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Improved Decoding of Expander Codes

Xue Chen, Kuan Cheng , Xin Li , and Minghui Ouyang

AbstractÐ We study the classical expander codes, introduced
by Sipser and Spielman, (1996). Given any constants 0 <
α, ε < 1/2, and an arbitrary bipartite graph with N vertices
on the left, M < N vertices on the right, and left degree D
such that any left subset S of size at most αN has at least
(1 − ε)|S|D neighbors, we show that the corresponding linear
code given by parity checks on the right has distance at least

roughly αN

2ε
. This is strictly better than the best known previous

result of 2(1−ε)αN Sudan, (2000), Viderman, (2013) whenever
ε < 1/2, and improves the previous result significantly when
ε is small. Furthermore, we show that this distance is tight
in general, thus providing a complete characterization of the
distance of general expander codes. Next, we provide several
efficient decoding algorithms, which vastly improve previous
results in terms of the fraction of errors corrected, whenever
ε < 1

4
. Finally, we also give a bound on the list-decoding radius

of general expander codes, which beats the classical Johnson
bound in certain situations (e.g., when the graph is almost
regular and the code has a high rate). Our techniques exploit
novel combinatorial properties of bipartite expander graphs.
In particular, we establish a new size-expansion tradeoff, which
may be of independent interests.

Index TermsÐ Expander codes, bipartite expanders, list
decoding.

I. INTRODUCTION

E
XPANDER codes [1] are error-correcting codes derived

from bipartite expander graphs that are notable for

their ultra-efficient decoding algorithms. In particular, all

known asymptotically good error-correcting codes which

admit linear-time decoding algorithms for a constant fraction

of adversarial errors are based on expander codes. At the

same time, expander codes are closely related to low-density

parity-check (LDPC) codes [4] Ð a random LDPC code is

an expander code with high probability. Over the last twenty

years, LDPC codes have received increased attention ([5],

[6], [7], [8], [9] to name a few) because of their practical

performance. Along this line of research, the study of decoding
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algorithms for expander codes, such as belief-propagation [1],

[4], [10], message-passing [11], and linear programming [5],

[6], [12], has laid theoretical foundations and sparked new

lines of inquiry for LDPC codes.

In this work, we consider expander codes for adversarial

errors. Briefly, given a bipartite graph G with N vertices of

degree D on the left, M vertices on the right, we say it is

an (αN, (1 − ε)D) expander if and only if any left subset

S with size at most αN has at least (1 − ε)D · |S| distinct

neighbors. The code C of an expander G assigns a bit to each

vertex on the left and views each vertex on the right as a parity

check over its neighbors. A codeword C ∈ C is a vector in

{0, 1}N that satisfies all parity checks on the right. Moreover,

the distance of C is defined as the minimum Hamming distance

between all pairs of codewords. We defer the formal definitions

of expanders and expander codes to Section II. For typical

applications, the parameters α, ε and D are assumed to be

constants, and there exist explicit constructions (e.g., [13]) of

such expander graphs with M < N .

For expander codes defined by (αN, (1− ε)D)-expanders,

the seminal work of Sipser and Spielman [1] gave the

first efficient algorithm to correct a constant fraction (i.e.,

(1 − 2ε) · αN ) of errors, when ε < 1/4. In fact, their

algorithms are super efficient Ð they provide a linear time

algorithm called belief-propagation and a logarithmic time

parallel algorithm with a linear number of processors. Sub-

sequently, Feldman et al. [6] and Viderman [3], [12] provided

improved algorithms to correct roughly 1−3ε
1−2ε ·αN errors, when

ε < 1/3. This fraction of error is strictly larger than that of [1]

whenever ε < 1/4. Viderman [3] also showed how to correct

NΩD,ε,α(1) errors when ε ∈ [1/3, 1/2), and that ε < 1/2 is

necessary for correcting even 1 error. However, the following

basic question about expander codes remains unclear.

Question: What is the best distance bound one can get

from an expander code defined by arbitrary (αN, (1 − ε)
D)-expanders?

This question is important since it is well known that for

unique decoding, the code can and can only correct up to half

the distance number of errors. In [1], Sipser and Spielman

showed that the distance of such expander codes is at least αN ,

while a simple generalization improves this bound to 2(1 −
ε)αN (see e.g., [2] and [3]). Perhaps somewhat surprisingly,

this simple bound is the best known distance bound for an

arbitrary expander code. In fact, Viderman [3] asserted that

this is the best distance bound one can achieve based only

on the expansion property of the graph, and hence when ε
converges to 0, the number of errors corrected in [3], 1−3ε

1−2ε ·αN
converges to the half distance bound. Yet, no evidence was

known to support this claim. Thus it is natural to ask whether
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any improvement is possible, and if so, can one design efficient

algorithms to correct more errors?

A. Our Results

1) Distance of Expander Codes: In this work, we give

affirmative answers to the above questions. Our first result

shows that the best distance bound of expander codes defined

by arbitrary (αN, (1− ε)D)-expanders is roughly αN
2ε .

Theorem 1: [Informal Versions of Theorem 9 and

Theorem 10] Given any (αN, (1 − ε)D)-expander, let C be

the expander code defined by it. The distance of C is at least
α
2ε ·N −Oε(1).

Moreover, for any constant η > 0 there exists an (αN, (1−
ε)D)-expander whose expander code has distance at most

( α
2ε + η) ·N .

We remark that the bound α
2ε ·N is always larger than the

previous bound 2(1− ε)αN since we always have ε < 1/2 in

expander codes. For small ε, this improves upon the previous

bound by a factor of 1
4ϵ roughly, which can be quite significant.

2) Decoding Algorithms: Next we consider algorithms to

correct more errors. Given the above bound on the distance

of expander codes, the natural goal is to design efficient

algorithms that can correct Θ(α/ε) · N errors. We achieve

this goal for all ε < 1/4.

Theorem 2: [Informal version of Theorem 23] Given any

constants α, η > 0 and 0 < ε < 1/4, there exists a linear time

algorithm that for any expander code defined by an (αN, (1−
ε)D)-expander, corrects up to ( 3α

16ε −η) ·N adversarial errors.

The bound 3α
16ε · N is larger than all previous bounds for

ε < 1/4 by at least a constant factor. For example, when

ε is close to 1/4, all previous works [1], [3], [6] can only

correct roughly α
2 ·N errors, while our algorithm can correct

roughly 3
4 ·αN errors. When ε is smaller, the improvement is

even more significant, as no previous work can correct more

than αN errors. On the other hand, given Theorem 1, one can

hope for correcting roughly α
4ε ·N errors, so Theorem 2 falls

slightly short of achieving it.

Actually, we can correct more errors when ε is small.

For example, when ε < 3−2
√

2
2 ≈ 0.0858, our algorithm

in Section VI can correct
√

2−1
2 · αN

ε > 0.207 · αN
ε errors.

We summarize all our results informally in Table I, compared

to the previous best results of [3], [6].

3) List-Decoding: Finally, we consider the list-decodability

of expander codes. List-decoding, introduced by Elias [14] and

Wozencraft [15] separately, is a relaxation of the classical

notion of unique decoding. In this setting, the decoder is

allowed to output a small list of candidate codewords that

include all codewords within Hamming distance ρN of the

received word. Thus, the list-decoding radius ρN could be

significantly larger than half of the distance. For example,

a very recent work by Mosheiff et al. [9] shows random

LDPC codes have list-decoding radii close to their distance.

In this setting, the classical Johnson bound shows that any

binary code with distance d is list-decodable up to radius

r =
N−
√

N(N−2d)

2 with list size NO(1). If we set the Johnson

bound r as the baseline, a natural question is whether expander

codes can list-decode more than r errors given the distance

d = α
2ε ·N?

In Section VII, we consider expander codes defined by

expanders that has a maximum degree Dmax = O(1) on the

right, like LDPC codes. Our main results provide an alternative

bound on the list-decoding radius of such codes, and show

that it is strictly better than the Johnson bound when α/ε
is small and the right hand side is also almost regular, i.e.,

Dmax ≈ DR, where DR is the average right degree.

Theorem 3: [Informal version of Theorem 29] Given any

(αN, (1 − ε)D)-expander with regular degree D on the left

and maximum degree Dmax on the right, its expander code

has a list-decoding radius at least ρN = ( 1
2 + Ω(1/Dmax))d

and list size NO(1). Here d is the distance of the code.

Furthermore, if Dmax ≤ 1.1 DR, ε ≤ 1/4 and α/ε ≤ 0.1,

ρN is strictly larger than the Johnson bound r of binary codes

with distance d = α
2ε ·N .

We remark that the Johnson bound r = d/2+Θ(d2/N) for

a small d (by the Taylor expansion on r =
N−
√

N(N−2d)

2 ).

While we did not attempt to optimize the constant hidden

in the Ω notation of ρ = ( 1
2 + Ω(1/Dmax))d, we show that

roughly 1
DR
≥ α

4ε in Section III. When the expander is also

almost regular on the right, e.g., Dmax ≤ 1.1 DR, this bound is

better than the Johnson bound with d = α
2ε ·N and a small ratio

α/ε. The second condition would follow from a large average

right-degree DR (equivalently, a small M/N or a large code-

rate 1−M/N ). In particular, this applies to the upper bound

constructed for Theorem 1, which has distance arbitrarily close

to α
2ε ·N .

One intriguing question is to design efficient list-decoding

algorithms for expander codes. Since these algorithms would

also immediately improve all our results on unique decoding,

we leave this as a future direction.

4) New Combinatorial Properties of Expander Graphs: Our

distance bounds and decoding algorithms make extensive use

of a new size-expansion tradeoff for bipartite expander graphs,

which we establish in this paper. Specifically, we show that

one can always trade the expansion for larger subsets in such

a graph. In particular, given any (αN, (1 − ε)D)-expander,

we prove in Section III that this graph is also roughly a

(kαN, (1 − kε)D)-expander for any k ≥ 1, provided that

kαN ≤ N . This size-expansion tradeoff is potentially of

independent interest. For example, besides the applications

in our distance bounds and decoding algorithms, we also

use it to show a relation between the three basic parameters

(α, ε, DR) of bipartite expanders. Roughly, we always have
α
ε ≤ 4

DR
(see Fact 12 for a formal statement). On the other

hand, using a random graph one can show the existence of

(αN, (1 − ε)D)-expanders such that roughly α
ε ≥ 1

eDR
(see

Proposition 33). Thus our upper bound is tight up to a constant

factor.

B. Related Work

Sipser and Spielman’s definition in [1] is actually more

general, and is a variant of Tanner codes [16] based on

expanders. Basically, the code requires all symbols in the

neighbor set of a right vertex (in some fixed order) to be a

codeword from an inner linear code C0. The expander code

studied here is the most popular and well studied case, where

the inner code consists of all strings with even weight. Instead
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TABLE I

SUMMARY OF THE DISTANCE AND DECODING RADII FOR ε

of vertex expansion, the expander based Tanner codes are

analyzed based on edge expansion, a related concept which

has also been well studied in both mathematics and computer

science [17], [18]. We note that the distance of Tanner codes

depends heavily on the inner code C0, and is thus generally

incomparable to the distance of our code. To the best of our

knowledge, the best bound on the distance of expander codes

based on vertex expansion of bipartite expanders, as studied

in this paper, was 2(1− ε) · αN .

As mentioned before, expander codes are closely related

to low-density parity-check (LDPC) codes introduced by

Gallager [4], where the bipartite graph associated with the

parity checks has bounded degree on the right but is not

necessary an expander. There is a long line of research on

random LDPC codes against random errors (see [7], [11],

[19] and the references therein). While a random LDPC code

is an expander code with high probability, our results are

incomparable with those of random LDPC codes. This is

because first, we consider expander codes defined by arbitrary

expanders, while many results on random LDPC codes use

more properties than the expansion, such as the girth of the

underlying graph that can be deduced from random graphs.

Second, we consider adversarial errors, while many results

on random LDPC codes [7], [11] consider random errors or

memoryless channels.

In the context of list-decoding, the work of RonZewi-

Wootters-Zemor [20] studied the problem of erasure

list-decoding of expander codes, based on algebraic expansion

properties (i.e., eigenvalues of the corresponding adjacency

matrix).

In the past few decades, a great amount of research has

been devoted to expander graphs, leading to a plethora of new

results. We refer the reader to the survey by Hoory, Linial, and

Wigderson [21] for an overview. Specifically, giving explicit

constructions of bipartite expander graphs for expander codes

has been a challenge. In particular, Kahale [22] showed that

general Ramanujan graphs [17] (with the minimum 2nd largest

absolute eigenvalue among all D-regular graphs) cannot pro-

vide vertex expansion more than half of the degree, which is

the threshold required to give expander codes. After decades

of efforts, explicit constructions satisfying the requirements of

expander codes have been provided in [13], [23] separately.

C. Technique Overview

Let C be an expander code defined by an (αN, (1 − ε)D)
expander. Our techniques for the improved distance bound

and decoding algorithms are based on the combination of

the following three ingredients, together with a new idea of

guessing expansions:

1) A new size-expansion tradeoff for arbitrary bipartite

expander graphs, which we establish in this paper.

2) A procedure of finding possible corruptions in [3], which

we slightly adapt and establish new properties.

3) A procedure of flipping bits in the corrupted word to

reduce the number of errors, introduced in [1].

We first briefly explain each ingredient.

1) The Size-Expansion Tradeoff: As mentioned before,

we show that any (αN, (1 − ε)D)-expander is also roughly

a (kαN, (1 − kε)D)-expander for any k ≥ 1. To prove this,

assume for the sake of contradiction that there is a left subset

S with size kαN that has smaller expansion. This then implies

that there are many collisions (two different vertices on the left

connected to the same vertex on the right) in the neighbor set

of S, i.e., more than kεD · kαN = k2αεND collisions. Now

we pick a random subset T ⊆ S with size αN , then each

previous collision will remain with probability roughly 1/k2.

By linearity of expectation, more than αεND collisions are

expected to remain in the neighbor set of T , thus implying the

expansion of T is smaller than (1−ε)D ·αN . This contradicts

the expander property.

This convenient size-expansion tradeoff is used extensively

in our bounds and algorithms. In fact, by using linear program-

ming, we can get a better size-expansion tradeoff for k ≥ 1
2ε ,

which we use in our result on list-decoding expander codes.

2) The Procedure of Finding Possible Corruptions: Vider-

man [3] introduced the following procedure for finding possi-

ble corruptions. Maintain a set L of left vertices, a set R of

right vertices and a fixed threshold h. Start with R being all

the unsatisfied parity checks, then iteratively add left vertices

with at least h neighbors in R to L, and their neighbors to R.

Viderman showed that if the number of corruptions is not too

large, then when this process ends, L will be a super set of all

corruptions and the size of L is at most αN . Therefore, one

can treat L as a set of erasures and decode from there.

In [3], Viderman used sophisticated inequalities to analyze

this procedure. In this paper, we show that the process has

the following property.

3) Property (*): If h = (1− 2∆)D such that any subset S
of corrupted vertices has expansion at least (1−∆)D|S|, then

all corruptions will be contained in L. Furthermore, we can

assume without loss of generality that the set of corrupted

vertices is added to L before any other vertex.

This allows us to simplify the analysis in [3] and combine

with our size-expansion tradeoff.

4) The Procedure of Flipping Bits: Sipser and Spielman [1]

introduced a procedure to flip bits in the corrupted word.

Again, the idea is to set a threshold h, and flip every bit which

has at least h wrong parity checks in its neighbors. Sipser
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and Spielman showed that when ε < 1/4 and the number

of corruptions is not too large, this procedure will reduce the

number of errors by a constant factor each time. Thus one

only needs to run it for O(log N) times to correct all errors.
5) Our Approaches: We now describe how to combine

these ingredients to get our bounds and algorithms. For the

distance lower bound, it suffices to choose k such that 1−kε >
1/2. Then a standard analysis as in [1] shows the distance of

the code is at least kαN . Thus, we can set k ≈ 1
2ε so that the

distance is roughly at least α
2εN . A subtle point here is that it

is not a priori clear that we can choose k ≈ 1
2ε , since it may be

that kαN = α
2εN > N , and no left subset can have size larger

than N . However, we again use the size-expansion tradeoff to

show that this cannot happen. In particular, we show α
ε ≤ 4

DR

(recall DR is the average degree on the right), and thus we can

always set k ≈ 1
2ε . Section III-A gives a construction which

shows this bound is almost tight.

Next we describe our decoding algorithms.
6) Unique Decoding for ε < 1/4: Our algorithm here is

based on the following crucial observation. Let F denote the

set of corrupted vertices any time during the execution of the

algorithm, and assume |Γ(F )| = (1 − γ)D|F |, where Γ(F )
denotes the neighbor set of F . If γ is large, or equivalently

|Γ(F )| is small, then the procedure of finding possible cor-

ruptions works well. This is because intuitively, the number of

vertices added to L will be proportional to |Γ(F )|, and thus |L|
will be small. On the other hand, if γ is small, or equivalently

|Γ(F )| is large, then the procedure of flipping bits works well.

This is because intuitively, the procedure of flipping bits works

better when the expansion property is better.

Hence, we can combine both procedures and set a threshold

for γ. If γ is larger than this threshold, we use the procedure of

finding possible corruptions; otherwise we use the procedure

of flipping bits. However, we don’t know γ. Thus in our

algorithm we guess γ, and for each possible value of γ
we apply the corresponding strategy. This is a bit like list-

decoding, where we get a small list of possible codewords,

from which we can find the correct codeword by checking the

Hamming distance to the corrupted word. Note that the proce-

dure of finding possible corruptions always returns a possible

codeword; while to get a codeword from the procedure of

flipping bits, we need to apply it for a constant number of

times, until the number of errors is small enough so that we

can easily correct all errors using any known algorithm. Thus

we also need to guess γ for a constant number of times.

Using these ideas, we show that Algorithm 2 can correct

(1 − ε)αN errors for any constant ε < 1/4. Now, we can

improve this by combining with our size-expansion tradeoff.

Specifically, for any constant ε < 1/4 we can choose any k ≥
1 such that kε < 1/4. This implies that a modified algorithm

can actually correct (1−kε)kαN errors. Setting k ≈ 1
4ε gives

us an algorithm that can correct roughly 3α
16εN errors.

For the running time, each time we guess γ, we know

γ = 1 − |Γ(F )|
D|F | with |Γ(F )| ∈ [M ] and |F | ∈ [N ]. Thus a

naive enumeration will result in O(MN) = O(N2) possible

values. Since we need to guess γ for a constant number of

times, this will lead to a polynomial running time. However,

instead we can enumerate γ from {0, η, 2η, . . . , ⌈ 1η ⌉η} for a

small enough constant η > 0. This reduces the running time

to linear time, at the price of decreasing the relative decoding

radius by an arbitrarily small constant. Finally, we remark

that this algorithm can be executed in logarithmic time on a

linear number of parallel processors, since its main ingredients

from [1], [3] have parallel versions in logarithmic time.

7) Unique Decoding for Smaller ε: When ε is even smaller,

e.g., ε < 1/8, our algorithm uses the procedure of finding

possible corruptions, together with property (*) we established.

Let F denote the set of corrupted vertices in the received word.

To use property (*), we need to find a ∆ such that for any

S ⊆ F , S has expansion at least (1−∆)D|S|. Then we can set

the threshold h = (1− 2∆)D. In [3], one assumes |F | ≤ αN
and thus it is enough to set ∆ = ε. However, our goal here is to

correct more than αN errors, thus this choice of ∆ no longer

works. Instead, we use our size-expansion tradeoff to show that

if |Γ(F )| = (1 − γ)D|F |, then when S ⊆ F and |S| ≥ αN ,

we always roughly have |Γ(S)| ≥
(

1−
√

γ|F |ε
αN

)

·D|S|, thus

we can set ∆ = max

{

√

γ|F |ε
αN , ε

}

.

However, again we don’t know γ and |F |. Thus we apply the

same trick as before, and guess both quantities. This leads to

Algorithm 4. Since we have two possible cases (∆ =
√

γ|F |ε
αN

or ∆ = ε), we get two different decoding radii for different

ranges of ε. The running time is polynomial if we use the

naive enumeration of γ and |F |, but can be made linear by

using a similar sparse enumeration as we discussed before.

8) List-Decoding Radius: Recall that our goal is to show

that given any y ∈ F
N
2 , there is a list of at most NO(1)

codewords within distance ρN = (1
2 +Ω(1/Dmax))d to y. Our

analysis modifies the double counting argument that is used

to show the Johnson bound. The modification is by using the

special structure of expander codes.

In more details, suppose the list of L codewords within

distance ρN to y, is {C1, . . . , CL}. Let τi be the number of

codewords in the list which have their i-bit different from y.

We focus on counting the number T of ªtriplesº (i, j1, j2),
where the pair of codewords (Cj1 , Cj2) are different in their

i-th bit. Since the code has distance d = δN , we know

T ≥
(

L
2

)

δN . We also know T =
∑

i∈[N ] τi(L − τi). The

key observation in our analysis is that for expander codes,

{τi, i ∈ [N ]} have a large deviation. Specifically, we call τi

heavy if τi ≥ 0.9
Dmax

L, and show that the summation of heavy

τi’s is Θ(NL). By using this observation, we manage to get a

better upper bound for T than that in the proof of the Johnson

Bound in certain situations, which in turn yields a better list-

decoding radius.

9) Organization: The rest of this paper is organized as

follows. In Section II, we describe some basic notation,

terms, definitions and useful theorems from previous work.

In Section III, we show our improved distance bound for

expander codes, and prove it is tight in general. In Section IV,

we establish new properties of the algorithm which can find

a super set of corruptions. In Section V, we provide our

main unique decoding algorithm. In Section VI, we pro-

vide our improved unique decoding algorithm for smaller ε.
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In Section VII, we show our list-decoding result. Finally,

we conclude in Section VIII with some open questions.

Appendix A contains some relatively standard materials omit-

ted in the main body.

II. PRELIMINARIES

We will use 1{E} ∈ {0, 1} to denote the indicator variable

of an event E . Moreover, we use C and c to denote different

constants in various proofs of this paper.

A. Basic Definitions From Graph Theory

Given a graph G, we use V (G) to denote its vertex set

and E(G) to denote its edge set. Given a bipartite graph G,

we use VL(G) and VR(G) to denote the left hand side and

right hand side of the bipartite graph separately. When G is

clear, we simplify them as VL and VR. Moreover, we fix two

notations N := |VL| and M := |VR|.
For any subset S ⊆ VL∪VR, we always use Γ(S) to denote

its neighbor set in G. If a vertex v ∈ Γ(S) is connected to S
by exactly one edge, we call v a unique neighbor of S and

use Γ1(S) to denote the set of all unique neighbors of S.

In this work, we consider bipartite graphs that are regular

on the left hand side. Thus we use D to denote the regular

degree in VL and DR to denote the average degree in VR.

Since N = |VL| and M = |VR|, we have N ·D = M ·DR.

Moreover, we will use Dmax to denote the maximum degree in

G, which would be the maximum degree in VR given M < N .

A bipartite graph G is an (αN, (1− ε)D)-expander if and

only if for any left subset S of size at most αN , its neighbor

set Γ(S) has size ≥ (1− ε)D · |S|. For convenience, we call
|Γ(S)|
|S| the expansion of S and say G satisfies (αN, (1− ε)D)

expansion if and only if it is an (αN, (1 − ε)D)-expander.

Throughout this work, we assume that D and DR are con-

stants. Since we are interested in expanders with ε < 1/2 and

N > M , we always assume D ≥ 3 and DR > 3.

B. Basic Definitions From Coding Theory

We recall several notations from coding theory and define

expander codes formally.

Definition 4: An (N, k, d) binary error correcting code C is

a set of codewords contained in F
N
2 , with |C| = 2k such that

∀C1, C2 ∈ C, the Hamming distance between C1 and C2 is at

least d. Moreover we call k/N the rate of C.

A linear code is a code whose codewords form a linear

subspace of F
N
2 .

One fact about linear codes is that the distance of a linear

code is equal to the minimum weight of a non-zero codeword

in it. The decoding radius of a decoding algorithm of C refers

to the largest number of errors that the algorithm can correct.

Definition 5 (Expander Codes [1]): Given an (αN, (1 −
ε)D) expander graph G with M right vertices, the expander

code defined by G is C ⊆ F
N
2 such that

C =







C | ∀i ∈ [M ],
∑

j∈Γ(i)

Cj = 0







,

where the addition is over the field F2.

Given the definition of expander codes, we know its rate is

at least 1−M/N and its distance is the minimum weight of

a non-zero codewords in C.

Remark 6: The original definition of expander codes in [1]

is more general, where each vertex on the right represents

some linear constraints on the codeword bits corresponding to

its neighbors. In this paper, we only consider the most popular

and well studied case where each vertex on the right represents

a parity check.

We use the following results of decoding for expander

codes, from [3].

Theorem 7 [3]: Let G be an (αN, ( 1
2 + ξ)D) expander

with ξ > 0. For the expander code defined by G, there is

a linear-time algorithm that can correct αN erasures.

Theorem 8 [3]: Let G be an (αN, (1− ε)D) expander for

ε < 1/3. For the expander code defined by G, there is a

linear-time algorithm that can correct 1−3ε
1−2ε⌊αN⌋ errors.

III. IMPROVED DISTANCE OF EXPANDER CODES

Let G be an (αN, (1 − ϵ)D) expander and C be the

corresponding expander code. We show that when ε < 1/2,

the distance of C is roughly 1
2εαN .

Theorem 9: Let G be an (αN, (1−ε)D) bipartite expander.

The distance of the expander code defined by G is at least
α
2ε ·N − 1/ε.

In Section III-A, we provide a construction of expander

codes to show the above bound α
2ε ·N is almost tight in general.

Theorem 10: Given any constants ε ∈ (0, 1/2) and η > 0,

there exist constants D and α > 0, such that for infinitely

many N , there exist (αN, (1 − ε − η)D)-expanders with

M ∈ [N/2, 2N/3] where (1) the rate of the expander code

is in [1/3, 1/2]; and (2) the distance of the expander code is

at most α
2ε ·N .

Remark: While the graphs we construct in Theorem 10

are not strictly regular on the right, they are ªalmost regularº

in VR, i.e., Dmax ≤ 1.1 DR, such that Theorem 3 indicates a

larger list-decoding radius than the Johnson bound.

To prove Theorem 9, we start with the following lemma

which gives a tradeoff between the two parameters α and ε.

This is one of our main technical lemmas, and the proof is

deferred to Section III-B.

Lemma 11: For any k ∈ (1, 1/α) and any left subset S of

size kαN , we have

• |Γ(S)| ≥ (1− kε)D · kαN − 2εk2 ·D.

• |Γ(S)| ≥ (1− 2kε−1
3−2/k )D · k2αN−O(k ·D) (which is better

than the 1st bound for k > 1/2ε).

In particular, the first bound will be extensively used

in our decoding algorithms, which shows an (αN, (1 − ϵ)
D)-expander is also roughly a (kαN, (1 − kϵ)D)-expander

for any k > 1. While this bound is extremely useful for

k ≤ 1/2ε, we will use the second one for larger k to improve

the list-decoding radius upon the standard Johnson bound.

Using the above lemma, we first prove the following facts

in an expander graph.

Fact 12: Let G be an (αN, (1 − ε)D)-expander with left

regular degree D and right average degree DR. We always
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have

1) ε ≥ 1/D.

2) α
4ε ≤ 1

DR
· (1 + 2

αN ).

Proof: To prove the first fact, let us consider the smallest

non-trivial cycle C in the expander graph G. First of all,

we observe that |C| = O(log |V |). To show this, we consider

the argument to bound the girth of a graph. Let us fix a

vertex v and consider the BFS tree with root v. The BFS

procedure finds a non-trivial cycle when it finds a vertex

for the 2nd time. Since G is D-regular in VL, within depth

2 logD−1 M , the BFS procedure will find a non-trivial cycle.

Since each vertex in C ∩ VR has two neighbors in C ∩ VL,

|Γ(C ∩ VL)| ≤ D · |C ∩ VL| − |C ∩ VR| = (D− 1) · |C ∩ VL|.
For the second fact, consider a left subset S of size 2M/D

in VL. Since M ≤ N and D ≥ 3, such an S always exists.

Given |Γ(S)| ≤ M , we plug k = |S|
αN into the 1st inequality

of Lemma 11 to obtain
(

1− ε · 2M/D

αN

)

·D · |S| − 2 · εD ·
(

2M/D

αN

)2

≤M.

We simplify it as follows:
(

1− ε · 2M/D

αN

)

·D · 2M/D − 8ε ·M2

α2N2 ·D ≤M
(

1− ε · 2

αDR

)

· 2M − 8ε ·M
α2N ·DR

≤M

(recall ND = MDR)

M − 8ε ·M
α2N ·DR

≤ 4ε

αDR
·M.

So we have 1
DR
≥ α

4ε − 2
αN ·DR

, or equivalently, α
4ε ≤ 1

DR
·

(1 + 2
αN ). □

We can now prove Theorem 9.

Proof of Theorem 9: First of all, note that α
2ε ≤ 2

DR
·

(1 + 1
αN ) from Fact 12, and thus is strictly less than 1 (since

DR > D ≥ 3). Now assume the claim is false, let us consider

any non-zero codeword z with Hamming weight at most α
2ε ·

N − 1/ε.

Let S ⊂ [N ] denote the entries in z that are 1.

By Lemma 11, |Γ(S)| ≥ (1− |S|
αN · ε)D · |S| − 2εD · ( |S|

αN )2.

Since 1 > 2ε·|S|
αN , we have

(

1

2
+

1/ε

αN
· ε
)

D · |S| − 2εD ·
( |S|

αN

)2

=
D

2
· |S|+ D · |S|

αN
−D · 2ε · |S|

αN
· |S|
αN

>
D

2
· |S|.

This implies the existence of unique neighbors in Γ(S). Thus

z is not a valid codeword, which contradicts our assumption.

□

A. Distance Upper Bound of Expander Codes

In this section we prove Theorem 10. Given η and ε, let D ≥
1

ε·η2 be a constant such that there exists a family of degree-D
Ramanujan graphs [17] whose 2nd largest absolute value of

eigenvalues of the adjacency matrix is λ ≤ 2
√

D − 1. In this

proof, when the graph H is clear, we use e(A, B) for A, B ⊂
V (H) to denote the number of distinct edges between A and

B. We state the following version of the expander mixing

lemma for e(A, A) [18], [24].

Lemma 13 (Theorem 8 in [24] for A = B): Let

H = (V,E) be an expander with degree D, where the

second largest absolute value of eigenvalues of the adjacency

matrix is λ. Then for any subset A ⊂ V of size at most

|V |/2, e(A, A), the number of edges inside A, is bounded by
∣

∣

∣

∣

e(A, A)− D

2|V | · |A|
2

∣

∣

∣

∣

≤ λ

2
· |A|.

We now construct an (αN, (1 − ε − η)D)-expander graph

with N + M vertices by putting together two disjoint graphs

G0 and G1. For G0, we first choose a Ramanujan graph H
with degree D and N ′ = α

2ε · N vertices in the family for

a sufficiently small α (compared to ε/D). To obtain (1 −
ε− η)D expansion, we modify H and construct a new graph

G0 based on the vertex-edge incidence graph of H . Thus the

vertex expansion of G0 is now the vertex-edge expansion of

H , rather than the vertex expansion of H . More specifically,

we set G0 as follows: VL(G0) = V (H) and VR(G0) = E(H)
such that (v, e) ∈ E(G0) if and only if v ∈ V (H) is an

endpoint in the edge e ∈ E(H) of H . Notice that G0 has left

degree D.

Claim 14: The bipartite graph G0 constructed above is an

(αN, (1− ε− η)D)-expander.

Proof: For any S ⊆ VL(G0), |Γ(S)| is the number of dis-

tinct edges connected to S ⊂ V (H) in H , i.e., e(S, V (H)) in

the Ramanujan graph H . We rewrite e(S, V (H)) = e(S, S)+
e(S, S). Since 2e(S, S) + e(S, S) = D · |S|, we upper bound

e(S, S) by the expander mixing lemma:

e(S, S)≤ D

2|V (H)| ·|S|
2+

λ

2
·|S| ≤ D·|S|

( |S|
2|V (H)| +

λ

2D

)

.

Since |S| ≤ αN , |V (H)| = α
2ε ·N and λ/D ≤ 2√

D
≤ 2η

√
ε,

we have e(S, S) ≤ (ε+η)D · |S| and e(S, V (H)) = D · |S|−
e(S, S) ≥ (1− ε− η) ·D|S|. □

While G0 satisfies
(

αN, (1 − ε − η)D
)

expansion, its

expander code has a small rate since its right hand side

|VR(G0)| = |E(H)| > |V (H)| = |VL(G0)|. Then we

construct G1 such that the design rate of the expander code

of G = G0 ∪ G1 is M/N ∈ [1/3, 2/3]. For an even number

N and some M ∈ [N/2, 2N/3] chosen later, G1 is defined

as a random regular bipartite graph with |VL(G1)| = N1 =
N −N ′, |VR(G1)| = M1 = M −DN ′/2, regular left degree

D and regular right degree D1 = N1 ·D/M1. Since we can

choose M ∈ [N/2, 2N/3] and α to be sufficiently small, such

an integer D1 exists. For example, we can set M1 = N1/2 and

D1 = 2D give an even N1 (based on even N ′ in [17] and even

N in our choice).

Then, a random bipartite graph with such parameters satis-

fies (αN, (1−ε)D) expansion with high probability for a small

α. For completeness we show this calculation in Appendix A

and assume this property in the rest of this proof. Overall,

because both G0 and G1 satisfy (αN, (1−ε−η)D) expansion,

G = G0 ∪G1 is an (αN, (1− ε− η)D) expander.

Next, consider a codeword that is all 1 in VL(G0), and

0 everywhere else. It satisfies all parity checks since the right

degree of VR(G0) is 2. Moreover, its weight is α
2εN , and

thus the distance of the corresponding expander code is at

most α
2εN .
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Finally, we remark that G is regular in VL(G) and is ªalmost

regularº in VR(G). Its maximum degree Dmax = D1 and

average degree on right DR = (M−DN ′/2)·D1+DN ′

M . Since

N ′ = α
2ϵN for a sufficiently small α (compared to ε/D) and

M ∈ [N/2, 2N/3], DR ≥ 0.95 D1 and Dmax ≤ 1.1 DR.

So our construction meets the requirement of Theorem 3 for

a better list-decoding radius than the Johnson bound.

B. Proof of Lemma 11 and Its Generalization

We prove the first lower bound |Γ(S)| ≥ (1− kε)D · |S| −
2εk2 ·D by a probabilistic argument, where we recall |S| =
kαN . Suppose |Γ(S)| is small. Then we consider a random

subset T of size αN in S and upper bound

E
[
∣

∣Γ(T )
∣

∣

]

≤ D · |T | −
(

|S| ·D −
∣

∣Γ(S)
∣

∣

)

· |T | · (|T | − 1)

|S| · (|S| − 1)
.

As justification, consider any neighbor u of S, say u has

dS(u) neighbors in S which are v1, . . . , vdS(u). Observe that

the following inequality holds for any T ⊆ S

1{u ∈ Γ(T )}≤
dS(u)
∑

i=1

1{vi ∈ T}−
dS(u)
∑

i=2

1{v1 ∈ T} ·1{vi ∈ T}.

So we take expectation (over T ) on both sides:

E
T

[1{u ∈ Γ(T )}]≤dS(u) · |T ||S| −(dS(u)−1) · |T |·(|T |−1)

|S|·(|S|−1)
.

(1)

At the same time, we know
∑

u∈Γ(S)

dS(u) = D · |S|

and
∑

u∈Γ(S)

(dS(u)− 1)= D · |S| − |Γ(S)| (2)

Then we consider the summations over u ∈ Γ(S) on the

two sides of (1): By linearity of expectation, it becomes

E
T

[
∣

∣Γ(T )
∣

∣

]

≤
∑

u

dS(u)
|T |
|S| −

∑

u

(dS(u)− 1) · |T |(|T | − 1)

|S|(|S| − 1)

= D · |T | −
(

|S| ·D −
∣

∣Γ(S)
∣

∣

)

· |T | · (|T | − 1)

|S| · (|S| − 1)
(plug the two summations of (2))

= |T | ·D
(

1−
(

1−
∣

∣Γ(S)
∣

∣

D · |S|

)

· |T | − 1

|S| − 1

)

.

On the other hand, this is at least |T |·D(1−ε) by the expander

property. So we have

1− ε ≤ 1−
(

1−
∣

∣Γ(S)
∣

∣

D · |S|

)

· |T | − 1

|S| − 1

⇔ ε/

( |T | − 1

|S| − 1

)

≥ 1−
∣

∣Γ(S)
∣

∣

D · |S| .

This gives
∣

∣Γ(S)
∣

∣

D · |S| ≥ 1− ε ·
(

k +
k − 1

αN − 1

)

.

We rewrite it to obtain
∣

∣Γ(S)
∣

∣ ≥ (1 − εk) · D|S| − ε
(k − 1)

αN − 1
· D|S| ≥ (1 − εk) · D|S| − 2εDk

2.

1) Generalization: Next we consider an alternative way to

compute E
[

|Γ(T )|
]

. The main motivation is to prove a better

bound than the above one for k > 1/2ε.

Let us fix S of size kαN and consider Γ(S). Since the

total degree of S is D ·kαN , let βj ·DαN denote the number

of vertices in Γ(S) with exactly j neighbors in S. Since the

largest degree is Dmax, by the definition,

|Γ(S)| = (β1 + · · ·+ βDmax
) ·DαN.

Moreover, by summing up the degrees, we have

β1 + 2β2 + · · ·+ Dmax · βDmax
= k.

Now we consider

E
[

|Γ(T )|
]

=
∑

i∈Γ(S)

Pr
T∼( S

αN)
[T ∩ Γ(i) ̸= ∅], (3)

which is at least (1−ε)DαN from the property of expansion.

Since T is a uniformly random subset of size αN in S,

Pr
T

[T ∩ Γ(i) ̸= ∅] in (3) only depends on |Γ(i) ∩ S| Ð

the number of neighbors in S. Hence, we use qj to denote

this probability Pr
T

[T ∩ Γ(i) ̸= ∅] for vertices with exactly j

neighbors in S. From the definition, qj equals PrT [T ∩Γ(i) ̸=
∅] = 1− PrT [T ∩ Γ(i) = ∅]

= 1− (|S| − |T |) · (|S| − |T | − 1) · · · (|S| − |T |−j + 1)

|S| · (|S| − 1) · · · (|S| − j + 1)
.

(4)

Plugging this into Eq(3), we have the inequality

Dmax
∑

j=1

qj · βj ·DαN ≥ (1− ε) ·DαN.

To lower bound |Γ(S)|, we rewrite all constraints as a linear

programming:

min β1 + · · ·+ βDmax

subject to β1 + 2 · β2 + · · ·Dmax · βDmax
= k (5)

Dmax
∑

j=1

qj · βj ≥ (1− ε) (6)

βj ≥ 0, ∀j.
To prove a lower bound of the above linear program,

consider the dual of the above linear program:

max k · x1 + (1− ε) · x2

subject to j · x1 + qj · x2 ≤ 1 ∀j = 1, . . . , Dmax, (7)

x2 ≥ 0.

Now we prove the 2nd lower bound by presenting a feasible

point (x1, x2) in the dual program. We consider the point

where x1 and x2 are determined by (7) with j = 2 and j = 3:

2 x1 + q2 · x2 = 1, 3 x1 + q3 · x2 = 1.

We get x1 = q2−q3

3q2−2q3
and x2 = 1

3q2−2q3
. To simplify x1 and

x2, we simplify q2 and q3 using the fact k > 1
2ε > 1 as

follows:

q2 = 1− (k − 1)αN · [(k − 1)αN − k−1
k − 1

k ]

kαN · (kαN − 1)
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= 1−
(

k − 1

k

)2

− (k − 1)αN · (− 1
k )

kαN · (kαN − 1)

=
2

k
− 1

k2
+ O

(

1

k2αN

)

q3 = 1− (k − 1)αN · [(k − 1)αN − 1] · [(k − 1)αN − 2]

kαN · (kαN − 1) · (kαN − 2)

= 1−
(

k − 1

k

)3

+

(

1

k
· 1

kαN − 1
+

2

k
· 1

kαN − 2

)

·
(

k − 1

k

)2

− 1

k
· 1

kαN − 1
· 2
k
· 1

kαN − 2
· k − 1

k

=
3

k
− 3

k2
+

1

k3
+ O

(

1

k2 · αN

)

Given k > 1, we rewrite x1 =
−1/k+2/k2−1/k3±O( 1

k2
·αN

)
3/k2−2/k3±O( 1

k2
·αN

)
=

2−1/k−k
3−2/k ± O( 1

αN ) and x2 = k2

3−2/k ± O( 1
αN ) such that the

objective value becomes

k · x1+(1− ε)·x2 = k · 2−1/k−k+k(1− ε)

3− 2/k
±O

(

k

αN

)

=
k

2
· 4−2/k−2kε

3− 2/k
±O

(

k

αN

)

=
k

2

(

1− 2kε− 1

3− 2/k

)

±O

(

k

αN

)

.

We show this pair of (x1, x2) is feasible in the rest of this

section. k > 1 implies x2 > 0. Claim 15 below will show

that (7) is true for any j. These conclude that |Γ(S)| is at

least
[

k
2 (1 − 2kε−1

3−2/k ) − O( k
αN )

]

·DαN . Finally we note that

the first lower bound is obtained from the dual where x1 and

x2 are determined by (7) with j = 1 and j = 2. In the rest of

this section, we state Claim 15 and finish its proof.

Claim 15: x1 = q2−q3

3q2−2q3
and x2 = 1

3q2−2q3
satisfy (7) for

any j.

Proof: Recall that x2 and x3 satisfy the equations of (7)

with j = 2 and j = 3. For j = 1, (7) is true since q1 = 1/k

and x1 + 1
kx2 = 2−1/k

3−2/k ± O( k
αN ) ≤ 1 given k > 1. Next,

we show (7) is also true for j ≥ 4 via the concavity of qj

(comparing to equations of j = 2 and j = 3).

Specifically, the key property is that these probabilities qj

defined in (4) constitute a strictly concave curve. Namely, for

any j > 1,

qj − qj−1 > qj+1 − qj . (8)

To verify 2qj > qj−1 + qj+1, we prove

2 · (|S| − |T |) · · · (|S| − |T |−j + 1)

|S| · · · (|S| − j + 1)

<
(|S| − |T |) · · · (|S| − |T |−j + 2)

|S| · · · (|S| − j + 2)

+
(|S| − |T |) · · · (|S| − |T |−j)

|S| · · · (|S| − j)
.

Removing the common factor
(|S|−|T |)···(|S|−|T |−j+2)

|S|···(|S|−j+2) , this is

equivalent to showing

2· |S|−|T |−j+1

|S|−j+1
< 1+

(|S|−|T |−j+1) · (|S|−|T |−j)

(|S|−j+1) · (|S|−j)

Let a = |S| and b = |S| − |T |. This becomes

2(b− j + 1)(a− j) < (a− j + 1)(a− j) + (b− j + 1)(b− j)

After some algebraic manipulation, it becomes proving

0 < (a2 + b2 + b)− (2ab + a).

The last inequality is equivalent to 0 < (a − b)2 − (a − b),
which is always true as long as a− b = |T | > 1.

Fix ℓ ≥ 4 and consider the linear combination of (7) with

j = 2 and j = ℓ whose coefficients are ℓ−3
ℓ−2 and 1

ℓ−2 . By the

concavity of q2, q3, and qℓ, its L.H.S.

3 · x1 +

(

ℓ− 3

ℓ− 2
· q2 +

1

ℓ− 2
· qℓ

)

· x2 < 3 · x1 + q3 · x2.

Since 3 · x1 + q3 · x2 = 1 by the definition of (x1, x2), this

implies the linear combination is strictly less than 1. Again,

since 2 · x1 + q2 · x2 = 1, we have ℓ · x1 + qℓ · x2 < 1. □

Remark: In this remark, we justify our choice of (x1, x2)
by showing that (1) the minimum value of the primal is

achieved by β∗ with at most two non-zero entries; (2) more

importantly, if β∗ has exactly two non-zero entries, they

must be adjacent, i.e., βj > 0 and βj+1 > 0 for some j.

By complementary slackness, these imply that our choice of

(x1, x2) is optimal for certain regime of parameters.

Specifically, if β∗ is supported on three entries say ℓ1 <
ℓ2 < ℓ3, we have j · x1 + qj · x2 = 1 in the dual for j =
ℓ1, ℓ2, ℓ3 by complementary slackness. Note that x2 > 0 in

order to satisfy any two equations. However, the two equations

of (7) for j = ℓ1 and j = ℓ3 indicate ℓ2 · x1 + qℓ2 · x2 > 1,

as follows. Consider their linear combination with coefficients
ℓ3−ℓ2
ℓ3−ℓ1

and ℓ2−ℓ1
ℓ3−ℓ1

: it equals 1 on the RHS from these two

equations; but the combination on the LHS is strictly less

than ℓ2 · x1 + qℓ2 · x2 by the concavity of qj (and x2 > 0).

Similarly, if β∗ is supported on two non-adjacent entries say

ℓ1 and ℓ2 with ℓ1 + 1 < ℓ2, we have two equations for

j = ℓ1 and j = ℓ2 separately. However, the solution (x1, x2)
which satisfies these two equations violates other constraints

in the dual Ð one can show (ℓ1 + 1) · x1 + qℓ1+1 · x2 > 1 by

the same argument again.

IV. DECODING FROM ERASURES, AND FINDING

POSSIBLE CORRUPTIONS

First, we show that by combining Lemma 11 and

Theorem 7, we can also get a stronger result for decoding

from erasures.

Theorem 16: For every ε < 1/2, consider an expander code

defined by an (αN, (1− ε)D) expander G. For every ξ > 0,

there is a linear-time algorithm that corrects 1−ξ
2ε αN erasures.

Proof: By Lemma 11, for any 1 < k < 1
α the expander

is also a (kαN, (1 − kε)D − 2εDk
αN )) expander. Thus if 1 −

kε − 2εk
αN > 1/2 + ξ′ for a ξ′ > 0, then by Theorem 7, one

can decode from kαN erasures, using the same algorithm.

By Fact 12, 1−ξ
2ε ≤ 1

α . This means k can be as large as 1−ξ
2ε

for any ξ > 0. Notice that if 1−ξ
2ε ≤ 1 , then the theorem is

implied by Theorem 7. □

Next, we provide a simple algorithm to find a super set

of the corruptions, which is adapted from a similar algorithm
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Algorithm 1 The Basic Algorithm Finding a Super Set of

Corruptions

1: function FIND(y ∈ F
N
2 and ∆ ∈ R)

2: L← ∅
3: R← {unsatisfied parity checks of y}
4: h← (1− 2∆)D
5: while ∃i ∈ VL \ L s.t. |Γ(i) ∩R| ≥ h do

6: L← L ∪ {i}
7: R← R ∪ Γ(i)
8: end while

9: return L
10: end function

in [3]. Let G be an (αN, (1 − ε)D) expander with N left

vertices, M right vertices, and left degree D. Let C be an

expander code defined by G. The input y is a corrupted

message of a codeword C0 ∈ C. Let F be the set of corruptions

in y compared to C0. We use Algorithm 1 to find a super set

of F given certain parameters.

By a similar proof to that of proposition 4.3 in [3], we have

the following properties.

Lemma 17: If |Γ1(S)| ≥ (1− 2∆)D|S| for any non-empty

S ⊆ F , then F is contained in L after the while loop.

Proof: Suppose not, then let B be F \ L after running

the algorithm, B ̸= ∅. Since B ⊆ F , we have |Γ1(B)| ≥ (1−
2∆)D|B|. So there is a vertex u ∈ B such that u has at least

(1− 2∆)D neighbors in Γ1(B). We know that |Γ(u) ∩R| <
(1− 2∆)D, because otherwise u should be added to L then.

Thus there has to be a neighbor v of u, such that v is not in

R and is only connected to one vertex in B, which is u. As

F \ B ⊆ L, we know Γ(F \ B) ⊆ R. So v connects to one

vertex, i.e., u in F . This is not possible since then v has to

be unsatisfied and thus it is already in R. □

Lemma 18: In every iteration, if there are multiple vertices

that can be added to L and we choose one of them arbitrarily,

then we always get the same L after all the iterations.

Proof: Consider two different procedures where they

choose different vertices to add to L in their corresponding

iterations. Suppose that they get two different L, say L1 for

the first procedure and L2 for the second. Without loss of

generality assume L1 \ L2 ̸= ∅. Let u be the first vertex in

L1 \ L2 that is added in procedure 1. Then all the vertices in

L1 added before u, denoted by the set A, is also contained

in L2. Since vertices can only be added to the set R, for

procedure 2 we should always have |Γ(u) ∩ R| ≥ h when

A ⊆ L2 and u /∈ L2. Thus u has to be added to L2 in

procedure 2. This is a contradiction. Therefore L1 = L2. □

Lemma 19: If |Γ1(S)| ≥ (1− 2∆)D|S| for any non-empty

S ⊆ F , then there exists a sequence of choices of the

algorithm such that all the elements of F can be added to

L in the first |F | iterations.

Proof: We use induction to show that in each of the first

|F | iterations, there exists an element in F \ L which can be

added to L.

In the first iteration, since |Γ1(F )| ≥ (1− 2∆)D|F |, there

exists u ∈ F such that |Γ(u)∩Γ1(F )| ≥ h for h = (1−2∆)D.

Observe that Γ1(F ) ⊆ R. So u can be added to L.

Assume in each of the first i − 1 < |F | iterations, the

algorithm can find a distinct element in F to add to L. In the

i-th iteration, let F ′ = F \L. Notice that |F ′| = |F |−(i−1) ≥
1. Hence |Γ1(F ′)| ≥ (1−2∆)D|F ′|. Thus there exists u ∈ F ′

such that |Γ(u) ∩ Γ1(F ′)| ≥ (1 − 2∆)D = h. Observe that

Γ1(F ′) ⊆ Γ1(F ) ⊆ R. So u can be added to L. □

The above lemmas imply that as long as |Γ1(S)| ≥
(1 − 2∆)D|S| for any non-empty S ⊆ F , when analyzing

Algorithm 1, we can assume without loss of generality that

the algorithm first adds all corrupted bits into the set L.

V. UNIQUE DECODING BY GUESSING EXPANSION

WITH ITERATIVE FLIPPING

Let ε ∈ (0, 1/4) be an arbitrary constant in this section.

We first show an algorithm which has a decoding radius

(1 − ε)αN . Then by using Lemma 11, we show that the

algorithm achieves a decoding radius approximately 3α
16εN for

any ε < 1/4.

The basic idea of the algorithm is to guess the expansion

of the set of corrupted entries in the algorithm, say (1− γ)D.

Assume we can correctly guess γ. For the case of γ ≥ 2
3ε,

we use a procedure similar to [3] to find a super set of possible

corruptions, and then decode from erasures. For the case of

γ < 2
3ε, we first consider the left subset which contains all

vertices with at least (1− 3γ)D unsatisfied checks, and show

that this set contains (a constant fraction) more corrupted

bits than correct bits. Thus we can flip all bits in this set

and reduce the number of errors by a constant fraction. The

algorithm then repeats this step for a constant number of

times, until the number of errors is small enough, where

we can apply an existing algorithm to correct the remaining

errors.

We describe our algorithm in Algorithm 2 and then state

our main result of this section.

Theorem 20: For every small constant β > 0, and every

ε ≤ 1/4 − β, let C be an expander code defined by a

(αN, (1−ε)D) expander graph. There is a linear time decod-

ing algorithm for C with decoding radius (1− ε) · αN .

To prove the theorem, we focus on the i-th iteration of

function DECODING, and show that we can make progress

(either reducing the number of errors or decoding the original

codeword) in this iteration. Let Fi denote the set of errors at

the beginning of iteration i and γ(Fi) ∈ [0, ε] be the parameter

such that |Γ(Fi)| = (1− γ(Fi)) ·D|Fi|.
First we show function FIXEDFINDANDDECODE will

recover the codeword directly whenever γi ≥ 2ε
3 + η.

Claim 21: If |Fi| ≤ (1 − ε) · αN , γi ≥ 2ε
3 + η, and

γ(Fi) ∈ [γi − η, γi), then function FIXEDFINDANDDECODE

in DECODING will return a valid codeword directly.

Proof: First notice that when γi ≥ 2ε
3 + η, this iteration

of DECODING will go to function FIXEDFINDANDDECODE.

Let γ := γ(Fi). We prove that L after FIND has size at

most αN . Suppose not. Since |Fi| ≤ (1 − ε) · αN , by the

expander property, for every nonempty F ′ ⊆ Fi, |Γ(F ′)| ≥
(1 − ε)D|F ′|, so by Lemma 17, after FIND, L covers all

the errors. Consider the moment |L| = αN . Without loss of

generality, we assume Fi ⊆ L (otherwise we can adjust the

order of vertices added to L by Lemma 18).
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Algorithm 2 Decoding Algorithm for ε = 1/4− β

1: function MAIN(y ∈ F
n
2 , α ∈ R, ε ∈ R) //The main

procedure.

2: Let ℓ = ⌈log1−β
1
3⌉ = O(1/β)

3: for every i ∈ [ℓ], every γi ∈ {η, 2η, . . . , ⌈ 1η ⌉η}, where

η := β/100 do

4: C ′ ← DECODING(y, γ1, . . . , γℓ, α, ε)

5: if C ′ is a valid codeword and the distance between

C ′ and y is at most (1− ε)αN then

6: return C ′

7: end if

8: end for

9: end function

10: function DECODING(y ∈ F
n
2 and (γ1, . . . , γℓ) ∈ R

ℓ, α ∈
R, ε ∈ R)

11: z ← y
12: for i = 1, . . . , ℓ do

13: if γi ≥ 2ε/3 + η then

14: z ← FIXEDFINDANDDECODE(z, α, ε)

15: return z
16: else

17: Let L0 denote all bits in z with at least (1 −
3γi)D wrong parity checks

18: Flip all the bits in L0

19: end if

20: end for

21: Apply the decoding of Theorem 8 on z and return the

result

22: end function

23: function FIXEDFINDANDDECODE(y ∈ F
N
2 , α ∈ R, ε ∈

R)

24: L← FIND(y, ε), where FIND is from Algorithm 1

25: y′ ← Replace all symbols of y in L by the erasure

symbol

26: return codeword C ′ decoded by Theorem 16 on y′

27: end function

Then we have

(1− ε)DαN ≤ |Γ(L)| ≤ (1− γ)D · |Fi|+ 2εD(αN − |Fi|),

because the expansion of Fi is (1−γ)D ·|Fi| and when adding

any vertex in L \Fi to L, the cardinality of R increases by at

most 2εD. So

(1− ε)αN ≤ (1− γ) · |Fi|+ 2ε(αN − |Fi|).

As γ ≤ ε and ε ≤ 1/4, 1 − γ − 2ε > 0. This implies

|Fi| ≥ 1−3ε
1−γ−2ε · αN . Since γ ≥ γi − η ≥ 2ε

3 , we have |Fi| ≥
1−3ε

1−8ε/3αN . When ε ≤ 1/4− β, one can check that 1−3ε
1−8ε/3 >

1 − ε always holds. It is contradicting the assumption that

|Fi| ≤ (1− ε)αN .

As L ⊇ Fi and is of size at most αN , the algorithm can

correct all the errors using L and z, given ε < 1/4 − β,

by Theorem 16. □

Next we discuss the case where γi < 2ε/3 + η, which

will result in the function DECODING finding the set L0 and

flipping all the bits in L0. We show that this will reduce the

number of errors by a constant fraction.

Claim 22: If |Fi| ≤ (1− ε)αN , γi < 2ε
3 + η, and γ(Fi) ∈

[γi−η, γi), then flipping L0 will decrease the number of errors

in z by at least a β fraction.

Proof: Let γ := γ(Fi) and N ′ := (1+3η)|Fi|
(1−ε)α . We show that

|Fi ∪ L0| < αN ′. To prove it, assume |Fi ∪ L0| = αN ′, i.e.,

we only take αN ′ − |Fi| elements from L0 \ Fi, consider

these elements together with elements in Fi. Note that by

definition of N ′, as |Fi| ≤ (1 − ε)αN , αN ′ ≤ (1 + 3η)αN .

By Lemma 11, (1 − (1 + 3η)ε)DαN ′ − 2εD(1 + 3η)2 ≤
|Γ(Fi ∪L0)|. Notice that |Γ(Fi)| = (1−γ)D|Fi|. Also notice

that dding each element of L0 \ Fi to L0 contributes at most

3γiD to |Γ(Fi ∪ L0)|, since each element in L0 has at least

(1− 3γi)D wrong parity checks and Γ(Fi ∪ L0) contains all

the wrong parity checks. So
(

1− (1 + 3η)ε− 2ε(1 + 3η)2

αN ′

)

DαN ′

≤|Γ(Fi ∪ L0)| ≤ (1− γ)D|Fi|+ 3γiD · (αN ′ − |Fi|).

This implies |Fi| ≥ 1−(1+3η)ε− 2ε(1+3η)2

αN′
−3γi

1−γ−3γi
·αN ′. As γi ≤

γ + η, this is ≥ 1−(1+3η)ε− 2ε(1+3η)2

αN′
−3γ−3η

1−4γ−3η · αN ′. It is min-

imized when γ = 0, since this is (1 +
γ−(1+3η)ε− 2ε(1+3η)2

αN′

1−4γ−3η ) ·
αN ′, which has its derivative being non-negative when γ ∈
[0, 1/4 − β]. Thus |Fi| ≥ (1−(1+3η)ε− 2ε(1+3η)2

αN′
−3η)

1−3η αN ′ =

(1 − ε − 6η
1−3η ε − 2ε(1+3η)2

(1−3η)αN ′
)αN ′. But we know that |Fi| =

1−ε
1+3η αN ′ = (1 − ε − 3η−3εη

1+3η )αN ′. This is a contradiction,

since ε = 1/4 − β, η = β/100 where β is a small enough

constant, which implies 6η
1−3η ε + 2ε(1+3η)2

(1−3η)αN ′
− 3η−3εη

1+3η =
9ηε+27η2ε−3η−9η2

1−9η2 + 2ε(1+3η)2

(1−3η)αN ′
≤ −η

2−18η2 which is a negative

constant.

Now consider |Fi∩L0|. The number of vertices in Fi having

at least (1 − 3γi)D unsatisfied neighbors has to be at least

|Fi|/3, since otherwise there are > 2|Fi|/3 vertices in Fi

having < (1 − 3γi)D unsatisfied neighbors and this implies

the number of unsatisfied neighbors of Fi is < (1−2γ)D|Fi|,
a contradiction. So |Fi ∩ L0| ≥ |Fi|/3.

Then consider |L0 \ Fi|. Because |Fi ∪ L0| < αN ′ =
1+3η
1−ε |Fi|, it holds that |L0 \Fi| = |Fi∪L0|−|Fi| < ε+3η

1−ε |Fi|.
Because ε = 1/4 − β, η = β/100, this is

1/4−β+3η
3/4+β |Fi| <

(1/3− β)|Fi|.
Hence when we flip all bits in L0, the number of corruptions

decreases by at least |Fi ∩ L0| − |L0 \ Fi| ≥ β|Fi|. □

Proof of Theorem 20: The decoding algorithm is

Algorithm 2. The key point is that in the enumerations of the

γi’s, one sequence (γi)i∈[ℓ] provides a good approximation

of the actual expansion parameters, i.e. ∀i ∈ [ℓ] in the i-th
iteration, γ(Fi) ∈ [γi − η, γi). Now for every i ∈ [ℓ],
we consider i-th iteration. If γi ≥ 2ε/3+η, then by Claim 21,

the algorithm returns the correct codeword. If γi < 2ε/3 + η,

then by Claim 22, the number of errors can be reduced by

β fraction. So in the worst case, when ℓ ≥ log1−β
1
3 , the

number of errors can be reduced to at most αN/3 in a
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Algorithm 3 Decoding Algorithm for ε < 1/4 With Larger

Decoding Radius

1: function FINAL DECODING FOR LARGE RADIUS(y ∈
F

N
2 , α ∈ R, ε ∈ R)

2: Let k = 1/4−η′

(1+ 2
αN

)ε
, with η′ = η/100

3: Let z ← MAIN(y, kα, 1/4− η′) from Algorithm 2

4: return z
5: end function

constant number of iterations. Finally the algorithm applies

the decoding algorithm from Theorem 8, which corrects the

remaining errors.

The running time of Algorithm 2 is linear, since ℓ = O(1)
and there are constant number of choices for each γi takes

constant time. The procedures FIXEDFINDANDDECODE and

the decoding from Theorem 8 both run in linear time as

well. □

By using Theorem 20 and Lemma 11 we can get the

following result.

Theorem 23: For all constants ε ∈ (0, 1
4 ), η > 0, if C is an

expander code defined by an (αN, (1 − ε)D) expander, then

there is a linear time decoding algorithm for C with decoding

radius ( 3α
16ε − η)N .

Proof: Consider Algorithm 3. By Lemma 11, the

expander graph is also a (kαN, (1− kε)D− 2εDk
αN ) expander

for k ≥ 1. If k satisfies kε + 2εk
αN ≤ 1/4 − η′ for a small

constant η′, then by Theorem 20, there is a decoding algorithm

with radius (1− kε− 2εk
αN )kαN . When k = 1/4−η′

(1+ 2
αN

)ε
, this is

maximized to be
3
16−

η′

2 −η′2

(1+ 2
αN

)ε
αN . We take η′ to be η/100 such

that k ≥ 1 and the decoding radius becomes ( 3α
16ε − η)N . The

running time is linear by Theorem 20. □

VI. IMPROVED UNIQUE DECODING FOR ε ≤ 1/8

In this section we provide Algorithm 4 with a better

decoding radius for ε ≤ 1/8. We state the main result in

Theorem 24.

Theorem 24: For all constants ε ∈ (0, 1/8], η > 0, if C is

an expander code defined by an (αN, (1−ε)D) expander, then

there is a linear time decoding algorithm for C with decoding

radius (
√

2−1
2ϵ α − η)N for ε < 3−2

√
2

2 and decoding radius

( 1−2ε
4ε α− η)N for ε ≥ 3−2

√
2

2 .

Algorithm 4 is again by guessing the correct expansion of

the set of corrupted entries. To guarantee that the running time

is linear in n, it guesses the expansion with a fine net η′ =
ε · η/2. One remark is that one could extend Algorithm 4 to

a polynomial time algorithm, which enumerates all possible

expansions and replaces the −η·N term in the decoding radius

by a constant.

In the rest of this section, we prove the correctness of

Algorithm 4. Again F denotes the set of corrupted entries.

And we assume |F | = xαN and |Γ(F )| = (1 − γ)D|F |.
Since we enumerate γ̃x̃ from a sequence with gap η′, one of

them satisfies γx ∈ [γ̃x̃, γ̃x̃ + η′]. Now we only consider this

pair of γ̃ and x̃ in the following analysis.

Next we can bound the expansion of all subsets in F .

Algorithm 4 Decoding Algorithm for ε ≤ 1/8

1: function DECODING(y ∈ F
N
2 , ε ∈ R, α ∈ R, η ∈ R)

2: for every γ̃x̃ from {η′, 2η′, . . . , ⌈ 1
η′
⌉η′}, where η′ =

εη/2 do

3: if γ̃x̃ ≥ ε then

4: ∆← √γ̃x̃ε + η′.
5: else

6: ∆← ε + 2η′.
7: end if

8: L← FIND(y ∈ F
n
2 , ∆)

9: y′ ← Replace all symbols of y in L by the erasure

symbol

10: C ′ ← Apply the decoding from Theorem 16 on

y′.
11: return C ′ if the distance between C ′ and y is ≤

1−2ε
4ε αN

12: end for

13: end function

Claim 25: Our choice of ∆ always satisfies that

∀F ′ ⊆ F, |Γ(F ′)| ≥ (1−∆) ·D|F ′|.
Proof: Let F ′ ⊆ F be an arbitrary non-empty set, and

|F ′| = x′ · αN .

If x′ > 1, then assume |Γ(F ′)| = (1 − β)Dx′αN .

We consider the collisions in Γ(F ) and Γ(F ′). Recall that by

collision we mean that given an arbitrary order of the edges,

if one edge in this order has its right endpoint the same as any

other edge prior to it, then this is called a collision. Note that

the total number of collisions for edges with left endpoints in

F ′ is at most the total number of collisions for edges with left

endpoints in F , because a collision in Γ(F ′) is also a collision

in Γ(F ). Thus

βx′ ≤ γx.

Also, since F ′ has size x′ · αN , by Lemma 11 we have

|Γ(F ′)| ≥ (1 − x′ε)Dx′αN − 2εx′2D. So β ≤ x′ε + 2εx′

αN .

Hence β(β − 2εx′

αN )/ε ≤ γx. Thus β ≤ √γxε + 2εx′

αN and

|Γ(F ′)| = (1 − β)D|F ′| ≥ (1 − √γxε)D|F ′| − 2εx′2D.

When γ̃x̃ ≥ ε, the algorithm sets ∆ =
√

γ̃x̃ε + η′. So

|Γ(F ′)| ≥ (1 − ∆)D|F ′|. When γ̃x̃ < ε, the algorithm sets

∆ = ε + 2η′. Notice that
√

γxε ≤
√

(γ̃x̃ + η′)ε ≤ ε + η′.
Hence again |Γ(F ′)| ≥ (1−∆)D|F ′|.

If x′ ≤ 1, then again we have two cases. When γ̃x̃ ≥ ε,

we know ∆ ≥ ε + η′. So by expansion, |Γ(F ′)| ≥ (1 −
ε)D|F ′| ≥ (1 − ∆)D|F ′|. When γ̃x̃ < ε, the algorithm sets

∆ = ε + 2η′. So |Γ(F ′)| ≥ (1− ε)D|F ′| ≥ (1−∆)D|F ′|.
□

Given the guarantee in Claim 25, one can show that L
contains all the errors.

Claim 26: After step 9 in Algorithm 4, we have F ⊆ L.

Proof: By Claim 25, ∀F ′ ⊆ F, |Γ(F ′)| ≥ (1−∆)·D|F ′|.
So ∀F ′ ⊆ F, |Γ1(F ′)| ≥ (1− 2∆) ·D|F ′|, since (1− 2∆) >
0 in our setting. By Lemma 17, we know F ⊆ L after FIND.

□

Then we calculate the decoding radius and the size of L.

Claim 27: For the branch ∆ =
√

γ̃x̃ε + η′, if x ≤
√

2−1
2ε −

η′/ε, then |L| < 1−2ε
2ε αN .
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Proof: We will use the fact ∆ ≤ √γxϵ+ η′ (since γx ∈
[γ̃x̃, γ̃x̃+η′] in the correct guessing) extensively in this proof.

Now suppose after the iterations, |L| ≥ 1−2ε
2ε αN . By Claim 25

and Lemma 19, we denote L′ as a set constituted by first

adding F and then adding another
1−2(

√
γxε+η′)

2ε αN−xαN

elements. Let δ = |L|−|F |
αN =

1−2(
√

γxε+η′)

2ε − x. Notice that

|L′| = 1−2(
√

γxε+η′)

2ε ≤ 1−2ε
2ε . We show that even having this

L′ leads to a contradiction.

We show that δ ≥ 0 and x+δ ≥ 1. The reason is as follows.

First consider the case x ≥ 1. Notice that γ ≤ xε + 2εx
αN by

Lemma 11 when x ≥ 1. So δ =
1−2(

√
γxε+η′)

2ε −x ≥ 1
2ε−(1+

√

1 + 2
αN )x − η′/ε. When x ≤

√
2−1
2ε − η′/ε and ε ≤ 1/8,

this is at least 0. x + δ ≥ 1 immediately follows. Second if

x < 1, then γ̃x̃ ≤ γx < ε, since γx ∈ [γ̃x̃, γ̃x̃+η′] and γ ≤ ε
by definition of γ. Thus the algorithm should not go to this

branch.

Next notice that all the unsatisfied checks are in Γ(F ) where

|Γ(F )| = (1−γ)D|F |, and every element in L′\F contributes

at most 2∆D vertices to R. Hence |Γ(L′)| ≤ |Γ(F )|+2∆D ·
δαN . On the other hand, Lemma 11 implies |Γ(L′)| ≥ (1 −
(x + δ)ε)D · (x + δ)αN − 2ε(x + δ)2D. Thus we have

(1 − (x + δ)ε) · (x + δ)αN − 2ε(x + δ)2

≤(1 − γ)xαN + 2∆ · δαN ≤ (1 − γ)xαN + 2(
√

γxε + η′) · δαN .

In the rest of this proof, we show that our choice of δ yields

(1 − (x + δ)ε) · (x + δ) −
2ε(x + δ)

αN
> (1 − γ)x + 2(

√
γxε + η′) · δ,

(9)

which gives a contradiction. Towards that, we rewrite inequal-

ity (9) as

0 > εδ2+(2εx− 1 + 2(
√

γxε + η′)) δ+εx2−γx+
2ε(x + δ)

αN
.

When (2εx−1+2(
√

γxε+η′))2−4ε
(

εx2 − γx + 2ε(x+δ)
αN

)

>

0, the quadratic polynomial will be negative at δ =
1−2εx−2(

√
γxε+η′)

2ε . To verify this, we set z = εx and only

need to guarantee that

(2z − 1 + 2
√

γz)2 − 4 z2 + 4γz + 2(2z − 1 + 2
√

γz)η′ > 0.

This is equivalent to

8γz + (8z − 4)
√

γz + 1− 4z − 2η′ > 0

⇒ 8

(√
γz +

2z − 1

4

)2

−2η′+1− 4z−8

(

2z − 1

4

)2

>0.

When z = εx ≤
√

2−1
2 − η′ (namely x ≤

√
2−1
2ε − η′/ϵ), the

residue 1− 4z − 8( 2z−1
4 )2 − 2η′ = 1

2 − 2z − 2z2 − 2η′ > 0.

So the inequality holds. □

Claim 28: For the branch ∆ = ε+2η′, if x ≤ 1−2ε
4ε −2η′/ϵ,

then |L| < 1−2ε
2ε αN .

Proof: Suppose |L| ≥ 1−2ε
2ε αN . Consider L′ ⊆ L with

|L′| = 1−2ε
2ε αN . Let δ = 1−2ε

2ε −x. Notice that δ ≥ 0 because

x ≤ 1−2ε
4ε − 2η′/ϵ, ε ≤ 1/8. Also x + δ ≥ 1 since ε ≤ 1/8.

By Lemma 11, |Γ(L′)| ≥ (1−(x+δ)ε)D|L′|−2ε(x+δ)2D.

By Lemma 19 we can consider L′ as being constituted by

first adding all elements in F and then add another δαN

elements by the algorithm. Notice that all the unsatisfied

checks are in Γ(F ), |Γ(F )| ≤ D|F |, and every element

in L′ \ F contributes at most 2∆D vertices to R. Hence

|Γ(L′)| ≤ D|F |+ 2∆DδαN . So we have

(1 − (x+δ)ε)D|L′|−2ε(x + δ)2D ≤ |Γ(L′)|≤D|F |+2∆DδαN .

Thus

(1−(x+δ)ε)·(x+δ)−2ε(x + δ)

αN
≤ x+2∆δ = x+2(ε+2η′)δ.

So this is equivalent to

(1− 2ε− ε(x + δ))(x + δ)− 4δη′ − 2ε(x + δ)

αN
≤ (1− 2ε)x.

Recall that δ+x = 1−2ε
2ε . To get a contradiction, we only need

(1− 2ε)x < (1− 2ε)2/4ε− 4δη′ − 2ε(x + δ)

αN
.

This is satisfied by x ≤ 1−2ε
4ε − 2η′/ϵ. □

Proof of Theorem 24: In Algorithm 4, one of our enumer-

ations has γ̃x̃ such that γx ∈ [γ̃x̃, γ̃x̃+η′]. Now consider this

specific enumeration. After the function Find, all the errors

are in L by Claim 26.

Now we bound |L|. We can pick the smaller bound of x

from Claim 27 and Claim 28. If ε < 3−2
√

2
2 , then

√
2−1
2ε <

1−2ε
4ε . So by Claim 27 and Claim 28 when x ≤

√
2−1
2ε −η′/ε

we have |L| < 1−2ε
2ε αN . If ε ∈ [ 3−2

√
2

2 , 1/8], then
√

2−1
2ε ≥

1−2ε
4ε . So by Claim 27 and Claim 28, when x ≤ 1−2ε

4ε −2η′/ε,

we have |L| < 1−2ε
2ε αN . Since the expander is an (αN, (1−

ε)D) expander, by Theorem 16, one can correct all the errors

efficiently using L (as the set of erasures) and the corrupted

codeword.

The decoding algorithm runs in linear time because we

only have a constant number of enumerations, and each

enumeration takes linear time. □

VII. LIST-DECODING RADIUS

In this section, we consider expander graphs with bounded

maximum degree Dmax = O(1). Our main result of this

section is the following theorem about the list-decoding radius

of almost-regular expander codes. For convenience, we only

consider relative distance and relative radii. Throughout this

section, δ = α/2ε denotes the relative distance, r denotes

the relative decoding radius from the Johnson bound, and ρ
denotes the relative decoding radius that we will prove.

Theorem 29: Given any (αN, (1−ε)D)-expander G with a

regular degree D in VL and a maximum degree Dmax in VR,

its expander code has a relative list-decoding radius at least

ρ = (1
2 + Ω(1/Dmax)) · δ and list size O(1).

In particular, when ε ≤ 1/4, α/ε ≤ 0.1, and Dmax ≤
1.1 DR for the average right degree DR, the relative

list-decoding radius ρ is strictly larger than the Johnson bound

r of binary codes with relative distance δ = α
2ε .

We remark that Dmax ≤ 1.1 DR is a relaxation for DR-regular

graphs, which are a standard instantiation of LDPC codes. One

immediate open question is to design efficient list-decoding

algorithms for expander codes. Since these algorithms provide

efficient algorithms for unique decoding with a radius up to
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half of the distance, they would improve our decoding results

immediately. Hence, we leave this as a future direction.

We finish the proof of Theorem 29 in the rest of this section.

For y ∈ F
N
2 , let |y| denote its Hamming weights. To prove

Theorem 29, recall that the Johnson bound r of binary codes

with relative distance δ is 1−
√

1−2δ
2 [2], which is the limit of

the inequality

δ/2 + r2−r > 0.

Our basic idea is to use locality (which we will define

more precisely in the proof) of expander codes to improve

the average case in the argument of the Johnson bound.

In particular, for L codewords C1, . . . , CL within distance ρN
to some string y, we will show that the 1s in C1+y, . . . , CL+y
are concentrated on a constant fraction of positions. More

precisely, we pick a threshold θ := 0.9/Dmax to show the

concentration of 1s. We use the following fact about θ and r
in the proof.

Claim 30: When ε ≤ 1/4 and α/ε ≤ 0.1, the relative

list-decoding radius r of the Johnson bound of relative distance

δ := α/2ε of binary codes is less than 0.53δ. Furthermore,

when Dmax ≤ 1.1 DR, our choice θ := 0.9/Dmax is at least

0.544δ, which is greater than r.

We defer the proof of Claim 30 to Section VII-B.1 and

finish the proof of Theorem 29 here.

Proof of Theorem 29: We fix the threshold θ :=
0.9/Dmax as in Claim 30. For convenience, we assume that

ρ < 0.54δ in this proof Ð otherwise ρ ≥ 0.54δ satisfies

ρ = δ
2 (1 + Ω(1/Dmax)) and ρ ≥ 0.54δ is strictly larger than

r < 0.53δ (from the above claim) for the second case.

We fix an arbitrary string y ∈ F
N
2 and consider codewords

within relative distance ρ to it, say, there are L codewords

C1, . . ., and CL. Let Γodd(S) denote the neighbors of S with

an odd number of edges to S. Given z ∈ F
N
2 , let Sz denote

the set of 1-entries and Γodd(z) := Γodd(Sz). Back to the

codewords C1, . . . , CL, since (y + Ci) + (y + Cj) = Ci + Cj

is a codeword, Γodd(y + C1) = · · · = Γodd(y + CL) from the

definition of the expander code Ð all codewords satisfy those

parity checks. Hence we use Γodd to denote this neighbor set

Γodd(y + C1) = · · · = Γodd(y + CL).
First of all, we lower bound |Γodd|. We pick Cj such that

|y +Cj | ∈ [0.5δ ·N, ρ ·N ]. Note that such a Cj exists as long

as L ≥ 2. Then |Γodd(y+Cj)| ≥ (1−2ε· |y+Cj |
αN )D ·|y+Cj |−

16εD from Lemma 11. This is at least 0.46ρD · N − 16εD
given the range of |y + Cj | ∈ [0.5δ ·N, 0.54δ ·N ] (recall ρ <
0.54δ in this proof). For ease of exposition, we use a simplified

lower bound |Γodd| ≥ 0.45ρ ·DN in the rest of this proof.

Let τi denote how many codewords of Cj have ith bit

different from the corresponding bit in y, i.e.,
∑L

j=1 1{i ∈
supp(y + Cj)}. Since |y + Cj | ≤ ρN , we have

∑

i τi ≤ ρN ·
L Ð in another word, Ei[τi] ≤ ρL. The key difference

between our calculation and the Johnson bound is that we

will prove τ1, . . . , τn have a large deviation. We call i ∈ VL

heavy if and only if τi ≥ θ · L for θ = 0.9/Dmax and show

that their sum is Θ(NL):

Sh :=
∑

heavy i

τi ≥ 0.45ρN · (L−Dmax · θL) = 0.045ρNL.

(10)

In particular, for certain choices of parameters, θ ≥ 0.544δ
(from Claim 30) would be strictly larger than ρ < 0.54δ. This

implies that τ1, . . . , τN have a large deviation.

To prove Eq (10), the starting observation is that for each

v ∈ Γodd ⊆ VR,
∑

i∈Γ(v) τi ≥ L by the definition of Γodd.

Since v has ≤ Dmax neighbors,
∑

heavy i∈Γ(v)

τi ≥ L−Dmax · θL.

By the double counting argument,
∑

v∈Γodd

∑

heavy i∈Γ(v)

τi ≥ (L−Dmax · θL) · |Γodd|

≥ (L−Dmax · θL) · 0.45ρD ·N.

So

∑

heavy i

τi ≥
∑

v∈Γodd

∑

heavy i∈N(v) τi

D

≥ 0.45ρN · (L−Dmax · θL).

Moreover, let Nh denote the number of heavy elements.

We have θL ·Nh ≤ Sh, which upper bounds Nh by Sh/(θL).
Similar to the argument of the Johnson bound, let T denote

all triples of the form (i, j1, j2) where i ∈ [N ], j1, j2 ∈ [L]
and Cj1(i) ̸= Cj2(i). Since the distance between Cj1 and Cj2

is at least δN for any j1 ̸= j2, the number of triples is at least
(

L
2

)

· δN .

On the other hand, T is equal to
∑

i∈[n] τi(L−τi). Then we

provide an upper bound on
∑

i∈[n] τi(L − τi) under the two

constraints
∑

i τi ≤ ρN ·L and
∑

heavy i

τi ≥ 0.45ρN ·(L−Dmax ·
θL).

Claim 31: Given
∑

i τi ≤ ρN ·L, the threshold θ > ρ, and
∑

heavy i:τi≥θL

τi ≥ 0.45ρN · (L−Dmax · θL), we have

∑

i∈[n]

τi(L− τi) ≤ N∗
h · θL(L− θL)+ (N −N∗

h) ·ηL(L−ηL),

where N∗
h is equal to the upper bound S∗

h/(θL) for S∗
h =

0.45ρN · (L−Dmax · θL) and η =
ρLN−S∗

h

L(N−N∗

h
) .

In another word, the lower bound is obtained when (1) all

heavy τis are equal to θ with a sum S∗
h equal to the lower

bound 0.45ρN · (L−Dmax · θL); and (2) the light ones have

the same value η, which is < ρ, such that the total sum N∗
h ·

θ + (N −N∗
h) · η = ρN where N∗

h = S∗
h/θ.

We defer the proof of Claim 31 to Section VII-B.2 and

combine the two bounds of T to get
(

L

2

)

δN ≤ T ≤ N∗
h · θL(L− θL) + (N −N∗

h) · ηL(L− ηL)

where the right hand side is obtained at N∗
h = S∗

h/θL for S∗
h =

0.45ρN · (L−Dmax · θL) ≥ 0.045 · ρNL and η =
ρLN−S∗

h

L(N−N∗

h
) .

This implies
(

δ/2 +
N∗

h

N
· θ2 +

N −N∗
h

N
· η2 − ρ

)

L ≤ δ/2.

So L = O(1) when the decoding radius ρ satisfies δ/2 +
N∗

h

N θ2 +
N−N∗

h

N η2 − ρ = Ω(1). For convenience, let ρ∗ be the
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limit of ρ satisfying the above inequality such that

δ/2 +
N∗

h

N
θ2 +

N −N∗
h

N
η2 − ρ∗ = 0. (11)

Next, we provide explicit bounds on ρ based on (11)

and equation
N∗

h

N θ +
N−N∗

h

N η = ρ. Recall that the Johnson

bound r is obtained from (11) with θ = η = r:

δ/2 + r2−r = 0. (12)

This implies r = 1−
√

1−2δ
2 , which is δ

2 + Θ(δ2) for small δ.

A. Showing ρ∗ = (1
2 + Ω(1/Dmax))δ

When 1/Dmax < 2.5δ, the list-decoding radius r =
δ
2 + Ω(δ2) from the Johnson bound is

(

1
2 + Ω(1/Dmax)

)

δ.

Hence we only consider 1/Dmax ≥ 2.5δ to prove ρ∗ =
(

1
2 + Ω(1/Dmax)

)

δ. Observe that θ = 0.9/Dmax > 2δ is

larger than ρ here. We simplify ρ∗ in (11) to

ρ∗ > δ/2+
N∗

h

N
θ2 = δ/2 +

S∗
h

NL
· θ

RecallN∗
h = S∗

h/(θL)fromClaim 31

> δ/2 + 0.045ρ∗ · 0.9/Dmax

S∗
h ≥ 0.045 · ρ∗NLfrom our choice ofθ.

This implies ρ∗ > δ/2
1−0.04/Dmax

= δ/2 · (1 + Ω(1/Dmax)).
1

B. Showing ρ∗ > r

In this case, we show ρ∗ = r+Ω(δ3) given ε ≤ 1/4, α/ε ≤
0.1 and Dmax ≤ 1.1 DR, which implies the list-decoding

radius of such an expander code is larger than the Johnson

bound. To simplify ρ∗ in (11), the key is to apply
N∗

h

N θ +
N−N∗

h

N η = ρ∗ to rewrite the two middle terms as

N∗
h

N
θ2+

N−N∗
h

N
η2 =(ρ∗)2+

N∗
h

N
(θ−ρ∗)2+

N−N∗
h

N
(η−ρ∗)2

= (ρ∗)2 +
N∗

h

N
· N −N∗

h

N
· (θ − η)2.

Comparing to (12), the extra term
N∗

h

N ·
N−N∗

h

N (θ−η)2 would

always increase the range of ρ∗. Specifically, (11) minus (12)

implies

(ρ∗)2 − r2 +
N∗

h

N
· N −N∗

h

N
· (θ − η)2 − ρ∗ + r = 0

⇔ (ρ∗ − r) · (1− ρ∗ − r) =
N∗

h

N
· N −N∗

h

N
· (θ − η)2

⇔ ρ∗−r =
N∗

h

N ·
N−N∗

h

N (θ − η)2

1− ρ∗ − r
.

Since θ > 0.544δ and η < ρ ∈ [0.5δ, 0.54δ] (from Claim 31),

we have θ − η = Ω(δ). Moreover, N∗
h/N =

S∗

h

θL·N from

Claim 31 is Ω(ρ/θ) which is Ω(δ ·Dmax) given θ = 0.9/Dmax

and ρ ≥ δ/2; then both r and ρ∗ are less than 0.05 because

the distance δ = α
2ε ≤ 0.05 from the condition α/ε ≤ 0.1 of

this case. From all discussion above, we have ρ∗ − r =
Ω(Dmax · δ3). □

1While a better constant in Ω(1/Dmax) is 0.1125 obtained via θ =
1

2Dmax
, we did not intend to optimize the constants in this work.

1) Proof of Claim 30: When α/ε ≤ 0.1, the Johnson bound

r = 1
2 (1−

√
1− 2δ) has a Taylor expansion δ

2+ 2−2

2·2! ·(2δ)2+· · ·
for δ = α/2ε. This is at most 1.06 · δ

2 = 0.265α
ε .

Then, we show 1
DR
≥ 0.33α

ε −O(kD/M). We plan to apply

the 2nd lower bound in Lemma 11 for k := 0.95/ε. A subset

of size kαN exists because 0.95α/ε ≤ 3.8
DR
· (1 + 2

αN ) from

Fact 12. Since DR ≥ D ≥ 4 for ε < 1/4, 0.95α/ε is less

than 1 such that one could find a subset S of size kαN in VL.

Next we apply Lemma 11 to Γ(S) and obtain

k

2

(

1− 2kε− 1

3− 2/k

)

·DαN −O(k ·D) ≤M.

For k = 0.95/ε, we use DN = DRM to simplify it to

0.95

2ε
·
(

1− 0.9

3− 2ε/0.95

)

· αDRM −O(kD) ≤M.

Since ε ≤ 1/4, we have

0.95

2ε
·
(

1− 0.9

3

)

· α ≤ 1/DR + O(kD/M),

which shows 1/DR ≥ 0.3325α
ε −O(kD/M)

Given Dmax ≤ 1.1 DR, we have that θ := 0.9/Dmax ≥
0.9/(1.1 DR) ≥ 0.272α/ε is strictly larger than r <
0.265α/ε.

2) Proof of Claim 31: Our goal is to provide an upper bound

on
∑

i∈[n]

τi(L− τi) (13)

given
∑

i τi ≤ ρN · L, threshold θ > ρ, and
∑

heavy i:τi≥θL

τi ≥
0.45ρN · (L−Dmax · θL). We divide the argument into four

steps. Nh denotes the number of heavy τi and Sh denotes their

sum
∑

heavy i τi in this proof.

• When
∑

i τi, Sh and Nh are fixed,
∑

i∈[n] τi(L −
τi) =

∑

i τiL −
∑

heavy i τ2
i −

∑

non-heavy i τ2
i is max-

imized at τi = Sh/Nh for all heavy elements and

τi = (
∑

i τi−Sh)/(N − Nh) for non-heavy elements.

So we assume heavy elements and non-heavy elements

have the same values of τi separately. So (13) becomes

Nh · Sh

Nh
(L − Sh

Nh
) + (N − Nh) · ηL(L − ηL) for η =

∑

i τi−Sh

L(N−Nh) .

• Then we fix Sh and Nh and focus on
∑

i τi. From the

1st step, τi = ηL for all non-heavy elements where η =
∑

i τi−Sh

L(N−Nh) . This is less than 1/2 since η < ρ < 1/2 for

binary codes. Increasing
∑

i τi will increase η(L−η) and

Nh · Sh

Nh
(L− Sh

Nh
) + (N −Nh) · ηL(L− ηL). So we fix

∑

i τi = ρLN to be the largest for an upper bound.

• Next, when Sh is fixed, consider the upper bound with

Nh:

Nh
Sh

Nh

(

L− Sh

Nh

)

(14)

+ (N −Nh)
ρLN − Sh

N −Nh
(L− ρLN − Sh

N −Nh
)

= ρL2N − S2
h

Nh
− (ρLN − Sh)2

N −Nh
. (15)
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Its derivative ( Sh

Nh
)2 − (ρLN−Sh

N−Nh
)2 on Nh is positive,

because Sh

Nh
is the τ -value for heavy elements and

ρLN−Sh

N−Nh
is the value for non-heavy ones. To estimate

an upper bound, we fix N∗
h = Sh/θL to be the largest

possible value.

• Finally, since
∑

i τi = ρLN is fixed and
∑

i τ2
i are

convex, the upper bound in (15) is maximized when
Sh

N∗

h

− ρLN−Sh

N−N∗

h

is minimized. This is achieved at the

smallest possible S∗
h = 0.45ρN(L−Dmax · θL).

So we obtain an upper bound where for the smallest possible

S∗
h = 0.45ρN(L−Dmax · θL), N∗

h = S∗
h/θL heavy elements

have τi = θL and the rest of the elements have τi =
ρLN−S∗

h

N−N∗

h

.

VIII. OPEN QUESTIONS

Our work leaves many intriguing open questions, and we

list some of them here.

1) Our distance in Theorem 1 is only shown to be tight

by a graph that is not strictly regular on the right. For

bipartite expander graphs that are regular on both sides,

is it possible to get an improved distance bound, or is

the bound in Theorem 1 still tight?

2) Can one design efficient algorithms to correct more

errors? In particular, much less is know about ε ≥
1/4 Ð so far all our improvements over previous results

are only for the case of ε < 1/4. Can one get any

improvements for the case of ε ≥ 1/4?

3) Alternatively, is there any hardness result that prevents

us from decoding close to the half distance bound?

4) Can one get a better list-decoding radius for gen-

eral expander codes? Can one design efficient list-

decoding algorithms? As mentioned before, any efficient

list-decoding algorithm would also immediately improve

our results on unique decoding, and in particular imply

unique decoding up to half distance. If there is any hard-

ness result for unique decoding close to half distance,

this would also rule out the possibility of list-decoding

for general expander codes.

APPENDIX A

SUPPLEMENTAL PROOFS

We finish the calculation omitted in Section III-A here,

by showing that random bipartite graphs with certain param-

eters are good expanders with high probability. We provide

one calculation for graphs that is not necessarily regular on

the right and another calculation for regular graphs.

Proposition 32: If parameters α, ϵ, M,N,D satisfies
(

e
α

)

·
(

eαND
ϵM

)ϵD
< 1, then the probability of a random bipartite

graph, where each vertex in VL has D random neighbors,

is (αN, (1− ϵ)D)±expander is ≥ 1−
(

(

e
α

)

·
(

eαND
ϵM

)ϵD
)αN

.

Proof: Suppose the left part of the bipartite graph is [N ].
Fix a subset X of [N ] with size αN , and let y1

i , · · · , yD
i be the

neighbours of the i±th vertex in X . Then the expansion of X

is less than (1− ϵ)D is equivalent to #
{

yj
i

}

< (1− ϵ)DαN ,

where i ∈ X and j ∈ [D].
Arrange yj

i in the lexicographic order of (i, j). The prob-

ability of the value of yj
i has been taken before it does not

exceed
#
{

yj′

i′

∣

∣

∣
(i′,j′)≺(i,j)

}

M < αND
M .

So the probability that the expansion of X is less than (1−
ϵ)D, is less than

(

αND
ϵαND

)

·
(

αND
M

)ϵαND
.

Hence, the probability of the random graph is not (αN, (1−
ϵ)D)±expander is less than

(

N

αN

)

·
(

αND

ϵαND

)

·
(

αND

M

)ϵαND

(16)

By the approximation of binomial coefficient:
(

A
B

)

<
(

eA
B

)B
, (16) is less than

(

eN

αN

)αN

·
(

eαND

ϵαND

)ϵαND

·
(

αND

M

)ϵαND

=

(

( e

α

)

·
(

eαND

ϵM

)ϵD
)αN

□

Given any constant ε ∈ (0, 1), by choosing a large enough

constant D and let DR = DN
M be the average degree on

the right, Proposition 32 immediately implies the following

proposition.

Proposition 33: For any constants ε, η ∈ (0, 1), there exist

constants D, α and (αN, (1− ε)D)-expanders such that α
ε ≥

1/e−η
DR

.

One can also obtain a regular expander by choosing an

integer DR = DN
M and generating DR permutations. That

such a random graph is an expander has been proved in [1].

We provide an argument for completeness.

Here is a technical lemma summarized from [1].

Proposition 34: Let B be a random (D,DR)±regular bipar-

tite graph with left size N and right size D·N
DR

.2 Then for all

0 < α < 1, with probability ≥ 1 −
( e

α

)−αN

, all sets of αn

vertices in the left part have at least

N

(

D

DR

(

1− (1− α)DR
)

− 2α ·
√

D ln e/α

)

neighbours.

Before we prove this proposition, we show how to choose

the parameters to make the expansion at least (1−ε)D. Recall

that in the proof of Theorem 10 in Section III-A, we are

looking at a random bipartite graph with N1 = N − N ′ ≥
N/2 left vertices, M1 = M − DN ′/2 right vertices, regular

left degree D and regular right degree DR = N1 · D/M1.

Since M1 ≥ M/2 ≥ N/4 and N1 ≤ N , we have DR ≤
4D. Next we choose α = 10−3 · (ε/D)2 such that for any

α′ ≤ 2α, (1 − α′)DR ∈ [1 − α′DR, 1 − (1 − ε/2)α′DR] and

1 − (1 − α′)DR ∈
[

(1 − ε/2)α′DR, α′DR

]

. Note that any

subset of size αN has size α′N1 with α ≤ α′ ≤ 2α. Thus we

simplify the bound in the above proposition to get the desired

expansion

N1

(

D

DR
· (1− ε/2)α′DR − 2α′ ·

√

D ln(e/α′)

)

2One can think of the random graph as being generated following the
Gallager’s distribution, i.e. there are D rounds. In each round, randomly
generate N/DR new right vertices by randomly partition the left vertices
evenly into N/DR groups and connect vertices in the i-th group to the i-th
right vertex.
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=N1Dα′ ·
(

1− ε/2− 2

√

ln(e/α′)

D

)

≥N1Dα′ · (1− ε) = αND · (1− ε),

for a sufficiently large constant D = D(ε).
Proof: [Proof of Proposition 34] First, we fix a set of αN

vertices in the left part, V , and estimate the probability that

Γ(V ) is small. The probability of a certain vertex in the right

part is contained in Γ(V ) is at least 1− (1− α)DR . Thus the

expected number of neighbours of V is at least M · (1− (1−
α)DR) =

nD(1−(1−α)DR)
DR

. We will use Azuma inequality to

derive that |Γ(V )| has a small deviation property, and hence

the probability that |Γ(V )| less than the expectation minus

some deviation is exponentially small.

Actually, we number the edges outgoing from V by

1 through DαN . Let Xi be the random variable of the

expected size of |Γ(V )| given the choice of the first i edges

leaving from V . Clearly, X1, · · · , XDαN form a martingale

and |Xi+1 −Xi| ⩽ 1.

By Azuma’s inequality, we have:

P

(

E (XDαn)−XDαN > λ
√

DαN
)

< exp
(

−λ2/2
)

Since there are
(

N
αN

)

choices for the set V , it suffices to

choose λ such that
(

N

αN

)

e−λ2/2 is exponentially small.

Since
(

N
αN

)

≤ (e/α)αN , we choose λ = 2 ·
√

αN · ln(e/α)
to make it exponentially small. Then the deviation becomes

√
DαN · 2

√

αN · ln(e/α) = 2αN ·
√

D ln(e/α)

□
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