q(y; z) = yz and (y; z) = (z#; y#), for (y;z) 2 C
E2. Here Q(y;z) = Oimpliesy = 0or z= 0. Assuming z = 0, we see that bq((y; 0); (0; y¥)
yy# = Ng=g (y) = 0, which implies that y = 0.

Hence, to explicate C} (
?), we need to treat the 3 cases highlighted in the proposition, and we shall deal with them
in turn.

9.1. Case 1: E = F3 and J = M3(F). . In this case, C is a split twisted composition
algebra. Write

x = ((xu;ya)i (23 v2)i (x35¥3)); y = ((xyD); (x2 y9); (x5 v9))
and suppose that (x;y) 2
?. Let X;, respectively Y;, be the 2-dimensional F-subspace of C C con5|st|ng of all pairs
(x; y) such that all coordinates except x and X are trivial, respectlvely, all' coordinates

except y; and y° are trivial. On each X; and Y;, two of the three SL,(F) Mg act trivially,
and the quotient group, isomorphic to GL, (F), acts via the standard representation.

The condition x# = 0 holds if and only if there exists a pair of indices i = j such that all
coordinates of x are 0 except possibly for x; and yj. An analogous statement holds for y: all
coordinates are 0 except possibly for xg and y(for some a = b. The last condition, x y = 0,

implies that i = a and j = b. This can be easiry seen by writing x and y as matrices, say
0 s 1 0 o 0
x= @y 0 y1Aandy-@y % y&A
x2 y1 O X? A 0

Hence, if (0;x;y;0) 2
?, then (x;y) 2 X; Y; for somei = j, and
we have:
, [
* [ fog = Xi Yj:
i=]
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Let X and Y idenote the corresponding punctured planes. As Mg-module, the space
(R |
? )C has a 2-step Itration with submodMe
Cc1 (Xi Yj )
i=]
and quotient (via restriction) i
M 1 M 1
C .(X) C (Y ) i
j
The action of Mg is geometric, with the same twist ; as the one-dimensional summand of
NJ *
9.2. Case 2: E = FK andJ = M3(F). InthiscaseK¢ = K, soC = E
K = K3. The structure of E-module on C is given by

(f; e) (z1;22;23) = (fz1;e22; @3)
where (f;e) 2 F K and z = (z1;22;23) 2 K3. The composition algebra structure is given
by

Q(z) = (Nk(z1); 222}

and

(21;22;23) = (2z2322): 2 3 1
This algebra C can be obtained from the split algebra C; by Galois descent from C;
K where the usual action of the Galois group of K over F is twisted by

((x1;y1); (x2; y2); (x3;¥3)) = ((y1; x1); (y3;x3); (y2; X2)):
Note that Q(z) = 0 implies that z; = z = Oorz; = z3= 0. Fori = 2or 3, let Z; be the two-
dimensional K-plane in C C consisting of pairs (z;z ) suct? that z; = z; = Oforallj = i.
Now
? is the union of the punctured planes Z and Z. This Claim cah be easily
veried form the split case using Galois descent. The group GL,(E)9et acts on each plane via
projection onto GL,(K)det, with SL,(F) as the kernel. As Mg-module, the space C i(
?) is a direct sum

cl(zy cX(z): ,

The action of Mg is geometric, with the same twist ; as the one-dimensional summand of }
- N
9.3. Case 3: E = F K andJ = J3(K). In thiscase K¢ = F2, so E
C=F2 K2 Ifz= ((x1;y1); (x2;y2)) 2 C, then

Q(z) = (xax2;y1y2) and (z) = ((Nk(y2); Nk(y1)); (y1y; % %)):
This algebra C can be obtained from the split algebra C; by Galois descent from C;
K where the usual action of the Galois group of K over F is twisted by

((x1;y1); (x2; y2); (X35 ¥3)) = ((x1;y1); (X35 ¥3); (X2;¥2)):
In this case Q(z) = 0 and (z) = 0 imply that x, = y, = 0and x; = 0 to x; = 0. Let
X1 (respectively Y1) be the plane in C C consisting of all elements (z; z ) Such that all
coordinates of z and z° are 0 except x1 and x% (respectively, except y; and y%). Then

? s
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the union of the punctured planes X 1and Y .1Again, this claim can be easily veried form
the split case using Galois descent. The group GL;(E)det acts on each plane via projection
onto GL,(F), with SL,(K) as the kernel. As Mg-module, the space C %(

?Yis a directsum C. (X;) C. (Y;):

The action of M¢ is geometric, with the same twist ; as the one-dimensional summand of
N, -

10. Mini Theta Correspondence

In this section, we shall determine the local theta correspondence given by the Mg
Autg(C)-module then F is a nonarchimedean local eld. This is only relevant whenJ =
E C is not a division algebra. Understanding this mini-theta correspondence is
necessary for our main goal of understanding the theta correspondence for Gg Autg(C) G
We begin by introducing notation for the irreducible representations of H (F) aled Me (F)
= GLy(E)det,

10.1. Representations of Autg(C). SinceJ = E C is not a division algebra, we see by
Proposition 4.12 that

Hc(F) = HO(F) o 2=22

where the action of Z=2Z on Autg(C)9 is by inverting. Note however that the above iso-
morphism is not canonical and amounts to choosing an element (necessarily of order 2) in

Hc(F)r HO(F).
The irreducible representations of Hc (F ) are not hard to classify:

(a) For every character of the torus H® QF ) such that 2 = 1, we have a two dimensional
representation

()= tnd" [ 2 (1):

Note that () = (°) if and only if 1 = 0.

(b) For each character such that 2 = 1, there are two extensions of to Hc(F). If = 1,
these two representations are easily distinguishable from each other: one is trivial
whereas the other is not. We denote them by 1 and = ¢ (the sign character of Hc (F))
respectively.

(c) When? = 1but = 1, we can use the xed isomorphism Hc (F) HC® (F)oZ=2Z to
distinguish the two extensions. Namely, we may denote the two extensSions by () +
and () , where the sign denotes the action of the nontrivial element of Z=27Z.

Note however that the labelling in (c) above is not really canonical. We shall see much
later that one has a better parametrization. This is based on the following canonical bijection of
2-element sets deduced from Proposition 4.20:

f *([Cl)=b(Ker()) ! (Hc(F)r HOF))=Ker():

and the observation that any extension of is a nonconstant 1-valued function on the RHS. For
this section, the labelling provided by (c) above is sucient.
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10.2. Induced representations of GLZ&E)d‘”. Writing E as a product Q IIEi of elds E;, we
have a similar product L = E
K = i Li with Li = E;
K. Let ! _¢ be the quadratic character of E such that the restriction to each E; is the
quadrate character corresponding to the extension L;.

Now let be a unitary character of E and consider the induced representation !, _¢
of GL, (E) in the notation of Bernstein and Zelevinski. We shall need some simple results on
the restriction of !, _g = 1 1 _ to GLy(E)det.

Proposition 10.1. Let be a unitary character of E=F. In the following, \ the restric-tion"
refers to the restriction of ! _¢ to GL,(E)det,

(1) Assume that K = F2, and is a character of E trivial on F. The restriction is
irreducible unless 2 = 1 and = 1, in which case it is a direct sum of 2 non-
isomorphic irreducible representations.

(2) Assume that K isaeldand E = F K. Let is a character of F K trivialon F K1.
The restriction is irreducible unless 2= 1 and = 1, in which case it is a direct sum of 2
non-isomorphic irreducible representations.

(3) Assume thatK isaeld, butE = F K. Let = 1. The restrictionof 1!, _, is adirect sum

of 2" 1 non-isomorphic irreducible representations where n is the number of factors of
E.

Proof. These statements can be deduced from the well known facts about representations of
GL,(E) and SL,(E). We provide the details in the case when E is a eld and K = F?2; the
general case is treated by a similar argument.

The representation 1is irreducible when restrictedtoSL (E) {(and hencetoGL (E)deﬁ) unless
2=1and = 1. If 2= 1and = 1, then 1 reduces to two non-isomorphic summands on
SL, (E) and also on the intermediate group consisting of elements g 2 GL,(E) such that det(g)
is in the kernel of . Since, by our assumption, is trivial on F , the character is trivial on
det(g) for g 2 GL,(E)9et. Thus 1 is a sum of two non-isomorphic irreducible representations.

10.3. Theta lifting. For every irreducible representation of Hc(F), let m() be a rep-

resentation of Mg such that J m ()
is the maximal -isotypic quotient of n . We shall now give a description of p () for

unitary representations . The results are es-sentially a reformulation of the classical

similitude theta correspondence for the dual pair

GO, (E)GL;(E), together with an understanding of the restriction of representations from

GL,(E) to GL,(E)9et (as we did in the previous proposition).

Recall from (8.2) that

- M .
M, = |ndMJ;K|\/|J;K,

equal to the restriction of the similitude theta lift of the trivial representation of
is naturally a module for

with mJ .,
GU(K) = K . From the seesaw diagram in (7.3), mJ,

K

GO(L; Ny —g)?" GSp(W)9 = ((L)9®' o hi) GL,(E)9®"
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which factors through to the quotient
He(F) GLy(E)9®% = ((L)9** o hi)=K GL,(E)9®': Herg
we recall that (see Lemma 7.6) that
HO(F) = (L)9e'=K = L'=K"
and
GL,(E)9%t = fg 2 GL,(E)9® : det(g) 2 N¢—f (K)g:

Thus, we need to understand the theta correspondence for Hc (F) GLZ(E)C'K‘*t arising from
My;k. Indeed, if we let p, denote this theta correspondence, then for any 2 Irr(Hc(F)),

_ GLZ(E)det .
M() - IndGLZ(E)detl\KAK()'

We have thus explained the reduction of the determination of the mini-theta correspondence
to the similitude theta correspondence for

GO(L; Ni-¢) GSp(W)”

together with the understanding of the restriction of the theta lifts to the subgroup GSp(W )det.
With our knowledge of the theta correspondence for GO, G L+,2this interpretation imme-
diately gives us the following:

Lemma 10.2. (i) For any = (the sign character of Hc(F)), m () is nonzero, whereas p ()
= 0.
(ii) For an irreducible representation () of Hc(F),where is a character of HO (F) =

(L)det=K, (())@'15 noncuspidal if and only if j 1 is trivial on all the anisotropic factors of L!
= L1,
i

In the context of (ii) of the Lemma, we note:

if K = F2, then HOC(F) = E=F and there are no anisotropic factors of L, so that pm ()
is noncuspidal (as long as = ).
if K isaeldand E = F K, then HO(F)C= K1 K=K?! = K, and a character trivial
on anisotropic factors can be identied with a character of K=K1.
if K isaeldand E = F K, only pm(1) is noncuspidal.
It will turn out that the theta lifts in these cases are contained in the principal series repre-
sentations we considered in Proposition 10.1.

The following proposition continues our study of the mini-theta correspondence by rening
Lemma 10.2:

Proposition 10.3. For every irreducible unitary representation = of Hc(F), m() is an
irreducible nonzero representation of Mg, whereas p() = 0. Moreover, if m() = m() = 0,
then 2 . More precisely:

(1) m(2) is an irreducible summand of 1 ! _¢.
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(2) Let K = F2 and be a character of HO (F) = E=F. Then?=
1=) m(0)= 1
whereas
= 1but =1=) m(0)*) m(0) )= L

(3) Let K beaeld, E = F K and a character of HO(F)C= K trivial on K1,
Extend to a character ~ of F K, so that it is trivial on the rst factor. Then: %= 1
=) m(() ="~ ti=e;
whereas

Z=1but =1=) m(0*) m(() )=~ lize:

(4) For all other cases of the triple (E; K; ) not covered above, i (()) is cuspidal.

Proof. In view of Lemma 10.2, the main issue here is the irreducibility of, () for 2
Irr(Hc(F)). We shall illustrate the argument in the case where K is a eld and E = F3; the
other cases are similar and sometimes easier.

For the case under consideration, we have
Autg(C)°(F) = (K K K)9e'=K o hi;
where the superscript det refers to the subgroup of elements (x;y;z) with N¢_f (x) =
Nk=r(y) = Ng=f(z). Ignoring the element for the moment, we are thus considering atriple
similitude theta correspondence for GSOX (F) ,GL2(F)k. We record the following known
results concerning this similitude theta correspondence:

(a) If is a unitary character of GSOKQF) = K such that j 1 ig not quadratic, or
equivalently = does not factor through N¢_¢ ), then

()= () 2 Irr(GLa(E)9%Y) is
supercuspidal. Indeed,

. 6l Gi-2(R)
0 := tnd< 240
is an irreducible supercuspidal representation which is dihedral with respect to K=F
and no other quadratic elds, so that () remains irreducible when restricted to

SLo(F).

(b) if jx2 is quadratic but nontrivial, or equivalently = is nontrivial but factors
through N¢_¢, then () = ( ) is an irreducible supercuspidal representation of

GL,(E)9et. Indeed,
.o G2GH (R)
() :=Ind ( )R(F)
is an irreducible supercuspidal representation which is dihedral with respect to K=F

and two other quadratic elds. Hence, () decomposes as the sum of two irreducible
supercuspidal representations when restricted to SL, (F):

()jSLZ = (jKl) (jKl);
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where the two summands are the theta lifts (to SL,(F)) of the two extensions of jx1to
O, (F). Indeed, if we consider the index 2 subgroup

GL2(F)¢ = fg 2 GLy(F )k :det(g) = Ng=¢ (2); (z=(2)) = 1g;

then each of the two summands (j% ) is an irreducible GL,(F )c-module.

(c) If jy» = 1, or equivalently = , then = Nyg_; for some (well-determined up to
multiplication by !-f) and () is one of the two irreducible summands of the
restriction of !y_F to GL,(F)x. Moreover, these two summands remain
irreducible when restricted to SL,(F).

(d) () = (%) if and only if = or .
Now we are ready to analyze the triple similitude theta correspondence. Let = (1;2;3) be a
character of (K ) suth that; , 3= 1. We need to study the reduciblity of
(152;3) := (1)
(2) ¢
(3) when restricted to GL,(E)det. We shall consider several cases in
turn:

(i) If jjk2 is not quadratic nontrivial for all i, then by (a) and (c) above, (i) re-
mains irreducible when restricted to SL>(F). Hence (1;2;3) is irreducible when
restricted to GL, (E)4¢t.

(ii) Assume now that exactly one of the jjx: is quadratic nontrivial. Without loss of
generality, suppose that 3jg:1 is quadratic nontrivial but the other two restrictions
are not. Then (1) and () are irreducible as SL,(F)-representations, while ¢ (3)
is irreducible as GL;,(F )k-representation. It follows readily that (1;2; 3) irreducible as
an GL,(E)k-representation.

(iii) Assume next that exactly two of the ;jx: is quadratic nontrivial. Without loss of
generality, we may suppose
1jkr = 2jk1 = and 3ji=1
for some quadratic character of K1. In this case, by (b) above, we have
(1)ist, = (2)jst, = (7) ()
as SL,(F)-modules. Now it is easy to check that
[(*)
(") ()
()]
(1)

and

[(*)

()(C)

()]

(1)
are irreducible representations of GL, (E) ¢ . In particular, (1;2; 3) is the sum of
two irreducible representations as GLz(E)d‘fJ—modules.

(iv) Finally, we consider the case when ; := ;jK?! is quadratic nontrivial for all i; this



case can only occur when the residue characteristic of F is 2. In this case,

(2;3) = [() (L7 ' '
() ;)]
[(3) (3)]
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as SL>(F)3-modules. The key observation here is that each GL, (F )’ Ects irreducibly on
(j) = () ()ifi = j, and preserves each summand if i = j. Now it is easy to check
that for every L 1,

123=(1 )
()
(3 ):
is an irreducible representation of GL; (F 3) k - In particular, (1; 2; 3) decomposes
as the sum of two irreducible GLZ(E)d‘f(t—moduIes.

With the above results, we can now complete the proof of the proposition when E = F3and
K is a eld. Note that we are only concerned with the restriction of ; , 3 to the subgroup:
Ho(F) = ((K)3)9et=K = (K*)3=K': So for
example, we have: 0
1 2 3 restricts to the trivial character if and only if jjx:1 = 1 for each i.

The restriction of ; , 3 is a nontrivial quadratic character if and only if jg: is
qguadratic for all i and is nontrivial for some i.
In particular, we see that the latter case corresponds precisely to the cases (iii) and (iv)
analyzed above. In this case, there are thus two extensions of to H (F) agd (in view of
Lemma 10.2) o () are both nonzero and hence are precisely the two irreducible summands of
(1525 3)i6L,(E), described"in (iii) and (iv) above.

Finally, from the properties of the similitude theta correspondence, we deduce that

o= ton(K)? () ()= (%) on GLa(E)?et. K

This concludes the proof of the proposition, at least in the case when E = F3 and K is a
eld.

10.4. Whittaker models. For a xed C, with associated Springer decomposition) = EC, we
have obtained a subset

Irrc(Me(F)) == fm;c() 2 Irr(Me(F)) = = 2 Irrunic(He(F))g Irr(Me(F)):

Moreover, the representations in Irrc (Mg (F)) are innite-dimensional and hence generic. In
this subsection, we investigate the Whittaker models supported by the representations in
Irrc(MEg(F)). This serves to complete our analysis of the mini-theta correspondence by
specifying precisely the irreducible representations n.c ().

We had briey alluded to the Whittaker support of p as an GLy(E)9¢t-module in x8.6 and
x8.8, but let us be more precise here. Fix a nontrivial additive character of F. Then
a generic character for the unipotent radical of the upper triangular Borel subgroup B . of
Me(F) = GL,(E)9et is of the form

u(b) ! (Tre=f(ab)) forsomea?2 E.

We denote this generic character by 5. Two such generic characters ; and 4 are equivalent if
they are conjugate by the action of the diagonal torus and we call an equivalence class a
Whittaker datum for Mg (F). A short computation shows that the set of Whittaker data
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is parametrized by E=FE2 = H(F;Z ). Hence we have yet another interpretation of
HL(F; Ze):

H1(F; Zg) — fWhittaker datum for GL,(E)9¢etg

G29(F)=Im(G(E)) — frank 1 E-twisted composition algebrasg

We are interested in computing the twisted Jacquet module
(M )ue; - as a Hc(F)-module,

For this purpose, we shall make use of the Schrodinger model of p  introduced in x8.8 and
the results of x4.9. To formulate the result, let us recall from Lemma 4.15 the H¢(F)-set

Xa;c(F) = fx 2 C:Q(x) = a®and(x) = axg

which is in bijection with the set of embeddings C, ,! C, where C, is a rank 1 E-twisted
composition algebra dened in x4.2. Moreover, if X5.c(F) is nonempty, then it is a principal
homogeneous space for H%(F ), so that the stabilizer in Hc (F) of any point in X5;c(F) has
order 2. Now we have:

Lemma 10.4. Fix an E-twisted composition algebra C of rank 2, with associated Springer
decomposition J = E C. For each a2 E, one has

(M)ue; o =0() Xa;e(F)=5;
in which case
(H
(MJ)UE; a I&dHc (Cp;)al)
where x5 2 Xa.c(F) and Hc.x,(F) Z=2Z is the stabilizer of x5 in Hc (F).

Proof. From the Schredinger model of \ Jcliscussed in x8.8 and the results of Lemma 4.15,
we see that

(m,)ue; » = Cc Hrk=1)u,; . = Cc Xase(F));
as Hc(F)-module. Since Xa.c(F) = Hc(F) xa Hc(F)=Hc;x,(F), the result follows.
Recall the map
f iH'(F;Zg) = E=FEZ | HY(F; Te.«.)2]: For
each [C] 2 HY(F; Tg;x.)[2], we have
f Y[C])=fa2E :Xa,c(F) = ;g:
Then the above lemma gives the following corollary:

Corollary 10.5. For any = () 2 Irr(Hc(F)), m:cQu ; ., = 0iff(a)=[C]. On the
other hand, if f(a) = [C], then we have:

1f 2= 1, dim (()u,; , = 1.
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If 2= 1, so that has two extensions ~ to Hc (F), then

1if~(gc(a)) = 1;

dim wm;c(™)ue; & = 0; if ~(gc(a))= 1.

where gc(a) is the nontrivial element in Hc;x_(F) for some xa 2 Xa;c(F) (see Lemma
4.18).

10.5. As C varies. In this nal subsection, we allow [C] to vary over H(F; Tg .« l[Z]. Then
by Lemma 4.16, we have a disjoint union

G
E=FE? = f ey
[c]

where each f 1([C]) is nonempty and is a Tg;k. (F)=Tg;. (F)?-torsor. We deduce:
Corollary 10.6. The union
Irrc (Mg (F)) Irr(Me(F))
[CI2HL(F;Te ko )I2]

is disjoint, since the representations in dierent subsets have dierent Whittaker support.

We can in fact rene this corollary. A character of Tg;x (F) or Tg;kx (F) gives rise to
a character ¢ of each HO (F). We then consider the Mg (F)-module

mell = wicllc))  with (¢) = Ind"e{f)c.

[CI2HT(F;Te, )2] ‘
Then we have:
Corollary 10.7. For eacha 2 E,
dimm,[lug; , = 1:
In particular, M
m;c(l) =1

[CI2H1(F;Te x )2]

!L:E:

Indeed, one can show in general that v [] is the restriction to Mg (F) = GL(E )det of an
irreducible generic representation of GL,(E). Together with our knowledge of the Whittaker
support of the mini-theta lifts. this has the following nice consequence. If MEad denotes the
Levi subgroup of the Heisenberg parabolic subgroup in the adjoint quotient G29, recall that

29,
M29(F)=Im(ME(F)) G24F)=Im(Ge(F)) = H'(F; Zg) = E=FE?:

Hence, H1(F; Zg) acts naturally on Irr(Mg(F)) and also on Hl(F;TE;KC)[Z] (via the pro-
jection HY(F; Zg) HY(F; Te.x )). For an element 2 H1(F; Zg) and a character of
Te;k. (F), we then have

m;cl(c)) = m;cllc));
where the superscript denotes the two actions of on the relevant objects mentioned above.



TWISTED COMPOSITION ALGEBRA AND TRIALITY 57

11. Langlands quotients of Dy

The purpose of this section is to write down some representations of G¢ that will appear
in the theta lifting from Hc = Autg(C) in terms of their Langlands data, and to give
explicit realizations of these representations in some cases. It thus provides the language
needed to express the answer for the theta correspondence treated in the next section. In
fact, in Appendix B below, we consider the decomposition of unramied degenerate principal
series representations of Gg and introduce notations for many irreducible representations
with nonzero Iwahori-xed vectors, constructed via Hecke algebra considerations. These
representations will also appear in this section and the next one.

11.1. Langlands quotient from Pg. As previously, let P = MgNg be the Heisenberg
maximal parabolic subgroup. The modular character y, of Mg is

N = jdetj:
Let be a tempered representation of M. Using the normalized parabolic induction, we
induce
jdetj* from P¢ to Gg, giving a standard module if s > 0. Let J;(;,s) be the corresponding
Langlands quotient when s > 0. The representation ) (;s) is also the unique submodule of the

representation obtained by inducing
jdetj® from the opposite parabolicPg = MgNg. This point of view is more useful to us.

11.2. Langlands quotient from Q. Weshall also need some Langlands quotients attached to
the 3-step parabolic subgroup Qg = LgUg corresponding to the middle vertex of the
Dynkin diagram. Then

Le = (GLa(F) E)9** = f(g;e) j det(g) = Ne-¢ (e)g:

Let Ng_f also denote the character of L obtained by projecting Lg to E followed by the
norm on E. The modular character y, of Lg is

_ i3,
ueg = JNE=fJ™:
For a tempered irreducible representation of L , gonsider the normalized parabolic induc-tion
of
jNg=f j° from Qg to Gg. If s > 0, this is a standard module and we let Ji(;s) be the
corresponding Langlands quotient.

We shall need this parabolically induced representation when is one of the following
representations:

= Stg is the Steinberg representation of L obtained by projecting Lg to GL,(F)
and pulling back the Steinberg representation of GL, (F).

If E = F K, then we dene a character of E equal to on the rst factor F and
trivial on the second factor K. We can pull this character back to Lg, and abusing
notation, denote it by . Note that ¢ is of course a nontempered representation of
Le.

11.3. Degenerate principal series. We shall also need the structure and constituents of
various unramed degenerate principal series representations induced from maximal parabolic
subgroups. The necessary results are provided in Appendix B below. We provide here a
roadmap for where the various results are located there:
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when E is a eld, the only maximal parabolic subgroups are P¢ and Q. The
degenerate principal series associated to P is denoted by

I(s) = IndGPEjdetjS (normalized induction).

The points of reducibility and the module structure at those points are given in
Theorem 18.1. On the other hand, the degenerate principal series associated to Qg is
denoted by

J(s) = IndGQEEjNEszS (normalized induction).
Its reducibility points and module structure is described in Theorem 18.2.

when E = F K where K is a eld, there are 3 families of degenerate principal series:
B(s) (associated with the B,-maximal parabolic), A(s) (associated to the A,-maximal
parabolic) and I(s) (associated to the Heisenberg parabolic, which is the A; A;-
parabolic). The points of reducibility for these are given in Theorem 18.3, Proposition
18.4 and Proposition 18.5 respectively.

when E = F3 is split, the degenerate principal series has been studied to some extent in
the literature, such as [BJ] and [Wel]. We only need the results concerning I(s)
(associated to Heisenberg parabolic) summarized in Proposition 18.6.

11.4. A,-parabolic. We shall need an explicit description of the quotients J,(; s) in certain
cases. Assume now that E = F3. When writing M"'Eer = SL, SL, SL,, we shall assume that
the three SL, correspond, respectively, to simple roots 1, , and 3. Let () (or () ) be a
representation (or two) of Mg corresponding to = (1;2;3), a character of E , as x10.2. In
particular, 1 2 3 = 1. We shall assume that is unitary, so that () is tempered. Consider the
parabolic subgroup in standard position corresponding to the A, diagram, containing the
vertex corresponding to ;. The character denes a unitary character (temporary notation) of
the Levi subgroup given by

(2 (t)}= 3(t) and (5(t)) = 2(%):
Let D() be the unitary representation of Gg obtained by inducing (unitary induction) the
character . Since D() is unitary, it is completely reducible. We now consider three cases:

Suppose that 2 = 1. By working out exponents (there are 32 of these), one sees that
D() has a unique irreducible subrepresentation and hence is irreducible. Using
exponents again, one may determine the Langlands parameter of D(). It turns out
that

D() = Ja((); 1):
Suppose that 2= 1 but = 1. Then D() has two irreducible summands: D ()
= J2(0)*5 1) J2(() 52):

Suppose that = 1. Then D(1) has two irreducible summands. The unique spherical
summand is isomorphic to J;((1); 1). The exponents of the non-spherical summand can
be determined. Indeed, the spherical summand of D(1) is also the quotient of I(1=2),
and the exponents of this quotient are known by Prop 18.6. Then, using the
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exponents, one can determine the Langlands parameter of the non-sperhcial sum-
mand. It turns out that the non-spherical summand is isomorphic to J1(Stg; 1=2).
Hence

D(1) = J2((1); 1) J1(Stg; 1=2):

Remark: Despite the fact that D() is dened by an arbitrary choice of the A, parabolic, the
Langlands parameter of D() is independent of this choice. Hence the isomorphism class of D{()
is, remarkably, independent of the choice, i.e. the isomorphism class of D() is invariant by
the triality automorphism.

We need a similar discussion in the case E = F K. Let = ( ; ).bea characterof E
trivial on the diagonally embedded F. Consider the (unique) parabolic subgroup in
standard position corresponding to the A, diagram. Now denes a character of the Levi
subgroup given by

(-(t)y= «(t) forall t2 K:

Let D() be the unitary representation of Gg¢ obtained by parabolically inducing the charac-ter
(unitary induction). The structure of D() is similar to that in the split case discussed above.
The only dierence is that the non-spherical summand of D(1) is the representation V ©°
(iQtroduced in x18.5.1 and x18.5.3 of Appendix B below) with a one-dimensional space of
Iwahori-xed vectors. It is a Langlands quotient of a standard module induced from B;-
parabolic.

We summarize both cases in the following proposition.

Proposition 11.1. Assume that E is not a eld. Let be a unitary character of E trivial on F
and consider the representation D() induced from a parabolic subgroup of type A, as dened
above. Then

(1) If 2= 1, then D() = J ((); 1).

(2) If 2= 1but = 1, then D() = Jo(()*; 1) J2(() ;1).(3) IfE =

F , then D(13} = J,((1); 1) Ja1(Stg; 1=2).

(4) IfE = F K, then D(1) = Jo((1);1) V (whlére V is irlﬁtroduced in x18.5.1 and

x18.5.3).

As we see from the above proposition, we shall need to refer to representations of Gg (F)
which are constructed in Appendix B below, where we study the decomposition of unramied
degenerate principal series representations of Gg. Some of these representations will appearin
the theta lifting from H¢ which we shall consider next.

12. Theta correspondence for Eg

In this section, we will study the theta correspondence for Hc Gg G, = Aut(J), whereJ =
E C is a Freudenthal Jordan algebra of dimension 9. The main goal is the following
theorem, whose proof will occupy the rest of this section.

Theorem 12.1. For every unitary irreducible representation of H (F), () is non-zero
and irreducible. If () = (%), for two irreducible representations and ®of H (F), then
= 0. More precisely:
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(1) If J = D (a cubic division algebra), so that E is a eld, then (1) = V0= ] (Sty; 152) (see
x18.2.1 and x18.2.4 for the denition of V 9, @as well as Theorem 18.1) and () is
supercuspidal for all = 1.

(2) 1f ) D and =, then () = Ja(m(); 1=2).
(3) If J = D and HQ is anisotropic, then () is supercuspidal. Otherwise:

If E = F3 andJ = M3(F), then () = J1(Ste; 1=2).

IfE=F K andJ = M (F), then () = V (seefx18.5.1 and x18.5.3 for the
denition of V©).

IfE =F K andJ = J3(K), then () = J1(St¢

k; 1=2).

12.1. E-twisted cubes. Recall from x5 that if P, = M N_ is the Heisenberg parabolic
subgroup of Gg, then the representation of Mg = GL,(E)9et on

Ne=Zg = F E E F

is the space of E-twisted Bhargava cubes. As we summarized in Proposition 5.1, the M-
orbits of nondegenerate cubes are parametrized by E-isomorphism classes of E-twisted com-
position algebra of dimension 2 over E. Indeed, for any nondegenerate cube , one attaches a
twisted composition algebra structure (Q;) on C = E2, so that there is a natural
isomorphism

(12.2) Stabm, () = Autg(C) given by g! ‘tg 1.

If we x a nontrivial additive character of F, then the natural pairing between Ng=Z¢
and Ng=Z¢ allows us to identify the unitary characters of Ng with elements of Ng=Zg. In
particular, an E-twisted cube determines a corresponding character of Ng.

12.2. Twisted Jacquet module. Let = ; be the minimal representation of G,. We have
computed the Jacquet module in x9. In this subsection, we determine the twisted
Jacquet module . for the character  of N attached to a nondegenerate E-twisted
cube . Note that E; is naturally a representation of Stabm, ( ) Autg(C), and thus of
Aute (C) Aute(C) in View of (12.2).

In x8.2, we have seen that

1

c ( YA
(o

m

C
)
)
where

is the minimal M;-orbit on N, =Z¢, which can be identied with a set of unitary characters
of Nj. It follows from the description of ; _ given in (8.2) that

NEg; = Cc (1

)
where
is the set of elements | 2
such that 1 restricted to Ng is . Based on our
description of
in x8.3, the following proposition determines the set
concretely.

Proposition 12.3. Let J = E C be a Freudenthal Jordan algebra of dimension 9. Let be a
nondegenerate E-twisted cube. Then y . = 0 unless belongs to the Mg-orbit

corresponding to C (i.e. C = C). If C = C, then



Ne; — K
C. (Isom(C;C))
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where

- k is the restriction of ; to Stabm é); in particular, ¢ is either trivial or the sign
character of Stabm, () = Hc (F) depending on whether ! _F( 1)= +1 or 1;

- the action of StabME (JAutg(C) on Cl(lscom(C; C)) is the regular representation (via
(12.2)).

Proof. Since every nondegenerate Mg-orbit contains reduced cubes, we may assume without
loss of generality that is reduced, i.e.

= (1,0;f;b);
The associated twisted composition algebra C is then described in Proposition 5.2.
Now the projection map
N;=Zz,=F J JF | Ng=Zg=F E E F induced
by the restriction of characters is given by
(@;xy;d) ! (a; egey; d)

where we have writtem

x = (ex;cx) and y= (ey;cy)2 E C = J:
Hence, if | = (a;x;y;d) 2

, so that | restricts to , then a= 1, so that!

= (1;%x; x*; Nj(x)) (by Proposition 8.1).

Writing x = (e;v) 2 E C = J and noting that (0;v)* = ( Q(v);(v)), we then deduce
that

e=0 and Q(v)= f:
Finally, since Nj(x) = Nc(v), we also have
Nc(v) = b:

Hence, we have a natural Stabm, () Auteg(C)-equivariant identication

= f(v;(v))2Cc2:Q(v)= f and Nc(v)= bg C?=E?

e G
where the action of Autg(C) is componentwise, whereas that of StabME () GL2(E)9et isvia
the standard representation &n E . Thtés, the Stabpm (JAutg(C)-set
is i nothing but the Stabp (JAutg(C)-set
c;f;b  studied in  Corollary 53 and Lemma 54. We thus deduce that
= i unldss C is isomorphic to C, in i which case

is identiéd with Isom(C; C) and =
C (lsom(C; C)) is the regular representation of Staby, () Autg(C) twisted by the quadratic
character .

If we x a base point g 2 Isom(C; C), we get an isomorphism Stabym () = Aute(C) and with
respect to this, N ; is the regular representation of Autg(C) Autg(C). We
assume that this isomorphism has been xed henceforth. We remark also that the quadratic
character ¢ is trivial when K is not a eld. In any case, this extra twist will be quite
innocuous for our purpose.
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For later use, we shall now compute the twisted co-invariants for some degenerate cubes
in the case when Autg(C) is anisotropic. Consider

= (1;0;f;0) withf# =0

We have:

If f = 0, this cube belongs to the minimal G corbit (A1).
If f = 0and f# = 0, then E is not a eld. We consider the two cases:

{ fE = F + K with K aeld, then f = (a;0) and belongs to a Gg-orbit
denoted by 2A;.

{ f E = F3 thenf = (a;0;0), (0;a;0) or (0;0;a), reecting the fact that G¢ has
three orbits of type 2A; over the algebraic closure, permuted by the outer
automorphism group Ss.

The rational orbits of these types are parameterized by classes of squares, and
belongs to the class of a.

Proposition 12.4. Let )] = E C be a Freudenthal Jordan algebra of dimension 9. Assume that
Autg(C) is anisotropic. Let = (1;0;f;0) be an E-twisted cube such that f# = 0.Then

(') NEg; = Cc (1
), with

=fv2C jQ(v)= f andbq(v;(v))= 0g:

(ii) If f = 0, then

= fOg.

(iii) If f = 0, then

is compact (possibly empty) and Autg(C)° acts transitively on it.

Proof. The assertion (i) is clear. For (ii), since Autg(C) is anisotropic, Proposition 9.1 implies
that
=0iff = 0.

The assertion (iii) can be checked by an explicit computation. There are two cases to
consider, depending on whether E = F3 orE = F K with K aeld. We examine the case E =
F3 as an illustration.

When E = F3, we have C = K3 for a quadratic eld extension K of F. Moreover, Q and
are of the form

Q(x;¥;2) = (Ng=f (x); Ng=g (y); Ng=g (2))  (up to an element in (F3))
and (x;y;z) = (yz; zx; xy). Then
Aute(C)° = f(x;y;2) 2 (K)® jNgop (x) = Ngog (y) = Ngog (2) = xyz = 1g:

If f = (a; 0;0) 2 F3, then
= f(x;0;0) 2 C j Ng=f(x) = ag, which is a principal homogeneous variety for the group of
norm one elements in K (possibly with no F-rational points).
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12.3. Nonvanishing and injectivity of theta lifts. Using the above results, we can now
begin our determination of the theta liftings from Autg(C) to Gg.

Proposition 12.5. Fix an embedding E ! J, soJ = E C. Let be an irreducible
representation of Autg(C). Then

(i) ()= 0.
(ii) If %is another irreducible representation of Autg(C), then
0=010) °=:

Proof. Proposition 12.3 shows that as a module for Stab,\,IE (),

(
fCc G

(12.6) One: = LifC = C
- Ky - ’

Thus () = 0 and the second statement also follows.

12.4. Langlands parameters of theta lifts. We shall construct an explicit subquotient of (),
for = 1ifJ = D and all unitary = ifJ = D, using the mini theta correspondence. Recall that
we have an exact sequence

0! ¢y
?) I N g ! N, I 0: Furthermore, N, » as Mg Autg(C)-module
decomposes as
_ . .2 3
(12.7) N, = jdet]
!K=F Jdetj 2
M,
where !¢ _F is the quadratic character corresponding to K = K;, viewed as a character of
Mg by precomposing det, and | is the minimal representation of M, that has been

described in x8.4. The summand appears if and only if ] = D . The action of Autc(E) on
the one-dimensional summand is trivial.

Assume rst that E is a eld and J = D, which is the easiest case. Then .
=y, = jdetj ?

so () Ne 0 for all = 1. We shall see later in x12.8 that this vanishing implies the
cuspidality of (); for now, we shall deal with (1). By Frobenius reciprocity, we have a map from
(1) into the degenerate principal series representation | ( 1=2) (see x18.3.1) induced from the
Heisenberg parabolic subgroup. The image of this map must be V%= J (St ;11=2) since (VO)y
= jdetjl2 (gnd the other irreducible constituents of I ( 1=2) have 2- or 3-dimensional space
of Ng-coinvariants, by Theorem 18.1). Thus, (1) contains V ( as an
irreducible quotient and we shall see later that it is in fact irreducible.

Now assume J = D. We have seen in (12.7) that there is an Mg Autg(C)-equivariant
surjection

Ne oddetj 2w,

where ; is the minimal representation of M;. We have also described in Proposition
10.3 the theta correspondence for the pair Mg Autg(C) acting on m,. For any 2
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Irr(Autg(C)) with = , its theta lift p() on Mg is nonzero irreducible. Hence by
Frobenius reciprocity, we obtain a nonzero equivariant map
() ! Ind®tjdet]j "
() : (normalized induction),

E

with pm () as described in Proposition 10.3. Now the induced representation is essentially the
dual of a standard module and hence contains a unique irreducible submodule , which is the
Langlands quotient Jo(m (); 1). This Langlands quotient is thus an irreducible subquotient
of () when = .

12.5. Irreducibility of () I. We shall now complete the correspondence in the case when
Aut (C)° ds isotropic. In this case, there exists a non-trivial co-character : F ! Autg(C)O.
The centralizer of in G, is a Levi subgroup. The restriction of the minimal representation
on any (maximal) Levi subgroup is fairly easy to compute. Indeed, this is a standard
technique in the theory of exceptional theta correspondences. With that in hand, () is easy
to compute for every unitary character of Autg(C)°.

We shall execute this strategy in detail in the split case, where E = F3 andJ = M3(F), so
that G i a split group and G is the derived group of the D ,-parabolic in E,. Then
Autg(C)% = (F3)=F and we can x this isomorphism as follows. By extending the Eg diagram,
we see that D4 sits in three Levi subgroups Gi; G, and Gs in Eg of type Ds. Let; : F

! G; be the co-character generating the center of G;. (These co-characters are
miniscule co-weights.) They are each unique up to inverse, but we can pick them so that
1(t)2(t)3(t) = 1 for every t 2 F. Now the map (ti;ty;t3) ! 1(t1)2(t2)s(t3) gives the claimed
isomorphism.

The restriction of the minimal representation to a Ds maximal parabolic has been
determined in [MS]. In particular, the restriction to G; is given by an exact sequence

ol ¢! 1 ,ctro

where ! is the highest weight orbit in a 16-dimensional Spin module for G1, the action of Gj is
geometric, and is the minimal representation of G , twisted by an unramied character. More
precisely, the action of 1(t) on ; and C is given by jtj° and jtj" for two non-zero real numbers.
In particular, since these characters are not unitary, the two terms will not contribute to ()
for unitary. Thus we can concentrate on C. (!). 1

The group G¢ has three irreducible 8-dimensional representations V1, V, and V3. We pick
this numbering so that the restriction of the 16-dimensional Spin module for G; containing !
decomposes as V, V3. Let |; V; be the Gg-orbit of highest weight vectors. Then it is a simple
exercise, using the Bruhat decomposition for G;, to see that ! decomposes into three Gg-
orbits:

an open Gg-orbit g !, such that the stabilizer of a point in !g is the derived
group of an A, parabolic subgroup,

!2 Vs, and

!3 V3.

Thus we have an exact sequence of Ge-modules:

ol cllo)! c2(n! cl(la) c. tr3)! o
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Of course, by the S3-symmetry of the situation, C 14 I 1) mustalso contribute in the restriction of
. Indeed, it is contained in 1, where 1(t) acts by the non-unitary character jtj . Hence;(t) acts
on C (!i) by the same character, and these terms will not contribute to () if is unitary. In
particular, we have shown that for unitary, () arises from C (!g), whence it isgclear that () =

D().

It is now easy to nish the argument. For example, for two characters 1 and of Autg(C), we
have just proved that

D(1) = (1) ():
On the other hand, recall from Proposition 11.1(3), that
D(1) = Ja(Stg; 1=2) J2((1);1):
Since (1) J2((1);1) and () = 0, it follows that (1) = J>((1);1) and () = J1(Stg; 1=2)).
12.6. Subregular nilpotent orbit. Assume now that Autg(C) is anisotropic. We shall
prove the irreducibility of the theta lift () by studying its restriction to Ng in detail.

However, in order to make this strategy work, we need to eliminate subregular nilpotent
orbits as leading terms of the wave-front set of ().

The subregular nilpotent orbit is the Richardson orbit for the 3-step parabolic subgroup
Qe = LeUg corresponding to the the middle vertex of the Dynkin diagram for D4, with
[Lg; Le] = SLo(F). Recall from (6.5) that there is a parabolic subgroup Q; = L;U; of G,
whose intersection with Gg is Qg. The unipotent radical of its Lie algebra has a decompo-
sition

uy = gs(1) 8s(2) 8s(3)
with

g1(1) = Feq 3
J Fes
J =12 g(2)=Fe
J =) and g;(3) = Feis Fey3 = F2in the notation of (6.5). The unipotent radical U, of
Q, has a ltration

Uy = U; Uy Us such that U;=Uj+1 = gy (i) for all i.
Hence, the minimal representation has a Itration
12358 such that =; = U

In particular, each quotient j=j+1 is naturally a U;j=Uj;1-module. The group U;=Uj;1 is
abelian and its characters are parameterized by g, (i). The characters of U;=U;,1 that appear as
guotients of iZie1 are in

min (F) \ g (i) where
min is the minimal orbit in g;.

The embedding E J gives rise to Gg G, such that Q) \ Gg = Qg = Lg Ug. In
particular, we have an analogue of the above sequence of inclusions

ge(l) = Feg 3
E Fey

E =E?% ge(2) = Fe

E E and gE(3)= F813 F623= FZZ

Thus a character of Ug is specied by a pair (a;b) 2 E2 = gg(1). We say that the character is
non degenerate if a and b are linearly independent over F. We now have:

Lemma 12.8. Let J = E C be a 9-dimensional Freudenthal Jordan algebra such that
Autg (C) is anisotropic. Let be the minimal representation of G, and a non-degenerate



character of Ug. Then Ue;
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Proof. The rst step is to show that |y .y 1= qusug To jchat end, for i = 3;2, we need to show
that there are no elements in
min(F)\ g (i) perpendicular to gg( i). If i = 3 thereis nothing to prove, since gg( 3) = g
3).

If i = 2, then g,(2) = Fe
J 3 7 and elements in
min(F) \ g)(2) perpendicular to gg( 2) are given by x 2 C, x = 0, such that x# = 0. But
there are no such elements, since Autg(C) is anisotropic.

As the next step, we need to show that no character of U; in the minimal orbit restricts to
a non-degenerate character of Ug. A character of U is specied by (x;y)2J 2 g;(1), and
the restriction to U is given by projecting x and y on the rst summand in the decomposition J
= E C. If (x;y)isin
min(F)\ g5(1) then x and y are linearly dependent over F, and hence so are their E-
components. This completes the proof of the lemma.

12.7. Irreduciblity of () Il. We assume that Autg(C) is anisotropic and note the fol-
lowing consequence of Proposition 12.4 :

Lemma 12.9. Let J] = E C be a Freudenthal Jordan algebra of dimension 9. Assume that
Autg(C) is anisotropic. Let = (1;0;f;0) be an E-twisted cube such that f# = 0. Then

(i) If f = 0, then (
C; if = 1;
() Neg; = CiE -
0; if = 1.
(ii) If f = O, then ()y,, is nite-dimensional for any . Moreover, ()., = 0.

We can now prove that () is irreducible. The rst step is to show that () has its wave-front
set supported on the orbit A,, that is, the Richardson orbit for the parabolicPg. There are
three larger families of orbits: the regular orbit, the subregular orbit and the Richardson orbits
for parabolic subgroups of the type 2A; and we deal with each in turn:

The subregular orbits are eliminated by Lemma 12.8.

We now deal with the regular orbit. Assume that () is Whittaker generic, where we are
using Whittaker characters of a maximal unipotent subgroup containing Ng. Observe
that there are innitely many Whittaker characters which restrict to the character

of Ng, where g = (1;0;0;0). This contradicts Lemma 12.9(i) which
shows that ()., is nite-dimensional.

The last case, which concerns the Richardson orbit for parabolic subgroups of type 2A;
and thus does not occur if E is a eld, is treated similarly. In this case, there are
innitely many characters of the unipotent radical of the 2A parabolic which restrict
to , where = (1;0;f;0) with f = 0 but f# = 0. This again contradicts the
nite-dimensionality in Lemma 12.9(ii).

This completes the rst step of the argument.

The second step is to show that there are no irreducible subquotients of () supported on
smaller orbits: 3A;1, 2A;, A1 and the trivial orbit. The orbit 3A; is not special, so we can
disregard it. We now consider the other possibilities in turn:
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Lemma 12.9 and the nite-dimensionality of ()y . i for nondegenerate imply
that () has nite length. Together with the unitarity of (), this implies that any
irreducible subquotient of () is a summand of the minimal representation . Hence, by
the theorem of Howe and Moore, the trivial representation of Gg¢ can not be a
summand.

The remaining possible small summands are eliminated using the Fourier-Jacobi
functor [Wel] for the Heisenberg parabolic Pg. The output of this functor is a
[Mg; Mg] = SLy(E)-module. It is easy to check that the Fourier-Jacobi functor
applied to gives the Weil representation C gc) of SL,(E) O(Q), where O(Q) is
the orthogonal group for the quadratic form Q on C. On the other hand, the
Fourier-Jacobi functor applied to an irreducible representation of Gg¢ with the wave-
front set supported in 2A; or A; gives a representation of SL,(E) with the trivial
action of SL,(K) or SL,(E) respectively. Since the matrix coecients of the Weil
representation decay, SL,(E) or any of its factors, cannot x a vector in C. {C).

Now we can complete the proof of the irreducibility of () when Autg (C) is anisotropic. The
wave-front set of every irreducible subquotient of () is supported on orbits of the type A,.
However, we know that ()y . ] is non-zero only for in a single Mg-orbit of non-
degenerate cubes, in which case this space is an irreducible StabME ()-module. Thus thereis

room for only one irreducible representation in (). This proves the desired irreducibility of () in
all cases.

12.8. Cuspidality. It remains to prove that () is supercuspidal if () ne = O This
follows from Lemma 12.9 combined with the following proposition.
Proposition 12.10. Let be an irreducible representation of Gg such that Ne T 0 and

n.; = Oforall = (1;0;f;0) such that f# = 0. Then is supercuspidal.

Proof. Consider the case E = F K. Let Q = L U be a maximal parabolic subgroup of
Ge such that 7 0. Because = 0, there are two other maximal parabolic subgroups

. N
to consider.

If [L; L] = SL3, then =,0 will admit a non-trivial functional for a character of U,
the unipotent radical of a Borel subgroup of L. This character can be inatedto U U,
and then restricted to Ng. The restriction is where = (a;0;0;0) for
some a 2 F. This contradicts the hypotheses of the proposition.

If [L; L] = SU;.», then we take U to be the unipotent radical of the maximal parabolic
subgroup whose (derived) Levi subgroup is SL,(K). This is an abelian subgroup (it
is the space of 22 hermitian matrices) and wilbadmit a non-trivial functional for a
character of U_.. The rest of the argument goes in the same way as above, leading to
with = (1;0;f;0) for an f such thatf # = 0.
We have thus dealt with the case E = F K. The cases when E a eld or F3 are similar and
easier. Indeed, for these cases, it suces to assume that = 0and y . = 0 for
= (1;0;0;0) to conclude the desired cuspidality. : f

We have now completed the proof of Theorem 12.1. The following corollary gives an
alternative description of (1) and will be used in [GS3].
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Corollary 12.11. Let be a quadratic character of F. Let I(;s) be the degenerate princi-pal
series representation for G ¢ associated to the Heisenberg parabolic subgroup Pg = MgN¢g. Then
the co-socle of I(; 1=2) is a direct sum of the theta lifts ¢(1) over all isomorphism classes of
twisted composition algebras C of E-dimension 2 with associated embedding E ! J such that K
corresponds to by local class eld theory.

Proof. Consider any embedding E ,! J such that corresponds to K; by local class eld theory
and writeJ = E +C. Then we have the dual pair Gg Autg(C) ! G, and we may consider
the big theta lift ¢ (1) of the trivial representation of Autg (C). By Theorem 12.1, we know that
c(1) is irreducible. On the other hand, observe that ¢(1) maps nontrivially to I(; 1=2) (by
using the one dimensional summand of ), and thus it is anNiJrreducibIe

submodule of I(; 1=2). Since N¢ spectra of ¢(1) for non-conjugate embeddings E | J are
dierent, we thus have a submodule

c(1),11(; 1=2);c
with the sum running over isomorphism classes of C’s considered here.

Now the corollary follows by counting: the number of classes of embeddings with E and
K, xed, given by [GS2, Prop. 12.1], is equal to the number of representations in the socle of I (;
1=2), which is given by [Se2, Thm 4.1]. For example, if = 1,and E = F + K, whereK is aeld,
then we have one class of embeddings if K = K; and two otherwise. These two cases can be
characterized by Ng_-f = 1and Ng-f = 1 respectively, and correspond to the cases (6) and
(7) in [Se2, Thm. 4.1]. However, the conditions were mistakenly stated thereas Ng-f = 1 and
Ne-g = 1, when in fact it was what we wrote here.

13. Archimedean Theta Correspondence

In this section, we consider the theta correspondence for Hc G ¢ over archimedean local elds
and formulate the analog of Theorem 12.1. The main theorems here are Theorems 13.1 and
13.3. The proofs of these theorems will appear in a separate paper, joint with Je Adams and
Annegret Paul.

13.1. Real Freudenthal-Jordan algebras. Assume rst that F = R; the case F = C will be
dealt with at the end of this section. Firstly, we enumerate the real Freudenthal-Jordan
algebra J of dimension 9:

For K; = R2, we have ] = M3(R);

For K; = C, J is given as the set of xed points of involutions of the second kind on
M3(C). Involutions of the second kind on M3(C) arise from nondegenerate Hermitian
forms h on C3, which we may assume to be given by:

h= 12124 2222+ 3232 3 withj= 1.

There are 8 choices for signs, but we get only 4 dierent involutions, since h and

h give the same involution. In this way, we get 4 Jordan algebrasJ ; , , byt the 3 of
them corresponding to f1;2;38 = f+; ; g are isomorphic. Hence, up to
isomorphism, there are two such J’s:
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{J J3;0(C) = Jsus;

{ J =1J12(C)=1)
We shall sometimes denote the last two cases of J collectively as J J(C). The group G,
depends only on K, . It is the split group if K; = R2, and quasi-split if K; = C [LS15] .

13.2. Embeddings of cubic algebras. We shall next enumerate the E-twisted composition
algebra of rank 2 over R by describing embeddings of cubic etale algebras E into J. Note
that there are 2 cubic etale R-algebras:

E=R®> or E=RC:
We consider the various cases in turn:

(a) J = M3(R): in this case, both R3 and R C embeds into M3(R) and these embeddings
are unique up to conjugation.

(b) J = J 4C) and E = R3: in this case, we may work with the 4 Jordan algebrasJ =
J;; as described above. For each of these J’s, there is an embedding of R3intoJ as
diagonal matrices. Though 3 of these Jordan algebras are isomorphic (toJ1.2(C)), the

three embeddings are not isomorphic. To conclude, we get 4 classes of embeddings in
all.

(c) J3(C) and E = R C: in this case, E does not embed into J3.0(C) and there is a
unique embedding of E into J1.2(C).

We take this opportunity to correct a typo at the very end of [GS2], where it was incorrectly
asserted in [GS2, Pg. 1956] that in the context (b), there are only 2 embeddings of R3 into
J3(C), even though the table on [GS2, Pg 1954] clearly shows that this set of embeddings
have 4 elements.

13.3. The torus Aut ,gC)O. For each embedding E ,! J, we have a decomposition) = E C.
The corresponding Hc = Autg(C) is always a semi-direct product Autg (C)% 0 Z=27 such that
the conjugation action of the non-trivial element in Z=2Z on Aut (C) is the&inverse
involution. The possible cases of the two-dimensional torus Autg(C)° are tabulated in the
following table, where T is the group of complex numbers of norm one.

E = R3 E=R C (R
K = R? [[(R)*=(R) K = [ C)=(R)
C (1)>=(T) (T C)=(T)

13.4. Characters of Autg(C)°. We introduce a rened notation for characters of these tori.
A character of (R)3=R is a triple of characters (1;2;3) of R such thaty , 3= 1.

A character of T is represented by an integer. Thus a character of (T)3=T is
represented by a triple of integers (ny; ny; n3) such that ny + n + n3 = 0.

In the remaining two cases a character of the torus is identied with a pair of charac-ters
(r; c), such that g ¢ = 1 on R, and with a pair (m;¢), where m 2 Z, such that the
restriction of ¢ to T is given by z ! z m,
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13.5. Representations of Autg(C). Let be a character of Autg(C). If = 1, let
()= ( 1) be the unique irreducible representation of Aut(C) such that the restriction
to Autg(C)%is 1. If = 1, then extends to a character of Autg(C) in two ways, denoted
by () . These two representations are indistinguishable unless = 1, in which case one
extension is the trivial representation, denoted by (1), and the other the sign representation .
Note that non-trivial quadratic characters appear only in the split case (where E = R3 and
K; = R2), since Autg (C)2(R) is connected as a real Lie group otherwise.

13.6. Some tempered representations of M. To every unitary character of Autg(C)9, we
shall attach a packet P (E; K ;)= P(E; K ; | 1) of tempered representations of M =
GL,(E)det, obtained by restricting an irreducible representation of GL,(E). We need addi-
tional notation.

For a local eld F and a pair of characters (1;2) of F, let 1 , be the unique innite-
dimensional subquotient of the principal series representation of GL, (F ) ob-tained by
normalized parabolic induction from the pair of characters.

Let ! : R ! flg be the sign character. It is the unique non-trivial quadratic
character of R.

Let : R ! R be the identity character (x) = x, for all x 2 R.
For n 2 Z, the principal series representation " |, when restricted to SL»(R),
contains a sum of two (limits of) discrete series representations with the lowest SO,-
types (jnj + 1).
We can now describe the packet P (E; K,;) = P (E; K ; 1) of tempered representations of
Mg = GL,(E)det,
Case E = R3 and K; = R2. Let = (1;2;3) be a unitary character of (R)3=R. The packet
P (E; K, ;) consists of representations appearing in the restriction to GL, (R3)d9et of

(1 1)
(2 1)
(3 1):

This representation is irreducible when restricted to SL,(R3) unless ; = ! for at least one i.
The group GL;(R3)9et is large enough so that the restriction is still irreducible if precisely one;
is . In view of the relation 1 , 3 = 1, at most two ; can be !, and this is precisely when is a
non-trivial quadratic character. Then and only then the packet consists of two elements. The
standard intertwining operator provides an identication of P (E; K ;) and P (E; K} 1),

Case E = R3and K, = C. Let = (ni;ny;n3) be a character of T3=T. The packet
P(E; K,;) consists of representations appearing in the restriction to GL;(R3)det of
", "

!

("2 1)
(™ 1):

The restriction to SL,(R3) consists of 8 summands, hence the packet P (E; K;; ) consists of 4

representations.

Case E = R C and K; = R2. The restriction from GL, (RC) to GL,(RC)d9¢t is always
irreducible, hence the packets are singletons. Let = (gr;c) be a unitary character of
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(R C)=(R). The packet P (E; K;; ) consists of the restriction to GL, (R C)d9et of ( 1)
(c 1):

Case E = R C and K; = C. We are again restricting from GL, (R C) to GL, (R C)9et hence
the packets are singletons. Let = (m; ) be a unitary character of (T C)=T. The packet
P(E; K,;) consists of the restriction to GL, (R C)det of

(Mm1)
(c 1):

Summarizing, we have 4 families of tempered packets P (E; K ;) = P(E; K ; 1) of
GL,(E)9et, parameterized by unitary characters of Autg(C)°. If E = R3 and K; = C, then
jP(E; K ;)j = 4. As a part of our correspondence result, we will see that the 4 members of
this packet are naturally parameterized by the 4 embeddings R3 ! J (C). If is a nop—trivial
quadratic character (this happens only if E = R3 and K; = R2) thenjP(E;K;;)j = 2. Let
(); () be its constituents.+ Otherwise jP (E; K;; )j = 1 andits unique element will be denoted
by ().

13.7. Main result. Let V be the Harish-Chandra module of the minimal representation of
G,. Consider the dual pair Gg Autg(C) corresponding to an embedding E ! J. For every
irreducible representation of Autg(C) let

() = V=\'210m(v;) Ker(")

where * are homomorphisms in the sense of Harish-Chandra modules. We note that () is
naturally a (gg; Ke)-module, where K¢ is the maximal compact subgroup of Gg. The
following will be proved in a joint paper with Je Adams and Annegret Paul, though we note that
the second bullet, when Autg (C) is compact, is contained in Loke’s thesis [Lo].

Theorem 13.1. Let Gg Autg(C) be the dual pair arising from an embedding E ! J. Let
be a unitary character of Autg(C) .0
If E | J is not one of the 4 embeddings R3 ! J3(C), then (()) J2((k 1), unless is
quadratic and non-trivial, in which case we have ( ()) = J2( ();1).
If E ! J is one of the 4 embeddings R3 ! J3(C), then (()) l2(;1), where 2
P(E; Ky;). As we run through all 4 embeddings R ! 33(C), runs through the 4
representations in P (E; K;; ).

The representation () is always irreducible, and can be described as it sits in a degener-ate
principal series representations, along with ((1)). Let | (s) denote the (normalized)
degenerate principal series for Gg¢ where we induce jdetj® from Pg. Let Ig(!; s) be the qua-
dratic twist of this series, i.e. we induce !(det) jdetj .s(Recall that ! is the sign character of
R.) The following result is due to Avner Segal [Se2, Appendix A], but formulated with our
interpretation in terms of theta lifts.

Theorem 13.2. Let ¢, () denote the theta lift of in the correspondence arising from the
embedding E ! J.

For every E, we have an exact sequence

0! ey 1e(1=2) 1 grmyry((2)) 1 O:
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For every E, we have an exact sequence

0! eimsr)() ! Te(h;1=2) 1 gy )((2)) 1 O:
Here J3(C) = J3.0(C) or J1.2(C) is any Jordan algebra with K; = C, and the sum in both
sequences is over the isomorphism classes of embeddings of E into J3.0(C) or J1.2(C) (recall
that there is one class if E = R C, and four if E = R3).

13.8. Complex case. Assume now that F = C. In this case E = C3 is the only possible
case. We have:

Theorem 13.3. Let = (1;2;3) be a unitary character of (C)3=C. Let () be

the tempered representation of Mg = GL,(C3)9et dened as in the real split case. Then (())
= Jo(()) if = 1 and (1) () = D(1) is the degenerate principal series for an A, parabolic
subgroup,.

14. Global Theta Lifting

In this section, let E=F be a cubic eld extension of number elds, so that G¢ is a so-called
triality Sping. We shall consider the global theta correspondence for the dual pair

Hc Ge = Autg(C) Sping 1 G,

associated to a twisted composition algebra C over F with dimg C = 2, corresponding to an
embedding of Jordan algebras E ,! J, for some Freudenthal-Jordan algebra J of dimension 9
over F.

14.1. Hecke characters of T.x. Recall from x4.6 that H % is isomorphic to the 2-dimensional
torus

Te.k Ker Ng-f Z(RESE
k=F Gm)=(Resk-fGm) ! (Resg-fGm)=Gm ;
so that
T’E;K(F) = Ker NK:F I(E
K)=K I E=F
Before describing the automorphic representation theory of Hc = Autg(C), let us record
some relevant facts about automorphic characters of T k.

Proposition 14.1. (i) The torus Tg,k satisies the weak approximation property. As such,

any two Hecke characters and ©of Tg.¥ such that , = © for q/lmost all v are equal.

(ii) Let and %be two unitary Hecke characters of T¢ ¥ such that for almost all v, either

0 - 0- 1 0_ 0o- 1
Fvor?= + Then = or®= .

Proof. (i) By a result of Voskresenskii [V2], any tori of dimension 2 over F satises the weak
approximation property.
(ii) Assume rst that K = F F is split. Then Tg.x =" (Resg=f(Gm)=Gm, so thatT (F) =

F=F. We may thus regard and 9as Hecke characters of E. Consider now the principal series
representations

= Yando:= (5% 1) of PGL,(AR).
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These are irreducible automorphic representations which are nearly equivalent to each other
under our hypothesis. If these two principal series representations are locally equivalent for
places of E outside a nite set S, then we have an equality of partial Rankin-Selberg L-
functions:

L3(s; )= L*(s;0 );
which is more explicitly written as:
S(s)2 L5(s52) LS(s; 2)= LS(s;0) L5 1) (s;° 1) B(s;® 1Y)

Now the LHS has a pole at s = 1 and hence so must the RHS. This implies that = or 1,
as desired.

Assume now that K is a eld. We shall invoke the base change from F to K. We claim
that the norm maps

Te;(Ky) !t Tew(Fy) and T (Ak) ! Te;x(Af)

are surjective. Since
Te;xre K = (E
K)=K;

this surjectivity claim allows one to reduce to the case of split K treated above, by composing
and % with the norm map.

To show the surjectivity of the local norm map, we shall treat the most nondegenerate
case where L, := Ey
Ky is a eld; the other cases are easier. Then the norm map
I..E;K(KV) = I-v :Kv ! IE;K(FV) = Ker NL\,=E\, :Lv =Kv I E, =F
is given by
x 1 x=(x) where 2 Aut(Ly=Ey,) = Aut(K,=Fy).
We thus need to show that

fy 2 L, :N_ =g, (y)2F,g=K, fz2 L, :N_ ¢ (z)= 1g:

For this, we need to observe that ify 2 L, satisesN ¢, (y) 2 F, , theninfact N ¢ (y) 2
N, =, (Ky ). This in turn follows from the fact that the natural map

FV=NKV=FV(K)V ! Ev =NLV=EV(Lv)

is an isomorphism (using the fact that E, is an odd degree extension of F).

To deduce the surjectivity of the adelic norm map from the local ones, it suces to note that
at places v of F unramied over L, the local norm map remains surjective when all the local elds
are replaced by their ring of units.

14.2. Automorphic representations of Autg(C). Recall that one has a short exact se-
quence of algebraic groups

1 1 W, ! He | 11
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From this, one obtains:

1 ! I-PS(F) I Hg(F) bo2(F)
? ? ?
y y y

1 L H(A) I Hc(A) L 2(A):

Because E is a eld, the torus H %s anisotropic so that
[HO] := HO(F)nHZ(A)  and [Hc] := Hc (F)nHc (A)

are compact. The automorphic representations of Hg are unitary automorphic characters
which are classied by global class eld theory. We will need to discuss the automorphic
representations of the disconnected algebraic group Hc.

Let A(H?2) denote the space of automorphic forms on H?2 . Since Hc (F) acts naturally on
HQ2(A) by conjugation (preserving H2(F)), we have a natural action of Hc (F) on A(HQ2) by
( f)(t) = f( 1) for 2 Hc(F), t2 H.PA) and f 2 A(H( L.
Since H(C’ is abelian, this action factors through the quotient H¢ (F )=H°C(F) ,V 2(F). We
now consider two cases, depending on whether this last injection is surjective or not.

(a) Hg (F) = Hc(F). In this case, C corresponds to an embedding E ,! J with J a
division algebra. At the nonempty nite set ¢ of places v where |
¢ Fy is diviBion, we have H. (Fy) = Hc(Fy).

Let = 0
vv be @ unitary automorphic character of the torus H., so
that : [Hc] = Ho(F)nHc(F) He(A) I sh;
and hence C  A(H.). €onsider the induced representation

o HcHA) ) _ i 4H (AHc
Ve() := dec( e (0 = ind C o)

Then an element in V() is a smooth function
f :Hc(F)nHc(A) ! C
such that
f(tg) = (t) f(g) for any t 2 HCO(A) and g 2 Hc(A).

Hence we have:

Ve(),! A(Hc):
As an abstract representation, V() is the multiplicity-free direct sum of all irre-
ducible representations of Hc(A) whose abstract restriction to HOC(A) contains .
Indeed, if one considers the restrictions of functions from Hc (A) to Hg (A), the sub-
module V() is characterizted as the subspace of functions whose restrictions are
contained in C  A(H.). ©

Thus one has the following description of A(H¢):
M

A(Hc) = Vel();
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which is an orthogonal direct sum with running over the automorphic characters of
He. ©

We note that A(H () is not multiplicity-free as a representation of H .(A). Indeed,
if and 9are two distinct automorphic characters of H?, then Vc() = V() as
abstract representations if and only if the following two conditions hold:

{ forallv2c, %=1 { for
allv2 ¢, = v.

By Proposition 14.1(ii), the rst condition implies that °= 1 and hence = 1

(since we are assuming that and %are distinct); this then implies by the second
condition that 2= 1forallv2 c. Thus, if is an automorphic character of Hg =
Te;k, with the property that2 = 1forallv2 ¢, but?= 1, thenVc¢() = Vc( 1)
as abstract representations, but Vc() and V¢( 1) are orthogonal as subspaces of
A(Hc); alternatively, one distinguishes them by their restriction as functions to HO .
Thus, A(Hc) has multiplicity-at-most 2, but fails to have multiplicity one. What is
interesting, however, is that even if the multiplicity of an irreducible representation
in A(H¢) is 2, there is a canonical decomposition of the -isotypic submodule of A(H
) into two irreducible summands. These summands are characterized by their

restriction (as functions) to Hz belonging to C or C 1 for a special as above.

(b) Hc(F)zHO(F) = 2(F). Then for every place v, Hc(Fy)=H? (Fy) = 2(Fy). In this
case, the action of Hc (F )=R.(F) = 2(F) on A(HQ) needs to be taken into account.

As before, let 5

vv be a unitary automorcphic character of the torus HO.The action of Hc(F)=HO?

(F) sends to its inverse 1. Hence, we consider the

equivalence relation on automorphic characters of HOC given by this action, i.e. modulo
inversion. Denote the equivalence class of by [].

There are now two subcases to consider:

(i) 2 = 1, so that is xed by Hc(F) as an abstract representation and the
equivalence class [] is a singleton. In this case, is xed by H (F ).as a function on
HO(A) and C A(HO) aords a representation of H (F) HO (A) extending ,
characterized by the requirement that is trivial on Hc (F ). Consider the
induced representation

R HcHA) .
Vcl] := dec( e (A9

Then an element in Vc[] is a smooth function
f :Hc(F)nHc(A) ' C
such that
f(tg) = (t) f(g) forany t2 HO(A) and g 2 Hc(A).

Hence we have:
Vell,! A(Hc):
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As an abstract representation, V [] is the multiplicity-free direct sum of all
irreducible representations of Hc (A) whose abstract restriction to H¢ (F) Hg (A)
contains

(ii) 2 = 1, so that is not xed by H (F )} as an abstract representation and [] =
f; lg. In this case, the span of , for all 2 Hc(F), is the 2-dimensional

subspace
wp=C C ' A(H?) c
such that
. Hc (F)Hc (AP
W[] iand Hg(A)

as Hc (F) HOC(A)—moduIe. Consider the induced representation

Vel] = indHldEF()’N)o (A):W[] indﬁC(A):H

An element of V¢[] is thus a function
tHc(A) ! wp=C +C ' A(Hc):

2(A)

Setting

f(h) = (h)(1);
so that f is the composition of with evaluation at 12 Hc(A), we see that the
map ! f denes an embedding

Vell .t A(He):

In this way, we shall regard V¢[] as a submodule of A(H¢) henceforth. As an
abstract representation, V. [] is the multiplicity-free direct sum of all irreducible
representations of Hc (A) whose restriction to HO(A) contains and 1.

Now we have: M i
A(Hc) = Vcll
as [] runs over equivalence classes of automorphic characters of HO . Ihe subspace
Vc[] is characterized as the subspace of functions whose restriction to H° ds con-
tained in Wy = C + C 1. We observe that in this case, the representation
A(Hc) is multiplicity-free.

14.3. Global minimal representation. To carry out the global theta correspondence, we
need another ingredient: the global minimal representation of G, (A). For each place v of F, we
have a local minimal representation , of G, (F, ) which is unramied for almost all v, so that we
may set =
vv. Using residues of Eisenstein series, it has been shown that there is an (G, (A)-equivariant)
automorphic realisation

1, A(G ): As
before, the group G, (F) acts on A(G;) Via
( )Ng)= ( ‘g for 2 G,(F) and g2 G,(A).
The embedding is easily checked to be G, (F) G, (R)-equivariant.
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We now recall the main properties of the global minimal representation we shall use. Recall
the Heisenberg parabolic subgroup P; = M; Nj; of G; with

Vy:=NP=F+J+)+F:

Using a xed character of FnA and the natural pairing between N, and its opposite N,
the elements of V, parametrizes automorphic characters of N, (A) (trivial on N, (F)). Let
V; be the minimal nonzero M;-orbit in V,. For 2, one has the Fourier expansion

X
07,48) = O (g)+ (O . (8); x2

where Z; is the 1-dimensional center of N ;. If M;.x denotes the stabilizer of x 2
in the Levi subgroup Mj, then the Fourier coecien‘,c\l(-)—. is left-invariant underj]}(/l der(A)
J x 7/ )

My.x(A)\M ‘Jjer(A). On the other hand, when restricted to M, (A), the constant term (}
is an automorphic form on M;. One has
()_JNZ!KJsz J zj i 3=2 My ;

where m =0 unless G, (or equivalently M) is quasi split, in which case isjthe global
minimal representation of M;.

N,

14.4. Global theta lifts. For any automorphic form f on Hc, and 2 , we consider the
associated global theta lift:

(f)(g) = el (h )(g) f(h)dh; with g 2 Ge(A).
He

Note that we have written (h )(g) instead of ()(gh) in the integral because () is only dened
as a function of G, (A). Observe however that for 2 H¢(F),

(h )(g) = (h)( 'g) = (h)(e) for g 2 Ge(A).

In any case, (;f) 2 A(Gg). For any irreducible summand V (), the global theta lift () of
is dened as the span of all (;f) with 2 and f 2, so that

() A(Ge):

14.5. Cuspidality. We rst show the following analog of the tower property in classical theta
correspondence.

Proposition 14.2. The global theta lift () is contained in the space A,(Gg) of square-
integrable automorphic forms of Gg. Moreover, it is cuspidal if and only if the (mini-)theta lift
(via m,) of to Mg is zero.

Proof. To detect if () is square-integrable or cuspidal, we need to compute the constant terms
of a global theta lift (; f) along the two maximal parabolic subgroups P = Mg N and Q¢ =

Le Ug of Ge. Hence, we rst compute the constant term (; f)—E\U . along Rhe uhipotent
subgroup N ¢ \ Ug. We note that

NE:ZE:F E E F (NE\UE):ZEZOE E F:
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Recall that the Heisenberg parabolic subgroup P; = M; N, of G, satises P; \ Gg = Pg,
with Ng Nj such that
Ve :=Ng=Z¢g V; :=N;=Zg =F J J F;
where the embedding E ,! J is such that E® = C. There is a natural projection map
pr:Vy; | Vg
which corresponds to the restriction of (automorphic) characters from N (A) to Ng(A).
For

V, the minimal M;-orbit, let

0= fx 2
:pr(x) = (;0;0;0) 2 Veg:
Then one has ) 0 1

X
(14.3) G \u 48) = f(R) @()y, (hg)+ On,; ,(hg)A dh:

[Hc] x2
0

To proceed further, we need to understand the set
o- Clearly, we have
0=
1
2 whq\re N,
1= fx 2
:pr(x) = (0;0;0;0) 2 Veg

and

2 = fx 2
:pr(x) = (t,0;0;0);t = Og:
By Proposition 8.1, and using the fact that E is a eld, we see that 1

is empty whereas
2= f(t;0;0;0):t2 Fg.

Hence, we see that .

(fr— (g8) = f(h) () (hg) dh:

[Hel

Since
Ne = k=R i j3=2MJ;

with p, only present when J is not division, we deduce that the constant term of () along N ¢
vanishes unless is the trivial representation or if the (mini-)theta lift of to Mg (vianm ) is
nonzero. One may check that if is trivial, then it does have nonzero (mini-)theta lift to Mg, so
that we may subsume the condition that is trivial into the second condition.

On the other hand, if ¢ is the automorphic character of N (A) corresponding to (t; 0; 0; 0) 2
2(F) with t= 0, then Hc (F) stabilizes t. This implies that in (14.3),

(14.4) (h,; (hg) = (—, (@);

SO that the contribution of



2 to (14.3) vanishes if f is not a constant function. We have thus shown that if the mini-theta
lift of to Mg vanishes (so that is nontrivial in particular), then the constant term of () along
Ne \ Ug given in (14.3) vanishes, so that () is cuspidal.

Conversely, it is clear from (14.3) and the above discussion that if the mini-theta lift of to
M is nonzero, then the constant term of () along N ¢ is nonzero and hence () is noncuspidal.
To summarise, we have shown that () is cuspidal if and only if the mini-theta
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lift of to Mg (via m ) yanishes. It remains to examine the case when () is noncuspidal and
show that () is square-integrable nonetheless.

Suppose then that () is not cuspidal, so that has nonzero (mini-)theta lift to Mg. For each
parabolic subgroup R = P¢, Qg or Bg = P ¢ \Qg, we consider the normalized constant term
of () along R. Since the Levi subgroup of R is a product of groups of GL-type, the strong
multiplicity one theorem for GL, implies that each of these normalized constant terms is a
direct sum of a cuspidal component and a noncuspidal component such that the two
components are spectrally disjoint (i.e. the system of spherical Hecke eigenvalues supported by
the two parts are dierent). By the standard square-integrability criterion, we need to show
that the (real parts of the) central characters appearing in the cuspidal component lie in the
interior of the cone spanned by the positive simple roots which occur in the unipotent radical of
R. -

For the case R = P g, the cuspidal component of the normalized constant term is contained
in the mini-theta lift () of to Mg. Since the center of M¢ is equal to the center
of My, and the central character of y — is of the form z ! jzj?, this gives the desired
positivity for the cuspidal component of p (), By the results of x9.3 and Proposition 9.2, v ()
jdetj 1is a summand of a tempered principal series representation of Mg. Thus,
the noncuspidal ) component of M ()
jdetj has normalised constant term consisting of unitary characters. Since
jdetj corresponds to the highest root 3 + 2, we have the positivity of cuspidal exponents
along the Borel subgroup P ¢ \ Q.

Finally, for the constant term along Q we claim that there are no cuspidal exponents. For
if (; f-)—has nonzero projection to the space of cusp forms of Lg, then (;f) T, is
in fact cuspldal and so has nonzero Whittaker-Fourier coecients. However, it follows from
(14.4) that such Whittaker-Fourier coecients all vanish, unless f is a constant function. If f
is constant, then (; f) has nonzero constant term along B (via our computation of the

constant term along P¢) and so (; f)—E cannot be nonzero cuspidal on Lg.

Hence, we have shown that (; f) is square-integrable. This completes the proof of Propo-sition
14.2.

14.6. Nonvanishing and Disjointness. We now consider the question of nonvanishing of
the global theta lifting. We shall do this by computing the generic Fourier coecients of
(; f) along the unipotent radical N_ of the Heisenberg parabolic subgroup P_. These
Fourier coecients are parametrised by generic cubes in Vg (F) = Ng(F)ab. RecaII that the

Me (F)-orbits of generic elements in Vg(F) are parametrised by E-isomorphism classes of

E-twisted composition algebras A. For each such A, we let A denote a character of N (A)

trivial on N ¢ (F) in the corresponding orbit; there is no loss of generality in assuming that
A corresponds to a reduced cube in Vg (F), and note that the stabilizer of 5 in Mg is

isomorphic to Ha = Autg(A).

Recall that if N, denotes the unipotent radical of the Heisenberg parabolic subgroup of
G,, then there is a natural projection map pr : V; = N‘j‘b I Ve. This projection map
corresponds to the restriction of characters from "N;(A) to Ng(A). Let

V) be the
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minimal nonzero M;-orbit in V,. Set

a=opr oA\

Then Corollary 5.3 says that
A(F) is empty unless A is E-isomorphic to C, in which case,

A C
(F) is a principal homogeneous space of H (F). Thus, when A = C, we may x an
element “c 2 o

c(F), so that "¢ restricts to c onNg(A). ——
Now we have: N .

Proposition 14.5. For 2 andf 2 A(Hc), (;f}— vanishes (as a function on

N
Ge(A)) unless A = C, in which case . .
G (g)= (h }— (g) f(h)dh:
Hc (A)
Moreover, there exist and f such that (; f)NE; ?(1) = 0.
Proof. We have:
y y !
Gy, ,(8) = () (h )z, (ag) f(hydh  dn
[Vel 0 [Hel
VA Z X 1
= @ a(n) (h )—,q(r_lg)dnA f(h)dh
[Hcl [Vel ~ b
0
Z
X
(F) 1
= @ (h}—(g)A f(h)dh: Hel =5
a(F) ’

TFhis gives the vanishing of (; f)NE; . When A C since

a(F) is empty in that case. When A= C and ¢ 2
c(F), then we have an identication Hc(F) ¢ =

C(F)l in
which case
Z X
Gfr—)—-HA8) = (h) & .~ (g) f(h)dh
E, C J, C
[HC] 2Hc(F)
Z
- (h) o ~ (g) f(AYdh;
He(A) e
as desired. This proves the rst statement.
To show the second statement, we need to understand the function h ! (h ) ;L(l) as a

function on Hc(A). For a nonarchimedean place v of F, a property of the local minimal
representation s that

dim Hom— (¢ (v; “civ) = Lt

Moreover, a nonzero element of this 1-dimensional space can be constructed as follows. Recall
that, at a nonarchimedean place v, one has [KP, Thm. 6.1.1]



Ccl( _
(FV))II ZE(FV)’! Cl(
(Fv)):
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Thus elements of , gives rise to functions on the cone
(Fv). Then the evaluation map at
c 2 -

J v

(Fv) denes a nonzero element of Hom) (F )(V; c:v). For v outside some suciently
large set S of places of F,  is the unramied vector in , in which case the corresponding

function fo,v on the cone
(Fyv) has the following properties. The function fo,v is supported on the subset
S n
\2
(Ov);
n0

is constant on each annulus $"

(Oy), and takes value 1 on

(Oy). Indeed, [KP] gives an explicit formula for the value taken by fp., on each annulus, but
we won’t need this here.

We need to understand the restriction of fg,, to the subset

c(Fy). Since
C

V, is a Zariski cIosecbsubset of V;, we see that forv 2 S (with S containing all archimedean
places and enlarged if necessary),

[

@ S\
(OV)A \ Ny; ¢
C(Fv) =

C(Ov)

(Ov):

n0
Hence, for v 2 S, the restriction of fp,, to

c(Fy) = Hc(Fy) “cv is the characteristic function of Hc(Oy).
Q

By the above discussion, we deduce that for S suciently large and with Fs := vas Fv,
Z

Gy, (1) = (h)  ~ (1) f(h)dh:
Hc(Fs)

We need to show that we can nd some f and such that the above integral is nonzero.

To this end, we start with a xed pair of f and such that the integrand in the above
integral is nonzero as a function of h. Now we consider an arbitrary Schwarz function ’ on
N, (Fs) and replace by the convolution’ in the above formula. This gives:

VA

(" (1) = efh 1 Te) (h (1) f(h)dh;

Hc(Fs)
where ’ , is the constant term of * along Z N (which is a Schwarz function on V, (Fs)
N,(Fs)=Z(Fs)) and_ 'e——is its Fourier transform. Siffce Hc(Fs) c =

c(Fs) Vy(Fs) isa Zariski-closed subset, and “e—can be an arbitrary Schwarz function (as ’
varies), we see that the above integral is nonzero for some choice of ’.

This completes the proof of the second statement.

Corollary 14.6. (i) If A(H ),cthen () A2(G ) is a ponzero irreducible square-
integrable automorphic representation of Gg. Moreover, () = 2abs() :=
v(v), where () denotes the local theta lift of , to Gg(Fy) (which is nonzero irreducible).

(ii) For an abstract irreducible representation of H¢ (A), we have



dim Homy(; A2 (Hc)) = dim Home, (2°%(); (A(Hc)))

where
(A(Hc)) = h(Gf): 2 5;f 2 A(Hc)i A2(Ge):
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(iii) If A(Hc) and © A(Hco) satisfy () = (°) as submodules of A, (Gg), then C is E-
isomorphic to C (so‘that Hc = Hco) and = as sulfspaces of A(H¢).

Proof. (i) This follows from Proposition 14.2 and Proposition 14.5.

(ii) This statement is often called the multiplicity-preservation of theta correspondence
and in fact follows from (i) and the local Howe duality theorem we established in our local
study, which says that:

dimHomy g, (s;
() 1
and
dim Homg, (*(); 2°%(°)) dim Homy_(;°) 1:

In view of (i) and the local Howe duality theorem, the statement here is only interesting when
A(Hc¢) is not multiplicity-free. To prove (ii), we dene a pairing of nite-dimensional vector
spaces:

B : Homu (; A2(Hc)) Home, (®(); (A(Hc))) ! Homuce, (s -
abs(); C)
by ya

B(f;)(;v;w) = (; f(v))(g) (w)(g) dg iGe]

for 2 5, v2 and w 2 2(). The local Howe duality theorem says that the target space is 1-
dimensional (so we may identify it with C). Now (i) and the local Howe duality theorem
imply that this C-valued pairing is nondegenerate, giving us the desired equality of dimensions
of the two Hom spaces on the left.

(iii) It follows from Proposition 14.5 that for A(H ), {) supports only one orbit of generic
Fourier coecients along N , namely the orbit associated to C. Thus, if () = (9), then we must
have C = CO. The equality of and ° now follows by (ii).

14.7. Canonical decomposition. To nish this section, let us examine the case when H?°
(Fc) = Hc(F): this is the case when A(Hc¢) has multiplicity 2. In this case, we have an
orthogonal decomposition

M
A(Hc) = Vel()

as runs over automorphic characters of IEI0 = Tg.x and V¢() is characterised as the
subspace of functions whose restriction to H 0 js contained in C. Each V¢() is multiplicity-
free and the occurrence of multiplicity 2 is due to isomorphisms V() = Vc( 1) for those
satisfying
2= 1 but
2 = 1 for the nitely many places v where Hc (Fy) = H° (Fy)-

For satisfying these two conditions, and an abstract irreducible representation of H. (A)
which occurs in V¢ () and Vc( 1) and write for the corresponding submodule V¢(). Then
the -isotypic summand of A(Hc) has the canonical decomposition:

A(Hc)() =
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On considering the global theta lifting, Corollary 14.6 gives a direct sum
() ( 1) A2(Ge)

of two irreducible summands. This gives a canonical decomposition of the 2bS()-isotypic
summand (A(Hc))[2°%()]. One may ask how decomposition can be characterized directly on the
side of Gg, i.e. without reference to Hc. We shall address this question in the remainder
of this section.

We have seen in Proposition 14.5 the Fourier coecient formula

z
Gy (8) = ) (h +—, (8) f(h)dh:
for 2, and f 2 , where we recall that "¢ 2
.. LetS _ = Stabm,(
c)

be the stabilizer of ¢ in Mg. Then we have an action of S c Hc¢ on
for which
is a torsor for each of the two factors. This gives an isomorphism

:S . = Hg;
characterized by

(t) =t ! "¢
Now we may regard (; f)y . asa functionon S® (F)nS% (A). The following proposition,
which strengthens Proposition 14.5 and is the global analog of ( 12.6), describes this function
explicitly.
Proposition 14.7. For t2 SOC(A) = HO(A) and f 2, we have

GR—y (0= () 2 GR—, (1)
In other words,
Gfly . "2C ' A(Hce):
Proof. Write = ;
V25
1. With 1 xed, we consider the Fourier coecient map
e

J

given by
S
N
1-)_1 J~c(1):
As we have noted in the proof of Proposition 14.5, there is a P, (Al)-equivariant map
q:! ;1 C o
At)
so that
— Ty ™~y
(O (1) = (1) a()( ")
for some (1) 2 C. Then for t2 S° (A1), we have:

O— o ()= (1) a()(t * ") = (1) a()((t) “c)= (1) TN .~ (1): -

J
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Hence, 2
(; Fy———(t) = (h) - ~ (1) f(A)dh
E, C ZHC<A) Js C

= ((t) *h }— (1) f(h)dh
ZHC(A) ’

= (h) & .~ (1) f((t)h) dh
He(A) 5 e

= ((t) * (h y—, (1) f(hydh:

Hc (A) ’

This proves the desired identity for t 2 SOC (A1). However, both sides of the desired identity
are automorphic functions of SOC = Hg = Tg.,x. The desired identity then follows by the
weak approximation théorem (Proposition 14.1(i)) for Tg.k.

What the lemma says is that the consideration of the (-Fourier coecient gives an
(Neg; ¢) Soc-equivariant map
(A(H)[P*01 t ¢ ¢ ' A(s®)

The canonical decomposition of the codomain is given by the irreducible summands whose
image is contained in C or C 1,

15. A-parameters and Twisted Composition Algebras

In the next two sections, we relate the square-integrable automorphic representations con-
structed in the previous section to Arthur’s conjecture for Gg. We begin by explicating the
connections between twisted composition algebras and the relevant class of A-parameters in
this section.

15.1. A-parameters. We shall consider A-parameters
: We SLz(C) ! PGSOg(C) o S3:
such that the centralizer of (SL,(C)) is isomorphic to the group
So(S2 S3)=(C € C)ro (S2 S3): We x the
isomorphism
ZpGsogoss( (SL2(C))) = S o (S2 S3)
throughout. Associated to such a is thus a map
=g x :Wg | S S3;

i.e. a pair (E; K) consisting of an etale cubic F-algebra E and an etale quadratic algebra K ;
we shall say that is of type (E; K). With the etale cubic algebra E xed, is an
A-parameter for the group Gg.

If we let Wg act on S through the map , then S o W¢ is the L-group of the torus
Te.x = fx 2 (E
FK):Ng
k=g (x) 2 Fg=K:
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Hence, to give an A-parameter of type (E; K) is equivalent to giving an L-parameter
tWe I "Tg S o (S2 S3)
modulo conjugacy by S o S;, or equivalently an automorphic character of the torus Tg.x up

to inverse, i.e. a pair of automorphic characters [] = f; lg.

To summarize, the A-parameters we are considering are determined by the triple (E; K; []).
We had already highlighted and discussed these A-parameters in x3.5.

15.2. Component groups. An important structure associated to an A-parameter =
£;k;[) as above is its global and local component groups. The global component group
is
S = o(Zrasos( )) = 0(Zsos,()):

On the other hand, for each place v of F, one has the restriction  of to We, SL,(C)
(the associated local A-parameter), and one has likewise the local component group

S ., = olZpesos( v)) = 0(Zsos,(v)):

There is a natural diagonal map

The following lemma gives a description of these component groups.

Lemma 15.1. Fix an A-parameter = .¢.;) as above, with associated . For each placev
of F, one has an exact sequence
1 b Zs(v) I Zsos,(v) S

and this sequence is exact at the right if and only if the character , associated to , satises =
1.\2/ Moreover, the abelian group Zs(y) depends only on (Ey; Ky) (i.e. is independent of [,]) and
is given by

ZS(V) = SWFV = (T’:EK)WFV .

where the action of Wg, on S = T’E—;K is via the map :Wg, ! S, S3. Hence, one has1
Loo(SWrv) S |, = o0(Zsos, (v)) Y
with exactness on the right if and only if |, Z 1, in which case S
,=0(SW.) o Sy
The analogous result holds for the global parameter . In x3.6, we had considered an

example of a family of such ’s and tabulated the corresponding groups S To simplify
notations, we will henceforth set

v

$%:=o(s™) and S° :=o(sW,):
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15.3. From A-parameters to twisted composition algebras. As we observed in x4.6,
the group Tk is (canonically up to inverse) isomorphic to the identity component of the au-
tomorphism group of any E-twisted composition algebra C with dimg(C) = 2 and quadratic
invariant K¢ such that [Kg] [K¢] [K] = 1. This motivates the following denition:

Denition 15.2. (i) Let g,k denote the set of E-isomorphism classes of rank 2 E-twisted
composition algebras with quadratic invariant K¢ = [Kg] [K].

(ii) Let £,k denote the set of E
r Kc-isomorphism classes of rank 2 E-twisted compo-sition algebras with quadratic
invariant [Kc] = [Ke] [K].

Then any C 2 ;¢ corresponds under the Springer decomposition to an algebra embedding E
, ! J for some 9-dimensional Freudenthal-Jordan algebra J with K; = K.

The following long lemma summarizes the discussion in x4, especially x4.3, x4.5, x4.6 and
x4.8 (see also [GS2, x11.5 and x11.6]).

Lemma 15.3. (i) There is a natural commutative diagram

H 1(F;?TE;K) EN?J} fisomorphism cIasse?s of triples (B;;)g
? ? ?
y y y

HY(F; T;x)=S2

where the horizontal arrows are natural bijections (and hence written as equal signs). More-
over,

E;K fequivalence classes of :E ,! Jg

in the rst row, for the triple (B;;),

{ B is a central simple K-algebra of degree 3;

{ is an involution of second kind on B (relative to K=F)

{ :E ! B is alordan algebra embedding.
Two such triples (B1;1;1) and (By;2;2) are equivalent if there is a K-algebra
isomorphism f :B; = B, suchthat, f = f ;andf ;= 5.

the group S, acts on H1(F; TE.¢) by inverting; this action is described in terms of
the other two sets in the row by

clt c

ke; Kc on g;k

~

where is the nontrivial element in Aut(Kc=F), and
(B;;) ! (B°P;;) on the last set.
in the second row, the second bijection is via the Springer decomposition, so : E ,! J
refers to an embedding of Jordan algebras;

the rst two vertical arrows are the natural ones whereas the last vertical arrow is the
forgetful map given by

(B;;)!

(ii) For any C 2 .k, its preimage in g;k is an Sy-orbit and thus has 1 or 2 elements.
Moreover, one has:

Fiber over C has 2 elements( ) Hc(F) = HCO(F):
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Thus, the restriction of the rst vertical arrow gives a bijection from H1(F; T¢"k)[2] onto its
image.
(iii) If we pick any triple (B;;) in the preimage of C, we obtain an isomorphism of
algebraic tori over F:
B; ZHC 0 | TE;KZ
Hence, we have the following canonical bijection which gives another interpretation of ¢ :

- ]

E:K fequivalence classes of (C;i)g

where

C is an E-twisted composition algebra with quadratic invariant K¢ = [Kg] [K] and
automorphism group H¢;

i:H 0 | Tg.¢ is an isomorphism of F-tori, arising in the manner above;
two pairs (C;i) and (C ;% ) are equivalent if and only if there is an isomorphism j
: C | CY of E-twisted composition algebras, inducing an isomorphism Ad(j) tHe

I °HO,, socthat 0 Ad(j) = i.

15.4. Local elds. In particular, the above results apply to the case where F is a number eld,
as well as the local completions Fy. In [GS2, x12], we have examined the case of a local eld Fy as
an explicit example. Summarizing the results there, we note:
Lemma 15.4. Assume that F, is a local eld. We have two cases:
(i) If (Ey; Ky) = (eld, split), then H1(Fy; TE,.x,) is an elementary abelian 2-group and
the action of S, on H(Fy; Te, .k, ) is trivial, so that

EuiKy I HY(Fy; Tey )

Hence, for any C 2 ¢ ik, its bering .¢ basvl element and Hc (Fy) = HO(F\,eo
/=27.

Ev;Ky I

(ii) If Ey is a eld and K is split (so that F, is nonarchimedean), one has isomorphisms
£k, = HY(Fy; Te k) = Ker(H?(Fy;Gm) ! H?(Ey; Gm)) = Z2=3Z
via
(B;;)! inv(B) (the invariant of B)

and the action of S, on Z=3Z is by inverting. Hence K Vhas 2 elements, corre-
sponding to

¢/ = (Ey,! Ms(F,) and C, = (E,,! DJ)

where D denotes the Jordan algebra attached to a cubic division algebra D, over F,.
The preimage of C,, in ¢7,k, has two elements (associated to Dy and Dy ) &hd in this
case, HCV (Fy) = H. (F®). However, the choice of D, gives an isomorphism

Dy ZHCV | TEv;Kv;

with pos( )= p,( ) 1.
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Hence, we have:
Hl(Fv;TEV;KV)[3] = 1or Z2=3Z
and H1(Fy; T, .k, )=HY(Fy; T, .k, )[3] is an elementary abelian 2-group.

15.5. Local-global principles. When F is a number eld, there is a commutative diagram
of localisation maps

~ e Q
E,'K v Ev,'Kv
3 ?
Yy Yy
loc Q(
E;K \Y Ev;Kv:

I
It will be necessary to explicate the image of loc and to determine the size of its bers.

Lemma 15.5. (1) Assume that K = F F is split.
(i) One has a short exact sequence of abelian groups

0 P~ I5c! L . inv\!

E;K v E;v;Ky /=37 I 0

(ii) Let C= fCyg be a collection of local twisted composition algebras, with C, = (E, ,! B
),\*/where By is a central simple algebra of degree 3 over F, which is split for almost all v,
and let Sc¢ denote the set of places where B, is a cubic division algebra. Then

we have: (
1 if S¢ is empty;
#loc (C) =
oc (C) 2#Sc 4+ 2 ( 1)#5c =6; if Sc is nonempty.

In particular, C lies in the image of loc if and only if #S5¢ = 1.
(2) Assume that K is a eld.

(i) The map loc is bijective and the map loc is surjective.

(ii) Given a collection of local twisted composition algebras C = fC, g, let Sc denote the
nite set of places of F where E, is a eld, K is split and C, = (Ey ,! D ) w'r\'lth D, a
division algebra of degree 3 over F,. Then we have:

1; if Sc is empty;
. if Sc pty;
#loc “(C) = 2#Sc 1. if S¢ is nonempty.

In both cases, the restriction of 16c gives an isomorphism

1. _ Y (1 T .
HY(F; Te;x)([2] = H (Fy; TE;k)[2]:

Proof. (1i) Recalling that

~

£,k = HY(F; TEx) = Ker(H?(F; Gm) ! H%(E;Gm));

the short exact sequence in (1i) is a consequence of global class eld theory.
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(1ii) Given a set S of places of F, there are

245 + 2 (1 1)#S
3

central simple F-algebras of degree 3 which are ramied precisely at S; this is an interesting
exercise which we leave to the reader. This number is thus the cardinality of the ber of loc
over a collection C with Sc = S. The action of S; on ¢,k “preserves this ber and its action
there is free, unless S is empty (in which case the ber is a singleton set and S, acts trivially).
This proves (1ii).

(2i) The map I6c is injective by the Hasse principle for 2-dimensional tori, proved by
Voskresenskii [V1]. To show the surjectivity, we make use of the moduli interpretation of ¢ . ¢
as the set of tuples (B; ;) provided by Lemma 15.3. One has the local-global principle for odd
degree division algebras equipped with involutions of second kind, which says that any
collection f(By;)g of local pairs comes from a unique global pair (B;). Equivalently, the
natural map

M
HY(F; PUS) ! H(Fy; PULSY)

v

is an isomorphism. In addition, for a xed (B; ) and a collection of local embeddings

v:(Ey
Kv;v) ! (By;v); with 1=, 2 Aut(K,=Fy),

a local-global principle of Prasad-Rapinchuk [PR] shows that there exists

: (E
K;) ' (B;);

which localizes to  for all v. This shows the surjectivity of loc.
The surjectivity of loc follows by that of I6c and the surjectivity of the two vertical arrows.

(2ii) Given a nite set S of nite places of F which split over K, there are 2#5 pairs(B;) of
central simple K-algebras with an involution of the second kind, with B ramied precisely at
places of K lying over S. The S, action on these is free unless S is empty (in which case the
action is trivial). This proves (ii).

In particular, the map loc is not injective: this is the failure of the Hasse principle for
twisted composition algebras which is ultimately responsible for the high multiplicities in the
automorphic discrete spectrum of Gg.

15.6. Local Tate dualities. The connection between our A-parameters and twisted com-
position algebras is provided by the local and global Tate duality theorems. We rst note the
local Tate-Nakayama duality theorem (see [K1, x2] and [Mi, Cor. 2.4]).

Lemma 15.6. Let T be a torus over a local eld F, with character group X(T) = Hom(T; Gmm).
Then one has a commutative diagram:
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HY(Fy;T) Irr(HE(Fy; X(T)))
! X ):';inj:
inj:?
HY(Fy; T)[2] Lodrr(HY(Fy; X(T))=2H(Fy; X(T)))
surjzlé?f )?Ssurj:
H1(Fy; T(2)) Irr(H(Fy; X(T)=2X(T)))
| )?Sinj:
inj:)',éb
T(R)=T(F,)? | Ire(H2(Fy; X(T))[2]);

whose horizontal arrows are isomorphisms. Here, in the left column, the maps f and b form
a short exact sequence

f

1L T(R)=T(R)? ° 1 HYF;TI2D 1 HYR;TII 01
arising from the Kummer sequence
1 TR LT LTy

and the corresponding terms in the right column arises from the dual short exact sequence

2

1 L X(T) I X(T) I X(T)=2X(T) 1

We apply the above to our particular situation at hand. Fix an A-parameter = .,
as above and let T = T¢.¢ for ease of notation. Then for each place v, we have the following
canonical isomorphism [K2, x1]:

HY(Fy; X(T)) = o((T-)Wrv ) = S°;

where T - is the complex dual torus of T. Hence, by Lemma 15.4, SO [3] = 1 or 3. Let us
set
s® =52 =5°1[3] and S ,=S ,=S ,[3]

v \Z

These are elementary abelian 2-groups, and we have
H(Fy; X(T))=2H (Fy; X(T)) = s°:
Further,
T[2]= Ze; and HY(Fy; X(T)=2X(T)) = H'(Fyv; Z(Gg *));

where Z (G ) is the center of G;°° = Sping(C). Replacing these terms, the diagram in
Lemma 15.6 now becomes:
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HY(Fy;T) lrr(S° )

inj:? éinj;

H(Fy; T)[2] —— lrr(s° )

(15.7) surj:)é,-’f ?surj:
HY(Fv;Ze) —— Irr(H'(Fy; Z(Gg9)))

inj:?b )?Sim‘:
T(Fy)=T(Fv)? —— Irr(H2(Fy; X(T))[2]);

Now, if , = 1, then S | = SOv and the rst row of (15.7) already gives a bijection
lrr(S L) ! HY(Fy; Tey k)

Assume now that , %= 1. In this case, S , = SOv o S, and we shall try to understand

v

Irr(S ), or rather the subset Irr(S ,), in terms of Lemma 15.6 and (15.7).

To bring the component group S , into the picture, consider the projection

p:Gg’“ = Sping(C) | Gt = PGSO3(C)

Taking the preimage of S 0 S, PGSOg(C), we obtain the following commutative diagram of
short exact sequences of Wg, -modules:

| sc | 1 | |
1 I Z(G¢*°) Lop (s) s !
? ?
1 y y
1 I Z(G-%) I pXSo0Sy,) P! sos, o1

where the action of We s by conjugation via the map , : W¢ LV So (S S3) associated to
v. The coboundary map in the long exact sequence then gives :

0 .
s?v ! H1(FV,Z(§-
2
)y
S, ! HYF,;Z(G-%9))

Because the target of the map y is an elementary abelian 2-group (since H1(Fy; Zg) is so), the
map v factors through the quotient S , of S .- Moreover,  is injective on the index 2
subgroup S° ; indeed, the map , : S% | H!(Fy;Z(G- ; 9 is dual to the surjective mapin

the right column of (15.7). Hence Ker(y) S is either trivial or has order 2 and we would like
to determine precisely what it is. '

Together with (15.7), the above gives rise to a group homomorphism

(15.8) viHY(Fy; Ze) = Irr(HY(Fy; Z(G=29))) ! Irr(S ) Irr(S ,):
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Thus, the diagram (15.7) can now be enhanced to:

HI(F;T)  — Irr(s°,)
inj:é )?Sinj:
HY(Fy; T)[2] —— Irr(S° ) Irr(S°))
(15.9) Sur,-:?%sf Seur Seur
HY(Fy;Zg) — Irr(HY(F\;Z(G¢9))  “ I rr(S )
inj:?b )Téinj:
T(Fy)=T(Fy)? —— Irr(H%(Fy; X(T))[2]) ;

What is the kernel of ? Consider the fundamental short exact sequence in the left column of
(15.9):

(15.10) 1 | T(F)=T(F)2 ° ' HI(Fv;Ze) "1 HYF;TI2] ! 1t

We had rst encountered this sequence in (4.19). Now , is a character of the rst term in the
short exact sequence. Pushing out this sequence by ,, one obtains:

(15.11) 1 ! f

2 I HY(Fy; Zg)=b(Ker(y))
1 when , = 1. Now we have:

Y1 OHY(F,;T)2] !

Proposition 15.12. Fix a local A-parameter = g .x,;[,]-
(i) There is a natural bijection
lrr SO 1 HY(Fy; Tex):

(ii) Assume that , = 1, but, = 1. The natural map
v:S I HY(Fy;Z(G%™))

is injective and the dual map i\p (15.8) is surjective with kernel b(Ker(y)), so that it
induces an isomorphism
HY(Fy; Ze)=b(Ker(y)) = Irr(S ,):
Moreover, one has a commutative diagram of short exact sequence:
f

1 b2 ! Hl(Fv;ZE)>=b(Ker(v)) C1 O HY(FY; ek (2] b
?
vY
1 o, ! Ire(s ) rest Irr(s°) !

1; where the third vertical arrow is that given !by (i).
(iii) 1f v = 1, then Ker(y) = hsgi has order 2 and hence one has a canonical element sg
2S . nS v.oln this case, , induces an injection

v

v i HY(Fy; Ze)=b(TE k (Fy)) = HY(Fy; TEx)2] = Irr(S°)) 1 Irr(S )
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which is a section to the restriction map Irr(S ) ! Irr(Sov) and whose image consists
of those characters of S | which are trivial on sg.

15.7. Global Tate duality. We now consider the global analog of the above discussion. We
shall x a global A-parameter = g;k;; With global component group S containing

SO = 4(SWF) of index 2. Because E is a eld, we have

(
0 3; ifK = F F;1;

if K is a eld.
SoS [3]= SO9[3]= SY9 = 1 or 3, and as in the local case, we set
S =S =S [3]

which is an elementary abelian 2-group.

Our discussion of local Tate duality allows us to reformulate the results of Lemma 15.5 in
terms of characters of S9:

Lemma 15.13. Writing T = T« for ease of notation, we have the short exact sequence:
1 I HY(F;T) ! qVHl(FV;T) Iolrr(p(SWr)) o1
E;K
Kr(S°.,) Irr(S9)

In particular, Y

HIET)2] = HL(Fy; T)I2] = Irr(s0,):

v

After this recollection, we consider the following commutative diagram of short exact
sequences.

1 I T(A)=T(A)?2 ° 1 q’le(FV;ZE) F q"VHl(FV;T)[z] !
12 )'Ss?
1 | T(F)=T(F)2 | HI(F; Ze) L OHI(F;T)[2] 11

This diagram gives rise to the short exact sequence:

f

by b(T(F))nQVHl(FV;ZE) I HI(F;T)[2] I

1 I T(F)nT(A)=T(A)2

This is the global analog of the fundamental short exact sequence (15.10) in the local setting.
Moreover, it is equipped with a canonical section: the map s descends to give a section to f

Y
stHYUETIR] 1 b(T(F))n HY(Fy; Ze):
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Now suppose we have a global A-parameter = ..} as above. We shall assume that 2

= 1but = 1, so that is a quadratic character of T (F)nT (A)=T (A)2. Pushing out the last short
exact sequence by , we get a short exact sequence

, 1 bKerOn (Fze) T WAETIRZI

\"

(15.14) 1 I

1: Moreover, the above short exact sequence is equipped with a section s of f.

We can also arrive at the above short exact sequence by using our local discussion in the
previous subsection. We have:

Q

1 I v ! v bV(Ker(\,))nHl(F\,;ZE) ! H1(F;T)[2] 1
Pushing this out by the sum map v> ! > and denoting its kernel by (y2)!, we obtain1 !
! Lo TKer(W)InHI(Fy; Z6) =(y2)? CORYETIZI L

which is the exact sequence in (15.14).

To reformulate the above discussion in the language of characters of component groups,
let us introduce the following notions.

Denition 15.15. Fix a global A-parameter = gk With 2=1,

(i) For each place v, the sign character of S | is the nontrivial character , of S V=S°v.

(ii) For any nite subset of places of F, we set
Y Y
= v 1Vv2
v2

and call a global sign character of S .. We say that is automorphic if it is trivialon S .
This holds if and only if jj is even. The set of automorphic sign characters is a subgroup of
Irr(S .a).

(iii) Set

[Irr(S .a)] = Irr(S .a)=fautomorphic sign charactersg:

Summarizing the above discussion and applying global Poitou-Tate duality [Mi, Thm.
4.10], we obtain:

Proposition 15.16. Fix a global A-parameter = .k, as above with 2=1.(i)

If = 1, one has the following commutative diagram of short exact sequences:

1 - ! b(Ker())nc?;f/Hl(Fv;ZE) "0 OHYE T2 !
1 [
1 [ ! re(S .a)l ! Irr(SO;A) !
3
1yrest

Irr(S )
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which are equipped with a canonical section s for f given by the image of H1(F; Zg).
Finally,

Ker(rest ) = Im(s) = the image of H(F; Z¢):
Equivalently,
Ker(rest) = Im( s):

(ii) If = 1, the map = QV
SHYE;T)2] 1 dee(S .a) o [Ire(S Al

desgends to give a section

Then
Ker(rest) = Im()
where rest : [Irr(S ;a)] ! Irr(S ).

It is interesting to observe the following subtlety. When = 1 in the above lemma. it is of
course possible that , = 1 for some places v. Let be the set of places where , = 1. Then
for places v 2 , recall by Proposition 15.12(iii) that the map

v i HY(Fy; Ze)=b(Ker(y)) = HY(Fy; T)[2] ! Irr(S )

is only injective but not surjective: its image is a subgroup of index 2. Hence, we only have
an injection

Y Y (1

v H7(Fv;Ze)=by(Ker(y)),! Irr(S ;a):

\" \"
However, the composite of this injection with the projection to [Irr(S ;a)] is surjective. This
amounts to seeing that given any 2 Irr(S ;A), one can twist by an automorphic sign
character to ensure that at all places v 2 , , belongs to the image of ..

16. A-packets and Multiplicity Formula

After this long preparation, we are nally ready to dene local and global Arthur packets and
establish the Arthur multiplicity formula for the A-parameters = gk considered

above.

16.1. Near equivalence classes and Arthur’s conjectures. A global A-parameter =

£;k;[) as above (with E xed) gives rise to a near equivalence class of representations of
Ge(A). Namely, for almost all places,  is un||’almied and

1=2
. Frob,; & 1, 2 PGSOg(C)oe Wi
Qv

gives a semisimple conjugacy class in PGSOg(C) Frob,, which in turns determines an unram-ied
representation of Gg(Fy). We denote the associated near equivalence class in A, (Gg) by A3.

(Ge).

To a rst approximation, Arthur’s conjectures describe the structure of this submodule A;;
(Gg). Though we have already discussed these conjectures in x3.3, we highlight the two key
points here for the convenience of the reader:
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(Local) One expects to have a local A-packet ,» Which is a nite multi-set over
Irr(Ge(Fy)) equipped with a map
o Vodrr(s )
We may thus view  as a nite length representation of S Gg(Fy):
M
v = \%
v2lrr(S )
(Global) One has:
M
Az; (GE): dim Homs ( ,'C)
21rrS ;A
where
- (
Yo
w 2 Irr(S a) = Irr(S ,)
and :=

vv-V
We shall see that the square-integrable automorphic representations we have constructed by
theta lifting in x14 verify the above conjectures of Arthur.

16.2. Theta lifts and near equivalence class. Given a global A-parameter = .,

we have the pair f; g of automorphic characters of Te.k.~For any C 2 ¢.x, we have noted in
x4.6 that there is a pair of isomorphisms

(16.1) c;ctiHeE Tk

of algebraic tori over F (associated to the two choices of (B;;) with C corresponding to E
,! B). Pulling back and !via , we optain a pair of automorphic characters ! of H? =

C
AutEC(C)O. Set

Vcll A(Hc)

to be the submodule spanned by all irreducible summands whose restriction to Hg contains
¢ or 1 ¢; this submodule is thus independent of the isomorphism ¢. In earlier sections,
we have studied the theta lifting from A(H¢) to A, (Gg). From our local results, one sees
that the theta lift of the submodule V¢[] is contained in the near equivalence class A;. (Gg).
More precisely, Corollary 14.6 gives

Proposition 16.2. Given = g.«.q,

M
V[ |:= (Vcll) Az; (Gg):
C2¢g;x

Moreover, if Vc([]) = mc() , then

M b
(Vel) = mc() *(:
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16.3. Local A-packets. Our goal in the remainder of this section is to show that the sub-
module V[ ] in the above proposition can be described in the form dictated by Arthur’s
conjectures. Let us rst collect together all the local components of the constituents of V

( E;K;[])-

Denition 16.3. Given = gk Set

Evikeslv] = F(Cvsv) 2 €k, Irr(He, (Fy)) tviHe (Fy) v &v OF V.8
and
.= fe,(v) 1 (Cysv) 2 Ev;Kyv;[v18 Irr(Ge, (Fy)):

We have shown in Theorems 12.1, 13.1, 13.2 and 13.3 that for (Cy; ) 2 ¢ .k i ],Vthevz theta
lift ¢ (v) is nonzero irreducible. Moreover, is a set (rather than a multiset). It

is clear that the set contains all possible local corvnponent at v of the constituents of V (
£.k;[1); this will be our denition of the local A-packet associated to v. Observe that,

by denition, there is a natural bijection

v | EV;KV;[V]:

16.4. The bijection j ,. Our next task is to construct a natural bijection
I odrr(S )
or equivalently a bijection
j v ZIrr(S v) I EV;KV}[V];

which then induces the deisred bijection with ,- To do this, we shall exploit Lemma 15.1,
Lemma 15.4, Proposition 15.12 as well as Proposition 4.20.

Let us begin with some general observations:
(a) By restriction, one obtains (by Lemma 15.1 and Proposition 15.12(i)) a natural map
Irr(S ,) 1 (Irr(S°,))=S2 = HY(Fy; Te;x)=S2 = £, 5k,
Hence, each , 2 Irr(S ) givesrisetoa C, 2 g, .k, -

(b) Suppose that , %= 1 but, = 1. Then by Proposition 15.12(ii), we have:

Irr(S ) ——— H(Fy; Ze)=b(Ker(y)):
> ?
3 >
y Y
Irr(S® ) ——  H(Fy; T, k)12

For any given [Cy] 2 HY(Fy; T, .k, )[2], write
Irre, (S ,) 1 f, {IC]):
These are sets of size 2.

Now Proposition 4.20 gives a natural isomorphism of 'I‘”EV;KV(FV)=TEV;KV(FV)2-
torsors

ge, :f HICWD) ! (He, (Fy)r HO,(FV)=Te, k, (FV)%
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which induces a bijection
gc,v 1T MICW])=b(Ker(y)) ! (Hc,(Fy)r HO {Fy))=Ker(y):
Taken together, we thus have a canonical bijection

Irre, (S ,) ! (He, (Fv)r HE (Fy))=Ker(y):

Hence, given y 2 Irrc, (S ) (so that C, = Cy), y corresponds to an element a,
2 f Y([Cv])=b(Ker(y))
and then an element

gc. (@) 2 (He, (Fy) r He fFy))=Ker(y):

On the other hand, the character , ¢, of H® (F ) has two extensions to H¢, (Fy),
which are distinguished by the value 1 they take on gc,(a,). We dene

= the extension of y ¢, which takes value +1 on gc,(a,)

and set
i) =(C50) 2 gy ket

By Corollary 10.5, , is also characterized as the unique extension of , ¢ whose mini-

theta lift to GL,(E,)9®! is supported on the Whittaker data in a, b(VKer(\,)).

(c) If v = 1, then by Proposition 15.12(iii), there is a canonical section :
HY(Fv; Te, sk )21 = 1rr(S®)) 1 drr(S )
So for the two extensions of a character Ov of SOV , there is a distinguished one con-
tained in the image of . \(l)n the other hand, for any [Cy] 2 H1(Fy; Te, %, )[2], thereis a

distinguished extension of the trivial character ¢, from H g (Fy) toHc, (Fy),
namely the trivial character. Hence if , = (C,), we set !

.= 1lc, and |, = ¢,

where  is the sign character of S
HCV(FV)=H8V(FV)'

and ¢, is the nontrivial (sign) character of

v

Hence, when , Z 1, we have dened in (b) and (c) above a canonical bijection

(16'4) Irr(s v) ! Ev;Ky;lv] = f(CV'V) 2 Ev;Kv;lvl :[CV]Z = 1g'

To complete the construction of j ,, it will now be convenient to consider dierent cases,
depending on whether (E,; Ky) = (eld; split) or not, and whether ,, =21 or not.
(1) Suppose rst that (Ey; Ky) = (eld; split). Then S , = S | is an elementary abelian 2-
group. If =21, the (16.4) already gives the construction of j ,- On the other
hand, when 2 =1, thensS , = SO . Fory 2 Irr(S ), we set

He (F
=Ind "1 e o
v

v HO )

recalling that H¢, (Fy) = H@ (Fy) for any [Cy] 2 ¢, ;k, -
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(2) Suppose now that (Ey; Ky) = (eld; split), so that v is necessarily a non-archimedean
place of F. We x the map |, (as opposed to considering it as a conjugacy class of
maps) and suppose that yjw,, corresponds to the character y (as opposed to 1) of

Te¥k, - Then Proposition 15.12 and Lemma 15.4 give
Irr($°,) = HY(Fy; Te,ix,) = €, = Bra(Fy) = 2=3Z;

Thus, an element , 2 Irr(S° ) gives rise to an E,-twisted composition algebra C,
and then a central simple algebra D, 2 Brs(F,) with an isomorphism

i, = ip, tHe (Fv) ! Telk,:
Explicitly, we have two possible twisted composition algebras
Cy = (Ey,! Ms3(Fy)) and C, = (Ey,! DJ);

where Dy, is any of the two cubic division F-algebras. Moreover, the two isomorphisms
ip, and iPop dier from each other by composition with inversion. We recall also that

[Hes(Fy) :HO(Fy)] = 2, but HE (Fy) = HOC(FV).

We now consider two cases:

(a) 2= 1. In this case, one has S , = S® = 3, 50 (16.4) tells us nothing in this
case. To speciy the bijection

jouler(S ) =2=3Z 1 gk

the trivial character of S | is sent to the element (C}; [v]) 2 ¢

v

TN where
‘v v v

’

[v] is denved as in case (1a) above. For a nontrivial character , of S , we set
j V(v)= (Cv ;v i\,):

We note that the above recipe is independent of the choice of the representative
v in its conjugacy class. Indeed, if we had used the map v 1 (which corresponds
to ,1), then one has an equality of the component groupsS , = S 1 as subsets

of S o (S, S3). However, an element of the latter which conjugatves v to y 1
induces not the identity automorphism of S  but the inverse automorphism.
This implies that ’

W)= a0t
so that the above recipe is independent of the choice of the representative map

v in its conjugacy class. A better language to express this is to work with the
projective systems of [ ] and [S V], as we did in [GS4, Prop. 3.2], where a
similar situation arises.

(b) % 1. In this case, we have the short exact sequence
1 ! SOV = 3 ! S v - 53 ! 52 ! 1,'

sothatS is the nonabelian group S;. Let us denote the irreducible representa-
tions of S3 by 1, (the sign character) and r (the unique 2-dimensional irreducible
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representation). Because S , = S ,=SO =S,, (16.4) already determines for us

v

j ,(1)andj ,(). Hence we have no choice forj (r):

()= (Cysv e, )

This completes our construction of a canonical bijection

j v :Irr(s v) I EV;KV;[V];
For any y 2 Irr(S ), ifj ,(v) = (C,;,), we write

v i= e, () 2 Irr(Ge(Fy)):

16.5. Global A-packets. We come now to the global setting. Without loss of generality,
x a global A-parameter, or more precisely a map
= EK : We 1 So (52 53) PGSOg(C) 0 S3

and suppose that its restriction to W corresponds to the Hecke character of the torus
Te.x. The PGSOg(C)-conjugacy class of  then corresponds to the pair [] = f; g of Hecke
characters of the torus Tg.k.

As we explained in x16.4, the local A-packets are equipped with canonical bijections j

v :lrr(s v) l Ev}va[v] I v

The global A-packet associated to  is simply the restricted tensor product of the local
ones, so that

v 2 Irr(S ;a)g:
The irreducible summands of V[ ] A,. (Gg) are isomorphic to elements of

16.6. Multiplicity formula. Our remaining task is to verify that the Arthur multlpI|C|ty
formula holds for V[ ]. In other words, for each =
vv, we need to determine the multiplicity of in V[ ]. Now

ve, () where j ,(v) = (C,;,) for each v.To
determine the multiplicity of in V[ ], we consider the subset
E;K;[1; E;K
consisting of those C’s satisfying:
for each place v of F, there is an isomorphism
v:Cy:=C
F Fv = C,:
Note that the isomorphism  is unique up to composition by elements of H¢ (Fy),
and so induces an isomorphism

v:iHc, = Hg,

which is well-determined up to conjugation. Hence,  is a well-dened element of
Irr(Hc, (Fy)). In particular, we have a well-dened abstract irreducible representation

vy Vv of Hc (A)
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such that
abs( ) = as abstract representations.

the representation .c is automorphic and hence occurs in V¢[].

To decide if ;¢ is automorphic, an important role is played by the following diagram:

Hcov &
v -rEv;Kv
H@V

Here ¢,y is the localization of ¢ at the place v and we recall that ¢ is well-determined up to
conjugacy by Hc(F), and likewise y is well-determined up to conjugacy by Hc (Fy). Itis
natural to ask if this diagram is commutative, or can be rendered such. We have:

Lemma 16.5. The above diagram commutes up to inverting, i.e.

- 1
v V= Cyv or Cv-

Hence, if Hc(Fy) = H(C’(FV), then the above diagram is commutative by replacing , by
Vl if necessary. In particular, if Hc(F) = HOC(F), then the above diagram can be made
commutative at all places v (by appropriate choices of , at each v).

For C 2 g.x;q;, the multiplicity mc(;c) of ;c in Vc[] is in fact independent of C, by our
discussion in x14.2. We thus denote this multiplicity by m() > 0. Given this, we see that

Multiplicity of in V[ ]= m() #g.x;q);:
To establish the multiplicity formula, we need to show that the above number is equal to

1 X
m:=h;lis = — tr(((s))):
#S 0 5ys
We consider the dierent cases of = gk in turn in the subsequent subsections.

16.7. K is a eld and 2 = 1. This is in some sense the most nondegenerate case, as all
possible local scenarios we discussed in x16.4 can occur. However, it is also the least subtle
case because

S = flg sothat m = dim:
Let S denote the nite set of places v of F where C is associated with a cubic division
algebra; at these places, we have (Ey; Ky) = (eld, split). We have a decomposition
s=5{s®
where S Oconsists of those places v where ,, 2 1. Then

1; ifvaso

dim v 5 ifv2 s
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so that
m = dim = 2#5;: °

We now need to determine the size of g,.;;;. For C 2 g.,), corresponding toE ,! B

(for a central simple algebra B over K of degree 3, equipped with an involution of the
second kind), B is ramied precisely at v 2 S. The number of possible C’s is, at this point,

( 2#5 1if S is nonempty; 1;
if S is empty.
However, we also need to impose the condition that ¢ is automorphic.

Assume rst that S is nonempty. For any C 2 g.x.;;, we have Hc(F) = HO(F). c
From our discussion in x14.2, the abstract representation .c is automorphic if and only if

its abstract restriction to H%(A) contains ¢ or 1 ¢ = 1n othgr words, we need
JHO v v G for all places v:
vC
for one of the two choices of .
Now ( Yooy
v  + ., ifv2Sand, =1 2

jpo =
v T; otherwise.

From this and Lemma 16.5, we see that the desired containment holds for any v 2 S® for
both choices of .

It remains to consider the places in S®, where we need the following to hold:
Vy V=T vVvCv:
This identity xes ¢,y for every v 2 S%. In other words, if ¢ is associated to E ,! B for a pair

(B;), then the invariant of By for every v 2 S® is xed, and we only have the freedom to dictate
the invariant of B, atv 2 S. C

Hence, the number of possible (B;)’s is 2#5 and

§ ens - 2:: ; 1if soo i; .nonempty;

2 ; if SPis empty.
On the other hand, by our discussion in x14.2,
1; if S® is nonempty;
2; if SY is empty.
Taken together, we see that
m() #e..qp; = 2%° = m; as

desired.

The case when S is empty is dealt with similarly, with both quantities equal to 1; we omit
the details.
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16.8. K is a eld and 2= 1. In this case

S = 522
Given . =
v 2 Irr(S .a), let S be the nite set of places v of F where C is associated with a cubicv: division
algebra. Then  is the 2-dimensional representation r of S = S3 if

v 2 S, and y is 1-dimensional otherwise. Then

m = dim Homs, (r
#s .

vasv) = 2#5 1if S is nonempty. On the other ha(nd, if S is empty,
then

1 b 1if b is even;
m = 2(1+( 1)°)= 0ifbis odd.

where b is the nite number of places v of F where  is nontrivial on S

Assume rst that S is nonempty. For any C 2 .., Hc(F) = HOéF), and if C is
associated with E ,! B , then B is ramied precisely at places in S. Further, for .c to be
automorphic, we need to verify that, for one of the two choices of ¢, one has

v ViHc(Fy) = v Gv for all places v.
In fact, since 2 = 1, it is immaterial which of the two ¢’s we use. Now

jHC (By) = v\ for all v.

Hence the desired equality follows from Lemma 16.5 and the hypothesis that 2 = 1. In other
words, ;¢ is necessarily automorphic for any C 2 ¢.¢,[;;, with mc(;c) = 1. Hence,

so that
m() #e;;0); = 2#5 1=
as desired.

Consider now the case when S is empty, so that is a character of S .a. In this case, C, 2
H(Fy; Te ;k )[2] for all v, and so by Lemma 15.5, there is a unique C 2 H*(F; Tg;«J12] so that
C.y=C for aVII v, and we need to determine if is automorphic for H¢ . For this, we shall
appeal to Proposition 15.16 and Proposition 4.20.

By Proposition 15.16, we see that [Irr(S .a)] is divided into two equivalence classes, de-
pending on whether the restriction to S = , is trivial or not. The distinguished class,
with trivial restriction to S , is thus the one for which m = 1 (instead of 0). Proposi-tion
15.16 says that this distinguished class is precisely the one which contains the image of a
section HY(F; Te.x; ! Irr(S .a). Equivalently, it is the image of the natural map
HI(F;Ze) ! QHL(Fy;Ze) | [Irn(S a)l.

For with m = 1, there is thus an element a 2 H1(F; Zg) and an automorphic sign
character such that for all places v, y ,, corresponds to a under the bijection

H(Fy; Ze)=b(Ker(y)) f *(IC,]) bodre(s )
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in Proposition 15.12. Observe that m = 1aswell, and = ¢ ., where ¢ . is the automorphic
sign character of Hc nontrivial precisely at places in . Hence in deciding the automorphy of
, there is no harm in assuming that is empty, by replacing by if necessary.

By Proposition 4.20, the element a 2 H1(F; Zg) gives rise to an element
g(@a)2 He (Fy) r He Fy) for each place v.

Now is automorphic if and only if (g(a)) = 1. But its local component is charac-terized
by the property that
vig(a)) =1 for all v.

In particular, is automorphic when m = 1, as desired.

On the other hand, if m = 0, it is clear that is not automorphic, since diers from an
automorphic o by a twist of a global sign character of H¢c  which is the local sign character at
an odd number of places.

16.9. K is split and 2= 1. In this case,
S =3;

For a given 2 Irr(S ;a), let S be the nite set of places where C is associated with a
cubic division algebra. For v 2 S, E, is necessarily a eld. We have a decomposition

S =5%t 5%
where S° consists of those v where 2 = 1. Hence, for v 2 S%, S = S3 and y is the 2-

dimensional irreducible representation r of S ; af all other places, is l—ﬁimensional. For places
v2S% s = 3and we further decomposes

ST s qs,”

where S consists of those v such that , corresponds to the element 1=3 2 Z=3Z = Irr(3) and
S., th8se v such that , corresponds to 2=3. For ease of notation, let us set

a= #S;' by=#ST and by= #S.T:
Considering the pullback of y to S , we have:
8
21 ifv2S;vjs
= v; ifv2 S%;
>
* the sum of the two nontrivial characters of 3, if v 2 S°.

Hence,
1
m= _ 2%+ ( 1)2 b1 b4 1)20 M
where 2 C is a primitive c(u%e root of 1. To further explicate the above formula, we have
o (28+2( 1)%)=3; ifby b= 0 mod 3;
T (224 ( 1)2*1)=3; ifby b= 0 mod 3.

In particular, if S is empty (so that a= b; = b, = 0), we see that m = 1.
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We now enumerate the set ., Any C 2 gy, corresponds to E ,! B* for a
central simple F-algebra B ramied precisely at S. Assume rst that S is nonempty, so
that Hc (F) = H(C’(F) for any C 2 g.¢.[;;- To check if ;¢ is automorphic, we need to veify
that, for one of the two choices of ¢, we have

v VIH (R v Gv for all places v.

Now ( v HOV(FV)

j - v + ., ;ifv2zSand?=1 v
v ,§ otherwise.
So the desired containment holds at all places outside S%.

It remains to consider the places v 2 S®. For such a v, we need to verify if

Vy V=T v Gy
This holds if and only if
CGv =y v-
In other words, if . is associated to the associative algebra embedding E ,! B, then the
invariants of B at v 2 S® are constrained by , as follows:

8
1=3; if v 2 94;
2=3; if v 2 8,
1=3; if v2 S9;
7 0; otherwise.

inv(By) =

We leave it as an amusing exercise to verify that the number of B’s satisfying these require-
ments is equal to m (with m computed above). It follows that

( m; if S® is nonempty;

# el = m=2; if S© is empty.

However, from the discussion in x14.2, we have:

1; if S® is nonempty;
m( )= 2. if SO is empty.
Taken together, we thus conclude that, when S is nonempty,
m() #e.x;qp; = m;
as desired.

Now consider the case when S is empty. In this case, the only possible C 2 g, isC*
corresponding to E ,! M3(F), and H¢+(F) = HO +(E ). By our discussion in x14.2, we see
easily that .c. is automorphic with mc+(.c+) = 1. Hence

m() #e.k;;; = 1= mas

desired.
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16.10. K is split and 2= 1. In this case,

S = S3
and we x an element sg in S3n3, sothatS = 30S, andS = hsgi. For all places v, we then
have S , = o(SWrv) 0 ».

Given an, let S be the nite set of places where C is associated to a cubic division algebra.
Then forv2 S, S , S3 and , is the 2-dimensional irreducible representation r of
S3. For all other v, y is 1-dimensional. On pulling back to S = S3, we have

8
z1; ifv2S and y(so) = 1;vjs
= ; ifv2 S and y(sg) = 1;
>
“r; ifv2S.
Hence, 1
m= " 2% 4+ 2 ( 1)* if S is nonempty,

6

and if S is empty, 1 ifbi
; if bis even;

1 b
m=3 01" = 4 ifpisodd.

2

where b is the cardinality of the set of places v where ,(sg) = 1.

We now consider the set g.¢.[j,. For C 2 g.,[),, associated to E ,! B* say, we see that B
is ramied precisely at S . We know that

#fB 2 Br3(F) : B is ramied precisely at Sg = _ 3%° + 2 ( 1)

3
if S is nonempty, and is 1 if S is empty.

Assume rst that S is nonempty, so that H¢ (F) = H© (E) forany C 2 g;;;- Then for ;¢
to be automorphic, we need

v VIHC(Fy) v Gv for all v
for one of the two choices of ¢. Now

Vch ¢F,) = v . SO that

.c is automorphic if and only if
Vy v v Gy for all v.
By Lemma 16.5, this holds automatically since 2 = 1. Hence ¢ is always automorphic,
with mc(.;c) = 1 (by the discussion in x14.2), and
#E;K;[];:: 6 %#S + 2 ( 1)#5 =m

as desired.

On the other hand, if S is empty, then the only possible C 2 ¢.x,;; is C* corresponding to E
,! M3(F). This is treated in exactly the same way as the corresponding case when K
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is a eld, using the global Poitou-Tate duality summarized in Proposition 15.16. We omit
the details.

To summarize, we have shown the following result which is one of the main global theorems
of this paper:

Theorem 16.6. Let = ...;) be a given global A-parameter of G¢ over a number eld F.
Let 2 Irr(S ;a) be an irreducible character of its adelic component group with associated
representation in the global A-packet . Then the multiplicity of in the submoduleV [ ] Aj;.
(Gg) is equal to

m = dimHoms ( ;C):

16.11. Main global theorem. If myisc() denotes the multiplicity of an irreducible rep-
resentation in the automorphic discrete spectrum A,(Gg), then the last theorem shows that

Mdisc() M for any 2 Irr(S .a).

In this nal subsection, we shall show the reverse inequality and hence strengthen this in-
equality to an equality.

The argument is analogous to that for the cubic unipotent A-packets of G, given in [G].
The proof will require two ingredients: one local and the other global in nature. We begin by

describing these two ingredients. Hence, we x a global A-parameter = g and
vv 2 Irr(S :A), v 50 that =
Vy =
Vabs (v)

(Local) For each place v of F, and for each nondegenerate E,-twisted Bhargava cube

with associated character , of Ng, (Fy), we have

( f C
v v; I Cv = v;

(16.7) Homp, (ro)(u5 ) = K

0; otherwise,

as a module for the stabilizer Mg ; QF\,) of . Here, , is either the trivial
character or the sign character of Me_; gF\,) = Hc , (Fy) depending on whether
l'k,=F, ( 1)=+1or 1.

This result is Proposition 12.3 in the nonarchimedean case. For archimedean v,
note that the Hom space here refers to the space of continuous linear functionals of
(a§ a Casselman-Wallach representation). The result for archimedean v will be shown
in a paper with J. Adams and A. Paul, where we studied the archimedean theta
correspondence and prove the results in x13.

(Global) Let
g;x; = fC 2 g.¢ : Cy = C, for all places vg:

For any embedding f : ,! A(Gg), there exists C 2 .k, such that the (-Fourier
coecient of f() is nonzero. We shall show this as a consequence of Proposition 16.9
and Corollary 16.10 below.
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Taking these two ingredients for granted, we proceed to show the reverse inequality. By
the consideration of Fourier coecients, we have a natural map
M

Homg, (a)(; A(GE)) ! Hompy, (a)(; C)ME;c(F)
C2e,x;

The global ingredient shows that t?(is map is injective, so that one has an upper bound

mdisc() dim HomNE(A)(; C)ME;C(F):
CZE;K;
Here, we have used the fact that Qv K s an automorphic character and hence is trivial on
Hc(F). The local ingredient, on the other hand, shows that for each C,

dimHomy,(a); ¢)Me, cF) = dim " (F) = dim Homy () (-; C):

The latter dimension is simply the automorphic multiplicity of - in A(Hc). We have seen that
this automorphic multiplicity is independent of C 2 g.x; and have denoted it by m() = m().
Hence, we obtain

mdisc() m() #E,‘—K; =m;
where the second equality is precisely what we showed when we veried the Arthur multiplic-ity
formula for the space of global theta liftings. Summarizing, we have the following theorem
which strengthens Theorem 16.6 and which is the main global theorem of this paper.

Theorem 16.8. Let = g..;) be a given global A-parameter of G¢ over a number eld F.
Let 2 Irr(S ;a) be an irreducible character of its adelic component group with associated
representation in the global A-packet . Then

Mgisc() = dimHoms ( ; C):

It remains to establish the global ingredient above. For this, we recall the following notion
from [GS1]: when F, = R or C, we say that a representation , of Gg (Fy ) is weakly minimal if
the associated variety of its annihilator in the universal enveloping algebra is the minimal
nilpotent orbit. Now we note:

Proposition 16.9. Let = C be an irreducible automorphic subrepresentation of G¢ such that
v is not weakly minimal for at least one archimedean place v. Then there exists a
nondegenerate cube C 2 Vg (F) and f 2 such that fN; . =0

Proof. Let f 2 and consider the Fourier expansion of the constant term fz—along Ve =
NEe=Z. If this expansion is supported on cubes of rank one, then is weakly minimal in the
sense of Denition 4.6 in [GS1]. Then, by [GS1, Thm. 5.4], , is weakly minimal at all
archimedean places, which contradicts our assumption. Moreover, since E is a eld, V (FE) has
no rank 2 elements. Thus, f—hag a non-trivial Fourier coecient for a cube C° of rank 3 or 4.

If COis rank 3, then by Proposition 5.5, we can assume that C%= (0;0;e;0) withe 2 E, Let
Ue be the unipotent radical of the 3-step maximal parabolic subgroup Qg in Gg, with Ng and
Ue in standard position, such that co restricts to a non-trivial character of [Ug; Ug].
The character of [Ug; Ug] thus obtained is associated to an sl,-triple corresponding to the
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non-special nilpotent orbit 3A; (see the introduction to [JLS]). By [JLS, Cor. 6.6] (the
conditions of Lemma 4.3 there are satised since the orbit 3A js not special) there exists x
2 F such that , with C = (x;0;e;0), fT: 0 for some f 2 . This proves the
proposition. '

Corollary 16.10. For any embedding f : ,! A(Gg), there exists C 2 g.x; such that the
c-Fourier coecient of f() is nonzero.

Proof. By the local ingredient (16.7), we see that the only possible nonzero nondegenerate
Fourier coecients supported by f() correspond to the nitely many C 2 g.x.. Hence the
corollary follows from Proposition 16.9.

17. Appendix A: A theta correspondence for E5

In this section, we consider a dual pair G Hc¢ in the split adjoint group of type E7, where
Hc = Autg(C) for a 4-dimensional E-twisted composition algebra C. This theta
correspondence (and its version for inner forms) can be used to construct the A-packets
corresponding to a root SL,, as we discussed briey in x3.7. We will not launch into this
detailed study in this paper. The main purpose of this appendix is simply to compute the
theta lift of the trivial representation of Hc = SL,(E)=5; this result is needed in our paper
[GS3].

17.1. Twisted composition. Assume that B is a composition algebra over F. Let N (x) = xx
and Tr(x) = x + x be the norm and the trace on B. Then C 8 = B B B has a
structure of an F3-twisted composition algebra, given by

Q(x1;x2;x3) = (N(x1); N(x2); N(x3))

(x1;%2;x3) = (2%; ¥xX; X%)
Nc(x1;X2;x3) = Tr(xsxzx1):

The symmetric group S3 acts on Cg as F-automorphisms by permuting the three summands of
Cg, with the action of odd permutations twisted by the map (x1;x2;x3) ! (x;x%;%). Let E
be a cubic etale algebra over F. Since Aut(E=F) is isomorphic to a subgroup of S3, by xing an
embedding of Aut(E=F) into S3, we obtain an E-twisted composition algebra C; by Galois

déscent.

We shall now describe the group Aut(CE) of automorphisms of C'; for B = My(F). In
this case xis dened as the adjoint of the ma%rix X,

X= g g if x = e a
Assume rst that E = F3. Let

GLy(F3)9°" = f(g1;82; 83)j detgy = detg, = detgag
This group actson Cg = B B B by

g(x1;x2;x3) = (g3x18, 15 81%285 *; 82X3g; 1)
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It is fairly straightforward to check that this action preserves Q and . An element g acts
trivially if and only if it belongs to F. The group GL (F3)dezt=F is the group of F-points of
the algebraic group SL>(F3)=,. The action of S3 on Cg normalizes that of SL,(F )=5, on
which 3t acts by permuting the 3 factors. Hence, for a general cubic etale algebra E over F,
the group of F-automorphisms of Cy (with B = M (F3) is

Aute(CE) = SLy(E)=; 0 Sg;
and the group of E-automorphisms is its identity component
Aute(C5) = SLy(E)=2:

Since

HY(F; SL2(E)=2) = H2(F;2) = Bra(F)
we see that the E-isomorphism classes of E-twisted composition algebras C of E-dimension 4
correspond to isomorphism classes of quaternion algebras. In particular, as B varies over

quaternion F-algebras, the algebras CE exhaust all E-isomorphism classes of E-twisted com-
position algebras of E-dimension 4.

Via the Springer decomposition, we may connect the above discussion with the theory of
Freudenthal-Jordan algebras of dimension 15. The split Jordan algebra of dimension 15 isJ;

= F3 Cwm,(r) and its automorphism group is PGSpg = Spg(F)=2. Since

H(F; Spe(F)=2) = H?(F;2) = Bry(F);
we see that the isomorphism classes of Freudenthal Jordan algebras of dimension 15 are
parametrized by isomorphism classes of quaternion algebras as well. If J is a form of J, let[J]
2 Bry(F) denote the corresponding Brauer class. Similarly, for B 2 Bry(F), let Jg bethe
corresponding Freudenthal-Jordan algebra. It is clear that [J] = B ifJ] = E Cgp.

17.2. Some embedding problems. Let Cg be an E-twisted composition algebra of E-
dimension 4. Every element x in Cg satises the quadratic equation

2(x) + Q(x)(x) Ncg (x)x = 0:

If wex e= Q(x) andd= N¢ ()g), such that the cube = (1;0; e; d)is non-degenerate, then x
and (x) span an E-twisted subalgebra of E-dimension 2, corresponding to the cube. Thus, in
order to understand embeddings of the E-twisted composition algebras of E-dimension 2 into
Cg, it suces to understand solutions of the above equation.

Proposition 17.1. Assume that E = F3 and consider CB with B = M3 (F). The group
Aute(Cg) = GLy(F3)9et=F acts transitively on the set of elements x 2 Cg such that
Q(x) = 0, and Nc(x) = 1. The stabilizer Stabayt,(c,)(xo) of

xo=((33):(38):(58))
is the quotient by F of the subgroup of GL,(F 3) consisting of elements @ 0

.. a0 . ao
0d 0d od

In particular, Stabay: (¢ )(xo) E. The stabilizer of xo in Autg(Cg) = Aute(Cg) 0 Szis a
semi-direct producf F o Sg, where Sg is a \quadratic twist" of S3: we multiply any
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transposition in S3 by
w=((248);(948):(948)):
Proof. Let x = (x1; X2;x3) 2 Cg such that Q(x) = 0, and N¢ (xB) = 1. We want to show that

X is conjugated to xg by an element in GL,(F3)9et, Since Q(x) = 0, we have det x; = 0for all i.
Hence, we can write

X1 = V3 Wy ;X2 = Vi W3iX3= Vy Wy ~
for some column vectors v; and w;. Note that
Ncg (X) = Trixaxzx1) = (Wi vy) (wy 'v2) (wy V3) = 1:

Hence, all vectors are non-zero, and we can pick g1;82;83 2 SL,(F), so that gi(vi) = (1;0)>
for all i. Thus, we can assume that v4 = (1; 0)” for all i. Since (w; v~) s, 0, wi = (aj; b;) with
a;j = 0. Hence, using the unipotent g; stabilizing (1; 0)>, we can arrange all b; = 0. Thus
X is conjugate to

a. 0 a, 0 a 0

do s do ; 0O
such that ajasaz = 1. But this element is conjugated to xg by a triple of diagonal matrices.

The stabilizers can be computed directly.

Let Cg be an E-twisted composition algebra of E-dimension 4. For a nondegenerate
E-twisted cube = (1;0 f; b), consider the set

=fv2CjQ(v)= f; Nc(v) = bg:

Recall that to , we attach an E-twisted algebra C of E-dimension 2, equipped with a
reduced basis fv; (v)g. Any element X 2
(F) denes an E-embedding of C into Cg, where v is sent to x. Hence

is in bijection with the set of embeddings C ,! Cg.

Corollary 17.2. Assume that F is a local eld, and Cg is an E-twisted composition algebra
of E-dimension 4. If
(F) is nonempty, then Autg(Cg) acts transitively on

(F).

Proof. Fix a point vg 2

(F). By Proposition 17.1, GL,(E)det acts transitively on

(F)
(through its quotient GL,(E)det=F = JHe (F)) and the stabilizer of vy 2
(F) is a maximaol torus Ty in GLo(F) GL,(E)9et. Hence the F-rational orbits under
GL,(E)det js paramietrized by H (F; Ty ), which is trivial since Ty = Resx-f Gm for some
guadratic etale algebra K over F. The corollary follows.

Next, we need to understand when

(F) is nonempty:
Proposition 17.3. Let B = M5y(F). Let C be an E-twisted composition algebra of E-
dimension 2. Then C embeds into C§ if and only if J = E C is not a division algebra.

Proof. If ] = E C is not a division algebra, then by [KMRT, Thm 38.8], ] = J3(K) fora
guadratic etale algebra K over F. Since K embeds into B = M5(F), we deduce that J
embeds into J3(B) and hence C into C§, whereJ3(B) = E Cg .k

Now assume thatJ = E C is a division algebra. By tensoring with K ¢ if necessary, we can
assume without loss of generality that E is a cyclic eld, with the Galois group generated by of
order 3. Then Cy; = M;EE), and we have

Q(x) = det(x); (x) = §(; and NcE (x) = Tr(xzxx):
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On the other hand, there exists 2 F such that C = C() = E E, with
Q(a;b) = ab; (a;b) = ( 'b*;a*) and Nc(a;b) = Ne(a)+  'Ng(b):
Moreover, since E C is a division algebra, 2 Ng_ (E).

Assume, for the sake of contradiction, that C() embeds into CE. Let x be the image of
(1;0). Since Qe (x) = Q¢()(1;0) = 0O, the determinant of x is 0. Hence x = v w> for two 2
1 column vector$ v and w, with coecients in E. One checks that

Nce (x) = Ng=p(w” v):

This implies that N¢()(1; 0) = = N e (x) is the norm of an element in E, a contradiction.
B

17.3. D4 geometry. Now let O be the 8-dimensional composition algebra of split octonions.
The automorphisms group of Co is a semi-direct product of the split simply connected group G
of type D4 with S3. We remind the reader that S3 acts on Co = O O O is by permuting
the three summands of Co, with a twist by the map (x1;x2;x3) ! (x;%;%) for odd
permutations. Tits [Ti] has given a beautiful description of the ag varieties for G in terms
of geometry of Co. We follow the exposition of Weissman [We2].

Fix a triple (i; j; k) of integers 0 i;j; k 2. Let Fijk be the set of subspaces X
Y Z Co

where X; Y;Z are subspaces of O of dimensions i;j; k, respectively, such that Ng(X) =
No(Y) = No(Z) = 0and XY = YZ = ZX = 0. Then Fjj¢ is a ag variety for G with
respect to a parabolic P = MN, as indicated in the following table, where \; is the subset of
simple roots \contained" in M.

i;j;k M

0;0;0 | fo;1;2;381;,0;0
fo;2;38 1,10

fo;38 1,11 fog
2;1;1 fig 2;2;1
f1,282;2,2  f1;2;38

Consider now, C§, the E-twisted version of Co. As we hoted in x4.11,

Ge = Aute(CE):

For i = 1 or 2, we dene F; to be the set of E-subspaces V; CF 8f dimension i such that V;
F belongs o tg Fiii for CcE
F=2C F . A pairVy Vyisafull agif E is a eld. Let P; =
M;iN; be the stabilizer of V; in Gg. Then

M SLy(F) (long root),  M1=MI*" GL(V;) = E
and

M = SL,(E) (short root), My = GL(V3)%",
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These claims can be easily checked over F. The modular characters are
u; = jNej® and u, = jdetj®
We have degenerate principal series J(s) and I(s) corresponding to P; and P;, respectively.

17.4. Dual pair. Now let F be a nonarchimedean local eld and E a cubic etale algebra over F.
Let Cg be the E-twisted composition algebra of dimension 4 associated to B = M5 (F ), with
corresponding Springer decompositionJg = E Cg. By our discussion in x6, this data gives rise
to a dual pair

GE HCB ! GBZZGJB
where Gg = Sping, HcB = Autg(Cg) SLy(E)=2 and Ggp is the split adjoint group of type
E7. Our goal is to determine the theta lift (1), where 1 is the trivial representation of Hc, (F).

For this purpose, it will be more convenient to work with an alternative construction or
description of the above dual pair which is adapted to the Siegel maximal parabolic subgroup in
G and which makes use of the interpretation of Gg as the automorphism group of an 8-
dimensional E-twisted composition algebra. We give this alternative description next.

Let S = G, be a maximal split torus in SLy(F)=, Hc. The torus S gives a short Z-
grading of gg and hg:

gg=nmnandhg=ulu

Let P = MN and Q = LU be the corresponding maximal parabolic subgroups in G and
Hc respectively. The unipotent radical N is commutative and can be identied with an
exceptional Jordan algebra J. The Levi subgroup M can be identied with with the
similitude group of the cubic form N;, with corresponding similitude character

i, :M! F:

Now the group G is contained in M and J, and under its adjoint action on N, one has the
decomposition N = J = E CE where cE is, the E-twisted composition algebra of E-
dimension 8.

Note that the M-module N is dual to N and hence can be identied with J. Since J is
identied with J using the trace form T;, we can identify both N and N with J. Under this
identication, both U and U are identied with E J. The Levi factor L is the centralizer of G¢
in M. By Proposition 6.1, L can be identied with E. Indeed, for every 2 E, letc:J ! J be
dened by

c:(e;v) ! (F= e v)
for all (e;v) 2 E CE.OThen c is a similitude of N; with ij(c) = Ng(). Henceforth, we
X an isomorphism L = E such that 2 E acts on N as ¢ . Using this identication,

iy() = jNg()j ! and the center of M consists of 2 F.

17.5. Theta lift. Let be the minimal repgesentation of G . Let
N = J be the set of elements of rank 1, i.e. X 2
if and only if x = 0 and x# = 0. As P-modules, we have an exact sequence [MS]

0! ¢t

I 1 1o
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where 2 N actson f 2 C_ ¥
) by
(Df(n) = (hpni)f(n)

where hpni is the natural pairing of N and N, and m 2 M by

(m)f(n) = jiy(m)j *f(m *nm):

Moreover, N = M
jiyi 1 jiyj 2, where pm is a minimal representation of M, trivial on the center. It follow3 that
a central element 2 F acts as multiplication by jj and jj°

on the two summands.
Considering U-coinvariants, we have a short exact sequence of Gg L-modules: 0
. o
?) [ ' N I 0;

where
? is the set of elements x 2
perpendicular to E, i.e. the set of x = (0;v) 2 E CE such that
v=0 and x* = ( Q(v);(v))= 0

Assume, for simplicity, that E is a eld. Then o
? s the set of v 2 CE spanning an E-linein F . Recall that G ;|  acts trgnsitively on F .
Fix alineV 2 E ,and let P be the stabilizer of V;. Then pder actls trivially on the line,
and we identify P;=Pd9e" with GL(V:) = E. Summarizing, we have an isomorphism of G¢
L-modules,

(o - G

, ‘1 ., C
’) IndpfCl(E)
jNgj?

where the induction is not normalized and C i (E) is the regular representation of E E  P;=Pder
L, twlisted by the character jNgj2 of L = E as indicated.

Proposition 17.4. Let (1) be the theta lift of the trivial representation of He, (F) =
GL,(E)det=F. Then (1) is a quotient J(1=2), the degenerate principal series represen-tation
associated to the parabolic P;.

Proof. Assume, for simplicity, that E is a eld. Since (1)
Th, ® is a quotient of , one
sees by passing to £ U-coinvariants Y that (1)
1 is a quotient of . Let 2 F be inthe egnter of M. Then acts trivially on 1¢, and as jj3
ar{\'dGE jj® on ,_the two summahds 6.Of ) Hence (1)
1¢ is a quotient of Indp, Cl(E)

jNej?. Hence (1) is a quotient of Ind, jNgj? . Since = jNgj3=2, it follows that Ind, jNgj?
= J(1=2).
Proposition 17.5. Let (1) be the theta lift of the trivial representation of He, (F) =

GL,(E)det=F . Let be a non-degenerate E-twisted cube, with associated E-twisted com-position
algebra C. Then

(D), , = 0if E C is a division algebra;
(1)n,; = C otherwise.

Proof. The space of twisted coinvariants is computed exactly as in Proposition 12.3,

giving

N2;



N2; :Cl(C

(F))
where
is as in Corollary 17.2. By the same corollary, if
(F) is nonempty, then it is a single Hc(F)-orbit, in which case (1)y,. is one dimensional.

On the other hand, when
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N2;
’ (F) is empty, (1) = 0. By Proposition 17.3,

(F) is empty precisely when E C is a division algebra.

Theorem 17.6. Let (1) be the theta lift of the trivial representation of GL,(E)9¢t=F. Then
(1) embeds as a submodule of the degenerate principal series 1(1=2). If E is a eld, then
[(1=2)=(1) = V, in theé notation of Theorem 18.1. Otherwise (1) = 1(1=2).

Proof. The minimal representation of Gg is a submodule of a degenerate principal series
representation induced from the Heisenberg parabolic subgroup of Gg. Via restriction of
functions to Gg, one obtains a nonzero Hc¢-invariant and Gg-equivariant map

e = (1) 1 1(1=2):

Since the spherical function restricts to a spherical function, the image must contain the
submodule generated by the non-zero spherical vector in 1(1=2). This is the whole 1(1=2)
unless E is a eld, by Propositions 18.5 and 18.6. If E is a eld, the spherical vector generates the
submodule whose quotient is V;. Néxt, we need to use the fact that

|(1:2)N2; = C

C

for all nondegenerate cubes , which is a simple consequence of the Bruhat decomposition.
Moreover, recall that V%= p(1) is the theta lift via the minimal representation of Gp (the rank

2 Eg). Hence (Vy)y,, (C = C precisely when E C is a division algebra. Combining with

Proposition 17.5, we see that the image of the map (1) ! 1(1=2) is exactly as predicted
and the kernel consists of small representations, i.e. those for which (N,; ¢ ) co-invariants
vanish for all nondegenerate cubes . Since we know that (1) is a quotient of J(1=2), to nish
the proof, it suces to show that any irreducible constituent of J(1=2) satises ,. . = 0, for

some nondegenerate .

C

To that end, we claim that it suces to check one of the following two conditions:
(a) The Jacquet functor of for any parabolic subgroup with Levi subgroup of type A; is
Whittaker generic;
(b) The Jacquet functor of with respect to N, is a Whittaker generic representation of
the Levi subgroup M.

Indeed, if (a) holds, then y,. c = 0 by [GGS, Thm. A], interpreted in our setting for the
nilpotent orbit A,. By the same result of [GGS], the condition (b) implies that [y,.y,;; = Ofora

generic character of of [Ny; N1], which in turn implies the existence of a nondegenerate such
that y,; . = 0, by the main result in [JLS] and the fact that the nilpotent orbit

3A; is not special.

If E is a eld, we have only one additional constituent Vm'an J(1=2) (see Theorem 18.2). Its
Jacquet functor with respect to N, is a twist of the Steinberg representation of M,, hence the
condition (b) holds and we are done in this case.

If E is not a eld, then we have not analyzed J(1=2). In these remaining cases, we shall treat
all representations whose exponents lie in the Weyl group orbit of the leading exponent of the
spherical quotient of I(1=2), namely (1;1;0;0) if E = F3 or (1;1;0)ifE = F K for
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K aeld. In both cases, we have two tempered representations,
(17.7) D(St) = D(St)gen D(St)deg;

which are the generic and non-generic summands of the unitary representation D(St) obtained
by parabolic induction from the Steinberg representation of the Levi group of type A,. There
are three such parabolic groups if E = F 3, but the resulting representation does not depend on
this choice, just as in the case of D(1), which is the Aubert involute of D(St). Observe that
these tempered representations satisfy the condition (a).

In order to tabulate all possible standard modules, let us recall their properties, working
with a general root system = fq;:::;,8. Let f1;:::;,g be the corresponding funda-mental
weights. A parabolic subgroup in standard position corresponds to a subset S
A standard module associated to the parabolic subgroup has leading exponents

X X
= ( xii)+ ( vyii)izs
i2s
where x; 0, y; > 0 and the rst summand is an exponent of the tempered representation dening
the standard module. Now it is easy to determine all leading exponents in the cases at hand,
and thus determine all irreducible Langlands quotients in both cases:

Case E = F3:

We have three Langlands quotients of Gg for the three maximal parabolic subgroups
whose Levi subgroups are of type A;. The tempered representation on the Levi subgroup is
obtained by inducing the Steinberg representation of the Levi subgroup of the type A; A1, that
is, whose derived group is SL,(F) SL(F). These Langlands quotients clearly satisfy the
condition (a).

There are three remaining representation: the spherical quotient of 1(1=2), the Langlands
quotient J,(Stg; 1=2) and the Langlands quotient J1(St; 1=2). For these representations we
have complete control of their (N2; ¢ )-coinvariants, since the spherical representation and
J1(St; 1=2) are the theta lifts p,r)(1) and i, (F() respectively, and Jp(Stg;1=2) is a
submodule and the only other constituent of 1(1=2). This settles the case E = F 3.

Case E = F K:

Here we have an interesting twist, when compared to the split case: there are two Langlands
quotients of G¢ forming an L-packet which prove especially challenging.

More precisely, instead of the three A3 maximal parabolic subgroups considered in the split
case, we have a maximal parabolic subgroup in the standard position with Levi subgroup of
the type B,, so that its derived group is a quasi-split SU4(K). Inducing the Steinberg
representation of the Levi subgroup of SU4(K) whose derived group is SL, (K), gives a rep-
resentation of SU4(K) with two irreducible summands. They in turn give two Langlands
quotients of G_ with the leading exponent (1;0; 1). One of these two representation is the
summand of D(1), denoted by Vlo, with (1;0; 1) as its only exponent. The other represen-
tation V is the potentially troublesome one.

Finally, we have three additional representations: the spherical quotient of 1(1=2) (which
is the other summand of D(1) besides V| by Proposition 18.5(4)), the Langlands quotient
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J(Stg; 1=2) and the Langlands quotient J;(St; 1=2). Clearly, Jo(Stg; 1=2) satises the condi-
tion (b) above. Now J ,(St; 1=2) is a submodule of 1(1=2), while the spherical representation
and Vloare the theta lifts p,(r)(1) and m,(r)(). For these representations, we have asimilar
situation as in the split case, with complete control of their (N,; ¢ )-coinvariants, and in
particular non-vanishing for some .

It remains to deal with the other representation V with leading exponent (1;0; 1). Recall
that, counting two tempered representations in (17.7), we have seven representations in all.
Let us examine the eect of the Aubert involution on this set of representations:

The Aubert involution takes the two summands of D(St) to the two summands of
D(1).

It takes the degenerate series |(1=2) to the generalized principal series | (Stg; 1=2). It
follows that the Aubert involution takes J;(St; 1=2) 1(1=2) to Jo(Stg; 1=2) I(Stg;
1=2).

From this, one deduces that the involution xes the remaining representation V, and hence (
1;0;1) is also an exponent of V. But with respect to the A, Levi subgroup, this is the
exponent of the Steinberg representation and hence condition (a) holds for V. This completes
the proof in the case E = F K.

This theorem is used in our paper [GS3].

18. Appendix B: Degenerate principal series

In this section, we analyze unramied degenerate principal series representations for G (the
quasi-split simply connected reductive group of absolute type D4 determined by E). The results
here are new if E is a eld and a mixture of new and known results if E = F K. We have used the
results and language introduced in this appendix for the description of theta lifting in the
main body of the paper.

18.1. Ane Weyl groups, when E aeld. Let A = f(x;y;z) 2 R3 jx+y+z = 0g be the 2-
dimensional euclidean space equipped with the usual dot product. Let A (we identify A with
A using the dot product) be the root space of type G such thzat = (1; 11; 0)and ; = (
1.2, 1) are the simple roots. Let W be the corresponding Weyl group. It is generated by
the simple reéctfons®; and s, corresponding to the simple roots.

Assume rst that E is unramied.

Ane roots are the ane functions + k on A where 2 and k2 Z. The ane Weyl group W is
generated by reections about the lines where the ane roots vanish. Let | 2 be the highest root.
The fundamental cell in A for W, is given by the inequalities

0<4 0<, and ;< 1:

In particular, W, is generated by s1, s> and sq, the reections about the three lines bounding
the fundamental cell. Let X A be the lattice spanned by

;= (1;0; 1)and !y = (1;1; 2):
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Then Wj is a semi direct product of W and the group of translations t; where | 2 X. We
note the following relations in Wj:

t1, = S0S152515251 and ty, = (S0S1525150)(S251525152):

Assume now that E is ramied.

Ane roots are the ane functions + k on A where 2 and k 2 Z, if is long, andk 2 1z, if
is short. The ane Weyl group W, is generated by reections about the lines where the ane
roots vanish. Let ¢ 2 be the highest short root. The fundamental cell in A for W, is given
by the inequalities

0< q; 0< > and < 1=3:

In particular, Wy is generated by s;, s, and sg, the reections about the three lines bounding
the fundamental cell. Let X A be the lattice spanned by

1. 1. 2 .

33 3"

Then Wj, is a semi direct product of W and the group of translations t; where ! 2 X. We
note the following relations in Wj:

I =(1;0; 1)and!; = (

t1, = 505251525152 and t1, = (S0S2515250)(S152515251):

Let G be the simply connected quasi-split group of type D4 corresponding to the cubiceld
E. Let | be the Iwahori subgroup corresponding to the fundamental cell. Let ‘ : W, ! Z be the
length function such that, for every w 2 W,,

[wl :1]= g™
3
hs & =S e@ e eg
So S1 S2 S1 S2 So

Let H be the Iwahori Hecke algebra. It is spanned by Ty, the characteristic functions of
Iwl for all w2 W,. As an abstract algebra, H is generated by Tg, T1 and T, corresponding to
simple reections, modulo braid and quadratic relations given by the diagrams in the above
picture, where the left diagram corresponds to the case when E is unramied. Let Ty = q

“(w) . . .
R Tw. The elements T, for dorlinant ! = nili + ny!y (i.e. ng;ny 0) form a commutative
semi-group

T T = Thio:
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Let V be a nite-dimensional H-module. Since T/} for dominant !, commute and are
invertible, we can decompose
V=YV
where, for every 2 A
r C,
v=fv2Vv (Tt q")tv = 0 for all dominant !g:
Note that V = V|+ 2 for any 2 X, the lattice dual to X. Thus, we say that ;9 are

. ha
congruent if 92 2—'X|ﬁ The congruence class of such thatV = 0 is called an exponentof V. A

representation V is a discrete series if
<((f)) <0

for i = 1;2 for all exponents of V. Exponents represented by 2 A are called real. The
exponent of the trivial representation (i.e. Tw ! q'W) for all w 2 W,) is

(2;1; 3):

The Ilwahori-Matsumoto (IM) involution changes the exponents by the sign. In particular, the
exponent of the Steinberg representation is (  2; 1;3). It is a discrete series representation.

18.2. Some representations, when E is a eld. We shall now construct small dimen-
sional representations of the Hecke algebra H that will appear in the description of degenerate
principal series.

Assume rst that E is unramied.

18.2.1. One dimensional representations. Let V be a one dimensional complex vector space
spanned by e. Let V{ be the representation of H on V dened by

Toe= e Tie= e and Tre= q3e:
The exponent of Vis
(0;1; 1):
Let Vl‘D be be the representation of H on V dened by
Toe=qe; Tie=ge and Tre= e

Then Vlw is the IM-involute of Vloand is a discrete series representation.

18.2.2. Two dimensional representations. The subalgebra generated by Tg and T; is iso-
morphic to the group algebra of S3. It is not too dicult to see that any irreducible two
dimensional representation of H, when restricted to this sub algebra, must be isomorphic to
the reection representation of S3. Thus let V be a two dimensional complex vector space

spanned by eg and e; on which Tg and T; act as matrices
1

and 0 ;
01 qq2 qqu 1
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respectively. We can extend this representation to H in three dierent ways. Two of these
extensions are easy to construct. Let Vozbe the representation of H on V such that T acts the
scalar g3. The exponents of V© arg

2i 2i 2i 2i

; 1+ 2 d(1+ —;1 —a; 2):
3Ing’ 3Ing’ ) and ( 3Inqg’ 3In"’ )

(1

This is the minimal representation. Let VéD be the representation of H on V such that T,
acts the scalar 1. Then Vz‘D is the IM-involute of V,{and is a discrete series representation.

These two representations do not have real exponents, however. We shall be interested in
the third extension such that T, acts as the matrix

1 q24q) 0¢’
6 .
where ¢ is the characteristic polynomial (over Q of the primitive 6-th roots of unity. This

representation, henceforth denoted by V,, is invariant under the involution. Its exponentsare
real and given by:

(1, 121;0)and( 1;1;0):

18.2.3. Three dimensional representations. Let V be a three dimensional complex vector
space spanned by eg, e; and e;. Let V°3be a representation of H on V such that Ty, T; and T,
act as matrices

0 . 10 1 o 1
1 qf 0 q 0 0 q 0 0
@0 g 0A;@q; 1 g2 Aand@0 a3 0 A
0 0 q 0 0 q 0 qisz(q) 1

respectively. This is the reection representation. The exponents of V°,3counted with multi-
plicities, are

(0;1; 1);(1;0; 1)and(1;0; 1):
Let V.2 be the IM-involute of V4. It is a discrete series representation.

Assume now that E is ramied.

18.2.4. One dimensional representations. Let V be a one dimensional complex vector space
spanned by e. Let V,{ be a representation of H on V dened by

Toe=qe; Tie= e and Tse= ge:
The exponent of Vis
0;1;, 1)
Let Vl‘D be be the representation of H on V dened by
Toe= € Tie=qge and Tre= e

Then V@ is the IM-involute of V,{ and is a discrete series representation.
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18.2.5. Two dimensional representations. The subalgebra generated by Tg and T, is iso-
morphic to the group algebra of S3. It is not too dicult to see that any irreducible two
dimensional representation of H, when restricted to the subalgebra, must be isomorphic to
the reection representation of S3. Thus let V be a two dimensional complex vector space
spanned by eg and e;. Then Tg and T, act on V as matrices

1

1 g2 and 9 0

0 ¢ q 1
respectively. We can extend this representation to H in three dierent ways. Two of these
extensions are easy to construct. Let Vozbe the representation of H on V such that T; acts as
the scalar g. The exponents of V, are
20 4 2i 2 i 4i 2i
= AT —)and (1+ —; —— 1+ .

3 "3lng 3Inq) ( 3 3Inq 3Inq)

This is not the minimal representation. Let VéD be the representation of H on V such that T,
acts as the scalar 1. Then Vzmis the IM-involute of V2°and is a discrete series representation.
Again, these representations do not have real exponents.

’

N[

(1

We shall be interested in the third extension such that T; acts as Tg. This representation,
henceforth denoted by V5, is invariant under the involution. Its exponents are real and given by

(1; 1;0)and( 1;1;0):

18.2.6. Three dimensional representations. Let V be a three dimensional complex vector
space spanned by e;, e; and eg. Let V°3be a representation of H on V such that Tg, T and T,
act as matrices

@ 0 q 0A;@35; 1 g:Aand@0 q 0 A
0 0 q 0 0 q 0 qz 1

respectively. This is the reection representation. The exponents of V°,3counted with multi-
plicities, are

(0;1; 1);(1;0; 1)and(1;0; 1):
Let ngD be the involute of V3°. It is a discrete series representation.

18.3. Degenerate principal series, when E is a eld. We now study the unramied
degenerate principal series representation of G¢ associated to the Heisenberg parabolic sub-
group Pe. Let e and f be the ramication and inertia indices of E over F, sothate f = 3. The
simple coroots are

1

-7 (1, 1;0)and, = ( )

12
‘e’ e

e
Let V be an irreducible representation of H. Let 2 A
C such that V = 0 i.e. the class of is an exponent of V. Then, from the representation
theory of SL,(F) and SL,(E),

If (-) =,1+ 2tz then s1() is an exponent of V.

If (<) =,f + 'an tHen s,() is an exponent of V.

If si() is congruent to and (; ) = 0 then V is at least two dimensional.
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Two exponents are equivalent if one is obtained from another by a repeated use of the rst
two bullets.

In the following, we shall consider the decomposition of various unramied degenerate
principal series representations of Gg. The representations V of the ane Hecke algebra that we
constructed above will occur in the subspace of Iwahori-xed vectors in these principal series
representations So as not to introduce more notation, we will use V to denote the
corresponding representation of Gg (F) (whose space of lwahori-xed vectors is V) as well.

18.3.1. Degenerate series I(s). Let
1
= (s #1; s
S ( 2; 7 2%
where s 2 C. Note that ¢ and  are congruent if s s°2 2'Z Slnce s(-) = f, the
equivalence class of s, for a generic s, contains the following six elements

1
(s Z;1;s )

2
These are the exponents of a degenerate principal series |(s), attached to the Heisenberg
maximal parabolic subgroup Pg. Since the representations I(s) form an algebraic family,
these are the exponents for any s. The rst exponent () is a leading exponent of I(s). The last
exponents is a trailing exponent of I(s). (It is a leading exponent of I ( s).) If V is a quotient
of 1(s) then the leading exponent is an exponent of V. If V is a submodule of I(s), then the
trailing exponent of I(s) is also an exponent of V. We would like to determine the points of
reducibility of I(s).

We say that an exponent is regular, if the stabilizer of in the Weyl group is trivial. A
representation V of H is regular if the exponents of V are regular. It is well known that
irreducible regular representations correspond to equivalence classes of regular exponents.
One checks that I (s) is regular if

3 ll) 2
- d, 3|
where the last possibility occurs only if E is unramied. If I(s) is regular, one checks that
all exponents are equivalent, and hence I(s) is irreducible, if
51 i 3 2i 2

= Iz d>
> 2 Ian ?Inq



TWISTED COMPOSITION ALGEBRA AND TRIALITY 123

and reducibility in the last case occurs only when E is unramied. In particular, I(s) is
irreducible unless s is on one of the two lists.

Theorem 18.1. The representation I(s) = I( s) is reducible only if

S = 5141- iﬁa}nd E —Zi
T 27272 n 2 3Ing

and the last case occurs only if E is unramied. At the points of reducibility, we have:

(1) I(;—) has length 2. The trivial representation is the unique irreducible quotient.

(2) I(17) has length 3. The representation V; is the unique irreducible submodule. The
representations V{ and V3 are irreducible quotients.

(3) I(3+ IIWA has length 2. There is a unique irreducible submodule and a unique irre-
ducible quotient.

(4) 1(3 %—n@as length 2. The minimal representation V0 is the unique irreducible
quotient.

Proof. It remains to analyze the nite set of cases. We do so by considering the space of
Iwahori-xed vectors in I(s), which is a H-module.
5

Case s = 3

The exponents are

(2,1, 3);
(1,2, 3);
(3, 2 1);
(2,3, 1);
(1, 3;2);
( 3;1;2):

The leading exponent belongs to the trivial representation, the unique irreducible quotient of
I(3). The other ve exponents are equivalent to the trailing exponent. Thus |(2),has length 2.

Case s = % The exponents are

(1,1 2);
(1,1, 2);
(2, 1, 1)
( 2 1)
(L, 2;1);
( 2,11):
The last four exponents are equivalent. Let V be an irreducible subquotient such that

Vi1;1; 2) = 0. The third bullet implies that this space is 2 dimensional. Thus, either [(2),is

irreducible or it has a 2 dimensional irreducible quotient. But the exponents of |(3) are

dierent from the exponents of irreducible 2 dimensional representations of H. Thus I(%) is
irreducible.
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Case s = %+ 3—‘ﬁ(q). We assume that E is unramied. The exponents are

s 2o 2
3In(q)” ™ 3In(q) "
2i 2i
W @’ 2 3@
2i 2i
(2+ m; 1 W} 1);
2i 2i
( 3In(q); * 3In(q); 1);
2i 2i
B2 i@t 3
(2 L'l 1+ 21 ):

3in(a)’ '~ 3In(q)
All exponents are dierent. The rst two are equivalent and so are the last four. Since
2i 2i 2i 2i 2i 2 1
O N Ry N | Y U
31In(q) 31In(q) 3Ing 3ing Ing 3" 3" 3

the rst two are the exponents of the minimal representation V °2The induced representation
has length 2, with unique irreducible quotient V¢
Case s= 1. The exponents are

(0;1;, 1);
(1,0, 1);
(1,0, 1);
(0;1;, 1);
(1, 1,0);
( 1,10):

In this case, V, is a unique irreducible submodule. The quotient is isomorphic to a direct
sum of V{ and V.

Case s= 2+ 'n—(ia). The exponents are

(mjl} 1 m);
i i
Y@t @
i i
T i@’ in@’
(- : 1);

i@’ 1 in@)’

(1; i i

(@)’ in(@)”
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i i
( L)
In(a)” " In(q)
All exponents are dierent. The rst three are equivalent and so are the last three exponents. In

particular, 1(,+ 3, )-has length 2.
Case s= 2+ 3-';2(1(]).

argument is similar to the argument for s = 23 We omit details.

We assume that E is unramied. This representation is irreducible. The

Case s = 0. The exponents are

1 1
7.1. 7:
(35 )
S
( 5 2)
11
-2 1):
(2'21 )I
11
20 1):
(2'21 )I
1 1
1. . —\.
('12, %)I
-1, =)
( 5 2)

We have three equivalent exponents each with multiplicity 2. Thus, either I (0) is irreducible or
it is a sum of two three dimensional representations with the same exponents. However, if V(1

1,7 0, then the third bullet implies that this space is 2 dimensional. Thus 1(0) is
irreducible.

Case s = 'inq . This representation is irreducible. The argument is the same as for s = 0. We
omit details.

18.3.2. Degenerate series J(s). We now study the unramied degenerate principal series
associated to the 3-step parabolic subgroup Qg of Gg. Let

1
S 2s)

1-
2 2
where s 2 C. Note that s and ¢ are congruent if s 02 Agrn Since s(4) = 1,-the
equivalence class of 5, for a generic s, contains the following six elements

s = (s+

1 1
(s + E;s i; 2s);
1
2s; s+ —; s ;
( 5 )
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1 1

E; S f; 2s):

These are the exponents of a degenerate principal series J (s), attached to the 3-step maximal
parabolic subgroup Qg. Since the representations J (s) form an algebraic family, these are the
exponents for any s. The rst exponent (s) is a leading exponent of J(s). The last exponents
is a trailing exponent of J(s). (It is a leading exponent of J( s).) If V is aquotient of

J(s) then the leading exponent is an exponent of V. If V is a submodule of J(s) then the
trailing exponent of J(s) is also an exponent of V.

( s+

We would like to determine points of reducibility of J(s). One checks that J(s) is regular
if
1 11) 1 2i
d - £
>= ln?an 6 3Inqg
where the last possibility occurs only if E is ramied. If J(s) is regular, one checks that all
exponents are equivalent, and hence J (s) is irreducible, if

<= 31 i q 1 2i
Inq 2 3Ing

and reducibility in the last case occurs only when E is ramied. Hence, again, J(s) is
irreducible unless s is on the two nite lists.

Theorem 18.2. The representation J(s) = J( s) is reducible only if 3

11 i 1 2i

ST 2327 g ™32 3ng

and the last case occurs occurs only if E is ramied. At the points of reducibility, we have:
(1) J(2) has length 2. The trivial representation is the unique irreducible quotient.
(2) J(Zl) has length 3. The representation Vm is the unique irreducible submodule. The
representatlon VOIS the unique |rredUC|bIe quotient. The remaining subquotient is V,.
(3) J(1 + ITA has Iength 2. There is a unique irreducible submodule and a unique irre-
ducible quotient.
(4) J( 4, n_) has length 2. The representation Vi ig the unique irreducible quotient.

Proof. We shall provide details for s = 1=2, which is the only case used in the paper.
Case s = % The exponents are

(1,0; 1);
(1,0, 1);
(0;1; 1);
(1, 1;0);
( 1,1;0);
(0; 1;1):

We see that Vlm is the unique irreducible submodule, Vg is the unique irreducible quotient,
and V; is the remaining subquotient.
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18.4. Ane Weyl group, when K is a eld. We now discuss the quasi split Gg whereE = F
K with K a quadratic eld. Let e and f be the ramication and inertia indices, sothate f = 2.

Let A = R3 equipped with the usual dot product. Let A (we identify A with A using
the dot product) be the root space of type B, such that

1= (1, 1;0); 2= (0;1; 1)and3= (0;0;1)are
the simple roots. The co-roots are

2
1= (1, 1;0);,=1(0;1;, 1)and3 = 60;0;8): -

Let W be the corresponding Weyl group. It is generated by the simple reections s;, s, and
s3 corresponding to the simple roots.

Assume rst that K is unramied.

Ane roots are the ane functions + k on A where 2 and k 2 Z. The ane Weyl group W,
is generated by reections about the lines where the ane roots vanish. Let| = (1;1;0) 2 be the
highest root. The fundamental cell in A for W, is given by theinequalities0< ;,0< ,,0< 3
and | < 1. In particular, W, is generated by si, s», s3and sg, the reections about the three
planes bounding the fundamental cell.

Let X A be the lattice consisting of (x;y;z) 2 Z3 such that x + y+ z is even. Then W; is
a semi direct product of W and the group of translations t; where ! 2 X. It will be
convenient to work with the extended ane Weyl group W, = W, [ W, where is the involution
dened by (x;y;z) = (1 X;¥;z). Note that sg = s; and commutes with s, and
s3. The extended ane Weyl group is a semi direct product of W and X = Z37 Let

I'1 = (1;0;0); '2 = (1;1;0) and !5 = (1;1;1):
We note the following relations in W;:
t1, = S1525352S1; t1, = S0S25352515253S2 and t1, = S0S25351525351S5253:

Assume now that K is ramied.

Ane roots are the ane functions + k on A where 2 and k 2 1Z, but iptegral if is long.
The ane Weyl group W, is generated by reections about the lines where the ane roots
vanish. Let s = (1;0;0) 2 be the highest short root. The fundamental cell in A for W, is
given by the inequalities 0< ;1 ,0< 5, 0< 3 and s < 1=2. In particular, W5 is generated
by si1, sp, s3 and sg, the reections about the three planes bounding the fundamental cell.

Let X = Z3 A. Then W5, is a semi direct product of W and the group of translations t; where
I 2 X. The extended ane Weyl group is W5y = W3 [ W, where is the involution dened by
(x;y;2) = (1=2 x;1=2 vy;1=2 x). Note that sg = s; and s; = s3.The extended ane Weyl
group is a semi direct product of W and X generated by X and (1=271=2;1=2). Let

I1 = (1;0;0); !'2 = (1;1;0) and !3 = (1=2;1=2;1=2):
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We note the following relations in Wj:

t1, = SpS152535251; t1, = S0S152535250515253S2 and t), = $35251535253:

For any E = F K, the Iwahori Hecke algebra H of G is generated by the elements Top, T4,
T, and T3 corresponding to the simple reections, modulo braid and quadratic relations given
by the following diagrams, with the one on the left for the case of unramied K and the one
on the right for the case of ramied K.

eso
s s
29 o hs e——e e@—e
3@ s@_hs 3@ s, s;  sp
@esl

18.5. Some representations, when K is a eld. We shall now construct some small
dimensional representations of the Hecke algebra H that will appear in the description of the
degenerate principal series representations.

Assume that K is unramied.

18.5.1. One dimensional representations. Let V be a one dimensional complex vector space
spanned by e. There are four representations of H on V. We shall rstly describe two
representations where
Toe= qe; Tie= ge and Tye= ge:

The remaining two are obtained by applying the IM-involution. If Tse = g2e, this is the
trivial representation. Its exponent is

(3;2;1):
Let V{ be the representation of H on V such that Tze= e. The exponent of V,'is

(1;0; 1):
Let Vl‘D be the IM-involute of Vlo. It is a tempered representation.

18.5.2. Two dimensional representations. Let V be a two dimensional complex vector space
spanned by eg and e; on which Tg, T1 and T, act by

1
2 0

TQ= T1= 1 qz andT2= q;
0 ¢ gz 1

We can extend this representation to H in two ways. Let Vg be the representation of H on
V such that T3 acts the scalar g2. The exponents of Vf are

(2;0;1) and (0; 2; 1):

Let VZ‘D be the representation of H on V such that T3 acts the scalar 1. Then V;D is the
IM-involute of V£ and is a discrete series representation.

Assume that K is ramied.
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18.5.3. One dimensional representations. Let V be a one dimensional complex vector space
spanned by e. There are eight representations of H on V. We shall rstly describe four
representations where T1e = ge, T,e = ge. The remaining four representations are obtain by
the IM-involution. The trivial representation is the one where Tpe = ge and Tse = ge. Its
exponent is
(3;2;1):

Next, we have two representations where Tg and T3 act by dierent eigenvalues. These two
representations occur in a restriction of a 2-dimensional representation of the extended ane
Hecke algebra H'. Their exponents are the same,

i i i )

2+ —; 1+ — —):
( Ing’ Ina’ Ing

Let Vl0 be the representation of H on V such that Tpe= e and Tse= e. The exponent of
Viis
(1,0; 1):

Let Vl‘D be the IM-involute of V{. It is a tempered representation.

18.5.4. Two dimensional representations. Let V be a two dimensional complex vector space
spanned by eg and e; on which T; and T, act as matrices

Ty = ol Uq% and T = q% 01 ;

respectively. We can extend this representation to H in four ways. Let Vg be the represen-
tation of H on V such that Ty and T3 act as the scalar g. The exponents of V, are

(2;0;1) and (0; 2; 1):

Let V2C° be the representation of H on V such that Tg and T3 act as the scalar 1. Then V mﬁ's
the IM-involute of V 2( It is a tempered representation. Finally, we have two additional
representations, one where Tg and T3 act by dierent scalars. These two representations
occur in a restriction of a 4-dimensional representation of the extended ane Hecke algebra H.
Their exponents are the same and given by:

— 1+ I—, I—
Inq Ing’ Inq

i
(1+ ,lﬁ)and( 1+

s 1+ —
Ing Inq

The sum of these two representation is an irreducible representation of H', the extended ane
Hecke algebra.

18.6. Degenerate principal series, when K is a eld.

18.6.1. B, parabolic. Let s = (s;2;1). We have a degenerate principal series B(s) (asso-
ciated to the B,-parabolic) whose exponents are

(s;2;1); (2;5;1); (2;1;8); (2,15 s); (25 s;1)( s;2;1):

Here ¢ is a leading exponent and ¢ is the trailing exponent. In particular, the trivial
representation is the unique irreducible quotient of B(3).
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Proposition 18.3. The representation B(s) = B( s) is reducible only if

I%;); and

s=3;1+
Ing Inq
where s = 1+ i—lrgqccurs if K is unramied and s = + if Kln(iqs ramied. At the points of

reducibility, we have

(1) B(3) has length 2. The trivial representation is the unique irreducible quotient.
(2) B(1+ Iﬁiq ) has length 2. The minimal representation is the unique irreducible quotient.

(3) B(O_) is a direct sum of two non-isomorphic representations where one is V,{
(4) B(,—r']q) is a direct sum of two non-isomorphic representations.

Proof. This can be proved as in [Wel]. Roughly speaking, o the unitary axis, i.e. <(s) = 0,
reducibility happens only if the trivial or the minimal representations appear as subquotients.
Thecases= 1+ Iﬁ'q merits a special discussion, as it illustrates a dierence between ramied and

unramied cases. In both cases, B(1+ ) is+egular; however, the number of equivalence classes

Inq
isone, if K isunramied, and 2 otherwise. This is due to the fact that = (2; 1; 1+'nq) is equivalent

toss()= (1 1 ! ) ifandonlyif K is ramied.
On the unitary axis, all exponents are equivalent and B(s) is irreducible, unless s = Oor s

= 'nq aAd K ramied. By the Frobenius reciprocity, V> is a summand of B(0), so (3) follows.

Finally, B () must, reduce, otherwise B(s) with <(s) = 1 would hegall unitary, a
contradiction.

18.6.2. A, parabolic. Let s = (s+ 1;s;s 1). We have a degenerate principal series A(s)
(associated to the A,-parabolic) whose exponents are

(s+ 1;s;s 1);(s+ 1;s; s+ 1);(s+ 1, s+ 1;s);( s+ 1;s+ 1;s);

(s+1;, s+1; s);( s+ L;s+1;, s);( s+1; s;s+1);( s+1;, s; s 1)

Here ¢ is a leading exponent and ¢ is the trailing exponent. In particular, the trivial

representation is the unique quotient of A(2). Note that s congruent to L1 if K is
Inq
unramied.

Proposition 18.4. The degenerate principal series representation A(s) (with Re(s) 0) is
irreducible except in the following cases:
(1) A(2) has length 2. The unique irreducible quotient is the trivial representation.
(2) A(1) has length 2. The unique irreducible quotient is the orthogonal complement of
v2in B(0). _
(3) when K is ramied, A(1 + '_|)]qh35 length 3. It has two irreducible quotients, corre-
sponding to two one-dimensional representations of H with the exponent
i i

(2 + I—,’1+ B —
Ing Ing’ Ing

):

(4) A(0) is a direct sum of two non-isomorphic representations where one of them is V,¢
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Proof. (1) is trivial. For (2), observe that the spherical summand of B(0) is a unique irre-
ducible quotient of A(1). The remaining sub quotients of A(1) have four exponents. As these
exponents are equivalent, the length of A(1) is 2, as claimed. The statement (3) is proved
similarly. For (4), observe that A(0) is semi-simple, and has at most two summands, since
any summand contributes the exponent (1;0; 1). Since V1O is a summand of A(0) by the
Frobenius reciprocity, we have two summands as claimed.

Note that the complement of Vlo in A(0) is spherical, and has seven exponents. We shall
use this fact shortly.

18.6.3. A; A; parabolic. Let s = (s + 1;s 5 1 1).2 We have a degenerate principal series
I(s) (associated to the A; Ai-parabolic, which is the Heisenberg parabolic), whose exponents

are

1 1
1) (s 4 1oq ey L 1
;1); (s 2,1,s 2),(l,s s );
1 1
e ey 1.
;S 2),(s 5

1
. + Z): (1 +
;S 2),(, s

[ =

;S

N| P~

s+ 1
2[
1 1
i;s+ E);( s+ =;1;s+
1 1 1 1 1 1
(L, s+ ;s Jh( s+ 51 s J)( s+ 5 s 1)

Here  is a leading exponent and ¢ is the trailing exponent. In particular, the trivial
representation is the unique quotient of 1(5=2). Points of reducibility of | (s) and its co-socle if
Re(s) O was determined by Segal, Theorem 4.1 in [Se2]. Here we determine the complete
composition series.

+

1
L1
(s 5
+

NP s

(1;s

Proposition 18.5. The points of reducibility of I(s) (with Re(s) 0) are given as follows:
(1) 1(5=2) has length 2. The unique irreducible quotient is the trivial representation.
(2) 1(3=2) has length 2. The unique irreducible quotient is B(1).

(3) 1(3=2+ ‘—A has length 2 when K is unramed, with the minimal representation as

In
its unique irreducible quotient.

(4) 1(1=2) has length 2. The unique irreducible quotient is the orthogonal complement of
V2in A(0).

(5) 1(1=2+ ﬁa has length 2 when K is unramed, and 3 with two irreducible quotients

if K is ramied.

Proof. (1) is trivial. For (2), we observe that B(1) is the unique irreducible quotient of [(3=2).
Since the remaining six exponents are equivalent, 1(3=2) has length 2. The case (3) is regular, so
the irreducible subquotients are easily determined by working out the equivalence classes of
exponents. For (4), the spherical summand of A(0) is the unique quotient of 1(1=2). The
remaining subquotients of 1(1=2) have ve exponents in total. Hence, if there are more than two
irreducible subquotients in I(1=2), there would be one with one or two exponents. But, by
inspection, these ve exponents are not among the exponents of one and two-dimensional H-
modules. Hence, 1(1=2) has length 2, as asserted in (4). For the last case, by the result of A.
Segal, the representation has one, respectively two irreducible quotients. By working out
equivalence classes of exponents, it is seen that there are no more irreducible subquotients
than as stated.
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18.7. Split D4. Assume now that E = F3 is split, so that G ¢ is the split Spin,. Let A = R*
and we identify A with A using the usual dot product. Let A be the root system of type Dy,
so that the simple roots are

1= (1, 1;0;0); 2= (0;1; 1;0); 3= (0;0;1; 1); 4= (0;0;1;1):
Let W be the corresponding Weyl group. For every k2 Z and 2 , we have an ane root + k.

Let W be the,corresponding ane Weyl group. It is a semi-direct direct product of W and X =
f(x;y;z;w)2 2% jx+y+ z+ w 0 (mod 2)g.

In this case, degenerate principal series representations have been well studied, and there
are references in the literature, such as [BJ] and [Wel]. So we shall be brief and put an
emphasis on explaining, rather than giving the details.

corresponds to the branching point of the extended Dynkin diagram. The algebra H has a 2-
dimensional irreducible representation V such that
1

To=Ti1=T3= Ty = and T = 0
0 1 3 4 01 qqz 2 q(% 1

The exponents of this representations are
(0;1; 1;0)and (0; 1;1;0):

The minimal representation corresponds to the reection representation of H and its expo-
nents are (the superscript 2 means that the exponent appears with multiplicity 2)

(2;1;1;0)%(1;2;1;0);(2;1;0;1); (2; 1;0;  1):

There are 3 maximal parabolic subgroups in standard position, of the type A3, permuted by
the group of outer automorphisms. Let A(s), B(s) and C(s) be the degenerate principal series,
corresponding to these parabolic subgroups, normalized so that the trivial represen-tation
occurs as the unique irreducible quotient for s = 3. For example, assuming that A(s)
corresponds to the maximal parabolic whose Levi does not have ; as a root, the leading
exponent of A(s) is (s;2;1;0). There are eight exponents:

(s;2;1;0);(2;s;1;0);(2;1;5;0);(2;1;0; s);

(2,1,0; s);(2;1; s;0)5(2; s;1,0)( s;2;1;0):
By a result of Weissman [Wel], A(1), B(1) and C(1) have length 2, and the minimal repre-
sentation is the unique irreducible quotient. Let V;* A(1), V& B(1) and V¢, C(1) be the

unique irreducible submodules. These representations are non-isomorphic, as they have
dierent exponents.

Let I(s) be the principal series corresponding to the Heisenberg maximal parabolic (i.e.
the Levi factor is A31), normalized so that the trivial representation is the unique irreducible
quotient for s = 5=2. The leading exponent is (s + l;2'5 L. iy 0). There are 24 exponents in all.
They are in 4 groups of 6 exponents

(1;0;%¥); (1;%;,0;¥); (1; %, ¥;0); (x; 1; 05 y); (x; 15 y; 0); (x; ;5 1; 0)
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where
1 1 1 1 1 1
Ers E); (S+ E; i:s"' E)/ ( S+ i! S i)

The only other reducibility points are s = 1=2 and s = 3=2, which we examine in turn:

(x;y) = (s+ S+ %);( S+

s = 3=2: the minimal representation is the unique irreducible quotient of 1(3=2).
Moreover, we have an intertwining map 1(3=2) ! A(1), obtained by composing stan-
dard intertwining operators, which are non-trivial on the spherical vector. Hence A(1)
(and analogously B(1) and C(1)) is a quotient of I(3=2). By removing these quotients,
we are left with an irreducible submodule since its 10 exponents are equivalent.

s = 1=2: By the Frobenius reciprocity, V, is the unique irreducible submodule of
[(1=2). The quotient is an irreducible spherical representation that appears as a
summand of the representation induced from the trivial representation of (any) par-
abolic subgroup of the type A,.

Summarizing, we have:

Proposition 18.6. (Theorems 5.3 and 5.5 in [BJ])

1(3=2) has a ltration of length 3, consisting of a unique irreducible submodule and a
unique irreducible quotient (the minimal representation). The intermediate subquo-
tient is isomorphic to V5 V5 B/; . ©

[(1=2) has length 2, and V, is the unique irreducible submodule.
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