
8

8 3

8

8

8

8

T W I S T E D  C O M P O S I T I O N  A L G E B R A S
A N D  A R T H U R  P A C K E T S  F O R  T R I A L I T Y  Spin(8)

W E E  T E C K  G AN AND  G O R D A N  S AV IN

1. Intro duct ion

The purpose of this paper is to construct and analyze certain square-integrable automorphic
forms on the quasi-split simply-connected groups Spin of type D 4  over a number eld F .
Since the outer automorphism group of Spin is S  , these quasi-split groups are parametrised by
etale cubic F -algebras E  and we denote them by SpinE (to indicate the dependence on E ) .
We shall specialize to the case when E  is a cubic eld: this gives the so-called triality Spin8.

The square-integrable automorphic forms we construct are associated to a family of discrete
Arthur parameters which are quite degenerate. Indeed, apart from the A-parameters of the
trivial representation and the minimal representation of SpinE , the A-parameters we consider
here are the most degenerate among the rest. These A-parameters are analogs of the cubic
unipotent A-parameters for the exceptional group G2 studied in [GGJ].  In particular, the
component groups associated to these A-parameters can be the non-abelian group S3, leading to
high multiplicities in the automorphic discrete spectrum, as in [GGJ].

For each such A-parameter, we shall give a construction of the local A-packets and establish
the global Arthur multiplicity formula. Both the local and global constructions are achieved
using exceptional theta correspondences for a family of dual pairs H C  SpinE in an ambient
adjoint group of type E 6  (considered with its outer automorphisms); these dual pairs are
associated to E-twisted composition algebras of dimension 2 over E .  We shall in particular
determine the local and global theta lifting completely. The automorphic forms constructed
via these theta correspondences, though quite degenerate, can be cuspidal and have some
special properties. For example, when one considers their Fourier coecients along the
Heisenberg maximal parabolic subgroup of SpinE (corresponding to the branch vertex in the
Dynkin diagram), one sees that these automorphic forms support only one orbit of generic
Fourier coecients: they are distinguished in the sense of Piatetski-Shapiro. The relevant
Fourier coecients are parametrised by E-twisted composition algebras of E-rank 2, as shown in
our earlier work [GS2] on twisted Bhargava cubes. Such properties allow us to determine their
multiplicity in the automorphic discrete spectrum completely.

Because the objects mentioned above may be unfamiliar to the typical reader, and the
precise results require a substantial amount of notation and language to state, we will leave
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the precise formulation of the results to the main body of the paper and content ourselves
with the rather cursory overview above.

We would however like to emphasize the pivotal role played by the notion of a twisted
composition algebra (of rank 2) and its relation to embeddings of the cubic algebra E  into a
degree 3 Jordan algebra (of dimension 9). This algebraic theory was created and developed by
T.  Springer (see [SV, Chap. 4] and [ KMRT,  x36]). Its relation with SpinE has been
explored in our earlier paper [GS2] and we shall apply the algebraic results of [GS2] to the
study of automorphic forms here. In addition, we also need arithmetic results about twisted
composition algebras and their automorphism groups, such as local and global Tate dualities,
weak approximation and Hasse principles. These arithmetic results are supplied by the papers
of Tate [T], Voskresenskii [V1, V2] and Prasad-Rapinchuk [PR]. These algebraic and
arithmetic results, together with the representation theoretic results from exceptional theta
correspondence, combine in rather intricate and (to these authors) utterly amazing ways to
give the elegant Arthur multiplicity formula.

Given the length of the paper, it will be pertinent to provide a brief summary as a roadmap
for the reader:

- We introduce in x2 the group G E  =  SpinE and its relevant structures, and give a
description of its A-parameters in x3, reviewing Arthur’s conjecture in the process.

- The theory of twisted composition algebras is introduced in x4. Though this theory is
due to Springer, we have needed to supplement it with some observations of our own.
In particular, Proposition 4.20 plays an important role in the interpretation of our
results in the framework of Arthur’s conjecture. We then recall in x5 our results from
[GS2] concerning nondegenerate twisted Bhargava cubes and supplement the
discussion with results about degenerate cubes.

- x6 is devoted to the construction of the various dual pairs that will be studied in this
paper. It is followed by a detailed description of the Levi subgroup (of type A5 ) of the
Heisenberg parabolic subgroup of the adjoint group of type E 6  in x7.

- The minimal representation of the adjoint group of type E 6  is introduced in x8 and
its Jacquet module for the Heisenberg parabolic subgroup is determined in x9,

- In the spirit of the tower property of classical theta correspondence, we determine the
mini-theta correspondence for the Heisenberg Levi subgroup in x10. This is based on
relating it to a classical similitude theta correspondence for unitary groups. It is
needed for the study of the theta correspondence in E 6  which is carried out in x12,
after introducing some notations for representations of G E  in x11. In particular,
Theorem 12.1 is the main local result of this paper in the nonarchimedean case. We
recall in x13 the analogous result in the archimedean case, but the proofs of Theorems
13.1, 13.2 and 13.3 there will be deferred to a joint paper with J .  Adams and A. Paul.

- After this, we move to the global setting, starting with x14 which is devoted to the
study of global theta correspondence. Here, we rst need to understand the space of
automorphic forms of the disconnected group H C  =  AutE (C ),  where C  is a twisted
composition algebra of rank 2. Not surprisingly, the automorphic multiplicity for H C
can be 1 or 2. In x15, we relate the relevant A-parameters to the theory of twisted
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composition algebras. The important ingredients here are the local-global principles in
Lemma 15.5, the consequence of local Tate-Nakayama duality in Proposition 15.12 and
the global Poitou-Tate duality in Proposition 15.16. After this preparation, we
interpret the space of global theta liftings in the framework of Arthur’s conjecture in
x16. More precisely, we construct the local A-packets as well as their bijection with
characters of the local component groups, and then establish the Arthur multiplicity
formula (AMF)  for the space of global theta liftings in Theorem16.6. Finally, we show in
Theorem 16.8 that the number provided by the A M F  is in fact the true discrete
multiplicity of the relevant representation in the automorphic discrete spectrum of
G E .  For the interest of the reader, the following are some examples of numbers which
arise as such multiplicities:

2n;
2n +  2( 1)n

3
2n +  (  1)n+1

3
for n  0.

In particular, the multiplicities in the automorphic discrete spectrum are unbounded.
The main source of these high multiplicities comes from the failure of Hasse principle
for twisted composition algebras of E-dimension 2, or alternatively, the failure of
Hasse principle for Jordan algebras of dimension 9.

- We have included two appendices. In Appendix A, we consider an analogous theta
correspondence for a dual pair SL2 (E )=2  G E  in E7 , associated to a rank 4 twisted
composition algebra. This theta correspondence can be used to construct another
family of Arthur packets for G E ,  but we do not pursue this here. Instead, we only
determine the theta lift of the trivial representation of SL2 (E )=2  in Corollary 17.6; this
result is used in our paper [GS3]. The long Appendix B  is devoted to the study of
unramied degenerate pricipal series representations of G E  for the various maximal
parabolic subgroups and the various possibilities of E . Our approach is via the
Iwahori Hecke algebra, and in each case, we determine the points of reducibility and
the module structure at each such point. This allows us to introduce various
interesting representations of G E  with nonzero Iwahori-xed vectors which intervene in
the theta correspondence studied in the paper. In particular, we shall refer to the
terminology and results of Appendix B  in the description of theta lifting, for example in
Theorem 12.1.

We wrap up this introduction by mentioning some recent papers which are devoted to the
(automorphic) representation theory of triality Spin8:

 the paper [L] of C.H. Luo on determining the unitary dual of the adjoint form of G E
over p-adic elds;

 the papers [Se1] and [Se2] of A. Segal on the structure of degenerate principal series
representations (which builds upon and complements our results in Appendix B )  and
poles of degenerate Eisenstein series of G E ;

 the paper [La] of J .F.  Lau on the determination of the residual spectrum of G E .

It is interesting to relate the local and global A-packets we construct here with the results of
these other papers.
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2. Structure  Theory  of Spin8

2.1. Etale cubic algebras. Let F  be a eld of characteristic 0 and with absolute Galois
group Gal(F =F ). An etale cubic algebra is an F -algebra E  such that E

F  F   F 3 . More concretely, an etale cubic F -algebra is of the form:

> F   F   F ;
E  = F   K ,  where K  is a quadratic eld extension of F ;  a

cubic eld.

Since the split algebra F   F   F  has automorphism group S3 (the symmetric group on 3
letters), the isomorphism classes of etale cubic algebras E  over F  are naturally classied by the
set of conjugacy classes of homomorphisms

E  : Gal(F =F )  !  S3:

By composing the homomorphism E  with the sign character of S3, we obtain a quadratic
character (possibly trivial) of Gal(F =F ) which corresponds to an etale quadratic algebra K E .
We call K E  the discriminant algebra of E .  To  be concrete,

< F   F ;  if E  =  F 3  or a cyclic cubic eld;
K E  = K ;  if E  =  F   K ;

the unique quadratic subeld in the Galois closure of E  otherwise.

We shall let K E  denote the quadratic idele class character associated to K E .

The etale cubic F -algebra E  possesses a natural cubic form N E = F  : E  !  F  known as its
norm form: for a 2  E ,  N E = F  (a) is the determinant of the multiplication-by-a map on the F -
vector space E .  Then there is a natural quadratic map

(2.1) ( ) #  : E   !  E

characterized by a  a #  =  N E = F  (a) for all a 2  E .

2.2. Twisted form of S3 . F ix  an etale cubic F -algebra E .  Then, via the associated ho-
momorphism E ,  Gal(F =F ) acts on S3 (by inner automorphisms) and thus denes a twisted form
S E  of the nite constant group scheme S3. For any commutative F -algebra A, we have

S E ( A )  =  Aut A (E
F  A):
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2.3. D 4  root system. Let  be a root system of type D 4  with a set of simple roots  =
f0; 1; 2; 3g. The highest root is 0 =  1 +  2 +  3 +  20. The corresponding Dynkin diagram is

2 H  1 
H  

0

3

Hence the group Aut() of diagram automorphisms is identied with S3 (the group of per-
mutations of f1; 2; 3g).

2.4. Quasi-split groups of typ e D4 .  Let G  =  Spin be a split, simply connected Chevalley
group of type D4 . We x a maximal torus T contained in a Borel subgroup B  dened over F .
The group G  is then generated by root groups U =  Ga, where  2  . Steinberg showed that one
can pick the isomorphisms x  : Ga !  U such that

[x(u); x0 (u0)] =  x+0 (uu0)

whenever  +  0 is a root. Fixing such a system of isomorphisms for  2   is xing an epinglage
(or pinning) for G. By the discussion on page 40 in [FK],  commutators signs can be specied
by choosing an orientation of the Dynkin diagram. There is a short exact sequence:

1 !  Gad =  Inn(G) !  Aut(G) !  Aut() =  S3 !  1:

As one can pick an orientation of the Dynkin diagram which is invariant under Aut(), one has a
splitting S3 =  Aut()  !  Aut(G), where the action of S3 permutes the root subgroups U and the
isomorphisms x.

Since S3 is also the automorphism group of the split etale cubic F -algebra F 3 , we see that
every cubic etale algebra E  denes a simply-connected quasi-split form G E  of G, whose outer
automorphism group is the nite group scheme S E .  It comes equipped with a pair B E   TE
consisting of a Borel subgroup B E  containing a maximal torus TE , both dened over F .
Moreover, we inherit a Chevalley-Steinberg system of epinglage relative to this pair and a
splitting of the outer automorphism group

S E  , !  Aut(GE ):

If E  is a cubic eld, then Gal(F =F ) permutes the roots 1, 2 and 3 transitively. If
E  =  F   K  with K  a quadratic eld, then without loss of generality, we assume that 1 is xed,
whereas 2 and 3 are exchanged by the Galois action. If E  is the split algebra, the Galois action
on  is trivial.
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2.5. Center.  The center of the split group G  is

Z  =  f(z1; z2; z3) 2  2  2  2 : z1z2z3 =  1g: By

Galois descent, we deduce that the center of G E  is

Z E  =  ResE = F  (2 ) =  K er (N E = F  : ResE = F  (2 )  !  2): In

particular, from the short exact sequence

we deduce that

(2.2)

1 !  Z E  !  G E  !  Gad !  1;

Gad (F )=p(GE (F ))  =  K er (H 1 (F ; Z E )   !  H 1 (F ; GE )) :
The nite group scheme Z E  will play an important role in this paper and we will see several
other incarnations of it later on.

2.6. L -group.  The Langlands dual group of G E  is the adjoint complex Lie group

G E  =  PGSO8 (C):

It inherits a pinning from that of G E . The L-group L G E  is the semidirect product of
PGSO8 (C) with Gal(F =F ), where the action of Gal(F =F ) on PGSO8 (C)  is via the homo-
morphism E  as pinned automorphisms. Thus there is a natural map

L G E   !  PGSO8 (C)  o  S3;

whose restriction to Gal(F =F ) is E .

2.7. G2 root system. The subgroup of G E  xed pointwise by S E  is isomorphic to the split
exceptional group of type G2. Observe that B 0  =  G2 \  B E  is a Borel subgroup of G2 and T0
=  TE  \  G2 is a maximal split torus of G2. Via the adjoint action of T0 on G E ,  we obtain the
root system G      of G2, so that

G 2  =  jT0 :
We denote the short simple root of this G2 root system by  and the long simple root by , so
that

 =  0jT0 and  =  1jT0 =  2jT0 =  3jT0 :
Thus, the short root spaces have dimension 3, whereas the long root spaces have dimension 1.
For each root  2  G  , the associated root subgroup U is dened over F  and the Chevalley-
Steinberg system of epinglage gives isomorphisms:

ResE = F  Ga; if  is short;
Ga; if  is long.

When E  is a cubic eld, T0 is in fact the maximal F -split torus of G E  and G      is the relative
root system of G E .

For each  2  .
In particular,

G2 , we shall also let N  denote the root subgroup of G2 corresponding to

N  =  U \  G2:
Because the highest root 0 of the D4-root system restricts to that of the G2-root system,
we shall let 0 denote the highest root of the G2-root system also.
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2.8. Two parabolic subgroups. The G2 root system gives rise to 2 parabolic subgroups of
G E .  One of these is a maximal parabolic P E  =  M E N E  known as the Heisenberg parabolic. Its
unipotent radical N E  is a Heisenberg group and its Levi subgroup ME  is spanned by the
3 satellite vertices in the Dynkin diagram. The other parabolic QE  =  L E U E  is a not-
necessarily-maximal parabolic (it is not maximal over F );  its Levi subgroup L E  is spanned by
the branch vertex 0 and its unipotent radical U E  is a 3-step unipotent group. We shall need
to examine the structure of these 2 parabolic subgroups more carefully.

2.9. T h e  Heisenberg parabolic P E .  Let us begin with the Heisenberg parabolic P  =  M N of
G. Its unipotent radical N  is a 2-step nilpotent group with the center Z  =  [N ; N ] =  U . As we
explained in [GS2], The Levi factor M can be identied with

GL2 (F 3 )det  =  fg  =  (g1; g2; g3) j gi 2  GL2 (F ) ;  det(g1) =  det(g2) =  det(g3)g:

We may also identify V =  N =Z  with F 2

F 2

F 2 , so that the action of M on V corresponds
to the standard action of GL2 (F 3 )det  twisted by det(g) 1 : =  det(gi) 1 (for any i). Moreover,
we can assume that the torus T  M corresponds to the subgroup of G L  (F 3 )det consisting of g =
(g1; g2; g3) where gi are diagonal matrices, and the standard basis elements of F 2

F 2

F 2  correspond to the basis of N =Z  given by the xed pinning.

Thus, an element v 2  V can be conveniently represented by a cube

e1 f3

 2

f2 b

e3 f1

where a; : : : ; b 2  F ,  and the vertices correspond to the standard basis in F 2

 F 2

 F 2 . We shall assume that the vertex marked by a corresponds to 0, and that the vertex
marked by b corresponds to 0   0. The group Aut() acts as the group of symmetries of the
cube xing these two vertices. We shall often write the cube as a quadruple

(a; e; f ; b)

where e =  (e1; e2; e3) and f  =  (f1 ; f2 ; f3 ) 2  F 3 .

The quasi-split group G E  contains a maximal parabolic P E  =  M E N E  which is a form of P .
The structure of P E  can be determined by Galois descent. The highest root 0 is invariant
under Aut(), hence the center Z E  is equal to the center Z  of P . The Levi factor ME  can be
identied with

GL2 (E )d e t  : =  fg  2  G L 2 ( E )  : det(g) 2  F g;

and
V E  : =  N E =Z E  =  U  U +   U+2  U+3 =  F   E   E   F
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can be identied with the space of \twisted cubes" i.e. quadruples (a; e; f ; b) where a; b 2  F
and e; f 2  E .  The cube

vE  =  (1; 0; 0;  1)
is called the distinguished cube. Its stabilizer in ME  can be easily computed using Galois
descent:

StabME (vE )  =  E 1  o  (Z=2Z)
where E 1  denotes the group of norm one elements in E .  In this isomorphism,  2  E 1

corresponds to

 1 2  GL2 (E )d e t

and the nontrivial element in Z=2Z corresponds to 
 
w

= 1     0 :

Note that P E  \  G2 is the Heisenberg maximal parabolic P0 =  M0N0 of G2, with

M0 =  G2 \  ME  =  G L 2 and N0 =  G2 \  N E :

2.10. T h e  3-step parabolic QE .  Now we come to the parabolic QE . The unipotent radical
UE  has a ltration

f1g  U (1)  U (2)  UE
such that

U (1) =  U0  U0  is
the center of UE . Further,

U (2) =  [UE ; UE ] =  U0  U0   U2+

is the commutator subgroup of UE  and is abelian. In particular, U E  is a 3-step unipotent
group; hence we call QE  the 3-step parabolic. Note that Q0 =  G2 \ Q E  =  L 0  U0 is the 3-step
maximal parabolic of G2, with

L 0  =  G2 \  L E  =  G L 2  and U0 =  G2 \  UE :

One has an isomorphism

L E  =  (GL 2   ResE = F  Gm)det =  f(g; e) : det(g)  N E = F  (e) =  1g:

2.11. Ni lp otent orbits. Assume that E  is a eld. In this subsection, we shall describe the
nilpotent orbits of L i e ( G E ) ( F )  =  g E (F )  and the centralizers of the nilpotent elements.

Let t E (F )  =  L ie (TE ) (F )  be the maximal toral subalgebra in gE (F ).  Let e be a nilpotent
element in g E (F )  belonging to a nilpotent GE (F )-orbit
. By the Jacobson-Morozov theorem, the element e is a member of an sl2-triple (f ; h; e) dened
over F ,  so that h is a semi-simple element such that [h; e] =  2e. We can assume that h 2  t E (F )
and lies in the positive chamber. Then the values of the simple roots on h are nonnegative
integers and give a marking of the Dynkin diagram of type D4 ; this marking parameterizes the
orbit
. Note that the marking of the Dynkin diagram must necessarily be invariant under Aut().
In fact, this condition
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is necessary and sucient (see [Dj]) for a nilpotent orbit in g E (F )  to be dened over F  and to
have an F -rational point.

The semisimple element h gives a Z-grading g E  = gE ;i , with e 2  gE;2. Let Pe =  MeNe
be the parabolic group such that the Lie algebra of Me is gE;0. By a result of Kostant, the
centralizer ZM  (e) of e in Me is the reductive part of Z G  (e). Moreover, by Galois
cohomology, the nilpotent GE (F )-orbits contained in
(F )  are parametrized by

Ker(H 1 (F ; ZMe (e)) !  H 1 (F ; G E )) :

We now list all nilpotent orbits
 dened over F  and the corresponding ZM  (e) (the re-ductive part of the centralizer Z G  (e)).
First, we have three Richardson orbits corresponding to the following diagrams:

 
e2

 
e2

 
e0

2 e  
J

2 e  
J

0 e  
J

J  e2 J  e2 J  e0

The rst two diagrams correspond to the regular and the subregular orbit respectively, and the
reductive part of the centralizer is the center of G E  in each case. The third case is the most
interesting. In this case ZM  (e) is generally disconnected and its identity component is a 2-
dimensional torus. In fact, ZM  (e) =  AutE (C )  where C  is an E-twisted composition algebra of
E-dimension 2 (see later for this notion). We also have the three orbits corresponding to the
following diagrams:

 
e1

 
e0

 
e0

1 e  
J

0 e  e 1 0 e  e 0

J  e1 J  e0 J  e0

The rst two orbits correspond to a short root ’  : sl2 (E ) !  g E (F )  embedding and a long root
embedding ’  : sl2 (F ) !  g E (F )  respectively. The reductive part of the centralizer is
isomorphic to SL 2 (F )   Z  and SL 2 (E ) ,  respectively. The last diagram corresponds to the
trivial orbit.

Summarizing our ndings, if F  is a local eld, then
(F )  consists of a single GE (F )-orbit, except in one case when GE (F )-orbits in
(F )  are parameterized by E-isomorphism classes of E-twisted composition algebras C  of E-
dimension 2.
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2.12. Unip otent orbits of L G E .  We also need a description of the conjugacy classes of
maps

SL 2 (C)   !  L G E   !  G _  o  S3

which are invariant under the S  -action. These correspond to unipotent conjugacy classes of
G _  =  PGSO8 (C)  which are stable under the action of S3. As in the previous subsection, these
unipotent conjugacy classes in turn correspond to markings of the D 4  Dynkin diagram which
are invariant under the S3-action. In particular, such markings have been enumerated in the
previous subsection.

3. A r t hu r  Parameters of Spin8

In this section, we shall enumerate the (elliptic) Arthur parameters for G E  and single out
a particularly interesting family of Arthur parameters. Thus, in this section, we assume that
F  is a number eld and E  is a cubic eld extension of F .

3.1. A-parameters. An A-parameter for G E  is a GE -conjugacy class of homomorphism

: L F   SL 2 (C)   !  L G E  =  G _  o E  Gal(F =F )  !  G E  o  S3;

such that prS 3   j L F  =  E ,  where prS 3  stands for the projection

prS 3  : G E  o  S3  !  S3:

In particular, jS L 2 ( C )  is of the type considered in Section 2.12.
For each place v of F ,  we have a conjugacy class of embeddings L F      , !  L F  , from which

we obtain by restriction a local A-parameter

v : L F v   S L 2 ( C )   !  G E  o  S3:

3.2. Component groups. For an A-parameter , we set
S  =  0     Z G E  

(Im( ))  :

This is the global component group of , and we say that is elliptic if S  is nite. Likewise,
we have the local component group S  v  . There is a natural diagonal map

 : S   !  S  ;A : =  
Y

S  v  : v

Hence there is an induced pullback map

 : IrrS ;A  !  R ( S  );

where R ( S  )  denotes the (Grothendieck) representation ring of S  .
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3.3. Ar thur ’s  conjecture. We briey recall Arthur’s conjecture. Associated to each elliptic
A-parameter , one expects to have the following:

 for each place v of F ,  a nite packet

 v  =  f v  : v 2  IrrS v  g

of unitary representations of nite length (possibly zero), indexed by the irreducible
characters of the local component group S .

 set

 =  f  = v  :  =
vv 2  IrrS ;Ag; v

and
m =  h();  i S

where is a certain quadratic character of S (whose denition we won’t recall
here). Then the automorphic discrete spectrum L 2 of G E  contains a submodule
isomorphic to

L 2  : = m  :
2IrrS  ; A

Moreover, we have:

Ldi s c  =  
M

L 2

where the sum runs over equivalence classes of elliptic A-parameters .

3.4. Enumeration. In view of the above discussion, there are 6 families of A-parameters for
G E ,  according to the type of jS L  (C) . We list them below, together with the component
group S  :

(i)  j S L  ( C )  is the regular orbit: S is trivial and the resulting A-packet consists of the
trivial representation (both locally and globally).

(ii)  jS L  ( C )  is the subregular orbit: S  is trivial and the resulting local A-packet consists
of the minimal representation.

(iii) jS L 2 ( C )  is given by:

: SL 2 (C)   !  SO3 (C)  SL 3 (C)   G 2 (C)   G E :

This is the case of interest in this paper and we shall give a more detailed discussion
in the next subsection.

(iv) jS L 2 ( C )  is given by

: SL 2 (C)  , !  SL 2 (C)   SL 2 (C)   SL 2 (C)   !  ME   G E ;

where the rst map is the diagonal embedding.
(v) jS L  ( C )  is a root SL2 : we shall discuss this case briey as well.

(vi) jS L 2 ( C )  is the trivial map: this is the tempered case.
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3.5. T h e  case of interest. Now we examine the case of interest (case (iii) above) in greater
detail. The centralizer of (SL 2 (C))  in G E  is isomorphic to the subgroup

S  o  S2 =  f(a; b; c) 2  (C)3  : abc =  1g o  S2;

where the nontrivial element of S2 acts on S  by inverting. Moreover, the group S3 =  Aut()
commutes with (SL 2 (C))  and S2 and acts on S  by permuting the coordinates. Thus we
have an embedding

S  o  (S2  S3 )  !  G E  o  S3:

To  give an A-parameter of this type is thus equivalent to giving a map

: L F   !  S  o  (S2  S3 ):

The composition of with the projection to S2  S3 gives a homomorphism L F  !  S2  S3 and
thus determine an etale quadratic algebra K  and the xed etale cubic algebra E .  We shall say
that is of type ( E ; K ) .

To  give an A-parameter of type ( E ; K )  amounts to giving a L-homomorphism

L F   !  S  o E K  WF :

Now the group S  o E K  WF is the L-group of a torus

T E ; K  =  f x  2  ( E
F  K )  : N E

K = E ( x )  2  F g=K :

As shown in [GS2], this torus is the identity component of the E-automorphism group of any
rank 2 E-twisted composition algebra C  with quadratic invariant K C  satisfying

[ K E ]   [K ]   [ K C ]  =  1 2  F =F 2 :

By an exceptional Hilbert Theorem 90 [GS2, Theorem 11.1], one has

T E ; K  =  T E ; K C  : =  f x  2  ( E
F  K C )  : N E

K C = E ( x )  =  1 =  N E

KC = K C  (x)g:

Thus to give an A-parameter of type ( E ; K )  is to give a L-parameter for the torus TE ; K ,
taken up to conjugation by S  o  S2. In other words, it is to give an automorphic character of
T E ; K  up to inverse.

This suggests that the A-packet or  can be constructed as a \lifting" from T E ; K  to G E .
The goal of this paper is to carry out such a construction, using the fact that there is a dual
pair

H C   G E   Aut(E6 )

where H C  is the automorphism group of a rank 2 E-twisted composition algebra (whose iden-
tity component is T E ; K )  and E J  is an adjoint group of type E 6  (depending on a Freudenthal-
Jordan algebra J  with K J  =  K ;  see later).
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3.6. A n  example. The simplest A-parameter of type ( E ; K )  is determined by the natural
map

L F  !  S2  S3 !  S  o  (S2  S3 ) !  G E  o  S3:
We denote this special A-parameter by E ; K .  Its global component group is thus

3 o  S2 =  S3 if K  =  F   F ;  E ; K

S2 if K  is a eld.

The local component groups S are a bit more involved to describe, as they depend
on the type of E v  and K v .  We list them in the following table.

E v

eld

eld

Fv   K E ; v

Fv   K E ; v

Fv   Fv   Fv

Fv   Fv   Fv

K v

eld

split

K v  splits or K v  =  K E ; v

K  =  K E ; v  is a eld

eld

split

S  E v ; K v

S2

S3

S2

2  S2

(2  2)  S2

S2

Let’s see what Arthur’s conjecture implies for this particular A-parameter, specialising to
the case when K  =  F   F  is split:

 if E v  is a eld, then
 E ; K ; v  =  f1;v ; r;v ; ;vg

 if E v  =  Fv   K E ; v  or Fv  , then

 E ; K ; v  =  f1;v; ;vg:

For appropriate disjoint nite subsets r  and  of the set of places of F ,  we thus have the
representation 0 1

r ;  =
O  

r;v
O  

;v

 @ 
O

1 A
v 2 r v 2 v 2= r [

in the global A-packet  E ; K  . The multiplicity attached to this representation is the mul-
tiplicity of the trivial representation of S3 in (r
j r j )
 (
jj ). A  short computation using the character table of S3 shows that this multiplicity is equal
to

1  (2jr j +  2  (  1)jr j ); if r  is nonempty; 1  (1
+  ( 1)jj ); if r  is empty.
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We shall see later how to construct this many automorphic realisations of  ; , using
exceptional theta correspondence.

3.7. Ro ot  SL2 .  We consider briey the case when jS L  ( C )  is a root SL2 . We may assume
that (SL 2 (C))  is the SL 2  corresponding to the highest root which is S3-invariant. Then the
centralizer of (S L 2 ( C ) )  in G E  is

(L ME )der =  (SL 2 (C)   SL 2 (C)   SL2 (C)) =f(a; b; c) 2  2 : abc =  1g:

This is the L-group of
H  =  GL2 (E )de t =F :

Hence to give such an elliptic A-parameter is to give an L-parameter

: L F   !  L H

which corresponds to an L-packet of H  =  G L  (E )det =F , or more simply to a cuspidal
representation of G L 2 ( E )  (with trivial restriction to F ).

As we shall see in x4.11, the group H  is the E-automorphism group of a E-twisted compo-
sition algebra of E-rank 4. Indeed, given any E-twisted composition algebra C  of E-rank 4, its
automorphism group H C  is an inner form of H  above and there is a dual pair (see x6.6)

H C   G E   E 7  ;

where E B  is a group of type E 7  (associated to a quaternion algebra B ) .  This suggests that the
A-packets associated to as above can be constructed via exceptional theta lifting from
H C .  We do not discuss this construction in this paper, but in Appendix A, we shall lay some
algebraic and geometric groundwork to facilitate the further study of this case. In particular,
we determine in Appendix A  the theta lifting of the trivial representation of H  to G E .  This is
needed for our paper [GS3].

4. Twisted Composition and Freudenthal-Jordan Algebras

As we alluded to in the introduction and x3.5 above, the theory of twisted composition
algebras plays a fundamental role in this paper. In this section, we shall briey recall this
notion and its relation with Freudenthal-Jordan algebras. This theory is largely due to
Springer, though we shall need to supplement it with some results and observations of our
own needed for our application.

4.1. Twisted composition algebra. For a given etale cubic F -algebra E ,  an E-twisted
composition algebra C  is a vector space over E ,  equipped with a pair of tensors (Q; ) where

 Q : C   !  E  is a non-degenerate quadratic form on C ,  and
: C  !  C  is a quadratic map

such that

(e  x )  =  e # (x) ; Q((x)) =  Q(x ) # and N C ( x )  : =  bQ (x; (x)) 2  F ;

for all e 2  E  and x  2  C ,  where bQ (x; y) =  Q(x + y ) Q(x) Q(y) and e #  is dened in (2.1).
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Given two E-twisted composition algebras (C; Q; ) and (C0; Q0; 0), an E-morphism be-
tween them is an E-linear map  : C   !  C0 such that

Q0   =  Q and 0   =    :

The automorphism group AutE (C; Q; ) of a twisted composition algebra (C; Q; ) is an
algebraic group over F .

These algebras were introduced by Springer and it is a fact that dimE C  =  1, 2, 4 or 8. In this
paper, we shall chiey be concerned with the case where dimE C  =  2, though the case where
dimE C  =  1 or 4 will also be considered.

4.2. R a n k  1 case. When dimE C  =  1, we may write C  =  E   v0 for a basis vector v0 2  C .
It is not dicult to see that the tensors (Q; ) are of the form

Qa(x  v0) =  a #   x2 and a (x  v0) =  a  x #   v0

for some a 2  E .  We shall denote this rank 1 E-twisted composition algebra by Ca. Its
automorphism group is

Aut(Ca ) =  ResE = F  (2 ) =  K er(N E = F  : ResE = F  (2 ) !  2):

We have encountered this group before in x2.5, as the center of the quasi-split group G E ,
whence it was denoted by Z E .  The various interpretations of Z E  account for the intricate
and sometimes surprising connections between dierent objects we will encounter later on.

Lemma 4.1. The E-isomorphism classes of rank 1, E-twisted composition algebras are
parametrized by E = F E 2  under the construction a !  Ca .

Proof. For a; b 2  E ,  Ca  is isomorphic to Cb  if and only if there exists  2  E  such that

Qb(v0) =  Qa(v0) and b(v0) =    a(v0);

i.e.
a # = b #  =  2 and a=b =  # =:

In fact, the rst requirement above is implied by the second (on taking #  on both sides).
Now observe that

# =  =  N E = F  ()=2 2  F   E 2

and conversely, for any e 2  E  and f  2  F ,

Hence, we deduce that

so that

e2  f  =  
( e # f ) #  

:

F   E 2  =  f # =  :  2  E g;

Ca =  Cb  ( )  a=b 2  F   E 2 :
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The lemma can also be shown via cohomological means. Namely, by considering the long
exact sequence associated to the short exact sequence of algebraic groups

1 !  Z E  =  ResE = F  2 !  ResE = F  2 !  2 !  1;

one sees that
H 1 ( F ; Z E )  =  Ker (N E = F  : E = E 2   !  F =F 2 ):

Then [ KMRT,  Prop. 18.34] shows that the map #  gives an isomorphism of E = F E 2  with the
kernel above.

4.3. R a n k  2 case. Every twisted composition algebra (E ; C; Q; ) has a cubic invariant: the
etale cubic algebra E .  On the other hand, when dimE C  =  2, one can attach to it a
quadratic invariant, i.e. an etale quadratic F -algebra K C .  Indeed, K C  is determined by the
requirement that the discriminant quadratic algebra of Q is E
F  K C .  In fact, C  can be realized on L  : =  E
 K C  with Q and  given by

Q(x) =  e  N E

K C = E ( x ) and (x)  =  x#   e 1   for

some e 2  E  and  2  K C  satisfying

N E = F  (e) =  N K C = F  ():

Here x and  refer to the action of the non-trivial automorphism of K C  on x  and . We shall denote
this rank 2 E-twisted composition algebra by Ce;. For a more detailed discussion of this, see
[GS2].

Given an E-twisted composition algebra C  =  Ce; as above, consider its automorphism
group H C  =  AutE (C )   G L E ( L ) .  One has a short exact sequence

1 !  (AutE C )0  !  AutE (C )  !  S2 !

1 with

AutE (C )0 (F )  =  T E ; K C  ( F )  : =  f x  2  L  : N L = E ( x )  =  1 and N L = K C  (x)  =  1g:

The identity component H 0  =  AutE (C )0  is a 2-dimensional torus over F  depending only on E
and K C  and as (e; ) varies, the algebraic subgroups H C e ;  

 G L E ( L )  are physically the same
subgroup T E ; K  . The conjugation action of S2 on H is by inversion. In particular,
the center of H C  is

(4.2) (H 0  )S 2  =  H 0  [2] =  Res1 
=F  2 =  Z E :

Hence, we see yet another incarnation of the nite algebraic group Z E ;  the consequence of
this incarnation will be explained in x4.9 and x4.10.

The torus H 0  =  AutE (C )0  can be interpreted as the group AutL (C )  of L-linear automor-
phisms of C .  It was observed in [GS2] that Ce; and Ce0;0 are L-linearly isomorphic if and only
if there exists x  2  L such that

(4.3) e=e0 =  N L = E ( x ) and =0 =  N L = K C  (x);
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in which case, multiplication-by-x gives an L-linear isomorphism x  : Ce;  !  Ce0;0 . More-
over, the isomorphism x  induces an isomorphism

(4.4) Ad(x )  : AutE (Ce;)   !  AutE (Ce0 ;0 )

It is easy to check that the restriction of this isomorphism to the identity components is the
identity map on T E ; K C  . In any case, we have shown:

Lemma 4.5. The L-isomorphism classes of E-twisted composition algebras of rank 2 and
quadratic invariant K C  are parametrized by

( E   K C  )
0 =Im(L)

where
( E   K C  )

0 =  f(e; ) 2  E   K C  : N E = F  (e) =  N K C = F  ()g and the

map L   !  E   K C  is given by

x  !  ( N L = E ( x ) ; N L = K C  (x)):

This lemma can also be seen cohomologically. As was observed in [GS2], there is a short
exact sequence of algebraic tori

1 !  T E ; K C       !  ResL = F  Gm !  (ResE = F  Gm  R e s K C = F  Gm)0 !  1

giving rise to an associated long exact sequence

1 !  T E ; K C  ( F )  !  L  !  ( E   K C  )0

!
H 1 (F ; T E ; K C  )           !  1:

( E   K C  )0 =Im(L)

There is a natural action of Aut (K C =F )  (as group automorphisms) on ( E  K ) = I m( L )  with the
action of the nontrivial element given by (e; ) !  (e; ). The orbits under this action
parametrize the E-isomorphism classes of E-twisted composition algebras of rank 2 with
quadratic invariant K C .  Observe that since N E = F  (e) =    ,

(e; ) =  (e 1;  1) 2  ( E   K C  )
0 =Im(L):

Hence, the action of S2 =  Aut(K C =F )  on H 1 (F ; TE ; K  )  is by inversion, and its xed subgroup
H 1 (F ; T E ; K C  ) S 2  is the 2-torsion subgroup H 1 (F ; T E ; K C  )[2].

Finally, note that the map

H C ( F )  : =  Aut E (C ) (F )   !  S2

need not be surjective. Indeed,

H C ( F )  =  H 0  (F )  ( )  [C ] 2  H 1 (F ; T E ; K C  )[2];

that is, the L-isomorphism class of C  is xed by Aut(K C =F ) .
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4.4. Freudenthal-Jordan algebras. Twisted composition algebras are closely related to
Freudenthal-Jordan algebras; see [ KMRT,  Theorem 37.10] for a precise denition. Let J  be a
Freudenthal-Jordan algebra; it is a cubic Jordan algebra, so that every element a 2  J  satises a
characteristic polynomial

X 3  TJ (a)X 2  +  S J ( a ) X  N J (a)  2  F [X ] :

The maps TJ  and N J  are called the trace and norm maps of J  respectively. The element

a #  =  a2 TJ (a)a +  S J (a)

is called the adjoint of a and satises a  a #  =  NJ (a).  The cross product of two elements
a; b 2  J  is dened by

a  b =  (a +  b ) #  a #  b # :
The trace form TJ  denes a nondegenerate bilinear form hx; yi =  TJ (xy ) on J .  We shall
identify J  and J using this bilinear form. Let (x; y; z) be the symmetric trilinear form
associated to the norm form N J ,  so that (x; x; x) =  6NJ (x).  For any x; y 2  J ,  one has

hx  y; zi =  (x; y; z):

An etale cubic algebra E  is an example of a Freudenthal-Jordan algebra. In general, it is
a fact that dimF J  =  1, 3, 6, 9, 15 or 27. In this paper, we shall largely be interested in the
case where dimF J  =  9, though the case where dimF J  =  15 will also be considered.

The split Freudenthal-Jordan algebra of dimension 9 is simply the Jordan algebra M +  of
3  3-matrices. Its automorphism group is

Aut(M3 ) =  P G L 3  o  S2;
with the nontrivial element of S  acting by a !  at. Hence, isomorphism classes of Freudenthal-
Jordan algebras are classied by H 1 (F; Aut(M3 )). Since there is a natural homomorphism

H 1 (F ; Aut(M3 )+ )  !  H 1 (F ; S2 );
one sees that to every Freudenthal-Jordan algebra J ,  one can attach an invariant which is an
etale quadratic algebra K  ; this quadratic invariant determines the inner class of the group
Aut(J )0  of type A2. More generally, if J  is a 9-dimensional Freudenthal-Jordan algebra, then
Aut(J )  sits in a short exact

1 !  (AutJ )0  !  AutJ  !  S2 !

1 where Aut(J )0  is an adjoint group of type A2. Note that the map

H J  =  Aut(J ) (F )   !  S2

need not be surjective.

As explained in [ KMRT,  Prop. 37.6 and Theorem 37.12] and [GS2, x4.2], a Freudenthal-
Jordan algebra J  of dimension 9 over F  is obtained from a pair (B ; ), where B  is a central
simple algebra over K  =  K  of dimension 9 and  is an involution of second kind on B ,  as the
subspace B  of -symmetric elements, equipped with the Jordan product x y =  (xy + yx)=2. For
a xed etale quadratic algebra K ,  this construction gives an essentially surjective faithful functor
of groupoids:

fK -isomorphism classes of (B ; )g  !  fF -isomorphism classes of J  with K J  =  K g
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(where dimK B  =  9 =  dimF J ) ;  it is fully faithful and thus an equivalence if we allow F -linear
isomorphisms on (B ; )  and not just K -linear ones. Thus Aut(J )  =  AutK (B ; )  and there is an
S2-action on the source given by

(B ; )  !  (B op; );
so that the bers of the map are precisely the S  -orbits (and hence have size 1 or 2). Further,
Aut(J )0 (F )  =  Aut(J ) (F )  if and only if the ber of J  has size 2, i.e. (B ; )   (B op; ).

4.5. Spr inger  decomposition. Twisted composition algebras are related to Freudenthal-
Jordan algebras by the Springer construction. Suppose we have an algebra embedding

i  : E  , !  J :

Then, with respect to the trace form TJ , we have an orthogonal decomposition

J  =  E   C

where C  =  E ? .  For e 2  E  and x  2  C , one can check that e  x  2  C .  Thus, setting e

x  : =   e  x

equips C  with the structure of an E-vector space. Moreover, for every x  2  C ,  write

x #  =  (  Q(x); (x)) 2  E   C  =  J

where Q(x) 2  E  and (x)  2  C .  In this way, we obtain a quadratic form Q on C  and a
quadratic map  on C . Then, by [ KMRT,  Theorem 38.6], the triple (C; Q; ) is an E-twisted
composition algebra over F .  Conversely, given an E-twisted composition algebra C  over F ,
the space E   C  can be given the structure of a Freudenthal-Jordan algebra over F ,  by [ KMRT,
Theorem 38.6] again. We recall in particular that for (a; x) 2  E   C ,

(4.6) (a; x)#  =  ( a #  Q(x); (x) a  x):

This construction gives a bijection

f E -  isomorphism classes of E-twisted composition algebrasg

l
fHJ -conjugacy classes of pairs ( J ; i  : E  , !  J )g

where J  is a Freudenthal-Jordan algebra of dimension 9 and i  : E  , !  J  is an algebra embed-
ding. Moreover, this bijection induces an isomorphism

H C  : =  AutE (C )  =  Aut(i : E  , !  J ) ;

where the latter group is the pointwise stabilizer in Aut(J )  of i ( E )   J .  In other words, the
Springer construction is an equivalence of groupoids. If an E-twisted composition algebra C
corresponds to an embedding i  : E  , !  J  under this equivalence, then one has:

(4.7) [ K E ]   [ K C ]   [ K J ]  =  1 2  F =F 2 :

One consequence of the Springer construction is that it gives us an alternative description
of the torus T E ; K  . It was shown in [GS2] that there is an isomorphism (an exceptional
Hilbert Theorem 90),

AutE (Ce;)0 =  T E ; K C  =  T E ; K J  =  f x  2  ( E
F  K J )  : N E

K J  = E(x )  2  F g = K J
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when J  =  E   Ce;. We will next recall how this isomorphism arises.

4.6. A n  isomorphism of tori.  Given an E-twisted composition algebra C  corresponding to
an embedding  : E  , !  J ,  let us pick a pair (B ; )  over K J  such that J  =  B  . The embedding
gives rise to an embedding of KJ -algebras compatible with involutions of second kind:

~ : E
F  K J   !  B ;

where we have used the involution on E
 K J  induced by the nontrivial automorphism of K J = F .  This induces an embedding of
algebraic groups

~ : ( E
 K J ) = K J   !  P B  =  A u t K J  ( B )

whose image is precisely the pointwise stabilizer of ~ in Aut K  (B ) .  The map ~ restricts to
give an isomorphism

T E ; K J  =  A u t K J  (B ; ; ~)  A u t K J  (B ; ):
where

T E ; K J  =  Ker N K J  =F : ( E
 K J ) = K   !  E = F      : Since

A u t K J  (B ; ; ~) =  AutF (J; )0  =  AutE (C )0 ;
we see that the choice of a (B ; )  with J  =  B  gives an isomorphism of algebraic groups

T E ; K J   !  H 0  =  AutE (C )0 :
If one had chosen (B op ; ) instead, the resulting isomorphism is the composite of the one
for (B ; )  with the inversion map. If it turns out that (B ; )  =  (B op; ), then these two
isomorphisms are conjugate by an element of H C ( F )  n H 0  (F ).  Thus, each E-twisted com-
position algebra C  with quadratic invariant K C  comes equipped with a pair of isomorphisms of
algebraic groups

C ;  1 : H 0   !  T E ; K J  ;
where [ K E ]   [ K C ]   [ K J ]  =  1 2  F =F 2 . This gives a canonical isomorphism

[C ] : H 0  (F )=H 0  (F )2  =  T E ; K J  ( F ) =T E ; K J  (F )2 :

In particular, if we consider C  =  Ce; and J  =  E   Ce;, then we obtain a pair of isomor-
phisms of algebraic tori

(4.8) e;; e; : T E ; K C  =  T E ; K J  : We

have:

Lemma 4.9. The pair of isomorphisms in (4.8) is independent of the choice of (e; ).

Proof. Suppose rst that Ce; and Ce0;0 are L-isomorphic, with an L-isomorphism given by a
multiplication-by-x map x  as in (4.3) and (4.4). Then it follows by the functoriality of
Springer’s construction that

e; =  e0;0  Ad( x ) j T E ; K       :
Here the sign  arises because of the possibility of using a central simple algebra B  or B op in
the construction of . We have observed after (4.4) that Ad(x )  is the identity map on T E ; K C  ,
so that E ;  =  e0;0.
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Now given any two Ce; and Ce0;0 , one knows that they become L
F  F -isomorphic over a nite Galois extension F  of F .  Hence the two pairs of isomorphisms e; and

e0;0 of algebraic tori become equal after a base change to F .  But then they are already equal
over F .

Thus we have a canonical pair of isomorphisms

(4.10) ;  1 : T E ; K C  =  T E ; K J  :

This is the exceptional Hilbert 90 Theorem from [GS2]. It gives a canonical isomorphism

[] : T E ; K C  ( F ) =T E ; K C  (F )2  =  T E ; K J  ( F ) =T E ; K J  (F )2 :

One consequence of this alternative description of H 0      is that its gives an alternative
computation of H 1 (F ; H 0  ). In particular, it follows from [GS2, Prop. 11.2] that

(4.11) H 1 (F ; T E ; K J  )[2] =  E = F N E

K J  = E ( ( E
 K J ) ) :

This description of H 1 (F ; T E ; K C  )[2] =  H 1 (F ; T E ; K J  )[2] will be very helpful later on.

4.7. Examples. As an example, consider the case where E  =  F 3 , and J  =  M3 (F ) is the
Jordan algebra of 3  3 matrices. We have a natural embedding of F      into M3 (F ) where

(a1; a2; a3) 2  F      maps to the diagonal matrix with a1; a2; a3 on the diagonal. If x  2  M3 (F ),
then x #  is the adjoint matrix. Thus it is easy to describe the structure of the twisted
composition algebra C  in this case. An element x  in C  is given by a matrix

0  
0 x3 y2 

1

x  = y3        0 x1 :
x2 y1 0

If we write x  =  ((x1; y1); (x2; y2); (x3; y3)) then the structure of F 3-space on C  is given by

(a1; a2; a3)  ((x1; y1); (x2; y2); (x3; y3)) =  ((a1x1; a1y1); (a2x2; a2y2); (a3x3; a3y3))

for all (a1; a2; a3) 2  F 3 . The structure of the twisted composition algebra on C  is given by

Q((x1; y1); (x2; y2); (x3; y3)) =  (x1y1; x2y2; x3y3)

and
((x1; y1); (x2; y2); (x3; y3)) =  ((y2y3; x2x3); (y3y1; x3x1); (y1y2; x1x2)):

This twisted composition algebra (C; Q; ) has cubic invariant F 3  and quadratic invariant
F 2 .

Here is another example. Assume that E  is a cyclic cubic eld extension of F ,  with Galois
group generated by . Let D  be a degree 3 central simple algebra over F  containing E  as a
subalgebra. Then as a vector space over E ,  D  has a basis 1; $ ; $ 2 ,  for some element $  2  D
satisfying $ x  =  ( x ) $ ,  for all x  2  E ,  and $ 3  =   2  F .  The corresponding E-twisted
composition algebra is isomorphic to C ( )  =  E   E ,  with

Q(x; y) =  xy and (x; y) =  (  1 y # ; x# ) :
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Moreover, C ( )  has cubic invariant E  and quadratic invariant F 2  and is associated to (e; ) =  (1; (;
1)). The algebra D  is split if and only if  is a norm of an element in E .  The group of E-
automorphisms of C (1) is

AutE (C (1))  =  E 1  o  (Z=2Z)

where  2  E 1  acts on C (1) by (x; y) !  (x; y), and the nontrivial element in Z=2Z by
(x; y) !  (y; x), for all (x; y) 2  C (1).

4.8. W h e n  is J  division? Following up on the last example above, one may consider the
question: under what conditions on (e; ) is Je;  =  E  Ce; associated to a division algebra? An
answer for the general case is provided by [ KMRT,  Thm. 38.8], but we provide an
alternative treatment adapted to the rank 2 case here.

Proposition 4.12. Fix (e; ) 2  ( E   K ) 0 ,  so that N E = F  (e) =  N K  =F  (). Then the
following are equivalent:

(i)  2  N L = K J  ( L )  (where L  =  E

 K C ) ;  (ii) (e; ) =  (e0; 1) 2  ( E   K C  )0 =Im(L);

(iii) (e; ) =  (e0; 0) 2  ( E   K C  )0 =Im(L), with 0 2  F ;  (iv) [(e; )]

2  H 1 (F ; T E ; K C  )[2];

(v) J  =  E   Ce; is not a division Jordan algebra.
When these equivalent conditions hold for C ,  H  (F )  =  H 0  (F )  o  Z=2Z. Indeed, for any
C  =  Ce; with  2  F ,

AutE (Ce;)  =  T E ; K C  o  Aut(K C =F )   G L E ( L ) :

In other words, these automorphism groups are physically the same subgroup of G L E ( L ) .

Proof. We rst show the equivalence of the rst four statements. The implications (i) = )  (ii)
= )  (iii) = )  (iv) are clear. Assume that (iv) holds, so that [(e; )] =  [(e; )]. Then there exists x  2
L  such that

N L = E ( x )  =  x   x =  1 and  =    x   x # :
Now the rst condition implies that x  =  z=z for some z 2  L ,  which when substituted into the
second gives   N L = K  (z) 2  F .  Hence, replacing (e; ) by an equivalent pair, we may assume that
2  F ,  so that N E = F  (e) =  2. But then

(e; ) =  (e  NL = E (e);   N L = K C  (e)) =  (e3; 3) 2  ( E   K C  )
0 =Im(L): Since 3 =

N L = K C  (), we conclude that (i) holds.

We note that the equivalent conditions (i)-(iv) always hold when E  is not a eld, for then
the norm map N L = K C  : L   !  K C  is surjective.

Finally, to check the equivalence with (v), note that J  =  E   Ce; is not a division Jordan
algebra if and only if there exists nonzero (a; x) 2  E   Ce; such that (a; x)#  =  0. By (4.6), this is
equivalent to

(4.13) a #  =  Q(x) =  e  N L = E ( x ) and a  x  =  (x)  =  e 1    x# :
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When E  is not a eld, we can always take nonzero (a; 0) with a #  =  0, so that J  is never a
division algebra in this case.

We may henceforth assume that E  is a eld. Suppose that (ii) holds, so that  =  1 and N E = F

(e) =  1. Then we may take (a; x) =  (e; e# ); one checks that this satises the two equations
in (4.13) and hence J  is not division. We have thus shown (ii) = )  (v).

Conversely, we shall show (v) implies (i) (when E  is a eld). Assume that there is a nonzero
(a; x) such that the two equations in (4.13) hold. Then x  must be nonzero (otherwise, we
deduce by the rst equation that a #  =  0 and hence a =  0 since E  is a eld). Multiplying the two
equations in (4.13), we obtain

N E = F  (a)  x  =    N L = K C  (x)   x; so

that

(4.14) x   ( N E = F  (a)   N L = K C  (x))  =  0:

Hence, if K C  is a eld, so that L  is a eld also, then we may cancel x  (noting that x  =  0) to
deduce that

 =  N E = F  (a)  N L = K C  (x)  1 2  N L = K C  ( L ) :  On
the other hand, if K C  =  F   F ,  then let

x  =  (x1 ; x2 ) 2  E   E  =  L and  =  (1; 2) 2  F   F :  The

two equations in (4.13) becomes:

a #  =  e  x1 x2 and (ax1; ax2) =  e 1  (2  x2 ; 1  x1 ):

From this, we see that a =  0 (otherwise, the second equation would give x1 =  x2 =  0 also), and
hence x1 ; x2 2  E  . Hence, we may cancel x  in (4.14) as before and conclude that  2  N L = K J

( L  ), as desired.

4.9. Embeddings. We record here some results that we will need later, concerning embed-
dings of rank 1 twisted composition algebras into rank 2 ones.

Lemma 4.15. Let us x
 a 2  E  with corresponding rank 1 E-twisted composition algebra Ca  =  E  and
 an E-twisted composition algebra C  =  Ce; of rank 2, corresponding to an embedding E

, !  J ,  with resulting Springer decomposition J  =  E   C .
There are natural equivariant bijections between the following three AutE (C )-sets (possibly
empty)

(a) the set of E-morphisms f  : Ca   !  C ;
(b) the set of rank 1 elements x  2  J  (i.e. x #  =  0 but x  =  0) of the form x  =  (a; v) 2

E   C  =  J ;
(c) the set

X a ; C (F )  =  Xa;e;(F ) =  f x  2  L  : =  E
K C  : N L = E ( x )  =  e 1 a#  and N L = K C  (x)  =  N E = F  (a) 1g:

The bijection between (a) and (b) is given by f  !  (a; f (1)), whereas that between (b) and (c)
is given by x  =  (a; v) !  v.
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Note that the 3 sets are possibly all empty. For example, if J  is associated with a cubic
division algebra, then there are no rank 1 elements in J ,  so that the set in (b) is empty, and
hence so are the other 2 sets. On the other hand, we note:

Lemma 4.16. For any a 2  E ,  there exists a unique E
KC -isomorphism class [C ] such that X a ; C (F )  is nonempty. This unique E
KC -isomorphism class is represented by C a # ; N (a) .
Hence we have a group homomorphism

f  : E = F E 2   !  ( E   K C  )
0 =Im(L)

given by
f (a) =  (a # ; N E = F  (a))

and characterized by the requirement that Ca  embeds into Ce; if and only if (e; ) =  f (a) 2
H 1 (F ; TE ; K  ). The image of f  is equal to H 1 (F ; TE ; K  )[2], i.e. consists precisely of those
twisted composition algebras C  whose associated Jordan algebra is not division, whereas

Ker(f )  =  f x # = x : x  2  L  and N L = K C  (x)  2  F g=F E 2 :

Proof. It is clear that if C  =  C a # ; N E = F  (a) , then 1 2  Xa ; C (F ) ;  this shows the existence of C
and that it has the desired form. For the uniqueness, suppose that Xa;e;(F ) and Xa;e0 ;0 (F ) are
both nonempty. Then there exist x; x 2  L such that

N L = E ( x )  =  e 1 a#

and
NL = E (x0 )  =  e0 1 a#

and N L = K ( x )  =  N E = F  (a)   1

and NL = K (x 0 )  =  N E = F  (a)  0 1:

On dividing one equation by the other, we see that

NL = E (x0 =x) =  e=e0 and NL = K (x0 =x)  =  =0:

This implies that (e; ) =  (e0; 0) 2  H 1 (F ; T E ; K C  ), as desired.

By Proposition 4.12, the image of f  consists of twisted composition algebras associated to
non-division Jordan algebras J .  On the other hand, to prove that any such C  is in the image of
f ,  it suces by Proposition 4.12 to consider C  =  Ce;1, with N E = F  (e) =  1. We claim that f (e)
=  [(e; 1)]. Indeed,

f (e)  =  ( e # ; N E = F  (e)) =  (e 1; 1) =  (e; 1) 2  H 1 (F ; T E ; K C  ):

We leave the statement about Ker(f )  to the reader.

Since the image of the map f  in the above lemma is H 1 (F ; TE ; K  )[2], we deduce from
(4.11) that f  can be simply interpreted as the natural map

(4.17) f  : E = F E 2   !  E = F N E

K J  = E ( ( E
 K J ) ) :

Finally, we note that X a ; C  =  Xa;e; is an algebraic variety which is evidently a torsor
for the torus H 0  =  T E ; K  . If Xa;e ;(F ) is nonempty, then H 0  (F )  =  T E ; K  ( F )  acts simply
transitively on it. Thus, the action of H C ( F )  on Xa;e;(F ) is transitive and the stabilizer
of a point x  2  Xa;e;(F ) has order 2, with the nontrivial element hx 2  H C ( F )  n H 0  (F ).
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For example, the stabilizer of 1 2  X a ; C  # ( F )  is Aut(K C =F ) .  Indeed, hx is the map on
Ce; =  E
 K C  given by

hx : z !  
x  

 z:

If x0 2  Xa;e;(F ) is another element, then x0 =  t  x  for a unique t 2  H 0  (F )  and

hx0 =  t  hx  t 1 =  t2  hx:
Thus the element hx gives a well-dened class in (H C (F ) n H 0  (F ))=H 0  (F )2  as x  2  Xa;e;(F )
varies. We record this as a lemma.

Lemma 4.18. Suppose that f (a) =  [C ] 2  H 1 (F ; T E ; K  )[2] so that X a ; C (F )  is nonempty.
Then one obtains a class

gC (a) 2  ( H C ( F )  n H C (F ) ) = H C ( F ) 2

consisting of elements which stabilize some points in X a ; C (F ) .

4.10. Cohomological interpretation. The embedding problem studied in the previous
subsection can be given a rather transparent cohomological treatment. The map f  in Lemma
4.16 is a surjective homomorphism H 1 ( F ; Z E )   !  H 1 (F ; TE ; K  )[2]. This map can be ob-
tained from our observation in (4.2) that T E ; K C  [2] =  Z E .  From the Kummer exact sequence

1 !  Z E  !  T E ; K C       !  T E ; K C       !  1;
one deduces the following fundamental short exact sequence
(4.19)

1 !  T E ; K C  (F ) 2 nTE ; K C  ( F )  !  H 1 ( F ; Z E )  !  H 1 (F ; T E ; K C  )[2] !  1:
The map f  here is precisely the one described in Lemma 4.16. This cohomological discussion
also gives us a more conceptual description of Ker(f ):

Ker( f )  =  T E ; K C  (F ) 2 nTE ; K C  (F ):
The map b can be described explicitly as follows. Given t 2  T E ; K  ( F )   L ,  since N L = E ( t )  =  1,
we can write

t =  y=y with N L = K C  (y) 2  F  (since N L = K C  (t) =  1).
Then

b(t) =  y # =y 2  E =F E 2 ;
The reader can easily verify that b(t) is independent of the choice of y and is trivial if
t 2  T E ; K C  (F )2 .

Here is another interesting observation arising from (4.19) and Lemma 4.18. Let us x [C ]
2  H 1 (F ; TE ; K  )[2] and consider the ber f  1 ([C ]) which is a T E ; K  (F )=TE ; K  (F )2-torsor. Then
we have:

Proposition 4.20. The map a !  gC (a) (with gC (a) dened in Lemma 4.18) gives an iso-
morphism

f  1 ([C ])  !  ( H C ( F )  n H 0  (F ) )=T E ; K C  (F )2

of T E ; K C  ( F ) =T E ; K C  (F )2-torsor.
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Proof. Assume without loss of generality that C  =  Ce;. Since both f  1 ([C ]) and ( H C ( F )  n
H C ( F ) ) =T E ; K C  (F )2  are torsors under T E ; K C  ( F ) =T E ; K C  (F )2 , it suces to show that if a0

=  b(t)  a 2  f  1([C ]);

then

gC (a0) =  t  gC (a) 2  ( H C ( F )  n H 0  (F ) )=T E ; K C  (F )2 :

Write
t =  y=y with N L = K C  (y) 2  F ;

so that

b(t) =  y # =y and hence a0 =  a  y# =y:

This implies in particular that

N E = F  (a0) =  N E = F  (a)  N L = K C  (y) and a0 # =  a #   NL = E (y ):

Now suppose that x  2  Xa;e;(F )  L ,  so that

N L = E ( x )  =  e 1 a# and N L = K C  (x)  =  N E = F  (a)   1:

Then one checks that x0 : =  xy 2  Xa 0 ;C (F ). Hence, if hx and hx0 are the nontrivial elements
stabilizing x  and x  respectively, then for any z 2  C ,

hx0 (z) =  
x0  z =  

xy 
 z =  t 1hx(z):

Thus we have

hx0 =  t  hx 2  ( H C ( F )  n H C ( F ) ) =T E ; K C  (F )2 :

Indeed, if [C ] is a nontrivial element of H 1 (F ; TE ; K  )[2], then [C ] generates a subgroup of
order 2 and we have a short exact sequence of abelian groups

(4.21) 1 !  T E ; K C  ( F ) =T E ; K C  (F )2  !  f  1(h[C ]i) !  h[C]i !  1:

On the other hand, with C  =  Ce;1 (without loss of generality), one has another extension:

(4.22) 1 !  T E ; K C  ( F ) =T E ; K C  (F )2  !  H C ( F ) =T E ; K C  (F )2  !  S2 !  1

Then the following is a consequence of Proposition 4.20:

Proposition 4.23. The two extensions (4.21) and (4.22) are isomorphic via a canonical
isomorphism of extensions dened as follows. For any a 2  E = F E 2  =  H 1 ( F ; Z E )  with f (a) =
[C ], the isomorphism sends a to gC (a).
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4.11. R a n k  4 and 8 cases. We conclude with a brief sketch of the rank 4 and 8 cases. The
case dimE C  =  4 corresponds to embeddings of Jordan algebras E   !  J  with dimF J  =  15.
Examples of such J  are of the form H3 (B ),  the Jordan algebra of 3  3-Hermitian matrices with
entries in a quaternion algebra B .  This case is discussed in some detail in Appendix A
below. We simply note here that the automorphism group of such a C  is

AutE (C )  =  
 

ResE = F  ( B

F  E )det  =F

where the RHS consists of elements in ( B
 E )  whose norm lies in F .  See x6.6 below.

Finally, when dimE C  =  8, one has dimF J  =  27, so that J  is an exceptional Jordan
algebra. An example is J  =  H3 (O), the Jordan algebra of 3  3-Hermitian matrices with
entries in an octonion algebra O. When the octonion algebra is split, the automorphism
group of such a C  is isomorphic to the group

G E  =  Spin8 :

Moreover, the action of G E  on C  is (the Galois descent of ) the sum of the 3 irreducible 8-
dimensional representations of Spin over F .  It is no wonder that the structure of the group G E
is intimately connected with the theory of twisted composition algebras.

5. Twisted Bhargava Cub es

To  connect the theory of twisted composition algebras with our earlier discussion on G E  =
Spin8 , let us recall the main result of [GS2].

5.1. Nondegenerate cubes. Recall the Heisenberg parabolic subgroup P E  =  M E N E   G E  and
the natural action of M E  =  G L 2 ( E ) on the space V E  =  N E = [ N E ; N E ]  of E-twisted
cubes. Now we have [GS2, Prop. 10.4]:

Proposition 5.1. The nondegenerate ME (F )-orbits on V E (F )  are in natural bijection with E-
isomorphism classes of E-twisted composition algebras of rank 2. More precisely, to every
nondegenerate E-twisted cube , we attached in [GS2] a pair (Q; ) giving a structure of E-
twisted composition algebra on E   E ,  with an isomorphism

StabME (F ) () =  AutE (Q; ):

If g 2  M E (F )  =  GL2 (E )d e t  and 0 =  g(), then the pair (Q0 ; 0 ) attached to 0 is obtained from
(Q; ) by the change of variables given by the matrix g, i.e.

Q0 =  Q  tg and 0 =  tg 1    tg:
Hence,

g 2  StabGL 2 (E ) d e t ()   GL2 (E )d e t  ( )  tg 1 2  AutE (E 2 ; Q; ):

In particular, if F  is a local eld, then the ME (F )-orbits of generic unitary characters
of N E ( F )  are parametrized by E-twisted composition algebras (modulo E-isomorphisms).
Likewise, when F  is a number eld, the ME (F )-orbits of (abelian) Fourier coecients along N E
are parametrised by E-twisted composition algebras (modulo E-isomorphisms).

We shall not need the general procedure to pass from  to (Q; ), but only for the so-
called reduced cubes:
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Proposition 5.2. ( i )  If  =  (1; 0; f ; b) 2  V E (F )  (such a  is called a reduced cube), then its
associated pair (Q; ) is given by:

and

so that (1; 0) =  (0; 1).

Q(x; y) =   f x 2  bxy +  f # y 2

(x; y) =  (  by #  ( f x )   y ; x #  +  f y # )

( i i )  Conversely, let (C; Q; ) be an E-twisted composition algebra of E-dimension 2. For v
2  C ,  set (v) : =  NC (v )2   4N E = F  (Q(v)) 2  F .  Then there exists v 2  C  such that (v) =  0.
Moreover, the set fv; (v)g is an E-basis of C  if and only if (v) =  0. Given such a v 2  C  and
identifying C  with E   E  using the basis fv; (v)g, the pair (Q; ) corresponds to the reduced cube
(1; 0;  Q(v);  NC (v ))  under the recipe in (i) .

We record a corollary which will be used later, concerning isomorphisms between rank 2
twisted composition algebras:

Corol lary 5.3. Let (C; Q; ) be an E-twisted composition algebra of E-dimension 2. Let f
2  E  and b 2  F ,  such that b2 +  4N E = F  ( f )  =  0. Then the set of

C;f ;b : =  fv  2  C  : Q(v) =   f  and NC (v )  =   bg

is a principal homogeneous space for Aut (C ) ,  which contains an F -rational point if and only if
(C; Q; ) is isomorphic to the E-twisted composition algebra C  =  (E 2 ; Q; ) dened by the reduced
cube  =  (1; 0; f ; b). Indeed, there is an AutE (C )-equivariant isomorphism

IsomE (C; C )  !
C;f ;b

dened by
 !  (1; 0):

Proof. An E-linear isomorphism  : C   !  C  is determined by v =  (1; 0) (for (0; 1) has no
choice but to be equal to (v)) and this v 2  C  must satisfy

Q(v) =   f ,  and NC (v )  =   b.

Conversely, when v 2  C  satises these two conditions, one checks using [GS2, x3.1 and Lemma 3.2,
eqn. (3.4)] that the map  given by (1; 0) =  v and (0; 1) =  (v) is an isomorphism of twisted
composition algebras.

Observe that IsomE (C; C ) has an action of AutE (C)   AutE (C )  for which it is a torsor for
each of the two factors. Hence, assuming IsomE (C; C ) is nonempty and after xing a base
point 0 2  IsomE (C; C ), one obtains an isomorphism

Ad(0 ) : AutE (C)  =  AutE (C ):

By transport of structure, we also see that
C;f ;b carries an action of AutE (C)   AutE (C ).  Let us describe the action of AutE (C)  =
StabGL 2 (E ) d e t ()  on
C;f ;b concretely.

Lemma 5.4. Given
g = r s 2  StabGL 2 (E ) d e t ();
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so that tg 1 2  AutE (E 2 ; Q; ), and v 2

C;f ;b associated to  2  IsomE (C; C ),  one has g  v =  
 tg  (1; 0)

 
=  (p; q) =

pv +  q(v) 2
C;f ;b :

5.2. Degenerate cubes. It will be useful to have an understanding of the degenerate
ME (F )-orbits on V E (F )  =  N E (F ) =Z (F ) .  The nontrivial degenerate orbits correspond to
the nilpotent GE -orbits which are denoted by A1, 2A1 and 3A1 in the Bala-Carter classica-
tion. Accordingly, we shall say that the corresponding elements in V E (F )  are of rank 1, 2 or 3.
We may refer to generic elements (non-degenerate cubes) as rank 4 elements. The set of
elements in V E  of rank  k is a Zariski closed subset. For example, the elements of rank 1 are
precisely the highest weight vectors, and the set of elements of rank  1 can be described by a
system of equations given in Proposition 8.1 below (see also [GS1, Prop. 11.2]).

We shall now describe the ME (F )-orbits of elements of rank 2 and 3.

Proposition 5.5. (1) Every ME (F )-orbit of rank 3 elements in V E  =  F   E   E   F
contains an element (0; 0; e; 0) where e 2  E  . Two rank 3 elements (0; 0; e; 0) and
(0; 0; f; 0) belong to the same orbit if and only if e=f 2  F E 2 .

(2) Every ME (F )-orbit of rank 2 elements in V E  =  F   E   E   F  contains an element
(1; 0; e; 0) where e 2  E  such that e =  0 and e =  0. Two rank 2 elements (1; 0; e; 0)
and (1; 0; f ; 0) belong to the same orbit if and only if e=f 2  (F )2 .

Proof. (1) Consider  =  (0; 0; 1; 0). This element has rank 3 since, over F ,  1 =  (1; 1; 1) 2  F 3  sits
across three orthogonal root spaces, hence the notation 3A1. A  long but fascinating
computation shows that the stabilizer S M E  () of  in ME  consists of all elements 

a 0 
 
b
d

where ad 2  F ,  d=d# =  1 and TE = F  (bd# )  =  0. Let TE   ME  be the maximal torus of diagonal
matrices in ME . The stabilizer S T  ()  of  in TE  consists of matrices as above with b =  0. Since

H 1 (F ; SM E  (C ) )  =  H 1 ( F ; S T E  (C ) )

it suces to classify the orbits of T on elements of the type (0; 0; e; 0) where e 2  E .  On
these elements, the diagonal matrices act by multiplication by d=d#. Since the set of all d=d# is
F E 2 ,  (1) follows. Statement (2) is proved in the same way, and we leave details to the reader.

Remark: If E  is a eld, the set of e 2  E  such that e #  =  0 consists only of 0, so that there are no
rank 2 elements in V . If E  =  F   K  with K  a eld, the set of such e’s is one F -line, and it consists
of three F -lines if E  =  F 3 . This reects the fact that G E ( F )  has three orbits with Bala-Carter
notation 3A1, permuted by the group of outer automorphisms.
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6. Dua l  Pairs

In this section, we introduce the various dual pairs which we will study in this paper. In
particular, we shall see that given a E-twisted composition algebra C ,  with corresponding
embedding i  : E  , !  J  under the Springer decomposition, one may construct a dual pair:

H C   G E  =  AutE (C )   Spin8  G J ;

where G J  is a group we shall introduce in due course. We shall rst construct this dual pair
on the level of Lie algebras.

6.1. L i e  algebras. Let us begin with an arbitrary Freudenthal-Jordan algebra J  (not nec-
essarily of dimension 9). Let l J   End(J )  be the Lie subalgebra preserving the trilinear form (
;  ;  )  associated to the norm form N J ,  i.e. a 2  End(J )  lies in l J  if and only if

(a  x; y; z) +  (x; a  y; z) +  (x; y; a  z) =  0

for all x; y; z 2  J .  The trace form denes an involution a !  a >  on l J  by

ha  x; y i =  hx; a>  y i

for all x; y 2  J .

With h =  sl(V ) for V a 3-dimensional vector space, the space
gJ  =  h  l J   (V

 J )   (V
 J )

has the structure of a simple Lie algebra, such that the above decomposition arises from a
Z=3Z-grading. The brackets [h l ; V
J ]  and [h l ; V
J ]  are given by the natural action of h  l J  on V
 J  and V
 J ,  with the action of a 2  l J  on the second factor of V
 J  is given by that of  a . The brackets

are dened by

respectively.

[V
 J; V
 J ]   V
 J  and [V
 J; V
 J ]   V
 J

[v
 x; u
 y] =   (v ^  u)
 (x   y) [v
 x; u
 y] =  (v ^  u)
 (x   y)

The remaining bracket (between V
J  and V
J )  is determined by the invariant Killing form. More precisely, the Killing form on gJ  is an
extension of the Killing form on h lJ  (we shall specify the normalization later), such that



J

hv
 x; u
 y i =  hv; ui  hx; yi

if v
 x  2  V
 J  and u
 y 2  V
 J ,  where hv; ui is the evaluation of u on v and hx; yi is the trace pairing on J .  Then the bracket
[V
 J; V
 J ]   h  l J  is completely determined by:

h[x; y]; zi =  h[z; x]; yi
for any x; y; z 2  g . We refer the reader to [Ru] for explicit formulae in this case. However, if
hv; ui =  0, the bracket of v
 x  2  V
 J  and u
 y 2  V
 J  is contained in h, and is given by

[v
 x; u
 y] =  hx; yi  v
 u 2  sl(V )
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and/or

Explicitly, if i  =  j ,

[u
 y; v
 x] =  hx; yi  u
 v 2  sl(V )

[ei

 x; ej

 y] =  hx; yieij

[ej

 y; ei

 x] =  hx; yiej i :

We highlight two cases here:

(a) If J  =  F ,  considered as a cubic algebra, so that 1  1 =  2 and TF (1) =  3, then this
construction returns the simple split algebra g of type G2.

(b) If J  =  E  is a cubic etale algebra, then l =  E 0 , the subspace of trace 0 elements in
E .  The action of x  2  E 0  on e 2  E  is x   e =   2xe. We x a symmetric bilinear form
on l E  by hx; xi =  2  TE (x2 ). Then the Lie algebra g E  is of type D4 ; it is the Lie
algebra of the group G E  =  Spin8 .

6.2. Groups.  In order to explain the two appearances of 2 in (b) above, let J  =  E   C ,  where
C  is E-twisted composition algebra (of arbitrary rank). For  2  E ,  let c : J  !  J  be dened by

c : (e; v) !  ( # =   e;   v) for all

(e; v) 2  E   C .  By (38.6) in [KMRT],  one has

NJ ((e; v )) =  N E (e)  +  NC (v )  TE (e  Q(v));

and it readily follows that

NJ (c(e; v)) =  N E ( )   NJ (e; v);

so that c is a similitude map of N with similitude factor N  (). In particular, if  has
norm 1, then c preserves the norm N  . Since #  =   1 (if N  ()  =  1), we can write c(e; v) =
(  2e; v). By passing to Lie algebras, we get an embedding l E  =  E 0   l J  where x  2  E  acts on
J  =  E   C  by

x   (e; v) =  (  2xe; v) +  (e; xv):

By setting v =  0, we get the previously dened action of l E  =  E 0  on E .
On the other hand, we x the Aut(lJ )-invariant form on l J  so that the restriction to l E  is

2  TE (x  ). For example, suppose that J  =  M3 (F ) and E  =  F is diagonally embedded
in M3 (F ). Then l J  =  sl3  sl3, so that an element (x; z ) 2  sl3  sl3 acts on y 2  M3 (F ) by xy

yz, and l E  is the set of trace zero diagonal matrices x  embedded in sl3  sl3 as (  x; x).

We embed AutE (C )   Aut(J )  so that it acts trivially on E ,  the rst summand in J  =  E
C .

Proposition 6.1. Let J  =  E   C .  Every F -rational similitude map of N  commuting with the
algebraic group Aut (C )  is equal to c for some  2  E .  Likewise, every F -rational
similitude map of N J  commuting with the algebraic group Aut(J )  is equal to c for  2  F .
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Proof. Let g be a F -rational similitude of N J  commuting with AutE (C ).  Then g preserves
both summands E  and C  of J .  The algebra of F -rational endomorphisms of C  commuting
with the action of Aut (C )  is E .  Thus g =  c on C ,  for some  2  E .  Let g0 =  c      1   g.
Clearly, g0 belongs to the similitude group of N  ; however, since g0(0; v) =  (0; v) for all v 2  C ,  the
similitude factor is 1, i.e. g0 preserves N J .

Now x e 2  E .  Then g0(e; v) =  (e0; v) for all v 2  C  and some e0 2  E .  We want to show that e
=  e0. It suces to do so over the algebraic closure F .  Since g0 preserves N  , use v =  0 to show rst
that N  (e) =  N  (e0), and then T (e Q(v)) =  T (e0 Q(v)) for all v 2  C .  Since Q is surjective
over F ,  TE(ee00) =  TE(e0e00) for all e00 2  E
 F .  Hence e =  e0. Finally, if g is a similitude that commutes with Aut(J ),  then it commutes
with AutE (C )   Aut(J ),  so g =  c. Since Aut(J )  acts absolutely irreducibly on J  , the space
of trace 0 elements in J ,   2  F  .

Let G J  =  Aut(gJ ). We note that G J  is not necessarily connected. From the construction
of the Lie algebra gJ , it is evident that Aut(J )   G J .  Assume, furthermore, that J  =  E  C  and
J  =  E .  The natural action of AutE (C )  on C ,  extended trivially to E   J  gives an
embedding AutE (C )   Aut(J ).  Hence we have a natural embeddings

AutE (C )   Aut(J )   G J :

We have also constructed inclusions of g  g E   g J  of vector spaces.

Proposition 6.2. The inclusions g  g E   g J  are homomorphisms of L ie  algebras, thus
giving rise to inclusion of algebraic groups

G2  G E  =  Spin8  G J :

Proof. Let x; y 2  E .  The cross product xy, computed in J ,  is the same as the one computed in
E .  Hence the bracket [V
 E ; V
 E ]  in gJ  coincides with the one in gE . The bracket [V
 E ; V
 E ],  computed in gJ , is xed by AutE (C ) (F )  hence it is contained in h  lE .  Since the Killing
form on h lE  is the restriction of the Killing form on h lJ  it follows, from the denition of the Lie
brackets, that the two Lie brackets coincide. This shows that the inclusion g E   g J  is a
homomorphism. A  similar argument shows that the inclusion g E   gJ . Indeed, the bracket [V
F; V
F ], computed in gJ , is xed by Aut(J )  hence it is contained in h.

The inclusion of Lie algebras induce a corresponding inclusion of the corresponding con-
nected algebraic subgroups of G J ,  and we know what these algebraic subgroups are up to
isogeny. It is clear that the algebraic subgroup associated to g is G2. Over F ,  under the adjoint
action of gE , the algebra gJ  contains the three 8-dimensional fundamental representations of
Spin8, each occurring with multiplicity dimE (C ). This shows that the connected algebraic
subgroup corresponding to g E  is simply-connected and is thus isomorphic to G E  =  Spin8 .

6.3. Relat ive root system. We x a basis e1; e2; e3 of V and let t  h be the Cartan
subalgebra consisting of diagonal matrices, with respect to this basis of V . Under the adjoint
action of t,

gJ  =  gJ;0  ( gJ;) 2
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where   t is a root system of type G2. Note that gJ;0

=  t  l J :

The short root spaces are F e
 J  or F e
 J ,  so we have canonical identications with J  given by x  !  e2
 x  and x  !  e
 x  respectively. The long root spaces are one-dimensional and contained in h. In particular,
there are two choices for the basis vector : ei j  or ej i  (  =   ei j  under the identications h =  sl(V )
=  sl(V )).

In particular, when J  =  E ,  gE ;0 =  t lE  is a torus, and by choosing a set of positive roots in
, we have constructed a Borel subalgebra in gE , so that g E  is quasi-split. Indeed, we have
mentioned before that g E  is the Lie algebra of Spin . What we have done here is to give a
direct construction of this Lie algebra, recover some of the structure theory described in x2
from this construction and show that this Lie algebra ts into a family of such Lie algebras
which is associated to a Freudenthal-Jordan algebra J .

6.4. Two step parabolic subalgebra. Let s 2  sl(V ) be the diagonal matrix (1; 0;  1).
The adjoint action of s on gJ  gives a Z-grading

gJ  =  n 2 Z  gJ (n):

Then gJ (n) =  0 only for n =   2;  1; 0; 1; 2. Let

m =  gJ (0) and n =  gJ (1)  gJ (2):

Then p =  m  n is a maximal parabolic subalgebra, with Levi subalgebra m and nilpotent
radical n. Let us examine the structure of each of these parts in turn.

The Levi subalgebra m has a decomposition

m =  t  l J   e2

 J   e2

 J :

The derived algebra
[m; m] =  l J   e2

 J   e2

 J
is generated by short root spaces e2
 J  and e
 J .  The above decomposition also exhibits a (Siegel-type) parabolic subalgebra

s =  (t  l J )   e2

 J   m with abelian nilpotent radical e2

 J .

Considering now the nilradical n, the center of n is [n; n] =  gJ (2) =  F e13. As an m-module,
the quotient n=[n; n] is isomorphic to

gJ (1) =  F e21  F e1

 J   F e3

 J   F e23 =  F   J   J   F :

Henceforth, an element in gJ (1) is a quadruple (a; y; z; d) where a; d 2  F  and y; z 2  J .  Using our
formulae, we can describe this m-module. One sees that the Lie bracket of e2
x  2  e2



J  and (a; y; z; d) is
[e2

 x; (a; y; z; d)] =  (0; ax; x  y; hx; zi) and the Lie bracket of e2

 x  2  e2

 J  and (a; y; z; d) is

[e2

 x; (a; y; z; d)] =  (hx; yi; x  z; dx; 0):
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If J  =  E ,  a cubic etale algebra, then gE (1) is the space of E-twisted Bhargava cubes and
[m; m] is identied with sl2 (E ) by

0 0 !  e2

 x  and x      0 !  e2

 x

Let P J  =  M J N J  be the parabolic subgroup associated to pJ . If we x an embedding E  , !  J  of
Jordan algebras, then we have a corresponding embedding p E  , !  pJ  of parabolic subalgebras
such that

G E  \  P J  =  P E

on the level of groups.

6.5. 3-step parabolic subalgebra. Now let s 2  sl(V ) be the diagonal matrix (1; 1;  2).
As above, the adjoint action of s on gJ  gives a Z-grading

gJ  =  n 2 Z  gJ (n):

Then gJ (n) =  0 only for n =   3; : : : ; 3. Let

l =  gJ (0) and u =  gJ (1)  gJ (2)  gJ (3):

Then q =  l  u is a parabolic subalgebra whose nilradical u is 3-step nilpotent. Note that

gJ (1) =  F e1

 J   F e2

 J ;  gJ (2) =  F e3

 J and gJ (3) =  F e13  F e23:

Let QJ  =  L J U J  be the corresponding parabolic subgroup in G J .  Thus, the unipotent radical
UJ  has a ltration

U =  U1  U2  U3 such that Ui =Ui+1 =  gJ ( i )  for all i.

If we x an embedding E  , !  J ,  then we have a corresponding embedding q E  , !  q J  of
parabolic subalgebras such that

G E  \  QJ  =  QE :
on the level of groups.

6.6. See-saw dual pairs. To  summarise the discussion in this section, relative to an em-
bedding E  , !  J ,  we have constructed the following see-saw of dual pairs in G J :

G E H J  =  Aut(J )
@

@
     @

G2 H C  =  AutE (C )

We highlight two cases:

 The particular case of interest in this paper is the case when dimE C  =  2 or equiv-
alently dimF J  =  9. In this case, G J  and AutE (C )  are disconnected and we have a
short exact sequence

1 !  G J  !  G J  !  S2 !  1
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where the identity component G0 is an adjoint group of type E 6  and whose inner
class correspond to the quadratic algebra K J .  Note that on taking F -points, we have a
map

G J  =  G J ( F )   !  S2

which need not be surjective.

 When dimE C  =  4 (i.e. dimF J  =  15), then G J  is an adjoint group of type E 7
associated to a quaternion F -algebra B .  In this case,

AutE (C )  =  
 

ResE = F  ( B

F  E )det  =F

where the RHS consists of elements in ( B
 E )  whose norm lies in F .

7. L e v i  Factor

In this section, we investigate some further properties of the dual pair H C   G E  in G J ,  with
J  =  E   C  and dimE C  =  2. The group G J  has a (Heisenberg) maximal parabolic subgroup
P J  =  M J N J   P J  =  MJ   N J ,  whose Levi factor MJ  is of type A5. Moreover,

( H C   G E )  \  P J  =  H C   P E ;

so that
H C   ME   !  MJ

is itself a dual pair in MJ . Indeed, if we intersect the seesaw diagram in x6.6 with MJ , we
obtain the following seesaw diagram in MJ :

GL2 (E )d e t H J  =  Aut(J )
@

@
     @

GL 2 ( F ) H C  =  AutE (C )

For our purposes, when J  is not a division algebra, we need to describe the Levi subgroup MJ
and the above embedding concretely. This is because of the need to relate the theta
correspondence associated to H C   ME  to a classical similitude theta correspondence. We
treat the various cases in turn.

7.1. Sp l i t  case. Suppose rst that J  =  M3 (F ), so that G J  is split. In this case,

MJ  =  (GL 1   SL6 )=6

where 6 is viewed as a subgroup of GL 1   SL6  by the map x

!  (x3 ; x):

A  more convenient description is:

MJ  =  (GL 1   GL6 )=GL 1

where GL 1  is viewed as a subgroup of GL 1   GL 6  by the map x  !  (x3 ; x). The character

(x; g) =  det(g)=x2



J J
0

E 2

6

C

C J
0

0 K

6

6 6

0

0

1 6 J

6

J6 1

0
6

36 W E E  T E C K  G A N  A N D  G O R D A N  S AV I N

of GL 1   GL 6  descends to M 0 and is a generator of Hom(M 0; Gm). The character  arises
naturally when MJ  acts by conjugation on the center of N J .

If we identify F 6  =  E 2  (by choosing an F -basis of E ) ,  then M =  GLd e t (E )  is naturally
a subgroup of GL6 .  We dene an embedding GL2 (E )d e t   !  MJ  by the map

g !  (det(g); g):
Note that (det(g); g) =  det(g) since the determinant of g, viewed as an element in G L
is det(g)3. On the other hand, since K J  =  F   F ,  one has H 0      =  E =F .  The right-
multiplication action of e 2  E  on E 2  gives an embedding E   !  GL6 ,  so that any element e 2  E

can be viewed as an element of GL 6  denoted by the same letter. Thus we have a
map E      !  GL 1   GL 6  given by

e !  ( N E = F  (e); e):
If e 2  F ,  then the image is (e3; e). The map thus descends to an inclusion of E = F   !  MJ  and
we have dened an embedding

H 0   ME  =  E = F   GL2 (E )d e t  , !  M 0

when J  =  M3 (F ). Note that the character  of MJ  is trivial on E =F .

7.2. Quasi-split case. Consider now the case when J  =  J 3 ( K ) ,  so that G J  is quasi-split
but not split. In this case,

M J  =  (GL 1   SU6 )=Res1
6;K

where Res1
6;K =  K e r (N K = F  : Res K = F  6 !  6) is viewed as a subgroup of GL 1   SU K  by the

map x  !  (x3 ; x).

F ix  an involution g !  g of G L  ( K )  that denes the quasi-split form UK .  In particular,
det(g) =  det(g) 1 and x  =  x  1 for any scalar matrix x  2  GL6 .  Consider the involution

 : (x; g) !  (x det(g) 1; g)

of GL 1   GL6 .  Since (x3 ; x) =  (x  3; x 1), for every x  2  GL1 ,  the involution  descends to the
quotient (GL 1   GL6 )=GL1 .

Now M J  is the subgroup of

Res K = F  (M J  F  K )  =  Res K = F  (GL 1   GL6 =GL1 )

xed under the Galois action twisted by . From our knowledge in the split case, we deduce an
exact sequence of algebraic groups,

1 !  U K  !  (Res K = F  Gm  UK )y  !  M 0 !  1

where (Res K = F  Gm  UK )y  is the subgroup consisting of pairs (x; g) such that

x=(x) =  det(g) with 1 =   2  Aut(K=F ):

On the level of F -points, one has

1 !  K 1  !  ( K   UK (F )) y  !  M 0 (F ) !  H 1 (F ; U K )  =  F =N K = F  ( K ) :
Let

M J ; K  =  ( K   UK (F ))y =K 1 :
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so that MJ (F )=MJ; K   F =N K = F  ( K ) .  We claim that this is an isomorphism. The condition
x=(x) =  det(g) implies that (x; g) 2  N K = F  ( K ) ,  for all (x; g) 2  MJ; K .  On the other hand,

the character  : M 0 (F ) !  F  is surjective, and the claim follows. Thus, we have an exact
sequence of topological groups

1 !  M J ; K  !  M J (F )  !  F =N K = F  ( K )  !  1:

We would now like to describe the embedding of AutE (C ) GL2 (E )d e t  into MJ . While this can
be done by writing down some explicit formulas, we would like to view this embedding
through the lens of a see-saw pair in the classical similitude theta correspondence. For this, let
us set up the relevant notation and recall the relevant background.

7.3. Simil itude dual pairs. Here is the general setup. For a 2  E ,  let

Wa =  E e1  E e2

be a 2-dimensional symplectic vector space over E  equipped with the alternating form

he1; e2ia =   he2; e1ia =  a:

With respect to the basis fe1; e2g, we have an identication of the symplectic similitude group
GSp(Wa) with GL 2 (E ) .  The subgroup GSp(Wa)det of elements whose similitude factor lies in
F  is then identied with M E  =  GL2 (E )de t .  For g 2  GL2 (E )de t ,  the corresponding similitude
factor is

(g) =  detE (g);
where det (g) refers to the determinant of g considered an element of GL 2 (E ) .  We write
GL2 (E )d e t  for the index 2 subgroup of elements whose similitudes lie in N K = F  ( K ) .  Hence,
we set

M E ; K  =  GL2 (E )d e t  =  fg  2  M E  =  GL2 (E )d e t  : detE (g) 2  N K = F  (K )g:

From this symplectic space Wa, we deduce the following 3 other spaces and groups:
(a) By restriction of scalars from E  to F ,  we obtain a 6-dimensional symplectic space

ResE = F  (Wa) with alternating form Tr E = F   h ;  ia . One has a natural inclusion of
similitude groups:

ME  =  GL2 (E )d e t  =  GSp(Wa)det , !  GSp(ResE = F  (Wa)) =  GSp6 (F ):

We write GSp(ResE = F  Wa )K  for the index 2 subgroup of elements whose similitudes
lie in N K = F  ( K ) .

(b) With L  =  E

 K ,  the 2-

dimensional L-vector

space Va =  Wa

E  L

is naturally equipped with a skew-Hermitian form induced by the alternating form on
Wa, with h ;  ia  given by the same formula as above on the basis fe1; e2g. Then we
have

GL2 (E )d e t  =  GSp(Wa)det , !  GU(Va)det

where the superscript det refers to those elements whose similitude (which a priori
lies in E )  belongs to F .
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(c) As above, by considering restriction of scalars from L  to K ,  we see that ResL =K (Va )
is a 6-dimensional K-vector space equipped with the skew-Hermitian form T r L = K   h
;  ia . This 6-dimensional skew-Hermitian space over K  is also the one naturally
induced from the symplectic space ResE = F  (Wa) over F ,  in the same way as Va is
obtained from Wa. One has a natural inclusion of unitary similitude groups:

GU(Va)det , !  GU(ResL=K (Va ));

In fact, both similitude maps here have image equal to F ,  but we shall consider the
index  2 topological subgroups of elements whose similitude lies in N K = F  ( K ) ,  denoted
by:

GU(Va)det , !  GU(ResL = K (Va ))K :

Observe that

GU(ResL = K (Va ))K  =  ( K   U(Res L = K (Va ) ) )=rK 1

with r K 1  =  f(z; z  1) : z 2  K 1 g.

Summarizing, starting with Wa, we have the following containment diagram for the 4
groups we introduced:

(7.1) GU(ResL = K (Va ))K

GU(Va)det GSp(ResE = F  (Wa ))K

GSp(Wa)det =  GL2 (E )d e t

These groups appear in the classical similitude theta correspondence, and we proceed next to
describe the other member of the relevant dual pairs, namely those lying on the other side of a
seesaw diagram.

Regard K  as a rank 1 Hermitian space (relative to K = F )  with the form (x; y) !  x   (y). Then
G U ( K )  =  K  and GU(ResL = K (Va ))K  form a similitude dual pair. Here it is neces-sary to
consider the index  2 subgroup GU(ResL = K (Va ))K  as opposed to GU(ResL=K (Va )), because
the similitude map on G U ( K )  has image N K = F  ( K ) .  Starting from this rank 1 Hermitian
space, one deduces the following 3 spaces and groups:

(a’) By restriction of scalars from K  to F ,  we regard K  as a 2-dimensional F -vector space
with quadratic form N K = F  , with similitude group

G O ( K ; N K = F  )  =  K  o  hi;

with  acting on K  as the unique nontrivial automorphism  of K = F . Then
G O ( K ; N K = F  )   GSp(ResE = F  (Wa ))K  is a similitude dual pair.

(b’) By base change from F  to E ,  we obtained a rank 1 Hermitian space (relative to L = E )
over L ,  so that GU(L)det   GU(Va)det forms a similitude dual pair.
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(c’) By restriction of scalars ResE = F  on the space in (b’) or the base change from F  to E  of
the space ( K ; N K = F  )  in (a’), we obtain the quadratic space ( L ; N L = E )  of dimension 2
over E ,  with similitude group

GO(L; NL = E )d e t  : =  GSO(L; NL = E)d e t  o  hi =  (L)det  o  hi:

This group form a similitude dual pair with M E ; K  =  GL2 (E )d e t  =  GSp(Wa)det.
Summarizing, starting from a rank 1 Hermitian space (relative to K = F ) ,  one have the fol-
lowing diagram
(7.2)

GO(L; NL = E )d e t  =  (L)det  o  hi

GU(L )  =  L G O ( K ; N K = F  )  =  K  o  hi

G U ( K )  =  K

As mentioned above, the groups in (7.2) form a seesaw diagram of dual pairs with the
corresponding group in (7.1). We shall only make use of the groups at the top and bottom of
the diagrams, so that we have a similitude seesaw pair:
(7.3)

GO(L; NL = E )d e t  =  (L)det  o  hi

G U ( K )  =  K

GU(ResL = K (Va ))K  =  ( K   U(Res L = K (Va ) ) )=rK 1

M E ; K  =  GL2 (E )d e t

7.4. Emb edding.  We can now describe the embedding

AutE (C )0   GL2 (E )d e t  , !  M 0:

Recall that we are considering

[C ] 2  H 1 (F ; TE ;K )[2] =  E = F N L = E ( L ) (by (4.11)).

Take any a 2  E  representing the class of [C ], so that we have the above constructions of
similitude dual pairs using a 2  E .  Recall further that one has a natural isomorphism of
algebraic groups

M0 =  (Res K = F  Gm  U(ResL=K (Va )))y =UK :

Now there is a natural map (with nite kernel) of algebraic groups
(7.4)

f  : GU(ResL=K (Va )) =  ( K   U(R e s L = K (V a ) ) K ) =rU K   !  ( K   U(ResL= K (Va ))K )=UK ;

given by
(z; g) !  (z  3; g):
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The restriction of this map to the subgroup M E  (see (7.3)) gives the embedding of algebraic
groups

GL2 (E )d e t  , !  M 0:
When restricted to the topological subgroup M E ; K  =  GL2 (E )de t ,  the map f  is given by the
formula

g !  (z  3; gz 1);
where detE (g) =  N K = F  (z). Observe that this is clearly well dened, as z is unique up to K 1 .

On the other hand, we have the natural isomorphism of algebraic groups

AutE (C )  =  (L)det  o  hi=K  =  GO(L ; N L = F  )det =GU(K );

which is a quotient of the two algebraic groups appearing on the LHS of the seesaw diagram
in (7.3). Hence

(7.5)

The embedding

is given by

AutE (C )0  =  GU(L)d e t =GU(K ) =  U(L)=U(K ):

AutE (C )0  =  U(L)=U(K )  , !  M 0

e !  (NL=K (e); e);
where e 2  U(L)  acts on ResE = F  (Va) through its scalar multiplication action on Va =  Le1 Le2 .

It is useful to note the following lemma which says that the last isomorphism in (7.5)
continues to hold on the level of F -rational points.

Lemma 7.6. The inclusion L 1   (L)det  gives an isomorphism L 1 = K 1  =  (L)d e t =K .

Proof. We have a long exact sequence

1 !  K 1  !  L 1  !  (L ) d e t =K  !  H 1 (F ; U(K ) )  !  H 1 (F ; ResE = F  U(L))  so

we need to show that the last arrow is injective. To  that end, the map

N L = K  : ResE = F  U(L)  !  U( K )
gives

H 1 (F ; U(K ) )  !  H 1 (F ; ResE = F  U(L))  !  H 1 (F ; U(K ) )

such that the composite is multiplication by 3. Since H 1 (F ; U(K ) )  is a 2-group, the composite
is the identity. This proves the lemma.

The lemma implies that, for any x  2  (L)det , N L = E ( x )  2  N K = F  ( K ) .  Thus, the embedding

(L)d e t =K  , !  M 0 (F )

takes value in the index  2 subgroup M J ; K  and is given by the formula x

!  (NL=K (x=z ); x=z );      where N L = E ( x )  =  N K = F  (z).

Again this is well-dened as z is determined up to an element of K 1 .

We have thus described the embedding of algebraic groups

H C   ME  , !  MJ :
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This embedding depends only on a 2  E = F N L = E ( L )  =  H 1 (F; TE ;K )[2]. On the level of
points, it gives the embedding

H C ( F )   M E ; K  =  (L)d e t =K   GL2 (E )d e t  , !  MJ; K :

Though the embedding could have been written down via formulas, without mention of the
framework of similitude dual pairs, this framework will help us in x10 to relate the mini-theta
correspondence associated to this commuting pair of groups by reducing it to the classical
similitude theta correspondence. So we shall have occasion to return to the material in x7.3
later on.

7.5. Siegel parabolic. Recall that the Lie algebra m has a Siegel parabolic subalgebra s.
This gives rise to a Siegel parabolic subgroup

S J   MJ

whose Levi factor is of type A2  A2  and whose unipotent radical can be identied with J .
Moreover, H C   S J  and the intersection of ME  with S J  is a Borel subgroup of ME . If we
identify ME  with G L 2 ( E ) , we may assume that S J  \  M E  is the Borel subgroup of upper
triangular matrices.

8. Minimal Representation

In this section, we assume that F  is a non archimedean local eld. Let  be the minimal
representation of G J ( F )  (see [GS1]). In this section, we recall the relevant properties of  that
we need. We rst note that the algebraic group G  is not connected, but the minimal
representation  in [GS1] is a representation of the subgroup G0 (F )  of G J (F ) .  Thus there are
two ways of extending  to G J ( F )  and we shall rst need to specify the extension we use below.

8.1. Ex te n d i n g  the minimal representation. Recall the Heisenberg parabolic subgroup
P J  =  M J N J  of G J ,  with Z  the center of N J  and and let

 : MJ  !  F

be the character of MJ  given by the action of MJ  on Z .  By composition with , we may
regard any character  of F as a character of MJ (F ).  Henceforth, we shall write  in place of
for a character of MJ (F ).

Now we consider the degenerate principal series representation of G J (F ) :

I J (s0 )  : =  IndP J  J  =  IndP J  
J (unnormalized induction)

where

J  =  ! K = F  j j s J

with ! K = F the quadratic character associated to K  =  K J  by local class eld theory and sJ
given by the following table:

G J E 6 E 7 E 8
sJ           2        3        5
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The minimal representation  of G0 (F )  is the unique irreducible subrepresentation of IJ (s0 ),
regarded as a representation of G0 (F ).  This unique irreducible submodule is thus stable under
the action of G J ( F )  and this denes the extension of  to G J (F ) .  When we regard I J (s0 )  as a
space of functions on G  (F )  transforming under (P  (F ) ; J )  on the left, the action of G J ( F )  is
by right translation whereas the action of p 2  P J ( F )  is given by:

(p  f )(h) =  J (p)  f (p  1hp) for h 2  G J ( F )  and f  2  I J (s0 ).

This describes the action of G J ( F )  =  P J ( F )   G J (F ) .

8.2. Restr ict ion of  to P J .  The restriction of  to P J  sits in a short exact sequence 0

!  Cc  (

)  !  Z  !  N J  
!  0;

where
  N J =Z  is the minimal nontrivial (highest weight) MJ -orbit.

To  describe the action of P J  on C 1 (
), let hn; ni be the natural pairing of N J = Z  and N J =Z  and x a non-trivial additive character of
F .  Then the action is given as follows. For f  2  Cc  (
),

 n 2  N J =Z  acts by
(n)f (n) = (hn; ni)  f (n):

 m 2  MJ  acts by
(m)f (n) =  J (m)  f (m 1nm):

8.3. T h e  minimal orbit
. Recall from 6.4 that we have an identication

WJ  : =  N J =Z J  =  F   J   J   F :

By [GS1, Proposition 11.2], we have the following description of
:

Proposition 8.1. A  non-zero element !  =  (a; x; y; d) 2  N J =Z J  is in the minimal MJ -orbit
 if and only if

x #  =  ay; y #  =  dx and l (x)   l(y) =  ad for all l 2  L J

where x   y is the product in J ,  L the group of linear transformations of J  preserving the
norm form, and l  the dual action of L  on J  =  J ,  with the identication given by the trace
pairing. In particular, if a =  1, then !  =  (1; x; x# ; NJ (x)) .

Erratum: In fact, [GS1, Proposition 11.2] asserts that it suces to use x y =  ad in place of the
family of equations obtained by the LJ -action. This is false. Writing WJ  =  N J =Z J ,  the M -
module S  (W ) is a direct sum of an irreducible module whose highest weight is equal to twice
the highest weight of W , and the adjoint representation of MJ . The quadratic equations
given here span the latter summand and hence give a complete set of generators.

Note however that in [GS1, Proposition 11.2], only the proof of the \only if" statement
was given, as the other direction was not used in [GS1]. Hence this error does not aect any
result in [GS1].
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8.4. T h e  MJ -module N  . A  complete description of the Jacquet module N       is given in
[GS1]. We have

 
J  

 ! K = F  j j 2  j j 3=2  M J

for an MJ -module M      which is 0 if J  is a division algebra and is a unitary minimal rep-
resentation of MJ  otherwise. We will assume that J  is not division henceforth and describe the
MJ -module M J  in some detail.

Recall that M J (F )  contains a subgroup M J ; K  of index  2. We rst describe a represen-
tation of MJ; K ,  using the classical theta correspondence for the pair

U ( K )   U(ResK = F  (Va)) =  U1 (F )  U6 (F )

constructed in x7.3.
To  give a Weil representation for this dual pair, we need to choose a character  of K  whose

restriction to F  is the quadratic character ! K = F , which gives a splitting of the meta-plectic
cover over U6 (F ). Then we may consider the Weil representation ! ; for U1  U6
associated to the pair of splitting characters (1; ) and a nontrivial additive character of
F .  With respect to the choice of (1; ) and , the associated Weil representation ! ;       can be
realised on C  (L ) ,  where L  =  Le2 is a polarization of Va =  Le1  Le2 . The action of U ( K )  =
K  and the Siegel parabolic subgroup of U(ResK = F  (Va)) stabilizing Le1 is given by the usual
formulas in the Schrodinger model:

 The group U1 =  K 1  acts geometrically on C 1 ( L e 2 ) :  for z 2  K 1 ,

(z  f )(v )  =  f (z  1v):

 If G L K ( L e 2 )  is the Levi subgroup that preserves the decomposition Va =  Le1   Le2 , the
action of g 2  G L K ( L e 2 )  is given by

(g  f )(v )  =  (det(g))  jN K = F  det(g)j     2  f (g  1v):

 An element u in the unipotent radical of the Siegel parabolic subgroup stabilizing Le2
acts by:

(n  f )(v )  = (hn; via)  f (v ):
In particular, we see the dependence on a 2  E  in the last formula above. If we replace  by
, where  is a character of K = F ,  then the splitting of U (F )  changes by   det, where  is a
character of K1,determined by  via: (z=(z)) =  (z). Moreover, for a xed , the Weil
representation depends only on the orbit of under N K = F  ( K ) .

We can now consider the classical theta lift (1) of the trivial representation of U1, which is
an irreducible representation of U6 (F ) realized on the subspace

C 1 ( L e 2 ) K 1  
 C 1 ( L e 2 ) :

Consider the representation of K   U K ( F )  on C 1 ( L e 2 ) K 1  given by

M J ; K  : =   1  (1):

It is a simple check that the restriction of M J ; K  to the subgroup

f(x; g ) 2  K   U K ( F )  : x=(x) =  det(g)g
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is independent of  and that it descends to a representation of MJ; K .  We extend this repre-
sentation to M J ; K  by letting  act on f  2  C 1 ( L ) K 1  via

(  f )(v )  =  f ((v )):

Thus we have a representation M J ; K  of M J ; K  =  M J ; K  o  hi on C 1 ( L e 2 ) K 1 ,  which depends on
the orbit of under N K = F  ( K  ). Now we have:

(8.2) M J  =  IndM J ; K  M J ; K  =  IndM J ; K  
 1  (1): This

representation is now independent of and .

8.5. Simil itude theta lifting. It is in fact better to think of the representation M from
the viewpoint of the similitude theta correspondence for the pair

G U ( K )   GU(ResK = F  (Va ))K  =  K   GU6 (F )K :

In particular, we may consider the similitude theta lift (1) of the trivial representation of
K ;  this representation is also realized on C 1 ( L e 2 ) K 1 ,  and is merely an extension of (1)
to GU 6 (F ) K  with the center K  acting by the central character 3. Recall from (7.4) the
isogeny

f  : GU(ResL = K (Va ))K  =  ( K   U 6 ( F ) ) = r K 1   !  ( K   U6 (F ))=K 1

dened by

Then we have;

f (z ; g) =  (z  3; g):

(1) =  (  1  (1))  f  =  M J ; K   f :

In other words, (1) factors through f  and when restricted to ( K  U6 (F ))y is independent of .

From this viewpoint, the restriction of the MJ;K -module M J ; K      to the commuting pair
H  (F )   G L  (E )det  can be transparently described using the seesaw diagram (7.3). More
precisely, we pick a 2  E  so that its class in E = F N L = E ( L )  =  H 1 (F ; TE ; K  )[2] (see (4.11) and
(4.17)) corresponds to [C ]. From the seesaw identity arising from (7.3), the representation
(1) is naturally a representation of

((L)de t  o  hi)=K   GSp(Wa)det =  AutE (C )   GL2 (E )de t :

This representation is precisely the restriction of M J ; K  to AutE (C )   GL2 (E )de t .

8.6. Some formulas. We write down some formulas for M J ; K  which are relevant to us.

An element e 2  L 1 = K 1  =  AutE (C )  acts on f  2  C 1 ( L e 2 ) K 1  by

(e  f )(v )  =  f (e  1v):

 The element  t(x)
=        0 1 2  GL2 (E )de t ;



c

3

1 b

K

K

M =  Ind
K

M

C

c c

c

MJ c

3

1

J J

J

1

T W I S T E D  C O M P O S I T I O N  A L G E B R A  A N D  T R I A L I T Y 45

with x  =  N K = F  (z) for some z 2  K ,  acts on f  2  C 1 ( L e 2 ) K 1  by

(t(x)  f )(v )  =  jxj     2  f (z  1v):

 The element

acts by

u(b) = 0     1 2  GL2 (E )de t ;

(u(b)f )(v ) = ( T r E = F  (a  N L = E (v )   b))  f (v ):

The dependence of the HC (F ) GL2 (E )det -module M J ; K  on a 2  E  is thus evident from the
action of the unipotent radical of the upper triangular matrices in GL2 (E )de t .  In particular,
one sees that the Whittaker support (relative to ) of M J ; K  as an GL2 (E )det -module is on
the coset a  N L = E ( L )   E .  Thus, the Whittaker support of the GL2 (E)det -module

G L 2 ( E ) d e t

J G L 2 ( E ) d e t J ; K

is on the coset a  F N L = E ( L ) .  This is the coset corresponding to [C ] 2  H 1 (F ; TE ; K  )[2], by
our choice of a.

8.7. Sp l i t  case. If K  =  F 2 . Then K 1  =  f(x; y ) 2  F 2  j xy =  1g =  F ,  L  =  E 2  and L 1  =  E .  In
this case, we can simplify the description of M J  .

If we apply a partial Fourier transform to C 1 ( L )  =  C 1 ( E 2 )  with respect to the second
factor E  of L ,  the action of K 1  =  F  on C 1 ( L )  becomes the action by homotheties. The
representation M J  =  _ is the maximal F -invariant quotient of C 1 ( L ) ,  and is isomorphic
to the space of smooth functions f  on L  n f0g such that

f (xv )  =  jxjF
3 f (v) for all v 2  L  n f0g and x  2  F .

The restriction of M J  to M E   AutE (C )  is given as follows. If g 2  GL2 (E )d e t  then

M J  (g )f (v ) =  j det(g)j     2  f (g  1v);

where g 1v is the natural action of g 1 2  G L 2 ( E )  on v 2  E 2  =  L .  If e 2  E  then

M J  (e)f (v ) =  jN E = F  (e)j 1  f (e  1v);

where e 1v is the product of the scalar e 1 2  E  and the vector v 2  E 2 . The involution
acts by the Fourier transform, viewing f  as a distribution on Cc  (L ) .

8.8. Schro•dinger model of M . The description we have given above for M     allows one to
relate the theta correspondence arising from its restriction to the dual pair H C   M E  in MJ  to
the classical theta correspondence. As a minimal representation, M      also has a Schro•dinger
model adapted to the Siegel parabolic subgroup S J   MJ , which we will describe next.

As a representation of S J ,  M J  sits in a short exact sequence

0 !  Cc  ( J r k = 1 )  !  M J       !  r S J  (M J  )  !  0
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where J r k = 1  denotes the set of rank 1 elements in J  and r S  (  )  denotes the (normalized)
Jacquet module with respect to S J .  The action of some elements of H C B E  =  ( H C M C ) \ S J  on Cc
( J r k = 1 )  can be described as follows:

 For b 2  E ,  the upper triangular unipotent element u(b) 2  M E (F )  =  GL2 (E )d e t  acts
by

(u(b)  f ) ( x )  = (Tr J (bx))   f ( x )  = (Tr E = F  (b  e))  f ( x )
where x  =  (e; v) 2  E C  =  J  has rank 1 and is a xed nontrivial additive character
of F .

 For h 2  H C ( F ) ,  h acts by

(h  f ) ( x )  =  f (h  1 x)

where we have identied H C  with the pointwise stabilizer of E   J ,  so that H C
Aut(J ).

Observe that by Lemma 4.15, and Lemma 4.16, x  =  (e; v) 2  E   C  has rank 1 if and only if
the map f  in Lemma 4.16 sends e to [C ] 2  H 1 (F ; TE ; K  )[2] =  E = F N L = E ( L ) .  In view of
(4.17), this is equivalent to the coset e  F N L = K ( L )  being equal to that of [C ]. So the
Whittaker support of M      as a GL2(E )det -module is as we had determined in x8.6 via the
classical theta correspondence.

The description of the minimal representation M      given here will be used for the study of
the theta correspondence for H C  ME  in x10. This is necessary for the study of the theta
correspondence for H C   G E ,  which will be carried out in x12.

9. Jacquet functors for E 6

In this section, we continue to assume that F  is a nonarchimedean local eld. The goal
of this section is to describe the (un-normalized) Jacquet module N as a representation
of ME   AutE (C ).  Here, recall that P E  =  M E N E  =  P J  \  G E  is the Heisenberg parabolic
subgroup in G E  and N J  and N E  share the center Z .  Let

?  =  f x  2

 : x  is perpendicular to NE =Z g:  Then we have an exact sequence

0 !  C 1 (
? )  !  N E  

!  N J  
!  0 Thus, we need to:

 determine the set
?  and describe C 1 (
? )  as a module for ME  AutE (C );  we shall do this in this section.

 study the theta correspondence for M E   AutE (C )  with respect to M : we shall
study this in the next section.

Now as a GLdet (E )-module, the orthogonal complement of N  =Z  in N =Z  is given by the
natural action of GL d e t (E )  on C   C  =  E 2

E  C  via its action on E 2 . Thus, an !  2
?  is of the form (0; x; y; 0) where x, y 2  C  such that

x #  =  (  Q(x); (x)) =  0 =  y # ; and x   y =  0 2  J :
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Now we note the following proposition, which uses the structure theory of twisted composition
algebras:

Proposition 9.1. If x  2  C  is such that Q(x) =  0 and N C ( x )  =  bQ (x; (x)) =  0, then x  =  0
except when

(1) E  =  F 3  and J  =  M3 (F ).
(2) E  =  F   K ,  where K  is a eld, and J  =  M3 (F ). (3)
E  =  F   K ,  where K  is a eld, and J  =  J 3 ( K ) .

Hence
?  is empty unless we are in the three cases above.

Proof. It suces to look at the cases when Q is isotropic. If K C  is a eld, then the norm N E

K  = E  is isotropic only when E  =  F   K  and K C  =  K .  Since K E  =  K ,  it follows that K J  =
F 2 . Hence we are in the second case. If K C  =  F 2 , then Q is always isotropic. The cases E  =
F and E  =  F   K  correspond to the rst and third cases, respectively, in the
statement of the proposition.

If E  is a eld, then C  =  E
F 2  =  E  E  and, up to an invertible scalar, Q(y; z) =  yz and (y; z) =  (z # ; y # ),  for (y; z) 2  C  =
E 2 . Here Q(y; z) =  0 implies y =  0 or z =  0. Assuming z =  0, we see that bQ ((y; 0); (0; y# ) =
y y #  =  N E = F  (y) =  0, which implies that y =  0.

Hence, to explicate C 1 (
? ) ,  we need to treat the 3 cases highlighted in the proposition, and we shall deal with them
in turn.

9.1. Case 1: E  =  F 3  and J  =  M3 (F ). .
algebra. Write

x  =  ((x1; y1); (x2; y2); (x3; y3));

In this case, C  is a split twisted composition

y =  ((x1; y1); (x2; y2); (x3; y3))

and suppose that (x; y) 2
? .  Let X i ,  respectively Yi, be the 2-dimensional F -subspace of C   C  consisting of all pairs
(x; y) such that all coordinates except x  and x  are trivial, respectively, all coordinates
except yi and y0 are trivial. On each X i  and Yi, two of the three SL 2 (F )   M E  act trivially,
and the quotient group, isomorphic to GL2 (F ) ,  acts via the standard representation.

The condition x #  =  0 holds if and only if there exists a pair of indices i  =  j  such that all
coordinates of x  are 0 except possibly for x i  and yj . An analogous statement holds for y: all
coordinates are 0 except possibly for x  and y for some a =  b. The last condition, x   y =  0,
implies that i  =  a and j  =  b. This can be easily seen by writing x  and y as matrices, say

0  
0 x y

1 0  
0 x

0

y
0

    
 1

x  =  @ y3 0 x1 A  and y =  @ y0 0 x0     A :
x2       y1        0 x2       y1        0

Hence, if (0; x; y; 0) 2
? ,  then (x; y) 2  X i   Yj for some i  =  j ,  and
we have:

?  [  f0g =  
[  

X i   Yj :
i = j



i i
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0
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Let X  and Y  denote the corresponding punctured planes. As ME -module, the space
C 1 (
? )  has a 2-step ltration with submodule

Cc  ( X i   Yj )
i = j

and quotient (via restriction)
M

C 1 ( X )   
M

C 1 ( Y  ): 

i

j

The action of ME  is geometric, with the same twist J  as the one-dimensional summand of
N J  .

9.2. Case 2: E  =  F  K  and J  =  M3 (F ). In this case K C  =  K ,  so C  =  E
K  =  K 3 .  The structure of E-module on C  is given by

(f ; e)  (z1; z2; z3) =  (f z1; ez2; ez3)
where (f ; e) 2  F   K  and z =  (z1; z2; z3) 2  K 3 .  The composition algebra structure is given
by

Q(z) =  (NK (z1 ); z2z )
and

(z1; z2; z3) =  (z z ; z z ; z z ):
This algebra C  can be obtained from the split algebra C s  by Galois descent from C s
 K  where the usual action of the Galois group of K  over F  is twisted by

((x1; y1); (x2; y2); (x3; y3)) =  ((y1; x1); (y3; x3); (y2; x2)):
Note that Q(z) =  0 implies that z1 =  z2 =  0 or z1 =  z3 =  0. For i  =  2 or 3, let Z i  be the two-
dimensional K -plane in C   C  consisting of pairs (z; z )  such that zj  =  zj  =  0 for all j  =  i.
Now
?  is the union of the punctured planes Z  and Z .  This claim can be easily
veried form the split case using Galois descent. The group GL2 (E )d e t  acts on each plane via
projection onto GL2 (K )d e t ,  with SL 2 (F )  as the kernel. As ME -module, the space C 1 (
? )  is a direct sum

C 1 ( Z )   C 1 ( Z ) :
The action of ME  is geometric, with the same twist J  as the one-dimensional summand of  

J

.

9.3. Case 3: E  =  F   K  and J  =  J 3 ( K ) .  In this case K C  =  F 2 , so E
 C  =  F 2   K 2 .  If z =  ((x1; y1); (x2; y2)) 2  C ,  then

Q(z) =  (x1x2; y1y2) and (z) =  ((NK (y2 ); NK (y1 )); (y1 y ; x1 x2)):
This algebra C  can be obtained from the split algebra C s  by Galois descent from C s
 K  where the usual action of the Galois group of K  over F  is twisted by

((x1; y1); (x2; y2); (x3; y3)) =  ((x1; y1); (x3; y3); (x2; y2)):
In this case Q(z) =  0 and (z) =  0 imply that x2 =  y2 =  0 and x1 =  0 to x2 =  0. Let
X 1  (respectively Y1) be the plane in C   C  consisting of all elements (z; z )  such that all
coordinates of z and z0 are 0 except x1 and x0 (respectively, except y1 and y0 ). Then
?  is
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the union of the punctured planes X  and Y . Again, this claim can be easily veried form
the split case using Galois descent. The group GL2 (E )d e t  acts on each plane via projection
onto GL2 (F ) ,  with S L 2 ( K )  as the kernel. As ME -module, the space C 1 (

? )  is a direct sum Cc  (X 1 )   Cc  (Y1 ):

The action of ME  is geometric, with the same twist J  as the one-dimensional summand of
N J  .

10. M i n i  Theta Correspondence

In this section, we shall determine the local theta correspondence given by the ME
AutE (C )-module M      when F  is a nonarchimedean local eld. This is only relevant when J  =
E   C  is not a division algebra. Understanding this mini-theta correspondence is
necessary for our main goal of understanding the theta correspondence for G E   AutE (C )   G  .
We begin by introducing notation for the irreducible representations of H  (F )  and M E (F )
=  GL2 (E )de t .

10.1. Representations of AutE (C ) .  Since J  =  E   C  is not a division algebra, we see by
Proposition 4.12 that

H C ( F )  =  H C ( F )  o  Z=2Z
where the action of Z=2Z on AutE (C )0  is by inverting. Note however that the above iso-
morphism is not canonical and amounts to choosing an element (necessarily of order 2) in
H C ( F )  r  H C (F ) .

The irreducible representations of H C ( F )  are not hard to classify:

(a) For every character  of the torus H 0  (F )  such that 2 =  1, we have a two dimensional
representation

() =  IndH
0  

( F )  =  (  1):

Note that ()  =  (0) if and only if 1 =  0.
(b) For each character  such that 2 =  1, there are two extensions of  to H C ( F ) .  If  =  1,

these two representations are easily distinguishable from each other: one is trivial
whereas the other is not. We denote them by 1 and  =  C  (the sign character of H C ( F ) )
respectively.

(c) When 2 =  1 but  =  1, we can use the xed isomorphism H C ( F )   H 0  ( F ) o Z = 2 Z  to
distinguish the two extensions. Namely, we may denote the two extensions by ()
and ()  , where the sign denotes the action of the nontrivial element of Z=2Z.

Note however that the labelling in (c) above is not really canonical. We shall see much
later that one has a better parametrization. This is based on the following canonical bijection of
2-element sets deduced from Proposition 4.20:

f  1 ([C ])=b(Ker()) !  ( H C ( F )  r  HC (F ))=Ker() :

and the observation that any extension of  is a nonconstant 1-valued function on the RHS. For
this section, the labelling provided by (c) above is sucient.



iQ

2 2

J

MJ

K

50 W E E  T E C K  G A N  A N D  G O R D A N  S AV I N

10.2. Induced representations of GL2 (E )d e t .  Writing E  as a product 
Q  

E i  of elds E i ,  we
have a similar product L  =  E
K  = i  L i  with L i  =  E i

K .  Let ! L = E  be the quadratic character of E such that the restriction to each E i  is the
quadrate character corresponding to the extension L i .

Now let  be a unitary character of E  and consider the induced representation   ! L = E
of G L 2 ( E )  in the notation of Bernstein and Zelevinski. We shall need some simple results on
the restriction of   ! L = E  =   1  ! L = E  to GL2 (E )de t .

Proposition 10.1. Let  be a unitary character of E = F .  In the following, \  the restric-tion"
refers to the restriction of   ! L = E  to GL2 (E )d e t .

(1) Assume that K  =  F 2 , and  is a character of E  trivial on F .  The restriction is
irreducible unless 2 =  1 and  =  1, in which case it is a direct sum of 2 non-
isomorphic irreducible representations.

(2) Assume that K  is a eld and E  =  F   K .  Let  is a character of F   K  trivial on F   K 1 .
The restriction is irreducible unless 2 =  1 and  =  1, in which case it is a direct sum of 2
non-isomorphic irreducible representations.

(3) Assume that K  is a eld, but E  =  F  K .  Let  =  1. The restriction of 1 ! ! L = E  is a direct sum
of 2n 1 non-isomorphic irreducible representations where n is the number of factors of
E .

Proof. These statements can be deduced from the well known facts about representations of
G L 2 ( E )  and SL 2 (E ) .  We provide the details in the case when E  is a eld and K  =  F 2 ; the
general case is treated by a similar argument.

The representation 1 is irreducible when restricted to S L  ( E )  (and hence to G L  (E )det )  unless
2 =  1 and  =  1. If 2 =  1 and  =  1, then   1 reduces to two non-isomorphic summands on
SL 2 (E )  and also on the intermediate group consisting of elements g 2  G L 2 ( E )  such that det(g)
is in the kernel of . Since, by our assumption,  is trivial on F  , the character  is trivial on
det(g) for g 2  GL2 (E )de t .  Thus 1 is a sum of two non-isomorphic irreducible representations.

10.3. Theta lifting. For every irreducible representation  of H C ( F ) ,  let M () be a rep-
resentation of ME  such that M ()
  is the maximal -isotypic quotient of M . We shall now give a description of M () for
unitary representations . The results are es-sentially a reformulation of the classical
similitude theta correspondence for the dual pair
GO 2 (E ) GL 2 (E ) ,  together with an understanding of the restriction of representations from
G L 2 ( E )  to GL2 (E )d e t  (as we did in the previous proposition).

Recall from (8.2) that

M J  =  IndM J ; K  M J ; K  ;
with M J ; K  equal to the restriction of the similitude theta lift of the trivial representation of
G U ( K )  =  K  . From the seesaw diagram in (7.3), M J ; K  is naturally a module for

GO(L; NL = E )d e t   GSp(W )det =  ((L)det  o  hi)  GL2 (E )d e t



K K

0

K

K

2G L  ( E ) det

K

2

C

LMQ
i

C

C

0 0
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which factors through to the quotient

H C ( F )   GL2 (E )d e t  =  ((L)de t  o  hi)=K   GL2 (E )det :  Here

we recall that (see Lemma 7.6) that

H C ( F )  =  (L ) d e t =K  =  L 1 = K 1

and
GL2 (E )d e t  =  fg  2  GL2 (E )d e t  : det(g) 2  N K = F  (K )g:

Thus, we need to understand the theta correspondence for H C ( F )   GL2 (E )d e t  arising from
MJ; K .  Indeed, if we let M K  denote this theta correspondence, then for any  2  Irr(HC (F )) ,

M () =  IndG L 2 ( E ) d e t M K  ():

We have thus explained the reduction of the determination of the mini-theta correspondence
to the similitude theta correspondence for

GO(L ; N L = E )   GSp(W )+

together with the understanding of the restriction of the theta lifts to the subgroup GSp(W )det.
With our knowledge of the theta correspondence for GO2  G L + ,  this interpretation imme-
diately gives us the following:

Lemma 10.2. ( i )  For any  =   (the sign character of H C ( F ) ) ,  M () is nonzero, whereas M ()
=  0.

( i i )  For an irreducible representation () of HC (F ),where  is a character of H 0  (F )  =
(L)d e t =K ,   (())  is noncuspidal if and only if j 1     is trivial on all the anisotropic factors of L 1

= i  L 1 .

In the context of (ii) of the Lemma, we note:

 if K  =  F 2 , then H 0  (F )  =  E = F  and there are no anisotropic factors of L1 , so that M ()
is noncuspidal (as long as  =  ).

 if K  is a eld and E  =  F   K ,  then H 0  (F )  =  K 1   K = K 1  =  K ,  and a character  trivial
on anisotropic factors can be identied with a character of K = K 1 .

 if K  is a eld and E  =  F   K ,  only M (1) is noncuspidal.
It will turn out that the theta lifts in these cases are contained in the principal series repre-
sentations we considered in Proposition 10.1.

The following proposition continues our study of the mini-theta correspondence by rening
Lemma 10.2:

Proposition 10.3. For every irreducible unitary representation  =   of H C ( F ) ,  M () is an
irreducible nonzero representation of ME , whereas M () =  0. Moreover, if M () =  M ( )  =  0,
then  =   . More precisely:

(1) M (1) is an irreducible summand of 1  ! L = E .
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(2) Let K  =  F 2  and  be a character of H 0  (F )  =  E = F .  Then 2 =
1 = )  M (()) =    1;

whereas
2 =  1 but  =  1 = )  M (()+ )   M (() )  =    1:

(3) Let K  be a eld, E  =  F   K  and  a character of H 0  (F )  =  K  trivial on K 1 .
Extend  to a character ~ of F   K ,  so that it is trivial on the rst factor. Then: 2 =  1

= )  M (()) =  ~  ! L = E ;

whereas
2 =  1 but  =  1 = )  M (()+ )   M (() )  =  ~  ! L = E :

(4) For all other cases of the triple ( E ; K ; )  not covered above, M (()) is cuspidal.

Proof. In view of Lemma 10.2, the main issue here is the irreducibility of  ()  for  2
Irr(HC (F )).  We shall illustrate the argument in the case where K  is a eld and E  =  F 3 ; the
other cases are similar and sometimes easier.

For the case under consideration, we have

AutE (C )0 (F )  =  ( K   K   K ) d e t = K  o  hi;
where the superscript det refers to the subgroup of elements (x; y; z) with N K = F  (x)  =
N K = F  (y) =  N K = F  (z). Ignoring the element  for the moment, we are thus considering a triple
similitude theta correspondence for G SO K ( F )   G L 2 ( F ) K .  We record the following known
results concerning this similitude theta correspondence:

(a) If  is a unitary character of G SO K ( F )  =  K  such that j 1 is not quadratic, or
equivalently = does not factor through N K = F  ), then

() =  ()  2  Irr(GL2 (E )det ) is

supercuspidal. Indeed,

() : =  Ind GL
2 (

F
) K  

()

is an irreducible supercuspidal representation which is dihedral with respect to K = F
and no other quadratic elds, so that ()  remains irreducible when restricted to
SL2 (F ).

(b) if j K 1      is quadratic but nontrivial, or equivalently = is nontrivial but factors
through N K = F  , then () =  (  )  is an irreducible supercuspidal representation of
GL2 (E )de t .  Indeed,

() : =  Ind GL2
(

F
) K  

()

is an irreducible supercuspidal representation which is dihedral with respect to K = F
and two other quadratic elds. Hence, ()  decomposes as the sum of two irreducible
supercuspidal representations when restricted to SL2 (F ):

()jSL 2  =  ( j K 1 )   (jK 1 );
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where the two summands are the theta lifts (to SL 2 (F ) )  of the two extensions of j K 1  to
O2 (F ).  Indeed, if we consider the index 2 subgroup

G L 2 ( F ) K  =  fg  2  G L 2 ( F ) K  : det(g) =  N K = F  (z); (z=(z)) =  1g;

then each of the two summands ( jK
1 )  is an irreducible GL2 (F )K -module.

(c) If j K 1  =  1, or equivalently  =  , then  =    N K = F  for some  (well-determined up to
multiplication by ! K = F )  and () is one of the two irreducible summands of the
restriction of     ! K = F to G L 2 ( F ) K .  Moreover, these two summands remain
irreducible when restricted to SL2 (F ).

(d) ()  =  (0) if and only if 0 =   or .

Now we are ready to analyze the triple similitude theta correspondence. Let  =  (1; 2; 3) be a
character of ( K  )  such that 1  2  3 =  1. We need to study the reduciblity of

(1; 2; 3) : =  (1 )

 (2 )

 (3 ) when restricted to GL2 (E )de t .  We shall consider several cases in

turn:

(i) If i j K 1      is not quadratic nontrivial for all i, then by (a) and (c) above, ( i )  re-
mains irreducible when restricted to SL2 (F ).  Hence (1; 2; 3) is irreducible when
restricted to GL2 (E )de t .

(ii) Assume now that exactly one of the i j K 1  is quadratic nontrivial. Without loss of
generality, suppose that 3 jK 1  is quadratic nontrivial but the other two restrictions

are not. Then K ( 1 )  and K ( 2 )  are irreducible as SL2(F )-representations, while K ( 3 )
is irreducible as GL2(F )K -representation. It follows readily that (1; 2; 3) irreducible as
an GL2(E)K -representation.

(iii) Assume next that exactly two of the i j K 1  is quadratic nontrivial. Without loss of
generality, we may suppose

1 jK 1  =  2 jK 1  =  and 3 jK 1  =  1

for some quadratic character  of K 1 .  In this case, by (b) above, we have

(1 )jSL2  =  (2 )jSL 2  =  ( + )   (  )

as SL2(F )-modules. Now it is easy to check that

[ ( + )
 ( + )   (  )
 (  )]
 (1)

and
[( + )
 (  )   (  )
 ( + ) ]
 (1)

are irreducible representations of G L 2 ( E )  . In particular, (1; 2; 3) is the sum of
two irreducible representations as GL2(E)det-modules.

(iv) Finally, we consider the case when i  : =  i jK 1  is quadratic nontrivial for all i; this



+  +  +

case can only occur when the residue characteristic of F  is 2. In this case,

(1; 2; 3) =  [(1 )   (1 )]
 [(2 )   (2 )]
 [(3 )   (3 )]
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as SL2(F )3-modules. The key observation here is that each GL 2 (F ) i  acts irreducibly on
( j )  =  (  )   (  )  if i  =  j ,  and preserves each summand if i  =  j .  Now it is easy to check
that for every  =  1,

1 2 3 =(1  )
 (2 )
 (3 ):

is an irreducible representation of GL2 (F 3 )  . In particular, (1; 2; 3) decomposes
as the sum of two irreducible GL2(E)det-modules.

With the above results, we can now complete the proof of the proposition when E  =  F 3  and
K  is a eld. Note that we are only concerned with the restriction of 1  2  3 to the subgroup:

H C ( F )  =  ((K ) 3 )d e t =K  =  (K 1 )3 =K 1 :  So for
example, we have:

 1  2  3 restricts to the trivial character if and only if i j K 1  =  1 for each i.
 The restriction  of 1  2  3 is a nontrivial quadratic character if and only if i j K 1  is

quadratic for all i  and is nontrivial for some i.
In particular, we see that the latter case corresponds precisely to the cases (iii) and (iv)
analyzed above. In this case, there are thus two extensions  of  to H  (F )  and (in view of
Lemma 10.2) M     ()  are both nonzero and hence are precisely the two irreducible summands of
(1 ; 2 ; 3 )jGL 2 (E ) K  described in (iii) and (iv) above.

Finally, from the properties of the similitude theta correspondence, we deduce that

0
 =  1 on (K 1 )3  ( )  ()  =  (0) on GL2 (E )de t .

This concludes the proof of the proposition, at least in the case when E  =  F 3  and K  is a
eld.

10.4. Whittaker  models. For a xed C ,  with associated Springer decomposition J  =  E C ,  we
have obtained a subset

IrrC (ME (F ))  : =  fM ; C ()  2  Irr(ME (F )) :  =   2  Irrunit (HC (F ))g  Irr(ME (F )):
Moreover, the representations in IrrC (ME (F ))  are innite-dimensional and hence generic. In
this subsection, we investigate the Whittaker models supported by the representations in
IrrC (ME (F )).  This serves to complete our analysis of the mini-theta correspondence by
specifying precisely the irreducible representations M;C ().

We had briey alluded to the Whittaker support of M as an GL2 (E )det -module in x8.6 and
x8.8, but let us be more precise here. F ix  a nontrivial additive character of F .  Then
a generic character for the unipotent radical of the upper triangular Borel subgroup B of
M E (F )  =  GL2 (E )d e t  is of the form

u(b) ! (Tr E = F  (ab)) for some a 2  E .
We denote this generic character by a. Two such generic characters a and a0 are equivalent if
they are conjugate by the action of the diagonal torus and we call an equivalence class a
Whittaker datum for ME (F ).  A  short computation shows that the set of Whittaker data
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is parametrized by E = F E 2  =  H 1 (F ; Z  ). Hence we have yet another interpretation of
H 1 (F ; Z E ) :

H 1 ( F ; Z E )

Gad (F )=Im(G(E ))

fWhittaker datum for GL2 (E )de t g

frank 1 E-twisted composition algebrasg

We are interested in computing the twisted Jacquet module

(M J  )U E ;  a as a HC (F )-module,

For this purpose, we shall make use of the Schrodinger model of M      introduced in x8.8 and
the results of x4.9. To  formulate the result, let us recall from Lemma 4.15 the HC (F )-set

X a ; C (F )  =  f x  2  C  : Q(x) =  a #  and (x) =  axg

which is in bijection with the set of embeddings Ca  , !  C ,  where Ca  is a rank 1 E-twisted
composition algebra dened in x4.2. Moreover, if X a ; C ( F )  is nonempty, then it is a principal
homogeneous space for H 0  (F ),  so that the stabilizer in H C ( F )  of any point in X a ; C (F )  has
order 2. Now we have:

Lemma 10.4. Fix an E-twisted composition algebra C  of rank 2, with associated Springer
decomposition J  =  E   C .  For each a 2  E ,  one has

(M J  )U E ;  a  =  0 ( )  X a ; C (F )  =  ; ;

in which case
(M J  )U E ;  a  

 IndH C  

( F
( F ) 1

where xa 2  X a ; C ( F )  and H C ; x a ( F )   Z=2Z is the stabilizer of xa in H C ( F ) .

Proof. From the Schr•odinger model of M      discussed in x8.8 and the results of Lemma 4.15,
we see that

(M J  )U E ;  a  =  Cc  ( J r k = 1 )U E ;  a  =  Cc  (Xa ; C (F ) ) ;
as HC (F )-module. Since X a ; C (F )  =  H C ( F )   xa  H C (F )=H C ; x a (F ) ,  the result follows.

Recall the map

f  : H 1 ( F ; Z E )  =  E = F E 2   !  H 1 (F ; T E ; K C  )[2]: For

each [C ] 2  H 1 (F ; T E ; K C  )[2], we have

f  1 ([C ]) =  fa 2  E  : X a ; C (F )  =  ;g:

Then the above lemma gives the following corollary:

Corol lary 10.5. For any  =  ()  2  Irr(HC (F )) ,  M;C ()U ; =  0 if f (a) =  [C ]. On the
other hand, if f (a) =  [C ], then we have:

 If 2 =  1, dim (())UE ; a  =  1.
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 If 2 =  1, so that  has two extensions ~ to H C ( F ) ,  then

1 if ~(g (a)) =  1;
M;C UE ;  a 0; if ~(gC (a)) =   1.

where gC (a) is the nontrivial element in H C ; x  ( F )  for some xa 2  X a ; C ( F )  (see Lemma
4.18).

10.5. A s  C  varies. In this nal subsection, we allow [C ] to vary over H 1 (F ; TE ; K  )[2]. Then
by Lemma 4.16, we have a disjoint union

E = F E 2  = f  1 ([C ])
[C ]

where each f  1 ([C ]) is nonempty and is a T E ; K C  ( F ) =T E ; K C  (F )2-torsor. We deduce:

Corol lary 10.6. The union     
[

IrrC (ME (F ))   Irr(ME (F ))
[ C ] 2 H 1 ( F ; T E ; K C  )[2]

is disjoint, since the representations in dierent subsets have dierent Whittaker support.

We can in fact rene this corollary. A  character  of T E ; K  ( F )  or T E ; K  ( F )  gives rise to
a character C  of each H 0  (F ).  We then consider the ME (F )-module

M E  [] : = M ;C ((C )) with ( C )  =  IndH C ( F )
C .

[ C ] 2 H 1 ( F ; T E ; K C  )[2]

Then we have:

Corol lary 10.7. For each a 2  E ,

dim ME []UE ; a  =  1:

In particular, M
M;C (1) =  1

 ! L = E :  
[ C ] 2 H 1 ( F ; T E ; K C  )[2]

Indeed, one can show in general that M [] is the restriction to M E (F )  =  GL2 (E )d e t  of an
irreducible generic representation of GL 2 (E ) .  Together with our knowledge of the Whittaker
support of the mini-theta lifts. this has the following nice consequence. If Mad denotes the
Levi subgroup of the Heisenberg parabolic subgroup in the adjoint quotient Gad, recall that

M ad (F )=Im(ME (F ))  Ga d (F )=Im(GE (F ))  =  H 1 ( F ; Z E )  =  E =F E 2 :

Hence, H 1 ( F ; Z E )  acts naturally on Irr(ME (F )) and also on H 1 (F ; TE ; K  )[2] (via the pro-
jection H 1 ( F ; Z E )   H 1 (F ; TE ; K  )). For an element  2  H 1 ( F ; Z E )  and a character  of
T E ; K C  (F ),  we then have

M ;C ((C )) =  M ;C ((C ));
where the superscript  denotes the two actions of  on the relevant objects mentioned above.
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11. Langlands quotients of D 4

The purpose of this section is to write down some representations of G E  that will appear
in the theta lifting from H C  =  AutE (C )  in terms of their Langlands data, and to give
explicit realizations of these representations in some cases. It thus provides the language
needed to express the answer for the theta correspondence treated in the next section. In
fact, in Appendix B  below, we consider the decomposition of unramied degenerate principal
series representations of G E  and introduce notations for many irreducible representations
with nonzero Iwahori-xed vectors, constructed via Hecke algebra considerations. These
representations will also appear in this section and the next one.

11.1. Langlands quotient from P E .  As previously, let P E  =  M E N E  be the Heisenberg
maximal parabolic subgroup. The modular character N E  of ME  is

N E  =  j det j5:

Let  be a tempered representation of M . Using the normalized parabolic induction, we
induce
 j det js from P E  to G E ,  giving a standard module if s >  0. Let J2 (; s) be the corresponding
Langlands quotient when s >  0. The representation J  (; s) is also the unique submodule of the
representation obtained by inducing
j det js from the opposite parabolic P E  =  M E N E .  This point of view is more useful to us.

11.2. Langlands quotient from QE .  We shall also need some Langlands quotients attached to
the 3-step parabolic subgroup QE  =  L E U E  corresponding to the middle vertex of the
Dynkin diagram. Then

L E  =  (GL 2 (F )   E )det  =  f(g; e) j det(g) =  N E = F  (e)g:
Let N E = F  also denote the character of L E  obtained by projecting L E  to E  followed by the
norm on E .  The modular character U E  of L E  is

U E  =  jN E = F  j3:
For a tempered irreducible representation  of L  , consider the normalized parabolic induc-tion
of
 jN E = F  js from QE  to G E .  If s >  0, this is a standard module and we let J1 (; s) be the
corresponding Langlands quotient.

We shall need this parabolically induced representation when  is one of the following
representations:

  =  StE  is the Steinberg representation of L E  obtained by projecting L E  to GL 2 (F )
and pulling back the Steinberg representation of GL2 (F ) .

 If E  =  F  K ,  then we dene a character of E  equal to on the rst factor F  and
trivial on the second factor K .  We can pull this character back to L E ,  and abusing
notation, denote it by K .  Note that K  is of course a nontempered representation of
L E .

11.3. Degenerate principal  series. We shall also need the structure and constituents of
various unramed degenerate principal series representations induced from maximal parabolic
subgroups. The necessary results are provided in Appendix B  below. We provide here a
roadmap for where the various results are located there:
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 when E  is a eld, the only maximal parabolic subgroups are P E  and QE . The
degenerate principal series associated to P E  is denoted by

I (s) =  IndP E  
j det js (normalized induction).

The points of reducibility and the module structure at those points are given in
Theorem 18.1. On the other hand, the degenerate principal series associated to QE  is
denoted by

J (s)  =  IndQ E  
jN E = F  js (normalized induction).

Its reducibility points and module structure is described in Theorem 18.2.

 when E  =  F   K  where K  is a eld, there are 3 families of degenerate principal series:
B (s)  (associated with the B2-maximal parabolic), A(s) (associated to the A2-maximal
parabolic) and I (s)  (associated to the Heisenberg parabolic, which is the A1  A1-
parabolic). The points of reducibility for these are given in Theorem 18.3, Proposition
18.4 and Proposition 18.5 respectively.

 when E  =  F 3  is split, the degenerate principal series has been studied to some extent in
the literature, such as [BJ]  and [We1]. We only need the results concerning I (s)
(associated to Heisenberg parabolic) summarized in Proposition 18.6.

11.4. A2 -parabolic. We shall need an explicit description of the quotients J2 (; s) in certain
cases. Assume now that E  =  F 3 . When writing Mder =  SL2   SL2   SL2 , we shall assume that
the three SL2  correspond, respectively, to simple roots 1, 2 and 3. Let ()  (or ()  )  be a
representation (or two) of M E  corresponding to  =  (1; 2; 3), a character of E  , as x10.2. In
particular, 1  2  3 =  1. We shall assume that  is unitary, so that ()  is tempered. Consider the
parabolic subgroup in standard position corresponding to the A2 diagram, containing the
vertex corresponding to 1. The character  denes a unitary character  (temporary notation) of
the Levi subgroup given by

(2 (t)) =  3(t) and (3 (t)) =  2(t):

Let D ( )  be the unitary representation of G E  obtained by inducing (unitary induction) the
character . Since D ( )  is unitary, it is completely reducible. We now consider three cases:

 Suppose that 2 =  1. By working out exponents (there are 32 of these), one sees that
D ( )  has a unique irreducible subrepresentation and hence is irreducible. Using
exponents again, one may determine the Langlands parameter of D ().  It turns out
that

D ( )  =  J2 ((); 1):

 Suppose that 2 =  1 but  =  1. Then D ( )  has two irreducible summands: D ( )

=  J2 (()+ ; 1)   J2 ( ( )  ; 1):

 Suppose that  =  1. Then D (1)  has two irreducible summands. The unique spherical
summand is isomorphic to J2 ((1); 1). The exponents of the non-spherical summand can
be determined. Indeed, the spherical summand of D (1)  is also the quotient of I (1=2),
and the exponents of this quotient are known by Prop 18.6. Then, using the
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exponents, one can determine the Langlands parameter of the non-sperhcial sum-
mand. It turns out that the non-spherical summand is isomorphic to J1 (StE ; 1=2).
Hence

D (1) =  J2 ((1); 1)  J1 (StE ; 1=2):

Remark: Despite the fact that D ( )  is dened by an arbitrary choice of the A2  parabolic, the
Langlands parameter of D ( )  is independent of this choice. Hence the isomorphism class of D ( )
is, remarkably, independent of the choice, i.e. the isomorphism class of D ( )  is invariant by
the triality automorphism.

We need a similar discussion in the case E  =  F   K .  Let  =  (  ;  )  be a character of E
trivial on the diagonally embedded F .  Consider the (unique) parabolic subgroup in
standard position corresponding to the A2 diagram. Now  denes a character  of the Levi
subgroup given by

(_ (t)) =  K ( t )  for all t 2  K :

Let D ( )  be the unitary representation of G E  obtained by parabolically inducing the charac-ter
(unitary induction). The structure of D ( )  is similar to that in the split case discussed above.
The only dierence is that the non-spherical summand of D (1)  is the representation V 0

(introduced in x18.5.1 and x18.5.3 of Appendix B  below) with a one-dimensional space of
Iwahori-xed vectors. It is a Langlands quotient of a standard module induced from B2-
parabolic.

We summarize both cases in the following proposition.

Proposition 11.1. Assume that E  is not a eld. Let  be a unitary character of E  trivial on F
and consider the representation D ( )  induced from a parabolic subgroup of type A2  as dened
above. Then

(1) If 2 =  1, then D ( )  =  J  ((); 1).
(2) If 2 =  1 but  =  1, then D ( )  =  J2 (()+ ; 1)   J2 ( ( )  ; 1). (3) If E  =
F  , then D (1)  =  J2 ((1); 1)  J1 (StE ; 1=2).
(4) If E  =  F   K ,  then D (1)  =  J2 ((1); 1)  V (where V is introduced in x18.5.1 and

x18.5.3).

As we see from the above proposition, we shall need to refer to representations of G E ( F )
which are constructed in Appendix B  below, where we study the decomposition of unramied
degenerate principal series representations of G E .  Some of these representations will appear in
the theta lifting from H C  which we shall consider next.

12. Theta correspondence for E 6

In this section, we will study the theta correspondence for H C  G E   G J  =  Aut(J ),  where J  =
E   C  is a Freudenthal Jordan algebra of dimension 9. The main goal is the following
theorem, whose proof will occupy the rest of this section.

Theorem 12.1. For every unitary irreducible representation  of H  (F ) ,  ()  is non-zero
and irreducible. If ()  =  (0), for two irreducible representations  and 0 of H  (F ) ,  then
 =  0. More precisely:
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(1) If J  =  D  (a cubic division algebra), so that E  is a eld, then (1) =  V 0 =  J  (St ; 1=2) (see
x18.2.1 and x18.2.4 for the denition of V 0, as well as Theorem 18.1) and () is
supercuspidal for all  =  1.

(2) If J  =  D  and  =  , then () =  J2(M (); 1=2).

(3) If J  =  D  and H C  is anisotropic, then () is supercuspidal. Otherwise:

 If E  =  F 3  and J  =  M3 (F ), then () =  J1 (StE ; 1=2).
 If E  =  F   K  and J  =  M (F ) ,  then () =  V (see x18.5.1 and x18.5.3 for the

denition of V 0).
 If E  =  F   K  and J  =  J 3 ( K ) ,  then () =  J 1 (StE
 K ; 1=2).

12.1. E -twisted cubes. Recall from x5 that if P =  M N is the Heisenberg parabolic
subgroup of G E ,  then the representation of ME  =  GL2 (E )d e t  on

N E =Z E  =  F   E   E   F
is the space of E-twisted Bhargava cubes. As we summarized in Proposition 5.1, the ME -
orbits of nondegenerate cubes are parametrized by E-isomorphism classes of E-twisted com-
position algebra of dimension 2 over E .  Indeed, for any nondegenerate cube , one attaches a
twisted composition algebra structure (Q; ) on C  =  E 2 , so that there is a natural
isomorphism

(12.2) StabME ()  =  AutE (C) given by g !  tg 1.

If we x a nontrivial additive character of F ,  then the natural pairing between N E =Z E
and N E = Z E  allows us to identify the unitary characters of N E  with elements of N E =Z E .  In
particular, an E-twisted cube  determines a corresponding character  of N E .

12.2. Twisted Jacquet module. Let  =  J  be the minimal representation of G J .  We have
computed the Jacquet module N in x9. In this subsection, we determine the twisted
Jacquet module N  ; for the character  of N E  attached to a nondegenerate E-twisted
cube . Note that N  ;         is naturally a representation of StabME ( ) AutE (C ),  and thus of
AutE (C )   AutE (C )  in view of (12.2).

In x8.2, we have seen that
C 1 (
)   

E  
 C 1 (

)
where
 is the minimal MJ -orbit on N J =Z E ,  which can be identied with a set of unitary characters
of N J .  It follows from the description of Z E  

given in (8.2) that

N E ;   
=  Cc  (

)
where
 is the set of elements !  2
 such that !  restricted to N E  is . Based on our
description of
 in x8.3, the following proposition determines the set
 concretely.

Proposition 12.3. Let J  =  E   C  be a Freudenthal Jordan algebra of dimension 9. Let  be a
nondegenerate E-twisted cube. Then N  ; =  0 unless  belongs to the ME -orbit
corresponding to C  (i.e. C  =  C ) .  If C  =  C ,  then
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where
- K  is the restriction of J  to StabM (); in particular, K  is either trivial or the sign

character of StabME ()  =  H C ( F )  depending on whether ! K = F (  1) =  + 1  or  1;

- the action of StabM () AutE (C )  on C 1 ( Isom(C; C ) )  is the regular representation (via
(12.2)).

Proof. Since every nondegenerate ME -orbit contains reduced cubes, we may assume without
loss of generality that  is reduced, i.e.

 =  (1; 0; f; b);

The associated twisted composition algebra C  is then described in Proposition 5.2.

Now the projection map

N J =Z J  =  F   J   J   F   !  N E =Z E  =  F   E   E   F  induced

by the restriction of characters is given by

(a; x; y; d) !  (a;  ex; ey;  d)

where we have writtem

x  =  (ex ; cx ) and y =  (ey; cy) 2  E   C  =  J :

Hence, if !  =  (a; x; y; d) 2

, so that !  restricts to , then a =  1, so that !

=  (1; x ; x# ; NJ (x) ) (by Proposition 8.1).

Writing x  =  (e; v) 2  E   C  =  J  and noting that (0; v)# =  (  Q(v); (v)), we then deduce
that

e =  0 and Q(v) =   f :

Finally, since N J ( x )  =  NC (v ),  we also have

NC (v )  =   b:

Hence, we have a natural StabME ()   AutE (C )-equivariant identication

 =  f(v; (v)) 2  C 2  : Q(v) =   f  and NC (v )  =   bg  C 2  =  E 2

E  C;

where the action of AutE (C )  is componentwise, whereas that of StabM ()  GL2 (E )d e t  is via
the standard representation on E  . Thus, the StabM ()AutE (C )-set
 is nothing but the StabM () AutE (C )-set
C;f ;b studied in Corollary 5.3 and Lemma 5.4. We thus deduce that
 =  ; ,  unless C  is isomorphic to C, in which case
 is identied with Isom(C; C ) and  =
C  (Isom(C; C )) is the regular representation of StabM ()  AutE (C )  twisted by the quadratic
character K .

If we x a base point 0 2  Isom(C; C ), we get an isomorphism StabM () =  AutE (C )  and with
respect to this,  is the regular representation of AutE (C )   AutE (C ).  We
assume that this isomorphism has been xed henceforth. We remark also that the quadratic
character K  is trivial when K  is not a eld. In any case, this extra twist will be quite
innocuous for our purpose.
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For later use, we shall now compute the twisted co-invariants for some degenerate cubes
in the case when AutE (C )  is anisotropic. Consider

 =  (1; 0; f ; 0) with f #  =  0.

We have:

 If f  =  0, this cube belongs to the minimal G  -orbit (A1 ).
 If f  =  0 and f #  =  0, then E  is not a eld. We consider the two cases:

{  If E  =  F  +  K  with K  a eld, then f  =  (a; 0) and  belongs to a GE -orbit
denoted by 2A1.

{  If E  =  F then f  =  (a; 0; 0), (0; a; 0) or (0; 0; a), reecting the fact that G E  has
three orbits of type 2A1 over the algebraic closure, permuted by the outer
automorphism group S3.

The rational orbits of these types are parameterized by classes of squares, and
belongs to the class of a.

Proposition 12.4. Let J  =  E  C  be a Freudenthal Jordan algebra of dimension 9. Assume that
AutE (C )  is anisotropic. Let  =  (1; 0; f ; 0) be an E-twisted cube such that f #  =  0. Then

(i)  N E ;   
=  Cc  (

), with

 =  fv  2  C  j Q(v) =   f  and bQ(v; (v)) =  0g:

( i i )  If f  =  0, then
 =  f0g.
(i i i)  If f  =  0, then
 is compact (possibly empty) and AutE (C )0  acts transitively on it.

Proof. The assertion (i) is clear. For (ii), since AutE (C )  is anisotropic, Proposition 9.1 implies
that
 =  0 if f  =  0.

The assertion (iii) can be checked by an explicit computation. There are two cases to
consider, depending on whether E  =  F 3  or E  =  F   K  with K  a eld. We examine the case E  =
F 3  as an illustration.

When E  =  F 3 , we have C  =  K 3  for a quadratic eld extension K  of F .  Moreover, Q and
are of the form

Q(x; y; z) =  ( N K = F  ( x ) ; N K = F  (y ); NK = F  (z )) (up to an element in (F 3 ))

and (x; y; z) =  (yz; zx; xy). Then

AutE (C )0  =  f(x; y; z) 2  ( K ) 3  j N K = F  (x)  =  N K = F  (y) =  N K = F  (z) =  xyz =  1g:

If f  =  (a; 0; 0) 2  F 3 , then
 =  f(x; 0; 0) 2  C  j N K = F  (x)  =  ag, which is a principal homogeneous variety for the group of
norm one elements in K  (possibly with no F -rational points).
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12.3. Nonvanishing and inject iv ity  of theta lifts. Using the above results, we can now
begin our determination of the theta liftings from AutE (C )  to G E .

Proposition 12.5. Fix an embedding E  !  J ,  so J  =  E   C .
representation of AutE (C ) .  Then

(i)  ()  =  0.
( i i )  If 0 is another irreducible representation of AutE (C ) ,  then

() =  (0) ( )  0 =  :

Proof. Proposition 12.3 shows that as a module for Stab (),
(

(12.6) ( ) N E ;   
=

0; f

K ;  if C
;  

=  C ,

Thus ()  =  0 and the second statement also follows.

Let  be an irreducible

12.4. Langlands parameters of theta lifts. We shall construct an explicit subquotient of (),
for  =  1 if J  =  D  and all unitary  =   if J  =  D ,  using the mini theta correspondence. Recall that
we have an exact sequence

0 !  C 1 (
? )  !  N E  

!  N J  
!  0: Furthermore, N J  , as ME   AutE (C )-module

decomposes as

(12.7) N J  
=  j det j 2

 ! K = F  j det j     2
 M J

where ! K = F is the quadratic character corresponding to K  =  K J ,  viewed as a character of
ME  by precomposing det, and M is the minimal representation of MJ  that has been
described in x8.4. The summand M     appears if and only if J  =  D  . The action of AutC (E )  on
the one-dimensional summand is trivial.

Assume rst that E  is a eld and J  =  D ,  which is the easiest case. Then N E

=  N J  
=  j det j 2

so ()  =  0 for all  =  1. We shall see later in x12.8 that this vanishing implies the
cuspidality of (); for now, we shall deal with (1). By Frobenius reciprocity, we have a map from
(1) into the degenerate principal series representation I (  1=2) (see x18.3.1) induced from the
Heisenberg parabolic subgroup. The image of this map must be V 0 =  J  (St ; 1=2) since (V 0)N

=  j det j 2 (and the other irreducible constituents of I (  1=2) have 2- or 3-dimensional space
of NE -coinvariants, by Theorem 18.1). Thus, (1) contains V as an
irreducible quotient and we shall see later that it is in fact irreducible.

Now assume J  =  D .  We have seen in (12.7) that there is an ME   AutE (C)-equivariant
surjection

N E  
 !  j det j 3=2  M J

where M      is the minimal representation of MJ . We have also described in Proposition
10.3 the theta correspondence for the pair M E   AutE (C )  acting on M J  . For any  2
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Irr(AutE (C )) with  =  , its theta lift M () on M E  is nonzero irreducible. Hence by
Frobenius reciprocity, we obtain a nonzero equivariant map

()  !  IndG E  j det j
  () (normalized induction),

E

with M () as described in Proposition 10.3. Now the induced representation is essentially the
dual of a standard module and hence contains a unique irreducible submodule , which is the
Langlands quotient J2 (M (); 1). This Langlands quotient  is thus an irreducible subquotient
of ()  when  =  .

12.5. I r reduc ib i l i ty  of ()  I .  We shall now complete the correspondence in the case when
Aut (C )0  is isotropic. In this case, there exists a non-trivial co-character  : F  !  AutE (C )0 .
The centralizer of  in G J  is a Levi subgroup. The restriction of the minimal representation
on any (maximal) Levi subgroup is fairly easy to compute. Indeed, this is a standard
technique in the theory of exceptional theta correspondences. With that in hand, ()  is easy
to compute for every unitary character  of AutE (C )0 .

We shall execute this strategy in detail in the split case, where E  =  F 3  and J  =  M3 (F ), so
that G is a split group and G is the derived group of the D  -parabolic in E  . Then
AutE (C )0  =  (F 3 )=F  and we can x this isomorphism as follows. By extending the E 6  diagram,
we see that D 4  sits in three Levi subgroups G1 ; G2 and G3 in E 6  of type D5 . Let i  : F

!  G i  be the co-character generating the center of Gi .  (These co-characters are
miniscule co-weights.) They are each unique up to inverse, but we can pick them so that
1(t)2(t)3(t) =  1 for every t 2  F .  Now the map (t1; t2; t3) !  1(t1)2(t2)3(t3) gives the claimed
isomorphism.

The restriction of the minimal representation  to a D 5  maximal parabolic has been
determined in [MS]. In particular, the restriction to G1 is given by an exact sequence

0 !  Cc  ( ! )  !   !  1  C  !  0

where !  is the highest weight orbit in a 16-dimensional Spin module for G1, the action of G1 is
geometric, and  is the minimal representation of G  , twisted by an unramied character. More
precisely, the action of 1(t) on 1 and C  is given by jtjs and jtjr for two non-zero real numbers.
In particular, since these characters are not unitary, the two terms will not contribute to ()
for  unitary. Thus we can concentrate on Cc  ( ! ) .

The group G E  has three irreducible 8-dimensional representations V1, V2 and V3. We pick
this numbering so that the restriction of the 16-dimensional Spin module for G1 containing !
decomposes as V2 V3. Let ! i   Vi be the GE -orbit of highest weight vectors. Then it is a simple
exercise, using the Bruhat decomposition for G1, to see that !  decomposes into three GE -
orbits:

 an open GE -orbit ! 0   ! ,  such that the stabilizer of a point in ! 0  is the derived
group of an A2  parabolic subgroup,

 ! 2   V2 and
! 3   V3.

Thus we have an exact sequence of GE -modules:

0 !  Cc  ( ! 0 )  !  Cc  ( ! )  !  Cc  ( ! 2 )   Cc  ( ! 3 )  !  0:
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Of course, by the S3-symmetry of the situation, C 1 ( ! 1 )  must also contribute in the restriction of
. Indeed, it is contained in 1, where 1(t) acts by the non-unitary character jtj . Hence i (t) acts
on C  ( ! i )  by the same character, and these terms will not contribute to ()  if  is unitary. In
particular, we have shown that for  unitary, ()  arises from C  (!0 ) ,  whence it is clear that ()  =
D ().

It is now easy to nish the argument. For example, for two characters 1 and  of AutE (C ),  we
have just proved that

D (1) =  (1)  ():
On the other hand, recall from Proposition 11.1(3), that

D (1) =  J1 (StE ; 1=2)  J2 ((1); 1):
Since (1)  J2 ((1); 1) and () =  0, it follows that (1) =  J2 ((1); 1) and () =  J1 (StE ; 1=2)).

12.6. Subregular  nilpotent orbit.  Assume now that AutE (C )  is anisotropic. We shall
prove the irreducibility of the theta lift ()  by studying its restriction to N E  in detail.
However, in order to make this strategy work, we need to eliminate subregular nilpotent
orbits as leading terms of the wave-front set of ().

The subregular nilpotent orbit is the Richardson orbit for the 3-step parabolic subgroup
QE  =  L E U E  corresponding to the the middle vertex of the Dynkin diagram for D4 , with
[ L E ; L E ]  =  SL2 (F ).  Recall from (6.5) that there is a parabolic subgroup QJ  =  L J U J  of G J
whose intersection with G E  is QE . The unipotent radical of its Lie algebra has a decompo-
sition

uJ  =  gJ (1)  gJ (2)  gJ (3)
with

gJ (1) =  F e1

 J   F e2

 J  =  J 2 ; gJ (2) =  F e

 J  =  J  and gJ (3) =  F e13  F e23 =  F 2  in the notation of (6.5). The unipotent radical UJ  of

QJ  has a ltration

UJ  =  U1  U2  U3 such that Ui =Ui+1 =  gJ ( i )  for all i.

Hence, the minimal representation  has a ltration

  1  2 : : : such that =i =  Ui
.

In particular, each quotient i = i + 1  is naturally a Ui=Ui+1-module. The group Ui =Ui+1 is
abelian and its characters are parameterized by gJ (i).  The characters of Ui =Ui+1 that appear as
quotients of i = i+1  are in
min (F ) \  gJ ( i )  where
min is the minimal orbit in gJ .

The embedding E   J  gives rise to G E   G J  such that QJ  \  G E  =  QE  =  L E   UE . In
particular, we have an analogue of the above sequence of inclusions

gE (1) =  F e1

 E   F e2

 E  =  E 2 ; gE (2) =  F e
 E  =  E  and gE (3) =  F e13  F e23 =  F 2 :

Thus a character of UE  is specied by a pair (a; b) 2  E 2  =  gE (1). We say that the character is
non degenerate if a and b are linearly independent over F .  We now have:

Lemma 12.8. Let J  =  E   C  be a 9-dimensional Freudenthal Jordan algebra such that
AutE (C )  is anisotropic. Let  be the minimal representation of G J  and a non-degenerate



character of UE .  Then UE ;       =  0.
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Proof. The rst step is to show that [U ;U ] =  [U ;U ]. To  that end, for i  =  3; 2, we need to show
that there are no elements in
m i n (F ) \ gJ ( i )  perpendicular to gE (  i). If i  =  3 there is nothing to prove, since gE (  3) =  gJ (
3).

If i  =  2, then gJ (2) =  F e
 J   J  and elements in
min (F ) \  gJ (2) perpendicular to gE (  2) are given by x  2  C ,  x  =  0, such that x #  =  0. But
there are no such elements, since AutE (C )  is anisotropic.

As the next step, we need to show that no character of UJ  in the minimal orbit restricts to
a non-degenerate character of UE . A  character of UJ  is specied by (x; y) 2  J  =  gJ (1), and
the restriction to U E  is given by projecting x  and y on the rst summand in the decomposition J
=  E   C .  If (x; y) is in
min (F ) \  gJ (1) then x  and y are linearly dependent over F ,  and hence so are their E-
components. This completes the proof of the lemma.

12.7. I r reduc ib l i ty  of ()  I I .  We assume that AutE (C )  is anisotropic and note the fol-
lowing consequence of Proposition 12.4 :

Lemma 12.9. Let J  =  E  C  be a Freudenthal Jordan algebra of dimension 9. Assume that
AutE (C )  is anisotropic. Let  =  (1; 0; f ; 0) be an E-twisted cube such that f #  =  0. Then

(i) If f  =  0, then (
C;  if  =  1;

N E ;  0; if  =  1.

(ii) If f  =  0, then ( ) N E ;   
is nite-dimensional for any . Moreover, ( ) N E ;   

=  0.

We can now prove that ()  is irreducible. The rst step is to show that ()  has its wave-front
set supported on the orbit A2, that is, the Richardson orbit for the parabolic P E .  There are
three larger families of orbits: the regular orbit, the subregular orbit and the Richardson orbits
for parabolic subgroups of the type 2A1 and we deal with each in turn:

 The subregular orbits are eliminated by Lemma 12.8.

 We now deal with the regular orbit. Assume that ()  is Whittaker generic, where we are
using Whittaker characters of a maximal unipotent subgroup containing N E .  Observe
that there are innitely many Whittaker characters which restrict to the character

     of N E ,  where 0 =  (1; 0; 0; 0). This contradicts Lemma 12.9(i) which
shows that ( ) N E ;   

is nite-dimensional.

 The last case, which concerns the Richardson orbit for parabolic subgroups of type 2A1
and thus does not occur if E  is a eld, is treated similarly. In this case, there are
innitely many characters of the unipotent radical of the 2A parabolic which restrict
to , where  =  (1; 0; f ; 0) with f  =  0 but f #  =  0. This again contradicts the
nite-dimensionality in Lemma 12.9(ii).

This completes the rst step of the argument.

The second step is to show that there are no irreducible subquotients of ()  supported on
smaller orbits: 3A1, 2A1, A1 and the trivial orbit. The orbit 3A1 is not special, so we can
disregard it. We now consider the other possibilities in turn:
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 Lemma 12.9 and the nite-dimensionality of ( ) N  ; for nondegenerate  imply
that ()  has nite length. Together with the unitarity of (), this implies that any
irreducible subquotient of ()  is a summand of the minimal representation . Hence, by
the theorem of Howe and Moore, the trivial representation of G E  can not be a
summand.

 The remaining possible small summands are eliminated using the Fourier-Jacobi
functor [We1] for the Heisenberg parabolic P E . The output of this functor is a
[ME ; ME ] =  SL2 (E )-module. It is easy to check that the Fourier-Jacobi functor
applied to  gives the Weil representation C  (C )  of SL 2 ( E )   O(Q), where O(Q) is
the orthogonal group for the quadratic form Q on C .  On the other hand, the
Fourier-Jacobi functor applied to an irreducible representation of G E  with the wave-
front set supported in 2A1 or A1  gives a representation of SL 2 ( E )  with the trivial
action of S L 2 ( K )  or SL 2 ( E )  respectively. Since the matrix coecients of the Weil
representation decay, SL 2 ( E )  or any of its factors, cannot x a vector in Cc  (C ).

Now we can complete the proof of the irreducibility of ()  when AutE (C )  is anisotropic. The
wave-front set of every irreducible subquotient of ()  is supported on orbits of the type A2.
However, we know that ( ) N  ; is non-zero only for  in a single ME -orbit of non-
degenerate cubes, in which case this space is an irreducible StabM ()-module. Thus there is
room for only one irreducible representation in (). This proves the desired irreducibility of ()  in
all cases.

12.8. Cuspidal i ty .  It remains to prove that ()  is supercuspidal if ()  =  0. This
follows from Lemma 12.9 combined with the following proposition.

Proposition 12.10. Let  be an irreducible representation of G E  such that  =  0 and
N E ;   

=  0 for all  =  (1; 0; f ; 0) such that f #  =  0. Then  is supercuspidal.

Proof. Consider the case E  =  F   K .  Let Q  =  L   U be a maximal parabolic subgroup of
G E  such that  =  0. Because  =  0, there are two other maximal parabolic subgroups
to consider.

 If [ L ; L ]  =  SL3 , then  =  0 will admit a non-trivial functional for a character of UL ,
the unipotent radical of a Borel subgroup of L .  This character can be inated to U  U L
and then restricted to N E .  The restriction is  where  =  (a; 0; 0; 0) for
some a 2  F .  This contradicts the hypotheses of the proposition.

 If [ L ; L ]  =  SU2;2, then we take U L  to be the unipotent radical of the maximal parabolic
subgroup whose (derived) Levi subgroup is SL 2 (K ) .  This is an abelian subgroup (it
is the space of 22 hermitian matrices) and  will admit a non-trivial functional for a
character of UL . The rest of the argument goes in the same way as above, leading to

 with  =  (1; 0; f ; 0) for an f  such that f =  0.
We have thus dealt with the case E  =  F   K .  The cases when E  a eld or F 3  are similar and
easier. Indeed, for these cases, it suces to assume that N =  0 and N  ; =  0 for
=  (1; 0; 0; 0) to conclude the desired cuspidality.

We have now completed the proof of Theorem 12.1. The following corollary gives an
alternative description of (1) and will be used in [GS3].
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Corol lary 12.11. Let  be a quadratic character of F .  Let I (; s) be the degenerate princi-pal
series representation for G E  associated to the Heisenberg parabolic subgroup P E  =  M E N E .  Then
the co-socle of I (; 1=2) is a direct sum of the theta lifts C (1) over all isomorphism classes of
twisted composition algebras C  of E-dimension 2 with associated embedding E  !  J  such that K J
corresponds to  by local class eld theory.

Proof. Consider any embedding E  , !  J  such that  corresponds to K J  by local class eld theory
and write J  =  E + C .  Then we have the dual pair G E  AutE (C )   !  G J ,  and we may consider
the big theta lift C (1) of the trivial representation of AutE (C ).  By Theorem 12.1, we know that
C (1) is irreducible. On the other hand, observe that C (1) maps nontrivially to I ( ;  1=2) (by
using the one dimensional summand of   ), and thus it is an irreducible
submodule of I ( ;  1=2). Since N E  spectra of C (1) for non-conjugate embeddings E  !  J  are
dierent, we thus have a submodule

C (1) , !  I ( ;  1=2); C

with the sum running over isomorphism classes of C ’s considered here.

Now the corollary follows by counting: the number of classes of embeddings with E  and
K J  xed, given by [GS2, Prop. 12.1], is equal to the number of representations in the socle of I ( ;
1=2), which is given by [Se2, Thm 4.1]. For example, if  =  1, and E  =  F  +  K ,  where K  is a eld,
then we have one class of embeddings if K  =  K J  and two otherwise. These two cases can be
characterized by   N K = F  =  1 and   N K = F  =  1 respectively, and correspond to the cases (6) and
(7) in [Se2, Thm. 4.1]. However, the conditions were mistakenly stated there as   N E = F  =  1 and
N E = F  =  1, when in fact it was what we wrote here.

13. Archimedean Theta Correspondence

In this section, we consider the theta correspondence for H C   G E  over archimedean local elds
and formulate the analog of Theorem 12.1. The main theorems here are Theorems 13.1 and
13.3. The proofs of these theorems will appear in a separate paper, joint with Je  Adams and
Annegret Paul.

13.1. Real  Freudenthal-Jordan algebras. Assume rst that F  =  R; the case F  =  C  will be
dealt with at the end of this section. Firstly, we enumerate the real Freudenthal-Jordan
algebra J  of dimension 9:

 For K J  =  R2 , we have J  =  M3 (R);
 For K J  =  C,  J  is given as the set of xed points of involutions of the second kind on

M3 (C). Involutions of the second kind on M3 (C) arise from nondegenerate Hermitian
forms h on C  , which we may assume to be given by:

h =  1z1z +  2z2z +  3z3z ; with i  =  1.

There are 8 choices for signs, but we get only 4 dierent involutions, since h and
 h give the same involution. In this way, we get 4 Jordan algebras J  ; ; , but the 3 of
them corresponding to f1; 2; 3g =  f + ;  ;  g are isomorphic. Hence, up to
isomorphism, there are two such J ’s:
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{  J  =  J3;0 (C) =  J + + + ;
{  J  =  J1;2 (C) =  J  +

We shall sometimes denote the last two cases of J  collectively as J  (C).  The group G
depends only on K J .  It is the split group if K J  =  R2 , and quasi-split if K J  =  C  [LS15] .

13.2. Embeddings of cubic algebras. We shall next enumerate the E-twisted composition
algebra of rank 2 over R  by describing embeddings of cubic etale algebras E  into J .  Note
that there are 2 cubic etale R-algebras:

E  =  R3 or E  =  R   C:

We consider the various cases in turn:
(a) J  =  M3 (R): in this case, both R3  and R C  embeds into M3 (R) and these embeddings

are unique up to conjugation.

(b) J  =  J  (C )  and E  =  R3 : in this case, we may work with the 4 Jordan algebras J  =
J  ; ;     as described above. For each of these J ’s, there is an embedding of R3  into J  as
diagonal matrices. Though 3 of these Jordan algebras are isomorphic (to J1;2 (C)), the
three embeddings are not isomorphic. To  conclude, we get 4 classes of embeddings in
all.

(c) J 3 (C )  and E  =  R   C:  in this case, E  does not embed into J3;0 (C) and there is a
unique embedding of E  into J1;2 (C).

We take this opportunity to correct a typo at the very end of [GS2], where it was incorrectly
asserted in [GS2, Pg. 1956] that in the context (b), there are only 2 embeddings of R3  into
J3 (C),  even though the table on [GS2, Pg 1954] clearly shows that this set of embeddings
have 4 elements.

13.3. T h e  torus Aut (C )0 .  For each embedding E  , !  J ,  we have a decomposition J  =  E  C .
The corresponding H C  =  AutE (C )  is always a semi-direct product AutE (C )0  o Z = 2 Z  such that
the conjugation action of the non-trivial element in Z=2Z on Aut (C )  is the inverse
involution. The possible cases of the two-dimensional torus AutE (C )0  are tabulated in the
following table, where T  is the group of complex numbers of norm one.

E  =  R3

K  =  R2 (R)3 =(R) K  =
C           (T)3 =(T)

E  =  R   C  ( R
C)=(R)

( T   C)=(T)

13.4. Characters of AutE (C )0 .  We introduce a rened notation for characters of these tori.
 A  character  of (R)3 =R is a triple of characters (1; 2; 3) of R  such that 1  2  3 =  1.

 A  character of T  is represented by an integer. Thus a character  of (T)3 =T is
represented by a triple of integers (n1; n2; n3) such that n1 +  n2 +  n3 =  0.

 In the remaining two cases a character of the torus is identied with a pair of charac-ters
(R ; C ), such that R   C  =  1 on R, and with a pair (m; C), where m 2  Z,  such that the
restriction of C  to T  is given by z !  z .
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13.5. Representations of AutE (C ) .  Let  be a character of AutE (C ).  If  =   1, let
() =  ( )  be the unique irreducible representation of Aut (C )  such that the restriction
to AutE (C )0  is    1. If  =   1, then  extends to a character of AutE (C )  in two ways, denoted
by () . These two representations are indistinguishable unless  =  1, in which case one
extension is the trivial representation, denoted by (1), and the other the sign representation .
Note that non-trivial quadratic characters  appear only in the split case (where E  =  R3  and
K J  =  R2 ), since AutE (C )0 (R)  is connected as a real Lie group otherwise.

13.6. Some tempered representations of ME .  To  every unitary character  of AutE (C )0 , we
shall attach a packet P ( E ; K  ; ) =  P ( E ; K  ; )  of tempered representations of M =
GL2 (E )de t ,  obtained by restricting an irreducible representation of GL 2 (E ) .  We need addi-
tional notation.

 For a local eld F  and a pair of characters (1; 2) of F ,  let 1  2 be the unique innite-
dimensional subquotient of the principal series representation of GL 2 ( F )  ob-tained by
normalized parabolic induction from the pair of characters.

 Let !  : R  !  f1g be the sign character. It is the unique non-trivial quadratic
character of R.

 Let  : R  !  R  be the identity character (x )  =  x, for all x  2  R.
 For n 2  Z,  the principal series representation n   ! ,  when restricted to SL2 (R),

contains a sum of two (limits of ) discrete series representations with the lowest SO2-
types (jnj +  1).

We can now describe the packet P ( E ; K  ; ) =  P ( E ; K  ;  1) of tempered representations of
ME  =  GL2 (E )de t .

Case E  =  R3  and K J  =  R2 . Let  =  (1; 2; 3) be a unitary character of (R)3 =R. The packet
P ( E ; K J ; )  consists of representations appearing in the restriction to GL2 (R3 )det  of

(1  1)
 (2  1)
 (3  1):

This representation is irreducible when restricted to SL2 (R3 )  unless i  =  !  for at least one i.
The group GL2 (R3 )det  is large enough so that the restriction is still irreducible if precisely one i
is ! .  In view of the relation 1  2  3 =  1, at most two i  can be ! ,  and this is precisely when  is a
non-trivial quadratic character. Then and only then the packet consists of two elements. The
standard intertwining operator provides an identication of P ( E ; K  ; ) and P ( E ; K J ;  1).

Case E  =  R3  and K J  =  C.  Let  =  (n1; n2; n3) be a character of T3 =T. The packet
P ( E ; K J ; )  consists of representations appearing in the restriction to GL2 (R3 )det  of

(n
1

  ! )

 (n 2   ! )
 (n 3   ! ) :

The restriction to SL2 (R3 )  consists of 8 summands, hence the packet P ( E ; K J ; )  consists of 4
representations.

Case E  =  R   C  and K J  =  R2 . The restriction from G L 2 ( R C )  to GL2 (R C)d e t  is always
irreducible, hence the packets are singletons. Let  =  (R ; C )  be a unitary character of
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( R   C)=(R).  The packet P ( E ; K J ; )  consists of the restriction to G L 2 ( R   C)det of ( R   1)

 ( C   1):

Case E  =  R   C  and K J  =  C.  We are again restricting from G L 2 ( R C )  to GL2 (R C)d e t  hence
the packets are singletons. Let  =  (m;  ) be a unitary character of ( T   C)=T. The packet
P ( E ; K J ; )  consists of the restriction to G L 2 ( R   C)det of

(m  ! )
 ( C   1):

Summarizing, we have 4 families of tempered packets P ( E ; K  ; ) =  P ( E ; K  ;  1) of
GL2 (E )de t ,  parameterized by unitary characters  of AutE (C )0 . If E  =  R3  and K J  =  C,  then
j P ( E ; K  ; )j =  4. As a part of our correspondence result, we will see that the 4 members of
this packet are naturally parameterized by the 4 embeddings R3  !  J  (C).  If  is a non-trivial
quadratic character (this happens only if E  =  R3  and K J  =  R2 ) then jP (E ; K J ; ) j  =  2. Let
();  ()  be its constituents. Otherwise jP (E ; K J ; ) j  =  1 and its unique element will be denoted
by ().

13.7. Main  result. Let V be the Harish-Chandra module of the minimal representation of
G J .  Consider the dual pair G E  AutE (C )  corresponding to an embedding E  !  J .  For every
irreducible representation  of AutE (C )  let

() =  V= \ ’2 H o m ( V ; )  K e r ( ’ )

where ’  are homomorphisms in the sense of Harish-Chandra modules. We note that ()  is
naturally a (gE ; KE )-module, where K E  is the maximal compact subgroup of G E .  The
following will be proved in a joint paper with Je  Adams and Annegret Paul, though we note that
the second bullet, when AutE (C )  is compact, is contained in Loke’s thesis [Lo].

Theorem 13.1. Let G E   AutE (C )  be the dual pair arising from an embedding E  !  J .  Let
be a unitary character of AutE (C )  .

 If E  !  J  is not one of the 4 embeddings R3  !  J 3 (C) ,  then (())   J2 ((); 1), unless  is
quadratic and non-trivial, in which case we have (  ())  =  J 2 (  (); 1).

 If E  !  J  is one of the 4 embeddings R3  !  J 3 (C) ,  then (())   J2 (; 1), where  2
P ( E ; K J ; ) .  As we run through all 4 embeddings R  !  J 3 (C) ,   runs through the 4
representations in P ( E ; K J ; ) .

The representation () is always irreducible, and can be described as it sits in a degener-ate
principal series representations, along with ((1)). Let I  (s) denote the (normalized)
degenerate principal series for G E  where we induce j det js from P E .  Let I E ( ! ; s )  be the qua-
dratic twist of this series, i.e. we induce ! (det)  j det j . (Recall that !  is the sign character of
R.)  The following result is due to Avner Segal [Se2, Appendix A], but formulated with our
interpretation in terms of theta lifts.

Theorem 13.2. Let E ! J ( )  denote the theta lift of  in the correspondence arising from the
embedding E  !  J .

 For every E ,  we have an exact sequence

0 !  E ! J 3 ( C ) ( )  !  IE (1=2) !  E ! M 3 ( R ) ( ( 1 ) )  !  0:
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 For every E ,  we have an exact sequence

0 !  E ! M 3 ( R ) ( )  !  I E ( ! ; 1=2) !  E ! J 3 ( C ) ( ( 1 ) )  !  0:
Here J 3 ( C )  =  J3;0 (C) or J1;2 (C) is any Jordan algebra with K J  =  C ,  and the sum in both
sequences is over the isomorphism classes of embeddings of E  into J3;0 (C) or J1;2 (C) (recall
that there is one class if E  =  R   C ,  and four if E  =  R3 ).

13.8. Complex case. Assume now that F  =  C.  In this case E  =  C3  is the only possible
case. We have:

Theorem 13.3. Let  =  (1; 2; 3) be a unitary character of (C)3 =C. Let ()  be
the tempered representation of M E  =  GL2 (C3 )det  dened as in the real split case. Then (())
=  J2 (())  if  =  1 and (1)  ()  =  D (1)  is the degenerate principal series for an A2 parabolic
subgroup,.

14. Global Theta L i f t ing

In this section, let E = F  be a cubic eld extension of number elds, so that G E  is a so-called
triality Spin8. We shall consider the global theta correspondence for the dual pair

H C   G E  =  AutE (C )   Spin8  !  G J

associated to a twisted composition algebra C  over F  with dimE C  =  2, corresponding to an
embedding of Jordan algebras E  , !  J ,  for some Freudenthal-Jordan algebra J  of dimension 9
over F .

14.1. Hecke characters of T E ; K .  Recall from x4.6 that H 0  is isomorphic to the 2-dimensional
torus

T E ; K   Ker N K = F  : (ResE

K = F  Gm )=(ResK = F  Gm )  !  (ResE = F  Gm )=Gm     ;
so that

T E ; K ( F )  =  Ker N K = F  : ( E
 K ) = K   !  E = F      :

Before describing the automorphic representation theory of H C  =  AutE (C ),  let us record
some relevant facts about automorphic characters of TE ; K .

Proposition 14.1. ( i )  The torus T E ; K  satisies the weak approximation property. As such,
any two Hecke characters  and 0 of T E ; K  such that v =  0 for almost all v are equal.

( i i )  Let  and 0 be two unitary Hecke characters of T E ; K  such that for almost all v, either
0 =  v or 0 =   1. Then 0 =   or 0 =   1.

Proof. (i) By a result of Voskresenskii [V2], any tori of dimension 2 over F  satises the weak
approximation property.

(ii) Assume rst that K  =  F   F  is split. Then T E ; K  =  (ResE = F  (Gm)=Gm, so that T (F ) =
E =F .  We may thus regard  and 0 as Hecke characters of E .  Consider now the principal series
representations

 : =  (;  1) and 0 : =  (0; 0 1) of PGL 2 (A E ) .
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These are irreducible automorphic representations which are nearly equivalent to each other
under our hypothesis. If these two principal series representations are locally equivalent for
places of E  outside a nite set S , then we have an equality of partial Rankin-Selberg L-
functions:

LS (s;   )  =  LS (s; 0   );

which is more explicitly written as:
S (s)2  LS (s; 2 )  LS (s;  2) =  LS (s; 0 )  LS (0  1)  LS (s; 0 1)  LS (s; 0 1 1):

Now the LHS has a pole at s =  1 and hence so must the RHS. This implies that 0 =   or  1,
as desired.

Assume now that K  is a eld. We shall invoke the base change from F  to K .  We claim
that the norm maps

T E ; K ( K v )   !  TE ; K (F v ) and T E ; K ( A K )   !  T E ; K ( A F  )

are surjective. Since
T E ; K  F  K  =  ( E
 K ) = K ;

this surjectivity claim allows one to reduce to the case of split K  treated above, by composing
and 0 with the norm map.

To  show the surjectivity of the local norm map, we shall treat the most nondegenerate
case where L v  : =  E v
 K v  is a eld; the other cases are easier. Then the norm map

T E ; K ( K v )  =  L v  =K v   !  TE ; K (F v )  =  Ker
 

N L v = E v  : L v  =K v   !  E v  =Fv

is given by
x  !  x=(x) where  2  Aut(Lv =Ev ) =  Aut(Kv =Fv ).

We thus need to show that

fy 2  L v  : N L v = E v  (y) 2  Fv  g =  K v   fz  2  L v  : N L v = E v  (z) =  1g:

For this, we need to observe that if y 2  L v  satises N L v = E v  (y) 2  Fv  , then in fact N L v = E v  (y) 2
N K v = F v  ( K v  ). This in turn follows from the fact that the natural map

F =N K v = F v  ( K )   !  E v  =N L v = E v  ( L v  )

is an isomorphism (using the fact that E v  is an odd degree extension of Fv ).

To  deduce the surjectivity of the adelic norm map from the local ones, it suces to note that
at places v of F  unramied over L ,  the local norm map remains surjective when all the local elds
are replaced by their ring of units.

14.2. Automorphic representations of AutE (C ) .  Recall that one has a short exact se-
quence of algebraic groups

1 !  H C  !  H C  !  2 !  1
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From this, one obtains:

1 !  H C ( F )  !  H C ( F )  !  2 (F )

y                            y                            y

1 !  H C ( A )  !  H C ( A )  !  2 (A):

Because E  is a eld, the torus H C  is anisotropic so that

[HC ]  : =  H C ( F ) n H C ( A ) and [HC ]  : =  H C ( F ) n H C ( A )

are compact. The automorphic representations of H 0  are unitary automorphic characters
which are classied by global class eld theory. We will need to discuss the automorphic
representations of the disconnected algebraic group H C .

Let A ( H 0  )  denote the space of automorphic forms on H 0  . Since H C ( F )  acts naturally on
H C ( A )  by conjugation (preserving H C (F ) ) ,  we have a natural action of H C ( F )  on A ( H C )  by

(  f )(t)  =  f (  1t) for  2  H C ( F ) ,  t 2  H C ( A )  and f  2  A ( H C ) .
Since H 0  is abelian, this action factors through the quotient H C (F ) = H 0  (F )  , !  2 (F ). We
now consider two cases, depending on whether this last injection is surjective or not.

(a) H 0  (F )  =  H C ( F ) .  In this case, C  corresponds to an embedding E  , !  J  with J  a
division algebra. At the nonempty nite set C  of places v where J
F  Fv  is division, we have H C ( F v )  =  H C (Fv ) .

Let  =

vv be a unitary automorphic character of the torus H C ,  so

that  : [HC ]  =  H C ( F ) n H C ( F )   H C ( A )   !  S 1;

and hence C     A ( H C ) .  Consider the induced representation

VC () : =  ind H C (
F

) H C ( A
) =  indH

C

(A) :

Then an element in V () is a smooth function

f  : H C ( F ) n H C ( A )   !  C

such that

f (tg) =  (t)  f (g ) for any t 2  H C ( A )  and g 2  H C (A) .

Hence we have:
VC () , !  A ( H C ) :

As an abstract representation, V ()  is the multiplicity-free direct sum of all irre-
ducible representations of H C ( A )  whose abstract restriction to H 0  (A)  contains .
Indeed, if one considers the restrictions of functions from H C ( A )  to H 0  (A), the sub-
module VC () is characterizted as the subspace of functions whose restrictions are
contained in C     A ( H C ) .

Thus one has the following description of A ( H C ) :

A ( H C )  = VC ();
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v v
0
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v
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which is an orthogonal direct sum with  running over the automorphic characters of
H C .

We note that A ( H  ) is not multiplicity-free as a representation of H  (A). Indeed,
if  and 0 are two distinct automorphic characters of H 0  , then VC () =  VC (0) as
abstract representations if and only if the following two conditions hold:

{  for all v 2= C ,  0 =  1, {  for
all v 2  C ,  v =  v.

By Proposition 14.1(ii), the rst condition implies that 0 =  1 and hence 0 =   1

(since we are assuming that  and 0 are distinct); this then implies by the second
condition that 2 =  1 for all v 2  C .  Thus, if  is an automorphic character of H 0  =

TE ; K ,  with the property that 2 =  1 for all v 2  C ,  but 2 =  1, then VC () =  VC (  1)
as abstract representations, but VC () and VC (  1) are orthogonal as subspaces of
A ( H C ) ;  alternatively, one distinguishes them by their restriction as functions to H  .
Thus, A ( H C )  has multiplicity-at-most 2, but fails to have multiplicity one. What is
interesting, however, is that even if the multiplicity of an irreducible representation
in A ( H C )  is 2, there is a canonical decomposition of the -isotypic submodule of A ( H
) into two irreducible summands. These summands are characterized by their
restriction (as functions) to H 0  belonging to C  or C  1 for a special  as above.

(b) H C (F ) = H 0  (F )  =  2 (F ). Then for every place v, H C (Fv )=H 0  (Fv )  =  2 (Fv ). In this
case, the action of H C ( F ) = H C ( F )  =  2 (F ) on A ( H C )  needs to be taken into account.

As before, let  =
vv be a unitary automorphic character of the torus H 0  . The action of H C (F ) = H 0

(F )  sends  to its inverse  1. Hence, we consider the
equivalence relation on automorphic characters of H 0  given by this action, i.e. modulo
inversion. Denote the equivalence class of  by [].

There are now two subcases to consider:
(i) 2 =  1, so that  is xed by H C ( F )  as an abstract representation and the

equivalence class [] is a singleton. In this case,  is xed by H  (F )  as a function on
H 0  (A)  and C     A ( H 0  )  aords a representation  of H  (F )   H 0  (A)  extending ,
characterized by the requirement that  is trivial on H C ( F ) .  Consider the
induced representation

VC [] : =  indH C (
F
) H C ( A ) :

Then an element in VC [] is a smooth function

f  : H C ( F ) n H C ( A )   !  C

such that

f (tg) =  (t)  f (g ) for any t 2  H C ( A )  and g 2  H C (A) .

Hence we have:

VC [] , !  A ( H C ) :
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As an abstract representation, V [] is the multiplicity-free direct sum of all
irreducible representations of H C ( A )  whose abstract restriction to H C ( F ) H 0  (A)
contains  .

(ii) 2 =  1, so that  is not xed by H  (F )  as an abstract representation and [] =
f ;  1g. In this case, the span of   , for all  2  H C ( F ) ,  is the 2-dimensional
subspace

W[] =  C     C    1  A ( H 0  )
such that

W[] 
 ind H C ( F ) H C ( A )

as H C ( F )   H 0  (A)-module. Consider the induced representation

VC [] =  indH
C

(
F
)
H

0  
(A

)W[] 
 indH

C (A) :

An element of VC [] is thus a function

 : H C ( A )   !  W[] =  C    +  C    1  A ( H C ) :

Setting
f(h) =  (h)(1);

so that f  is the composition of  with evaluation at 1 2  H C (A) ,  we see that the
map  !  f  denes an embedding

VC [] , !  A ( H C ) :
In this way, we shall regard VC [] as a submodule of A ( H C )  henceforth. As an
abstract representation, V [] is the multiplicity-free direct sum of all irreducible
representations of H C ( A )  whose restriction to H C ( A )  contains  and  1.

Now we have:
A ( H C )  =  

M
V C [ ]  

[]

as [] runs over equivalence classes of automorphic characters  of H 0  . The subspace
VC [] is characterized as the subspace of functions whose restriction to H 0  is con-
tained in W[] =  C    +  C    1. We observe that in this case, the representation
A ( H C )  is multiplicity-free.

14.3. Global minimal representation. To  carry out the global theta correspondence, we
need another ingredient: the global minimal representation of G J (A) .  For each place v of F ,  we
have a local minimal representation v of G J ( F v )  which is unramied for almost all v, so that we
may set  =
vv. Using residues of Eisenstein series, it has been shown that there is an (GJ (A)-equivariant)
automorphic realisation

 :  , !  A ( G J ) :  As

before, the group G J ( F )  acts on A ( G J )  via

(  )(g) =  (  1g) for  2  G J ( F )  and g 2  G J (A) .

The embedding  is easily checked to be G J ( F )   GJ (A)-equivariant.
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We now recall the main properties of the global minimal representation we shall use. Recall
the Heisenberg parabolic subgroup P J  =  MJ   N J  of G J  with

VJ  : =  N ab =  F  +  J  +  J  +  F :

Using a xed character of F nA and the natural pairing between N J  and its opposite N J ,
the elements of VJ  parametrizes automorphic characters of N J ( A )  (trivial on N J (F ) ) .  Let
  VJ  be the minimal nonzero MJ -orbit in VJ . For  2  , one has the Fourier expansion

( ) Z J  
(g) =  ()  

J  
(g) + () 

J  ; x
(g ); x 2

where Z J  is the 1-dimensional center of N J .  If MJ;x  denotes the stabilizer of x  2
 in the Levi subgroup MJ , then the Fourier coecient ()   ;        is left-invariant under M der (A)

: =
MJ;x (A) \ M de r (A). On the other hand, when restricted to MJ (A), the constant term ()
is an automorphic form on MJ . One has

() 
J  

2  ! K J  =F  j j 2  j j 3=2  M J  ;

where M     =  0 unless G J  (or equivalently MJ )  is quasi split, in which case M     is the global
minimal representation of MJ .

14.4. Global theta lifts. For any automorphic form f  on H C ,  and  2  , we consider the
associated global theta lift:

Z
(; f )(g ) = (h  )(g)  f (h) dh; with g 2  G E (A) .

[ H C ]

Note that we have written (h  )(g) instead of ()(gh) in the integral because ()  is only dened
as a function of G J (A) .  Observe however that for  2  H C ( F ) ,

(h  )(g) =  (h  )(  1g) =  (h  )(g) for g 2  G E (A) .

In any case, ( ; f )  2  A ( G E ) .  For any irreducible summand   V (), the global theta lift ()  of
is dened as the span of all ( ; f )  with  2   and f  2  , so that

()  A ( G E ) :

14.5. Cuspidal i ty.  We rst show the following analog of the tower property in classical theta
correspondence.

Proposition 14.2. The global theta lift ()  is contained in the space A 2 ( G E )  of square-
integrable automorphic forms of G E .  Moreover, it is cuspidal if and only if the (mini-)theta lift
(via M J  )  of  to M E  is zero.

Proof. To  detect if ()  is square-integrable or cuspidal, we need to compute the constant terms
of a global theta lift ( ; f )  along the two maximal parabolic subgroups P E  =  ME  N E  and QE  =
L E   U E  of G E .  Hence, we rst compute the constant term (; f )  

E \ U E      
along the unipotent

subgroup N E  \  U E . We note that

N E =Z E  =  F   E   E   F   ( N E  \  U E ) =Z E  =  0  E   E   F :
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Z
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N
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Recall that the Heisenberg parabolic subgroup P J  =  MJ   N J  of G J  satises P J  \  G E  =  P E ,
with N E   N J  such that

V E  : =  N E =Z E   VJ  : =  N J =Z E  =  F   J   J   F ;

where the embedding E  , !  J  is such that E ?  =  C .  There is a natural projection map

pr : VJ   !  VE :

which corresponds to the restriction of (automorphic) characters from N J ( A )  to N E (A) .

For

  VJ  the minimal MJ -orbit, let

0 =  f x  2
 : pr (x) =  (; 0; 0; 0) 2  VE g:

Then one has 0 1

(14.3) (; f )  
E \ U E  

(g) =             f (h)  @() N J  
(hg) +  

X  
( ) N J  ; x

(hg )A dh:
C x 2
0

To  proceed further, we need to understand the set

0. Clearly, we have

0 =

1 [

2 where

1 =  f x  2

 : pr (x) =  (0; 0; 0; 0) 2  VE g

and

2 =  f x  2
 : pr (x) =  (t; 0; 0; 0); t =  0g:

By Proposition 8.1, and using the fact that E  is a eld, we see that
 is empty whereas
2 =  f(t; 0; 0; 0) : t 2  F g.

Hence, we see that
Z

(; f )  
E  

(g) = f (h)  () (hg) dh:
[ H C ]

Since

N E  
=  ! K J  =F   j j 2  j j 3=2  M J  ;

with M J  only present when J  is not division, we deduce that the constant term of ()  along N E

vanishes unless  is the trivial representation or if the (mini-)theta lift of  to ME  (via M ) is
nonzero. One may check that if  is trivial, then it does have nonzero (mini-)theta lift to ME , so
that we may subsume the condition that  is trivial into the second condition.

On the other hand, if t is the automorphic character of N J ( A )  corresponding to (t; 0; 0; 0) 2
2 (F ) with t =  0, then H C ( F )  stabilizes t. This implies that in (14.3),

(14.4) ( ) N J  ; t
(hg) =  ()  

J  ; t
(g);

so that the contribution of



2 to (14.3) vanishes if f  is not a constant function. We have thus shown that if the mini-theta
lift of  to ME  vanishes (so that  is nontrivial in particular), then the constant term of ()  along
N E  \  U E  given in (14.3) vanishes, so that ()  is cuspidal.

Conversely, it is clear from (14.3) and the above discussion that if the mini-theta lift of  to
ME  is nonzero, then the constant term of ()  along N E  is nonzero and hence ()  is noncuspidal.
To  summarise, we have shown that ()  is cuspidal if and only if the mini-theta
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lift of  to ME  (via M ) vanishes. It remains to examine the case when () is noncuspidal and
show that ()  is square-integrable nonetheless.

Suppose then that ()  is not cuspidal, so that  has nonzero (mini-)theta lift to ME . For each
parabolic subgroup R  =  P E ,  QE  or B E  =  P E  \ Q E ,  we consider the normalized constant term
of ()  along R .  Since the Levi subgroup of R  is a product of groups of GL-type, the strong
multiplicity one theorem for G L n  implies that each of these normalized constant terms is a
direct sum of a cuspidal component and a noncuspidal component such that the two
components are spectrally disjoint (i.e. the system of spherical Hecke eigenvalues supported by
the two parts are dierent). By the standard square-integrability criterion, we need to show
that the (real parts of the) central characters appearing in the cuspidal component lie in the
interior of the cone spanned by the positive simple roots which occur in the unipotent radical of
R .

For the case R  =  P E ,  the cuspidal component of the normalized constant term is contained
in the mini-theta lift M ()  of  to ME . Since the center of ME  is equal to the center
of MJ , and the central character of N is of the form z !  jzj , this gives the desired
positivity for the cuspidal component of M (). By the results of x9.3 and Proposition 9.2, M ()
 j det j is a summand of a tempered principal series representation of ME . Thus,
the noncuspidal component of M ()
 j det j has normalised constant term consisting of unitary characters. Since
j det j corresponds to the highest root 3 +  2, we have the positivity of cuspidal exponents
along the Borel subgroup P E  \  QE .

Finally, for the constant term along Q , we claim that there are no cuspidal exponents. For
if ( ; f )  has nonzero projection to the space of cusp forms of L E ,  then (; f ) is
in fact cuspidal and so has nonzero Whittaker-Fourier coecients. However, it follows from
(14.4) that such Whittaker-Fourier coecients all vanish, unless f  is a constant function. If f
is constant, then (; f )  has nonzero constant term along B E  (via our computation of the
constant term along P E )  and so (; f )  

E  
cannot be nonzero cuspidal on L E .

Hence, we have shown that (; f )  is square-integrable. This completes the proof of Propo-sition
14.2.

14.6. Nonvanishing and Disjointness. We now consider the question of nonvanishing of
the global theta lifting. We shall do this by computing the generic Fourier coecients of
(; f )  along the unipotent radical N       of the Heisenberg parabolic subgroup P  . These

Fourier coecients are parametrised by generic cubes in V E (F )  =  NE (F )a b .  Recall that the
ME (F )-orbits of generic elements in V E (F )  are parametrised by E-isomorphism classes of
E-twisted composition algebras A. For each such A, we let     A  denote a character of N E ( A )
trivial on N E ( F )  in the corresponding orbit; there is no loss of generality in assuming that

A  corresponds to a reduced cube in VE (F ),  and note that the stabilizer of     A  in ME  is
isomorphic to H A  =  AutE (A).

Recall that if N denotes the unipotent radical of the Heisenberg parabolic subgroup of
G J ,  then there is a natural projection map pr : VJ  =  N ab  !  VE . This projection map
corresponds to the restriction of characters from N J ( A )  to N E (A) .  Let
  VJ  be the
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minimal nonzero MJ -orbit in VJ . Set

A  =  pr 1( A )  \
:

Then Corollary 5.3 says that
A ( F )  is empty unless A  is E-isomorphic to C , in which case,

 (F )  is a principal homogeneous space of H  (F ).  Thus, when A  =  C , we may x an
element ~C 2

C (F ) ,  so that ~C restricts to C  on N E (A) .

Now we have:

Proposition 14.5. For  2   and f  2    A ( H C ) ,  ( ; f )   ; vanishes (as a function on
G E ( A ) )  unless A  =  C ,  in which case

Z
(; f )  

E ;  C  
(g) = (h  )  ~ (g)  f (h) dh:

H C ( A )

Moreover, there exist  and f  such that ( ; f ) N E ;  C  
(1) =  0.

Proof. We have:
Z Z !

(; f )  
E ;  A

(g )  =  

Z
[VE ] 

0  

(n) 
[ H C ]  

(h  ) Z J  
(ng)  f (h) dh dn

= @ A (n) (h  )  ~(ng) dnA  f (h) dh

Z

[H C ]  

0  
[VE ]                        ~2

( F )           
1

= @ (h  )  ~ (g )A  f (h) dh: [ H C ]          ~2
A ( F )

This gives the vanishing of ( ; f ) N E ;  A      
when A   C  since

A ( F )  is empty in that case. When A  =  C  and     C  2
C (F ) ,  then we have an identication H C ( F )       C  =

C (F ) ,  in
which case

(; f )  (g) =
X

(h  ) ~ (g)  f (h) dh

Z
[H C ]  2 H C ( F )

= (h  ) ~ (g)  f (h) dh;
H C ( A )

as desired. This proves the rst statement.

To  show the second statement, we need to understand the function h !  (h  ) N  ;
 
~ (1) as a

function on H C (A) .  For a nonarchimedean place v of F ,  a property of the local minimal
representation  is that

dim Hom 
J  (Fv ) (v ; ~C;v ) =  1:

Moreover, a nonzero element of this 1-dimensional space can be constructed as follows. Recall
that, at a nonarchimedean place v, one has [KP,  Thm. 6.1.1]



1Cc  (
(Fv )) , !  Z E ( F v )  , !  C 1 (
(Fv )):
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Thus elements of v gives rise to functions on the cone
(Fv ). Then the evaluation map at

C  2
(Fv )  denes a nonzero element of HomN ( F  ) (v ; C;v ). For v outside some suciently

large set S  of places of F ,  v is the unramied vector in v, in which case the corresponding
function f0;v on the cone
(Fv ) has the following properties. The function f0;v is supported on the subset

$ n

(Ov );
n0

is constant on each annulus $ n

(Ov ), and takes value 1 on
(Ov ). Indeed, [KP]  gives an explicit formula for the value taken by f0;v on each annulus, but
we won’t need this here.

We need to understand the restriction of f0;v to the subset
C (Fv ).  Since
C
  VJ  is a Zariski closed subset of VJ , we see that for v 2= S  (with S  containing all archimedean
places and enlarged if necessary),

1

@
[  

$ v

(Ov )A \
C (Fv )  =
C (Ov )
(Ov ):

n0

Hence, for v 2= S , the restriction of f0;v to

C (Fv )  =  H C ( F v )   ~C;v is the characteristic function of Hc(Ov ).

By the above discussion, we deduce that for S  suciently large and with F S  : = v 2 S  Fv ,

( ; f ) N E ;  C  
(1) = (h  ) ~ (1)  f (h) dh:

H C ( F S )

We need to show that we can nd some f  and  such that the above integral is nonzero.

To  this end, we start with a xed pair of f  and  such that the integrand in the above
integral is nonzero as a function of h. Now we consider an arbitrary Schwarz function ’  on
N J ( F S )  and replace  by the convolution ’    in the above formula. This gives:

( ’   ; f )  (1) = ’c ( h  1  ~C )  (h  )   ~ (1)  f (h) dh;
H C ( F S )

where ’ Z  is the constant term of ’  along Z   N J  (which is a Schwarz function on V J (F S )  =
N J ( F S ) =Z ( F S ) )  and ’c  is its Fourier transform. Since H C ( F S )   C  =
C ( F S )   V J (F S )  is a Zariski-closed subset, and ’c  can be an arbitrary Schwarz function (as ’
varies), we see that the above integral is nonzero for some choice of ’ .

This completes the proof of the second statement.

Corol lary 14.6. ( i )  If   A ( H  ), then ()  A 2 (G  ) is a nonzero irreducible square-
integrable automorphic representation of G E .  Moreover, ()  =  abs () : =
v (v ), where (v ) denotes the local theta lift of v to G E ( F v )  (which is nonzero irreducible).

( i i )  For an abstract irreducible representation  of H C ( A ) ,  we have



dim HomHC ( ; A 2 (H C ))  =  dim HomGE (
a b s () ; (A(HC )))

where
( A ( H C ) )  =  h(; f ) :  2  J ; f  2  A ( H C ) i   A 2 (G E ) :



0 0

C

E

C

M

C

C

v C

C
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(i i i)  If   A ( H C )  and 0  A (H C 0 )  satisfy ()  =  (0) as submodules of A 2 (G E ) ,  then C  is E-
isomorphic to C  (so that H C  =  HC 0 )  and  =   as subspaces of A ( H C ) .

Proof. (i) This follows from Proposition 14.2 and Proposition 14.5.

(ii) This statement is often called the multiplicity-preservation of theta correspondence
and in fact follows from (i) and the local Howe duality theorem we established in our local
study, which says that:

dim HomH C G E  ( J ;
 abs ())  1

and
dim HomGE (

abs(); abs(0))  dim HomHC (;
0)  1:

In view of (i) and the local Howe duality theorem, the statement here is only interesting when
A ( H C )  is not multiplicity-free. To  prove (ii), we dene a pairing of nite-dimensional vector
spaces:

B : HomH C  ( ; A 2 (H C ))   HomG E  (
a b s () ; (A(HC )))   !  Hom H C G E  ( J

 abs (); C)

by Z
B(f ; )(; v; w) = (; f (v))(g)  (w)(g) dg [ G E ]

for  2  J ,  v 2   and w 2  abs(). The local Howe duality theorem says that the target space is 1-
dimensional (so we may identify it with C).  Now (i) and the local Howe duality theorem
imply that this C-valued pairing is nondegenerate, giving us the desired equality of dimensions
of the two Hom spaces on the left.

(iii) It follows from Proposition 14.5 that for   A ( H  ), ()  supports only one orbit of generic
Fourier coecients along N  , namely the orbit associated to C .  Thus, if ()  =  (0), then we must
have C  =  C0. The equality of  and 0 now follows by (ii).

14.7. Canonical decomposition. To  nish this section, let us examine the case when H 0

(F )  =  H C ( F ) :  this is the case when A ( H C )  has multiplicity 2. In this case, we have an
orthogonal decomposition

A ( H C )  = VC ()

as  runs over automorphic characters of H 0      =  T E ; K  and VC () is characterised as the
subspace of functions whose restriction to H 0  is contained in C .  Each VC () is multiplicity-

free and the occurrence of multiplicity 2 is due to isomorphisms VC () =  VC (  1) for those
satisfying

 2 =  1 but
 2 =  1 for the nitely many places v where H C ( F v )  =  H 0  (Fv ).

For  satisfying these two conditions, and  an abstract irreducible representation of H  (A)
which occurs in VC () and VC (  1) and write  for the corresponding submodule   VC (). Then
the -isotypic summand of A ( H C )  has the canonical decomposition:

A ( H C ) ( )  =         1 :



N

Z

N  ;J        C

C C C

~

E        C C C

0

N N

N

J

1

N

J

N

N
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On considering the global theta lifting, Corollary 14.6 gives a direct sum

()  (      1 )  A 2 ( G E )

of two irreducible summands. This gives a canonical decomposition of the abs()-isotypic
summand (A(HC ))[ab s ()].  One may ask how decomposition can be characterized directly on the
side of G E ,  i.e. without reference to H C .  We shall address this question in the remainder
of this section.

We have seen in Proposition 14.5 the Fourier coecient formula

(; f )  
E ;  C  

(g) = (h  )  ~ (g)  f (h) dh:
H C ( A )

for  2  J  and f  2  , where we recall that ~C 2

 C  . Let S  C  =  StabME (

C )

be the stabilizer of C  in ME . Then we have an action of S  H C  on
for which

 is a torsor for each of the two factors. This gives an isomorphism

 : S  C  =  H C ;

characterized by
(t)  C  =  t 1  ~C :

Now we may regard ( ; f )N  ; as a function on S 0     (F )nS 0     (A). The following proposition,
which strengthens Proposition 14.5 and is the global analog of (  12.6), describes this function
explicitly.

Proposition 14.7. For t 2  S 0
C  

(A)  =  H C ( A )  and f  2  , we have

(; f )  
E ;  C  

(t) =  ((t)) 1  ( ; f )  
E ;  C  

(1):

In other words,
(; f )  

E :  C  
  1 2  C    1  A ( H C ) :

Proof. Write  =  1
1  2  J ; 1
1 .  With 1  xed, we consider the Fourier coecient map

J       !  C
given by

1  !  ( 1

 1 )  
J  ;

 
~C  

(1):

As we have noted in the proof of Proposition 14.5, there is a PJ (A1 )-equivariant map

q : 1   !  C 1 (
A 1 )

so that
() 

J  ;
 
~C  

(1) =  ( 1 )   q ( 1 ) (  ~C ):

for some ( 1 )  2  C.  Then for t 2  S 0
C  

( A 1 ) ,  we have:

() 
J  ;

 
~C  

(t) =  ( 1 )   q ( 1 ) ( t  1  ~C ) =  ( 1 )   q ( 1 ) ( ( t )   ~C ) =  ((t) 1  ) N
J  ;

 
~C  

(1):



N  ;E        C N  ;J        C

N  ;J        C

N  ;J        C

N  ;J        C

C

C
~

~

~
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Hence,
Z

(; f )  (t) = (h  ) ~ (t)  f (h) dh
ZH C ( A )

= ((t) 1h  )  ~ (1)  f (h) dh
ZH C ( A )

= (h  ) ~ (1)  f ((t)h) dh
H C ( A )            Z

=  ((t)) 1 (h  )  ~ (1)  f (h) dh:
H C ( A )

This proves the desired identity for t 2  S 0     ( A 1 ) .  However, both sides of the desired identity
are automorphic functions of S 0

C  
=  H 0  =  TE ; K .  The desired identity then follows by the

weak approximation theorem (Proposition 14.1(i)) for TE ; K .

What the lemma says is that the consideration of the
(N E ;  C )   S 0

C  
-equivariant map

C -Fourier coecient gives an

(A(HC ))[ab s ()]   !  C     C    1  A ( S 0
C  

)
The canonical decomposition of the codomain is given by the irreducible summands whose
image is contained in C    or C    1.

15. A-parameters and Twisted Composition Algebras

In the next two sections, we relate the square-integrable automorphic representations con-
structed in the previous section to Arthur’s conjecture for G E .  We begin by explicating the
connections between twisted composition algebras and the relevant class of A-parameters in
this section.

15.1. A-parameters. We shall consider A-parameters

: WF  SL 2 (C)   !  PGSO8 (C) o  S3:

such that the centralizer of (SL 2 (C))  is isomorphic to the group

S  o  (S2  S3 ) =  ( C   C   C)1  o  (S2  S3 ): We x the

isomorphism

Z P G S O 8 o S 3 (  (SL2 (C)))  =  S  o  (S2  S3 )

throughout. Associated to such a is thus a map

 =  E   K  : WF  !  S2  S3;

i.e. a pair ( E ; K )  consisting of an etale cubic F -algebra E  and an etale quadratic algebra K ;
we shall say that is of type ( E ; K ) .  With the etale cubic algebra E  xed, is an
A-parameter for the group G E .

If we let WF act on S  through the map , then S  o  WF is the L-group of the torus
T E ; K  =  f x  2  ( E

F  K )  : N E

K = E ( x )  2  F g=K :



~_

~

v

2
v

~
E ;

~_

2

v
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Hence, to give an A-parameter of type ( E ; K )  is equivalent to giving an L-parameter

: WF  !  L T E ; K   S  o  (S2  S3 )

modulo conjugacy by S  o  S2, or equivalently an automorphic character of the torus T E ; K  up
to inverse, i.e. a pair of automorphic characters [] =  f ;  1g.

To  summarize, the A-parameters we are considering are determined by the triple (E ; K; []).
We had already highlighted and discussed these A-parameters in x3.5.

15.2. Component groups. An important structure associated to an A-parameter        =
E ;K ; [ ]  as above is its global and local component groups. The global component group

is
S  =  0 (Z P G S O 8 (  ))  =  0 (ZS o S 2 ( ) ) :

On the other hand, for each place v of F ,  one has the restriction v of to WF      SL 2 (C)
(the associated local A-parameter), and one has likewise the local component group

S  v  =  0 (Z P G S O 8 (  v )) =  0 (ZS o S 2 (v )):

There is a natural diagonal map

 : S  !  
Y

S  v  = :  S  ;A:
v

The following lemma gives a description of these component groups.

Lemma 15.1. Fix an A-parameter = E ;K ; [ ]  as above, with associated . For each place v
of F ,  one has an exact sequence

1 !  Z S (v )  !  Z S o S 2 ( v )  !  S2

and this sequence is exact at the right if and only if the character v associated to v satises  =
1. Moreover, the abelian group Z S (v )  depends only on (E v ; K v )  (i.e. is independent of [v ]) and
is given by

Z S (v )  =  S W F v  =  (T _ 
K ) W F v  :

where the action of WF v  on S  =  T E ; K  is via the map  : WF v   !  S2  S3 . Hence, one has 1

!  0 (S W F v  )  !  S  v  =  0 (ZS o S 2 (v ) )  !  S2

with exactness on the right if and only if v =  1, in which case S

v  =  0 (S W
Fv

 )  o  S2:

The analogous result holds for the global parameter . In x3.6, we had considered an
example of a family of such ’s and tabulated the corresponding groups S . To  simplify
notations, we will henceforth set

S 0 : =  0 (S W
F ) and S 0

v  : =  0 (S W
Fv

 ):



~

~

~~
??

?? ??

~

~

~

~

0
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15.3. From A-parameters to twisted composition algebras. As we observed in x4.6,
the group T E ; K  is (canonically up to inverse) isomorphic to the identity component of the au-
tomorphism group of any E-twisted composition algebra C  with dimE (C ) =  2 and quadratic
invariant K C  such that [ K E ]   [ K C ]   [K ]  =  1. This motivates the following denition:
Denit ion 15.2. ( i )  Let E ; K  denote the set of E-isomorphism classes of rank 2 E-twisted
composition algebras with quadratic invariant K C  =  [ K E ]   [K ] .

( i i )  Let E ; K  denote the set of E
F  KC -isomorphism classes of rank 2 E-twisted compo-sition algebras with quadratic
invariant [ K C ]  =  [ K E ]   [K ] .

Then any C  2  E ; K  corresponds under the Springer decomposition to an algebra embedding E
, !  J  for some 9-dimensional Freudenthal-Jordan algebra J  with K J  =  K .

The following long lemma summarizes the discussion in x4, especially x4.3, x4.5, x4.6 and
x4.8 (see also [GS2, x11.5 and x11.6]).

Lemma 15.3. ( i )  There is a natural commutative diagram

H 1 (F ; TE ; K ) E ; K

y y

H 1 (F ; TE ; K )=S2 E ; K

fisomorphism classes of triples (B ; ; )g

y

fequivalence classes of  : E  , !  J g
where the horizontal arrows are natural bijections (and hence written as equal signs). More-
over,

 in the rst row, for the triple (B ; ; ),
{  B  is a central simple K-algebra of degree 3;
{   is an involution of second kind on B  (relative to K = F )
{   : E   !  B  is a Jordan algebra embedding.

Two such triples (B1; 1; 1) and (B2; 2; 2) are equivalent if there is a K-algebra
isomorphism f  : B 1  =  B 2  such that 2  f  =  f   1 and f   1 =  2.

 the group S2 acts on H 1 (F ; TE ; K )  by inverting; this action is described in terms of
the other two sets in the row by

C  !  C

K C ;  K C on E ; K

where  is the nontrivial element in Aut(K C =F ) ,  and

(B ; ; ) !  (B op; ; ) on the last set.

 in the second row, the second bijection is via the Springer decomposition, so  : E  , !  J
refers to an embedding of Jordan algebras;

 the rst two vertical arrows are the natural ones whereas the last vertical arrow is the
forgetful map given by

(B ; ; ) !  :

( i i )  For any C  2  E ; K ,  its preimage in E ; K  is an S2-orbit and thus has 1 or 2 elements.
Moreover, one has:

Fiber over C  has 2 elements ( )  H C ( F )  =  H C ( F ) :



~

0 ~

~

~

0
C

~
0      0

0
C

~
~

~ ~

~
v v v v C

~ ~

v v

+  +

+

op~
0

~

v
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Thus, the restriction of the rst vertical arrow gives a bijection from H 1 (F ; TE ;K )[2] onto its
image.

(i i i)  If we pick any triple (B ; ; ) in the preimage of C ,  we obtain an isomorphism of
algebraic tori over F :

B ;  : H C   !  TE ; K :

Hence, we have the following canonical bijection which gives another interpretation of E ; K :

E ; K !  fequivalence classes of (C; i)g

where
 C  is an E-twisted composition algebra with quadratic invariant K C  =  [ K E ]   [ K ]  and

automorphism group H C ;
 i  : H  !  T E ; K  is an isomorphism of F -tori, arising in the manner above;
 two pairs (C ; i )  and ( C  ; i )  are equivalent if and only if there is an isomorphism j

: C   !  C0 of E-twisted composition algebras, inducing an isomorphism Ad( j )  : H C
!  H 0  

0, so that i0  Ad( j )  =  i .

15.4. Lo cal  elds. In particular, the above results apply to the case where F  is a number eld,
as well as the local completions Fv . In [GS2, x12], we have examined the case of a local eld Fv  as
an explicit example. Summarizing the results there, we note:

Lemma 15.4. Assume that Fv  is a local eld. We have two cases:
(i) If (E v ; K v )  =  (eld, split), then H 1 (Fv ; TE v ; K v  )  is an elementary abelian 2-group and

the action of S2 on H 1 (Fv ; TE v ; K v  )  is trivial, so that

E v ; K v !  E v ; K v !  H 1 (Fv ; TE v ; K v  ):

Hence, for any C  2  E  ; K  , its ber in E  ; K      has 1 element and H C ( F v )  =  H 0  ( F v ) o
Z=2Z.

(ii) If E v  is a eld and K v  is split (so that Fv  is nonarchimedean), one has isomorphisms

E v ; K v  =  H 1 (Fv ; TE v ; K v  )  =  Ker(H 2 (Fv ; Gm ) !  H 2 (Ev ; Gm )) =  Z=3Z

via
(B ; ; ) !  inv (B ) (the invariant of B )

and the action of S2 on Z=3Z is by inverting. Hence E  ; K       has 2 elements, corre-
sponding to

Cv =  (E v  , !  M3 (Fv )) and Cv =  (E v  , !  Dv  )

where Dv  denotes the Jordan algebra attached to a cubic division algebra D v  over Fv .
The preimage of Cv      in E v ; K v  has two elements (associated to D v  and D v  )  and in this
case, H C

v  
(Fv )  =  H

C v  
(Fv ). However, the choice of Dv  gives an isomorphism

D v  : H C
v      

 !  T E v ; K v  ;

with D o p (  )  =  D v  (  )  1.



~

~ ~

~ ~

!

0 ~
? ?
y y

!

0 :

~ ~loc ~  invv v

+
v

#loc (C) =

~

+
v

#loc (C) =

(

~
0~ ~

~ ~
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Hence, we have:
H 1 (Fv ; TE v ; K v  )[3] =  1 or Z=3Z

and H 1 (Fv ; TE v ; K v  )=H 1 (Fv ; TE v ; K v  )[3] is an elementary abelian 2-group.

15.5. Local-global principles. When F  is a number eld, there is a commutative diagram
of localisation maps

loc Q
E ; K v E v ; K v

?                               ?

loc Q
E ; K v E v ; K v

It will be necessary to explicate the image of loc and to determine the size of its bers.

Lemma 15.5. (1) Assume that K  =  F   F  is split.

(i) One has a short exact sequence of abelian groups

0 !  E ; K  !  
L

v  E ; v ; K v      
 !  Z=3Z !  0

(ii) Let C =  fCv g be a collection of local twisted composition algebras, with Cv  =  (E v  , !  B
), where B v  is a central simple algebra of degree 3 over Fv  which is split for almost all v,
and let SC denote the set of places where B v  is a cubic division algebra. Then

we have:
(

 1 1 if SC is empty;
2 # S C  +  2  (  1 ) # S C       =6; if SC is nonempty.

In particular, C lies in the image of loc if and only if # S C  =  1.

(2) Assume that K  is a eld.

(i) The map loc is bijective and the map loc is surjective.
(ii) Given a collection of local twisted composition algebras C =  fCv g, let SC denote the

nite set of places of F  where E v  is a eld, K v  is split and Cv  =  (E v  , !  D  ) with Dv  a
division algebra of degree 3 over Fv . Then we have:

 1 1; if SC is empty;
2 # S C  1; if SC is nonempty.

In both cases, the restriction of loc gives an isomorphism

H 1 (F; TE ;K )[2] =  
Y

v
H 1 (F v ; TE ; K ) [2 ] :

Proof. (1i) Recalling that

E ; K  =  H 1 (F ; TE ; K )  =  Ker(H 2 (F ; Gm )  !  H 2 (E ; Gm ));

the short exact sequence in (1i) is a consequence of global class eld theory.



~ ~

~

~

3
M

3

~

~
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(1ii) Given a set S  of places of F ,  there are

2 # S  +  2  (  1 ) # S

3

central simple F -algebras of degree 3 which are ramied precisely at S ; this is an interesting
exercise which we leave to the reader. This number is thus the cardinality of the ber of loc
over a collection C with SC =  S . The action of S2 on E ; K  preserves this ber and its action
there is free, unless S  is empty (in which case the ber is a singleton set and S2 acts trivially).
This proves (1ii).

(2i) The map loc is injective by the Hasse principle for 2-dimensional tori, proved by
Voskresenskii [V1]. To  show the surjectivity, we make use of the moduli interpretation of E ; K
as the set of tuples (B ; ; ) provided by Lemma 15.3. One has the local-global principle for odd
degree division algebras equipped with involutions of second kind, which says that any
collection f(Bv ; v )g of local pairs comes from a unique global pair (B ; ). Equivalently, the
natural map

H 1 (F ; PU K )   ! H 1 (Fv ; PU K v
 )

v

is an isomorphism. In addition, for a xed (B ; )  and a collection of local embeddings

v : (E v

 Kv ; v )  !  (Bv ; v ); with 1 =  v 2  Aut(Kv =Fv ),

a local-global principle of Prasad-Rapinchuk [PR] shows that there exists

 : ( E
 K ; )   !  (B ; );

which localizes to v for all v. This shows the surjectivity of loc.

The surjectivity of loc follows by that of loc and the surjectivity of the two vertical arrows.

(2ii) Given a nite set S  of nite places of F  which split over K ,  there are 2 # S  pairs (B ; )  of
central simple K-algebras with an involution  of the second kind, with B  ramied precisely at
places of K  lying over S . The S2 action on these is free unless S  is empty (in which case the
action is trivial). This proves (ii).

In particular, the map loc is not injective: this is the failure of the Hasse principle for
twisted composition algebras which is ultimately responsible for the high multiplicities in the
automorphic discrete spectrum of G E .

15.6. Lo cal  Tate  dualities. The connection between our A-parameters and twisted com-
position algebras is provided by the local and global Tate duality theorems. We rst note the
local Tate-Nakayama duality theorem (see [K1, x2] and [Mi, Cor. 2.4]).

Lemma 15.6. Let T be a torus over a local eld Fv  with character group X (T )  =  Hom(T; Gm).
Then one has a commutative diagram:



x?

x?

x? x?

x?

x?

b f

2

2

~

v

E

E E 8
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H 1 (Fv ; T )
!

i n j : ?

Irr(H 1 (Fv ; X (T )))

? i n j :

H 1(Fv ; T )[2]

s u r j :? f

!  Irr(H 1 (Fv ; X (T ))=2H 1 (Fv ; X (T )))

?sur j :

H 1(Fv ; T [2])

!

in j :?b

Irr(H 1 (Fv ; X (T )=2X (T )))

? i n j :

T (Fv )=T (Fv )2 ! Irr(H 2 (Fv ; X (T ))[2]);

whose horizontal arrows are isomorphisms. Here, in the left column, the maps f  and b form
a short exact sequence

1 !  T (Fv )=T (Fv )2 !  H 1(Fv ; T [2]) !  H 1(Fv ; ; T )[2] !  1

arising from the Kummer sequence

1 !  T [2] !  T !  T !  1;

and the corresponding terms in the right column arises from the dual short exact sequence

1 !  X (T )  !  X (T )  !  X (T )=2X (T )  !  1:

We apply the above to our particular situation at hand. F ix  an A-parameter = E ;K ; [ ]
as above and let T =  T E ; K  for ease of notation. Then for each place v, we have the following
canonical isomorphism [K2, x1]:

H 1 (Fv ; X (T ))  =  0 ((T _ )W F v  )  =  S 0
v  ;

where T _ is the complex dual torus of T . Hence, by Lemma 15.4, S 0 [3] =  1 or 3. Let us
set

S 0
v  =  S 0

v  =S 0
v [3] and S  v  =  S  v  =S v  [3]:

These are elementary abelian 2-groups, and we have

H 1 (Fv ; X (T ))=2H 1 (Fv ; X (T ))  =  S 0
v  :

Further,

T [2] =  Z E ; and H 1 (Fv ; X (T )=2X (T ))  =  H 1 (F v ; Z (G _  sc));

where Z ( G _  sc ) is the center of G _  sc =  Spin (C).  Replacing these terms, the diagram in
Lemma 15.6 now becomes:



x?
x?

x? x?

Ex?
x?

2

~

2

_ _

_

??
S
?

E
p

v v

E??

v

E

v v

E
sc

v

E
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H 1 (Fv ; T )

i n j : ?

H 1(Fv ; T )[2]

(15.7)  s u r j :? f

H 1 (F v ; Z E )

in j :?b

T (Fv )=T (Fv )2

Irr(S 0
v  
)

? i n j :

Irr(S 0
v  
)

?sur j :

Irr(H 1 (Fv ; Z (G_  sc )))

? i n j :

Irr(H 2 (Fv ; X (T ))[2]);

Now, if v =  1, then S  v  =  S 0
v  

and the rst row of (15.7) already gives a bijection

Irr(S v  ) !  H 1 (Fv ; TE v ; K v  ):

Assume now that v =  1. In this case, S  v      =  S 0
v  

o  S2 and we shall try to understand
Irr(S v  ), or rather the subset Irr(S v  ), in terms of Lemma 15.6 and (15.7).

To  bring the component group S  v  into the picture, consider the projection

p : G E
s c  =  Spin8 (C)  !  G E  =  PGSO8 (C)

Taking the preimage of S  o  S2  PGSO8 (C), we obtain the following commutative diagram of
short exact sequences of WF v  -modules:

1 !  Z (G E
s c )  ! p 1 (S )           !

?
          !

1                                   y                                 y

1 !  Z ( G _  sc ) !  p 1 (S o  S2 ) !  S  o  S2 !  1

where the action of WF     is by conjugation via the map v : WF      !  S  o ( S 2  S3 ) associated to
v. The coboundary map in the long exact sequence then gives :

S 0
v      

!  H 1 (F v ; Z (G _

sc )) y

S  v      !  H 1 (F v ; Z (G _  sc ))

Because the target of the map v is an elementary abelian 2-group (since H 1 (F v ; Z E )  is so), the
map v factors through the quotient S of S . Moreover, v is injective on the index 2
subgroup S 0

v  
; indeed, the map v : S 0 v

 
 !  H 1 (F v ; Z (G _      

 ))  is dual to the surjective map in
the right column of (15.7). Hence Ker(v )  S       is either trivial or has order 2 and we would like
to determine precisely what it is.

Together with (15.7), the above gives rise to a group homomorphism

(15.8) v : H 1 (F v ; Z E )  =  Irr(H 1 (Fv ; Z (G_  sc )))  !  Irr(S v  )   Irr(S v  ):
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Thus, the diagram (15.7) can now be enhanced to:

H 1 (Fv ; T )

i n j : ?

H 1(Fv ; T )[2]

(15.9) su rj:? f

Irr(S 0
v  
)

? i n j :

Irr(S 0
v  
)

?sur j :

Irr(S 0
v  
)

?sur j :

H 1 (F v ; Z E )

in j :?b

Irr(H 1 (Fv ; Z (G_  sc ))) !  Irr(S v  )

? i n j :

T (Fv )=T (Fv )2 Irr(H 2 (Fv ; X (T ))[2]) ;

What is the kernel of ? Consider the fundamental short exact sequence in the left column of
(15.9):

(15.10) 1 !  T (Fv )=T (Fv )2 !  H 1 (F v ; Z E )  !  H 1(Fv ; T )[2] !  1:
We had rst encountered this sequence in (4.19). Now v is a character of the rst term in the
short exact sequence. Pushing out this sequence by v, one obtains:

(15.11) 1 !  2 !  H 1 (Fv ; ZE )=b(Ker(v )) !  H 1(Fv ; T )[2] !

1 when v =  1. Now we have:

Proposition 15.12. Fix a local A-parameter v = E v ;K v ; [ v ] .

(i) There is a natural bijection

Irr S 0
v !  H 1 (Fv ; TE ; K ):

(ii) Assume that v =  1, but v =  1. The natural map

v : S  v   !  H 1 (F v ; Z (G _  sc ))
is injective and the dual map  in (15.8) is surjective with kernel b(Ker(v )), so that it
induces an isomorphism

H 1 (Fv ; ZE )=b(Ker(v )) =  Irr(S v  ):

Moreover, one has a commutative diagram of short exact sequence:

1 !  2 !  H 1 (Fv ; ZE )=b(Ker(v )) !  H 1 (Fv ; TE ;K )[2] !  1

v y

1 !  2 ! Irr(S v  )  rest Irr(S 0
v  
)           !

1; where the third vertical arrow is that given by (i).

(iii) If v =  1, then Ker(v ) =  hs0i has order 2 and hence one has a canonical element s0
2  S  v  n S  

v  
. In this case, v induces an injection

v : H 1 (Fv ; ZE )=b(TE ; K (Fv ))  =  H 1 (Fv ; TE ;K )[2] =  Irr(S 0
v  )   !  Irr(S v  )
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which is a section to the restriction map Irr(S v  )  !  Irr(S 0
v 
)  and whose image consists

of those characters of S  v  which are trivial on s0.

15.7. Global Tate  duality.  We now consider the global analog of the above discussion. We
shall x  a global A-parameter = E ;K ; [ ]  with global component group S containing
S 0 =  0 (S W F  )  of index  2. Because E  is a eld, we have

(
0  3; if K  =  F   F ;  1;

if K  is a eld.

So S  [3] =  S 0 [3] =  S 0 =  1 or 3, and as in the local case, we set

S  =  S  =S [3]

which is an elementary abelian 2-group.
Our discussion of local Tate duality allows us to reformulate the results of Lemma 15.5 in

terms of characters of S 0 :

Lemma 15.13. Writing T =  T E ; K  for ease of notation, we have the short exact sequence:

1 !  H 1 (F ; T ) !  
Q

v  H 1 (Fv ; T ) !  Irr(0 (S WF  ))  !  1:

 E ; K

Irr(S 0
;A)                           Irr(S 0 )

In particular,

H 1(F; T )[2] =  

Y

0
H 1 (Fv ; T )[2]  =  Irr(S 0

;A ):
v

After this recollection, we consider the following commutative diagram of short exact
sequences.

1 !  T (A)=T (A)2 !  
Q

v  H 1 (F v ; Z E )  !  
Q

v  H 1(Fv ; T )[2] !

1 ?                                        s?

1 !  T (F )=T (F )2 ! H 1 ( F ; Z E )           ! H 1(F; T )[2]           !  1

This diagram gives rise to the short exact sequence:

1 !  T (F )nT (A)=T (A)2 !  b(T (F ))n
Q

v H 1 (F v ; Z E )  !  H 1 (F; T )[2] !  1:

This is the global analog of the fundamental short exact sequence (15.10) in the local setting.
Moreover, it is equipped with a canonical section: the map s descends to give a section to f

s : H 1 (F; T )[2]  !  b (T (F ) ) n
Y

v
H 1 (F v ; Z E ) :
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Now suppose we have a global A-parameter = E ;K ; [ ]  as above. We shall assume that 2

=  1 but  =  1, so that  is a quadratic character of T (F )nT (A)=T (A)2 . Pushing out the last short
exact sequence by , we get a short exact sequence

(15.14) 1 !  2 !  b(Ker())n
Q

v 
H 1 (F v ; Z E )  !  H 1 (F; T )[2] !

1: Moreover, the above short exact sequence is equipped with a section s of f .

We can also arrive at the above short exact sequence by using our local discussion in the
previous subsection. We have:

1 !  v2 !  
Q

v  bv (Ker(v ))nH 1 (Fv ; ZE ) !  H 1 (F; T )[2] !  1:

Pushing this out by the sum map v2 !  2 and denoting its kernel by (v 2)1, we obtain 1 !  2

! v bv (Ker(v ))nH 1 (Fv ; ZE ) =(v 2)1 !  H 1 (F; T )[2] !  1;

which is the exact sequence in (15.14).

To  reformulate the above discussion in the language of characters of component groups,
let us introduce the following notions.

Denit ion 15.15. Fix a global A-parameter = E ;K ; [ ]  with 2 =  1.

( i )  For each place v, the sign character of S  v  is the nontrivial character v of S  v  =S 0
v  
.

( i i )  For any nite subset  of places of F ,  we set

 =  
Y  

v  
Y  

1v v 2

v2=

and call  a global sign character of S  ;A . We say that  is automorphic if it is trivial on S  .
This holds if and only if jj is even. The set of automorphic sign characters is a subgroup of
Irr(S ;A ).

( i i i)  Set
[Irr(S ;A)] =  Irr(S ;A)=fautomorphic sign charactersg:

Summarizing the above discussion and applying global Poitou-Tate duality [Mi, Thm.
4.10], we obtain:

Proposition 15.16. Fix a global A-parameter = E ;K ; [ ]  as above with 2 =  1. ( i )

If  =  1, one has the following commutative diagram of short exact sequences:

1 !  2 !  b(Ker())n 
?  

H 1 (F v ; Z E )  !  H 1 (F; T )[2] !

1                                           y =      v

1 !  2 ! [Irr(S ;A)]           ! Irr(S 0
;A )           !

1 yr est

Irr(S )
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v
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v
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which are equipped with a canonical section s for f  given by the image of H 1 (F ; Z E ) .
Finally,

Ker(rest  )  =  Im(s) =  the image of H 1 (F ; Z E ) :
Equivalently,

Ker(rest) =  Im(  s):

( i i )  If  =  1, the map  =  
Q

v  
 descends to give a section

 : H 1 (F; T )[2]  !  Irr(S ;A )  !  [Irr(S ;A)]
Then

Ker(rest) =  Im()
where rest : [Irr(S ;A)]  !  Irr(S ).

It is interesting to observe the following subtlety. When  =  1 in the above lemma. it is of
course possible that v =  1 for some places v. Let  be the set of places where v =  1. Then
for places v 2  , recall by Proposition 15.12(iii) that the map

v : H 1 (Fv ; ZE )=b(Ker(v )) =  H 1(Fv ; T )[2]  !  Irr(S v  )

is only injective but not surjective: its image is a subgroup of index 2. Hence, we only have
an injection

Y
 : 

Y
H 1 (F v ; Z E )= b v (K er ( v ) )  , !  Irr(S ;A):

v v

However, the composite of this injection with the projection to [Irr(S ;A)] is surjective. This
amounts to seeing that given any  2  Irr(S ;A), one can twist  by an automorphic sign
character to ensure that at all places v 2  , v belongs to the image of v.

16. A-packets and Mult ip l i c i ty  Formula

After this long preparation, we are nally ready to dene local and global Arthur packets and
establish the Arthur multiplicity formula for the A-parameters = E ;K ; [ ]  considered
above.

16.1. Near equivalence classes and Ar thur ’s  conjectures. A  global A-parameter      =
E ;K ; [ ]  as above (with E  xed) gives rise to a near equivalence class of representations of

G E (A) .  Namely, for almost all places, v is unramied and
1=2

v Frobv;
q 1=2 2  PGSO8 (C) o E  WF

gives a semisimple conjugacy class in PGSO8 (C) Frobv , which in turns determines an unram-ied
representation of G E (Fv ) .  We denote the associated near equivalence class in A 2 ( G E )  by A2;
(G E ) .

To  a rst approximation, Arthur’s conjectures describe the structure of this submodule A2;
(G E ) .  Though we have already discussed these conjectures in x3.3, we highlight the two key
points here for the convenience of the reader:
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 (Local) One expects to have a local A-packet , which is a nite multi-set over
Irr(GE (Fv ))  equipped with a map

 v   !  Irr(S v  ):

We may thus view as a nite length representation of S  G E (Fv ) :

v  =
M

v
 v  :

v 2 Irr (S  v  )

 (Global) One has:

A2; ( G E )  =
M

dim HomS (  ; C)
2IrrS  ; A

where
 =

vv 2  Irr(S ;A ) =  
Y 0

I r r ( S  v  )
and  : =

v v : v

We shall see that the square-integrable automorphic representations we have constructed by
theta lifting in x14 verify the above conjectures of Arthur.

16.2. Theta lifts and near equivalence class. Given a global A-parameter = E ;K;[] ,
we have the pair f ;  1g of automorphic characters of TE ; K .  For any C  2  E ; K ,  we have noted in
x4.6 that there is a pair of isomorphisms

(16.1) C ; C
1  : H C  =  T E ; K

of algebraic tori over F  (associated to the two choices of (B ; ; ) with C  corresponding to E
, !  B  ). Pulling back  and  1 via  , we obtain a pair of automorphic characters 1  of H 0  =
AutE (C )0 . Set

VC []  A ( H C )
to be the submodule spanned by all irreducible summands whose restriction to H 0  contains
C  or  1  C ;  this submodule is thus independent of the isomorphism C . In earlier sections,
we have studied the theta lifting from A ( H C )  to A 2 (G E ) .  From our local results, one sees
that the theta lift of the submodule VC [] is contained in the near equivalence class A2; (G E ) .
More precisely, Corollary 14.6 gives

Proposition 16.2. Given = E ;K; [ ] ,

V [ ] : =
M

(VC [])  A2; (G E ) :
C 2 E ; K

Moreover, if VC ([]) =  mC ()  , then

(VC []) =  
M

m C ( )   abs():
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16.3. Lo cal  A-packets.  Our goal in the remainder of this section is to show that the sub-
module V [ ] in the above proposition can be described in the form dictated by Arthur’s
conjectures. Let us rst collect together all the local components of the constituents of V
( E ;K; [] ).

Denit ion 16.3. Given = E ;K; [ ] ,  set

E v ; K v ; [ v ]  =  f(Cv ; v ) 2  E v ; K v   Irr(HC v  (Fv )) : v jH 0
v  

( F v )   v  C v  or v 
1  C v  g

and
 v  =  f C v  (v ) : (Cv ; v ) 2  E v ;K v ; [ v ] g  Irr(GE v  (Fv )):

We have shown in Theorems 12.1, 13.1, 13.2 and 13.3 that for (Cv ; v ) 2  E  ; K  ;[ ], the theta
lift C  (v ) is nonzero irreducible. Moreover, is a set (rather than a multiset). It
is clear that the set contains all possible local component at v of the constituents of V (
E ;K; [] ); this will be our denition of the local A-packet associated to v. Observe that,
by denition, there is a natural bijection

 v !  E v ;K v ; [ v ] :

16.4. T h e  bijection j  v  . Our next task is to construct a natural bijection

v   !  Irr(S v  )

or equivalently a bijection
j  v  : Irr(S v  ) !  E v ;K v ; [ v ] ;

which then induces the deisred bijection with . To  do this, we shall exploit Lemma 15.1,
Lemma 15.4, Proposition 15.12 as well as Proposition 4.20.

Let us begin with some general observations:

(a) By restriction, one obtains (by Lemma 15.1 and Proposition 15.12(i)) a natural map

Irr(S v  )   !  (Irr(S 0
v  ))=S2 =  H 1 (Fv ; TE ;K )=S2 =  E v ; K v  :

Hence, each v 2  Irr(S v  )  gives rise to a C v  2  E v ; K v  .

(b) Suppose that v =  1 but v =  1. Then by Proposition 15.12(ii), we have:

Irr(S v  ) H 1 (Fv ; ZE )=b(Ker(v )):

y y fv

Irr(S 0
v  
) H 1 (Fv ; TE v ; K v  )[2]

For any given [Cv ] 2  H 1 (Fv ; TE v ; K v  )[2], write

IrrC v  ( S  v  ) !  f v  ([Cv ]):

These are sets of size 2.
Now Proposition 4.20 gives a natural isomorphism of TE  ; K  (Fv )=TE ; K  (Fv)2-

torsors

gC v  : f  1 ([Cv ])  !  ( H C v  (Fv )  r  H 0
v  (Fv ))=TE v ; K v  (Fv )2 ;
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which induces a bijection

gCv ;v  : f  1 ([Cv ])=b(Ker(v ))  !  ( H C v  (Fv )  r  H 0
v  (Fv ))=Ker(v ):

Taken together, we thus have a canonical bijection

IrrC v  ( S  v  ) !  ( H C v  (Fv ) r  H C v  (Fv ))=Ker(v ):

Hence, given v 2  IrrC v  ( S  v  )  (so that C v  =  Cv ), v corresponds to an element av

2  f  1 ([Cv ])=b(Ker(v ))

and then an element

gCv ;v  (av )  2  ( H C v  (Fv )  r  H C v  (Fv ))=Ker(v ):

On the other hand, the character v C v  of H 0  (Fv )  has two extensions to H C v  (Fv ),
which are distinguished by the value 1 they take on gC v  (av ). We dene

v  =  the extension of v  C v  which takes value + 1  on gC v  (av )

and set
j  v  (v ) =  (C v  ; v )  2  E v ;K v ; [ v ] :

By Corollary 10.5, v  is also characterized as the unique extension of v C        whose mini-
theta lift to GL2 (Ev )de t  is supported on the Whittaker data in av  b(Ker(v )).

(c) If v =  1, then by Proposition 15.12(iii), there is a canonical section  :

H 1 (Fv ; TE v ; K v  )[2] =  Irr(S 0
v  )   !  Irr(S v  ):

So for the two extensions of a character 0 of S 0
v  

, there is a distinguished one con-
tained in the image of . On the other hand, for any [Cv ] 2  H 1 (Fv ; TE v ; K v  )[2], there is a
distinguished extension of the trivial character v C v  from H (Fv ) to H C v  (Fv ),
namely the trivial character. Hence if v =  v (Cv  ), we set

v  =  1C v and v v  =  C v

where v is the sign character of S  v     
 and C v     

 is the nontrivial (sign) character of
H C v  (Fv )=H C v  

(Fv ).

Hence, when v =  1, we have dened in (b) and (c) above a canonical bijection

(16.4) Irr(S v  ) !  E v ; K v ; [ v ]  =  f(Cv ; v ) 2  E v ; K v ; [ v ]  : [Cv ]2 =  1g:

To  complete the construction of j  v  , it will now be convenient to consider dierent cases,
depending on whether (E v ; K v )  =  (eld; split) or not, and whether v =  1 or not.

(1) Suppose rst that (E v ; K v )  =  (eld; split). Then S  v  =  S  v  is an elementary abelian 2-
group. If  =  1, the (16.4) already gives the construction of j . On the other
hand, when 2 =  1, then S  v  =  S 0

v  
. For v 2  Irr(S v  ), we set

     =  Ind
H C v  (F v

)

1   C       ; C v  ( F v )

recalling that H C v  (Fv )  =  H C v  
(Fv )  for any [Cv ] 2  E v ; K v  .
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(2) Suppose now that (E v ; K v )  =  (eld; split), so that v is necessarily a non-archimedean
place of F .  We x the map (as opposed to considering it as a conjugacy class of
maps) and suppose that v jWFv 

corresponds to the character v (as opposed to v 
1) of

T E v ; K v  . Then Proposition 15.12 and Lemma 15.4 give

Irr(S 0
v  )  =  H 1 (Fv ; TE v ; K v  )  =  E v ; K v  =  Br3 (Fv ) =  Z=3Z:

Thus, an element v 2  Irr(S 0 )  gives rise to an Ev-twisted composition algebra C v

and then a central simple algebra D v  2  Br 3 (Fv )  with an isomorphism

i v  =  i D v  : H C v  (Fv )   !  T E v ; K v  :

Explicitly, we have two possible twisted composition algebras

Cv =  (E v  , !  M3 (Fv )) and Cv =  (E v  , !  Dv  );

where Dv  is any of the two cubic division F -algebras. Moreover, the two isomorphisms
i D v  and iD o p  dier from each other by composition with inversion. We recall also that

[ H C + ( F v )  : H C
+ ( F v ) ]  =  2, but H C

v  
(Fv )  =  H 0

v  
(Fv ).

We now consider two cases:
(a) 2 =  1. In this case, one has S  v  =  S 0      =  3, so (16.4) tells us nothing in this

case. To  speciy the bijection

j  v  : Irr(S v  )  =  Z=3Z !  E v ;K v ; [ v ] ;

the trivial character of S  v      is sent to the element (Cv  ; v [v]) 2  E  ; K  ;[ ], where
[v] is dened as in case (1a) above. For a nontrivial character v of S  v  , we set

j  v  (v ) =  (Cv  ; v  i v  ):

We note that the above recipe is independent of the choice of the representative
v in its conjugacy class. Indeed, if we had used the map      1 (which corresponds
to v ), then one has an equality of the component groups S  v  =  S       1  as subsets
of S  o  (S2  S3 ). However, an element of the latter which conjugates     v to      1

induces not the identity automorphism of S        but the inverse automorphism.
This implies that

j  v  (v ) =  j  
v  

1 (v 
1);

so that the above recipe is independent of the choice of the representative map
v in its conjugacy class. A  better language to express this is to work with the

projective systems of [ v] and [S     ], as we did in [GS4, Prop. 3.2], where a
similar situation arises.

(b) v =  1. In this case, we have the short exact sequence

1 !  S 0
v  

=  3 !  S  v  =  S3 !  S2 !  1;

so that S       is the nonabelian group S3. Let us denote the irreducible representa-
tions of S3 by 1,  (the sign character) and r  (the unique 2-dimensional irreducible
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representation). Because S  v  =  S  v  =S 0     =  S2, (16.4) already determines for us
j  v  (1) and j  v  (). Hence we have no choice for j  v  (r ):

j  v  (r )  =  (Cv  ; v  C v  
):

This completes our construction of a canonical bijection

j  v  : Irr(S v  ) !  E v ;K v ; [ v ] ;

For any v 2  Irr(S v  ), if j  v  (v ) =  (C v  ; v ), we write

v  : =  C v  ( v  )  2  Irr(GE (Fv )):

16.5. Global A-packets.  We come now to the global setting. Without loss of generality,
x a global A-parameter, or more precisely a map

= E ;K ; [ ]  : WF  !  S  o  (S2  S3 )  PGSO8 (C) o  S3

and suppose that its restriction to W corresponds to the Hecke character  of the torus
TE ; K .  The PGSO8(C)-conjugacy class of then corresponds to the pair [] =  f ;  1g of Hecke
characters of the torus TE ; K .

As we explained in x16.4, the local A-packets  v  are equipped with canonical bijections j

v  : Irr(S v  ) !  E v ; K v : [ v ] !   v

The global A-packet associated to is simply the restricted tensor product of the local
ones, so that

 =  f  =
v v :  =

vv 2  Irr(S ;A)g:
The irreducible summands of V [ ]  A2; ( G E )  are isomorphic to elements of  .

16.6. Mul t ip l i c i ty  formula. Our remaining task is to verify that the Arthur multiplicity
formula holds for V [ ]. In other words, for each  =
vv, we need to determine the multiplicity of  in V [ ]. Now

 =

v C v  ( v  ) where j  v  (v ) =  ( C v  ; v )  for each v. To

determine the multiplicity of  in V [ ], we consider the subset
E ;K;[] ;   E ; K

consisting of those C ’s satisfying:

 for each place v of F ,  there is an isomorphism

v : Cv  : =  C
F  Fv  =  C v  :

Note that the isomorphism v is unique up to composition by elements of H C (F v ) ,
and so induces an isomorphism

v : H C v  =  H C v

which is well-determined up to conjugation. Hence,  v is a well-dened element of
Irr(HC v  (Fv )). In particular, we have a well-dened abstract irreducible representation

;C  : =
v v  v of H C ( A )
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such that
abs (;C ) =  as abstract representations.

 the representation ;C  is automorphic and hence occurs in VC [].

To  decide if ;C  is automorphic, an important role is played by the following diagram:

H C v C ; v

v T E v ; K v

H C v                        

v

Here C;v is the localization of C  at the place v and we recall that C  is well-determined up to
conjugacy by H C ( F ) ,  and likewise v is well-determined up to conjugacy by H C  (Fv ). It is
natural to ask if this diagram is commutative, or can be rendered such. We have:

Lemma 16.5. The above diagram commutes up to inverting, i.e.

v   v =  C;v or C;v :

Hence, if H C ( F v )  =  H 0  (Fv ),  then the above diagram is commutative by replacing v by
 1 if necessary. In particular, if H C ( F )  =  H 0  (F ) ,  then the above diagram can be made
commutative at all places v (by appropriate choices of v at each v).

For C  2  E ;K;[];, the multiplicity mC (;C ) of ;C  in VC [] is in fact independent of C ,  by our
discussion in x14.2. We thus denote this multiplicity by m() >  0. Given this, we see that

Multiplicity of  in V [ ] =  m()  #E ; K ; [ ] ; :
To  establish the multiplicity formula, we need to show that the above number is equal to

m : =  h  ; 1iS       =
1

 
X  

tr (((s))) :
S 2 S

We consider the dierent cases of = E ;K ; [ ]  in turn in the subsequent subsections.

16.7. K  is a eld and 2 =  1. This is in some sense the most nondegenerate case, as all
possible local scenarios we discussed in x16.4 can occur. However, it is also the least subtle
case because

S  =  f1g so that m =  dim :
Let S  denote the nite set of places v of F  where C       is associated with a cubic division
algebra; at these places, we have (E v ; K v )  =  (eld, split). We have a decomposition

S  =  S  t  S00

where S  consists of those places v where v =  1. Then

1; if v 2= S0

v 2; if v 2  S
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so that
m =  dim  =  2 # S  :

We now need to determine the size of E ;K;[];. For C  2  E ;K;[] ;  corresponding to E  , !  B
(for a central simple algebra B  over K  of degree 3, equipped with an involution  of the
second kind), B  is ramied precisely at v 2  S. The number of possible C ’s is, at this point,

2 # S  1 if S  is nonempty; 1;
if S  is empty.

However, we also need to impose the condition that ;C  is automorphic.
Assume rst that S  is nonempty. For any C  2  E ;K;[];, we have H C ( F )  =  H 0  (F ).

From our discussion in x14.2, the abstract representation ;C  is automorphic if and only if
its abstract restriction to H 0  (A)  contains   C  or  1  C  =     1. In other words, we need

v  jH 0
v  

 v  v  C;v for all places v:

for one of the two choices of C .

Now (
v   v  +  v 

1  v  if v 2= S  and v =  1; 

v          C v

v  v  ; otherwise.

From this and Lemma 16.5, we see that the desired containment holds for any v 2= S00 for
both choices of C .

It remains to consider the places in S00, where we need the following to hold:

v  v   v =  v  C;v :
This identity xes C;v for every v 2  S00. In other words, if C  is associated to E  , !  B  for a pair
(B ; ), then the invariant of B v  for every v 2  S00 is xed, and we only have the freedom to dictate
the invariant of B v  at v 2  S.

Hence, the number of possible (B ; )’s is 2 # S  and

2# S 0  
; if S00 is nonempty;

E ;K;[] ; 2# S 0   1; if S00 is empty.

On the other hand, by our discussion in x14.2,

1; if S00 is nonempty;
C ;C 2; if S00 is empty.

Taken together, we see that

m()  # E ; K ; [ ] ;  =  2 # S  =  m; as

desired.

The case when S  is empty is dealt with similarly, with both quantities equal to 1; we omit
the details.
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16.8. K  is a eld and 2 =  1. In this case

S  =  S2:

Given  =
vv 2  Irr(S ;A), let S  be the nite set of places v of F  where C      is associated with a cubic division
algebra. Then v is the 2-dimensional representation r  of S =  S3 if
v 2  S, and v is 1-dimensional otherwise. Then

m =  dim HomS2 (r
# S

 ;

v 2= S  v ) =  2 # S  1 if S  is nonempty. On the other hand, if S  is empty,

then

1 1 if b is even;
2 0 if b is odd.

where b is the nite number of places v of F  where v is nontrivial on S  .

Assume rst that S  is nonempty. For any C  2  E ;K;[];, H C ( F )  =  H 0  (F ),  and if C  is
associated with E  , !  B  , then B  is ramied precisely at places in S. Further, for ;C  to be
automorphic, we need to verify that, for one of the two choices of C ,  one has

v   v jH C ( F v )  =  v  C;v for all places v.

In fact, since 2 =  1, it is immaterial which of the two C ’s we use. Now v

j H C v  
( F v )  =  v  v for all v.

Hence the desired equality follows from Lemma 16.5 and the hypothesis that 2 =  1. In other
words, ;C  is necessarily automorphic for any C  2  E ;K;[];, with mC (;C ) =  1. Hence,

so that

as desired.

# E ; K ; [ ] ;  =  2 # S  1

m()  # E ; K ; [ ] ;  =  2 # S  1 =  m

Consider now the case when S  is empty, so that  is a character of S  ;A. In this case, C v  2
H 1 (Fv ; TE  ; K  )[2] for all v, and so by Lemma 15.5, there is a unique C  2  H 1 (F ; TE ;K )[2] so that
C;v =  C      for all v, and we need to determine if  is automorphic for H C  . For this, we shall
appeal to Proposition 15.16 and Proposition 4.20.

By Proposition 15.16, we see that [Irr(S ;A)] is divided into two equivalence classes, de-
pending on whether the restriction to S =  2 is trivial or not. The distinguished class,
with trivial restriction to S  , is thus the one for which m =  1 (instead of 0). Proposi-tion
15.16 says that this distinguished class is precisely the one which contains the image of a
section H 1 (F ; TE ; K )  !  Irr(S ;A). Equivalently, it is the image of the natural map
H 1 ( F ; Z E )  ! v H 1 (Fv ; ZE )  !  [Irr(S ;A)].

For  with m =  1, there is thus an element a 2  H 1 ( F ; Z E )  and an automorphic sign
character  such that for all places v, v  ;v corresponds to a under the bijection

H 1 (Fv ; ZE )=b(Ker(v ))  f  1 ([Cv  ]) !  Irr(S v  )
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in Proposition 15.12. Observe that m      =  1 as well, and       =    C  ;, where C  ; is the automorphic
sign character of H C      nontrivial precisely at places in . Hence in deciding the automorphy of
, there is no harm in assuming that  is empty, by replacing  by   if necessary.

By Proposition 4.20, the element a 2  H 1 ( F ; Z E )  gives rise to an element

g(a) 2  H C  (Fv )  r  H C  (Fv ) for each place v.

Now  is automorphic if and only if (g(a)) =  1. But its local component      is charac-terized
by the property that

v (g(a)) =  1 for all v.
In particular,  is automorphic when m =  1, as desired.

On the other hand, if m =  0, it is clear that  is not automorphic, since  diers from an
automorphic 0 by a twist of a global sign character of H C      which is the local sign character at
an odd number of places.

16.9. K  is split and 2 =  1. In this case,

S  =  3;
For a given  2  Irr(S ;A), let S  be the nite set of places where C       is associated with a
cubic division algebra. For v 2  S, E v  is necessarily a eld. We have a decomposition

S  =  S0 t  S00

where S0 consists of those v where 2 =  1. Hence, for v 2  S0 , S =  S3 and v is the 2-
dimensional irreducible representation r  of S  ; at all other places,  is 1-dimensional. For places
v 2  S00, S  v  =  3 and we further decomposes

S  =  S;1 [  S;2

where S;1 consists of those v such that v corresponds to the element 1=3 2  Z=3Z =  Irr(3) and
S;2 those v such that v corresponds to 2=3. For ease of notation, let us set

a =  # S ; b1 =  # S ; 1 and b2 =  #S; 2 :

Considering the pullback of v to S  , we have:

> 1  if v 2= S; v jS

= v; if v 2  S00;
the sum of the two nontrivial characters of 3, if v 2  S0 .

Hence,

m =  
3 

 2a +  ( 1)a  b1 b2  +  ( 1)a  b2 b1

where  2  C  is a primitive cube root of 1. To  further explicate the above formula, we have

(2a +  2( 1)a)=3; if b1 b2 =  0 mod 3;
(2a +  ( 1)a+1)=3; if b1      b2 =  0     mod 3.

In particular, if S  is empty (so that a =  b1 =  b2 =  0), we see that m =  1.
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We now enumerate the set E ;K;[];. Any C  2  E ;K;[] ;  corresponds to E  , !  B +  for a
central simple F -algebra B  ramied precisely at S. Assume rst that S  is nonempty, so
that H C ( F )  =  H 0  (F )  for any C  2  E ;K;[];. To  check if ;C  is automorphic, we need to veify
that, for one of the two choices of C ,  we have

v   v jH C ( F v )   v  C;v for all places v.

Now (
v        +   1   ; if v 2= S  and 2 =  1 

v  H 0
v  

( F v )

v  v  ; otherwise.

So the desired containment holds at all places outside S00.

It remains to consider the places v 2  S00. For such a v, we need to verify if

v  v   v =  v  C;v :

This holds if and only if
C;v =  v   v:

In other words, if is associated to the associative algebra embedding E  , !  B ,  then the
invariants of B  at v 2  S00 are constrained by v as follows:

8
1=3; if v 2  S;1;
2=3; if v 2  S;2;
1=3; if v 2  S0 ;
0; otherwise.

We leave it as an amusing exercise to verify that the number of B ’s satisfying these require-
ments is equal to m (with m computed above). It follows that

m; if S00 is nonempty;
E ;K;[] ; m=2; if S00 is empty.

However, from the discussion in x14.2, we have:

1; if S00 is nonempty;
2; if S00 is empty.

Taken together, we thus conclude that, when S  is nonempty,

m()  # E ; K ; [ ] ;  =  m;

as desired.

Now consider the case when S  is empty. In this case, the only possible C  2  E ;K;[] ;  is C +

corresponding to E  , !  M3 (F ), and H C + ( F )  =  H 0  
+ ( F ) .  By our discussion in x14.2, we see

easily that ; C+  is automorphic with m C + ( ; C + )  =  1. Hence

m()  # E ; K ; [ ] ;  =  1 =  m as

desired.
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16.10. K  is split and 2 =  1. In this case,

S  =  S3

and we x an element s0 in S3 n 3, so that S  =  3 o S 2  and S  =  hs0i. For all places v, we then
have S  v  =  0 (S W F v  )  o  2.

Given an , let S  be the nite set of places where C       is associated to a cubic division algebra.
Then for v 2  S, S =  S3 and v is the 2-dimensional irreducible representation r  of
S3. For all other v, v is 1-dimensional. On pulling back to S  =  S3, we have

< 1 ;  if v 2= S  and v (s0) =  1; v jS

= ; if v 2= S  and v(s0) =   1;
r; if v 2  S.

Hence,

and if S  is empty,

m =  
1 

 2 # S  +  2  (  1 ) # S
 if S  is nonempty,

1 b

(
1 ;  if b is even;

2                                     0; if b is odd.

where b is the cardinality of the set of places v where v (s0) =   1.

We now consider the set E ;K;[];. For C  2  E ;K;[];, associated to E  , !  B +  say, we see that B
is ramied precisely at S  . We know that

# f B  2  B r 3 (F )  : B  is ramied precisely at Sg =  
3 

 2 # S  +  2  (  1 ) # S

if S  is nonempty, and is 1 if S  is empty.
Assume rst that S  is nonempty, so that H C ( F )  =  H 0  (F )  for any C  2  E ;K;[];. Then for ;C

to be automorphic, we need

v   v jH C ( F v )   v  C;v for all v

for one of the two choices of C .  Now

v  j H C v  
( F v )  =  v  v  ; so that

;C  is automorphic if and only if

v  v   v =  v  C;v for all v.

By Lemma 16.5, this holds automatically since 2 =  1. Hence ;C  is always automorphic,
with mC (;C ) =  1 (by the discussion in x14.2), and

# E ; K ; [ ] ;  = =  
6 

 2 # S  +  2  (  1 ) # S =  m

as desired.
On the other hand, if S  is empty, then the only possible C  2  E ;K;[] ;  is C +  corresponding to E

, !  M3 (F ). This is treated in exactly the same way as the corresponding case when K
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is a eld, using the global Poitou-Tate duality summarized in Proposition 15.16. We omit
the details.

To  summarize, we have shown the following result which is one of the main global theorems
of this paper:

Theorem 16.6. Let = E ;K:; [ ]  be a given global A-parameter of G E  over a number eld F .
Let  2  Irr(S ;A ) be an irreducible character of its adelic component group with associated
representation  in the global A-packet  . Then the multiplicity of  in the submodule V [ ]  A2;
( G E )  is equal to

m =  dim HomS (  ; C):

16.11. Main  global theorem. If mdisc () denotes the multiplicity of an irreducible rep-
resentation  in the automorphic discrete spectrum A 2 (G E ) ,  then the last theorem shows that

mdisc ()  m for any  2  Irr(S ;A).

In this nal subsection, we shall show the reverse inequality and hence strengthen this in-
equality to an equality.

The argument is analogous to that for the cubic unipotent A-packets of G2 given in [G].
The proof will require two ingredients: one local and the other global in nature. We begin by
describing these two ingredients. Hence, we x a global A-parameter = E ;K ; [ ]  and
=
vv 2  Irr(S ;A), so that  =
v v =
v

abs ( v  ).

 (Local) For each place v of F ,  and for each nondegenerate Ev-twisted Bhargava cube v
with associated character v  of N E v  (Fv ), we have

(16.7) HomN E v  ( F v ) ( v  ; v  )  
0;

v

otherwise, 
v  =  C v

 

;

as a module for the stabilizer M E  ; (Fv )  of v. Here, K is either the trivial
character or the sign character of ME  ; (Fv )  =  H C       (Fv ) depending on whether
! K v = F v  (  1) =  + 1  or  1.

This result is Proposition 12.3 in the nonarchimedean case. For archimedean v,
note that the Hom space here refers to the space of continuous linear functionals of
(as a Casselman-Wallach representation). The result for archimedean v will be shown
in a paper with J .  Adams and A. Paul, where we studied the archimedean theta
correspondence and prove the results in x13.

 (Global) Let

E ; K ;  =  f C  2  E ; K  : Cv  =  C v  for all places vg:

For any embedding f  :  , !  A ( G E ) ,  there exists C  2  E ; K ;  such that the C -Fourier
coecient of f ( )  is nonzero. We shall show this as a consequence of Proposition 16.9
and Corollary 16.10 below.
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Taking these two ingredients for granted, we proceed to show the reverse inequality. By
the consideration of Fourier coecients, we have a natural map

HomG E ( A ) ( ; A(GE ))   ! HomN E (A) (; C )M E ;
 C  ( F )

C 2 E ; K ;

The global ingredient shows that this map is injective, so that one has an upper bound

mdisc () dim HomNE (A) (; C )M E ;
 C  (F ) :

C 2 E ; K ;

Here, we have used the fact that K      is an automorphic character and hence is trivial on
H C ( F ) .  The local ingredient, on the other hand, shows that for each C ,

dim HomNE (A) (; C )M E ;
 C  ( F )  =  dim H

C
( F )  =  dim HomH C (F ) (_ ; C):

The latter dimension is simply the automorphic multiplicity of _  in A ( H C ) .  We have seen that
this automorphic multiplicity is independent of C  2  E ; K ;  and have denoted it by m( )  =  m().
Hence, we obtain

mdisc ()  m( )   # E ; K ;  =  m;
where the second equality is precisely what we showed when we veried the Arthur multiplic-ity
formula for the space of global theta liftings. Summarizing, we have the following theorem
which strengthens Theorem 16.6 and which is the main global theorem of this paper.

Theorem 16.8. Let = E ;K:; [ ]  be a given global A-parameter of G E  over a number eld F .
Let  2  Irr(S ;A ) be an irreducible character of its adelic component group with associated
representation  in the global A-packet  . Then

mdisc () =  dim HomS (  ; C):

It remains to establish the global ingredient above. For this, we recall the following notion
from [GS1]: when Fv  =  R  or C,  we say that a representation v of G E ( F v )  is weakly minimal if
the associated variety of its annihilator in the universal enveloping algebra is the minimal
nilpotent orbit. Now we note:

Proposition 16.9. Let  =  C  be an irreducible automorphic subrepresentation of G E  such that
v is not weakly minimal for at least one archimedean place v. Then there exists a
nondegenerate cube C  2  V E (F )  and f  2   such that f N E ;  C  

=  0.

Proof. Let f  2   and consider the Fourier expansion of the constant term f   along V E  =
N E = Z .  If this expansion is supported on cubes of rank one, then  is weakly minimal in the
sense of Denition 4.6 in [GS1]. Then, by [GS1, Thm. 5.4], v is weakly minimal at all
archimedean places, which contradicts our assumption. Moreover, since E  is a eld, V (F )  has
no rank 2 elements. Thus, f   has a non-trivial Fourier coecient for a cube C0 of rank 3 or 4.

If C0 is rank 3, then by Proposition 5.5, we can assume that C0 =  (0; 0; e; 0) with e 2  E ,  Let
U E  be the unipotent radical of the 3-step maximal parabolic subgroup QE  in G E ,  with N E  and
U E  in standard position, such that C 0 restricts to a non-trivial character of [U E ; U E ].
The character of [U E ; U E ] thus obtained is associated to an sl2-triple corresponding to the
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non-special nilpotent orbit 3A1 (see the introduction to [JLS]).  By [ JLS,  Cor. 6.6] (the
conditions of Lemma 4.3 there are satised since the orbit 3A is not special) there exists x
2  F  such that , with C  =  (x; 0; e; 0), f  =  0 for some f  2  . This proves the
proposition.

Corol lary 16.10. For any embedding f  :  , !  A ( G E ) ,  there exists C  2  E ; K ;  such that the
C -Fourier coecient of f ( )  is nonzero.

Proof. By the local ingredient (16.7), we see that the only possible nonzero nondegenerate
Fourier coecients supported by f ( )  correspond to the nitely many C  2  E ; K ; .  Hence the
corollary follows from Proposition 16.9.

17. A p p e n d i x  A :  A  theta correspondence for E 7

In this section, we consider a dual pair G E   H C  in the split adjoint group of type E7 , where
H C  =  AutE (C )  for a 4-dimensional E-twisted composition algebra C . This theta
correspondence (and its version for inner forms) can be used to construct the A-packets
corresponding to a root SL2 , as we discussed briey in x3.7. We will not launch into this
detailed study in this paper. The main purpose of this appendix is simply to compute the
theta lift of the trivial representation of H C  =  SL2 (E )=2 ; this result is needed in our paper
[GS3].

17.1. Twisted composition. Assume that B  is a composition algebra over F .  Let N (x )  =  x x
and T r(x) =  x  +  x, be the norm and the trace on B .  Then C =  B   B   B  has a
structure of an F 3-twisted composition algebra, given by

Q(x1; x2; x3) =  (N (x1 ); N (x2 ); N (x3 ))

(x1 ; x2 ; x3 ) =  (x2 x3; x3 x1; x1 x2 )

NC (x1 ; x2 ; x3 ) =  T r(x3 x2 x1 ):
The symmetric group S3 acts on C B  as F -automorphisms by permuting the three summands of
C B ,  with the action of odd permutations twisted by the map (x1 ; x2 ; x3 ) !  (x1; x2; x3). Let E
be a cubic etale algebra over F .  Since Aut(E =F )  is isomorphic to a subgroup of S3, by xing an
embedding of Aut(E =F ) into S3, we obtain an E-twisted composition algebra C B  by Galois
descent.

We shall now describe the group Aut(C E )  of automorphisms of C E  for B  =  M2 (F ). In
this case x is dened as the adjoint of the matrix x, 

x =  c a if x  = c d :

Assume rst that E  =  F 3 . Let

GL2 (F 3 )det  =  f(g1; g2; g3)j det g1 =  det g2 =  det g3g

This group acts on C B  =  B   B   B  by

g(x1; x2; x3) =  (g3x1g2 
1; g1x2g3 

1; g2x3g1 
1):
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It is fairly straightforward to check that this action preserves Q and . An element g acts
trivially if and only if it belongs to F .  The group G L  (F 3 )det =F  is the group of F -points of
the algebraic group SL2 (F 3 )=2 . The action of S3 on C B  normalizes that of SL 2 (F  )=2, on
which it acts by permuting the 3 factors. Hence, for a general cubic etale algebra E  over F ,
the group of F -automorphisms of C B  (with B  =  M2 (F )) is

AutF ( C B  ) =  SL2 (E )=2  o  S E ;

and the group of E-automorphisms is its identity component

Aut E ( C B  ) =  SL2 (E )=2 :

Since
H 1 (F ; SL2 (E )=2 )  =  H 2 (F ; 2 ) =  B r 2 (F )

we see that the E-isomorphism classes of E-twisted composition algebras C  of E-dimension 4
correspond to isomorphism classes of quaternion algebras. In particular, as B  varies over
quaternion F -algebras, the algebras C E  exhaust all E-isomorphism classes of E-twisted com-
position algebras of E-dimension 4.

Via the Springer decomposition, we may connect the above discussion with the theory of
Freudenthal-Jordan algebras of dimension 15. The split Jordan algebra of dimension 15 is J s

=  F 3   CM 2 ( F )  and its automorphism group is PGSp6 =  Sp6(F )=2. Since

H 1 (F; Sp6 (F )=2 ) =  H 2 (F ; 2 ) =  B r2 (F );

we see that the isomorphism classes of Freudenthal Jordan algebras of dimension 15 are
parametrized by isomorphism classes of quaternion algebras as well. If J  is a form of J s ,  let [J ]
2  B r 2 (F )  denote the corresponding Brauer class. Similarly, for B  2  B r2 (F ) ,  let J B  be the
corresponding Freudenthal-Jordan algebra. It is clear that [J ] =  B  if J  =  E   C B .

17.2. Some embedding problems. Let C B  be an E-twisted composition algebra of E-
dimension 4. Every element x  in C B  satises the quadratic equation

2 (x) +  Q(x)(x)  N C B  (x )x  =  0:

If we x e =  Q(x) and d =  N C  (x), such that the cube  =  (1; 0;  e;  d) is non-degenerate, then x
and (x)  span an E-twisted subalgebra of E-dimension 2, corresponding to the cube . Thus, in
order to understand embeddings of the E-twisted composition algebras of E-dimension 2 into
C B ,  it suces to understand solutions of the above equation.

Proposition 17.1. Assume that E  =  F 3  and consider C with B  =  M2 (F ). The group
Aut E (C B )  =  GL2 (F 3 )det =F  acts transitively on the set of elements x  2  C B  such that
Q(x) =  0, and N C ( x )  =  1. The stabilizer StabAut E ( C B ) (x0 ) of

x0 =  (( 0 0 ) ; ( 0 0 ) ; ( 0 0 ))

is the quotient by F  of the subgroup of GL2 (F 3 )  consisting of elements a 0

; a 0     ; a 0 :
In particular, StabAut ( C  ) (x0 )  F .  The stabilizer of x0 in AutF ( C B )  =  Aut E (C B )  o  S3 is a

semi-direct product F  o  S3 , where S3 is a \quadratic twist" of S3: we multiply any
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transposition in S3 by
w =  (( 1 0 ) ; ( 1 0 ) ; ( 1 0 )) :

Proof. Let x  =  (x1 ; x2 ; x3 ) 2  C B  such that Q(x) =  0, and N C  (x)  =  1. We want to show that
x  is conjugated to x0 by an element in GL2 (F 3 )det . Since Q(x) =  0, we have det xi =  0 for all i.
Hence, we can write

x1 =  v3  w2 ; x2 =  v1  w3 ; x3 =  v2  w1

for some column vectors vi and wi. Note that

N C B  (x)  =  T r(x3 x2 x1 ) =  (w1  v1 )   (w2  v2)  (w3  v3) =  1:

Hence, all vectors are non-zero, and we can pick g1; g2; g3 2  S L 2 (F ) ,  so that gi (vi ) =  (1; 0)>

for all i. Thus, we can assume that v1 =  (1; 0)> for all i. Since (w2  v > )  =  0, wi =  (ai ; bi ) with
ai =  0. Hence, using the unipotent gi stabilizing (1; 0)> , we can arrange all bi =  0. Thus
x  is conjugate to

a 0 a 0 a 0
0 0 0 0 0 0

such that a1a2a3 =  1. But this element is conjugated to x0 by a triple of diagonal matrices.
The stabilizers can be computed directly.

Let C B  be an E-twisted composition algebra of E-dimension 4. For a nondegenerate
E-twisted cube  =  (1; 0 f ;  b), consider the set

 =  fv  2  C  j Q(v) =  f ; NC (v )  =  bg:
Recall that to , we attach an E-twisted algebra C  of E-dimension 2, equipped with a
reduced basis fv; (v)g. Any element x  2
(F )  denes an E-embedding of C  into C B ,  where v is sent to x. Hence
 is in bijection with the set of embeddings C  , !  C B .

Corol lary 17.2. Assume that F  is a local eld, and C B  is an E-twisted composition algebra
of E-dimension 4. If
( F )  is nonempty, then Aut E (C B )  acts transitively on
(F ) .

Proof. F ix  a point v0 2
 (F ).  By Proposition 17.1, GL2 (E )d e t  acts transitively on
 (F )
(through its quotient GL2 (E )d e t =F  =  H C  (F ) )  and the stabilizer of v0 2
(F )  is a maximal torus Tv     in GL 2 (F )   GL2 (E )de t .  Hence the F -rational orbits under
GL2 (E )d e t  is parametrized by H  (F; Tv ), which is trivial since Tv     =  Res K = F  Gm for some
quadratic etale algebra K  over F .  The corollary follows.

Next, we need to understand when
(F )  is nonempty:

Proposition 17.3. Let B  =  M2 (F ). Let C  be an E-twisted composition algebra of E-
dimension 2. Then C  embeds into C B  if and only if J  =  E   C  is not a division algebra.

Proof. If J  =  E   C  is not a division algebra, then by [ KMRT,  Thm 38.8], J  =  J 3 ( K )  for a
quadratic etale algebra K  over F .  Since K  embeds into B  =  M2 (F ), we deduce that J
embeds into J 3 ( B )  and hence C  into C B  , where J 3 ( B )  =  E   C B  .

Now assume that J  =  E   C  is a division algebra. By tensoring with K E  if necessary, we can
assume without loss of generality that E  is a cyclic eld, with the Galois group generated by  of
order 3. Then C B  =  M2 (E ), and we have

Q(x) =  det(x); (x)  =  xx
2
; and N (x)  =  T r (x

2
xx):

B
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On the other hand, there exists  2  F  such that C  =  C ( )  =  E   E ,  with

Q(a; b) =  ab; (a; b) =  (  1 b # ; a# ) and NC (a; b) =  N E (a)  +   1 NE (b):

Moreover, since E   C  is a division algebra,  2= N E = F  (E ) .

Assume, for the sake of contradiction, that C ( )  embeds into C E .  Let x  be the image of
(1; 0). Since Q C E  (x)  =  QC () (1; 0) =  0, the determinant of x  is 0. Hence x  =  v  w >  for two 2
1 column vectors v and w, with coecients in E .  One checks that

N C B  
(x)  =  N E = F  (w >   v):

This implies that NC () (1; 0) =   =  N C E  (x)  is the norm of an element in E ,  a contradiction.

17.3. D 4  geometry. Now let O be the 8-dimensional composition algebra of split octonions.
The automorphisms group of C O  is a semi-direct product of the split simply connected group G
of type D 4  with S3. We remind the reader that S3 acts on C O  =  O  O  O is by permuting
the three summands of CO ,  with a twist by the map (x1 ; x2 ; x3 ) !  (x1; x2; x3) for odd
permutations. Tits [Ti] has given a beautiful description of the ag varieties for G  in terms
of geometry of CO .  We follow the exposition of Weissman [We2].

F ix  a triple (i; j; k) of integers 0  i; j; k  2. Let F i j k  be the set of subspaces X

Y  Z   C O

where X ; Y ; Z  are subspaces of O of dimensions i; j; k, respectively, such that N O ( X )  =
NO (Y ) =  N O ( Z )  =  0 and X Y  =  Y Z  =  Z X  =  0. Then F i j k  is a ag variety for G  with
respect to a parabolic P  =  M N , as indicated in the following table, where M is the subset of
simple roots \contained" in M.

i; j; k M
0; 0; 0 f0; 1; 2; 3g 1; 0; 0
f0; 2; 3g 1; 1; 0
f0; 3g 1; 1; 1               f0 g
2; 1; 1               f1 g 2; 2; 1
f1; 2g 2; 2; 2        f1; 2; 3g

Consider now, C O  , the E-twisted version of CO .  As we noted in x4.11,

G E  =  AutE (C O  ):

For i  =  1 or 2, we dene F i  to be the set of E-subspaces Vi  C E  of dimension i  such that Vi
 F  belongs to F i i i  for C E

 F  =  C . A  pair V1  V2 is a full ag if E  is a eld. Let P i  =
Mi Ni  be the stabilizer of Vi in G E .  Then

Mder  SL 2 (F )  (long root), M1=Mder  GL(V1 ) =  E

and
Mder =  SL 2 ( E )  (short root), M2 =  GL(V2 )det .
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These claims can be easily checked over F .  The modular characters are

U1 =  jNE j3 and U2 =  j det j5

We have degenerate principal series J (s)  and I (s)  corresponding to P1 and P2, respectively.

17.4. Dua l  pair. Now let F  be a nonarchimedean local eld and E  a cubic etale algebra over F .
Let C B  be the E-twisted composition algebra of dimension 4 associated to B  =  M2 (F ), with
corresponding Springer decomposition J B  =  E  C B .  By our discussion in x6, this data gives rise
to a dual pair

G E   H C B   !  G B  : =  G J B

where G E  =  SpinE , H C =  Aut E (C B )   SL2 (E )=2  and G B  is the split adjoint group of type
E7 . Our goal is to determine the theta lift (1), where 1 is the trivial representation of H C B  (F ).

For this purpose, it will be more convenient to work with an alternative construction or
description of the above dual pair which is adapted to the Siegel maximal parabolic subgroup in
G B  and which makes use of the interpretation of G E  as the automorphism group of an 8-
dimensional E-twisted composition algebra. We give this alternative description next.

Let S  =  Gm be a maximal split torus in SL2 (F )=2  H C .  The torus S  gives a short Z-
grading of gB  and hE :

gB  =  n  m  n and h E  =  u  l  u

Let P  =  M N and Q =  L U  be the corresponding maximal parabolic subgroups in G B  and
H C  respectively. The unipotent radical N  is commutative and can be identied with an
exceptional Jordan algebra J .  The Levi subgroup M can be identied with with the
similitude group of the cubic form N J ,  with corresponding similitude character

i J  : M !  F :

Now the group G is contained in M and J ,  and under its adjoint action on N , one has the
decomposition N  =  J  =  E   C E  where C E  is the E-twisted composition algebra of E-
dimension 8.

Note that the M-module N  is dual to N  and hence can be identied with J .  Since J  is
identied with J  using the trace form TJ , we can identify both N  and N  with J .  Under this
identication, both U and U are identied with E   J .  The Levi factor L  is the centralizer of G E
in M. By Proposition 6.1, L  can be identied with E .  Indeed, for every  2  E ,  let c : J  !  J  be
dened by

c : (e; v) !  ( # =   e;   v)
for all (e; v) 2  E   C E .  Then c is a similitude of N J  with i J (c)  =  N E ( ) .  Henceforth, we
x an isomorphism L  =  E such that  2  E acts on N  as c . Using this identication,
i J ( )  =  jNE ()j  1 and the center of M consists of  2  F .

17.5. Theta lift. Let  be the minimal representation of G  . Let
  N  =  J  be the set of elements of rank 1, i.e. x  2
 if and only if x  =  0 and x #  =  0. As P -modules, we have an exact sequence [MS]

0 !  Cc  (
)  !   !  N  !  0
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where n 2  N  acts on f  2  Cc  (
)  by

(n)f (n) = (hn; ni)f (n)

where hn; ni is the natural pairing of N  and N , and m 2  M by

(m)f (n) =  jiJ (m)j 2 f (m 1nm):
Moreover,   =  M
 ji J j  1  j i J j  2, where M is a minimal representation of M, trivial on the center. It follows that
a central element  2  F acts as multiplication by jj and jj6
on the two summands.

Considering U-coinvariants, we have a short exact sequence of G E   L-modules: 0

!  C 1 (
? )  !  U !  N  !  0;

where
?  is the set of elements x  2
 perpendicular to E ,  i.e. the set of x  =  (0; v) 2  E  C E  such that

v =  0 and x #  =  (  Q(v); (v)) =  0:
Assume, for simplicity, that E  is a eld. Then

?  is the set of v 2  C E  spanning an E-line in F  . Recall that G acts transitively on F  .
F ix  a line V 2  F  , and let P  be the stabilizer of V1. Then P der acts trivially on the line,
and we identify P1=P der with GL(V1 ) =  E .  Summarizing, we have an isomorphism of G E
L-modules,

C 1 (
? )   IndP

E  C 1 ( E )

 jNE j2

where the induction is not normalized and C 1 ( E )  is the regular representation of E E   P1=P der

L ,  twisted by the character jNE j2 of L  =  E  as indicated.

Proposition 17.4. Let (1) be the theta lift of the trivial representation of H C  (F )  =
GL2 (E )d e t =F .  Then (1) is a quotient J (1=2), the degenerate principal series represen-tation
associated to the parabolic P1 .

Proof. Assume, for simplicity, that E  is a eld. Since (1)
 1 H C is a quotient of , one
sees by passing to U-coinvariants that (1)
 1  is a quotient of  . Let  2  F  be in the center of M. Then  acts trivially on 1E , and as jj3

and jj6 on the two summands of   . Hence (1)
 1 E  is a quotient of IndP1 

C 1 ( E )
 jNE j2 . Hence (1) is a quotient of IndP1 

jNE j2 . Since N 1      
=  jNE j3=2, it follows that IndP1 

jNE j2

=  J (1=2).
Proposition 17.5. Let (1) be the theta lift of the trivial representation of H C  (F )  =
GL2 (E )d e t =F .  Let  be a non-degenerate E-twisted cube, with associated E-twisted com-position
algebra C .  Then

 (1)N ; =  0 if E   C  is a division algebra;
(1)N2 ;  

=  C  otherwise.

Proof. The space of twisted coinvariants  is computed exactly as in Proposition 12.3,
giving



cN2 ;   
=  C 1 (

(F ) )
where

 is as in Corollary 17.2. By the same corollary, if
( F )  is nonempty, then it is a single HC (F )-orbit, in which case (1)N2 ;  

is one dimensional.
On the other hand, when
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(F )  is empty, (1)             =  0. By Proposition 17.3,
(F )  is empty precisely when E C  is a division algebra.

Theorem 17.6. Let (1) be the theta lift of the trivial representation of GL2 (E )d e t =F .  Then
(1) embeds as a submodule of the degenerate principal series I (1=2). If E  is a eld, then
I (1=2)=(1) =  V1 in the notation of Theorem 18.1. Otherwise (1) =  I (1=2).

Proof. The minimal representation of G B  is a submodule of a degenerate principal series
representation induced from the Heisenberg parabolic subgroup of G B .  Via restriction of
functions to G E ,  one obtains a nonzero HC -invariant and GE -equivariant map

  H E  =  (1)  !  I (1=2):

Since the spherical function restricts to a spherical function, the image must contain the
submodule generated by the non-zero spherical vector in I (1=2). This is the whole I (1=2)
unless E  is a eld, by Propositions 18.5 and 18.6. If E  is a eld, the spherical vector generates the
submodule whose quotient is V1. Next, we need to use the fact that

I (1=2)N2 ; C  
=  C

for all nondegenerate cubes , which is a simple consequence of the Bruhat decomposition.
Moreover, recall that V 0 =  D (1) is the theta lift via the minimal representation of G D  (the rank
2 E6 ).  Hence (V1 )N2 ; C         =  C  precisely when E   C  is a division algebra. Combining with
Proposition 17.5, we see that the image of the map (1)  !  I (1=2) is exactly as predicted
and the kernel consists of small representations, i.e. those for which (N2 ; C  )  co-invariants
vanish for all nondegenerate cubes . Since we know that (1) is a quotient of J (1=2), to nish
the proof, it suces to show that any irreducible constituent  of J (1=2) satises N2 ;  C  

=  0, for
some nondegenerate .

To  that end, we claim that it suces to check one of the following two conditions:
(a) The Jacquet functor of  for any parabolic subgroup with Levi subgroup of type A2 is

Whittaker generic;
(b) The Jacquet functor of  with respect to N2 is a Whittaker generic representation of

the Levi subgroup M2.
Indeed, if (a) holds, then N2 ;  C         

=  0 by [GGS, Thm. A], interpreted in our setting for the
nilpotent orbit A2. By the same result of [GGS], the condition (b) implies that [N1 ;N1 ];      =  0 for a
generic character of of [N1; N1], which in turn implies the existence of a nondegenerate  such
that N2 ;  C

=  0, by the main result in [ JLS]  and the fact that the nilpotent orbit
3A1 is not special.

If E  is a eld, we have only one additional constituent V 00 in J (1=2) (see Theorem 18.2). Its
Jacquet functor with respect to N2 is a twist of the Steinberg representation of M2, hence the
condition (b) holds and we are done in this case.

If E  is not a eld, then we have not analyzed J (1=2). In these remaining cases, we shall treat
all representations whose exponents lie in the Weyl group orbit of the leading exponent of the
spherical quotient of I (1=2), namely (1; 1; 0; 0) if E  =  F 3  or (1; 1; 0) if E  =  F   K  for
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K  a eld. In both cases, we have two tempered representations,

(17.7) D (St)  =  D(St)gen  D(St)deg ;

which are the generic and non-generic summands of the unitary representation D (St)  obtained
by parabolic induction from the Steinberg representation of the Levi group of type A  . There
are three such parabolic groups if E  =  F 3 , but the resulting representation does not depend on
this choice, just as in the case of D(1), which is the Aubert involute of D(St). Observe that
these tempered representations satisfy the condition (a).

In order to tabulate all possible standard modules, let us recall their properties, working
with a general root system  =  f1; : : : ; ng. Let f1; : : : ; ng be the corresponding funda-mental
weights. A  parabolic subgroup in standard position corresponds to a subset S   .
A  standard module associated to the parabolic subgroup has leading exponents

 =  (
X

x i i )  +  (
X

y i i )  i 2 S

i 2= S

where x i   0, yi >  0 and the rst summand is an exponent of the tempered representation dening
the standard module. Now it is easy to determine all leading exponents in the cases at hand,
and thus determine all irreducible Langlands quotients in both cases:

Case E  =  F 3 :

We have three Langlands quotients of G E  for the three maximal parabolic subgroups
whose Levi subgroups are of type A3. The tempered representation on the Levi subgroup is
obtained by inducing the Steinberg representation of the Levi subgroup of the type A1  A1, that
is, whose derived group is SL 2 (F )   SL2 (F ).  These Langlands quotients clearly satisfy the
condition (a).

There are three remaining representation: the spherical quotient of I (1=2), the Langlands
quotient J2 (StE ; 1=2) and the Langlands quotient J1(St; 1=2). For these representations we
have complete control of their (N2 ; C  )-coinvariants, since the spherical representation and
J1(St; 1=2) are the theta lifts M3 (F ) (1) and M3 (F) () respectively, and J2 (StE ; 1=2) is a
submodule and the only other constituent of I (1=2). This settles the case E  =  F  .

Case E  =  F   K :

Here we have an interesting twist, when compared to the split case: there are two Langlands
quotients of G E  forming an L-packet which prove especially challenging.

More precisely, instead of the three A3 maximal parabolic subgroups considered in the split
case, we have a maximal parabolic subgroup in the standard position with Levi subgroup of
the type B2 , so that its derived group is a quasi-split SU4 (K ).  Inducing the Steinberg
representation of the Levi subgroup of SU4 (K )  whose derived group is SL 2 (K ) ,  gives a rep-
resentation of SU4 (K )  with two irreducible summands. They in turn give two Langlands
quotients of G with the leading exponent (1; 0;  1). One of these two representation is the
summand of D(1), denoted by V 0, with (1; 0;  1) as its only exponent. The other represen-
tation V is the potentially troublesome one.

Finally, we have three additional representations: the spherical quotient of I (1=2) (which
is the other summand of D (1)  besides V1, by Proposition 18.5(4)), the Langlands quotient
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J2 (StE ; 1=2) and the Langlands quotient J1(St; 1=2). Clearly, J2 (StE ; 1=2) satises the condi-
tion (b) above. Now J  (St; 1=2) is a submodule of I (1=2), while the spherical representation
and V 0 are the theta lifts M3 (F ) (1) and M3 (F ) (). For these representations, we have a similar
situation as in the split case, with complete control of their (N2 ; C  )-coinvariants, and in
particular non-vanishing for some .

It remains to deal with the other representation V with leading exponent (1; 0;  1). Recall
that, counting two tempered representations in (17.7), we have seven representations in all.
Let us examine the eect of the Aubert involution on this set of representations:

 The Aubert involution takes the two summands of D (St)  to the two summands of
D(1).

 It takes the degenerate series I (1=2) to the generalized principal series I (StE ;  1=2). It
follows that the Aubert involution takes J1(St; 1=2)  I (1=2) to J2 (StE ; 1=2)  I (StE ;
1=2).

From this, one deduces that the involution xes the remaining representation V , and hence (
1; 0; 1) is also an exponent of V . But with respect to the A2  Levi subgroup, this is the
exponent of the Steinberg representation and hence condition (a) holds for V . This completes
the proof in the case E  =  F   K .

This theorem is used in our paper [GS3].

18. A p p e n d i x  B :  Degenerate principal  series

In this section, we analyze unramied degenerate principal series representations for G E  (the
quasi-split simply connected reductive group of absolute type D 4  determined by E ) .  The results
here are new if E  is a eld and a mixture of new and known results if E  =  F  K .  We have used the
results and language introduced in this appendix for the description of theta lifting in the
main body of the paper.

18.1. A n e  We y l  groups, when E  a eld. Let A  =  f(x; y; z) 2  R3  j x + y + z  =  0g be the 2-
dimensional euclidean space equipped with the usual dot product. Let   A  (we identify A  with
A  using the dot product) be the root space of type G  such that  =  (1;  1; 0) and 2 =  (
1 ; 2 ;  1 ) are the simple roots. Let W be the corresponding Weyl group. It is generated by
the simple reections s1 and s2 corresponding to the simple roots.

Assume rst that E  is unramied.

Ane roots are the ane functions  +  k on A  where  2   and k 2  Z.  The ane Weyl group Wa is
generated by reections about the lines where the ane roots vanish. Let l  2   be the highest root.
The fundamental cell in A  for Wa is given by the inequalities

0 <  1; 0 <  2 and l <  1:

In particular, Wa is generated by s1, s2 and s0, the reections about the three lines bounding
the fundamental cell. Let X   A  be the lattice spanned by

! 1  =  (1; 0;  1) and ! 2  =  (1; 1;  2):



3

1 1 2

3

^ 2 ^

^ ^ ^

118 W E E  T E C K  G A N  A N D  G O R D A N  S AV I N

Then Wa is a semi direct product of W and the group of translations t !  where !  2  X .  We
note the following relations in Wa:

t ! 1  =  s0s1s2s1s2s1 and t ! 2  =  (s0s1s2s1s0)(s2s1s2s1s2):

Assume now that E  is ramied.

Ane roots are the ane functions  +  k on A  where  2   and k 2  Z,  if  is long, and k 2  1 Z, if
is short. The ane Weyl group Wa is generated by reections about the lines where the ane
roots vanish. Let s 2   be the highest short root. The fundamental cell in A  for Wa is given
by the inequalities

0 <  1; 0 <  2 and s <  1=3:

In particular, Wa is generated by s1, s2 and s0, the reections about the three lines bounding
the fundamental cell. Let X   A  be the lattice spanned by

! 1  =  (1; 0;  1) and ! 2  =  (
3

; 
3

;  
3

):

Then Wa is a semi direct product of W and the group of translations t !  where !  2  X .  We
note the following relations in Wa:

t ! 2  =  s0s2s1s2s1s2 and t ! 1  =  (s0s2s1s2s0)(s1s2s1s2s1):

Let G E  be the simply connected quasi-split group of type D 4  corresponding to the cubic eld
E .  Let I  be the Iwahori subgroup corresponding to the fundamental cell. Let ‘  : Wa !  Z  be the
length function such that, for every w 2  Wa,

[ I w I : I ]  =  q ‘(w) :

hs e  e  @  e e @     e  e  s
s0 s1 s2                                                             s1 s2 s0

Let H  be the Iwahori Hecke algebra. It is spanned by Tw, the characteristic functions of
I w I  for all w 2  Wa. As an abstract algebra, H  is generated by T0, T1 and T2 corresponding to
simple reections, modulo braid and quadratic relations given by the diagrams in the above
picture, where the left diagram corresponds to the case when E  is unramied. Let Tw =  q
‘ ( w )  

Tw. The elements T !  for dominant !  =  n1 !1 +  n2 !2 (i.e. n1; n2  0) form a commutative
semi-group

T !   T! 0 =  T ! + ! 0 :



^

^

+ n  q

ln q

0

0

1

1 1

 1     q 2 q 0
2
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Let V be a nite-dimensional H-module. Since T! ,  for dominant ! ,  commute and are
invertible, we can decompose

V =  V

where, for every  2  A

R  C,

V =  fv  2  V j (T !  q ( ! ) ) 1 v  =  0 for all dominant ! g:

Note that V =  V 2 i for any  2  X ,  the lattice dual to X .  Thus, we say that ;0 are

congruent if  0 2  
l
2 i X .  The congruence class of  such that V =  0 is called an exponent of V . A

representation V is a discrete series if

< ( ( ! i ) )  <  0

for i  =  1; 2 for all exponents  of V . Exponents represented by  2  A  are called real. The
exponent of the trivial representation (i.e. Tw !  q ‘(w) for all w 2  Wa) is

(2; 1;  3):

The Iwahori-Matsumoto (IM) involution changes the exponents by the sign. In particular, the
exponent of the Steinberg representation is (  2;  1; 3). It is a discrete series representation.

18.2. Some representations, when E  is a eld. We shall now construct small dimen-
sional representations of the Hecke algebra H  that will appear in the description of degenerate
principal series.

Assume rst that E  is unramied.

18.2.1. One dimensional representations. Let V be a one dimensional complex vector space
spanned by e. Let V1 be the representation of H  on V dened by

T0e =   e; T1e =   e and T2e =  q3e:

The exponent of V1 is
(0; 1;  1):

Let V 00 be be the representation of H  on V dened by

T0e =  qe; T1e =  qe and T2e =   e:

Then V 00 is the IM-involute of V 0 and is a discrete series representation.

18.2.2. Two dimensional representations. The subalgebra generated by T0 and T1 is iso-
morphic to the group algebra of S3. It is not too dicult to see that any irreducible two
dimensional representation of H ,  when restricted to this sub algebra, must be isomorphic to
the reection representation of S3. Thus let V be a two dimensional complex vector space
spanned by e0 and e1 on which T0 and T1 act as matrices

1     

0 q
and

q
1

 1
;



2 2

2

2i 2i 2i 2i

2 2

2
0

1

6 ;

3

 1     q
1

0
2 2

1

3

3
0

0

0

1

0 0
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respectively. We can extend this representation to H  in three dierent ways. Two of these
extensions are easy to construct. Let V 0 be the representation of H  on V such that T acts the
scalar q3. The exponents of V 0 are

(1   
3 ln q

; 1 +  
3 ln q

;  2) and (1 +  
3 ln q

; 1   
3 ln

q ;  2):

This is the minimal representation. Let V 00 be the representation of H  on V such that T
acts the scalar  1. Then V 00 is the IM-involute of V2 and is a discrete series representation.

These two representations do not have real exponents, however. We shall be interested in
the third extension such that T2 acts as the matrix 

 1     q 2  (q) 
 
0 q3

where 6 is the characteristic polynomial (over Q of the primitive 6-th roots of unity. This
representation, henceforth denoted by V2, is invariant under the involution. Its exponents are
real and given by:

(1;  1; 0) and ( 1; 1; 0):

18.2.3. Three dimensional representations. Let V be a three dimensional complex vector
space spanned by e0, e1 and e2. Let V 0 be a representation of H  on V such that T0, T1 and T2
act as matrices

0                
2                 

1  0  
q        0       0 

1             0  
q3               0             0 

1

@ 0        q      0 A ; @ q
1         

 1     q
1    

 
A  and @ 0           q3

                0 A
0 0 q 0 0 q 0 q 2 3(q)      1

respectively. This is the reection representation. The exponents of V 0, counted with multi-
plicities, are

(0; 1;  1); (1; 0;  1) and (1; 0;  1):

Let V 00 be the IM-involute of V3. It is a discrete series representation.

Assume now that E  is ramied.

18.2.4. One dimensional representations. Let V be a one dimensional complex vector space
spanned by e. Let V1 be a representation of H  on V dened by

T0e =  qe; T1e =   e and T2e =  qe:

The exponent of V1 is
(0; 1;  1):

Let V 00 be be the representation of H  on V dened by

T0e =   e; T1e =  qe and T2e =   e:

Then V1
0 is the IM-involute of V1 and is a discrete series representation.



q
1
2  1

 1     q
1
2

2
0

4i 2i 4i 2i

2 1

2 2

3

0
 1     q

1
0

1 1

1

0 01 1 1

3

3 3

1
_ 1 2 1

1

2

ln q
2i

_
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18.2.5. Two dimensional representations. The subalgebra generated by T0 and T2 is iso-
morphic to the group algebra of S3. It is not too dicult to see that any irreducible two
dimensional representation of H ,  when restricted to the subalgebra, must be isomorphic to
the reection representation of S3. Thus let V be a two dimensional complex vector space
spanned by e0 and e2. Then T0 and T2 act on V as matrices

0 q
and

q 0
;

respectively. We can extend this representation to H  in three dierent ways. Two of these
extensions are easy to construct. Let V 0 be the representation of H  on V such that T1 acts as
the scalar q. The exponents of V2 are

(1   
2

3
i
; 

3 ln q
;  1   

3 ln q
) and (1 +  

2
3

i
;  

3 ln q
;  1 +  

3 ln q
):

This is not the minimal representation. Let V 00 be the representation of H  on V such that T
acts as the scalar  1. Then V 00 is the IM-involute of V 0 and is a discrete series representation.
Again, these representations do not have real exponents.

We shall be interested in the third extension such that T1 acts as T0. This representation,
henceforth denoted by V2, is invariant under the involution. Its exponents are real and given by

(1;  1; 0) and ( 1; 1; 0):

18.2.6. Three dimensional representations. Let V be a three dimensional complex vector
space spanned by e1, e2 and e0. Let V 0 be a representation of H  on V such that T0, T1 and T2
act as matrices

2 q 0 0 q 0 0
@ 0 q 0 A ; @ 3q 2  1     q 2     A  and @ 0 q 0 A

0 0 q 0         0 q 0     q 2          1

respectively. This is the reection representation. The exponents of V 0, counted with multi-
plicities, are

(0; 1;  1); (1; 0;  1) and (1; 0;  1):
Let V 00 be the involute of V 0. It is a discrete series representation.

18.3. Degenerate principal series, when E  is a eld. We now study the unramied
degenerate principal series representation of G E  associated to the Heisenberg parabolic sub-
group P E .  Let e and f  be the ramication and inertia indices of E  over F ,  so that e  f  =  3. The
simple coroots are

_  =  (1;  1; 0) and 2 =  (  
e

; 
e

;  
e

):

Let V be an irreducible representation of H .  Let  2  A
 C  such that V =  0 i.e. the class of  is an exponent of V . Then, from the representation
theory of S L 2 ( F )  and S L 2 ( E ) ,

 If ( _ )  =  1 +  2 i Z  then s1() is an exponent of V .
 If ( _ )  =  f  +  l

n q
 Z  then s2() is an exponent of V .

 If si () is congruent to  and ( i  )  =  0 then V is at least two dimensional.



1 1

ln q 2

1 1

1 1

2 2
1 1

1 1

2 2

3 1 i 1 2i

s = ; + and
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Two exponents are equivalent if one is obtained from another by a repeated use of the rst
two bullets.

In the following, we shall consider the decomposition of various unramied degenerate
principal series representations of G E .  The representations V of the ane Hecke algebra that we
constructed above will occur in the subspace of Iwahori-xed vectors in these principal series
representations So as not to introduce more notation, we will use V to denote the
corresponding representation of G E ( F )  (whose space of Iwahori-xed vectors is V ) as well.

18.3.1. Degenerate series I (s) .  Let

s =  (s   
2

; 1;  s   
2

)

where s 2  C.  Note that s  and s0 are congruent if s   s0 2  2i Z. Since s (_ )  =  f ,  the
equivalence class of s, for a generic s, contains the following six elements

(s   
2

; 1;  s   
2

);

(1; s   
2

;  s   
2

);

(s +  
1

;  s +  
1

;  1);

(  s +  
2

; s +  
2

;  1);

(1;  s   
2

; s   
2

);

(  s   
1

; 1; s   
1

):

These are the exponents of a degenerate principal series I (s), attached to the Heisenberg
maximal parabolic subgroup P E .  Since the representations I (s)  form an algebraic family,
these are the exponents for any s. The rst exponent (s )  is a leading exponent of I (s). The last
exponents is a trailing exponent of I (s). (It is a leading exponent of I (  s).) If V is a quotient
of I (s)  then the leading exponent is an exponent of V . If V is a submodule of I (s), then the
trailing exponent of I (s)  is also an exponent of V . We would like to determine the points of
reducibility of I (s).

We say that an exponent  is regular, if the stabilizer of  in the Weyl group is trivial. A
representation V of H  is regular if the exponents of V are regular. It is well known that
irreducible regular representations correspond to equivalence classes of regular exponents.
One checks that I (s)  is regular if

s =  
2

; 
2

; 0; 
lnq 

and 
2 

 
3 ln q

where the last possibility occurs only if E  is unramied. If I (s)  is regular, one checks that
all exponents are equivalent, and hence I (s)  is irreducible, if

5 1 i 3 2i 2
2       lnq 2       3 ln q



5 1 1 i 3 2i

2

2
0

1
0

3

2 ln q

2 3 ln q 2

5

2 2
3

2

2

2
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and reducibility in the last case occurs only when E  is unramied.
irreducible unless s is on one of the two lists.

123

In particular, I (s)  is

Theorem 18.1. The representation I (s)  =  I (  s) is reducible only if

s =  
2

; 
2

; 
2 

+  
lnq 

and 
2 

 
3 ln q

and the last case occurs only if E  is unramied. At the points of reducibility, we have:
(1) I ( 5 )  has length 2. The trivial representation is the unique irreducible quotient.
(2) I ( 1 )  has length 3. The representation V2 is the unique irreducible submodule. The

representations V and V are irreducible quotients.
(3) I ( 1  +   i  )  has length 2. There is a unique irreducible submodule and a unique irre-

ducible quotient.
(4) I ( 3    2i )  has length 2. The minimal representation V 0 is the unique irreducible

quotient.

Proof. It remains to analyze the nite set of cases. We do so by considering the space of
Iwahori-xed vectors in I (s), which is a H-module.
Case s =  2 . The exponents are

(2; 1;  3);

(1; 2;  3);

(3;  2;  1);

(  2; 3;  1);

(1;  3; 2);

(  3; 1; 2):

The leading exponent belongs to the trivial representation, the unique irreducible quotient of
I ( 5 ). The other ve exponents are equivalent to the trailing exponent. Thus I ( 5 )  has length 2.
Case s =  2 . The exponents are

(1; 1;  2);

(1; 1;  2);

(2;  1;  1);

(  1; 2;  1);

(1;  2; 1);

(  2; 1; 1):

The last four exponents are equivalent. Let V be an irreducible subquotient such that
V(1;1; 2) =  0. The third bullet implies that this space is 2 dimensional. Thus, either I ( 3 )  is
irreducible or it has a 2 dimensional irreducible quotient. But the exponents of I ( 3 )  are
dierent from the exponents of irreducible 2 dimensional representations of H .  Thus I ( 3 )  is
irreducible.



 2i
2

2i 2i

2i 2i

2i 2i

2i 2i

2i 2i

2i 2i

2i 2i 2i 2i 2i 2 1 1

2
0

1

0 0
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i i

i i

i i
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Case s =  3 +  3
l
n

(
q) . We assume that E  is unramied. The exponents are

(1 +  
3 ln(q)

; 1;  2   
3 ln(q)

);

(1; 1 +  
3 ln(q)

;  2   
3 ln(q)

);

(2 +  
3 ln(q)

;  1   
3 ln(q)

;  1);

(  1   
3 ln(q)

; 2 +  
3 ln(q)

;  1);

(1;  2   
3 ln(q)

; 1 +  
3 ln(q)

);

(  2   
3 ln(q)

; 1; 1 +  
3 ln(q)

):

All  exponents are dierent. The rst two are equivalent and so are the last four. Since

(1 +  
3 ln(q)

; 1;  2   
3 ln(q)

) (1   
3 ln q

; 1 +  
3 ln q

;  2) =  
lnq 

 (
3

;  
3

;  
3

)

the rst two are the exponents of the minimal representation V 0. The induced representation
has length 2, with unique irreducible quotient V2.
Case s =  2 . The exponents are

(0; 1;  1);
(1; 0;  1);
(1; 0;  1);
(0; 1;  1);
(1;  1; 0);
(  1; 1; 0):

In this case, V2 is a unique irreducible submodule. The quotient is isomorphic to a direct
sum of V1 and V3.
Case s =  2

 +  l
n

(
q) . The exponents are

(
ln(q)

; 1;  1   
ln(q)

);

(1; 
ln(q)

;  1   
ln(q)

);

(1 +  
ln(q)

;  
ln(q)

;  1);

(  
ln(q)

; 1 +  
ln(q)

;  1);

(1;  1   
ln(q)

; 
ln(q)

);



i i

1  i

1  2i

3

1 1

1
2 2
1

1 1

1 1

2 2

2 2

 i

2 2

f  ln q
_

1 1

1
2 2

1

1 1

1 1
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( 1   
ln(q)

; 1; 
ln(q)

):

All  exponents are dierent. The rst three are equivalent and so are the last three exponents. In
particular, I ( 2

 +  ln(q
)) has length 2.

Case s =  2
 +  3

l
n

(
q) . We assume that E  is unramied. This representation is irreducible. The

argument is similar to the argument for s =  2 . We omit details.
Case s =  0. The exponents are

( 
2

; 1;  
2

):

(1;  
1

;  
1

);

(
2

; 
2

;  1);

(
2

; 
2

;  1);

(1;  
2

;  
2

);

(  
1

; 1;  
1

):

We have three equivalent exponents each with multiplicity 2. Thus, either I (0)  is irreducible or
it is a sum of two three dimensional representations with the same exponents. However, if V( 1

; 1 ; 1) =  0, then the third bullet implies that this space is 2 dimensional. Thus I (0) is
irreducible.
Case s =  l

n q
 . This representation is irreducible. The argument is the same as for s =  0. We

omit details.

18.3.2. Degenerate series J (s) .  We now study the unramied degenerate principal series
associated to the 3-step parabolic subgroup QE  of G E .  Let

s =  (s +  
1

; s   
1

;  2s)

where s 2  C.  Note that s  and s0 are congruent if s   s0 2   2i Z .  Since s (1 )  =  1, the
equivalence class of s, for a generic s, contains the following six elements

(s +  
2

; s   
2

;  2s);

(2s;  s +  
1

;  s   
1

);

(  s +  
2

; 2s;  s   
2

);

(s +  
2

;  2s; s   
2

);

(  2s; s +  
2

; s   
2

);



1 1

1 1 i 1 2i

3 1 i 1 2i

s = ; ; + and

2

2 1

3 2

2 ln q

1  2i
2

1 .

1 3
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( s +  
2

;  s   
2

; 2s):

These are the exponents of a degenerate principal series J (s),  attached to the 3-step maximal
parabolic subgroup QE . Since the representations J (s)  form an algebraic family, these are the
exponents for any s. The rst exponent (s )  is a leading exponent of J (s).  The last exponents
is a trailing exponent of J (s). (It is a leading exponent of J (  s).) If V is a quotient of
J (s)  then the leading exponent is an exponent of V . If V is a submodule of J (s)  then the
trailing exponent of J (s)  is also an exponent of V .

We would like to determine points of reducibility of J (s). One checks that J (s)  is regular
if

s =  
2

; 
6

; 0; 
lnq 

and 
6 

 
3 ln q

where the last possibility occurs only if E  is ramied. If J (s)  is regular, one checks that all
exponents are equivalent, and hence J (s)  is irreducible, if

s =  
2

; 
2 

+  
ln q 

and 
2 

 
3 ln q

and reducibility in the last case occurs only when E  is ramied.     Hence, again, J (s)  is
irreducible unless s is on the two nite lists.

Theorem 18.2. The representation J (s)  =  J (  s) is reducible only if 3
1 1 i 1 2i
2 2 2 ln q 2 3 ln q

and the last case occurs occurs only if E  is ramied. At the points of reducibility, we have:
(1) J ( 3 )  has length 2. The trivial representation is the unique irreducible quotient.
(2) J ( 1 )  has length 3. The representation V 00 is the unique irreducible submodule. The

representation V 0 is the unique irreducible quotient. The remaining subquotient is V .
(3) J ( 1  +   i  )  has length 2. There is a unique irreducible submodule and a unique irre-

ducible quotient.
(4) J ( 2

  3
l
n q

 )  has length 2. The representation V 0 is the unique irreducible quotient.

Proof. We shall provide details for s =  1=2, which is the only case used in the paper.
Case s =  2  The exponents are

(1; 0;  1);

(1; 0;  1);

(0; 1;  1);

(1;  1; 0);

(  1; 1; 0);

(0;  1; 1):
We see that V 00 is the unique irreducible submodule, V 0 is the unique irreducible quotient,
and V2 is the remaining subquotient.
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18.4. A n e  We y l  group, when K  is a eld. We now discuss the quasi split G E  where E  =  F
K  with K  a quadratic eld. Let e and f  be the ramication and inertia indices, so that e  f  =  2.

Let A  =  R3  equipped with the usual dot product. Let   A  (we identify A  with A  using
the dot product) be the root space of type B 2  such that

1 =  (1;  1; 0); 2 =  (0; 1;  1) and 3 =  (0; 0; 1) are

the simple roots. The co-roots are

1 =  (1;  1; 0); 2 =  (0; 1;  1) and 3 =  (0; 0; 
e

):

Let W be the corresponding Weyl group. It is generated by the simple reections s1, s2 and
s3 corresponding to the simple roots.

Assume rst that K  is unramied.

Ane roots are the ane functions  +  k on A  where  2   and k 2  Z.  The ane Weyl group Wa
is generated by reections about the lines where the ane roots vanish. Let l =  (1; 1; 0) 2   be the
highest root. The fundamental cell in A  for Wa is given by the inequalities 0 <  1 , 0 <  2, 0 <  3
and l <  1. In particular, Wa is generated by s1, s2, s3 and s0, the reections about the three
planes bounding the fundamental cell.

Let X   A  be the lattice consisting of (x; y; z) 2  Z3  such that x  +  y +  z is even. Then Wa is
a semi direct product of W and the group of translations t !  where !  2  X .  It will be
convenient to work with the extended ane Weyl group Wa =  Wa [  Wa where  is the involution
dened by (x; y; z) =  (1 x; y; z). Note that s0 =  s1 and  commutes with s2 and
s3. The extended ane Weyl group is a semi direct product of W and X  =  Z3 . Let

! 1  =  (1; 0; 0); ! 2  =  (1; 1; 0) and ! 3  =  (1; 1; 1):

We note the following relations in Wa:

t ! 1  =  s1s2s3s2s1; t ! 2  =  s0s2s3s2s1s2s3s2 and t ! 3  =  s0s2s3s1s2s3s1s2s3:

Assume now that K  is ramied.

Ane roots are the ane functions  +  k on A  where  2   and k 2  1 Z, but integral if  is long.
The ane Weyl group Wa is generated by reections about the lines where the ane roots
vanish. Let s  =  (1; 0; 0) 2   be the highest short root. The fundamental cell in A  for Wa is
given by the inequalities 0 <  1 , 0 <  2, 0 <  3 and s <  1=2. In particular, Wa is generated
by s1, s2, s3 and s0, the reections about the three planes bounding the fundamental cell.

Let X  =  Z3   A. Then Wa is a semi direct product of W and the group of translations t !  where
!  2  X .  The extended ane Weyl group is Wa =  Wa [  Wa where  is the involution dened by
(x; y; z) =  (1=2   x; 1=2   y; 1=2   x). Note that s0 =  s1 and s2 =  s3. The extended ane Weyl
group is a semi direct product of W and X  generated by X  and (1=2; 1=2; 1=2). Let

! 1  =  (1; 0; 0); ! 2  =  (1; 1; 0) and ! 3  =  (1=2; 1=2; 1=2):
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We note the following relations in Wa:

t ! 1  =  s0s1s2s3s2s1; t ! 2  =  s0s1s2s3s2s0s1s2s3s2 and t ! 3  =  s3s2s1s3s2s3:

For any E  =  F   K ,  the Iwahori Hecke algebra H  of G E  is generated by the elements T0, T1,
T2 and T3 corresponding to the simple reections, modulo braid and quadratic relations given
by the following diagrams, with the one on the left for the case of unramied K  and the one
on the right for the case of ramied K .

e e  hs
0

s3 
@ s2 hs

1

e e  e  @     e
s3 @ s2 s1       s0

18.5. Some representations, when K  is a eld. We shall now construct some small
dimensional representations of the Hecke algebra H  that will appear in the description of the
degenerate principal series representations.

Assume that K  is unramied.

18.5.1. One dimensional representations. Let V be a one dimensional complex vector space
spanned by e. There are four representations of H  on V . We shall rstly describe two
representations where

T0e =  qe; T1e =  qe and T2e =  qe:
The remaining two are obtained by applying the IM-involution. If T3e =  q2e, this is the
trivial representation. Its exponent is

(3; 2; 1):
Let V1 be the representation of H  on V such that T3e =   e. The exponent of V1 is

(1; 0;  1):

Let V 00 be the IM-involute of V 0. It is a tempered representation.

18.5.2. Two dimensional representations. Let V be a two dimensional complex vector space
spanned by e0 and e1 on which T0, T1 and T2 act by

T0 =  T1 = 0 q
and T2 = q

1
0

:

We can extend this representation to H  in two ways. Let V 0 be the representation of H  on
V such that T3 acts the scalar q2. The exponents of V 0 are

(2; 0; 1) and (0; 2; 1):
Let V 00 be the representation of H  on V such that T3 acts the scalar  1. Then V 00 is the
IM-involute of V2 and is a discrete series representation.

Assume that K  is ramied.
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18.5.3. One dimensional representations. Let V be a one dimensional complex vector space
spanned by e. There are eight representations of H  on V . We shall rstly describe four
representations where T1e =  qe, T2e =  qe. The remaining four representations are obtain by
the IM-involution. The trivial representation is the one where T0e =  qe and T3e =  qe. Its
exponent is

(3; 2; 1):
Next, we have two representations where T0 and T3 act by dierent eigenvalues. These two
representations occur in a restriction of a 2-dimensional representation of the extended ane
Hecke algebra H .  Their exponents are the same,

(2 +  
ln q

; 1 +  
lnq

; 
ln q

):

Let V 0 be the representation of H  on V such that T0e =   e and T3e =   e. The exponent of
V1 is

(1; 0;  1):

Let V 00 be the IM-involute of V1. It is a tempered representation.

18.5.4. Two dimensional representations. Let V be a two dimensional complex vector space
spanned by e0 and e1 on which T1 and T2 act as matrices

T1 = 0 q
and T2 = q

1
 1

;

respectively. We can extend this representation to H  in four ways. Let V 0 be the represen-
tation of H  on V such that T0 and T3 act as the scalar q. The exponents of V2 are

(2; 0; 1) and (0; 2; 1):

Let V 00 be the representation of H  on V such that T0 and T3 act as the scalar  1. Then V 00 is
the IM-involute of V . It is a tempered representation. Finally, we have two additional
representations, one where T0 and T3 act by dierent scalars. These two representations
occur in a restriction of a 4-dimensional representation of the extended ane Hecke algebra H .
Their exponents are the same and given by:

(1 +  
lnq

;  1 +  
ln q

; 
ln q

) and ( 1 +  
ln

q
; 1 +  

ln q
; 

ln q
):

The sum of these two representation is an irreducible representation of H ,  the extended ane
Hecke algebra.

18.6. Degenerate principal  series, when K  is a eld.

18.6.1. B 2  parabolic. Let s  =  (s; 2; 1). We have a degenerate principal series B (s)  (asso-
ciated to the B2-parabolic) whose exponents are

(s; 2; 1); (2; s; 1); (2; 1; s); (2; 1;  s); (2;  s; 1) ( s; 2; 1):

Here s  is a leading exponent and  s  is the trailing exponent. In particular, the trivial
representation is the unique irreducible quotient of B (3).
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Proposition 18.3. The representation B (s)  =  B (  s) is reducible only if

s =  3; 1 +  
ln q

; 0; and 
ln q

where s =  1 +   i   occurs if K  is unramied and s =   i   if K  is ramied. At the points of
reducibility, we have

(1) B (3)  has length 2. The trivial representation is the unique irreducible quotient.
(2) B (1 + ln q

 )  has length 2. The minimal representation is the unique irreducible quotient.
(3) B (0)  is a direct sum of two non-isomorphic representations where one is V2 .
(4) B ( ln q

 )  is a direct sum of two non-isomorphic representations.

Proof. This can be proved as in [We1]. Roughly speaking, o the unitary axis, i.e. <(s)  =  0,
reducibility happens only if the trivial or the minimal representations appear as subquotients.
The case s =  1 +  ln q merits a special discussion, as it illustrates a dierence between ramied and
unramied cases. In both cases, B (1 + ln q

 )  is regular; however, the number of equivalence classes
is one, if K  is unramied, and 2 otherwise. This is due to the fact that  =  (2; 1; 1+ l

n q
 )  is equivalent

to s3() =  (2; 1;  1   l
n q

 )  if and only if K  is ramied.
On the unitary axis, all exponents are equivalent and B (s)  is irreducible, unless s =  0 or s

=  l
n q and K  ramied. By the Frobenius reciprocity, V2 is a summand of B (0), so (3) follows.

Finally, B (  i  )  must reduce, otherwise B (s)  with <(s)  =   i   would be all unitary, a
contradiction.

18.6.2. A2  parabolic. Let s  =  (s +  1; s; s 1). We have a degenerate principal series A(s)
(associated to the A2-parabolic) whose exponents are

(s +  1; s; s 1); (s +  1; s;  s +  1); (s +  1;  s +  1; s); (  s +  1; s +  1; s);

(s +  1;  s +  1;  s); (  s +  1; s +  1;  s); (  s +  1;  s; s +  1); (  s +  1;  s;  s 1):

Here s  is a leading exponent and  s  is the trailing exponent. In particular, the trivial
representation is the unique quotient of A(2). Note that  is congruent to  i       if K  is

unramied.
l n  q

Proposition 18.4. The degenerate principal series representation A(s) (with Re(s)  0) is
irreducible except in the following cases:

(1) A(2) has length 2. The unique irreducible quotient is the trivial representation.
(2) A(1) has length 2. The unique irreducible quotient is the orthogonal complement of

V 0 in B (0).
(3) when K  is ramied, A(1 +   i  )  has length 3. It has two irreducible quotients, corre-

sponding to two one-dimensional representations of H  with the exponent

(2 +  
ln q

; 1 +  
ln q

; 
ln q

):

(4) A(0) is a direct sum of two non-isomorphic representations where one of them is V1 .



1

1

2 2

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

ln q

1

ln q
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Proof. (1) is trivial. For (2), observe that the spherical summand of B (0)  is a unique irre-
ducible quotient of A(1). The remaining sub quotients of A(1) have four exponents. As these
exponents are equivalent, the length of A(1) is 2, as claimed. The statement (3) is proved
similarly. For (4), observe that A(0) is semi-simple, and has at most two summands, since
any summand contributes the exponent (1; 0;  1). Since V 0 is a summand of A(0) by the
Frobenius reciprocity, we have two summands as claimed.

Note that the complement of V 0 in A(0) is spherical, and has seven exponents. We shall
use this fact shortly.

18.6.3. A1   A1 parabolic. Let s  =  (s +  1 ; s   1 ; 1). We have a degenerate principal series
I (s)  (associated to the A1   A1-parabolic, which is the Heisenberg parabolic), whose exponents
are

(s +  
2

; s   
2

; 1); (s +  
2

; 1; s   
2

); (1; s +  
2

; s   
2

);

(s +  
2

; 1;  s +  
2

); (s +  
2

;  s +  
2

; 1); (  s +  
2

; s +  
2

; 1);

(1; s +  
2

;  s +  
2

); (1;  s +  
2

; s +  
2

); (  s +  
2

; 1; s +  
2

);

(1;  s +  
2

;  s   
2

); (  s +  
2

; 1;  s   
2

); (  s +  
2

;  s   
2

; 1):
Here s is a leading exponent and  s  is the trailing exponent. In particular, the trivial

representation is the unique quotient of I (5=2). Points of reducibility of I (s)  and its co-socle if
Re(s)  0 was determined by Segal, Theorem 4.1 in [Se2]. Here we determine the complete
composition series.

Proposition 18.5. The points of reducibility of I (s)  (with Re(s)  0) are given as follows:
(1) I (5=2) has length 2. The unique irreducible quotient is the trivial representation.
(2) I (3=2) has length 2. The unique irreducible quotient is B (1).
(3) I (3=2 +   i  )  has length 2 when K  is unramed, with the minimal representation as

its unique irreducible quotient.
(4) I (1=2) has length 2. The unique irreducible quotient is the orthogonal complement of

V 0 in A(0).
(5) I (1=2 +   i  )  has length 2 when K  is unramed, and 3 with two irreducible quotients

if K  is ramied.

Proof. (1) is trivial. For (2), we observe that B (1)  is the unique irreducible quotient of I (3=2).
Since the remaining six exponents are equivalent, I (3=2) has length 2. The case (3) is regular, so
the irreducible subquotients are easily determined by working out the equivalence classes of
exponents. For (4), the spherical summand of A(0) is the unique quotient of I (1=2). The
remaining subquotients of I (1=2) have ve exponents in total. Hence, if there are more than two
irreducible subquotients in I (1=2), there would be one with one or two exponents. But, by
inspection, these ve exponents are not among the exponents of one and two-dimensional H-
modules. Hence, I (1=2) has length 2, as asserted in (4). For the last case, by the result of A.
Segal, the representation has one, respectively two irreducible quotients. By working out
equivalence classes of exponents, it is seen that there are no more irreducible subquotients
than as stated.
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18.7. Sp l i t  D  . Assume now that E  =  F 3  is split, so that G is the split Spin . Let A  =  R4

and we identify A  with A  using the usual dot product. Let   A  be the root system of type D4 ,
so that the simple roots are

1 =  (1;  1; 0; 0); 2 =  (0; 1;  1; 0); 3 =  (0; 0; 1;  1); 4 =  (0; 0; 1; 1):

Let W be the corresponding Weyl group. For every k 2  Z  and  2  , we have an ane root  +  k.
Let W be the corresponding ane Weyl group. It is a semi-direct direct product of W and X  =
f(x; y; z; w) 2  Z4  j x  +  y +  z +  w  0 (mod 2)g.

In this case, degenerate principal series representations have been well studied, and there
are references in the literature, such as [BJ]  and [We1]. So we shall be brief and put an
emphasis on explaining, rather than giving the details.

Let Ti, i  =  0; : : : ; 4 be the standard generators of the ane Hecke algebra H ,  such that T2
corresponds to the branching point of the extended Dynkin diagram. The algebra H  has a 2-
dimensional irreducible representation V such that

1     

T0 =  T1 =  T3 =  T4 = 0 q
and T2 = q

1
 1

:

The exponents of this representations are

(0; 1;  1; 0) and (0;  1; 1; 0):

The minimal representation corresponds to the reection representation of H  and its expo-
nents are (the superscript 2 means that the exponent appears with multiplicity 2)

(2; 1; 1; 0)2; (1; 2; 1; 0); (2; 1; 0; 1); (2; 1; 0;  1):

There are 3 maximal parabolic subgroups in standard position, of the type A3, permuted by
the group of outer automorphisms. Let A(s), B (s)  and C (s) be the degenerate principal series,
corresponding to these parabolic subgroups, normalized so that the trivial represen-tation
occurs as the unique irreducible quotient for s =  3. For example, assuming that A(s)
corresponds to the maximal parabolic whose Levi does not have 1 as a root, the leading
exponent of A(s) is (s; 2; 1; 0). There are eight exponents:

(s; 2; 1; 0); (2; s; 1; 0); (2; 1; s; 0); (2; 1; 0; s);

(2; 1; 0;  s); (2; 1;  s; 0); (2;  s; 1; 0); ( s; 2; 1; 0):

By a result of Weissman [We1], A(1), B (1)  and C (1) have length 2, and the minimal repre-
sentation is the unique irreducible quotient. Let V A   A(1), V B   B (1)  and V C   C (1) be the
unique irreducible submodules. These representations are non-isomorphic, as they have
dierent exponents.

Let I (s)  be the principal series corresponding to the Heisenberg maximal parabolic (i.e.
the Levi factor is A3 ), normalized so that the trivial representation is the unique irreducible
quotient for s =  5=2. The leading exponent is (s +  1 ; s   1 ; 1; 0). There are 24 exponents in all.
They are in 4 groups of 6 exponents

(1; 0; x; y); (1; x; 0; y); (1; x; y; 0); (x; 1; 0; y); (x; 1; y; 0); (x; y; 1; 0)



1 1 1 1 1 1 1 1

A B C
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where

(x; y) =  (s +  
2

; s   
2

); (s +  
2

;  s +  
2

); (  s +  
2

; s +  
2

); (  s +  
2

;  s   
2

):

The only other reducibility points are s =  1=2 and s =  3=2, which we examine in turn:

 s =  3=2: the minimal representation is the unique irreducible quotient of I (3=2).
Moreover, we have an intertwining map I (3=2) !  A(1), obtained by composing stan-
dard intertwining operators, which are non-trivial on the spherical vector. Hence A(1)
(and analogously B (1)  and C (1))  is a quotient of I (3=2). By removing these quotients,
we are left with an irreducible submodule since its 10 exponents are equivalent.

 s =  1=2: By the Frobenius reciprocity, V2 is the unique irreducible submodule of
I (1=2). The quotient is an irreducible spherical representation that appears as a
summand of the representation induced from the trivial representation of (any) par-
abolic subgroup of the type A2.

Summarizing, we have:

Proposition 18.6. (Theorems 5.3 and 5.5 in [BJ])
 I (3=2) has a ltration of length 3, consisting of a unique irreducible submodule and a

unique irreducible quotient (the minimal representation). The intermediate subquo-
tient is isomorphic to V3      V3      V3 .

 I (1=2) has length 2, and V2 is the unique irreducible submodule.
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