3574

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

Improved Decoding of Expander Codes

Xue Chen, Kuan Cheng™, Xin Li~, and Minghui Ouyang

Abstract— We study the classical expander codes, introduced
by Sipser and Spielman, (1996). Given any constants 0 <
a,e < 1/2, and an arbitrary bipartite graph with N vertices
on the left, M < NN vertices on the right, and left degree D
such that any left subset S of size at most /N has at least
(1 — €)|S|D neighbors, we show that the corresponding linear
code given by parity checks on the right has distance at least

roughly % This is strictly better than the best known previous

result of 2(1 —e)aN Sudan, (2000), Viderman, (2013) whenever
€ < 1/2, and improves the previous result significantly when
e is small. Furthermore, we show that this distance is tight
in general, thus providing a complete characterization of the
distance of general expander codes. Next, we provide several
efficient decoding algorithms, which vastly improve previous
results in terms of the fraction of errors corrected, whenever
e < i. Finally, we also give a bound on the list-decoding radius
of general expander codes, which beats the classical Johnson
bound in certain situations (e.g., when the graph is almost
regular and the code has a high rate). Our techniques exploit
novel combinatorial properties of bipartite expander graphs.
In particular, we establish a new size-expansion tradeoff, which
may be of independent interests.

Index Terms— Expander codes, bipartite expanders, list
decoding.

I. INTRODUCTION

XPANDER codes [1] are error-correcting codes derived

from bipartite expander graphs that are notable for
their ultra-efficient decoding algorithms. In particular, all
known asymptotically good error-correcting codes which
admit linear-time decoding algorithms for a constant fraction
of adversarial errors are based on expander codes. At the
same time, expander codes are closely related to low-density
parity-check (LDPC) codes [4] — a random LDPC code is
an expander code with high probability. Over the last twenty
years, LDPC codes have received increased attention ([5],
[6], [7], [8], [9] to name a few) because of their practical
performance. Along this line of research, the study of decoding

Manuscript received 9 January 2022; revised 22 December 2022; accepted
7 January 2023. Date of publication 23 January 2023; date of current version
19 May 2023. The work of Xin Li was supported by NSF CAREER Award
CCF-1845349 and NSF Award CCF-2127575. (Corresponding authors:
Xue Chen; Kuan Cheng; Xin Li.)

Xue Chen is with the CAS Key Laboratory of Wireless-Optical Commu-
nications and the College of Computer Science and Technology, University
of Science and Technology of China (USTC), Hefei 230027, China (e-mail:
xuechen1989 @ustc.edu.cn).

Kuan Cheng is with the Center on Frontiers of Computing Studies and
the Advanced Institute of Information Technology, Peking University, Beijing
100871, China (e-mail: ckkcdh@pku.edu.cn).

Xin Li is with the Department of Computer Science, Johns Hopkins
University, Baltimore, MD 21218 USA (e-mail: lixints@cs.jhu.edu).

Minghui Ouyang is with the Department of Mathematical Science, Peking
University, Beijing 100871, China (e-mail: ouyangminghuil998 @ gmail.com).

Communicated by V. Skachek, Associate Editor for Coding and Decoding.

Digital Object Identifier 10.1109/T1T.2023.3239163

algorithms for expander codes, such as belief-propagation [1],
[4], [10], message-passing [11], and linear programming [5],
[6], [12], has laid theoretical foundations and sparked new
lines of inquiry for LDPC codes.

In this work, we consider expander codes for adversarial
errors. Briefly, given a bipartite graph G with N vertices of
degree D on the left, M vertices on the right, we say it is
an (aN, (1 — ¢)D) expander if and only if any left subset
S with size at most oV has at least (1 —¢)D - |S] distinct
neighbors. The code C of an expander GG assigns a bit to each
vertex on the left and views each vertex on the right as a parity
check over its neighbors. A codeword C' € C is a vector in
{0,1}" that satisfies all parity checks on the right. Moreover,
the distance of C is defined as the minimum Hamming distance
between all pairs of codewords. We defer the formal definitions
of expanders and expander codes to Section II. For typical
applications, the parameters o,e and D are assumed to be
constants, and there exist explicit constructions (e.g., [13]) of
such expander graphs with M < N.

For expander codes defined by (aNN, (1 — &) D)-expanders,
the seminal work of Sipser and Spielman [1] gave the
first efficient algorithm to correct a constant fraction (i.e.,
(1 — 2¢) - aN) of errors, when ¢ < 1/4. In fact, their
algorithms are super efficient — they provide a linear time
algorithm called belief-propagation and a logarithmic time
parallel algorithm with a linear number of processors. Sub-
sequently, Feldman et al. [6] and Viderman [3], [12] provided
improved algorithms to correct roughly i:gz -aN errors, when
€ < 1/3. This fraction of error is strictly larger than that of [1]
whenever £ < 1/4. Viderman [3] also showed how to correct
N@p..a(1) errors when ¢ € [1/3,1/2), and that ¢ < 1/2 is
necessary for correcting even 1 error. However, the following
basic question about expander codes remains unclear.

Question: What is the best distance bound one can get
from an expander code defined by arbitrary (aN, (1 — ¢)
D)-expanders?

This question is important since it is well known that for
unique decoding, the code can and can only correct up to half
the distance number of errors. In [1], Sipser and Spielman
showed that the distance of such expander codes is at least a/V,
while a simple generalization improves this bound to 2(1 —
g)aN (see e.g., [2] and [3]). Perhaps somewhat surprisingly,
this simple bound is the best known distance bound for an
arbitrary expander code. In fact, Viderman [3] asserted that
this is the best distance bound one can achieve based only
on the expansion property of the graph, and hence when ¢
converges to 0, the number of errors corrected in [3], tgi -alN
converges to the half distance bound. Yet, no evidence was
known to support this claim. Thus it is natural to ask whether

0018-9448 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMPROVED DECODING OF EXPANDER CODES

any improvement is possible, and if so, can one design efficient
algorithms to correct more errors?

A. Our Results

1) Distance of Expander Codes: In this work, we give
affirmative answers to the above questions. Our first result
shows that the best distance bound of expander codes defined
by arbitrary (aN, (1 — €)D)-expanders is roughly 2&

Theorem 1: [Informal Versions of Theorem 9 and
Theorem 10] Given any (aN, (1 — ¢)D)-expander, let C be
the expander code defined by it. The distance of C is at least
5e - N —Oc(1).

Moreover, for any constant 7) > 0 there exists an (N, (1—
¢)D)-expander whose expander code has distance at most
(3= +mn)-N.

We remark that the bound 3 - N is always larger than the
previous bound 2(1 —e)aN since we always have £ < 1/2 in
expander codes. For small ¢, this improves upon the previous
bound by a factor of 4% roughly, which can be quite significant.

2) Decoding Algorithms: Next we consider algorithms to
correct more errors. Given the above bound on the distance
of expander codes, the natural goal is to design efficient
algorithms that can correct O(a/c) - N errors. We achieve
this goal for all € < 1/4.

Theorem 2: [Informal version of Theorem 23] Given any
constants «,n7 > 0 and 0 < € < 1/4, there exists a linear time
algorithm that for any expander code defined by an (N, (1—
¢)D)-expander, corrects up to (1% —mn) - N adversarial errors.

The bound 136‘15 - N is larger than all previous bounds for
€ < 1/4 by at least a constant factor. For example, when
¢ is close to 1/4, all previous works [1], [3], [6] can only
correct roughly 5 - N errors, while our algorithm can correct
roughly % -aN errors. When ¢ is smaller, the improvement is
even more significant, as no previous work can correct more
than aN errors. On the other hand, given Theorem 1, one can
hope for correcting roughly £ - N errors, so Theorem 2 falls
slightly short of achieving it.

Actually, we can correct more errors when ¢ is small.

3-2V2 ~ .0858, our algorithm

in Section VI can correct @ . % > 0.207 - 2~ errors.
We summarize all our results informally in Table I, compared
to the previous best results of [3], [6].

3) List-Decoding: Finally, we consider the list-decodability
of expander codes. List-decoding, introduced by Elias [14] and
Wozencraft [15] separately, is a relaxation of the classical
notion of unique decoding. In this setting, the decoder is
allowed to output a small list of candidate codewords that
include all codewords within Hamming distance pN of the
received word. Thus, the list-decoding radius p/N could be
significantly larger than half of the distance. For example,
a very recent work by Mosheiff et al. [9] shows random
LDPC codes have list-decoding radii close to their distance.
In this setting, the classical Johnson bound shows that any

binary code with distance d is list-decodable up to radius

r= w with list size NO_If we set the Johnson

bound r as the baseline, a natural question is whether expander

codes can list-decode more than r errors given the distance
d=35--N?
€

For example, when ¢ <

3575

In Section VII, we consider expander codes defined by
expanders that has a maximum degree D,.x = O(1) on the
right, like LDPC codes. Our main results provide an alternative
bound on the list-decoding radius of such codes, and show
that it is strictly better than the Johnson bound when /e
is small and the right hand side is also almost regular, i.e.,
Dax = Dpg, where Dp is the average right degree.

Theorem 3: [Informal version of Theorem 29] Given any
(aN, (1 — €)D)-expander with regular degree D on the left
and maximum degree D,,,x on the right, its expander code
has a list-decoding radius at least pN = (3 + Q(1/Diax))d
and list size N°(). Here d is the distance of the code.

Furthermore, if Dypax < 1.1 Dg, e <1/4 and a/e < 0.1,
pN is strictly larger than the Johnson bound r of binary codes
with distance d = & - N.

2
We remark that the Johnson bound r = d/2+ ©(d?/N) for

a small d (by the Taylor expansion on 7 = = Ny Niv—2d) ”N(NM))
While we did not attempt to optimize the constant hidden
in the Q notation of p = (3 4+ Q(1/Dmax))d, we show that

roughly DLR > £ in Section III. When the expander is also
almost regular on the right, e.g., Dinax < 1.1 Dpg, this bound is
better than the Johnson bound with d = 3+ N and a small ratio
a/e. The second condition would follow from a large average
right-degree Dp (equivalently, a small M /N or a large code-
rate 1 — M/N). In particular, this applies to the upper bound
constructed for Theorem 1, which has distance arbitrarily close
to 5= - N.

One intriguing question is to design efficient list-decoding
algorithms for expander codes. Since these algorithms would
also immediately improve all our results on unique decoding,
we leave this as a future direction.

4) New Combinatorial Properties of Expander Graphs: Our
distance bounds and decoding algorithms make extensive use
of a new size-expansion tradeoff for bipartite expander graphs,
which we establish in this paper. Specifically, we show that
one can always trade the expansion for larger subsets in such
a graph. In particular, given any (aN, (1 — €)D)-expander,
we prove in Section III that this graph is also roughly a
(kaN, (1 — ke)D)-expander for any k > 1, provided that
kaN < N. This size-expansion tradeoff is potentially of
independent interest. For example, besides the applications
in our distance bounds and decoding algorithms, we also
use it to show a relation between the three basic parameters
(¢, DR) of bipartite expanders. Roughly, we always have
2 < 5 (see Fact 12 for a formal statement). On the other
hand, usmg a random graph one can show the existence of
(aN, (1 — ¢)D)-expanders such that roughly ¢ > ﬁ (see
Proposition 33). Thus our upper bound is tight up to a constant
factor.

B. Related Work

Sipser and Spielman’s definition in [1] is actually more
general, and is a variant of Tanner codes [16] based on
expanders. Basically, the code requires all symbols in the
neighbor set of a right vertex (in some fixed order) to be a
codeword from an inner linear code Cy. The expander code
studied here is the most popular and well studied case, where
the inner code consists of all strings with even weight. Instead

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

3576

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

TABLE I
SUMMARY OF THE DISTANCE AND DECODING RADII FOR &
ee(0,3=2Y2) | ce[3=2¥2 1/8) | cc[1/8,1/4)
Distance from Theorem I.1 QL -aN L. aN L . aN
5 2e 2e
. ST 1—3¢ 1—3¢ 1—3¢
Decoding radius from [3, 6] T - alN = -alN T -aN
V2-1 1—2¢ 3
. . . S aN - -aN 150 - aN
Decoding radius from this work from Tirleorem VL1 | from Tieorern VI.1 | from Tileorem V4

of vertex expansion, the expander based Tanner codes are
analyzed based on edge expansion, a related concept which
has also been well studied in both mathematics and computer
science [17], [18]. We note that the distance of Tanner codes
depends heavily on the inner code Cy, and is thus generally
incomparable to the distance of our code. To the best of our
knowledge, the best bound on the distance of expander codes
based on vertex expansion of bipartite expanders, as studied
in this paper, was 2(1 —¢) - aN.

As mentioned before, expander codes are closely related
to low-density parity-check (LDPC) codes introduced by
Gallager [4], where the bipartite graph associated with the
parity checks has bounded degree on the right but is not
necessary an expander. There is a long line of research on
random LDPC codes against random errors (see [7], [11],
[19] and the references therein). While a random LDPC code
is an expander code with high probability, our results are
incomparable with those of random LDPC codes. This is
because first, we consider expander codes defined by arbitrary
expanders, while many results on random LDPC codes use
more properties than the expansion, such as the girth of the
underlying graph that can be deduced from random graphs.
Second, we consider adversarial errors, while many results
on random LDPC codes [7], [11] consider random errors or
memoryless channels.

In the context of list-decoding, the work of RonZewi-
Wootters-Zemor [20] studied the problem of erasure
list-decoding of expander codes, based on algebraic expansion
properties (i.e., eigenvalues of the corresponding adjacency
matrix).

In the past few decades, a great amount of research has
been devoted to expander graphs, leading to a plethora of new
results. We refer the reader to the survey by Hoory, Linial, and
Wigderson [21] for an overview. Specifically, giving explicit
constructions of bipartite expander graphs for expander codes
has been a challenge. In particular, Kahale [22] showed that
general Ramanujan graphs [17] (with the minimum 2nd largest
absolute eigenvalue among all D-regular graphs) cannot pro-
vide vertex expansion more than half of the degree, which is
the threshold required to give expander codes. After decades
of efforts, explicit constructions satisfying the requirements of
expander codes have been provided in [13], [23] separately.

C. Technique Overview

Let C be an expander code defined by an (aN, (1 —€)D)
expander. Our techniques for the improved distance bound
and decoding algorithms are based on the combination of
the following three ingredients, together with a new idea of
guessing expansions:

1) A new size-expansion tradeoff for arbitrary bipartite
expander graphs, which we establish in this paper.

2) A procedure of finding possible corruptions in [3], which
we slightly adapt and establish new properties.

3) A procedure of flipping bits in the corrupted word to
reduce the number of errors, introduced in [1].

We first briefly explain each ingredient.

1) The Size-Expansion Tradeoff: As mentioned before,
we show that any (aN, (1 — £)D)-expander is also roughly
a (kaN, (1 — ke)D)-expander for any k& > 1. To prove this,
assume for the sake of contradiction that there is a left subset
S with size kaN that has smaller expansion. This then implies
that there are many collisions (two different vertices on the left
connected to the same vertex on the right) in the neighbor set
of S, i.e., more than keD - kaN = k2ae N D collisions. Now
we pick a random subset T C S with size alV, then each
previous collision will remain with probability roughly 1/k2.
By linearity of expectation, more than ae ND collisions are
expected to remain in the neighbor set of 7', thus implying the
expansion of T is smaller than (1—¢)D-aN. This contradicts
the expander property.

This convenient size-expansion tradeoff is used extensively
in our bounds and algorithms. In fact, by using linear program-
ming, we can get a better size-expansion tradeoff for k > is,
which we use in our result on list-decoding expander codes.

2) The Procedure of Finding Possible Corruptions: Vider-
man [3] introduced the following procedure for finding possi-
ble corruptions. Maintain a set L of left vertices, a set R of
right vertices and a fixed threshold h. Start with R being all
the unsatisfied parity checks, then iteratively add left vertices
with at least h neighbors in R to L, and their neighbors to R.
Viderman showed that if the number of corruptions is not too
large, then when this process ends, L will be a super set of all
corruptions and the size of L is at most aN. Therefore, one
can treat L as a set of erasures and decode from there.

In [3], Viderman used sophisticated inequalities to analyze
this procedure. In this paper, we show that the process has
the following property.

3) Property (*): If h = (1 —2A)D such that any subset S
of corrupted vertices has expansion at least (1 —A)D|S|, then
all corruptions will be contained in L. Furthermore, we can
assume without loss of generality that the set of corrupted
vertices is added to L before any other vertex.

This allows us to simplify the analysis in [3] and combine
with our size-expansion tradeoff.

4) The Procedure of Flipping Bits: Sipser and Spielman [1]
introduced a procedure to flip bits in the corrupted word.
Again, the idea is to set a threshold &, and flip every bit which
has at least h wrong parity checks in its neighbors. Sipser

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMPROVED DECODING OF EXPANDER CODES

and Spielman showed that when ¢ < 1/4 and the number
of corruptions is not too large, this procedure will reduce the
number of errors by a constant factor each time. Thus one

only needs to run it for O(log N) times to correct all errors.

5) Our Approaches: We now describe how to combine
these ingredients to get our bounds and algorithms. For the
distance lower bound, it suffices to choose k such that 1 —ke >
1/2. Then a standard analysis as in [1] shows the distance of
the code is at least kaw/N. Thus, we can set k ~ 2% so that the
distance is roughly at least 5~ N. A subtle point here is that it
is not a priori clear that we can choose k ~ i, since it may be
that kaN = =N > N, and no left subset can have size larger
than N. However, we again use the size-expansion tradeoff to
show that this cannot happen. In particular, we show ¢ < DLR
(recall Drp, is the average degree on the right), and thus we can
always set k ~ i Section III-A gives a construction which
shows this bound is almost tight.

Next we describe our decoding algorithms.

6) Unique Decoding for ¢ < 1/4: Our algorithm here is
based on the following crucial observation. Let F' denote the
set of corrupted vertices any time during the execution of the
algorithm, and assume |I'(F')| = (1 — +)D|F|, where T'(F)
denotes the neighbor set of F. If ~ is large, or equivalently
IT'(F)| is small, then the procedure of finding possible cor-
ruptions works well. This is because intuitively, the number of
vertices added to L will be proportional to |I'(F')|, and thus |L|
will be small. On the other hand, if v is small, or equivalently
|T'(F)| is large, then the procedure of flipping bits works well.
This is because intuitively, the procedure of flipping bits works
better when the expansion property is better.

Hence, we can combine both procedures and set a threshold
for . If ~y is larger than this threshold, we use the procedure of
finding possible corruptions; otherwise we use the procedure
of flipping bits. However, we don’t know 7. Thus in our
algorithm we guess 7, and for each possible value of ~
we apply the corresponding strategy. This is a bit like list-
decoding, where we get a small list of possible codewords,
from which we can find the correct codeword by checking the
Hamming distance to the corrupted word. Note that the proce-
dure of finding possible corruptions always returns a possible
codeword; while to get a codeword from the procedure of
flipping bits, we need to apply it for a constant number of
times, until the number of errors is small enough so that we
can easily correct all errors using any known algorithm. Thus
we also need to guess ~y for a constant number of times.

Using these ideas, we show that Algorithm 2 can correct
(1 — e)aN errors for any constant ¢ < 1/4. Now, we can
improve this by combining with our size-expansion tradeoff.
Specifically, for any constant ¢ < 1/4 we can choose any k >
1 such that ke < 1/4. This implies that a modified algorithm
can actually correct (1 — ke)kalN errors. Setting k ~ 4—16 gives
us an algorithm that can correct roughly %N erTors.

For the running time, each time we guess v, we know
v =1- 5B with [D(F)| € [M] and |F| € [N]. Thus a
naive enumeration will result in O(MN) = O(N?) possible
values. Since we need to guess ~y for a constant number of
times, this will lead to a polynomial running time. However,
instead we can enumerate v from {0,7,2n,..., [%M} for a

3577

small enough constant 1 > 0. This reduces the running time
to linear time, at the price of decreasing the relative decoding
radius by an arbitrarily small constant. Finally, we remark
that this algorithm can be executed in logarithmic time on a
linear number of parallel processors, since its main ingredients
from [1], [3] have parallel versions in logarithmic time.

7) Unique Decoding for Smaller e: When € is even smaller,
e.g., ¢ < 1/8, our algorithm uses the procedure of finding
possible corruptions, together with property (*) we established.
Let F' denote the set of corrupted vertices in the received word.
To use property (*), we need to find a A such that for any
S C F, S has expansion at least (1—A)D|S|. Then we can set
the threshold h = (1 —2A)D. In [3], one assumes |F| < aN
and thus it is enough to set A = ¢. However, our goal here is to
correct more than N errors, thus this choice of A no longer
works. Instead, we use our size-expansion tradeoff to show that
if |I(F)| = (1 —~)D|F]|, then when S C F and |S| > aN,

we always roughly have [['(S)| > (1 - \/W> -D|S)|, thus

we can set A = max{\/ ”Fls,s}.
alN

However, again we don’t know ~y and | F'|. Thus we apply the

same trick as before, and guess both quantities. This leads to
yIFle
aN

or A = ¢g), we get two different decoding radii for different

ranges of . The running time is polynomial if we use the
naive enumeration of and |F|, but can be made linear by
using a similar sparse enumeration as we discussed before.

Algorithm 4. Since we have two possible cases (A =

8) List-Decoding Radius: Recall that our goal is to show
that given any y € FX, there is a list of at most NO()
codewords within distance pN = (3 4Q(1/Dyax))d to y. Our
analysis modifies the double counting argument that is used
to show the Johnson bound. The modification is by using the
special structure of expander codes.

In more details, suppose the list of L codewords within
distance pN to y, is {C4,...,CL}. Let 7; be the number of
codewords in the list which have their ¢-bit different from y.
We focus on counting the number T of “triples” (i, j1, ja),
where the pair of codewords (Cj,,C;,) are different in their
i-th bit. Since the code has distance d = dN, we know
T > (5)6N. We also know T = >ien) Ti(L — 7i). The
key observation in our analysis is that for expander codes,
{7i,i € [N]} have a large deviation. Specifically, we call 7;
heavy if T; > D(:fm L, and show that the summation of heavy
7:’s is ©(NL). By using this observation, we manage to get a
better upper bound for 7" than that in the proof of the Johnson
Bound in certain situations, which in turn yields a better list-
decoding radius.

9) Organization: The rest of this paper is organized as
follows. In Section II, we describe some basic notation,
terms, definitions and useful theorems from previous work.
In Section III, we show our improved distance bound for
expander codes, and prove it is tight in general. In Section IV,
we establish new properties of the algorithm which can find
a super set of corruptions. In Section V, we provide our
main unique decoding algorithm. In Section VI, we pro-
vide our improved unique decoding algorithm for smaller e.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

3578

In Section VII, we show our list-decoding result. Finally,
we conclude in Section VIII with some open questions.
Appendix A contains some relatively standard materials omit-
ted in the main body.

II. PRELIMINARIES

We will use 1{€} € {0,1} to denote the indicator variable
of an event £. Moreover, we use C and ¢ to denote different
constants in various proofs of this paper.

A. Basic Definitions From Graph Theory

Given a graph G, we use V(@) to denote its vertex set
and F(G) to denote its edge set. Given a bipartite graph G,
we use VL(G) and Vg(G) to denote the left hand side and
right hand side of the bipartite graph separately. When G is
clear, we simplify them as V;, and V. Moreover, we fix two
notations N := |V | and M := |Vpg|.

For any subset S C V,UVg, we always use I'(.S) to denote
its neighbor set in G. If a vertex v € I'(S) is connected to S
by exactly one edge, we call v a unique neighbor of S and
use I''(S) to denote the set of all unique neighbors of S.

In this work, we consider bipartite graphs that are regular
on the left hand side. Thus we use D to denote the regular
degree in Vi, and Dy to denote the average degree in V.
Since N = |V | and M = |Vg|, we have N - D = M - Dp.
Moreover, we will use D, to denote the maximum degree in
G, which would be the maximum degree in Vi given M < N.

A bipartite graph G is an (aNN, (1 — ¢)D)-expander if and
only if for any left subset S of size at most a/N, its neighbor
set I'(S) has size > (1 —e)D - |S|. For convenience, we call
|1“|(;|‘)| the expansion of S and say G satisfies (aV, (1 —¢)D)
expansion if and only if it is an (alV, (1 — ¢)D)-expander.
Throughout this work, we assume that D and Dp are con-
stants. Since we are interested in expanders with € < 1/2 and
N > M, we always assume D > 3 and Dp > 3.

B. Basic Definitions From Coding Theory

We recall several notations from coding theory and define
expander codes formally.

Definition 4: An (N, k, d) binary error correcting code C is
a set of codewords contained in FYY, with |C| = 2¥ such that
VCy,Cy € C, the Hamming distance between C7 and Cs is at
least d. Moreover we call k/N the rate of C.

A linear code is a code whose codewords form a linear
subspace of F'.
One fact about linear codes is that the distance of a linear
code is equal to the minimum weight of a non-zero codeword
in it. The decoding radius of a decoding algorithm of C refers
to the largest number of errors that the algorithm can correct.

Definition 5 (Expander Codes [1]): Given an (aN, (1 —
€)D) expander graph G with M right vertices, the expander
code defined by G is C C Fév such that

C=C|Vie[M],) Cj=0;,
JET(4)

where the addition is over the field Fs.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

Given the definition of expander codes, we know its rate is
at least 1 — M/N and its distance is the minimum weight of
a non-zero codewords in C.

Remark 6: The original definition of expander codes in [1]
is more general, where each vertex on the right represents
some linear constraints on the codeword bits corresponding to
its neighbors. In this paper, we only consider the most popular
and well studied case where each vertex on the right represents
a parity check.

We use the following results of decoding for expander
codes, from [3].

Theorem 7 [3]: Let G be an (aN, (3 + £)D) expander
with £ > 0. For the expander code defined by G, there is
a linear-time algorithm that can correct alN erasures.

Theorem 8 [3]: Let G be an (aN, (1 —&)D) expander for
€ < 1/3. For the expander code defined by G, there is a

linear-time algorithm that can correct =55 [N | errors.

III. IMPROVED DISTANCE OF EXPANDER CODES

Let G be an (aN,(1 — €)D) expander and C be the
corresponding expander code. We show that when ¢ < 1/2,
the distance of C' is roughly QLEOéN .

Theorem 9: Let G be an (N, (1—¢)D) bipartite expander.
The distance of the expander code defined by G is at least
5o N —1/e.

In Section III-A, we provide a construction of expander
codes to show the above bound 3-- N is almost tight in general.

Theorem 10: Given any constants € € (0,1/2) and n > 0,
there exist constants D and o > 0, such that for infinitely
many N, there exist (aN,(1 — e — n)D)-expanders with
M € [N/2,2N/3] where (1) the rate of the expander code
is in [1/3,1/2]; and (2) the distance of the expander code is
at most 5= - N.

Remark: While the graphs we construct in Theorem 10
are not strictly regular on the right, they are “almost regular”
in Vg, i.e., Dpae < 1.1 Dg, such that Theorem 3 indicates a
larger list-decoding radius than the Johnson bound.

To prove Theorem 9, we start with the following lemma
which gives a tradeoff between the two parameters o and .
This is one of our main technical lemmas, and the proof is
deferred to Section III-B.

Lemma 11: For any k € (1,1/«) and any left subset S of
size kaN, we have

o I0(S)|>(1—ke)D-kaN —2ek*- D.

o [T(S)| > (1-3%57%)D- 5aN —O(k-D) (which is better

than the Ist bound for k > 1/2¢).

In particular, the first bound will be extensively used
in our decoding algorithms, which shows an (aN, (1 — ¢€)
D)-expander is also roughly a (kaN, (1 — ke)D)-expander
for any k£ > 1. While this bound is extremely useful for
k < 1/2e, we will use the second one for larger & to improve
the list-decoding radius upon the standard Johnson bound.

Using the above lemma, we first prove the following facts
in an expander graph.

Fact 12: Let G be an (aN, (1 — €)D)-expander with left
regular degree D and right average degree Dgr. We always

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMPROVED DECODING OF EXPANDER CODES

have
1) e>1/D.
2) £ <51+)

Proof: To prove the first fact, let us consider the smallest
non-trivial cycle C' in the expander graph G. First of all,
we observe that |C| = O(log |V|). To show this, we consider
the argument to bound the girth of a graph. Let us fix a
vertex v and consider the BFS tree with root v. The BFS
procedure finds a non-trivial cycle when it finds a vertex
for the 2nd time. Since G is D-regular in Vp, within depth
2logp_1 M, the BFS procedure will find a non-trivial cycle.
Since each vertex in C' N Vi has two neighbors in C NV,
DENVL)| < D-|CNVL| = [CAVR| = (D= 1) [CNVL].

For the second fact, consider a left subset S of size 2M /D
in V. Since M < N and D > 3, such an S always exists.
Given [['(S)| < M, we plug k = & ‘ into the 1st inequality
of Lemma 11 to obtain

2M/D 2M/D\>
—c. .D. —9. . < M.
(1saN)D|S|2sD(aN)_M

We simplify it as follows:

2M/D M2
(1—5~/)~D-2M/D—8€<M
aN

o2N2.D —

2 8- M
loe—)ooM— 2 <y
< : aDR) o2N -Dp —
(recall ND = M Dg)
8- M 4e
- < - M.
o2N -Dr ~— aDg
So we have 5~ > & — 25—, or equivalently, £ < 55— -
(14 2). O

We can now prove Theorem 9.

Proof of Theorem 9: First of all, note that £ < £ -
(14 %) from Fact 12, and thus is strictly less than 1 (since
Dgr > D > 3). Now assume the claim is false, let us consider

any non-zero codeword z with Hamming weight at most -

N —1/e.

Let S C |[N] denote the entries in z that are 1.
By Lemma 11, [[(S)| > (1— 3L 6)D || - 2eD - (18])2.
Since 1 > % ls‘ , we have

/e S|
— D - 2eD -
(2+ o) s ()
D \S| 2e-|S| |9] D
S|+ D- -D-. LS gl
‘ |+ alN alN alN 2 | |

This 1mphes the existence of unique neighbors in I'(.S). Thus
z is not a valid codeword, which contradicts our assumption.
O

A. Distance Upper Bound of Expander Codes

In this section we prove Theorem 10. Given 7 and ¢, let D >
5-1;2 be a constant such that there exists a family of degree-D
Ramanujan graphs [17] whose 2nd largest absolute value of
eigenvalues of the adjacency matrix is A < 24/D — 1. In this
proof, when the graph H is clear, we use e(A, B) for A, B C
V(H) to denote the number of distinct edges between A and
B. We state the following version of the expander mixing

lemma for e(A, A) [18], [24].

3579

Lemma 13 (Theorem 8 in [24] for A = B): Let
H = (V,E) be an expander with degree D, where the
second largest absolute value of eigenvalues of the adjacency
matrix is A. Then for any subset A C V of size at most
[V'|/2, e(A, A), the number of edges inside A, is bounded by

D AP A

- < Z
4 A) =397 =9

-|Al.

We now construct an (N, (1 — e — n)D)-expander graph
with N + M vertices by putting together two disjoint graphs
Gy and G;. For Gy, we first choose a Ramanujan graph H
with degree D and N’ = 3= - N vertices in the family for
a sufficiently small « (compared to £/D). To obtain (1 —
¢ —n)D expansion, we modify H and construct a new graph
Gy based on the vertex-edge incidence graph of H. Thus the
vertex expansion of Gg is now the vertex-edge expansion of
H, rather than the vertex expansion of H. More specifically,
we set G as follows: VL,(Go) = V(H) and Vi(Go) = E(H)
such that (v,e) € E(Gp) if and only if v € V(H) is an
endpoint in the edge e € E(H) of H. Notice that G has left
degree D.

Claim 14: The bipartite graph G constructed above is an
(aN, (1 — & — n)D)-expander.

Proof: For any S C V1.(Gy), |T'(S)] is the number of dis-
tinct edges connected to S C V(H) in H, i.e., e(S,V(H)) in
the Ramanujan graph H. We rewrite e(S,V(H)) = (S5, S) +
e(S,S). Since 2¢(S,S) + e(S,S) = D - |S|, we upper bound
e(S, S) by the expander mixing lemma:

D |S] A >
e(S,9)< -8 + 1S < D-|S (+ -5
Since |S| < aN, |[V(H)|=£& - N and \/D < \ﬁ < 2ny/e,
we have e(S5,S5) < (e+n)D- \S| and e(S,V(H)) =D-|S|—
e(S,8)>(1—-e—mn)-D|S|. O

While G satisfies (aN,(1 — ¢ — n)D) expansion, its
expander code has a small rate since its right hand side
Vi(Go)l = |E(H)| > |V(H)| = |Vi(Go)l. Then we
construct G; such that the design rate of the expander code
of G =Gy UGy is M/N € [1/3,2/3]. For an even number
N and some M € [N/2,2N/3] chosen later, G; is defined
as a random regular bipartite graph with |V.(G1)| = Ny =
N — N', |Vr(G1)| = My = M — DN’ /2, regular left degree
D and regular right degree D; = Ny - D/M;. Since we can
choose M € [N/2,2N/3] and « to be sufficiently small, such
an integer D; exists. For example, we can set M; = N;/2 and
D1 = 2D give an even N7 (based on even N’ in [17] and even
N in our choice).

Then, a random bipartite graph with such parameters satis-
fies (N, (1—€) D) expansion with high probability for a small
a. For completeness we show this calculation in Appendix A
and assume this property in the rest of this proof. Overall,
because both G and G satisfy (aN, (1—e—n)D) expansion,
G =GoUG, is an (aN, (1 —e —n)D) expander.

Next, consider a codeword that is all 1 in V1,(Gy), and
0 everywhere else. It satisfies all parity checks since the right
degree of VR(Go) is 2. Moreover, its weight is 5- N, and
thus the distance of the corresponding expander code is at
most 5= N.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

3580

Finally, we remark that G is regular in V, (G) and is “almost
regular” in Vi(G). Its maximum degree Dp,.x = D; and
average degree on right Dp = (M-DN /A?'D1+DN . Since

N'" = £ N for a sufficiently small o (compared to /D) and
M € [N/2,2N/3], Dg > 0.95 D; and Dpyax < 1.1 Dpg.
So our construction meets the requirement of Theorem 3 for

a better list-decoding radius than the Johnson bound.

B. Proof of Lemma 11 and Its Generalization
We prove the first lower bound |[T'(S)| > (1 — ke)D - |S| —
2ek? - D by a probabilistic argument, where we recall |S| =
kaN. Suppose |I'(S)| is small. Then we consider a random
subset 1" of size a/N in S and upper bound
|7l (7] - 1)
1S]- (151 =1)°
As justification, consider any neighbor u of S, say u has
ds(u) neighbors in S which are vy, ..., v44(y). Observe that
the following inequality holds for any 7" C S

E[[NT)[] < DT = (IS]- D = |T(S)])

ds(u) ds(u)
HueD(T)}< Y v €T}= > 1wy € T}-1{v; € T}.
i=1 1=2

So we take expectation (over T") on both sides:

|T| T]-(1T-1)
17@[1{11 e (T} <ds(u) - @—(ds(u)—l) SISI=1)
(D
At the same time, we know
3" ds(u)=D-|S]

uwel(S)
and Y (ds(w) - 1)=D-[s| - [I(S)] @

uwel(S)

Then we consider the summations over u € I'(S) on the
two sides of (1): By linearity of expectation, it becomes

7] IT)(|T] 1)
BT[] < 3 dstudgr =32 (s =1 =gy
=D-|T| - (|S-D— \”5)‘) m

(plug the two summations of (2))

oo (- (- BB

On the other hand, this is at least |T'|- D(1—¢) by the expander
property. So we have

TS|\ 7] -1
loe<1-(1- .

°= < D-|S|) 5] — 1
7| -1 IT(9)]
>1-— .
< €/<|S|—1 SR NT]

This gives

IT(9)] kE—1

>1— —).

Ds =t ¢ (k+ozN—1>

We rewrite it to obtain

(k-1

IT(S)| > (1 —¢k) - DIS| — ¢ -D|S| > (1 — k) - D|S| — 2e Dk,
aN —1

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

1) Generalization: Next we consider an alternative way to
compute E [|T(T)|]. The main motivation is to prove a better
bound than the above one for k > 1/2e¢.

Let us fix S of size kaN and consider T'(S). Since the
total degree of S'is D-kalV, let 8;- DaN denote the number
of vertices in T'(S) with exactly j neighbors in S. Since the
largest degree is Dynax, by the definition,

TS = (Br+ -+ Bppa) - DaN.
Moreover, by summing up the degrees, we have
61 + 262 +-- Dmax : ﬂDmax =k.

Now we consider

E(NT)]=) Pt

ieT(S) T~(an

[T'AT(E) # 0], 3)

which is at least (1 —e)DaN from the property of expansion.
Since T is a uniformly random subset of size a/V in S,
I;r[T NI # (] in (3) only depends on |['(i) N S| —
the number of neighbors in S. Hence, we use ¢; to denote
this probability P;r[T NT(z) # O] for vertices with exactly j
neighbors in S. From the definition, g; equals Prp[T'NI'(7) #
0] =1 — Prp[T NT() = 0]
AsI =17 - (S| =171 =1)--- (S| = [T|=j + 1)

- ST-(ST=1) (8T + 1)
“)
Plugging this into Eq(3), we have the inequality
Dmax
> ¢;-Bj-DaN > (1—¢)- DaN.
j=1

To lower bound |I'(S)|, we rewrite all constraints as a linear
programming:

min B1 + - + Bpoax
subject to 51+ 282+ - Dmax - BDpay = K 5)
Diax
> gBi=(01-¢) 6)
j=1
B; >0, Vj.

To prove a lower bound of the above linear program,
consider the dual of the above linear program:
max k-x1+(1—¢€)- a9
subject to j-x1+¢qj-22 <1 Vi=1,...,Dnax, (1)
T > 0.
Now we prove the 2nd lower bound by presenting a feasible

point (z1,22) in the dual program. We consider the point
where x; and x, are determined by (7) with j = 2 and j = 3:

2x1+q2 w2 =1, 3x1+q3-x2=1.

— _92—@gs 1 : :
We get xl = 3026 = S-ta To s1mp111fy 21 and
x2, we simplify g2 and g3 using the fact & > 5 > 1 as

follows:

and zo =

(k—1aN - [(k—1)aN — &L — 1]
kaN - (kaN —1)

@=1-

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMPROVED DECODING OF EXPANDER CODES
(k—1aN - (-

(k- 2
B k kaN - (kaN —

1 1
R <k2aN>

(k—1aN -[(k—1)aN —1] - [(k — 1)aN — 2]
kaN - (kaN — 1) - (kaN —2)

3
:1_(]H)
k
(o1 2 E—1\°
k kaN -1 k kaN —2 k
1 1 2 1 kE—1

"k kaN—1 k kaN—-2 &k

fé 3+i+0 ;
ok k2 k3 k2. aN

7
1)
9
Tk

3=1-

—1/k+2/k*=1/K>+0(
3/k2 2/k3i0(

1
Given k£ > 1, we rewrite 1 = on)

k2. cxN)

QEi/zk/;k +O(Zy) and x5 = 3 Z/k + O(Z%) such that the
objective value becomes
2—1/k—k+k(1— k
k-zi+(1—¢)aza=k- /3—2//€()iO(OcN>
k 4—2/k—2ke k
el i A
3-2/k © (aN)

N N

() =0 (G5)

We show this pair of (z1,x2) is feasible in the rest of this
section. £ > 1 implies z2 > 0. Claim 15 below will show
that (7) is true for any j. These conclude that |T'(.S)] is at
least [%(1 - ?“2/,1) O(-%:)] - DaN. Finally we note that
the first lower bound is obtained from the dual where x; and
a9 are determined by (7) with 5 = 1 and 5 = 2. In the rest of
this section, we state Claim 15 and finish its proof.

Clqim 15: 1 = 332:333 and 29 = satisfy (7) for
any j.

Proof: Recall that x5 and x3 satisfy the equations of (7)
with j = 2 and 7 = 3. For j = 1 (7) is true since ¢; = 1/k
and x; + %1‘2 = g ;?Z + O() < 1 given k > 1. Next,
we show (7) is also true for j 2 4 via the concavity of g;
(comparing to equations of j = 2 and j = 3).

Specifically, the key property is that these probabilities g;
defined in (4) constitute a strictly concave curve. Namely, for
any j > 1,

_ 1
3g2—2q3

4 = Q-1 > Qj+1 = 45 (®)
To verify 2q; > q;_1 + gj4+1, we prove
o USI=IT] - (S| = [T|—j + 1)
81 (ST —j+1)
(sI =17 --- (81 = |T]=j +2)
ST+ (IST—j+2)
ST =1T7) - -- (151 = 1T'1=j)
|S]---(IS] = J) '
Removing the common factor (SI= “TI) (S| |T|=5+2) , this is

. . (151-3+2)
equivalent to showing

1S[= T =5 +1
|S|—j+1

(S[=1T1=3+1) - (ISI=IT[=J)
(IS[=7+1) - (IS|=4)

1+

3581

Let a = |S| and b = |S| — |T|. This becomes
20b=j+1)(a—j) <(a—j+1D(a=j)+(b—-j+1)(b-7)
After some algebraic manipulation, it becomes proving

0 < (a® +b* +b) — (2ab + a).

The last inequality is equivalent to 0 < (a — b)? —
which is always true as long as @ — b = |T'| > 1.

Fix ¢ > 4 and consider the linear combination of (7) with
j =2 and j = ¢ whose coefficients are i 5 and ;=5. By the
concavity of g9, g3, and ¢y, its L.H.S.

goay g (123
N\ 2t

Since 3 - x1 + g3 - ©3 = 1 by the definition of (z1,x3), this
implies the linear combination is strictly less than 1. Again,
since 2-x1+¢qo-x2 =1, we have £ -1 + qp - 22 < 1. O
Remark: In this remark, we justify our choice of (z1, z2)
by showing that (1) the minimum value of the primal is
achieved by 3* with at most two non-zero entries; (2) more
importantly, if §* has exactly two non-zero entries, they
must be adjacent, i.e., 3; > 0 and ;11 > 0 for some j.
By complementary slackness, these imply that our choice of
(z1,x2) is optimal for certain regime of parameters.
Specifically, if §* is supported on three entries say 1 <
ly < €3, we have j -1 + ¢q; - 2 = 1 in the dual for j =
l1,09,¢5 by complementary slackness. Note that zo > 0 in
order to satisfy any two equations. However, the two equations
of (7) for j = ¢; and j = {3 indicate lo - x1 + qp, - T2 > 1,
as follows. Consider their linear combination with coefficients
ﬁg ﬁj and 2 21. it equals 1 on the RHS from these two
equations; but the combination on the LHS is strictly less
than 05 - £1 + g, - x2 by the concavity of ¢; (and xzo > 0).
Similarly, if §* is supported on two non-adjacent entries say
¢ and /5 with /1 + 1 < /¢, we have two equations for
j = ¢, and j = {5 separately. However, the solution (21, z2)
which satisfies these two equations violates other constraints
in the dual — one can show (¢1 + 1) 21 + qe,+1 - @2 > 1 by
the same argument again.

(a —b),

Q/) “xo < 3-x1 + g3 Ta.

1V. DECODING FROM ERASURES, AND FINDING
POSSIBLE CORRUPTIONS

First, we show that by combining Lemma 11 and
Theorem 7, we can also get a stronger result for decoding
from erasures.

Theorem 16: For every € < 1/2, consider an expander code
defined by an (aN, (1 — ¢)D) expander G. For every £ > 0,
there is a linear-time algorithm that corrects IT;&OLN erasures.

Proof: By Lemma 11, for any 1 < k < é

is also a (kaN, (1 — ke)D — 28F)) expander. Thus if 1 —
ke — i%\’f > 1/24 ¢ for a & > 0, then by Theorem 7, one
can decode from kalN erasures, using the same algorithm.
By Fact 12, 1 5 < 1 . This means k can be as large as 1—;
for any & > 0 Notlce that if 1 5 < 1, then the theorem is
implied by Theorem 7.]

Next, we provide a simple algorithm to find a super set
of the corruptions, which is adapted from a similar algorithm

the expander

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

3582

Algorithm 1 The Basic Algorithm Finding a Super Set of
Corruptions
function FIND(y € F} and A € R)
. L—0

1:
2
3 R «— {unsatisfied parity checks of y}

4 h«—(1-2A)D

5: while 3i € Vi, \ L s.t. [T'(i) N R| > h do
6 L—LuU{i}

7 R— RUT®%)

8 end while

9: return L

10: end function

in [3]. Let G be an (aN, (1 —€)D) expander with N left
vertices, M right vertices, and left degree D. Let C be an
expander code defined by G. The input y is a corrupted
message of a codeword Cj € C. Let F' be the set of corruptions
in y compared to Cp. We use Algorithm 1 to find a super set
of F' given certain parameters.

By a similar proof to that of proposition 4.3 in [3], we have
the following properties.

Lemma 17: 1f |[T'1(S)| > (1 —2A)D|S| for any non-empty
S C F, then F' is contained in L after the while loop.

Proof: Suppose not, then let B be F'\ L after running
the algorithm, B # (). Since B C F, we have [I''(B)| > (1—
2A)D|B|. So there is a vertex u € B such that u has at least
(1 — 2A)D neighbors in T (B). We know that |T'(u) N R| <
(1 —2A)D, because otherwise u should be added to L then.
Thus there has to be a neighbor v of u, such that v is not in
R and is only connected to one vertex in B, which is u. As
F\ B C L, we know I'(F \ B) C R. So v connects to one
vertex, i.e., w in F. This is not possible since then v has to
be unsatisfied and thus it is already in R. O

Lemma 18: In every iteration, if there are multiple vertices
that can be added to L and we choose one of them arbitrarily,
then we always get the same L after all the iterations.

Proof: Consider two different procedures where they
choose different vertices to add to L in their corresponding
iterations. Suppose that they get two different L, say L, for
the first procedure and Lo for the second. Without loss of
generality assume L \ Ly #). Let u be the first vertex in
L1\ Ly that is added in procedure 1. Then all the vertices in
Ly added before u, denoted by the set A, is also contained
in Lo. Since vertices can only be added to the set R, for
procedure 2 we should always have |I'(u) N R| > h when
A C Ly and u ¢ Lo. Thus uw has to be added to Lo in
procedure 2. This is a contradiction. Therefore L; = L. [

Lemma 19: 1f |[T'1(S)| > (1 —2A)D|S| for any non-empty
S C F, then there exists a sequence of choices of the
algorithm such that all the elements of F' can be added to
L in the first |F| iterations.

Proof: We use induction to show that in each of the first
|F'| iterations, there exists an element in F'\ L which can be
added to L.

In the first iteration, since |T''(F)| > (1 — 2A)D|F]|, there
exists u € F such that |T'(u)NT'Y(F)| > h for h = (1-2A)D.
Observe that I''(F) C R. So u can be added to L.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

Assume in each of the first ¢ — 1 < |F| iterations, the
algorithm can find a distinct element in F' to add to L. In the
i-th iteration, let I/ = F'\ L. Notice that |F'| = |F|—(i—1) >
1. Hence |T1(F')| > (1—2A)D|F’|. Thus there exists u € F’
such that |T'(u) NTY(F’)| > (1 — 2A)D = h. Observe that
I''(F’) CTY(F) C R. So u can be added to L. O

The above lemmas imply that as long as |[['1(S)] >
(1 — 2A)D|S| for any non-empty S C F, when analyzing
Algorithm 1, we can assume without loss of generality that
the algorithm first adds all corrupted bits into the set L.

V. UNIQUE DECODING BY GUESSING EXPANSION
WITH ITERATIVE FLIPPING

Let ¢ € (0,1/4) be an arbitrary constant in this section.
We first show an algorithm which has a decoding radius
(I — e)aN. Then by using Lemma 11, we show that the
algorithm achieves a decoding radius approximately f’—g‘gN for
any € < 1/4.

The basic idea of the algorithm is to guess the expansion
of the set of corrupted entries in the algorithm, say (1 —-y)D.
Assume we can correctly guess . For the case of v > %5,
we use a procedure similar to [3] to find a super set of possible
corruptions, and then decode from erasures. For the case of
v < %s, we first consider the left subset which contains all
vertices with at least (1 — 3y)D unsatisfied checks, and show
that this set contains (a constant fraction) more corrupted
bits than correct bits. Thus we can flip all bits in this set
and reduce the number of errors by a constant fraction. The
algorithm then repeats this step for a constant number of
times, until the number of errors is small enough, where
we can apply an existing algorithm to correct the remaining
errors.

We describe our algorithm in Algorithm 2 and then state
our main result of this section.

Theorem 20: For every small constant 3 > 0, and every
e < 1/4 — 3, let C be an expander code defined by a
(aN, (1 —¢)D) expander graph. There is a linear time decod-
ing algorithm for C with decoding radius (1 —¢) - aN.

To prove the theorem, we focus on the i-th iteration of
function DECODING, and show that we can make progress
(either reducing the number of errors or decoding the original
codeword) in this iteration. Let F; denote the set of errors at
the beginning of iteration i and y(F;) € [0, €] be the parameter
such that [T'(F,)| = (1 — y(F})) - D|F.

First we show function FIXEDFINDANDDECODE will
recover the codeword directly whenever ~; > % +n.

Claim 21: If |F;] < (1 —¢)-aN, v > %E + 7, and
v(F;) € [vi —n,7:), then function FIXEDFINDANDDECODE
in DECODING will return a valid codeword directly.

Proof: First notice that when v; > 23—5 + n, this iteration
of DECODING will go to function FIXEDFINDANDDECODE.
Let v := ~(F;). We prove that L after FIND has size at
most aN. Suppose not. Since |F;| < (1 —¢) - aN, by the
expander property, for every nonempty F' C F;, |T'(F')| >
(1 — €)D|F’|, so by Lemma 17, after FIND, L covers all
the errors. Consider the moment |L| = aN. Without loss of
generality, we assume F; C L (otherwise we can adjust the
order of vertices added to L by Lemma 18).

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMPROVED DECODING OF EXPANDER CODES

Algorithm 2 Decoding Algorithm for e = 1/4 — (3
1: function MAIN(y € F3, 0 € R,e € R) //The main
procedure.
2: Let £ = [log, 53] =0(1/p)
3: for every i € [{], every v; € {n,2n,...
7 := /100 do
4; C' «— DECODING(Y, 71, - - -

[1n}, where

e, O E)

5: if C’ is a valid codeword and the distance between
C’ and y is at most (1 — ¢)aN then

6: return C’

7: end if

8: end for

9: end function

10: function DECODING(y € F§ and (7y1,...,7v) € R, a €
R,e € R)

11: 2=y

12: fori=1,...,¢do

13: if v; > 2¢/3 + 1 then

14: z +— FIXEDFINDANDDECODE(z, v, €)

15: return z

16: else

17: Let Ly denote all bits in z with at least (1 —
3~:)D wrong parity checks

18: Flip all the bits in Lg

19: end if

20: end for

21: Apply the decoding of Theorem 8 on z and return the
result

22: end function

23: function FIXEDFINDANDDECODE(y € FY
R)

24: L — FIND(y, €), where FIND is from Algorithm 1

25: y' <« Replace all symbols of y in L by the erasure
symbol

26 return codeword C’ decoded by Theorem 16 on 3’

27: end function

,a € Re €

Then we have

(1—£)DaN < [[(L)| < (1—7)D - |F| +2:D(aN — |F),
because the expansion of F; is (1—+)D-|F;| and when adding
any vertex in L\ F; to L, the cardinality of R increases by at
most 2¢D. So
(I-e)aN < (1

—7) - |Fil + 2e(aN — |Fi)).

As v < ecand ¢ < 1/4, 1 — v — 2¢ > 0. This implies

|Fi|l > 1 - 382 -aN. Since v > v; —n > %, we have |F;| >
11 8273(1]\7 When ¢ < 1/4 — 3, one can check that 11_8273 >

1 — € always holds. It is contradicting the assumption that
|Fi] < (1—¢)aN.

As L DO F; and is of size at most a/V, the algorithm can
correct all the errors using L and z, given ¢ < 1/4 — 3,
by Theorem 16.]

Next we discuss the case where ; < 2¢/3 + 1, which
will result in the function DECODING finding the set Ly and

3583

flipping all the bits in Ly. We show that this will reduce the
number of errors by a constant fraction.

Claim 22: If |[F;| < (1 —€)aN, v < % +n, and y(F;) €
[vi —n,7:), then flipping Ly will decrease the number of errors
in z by at least a 3 fraction.

Proof: Let v := v(F;) and N’ := (1;’137’?;5' We show that
|F; U Lo| < aN'. To prove it, assume |F; U Lo| = aN’, ie.,
we only take aN' — |F;| elements from Lg \ F;, consider
these elements together with elements in F;. Note that by
definition of N’, as |F;| < (1 —¢)aN, aN’ < (1 + 3n)aN.
By Lemma 11, (1 — (1 + 3n)e)DaN’ — 2eD(1 + 3n)? <
|T'(F; U Lg)|. Notice that |I'(F;)| = (1 —~)D|F;|. Also notice
that dding each element of Ly \ F; to Lo contributes at most
37D to [I'(F; U Lg)|, since each element in Lo has at least
(1 — 3v;)D wrong parity checks and I'(F; U Lg) contains all
the wrong parity checks. So

2e(1+ 3n)?

1-(S
< (L+3m)e = =57

<[I'(F; U Lo)| < (1 = v)DIFi| + 3v:D

) DaN'

2
1_(1+3ﬁ)5_%
I=y=3vi
2e(143m)2
aN’

This implies | F;| > 3 WN. As i <

1—(1+3n)e—
1—4v—3n

3y—3 .
T N Tt is min-

_ 2e(1+3n)?
aN/

v + n, this is >

imized when v = 0, since this is (1 + Vf(Hfi);_?m) -

aN’, which has its derivative being non-negative when v €

_ _zeaiam)®
0,1/4 — B). Thus |F| > UZ0HWa? 29 o s
(1 —e— 162775 - (216(13:)3;’])5,) N’. But we know that |F}| =
1+3n =1-ec— 3’17+§5")04N' This is a contradiction,

since ¢ = 1/4 — 8, n = /100 where 3 is a small enough

. . . 2e(143n)2 33—
constant, which implies 163 e 4 2eU43n) - 3n—den _

(1 3n)aN’ 1437
Ine+27n%e—3n—9 2¢(1+3
net 1” g n=9n” +4a (377);7])\,, < 5= 187]2 which is a negative

constant.

Now consider |F;NLg|. The number of vertices in F; having
at least (1 — 3v;)D unsatisfied neighbors has to be at least
|F;|/3, since otherwise there are > 2|F;|/3 vertices in F;
having < (1 — 3v;)D unsatisfied neighbors and this implies
the number of unsatisfied neighbors of F; is < (1—27)
a contradiction. So |F; N Lo| > |F}|/3.

Then consider |Lo \ F;|. Because |F; U Ly| < aN' =

LE39| 1, it holds that |Lo \ Fy| = |F;ULo| — |F;| < §222|F;].
Because ¢ = 1/4 — 3, = /100, this is W|F| <

(1/3 - B)|F.
Hence when we flip all bits in L, the number of corruptions
decreases by at least |F; N Lo| — |Lo \ F;| > B|F;|. O
Proof of Theorem 20: The decoding algorithm is
Algorithm 2. The key point is that in the enumerations of the
7:’s, one sequence (7;)ic[¢ provides a good approximation
of the actual expansion parameters, i.e. Vi € [{] in the i-th
iteration, y(F;) € [vi — n,7:). Now for every i € [{],
we consider i-th iteration. If v; > 2¢/3 4+, then by Claim 21,
the algorithm returns the correct codeword. If ; < 2¢/3 + 7,
then by Claim 22, the number of errors can be reduced by
0 fraction. So in the worst case, when ¢ > loglfﬁ %, the
number of errors can be reduced to at most aN/3 in a

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

3584

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

Algorithm 3 Decoding Algorithm for ¢ < 1/4 With Larger
Decoding Radius

1: function FINAL DECODING FOR LARGE RADIUS(y €

F) ac€R,c €R)

2 Leth = (11141;5’ with 7' = 1/100
3 Let z «— MAWIZIXI(y, ka,1/4 —n') from Algorithm 2
4 return 2
5: end function

constant number of iterations. Finally the algorithm applies
the decoding algorithm from Theorem 8, which corrects the
remaining errors.

The running time of Algorithm 2 is linear, since £ = O(1)
and there are constant number of choices for each ~; takes
constant time. The procedures FIXEDFINDANDDECODE and
the decoding from Theorem 8 both run in linear time as
well. (]

By using Theorem 20 and Lemma 11 we can get the
following result.

Theorem 23: For all constants £ € (0,%),n > 0, if C is an

expander code defined by an (aN, (1 — €)D) expander, then
there is a linear time decoding algorithm for C with decoding
radius (£ —n)N.

Proof: Consider Algorithm 3. By Lemma 11, the
expander graph is also a (kaN, (1 — ke)D — 22—%’“) expander
for k > 1. If k satisfies ke + % < 1/4 — 1/ for a small
constant 7/, then by Theorem 20, there is a decoding glgorithm

with radius (1 — ke — 225)kaN. When k = (11-{-4%7)5’ this is

n’ 2
maximized to be %;r%a]\f . We take n’ to be 7/100 such
aN
that k > 1 and the decoding radius becomes (£& —n)N. The
running time is linear by Theorem 20. |

VI. IMPROVED UNIQUE DECODING FOR ¢ < 1/8

In this section we provide Algorithm 4 with a better
decoding radius for ¢ < 1/8. We state the main result in
Theorem 24.

Theorem 24: For all constants ¢ € (0,1/8],n > 0, if C is
an expander code defined by an (aN, (1—¢)D) expander, then
there is a linear time decoding algorithm for C with decoding
radius (‘/ge_la —n)N for e < &2‘/5 and decoding radius
(152 a —)N for e > 3222,

Algorithm 4 is again by guessing the correct expansion of
the set of corrupted entries. To guarantee that the running time
is linear in n, it guesses the expansion with a fine net ' =
€ -n/2. One remark is that one could extend Algorithm 4 to
a polynomial time algorithm, which enumerates all possible
expansions and replaces the —n- N term in the decoding radius
by a constant.

In the rest of this section, we prove the correctness of
Algorithm 4. Again F' denotes the set of corrupted entries.
And we assume |F| = zaN and |[T'(F)| = (1 — v)D|F)|.
Since we enumerate % from a sequence with gap 7', one of
them satisfies yx € [¥Z, 5% + n']. Now we only consider this
pair of v and Z in the following analysis.

Next we can bound the expansion of all subsets in F'.

Algorithm 4 Decoding Algorithm for ¢ < 1/8
1: function DECODING(y € FY e € R,a € R,n € R)

2: for every 4z from {n,21/,..., (%M’}, where 1’ =
en/2 do

3: if Yz > ¢ then

4: A — \/% +7'.

5: else

6: A —e+27.

7: end if

8: L — FIND(y € F§, A)

9: y' <« Replace all symbols of y in L by the erasure
symbol

10: C’" < Apply the decoding from Theorem 16 on
Y.

11: return C’ if the distance between C’ and y is <
el

12: end for

13: end function

Claim 25: Our choice of A always satisfies that
VF' C F,|U(F")] > (1—A)-D|F'|.

Proof: Let F/ C F be an arbitrary non-empty set, and
|F'| =2’ aN.

If 2 > 1, then assume |[T'(F')] = (1 — B)Dz’aN.
We consider the collisions in I'(F') and T'(F”). Recall that by
collision we mean that given an arbitrary order of the edges,
if one edge in this order has its right endpoint the same as any
other edge prior to it, then this is called a collision. Note that
the total number of collisions for edges with left endpoints in
F” is at most the total number of collisions for edges with left
endpoints in F', because a collision in I'(F") is also a collision
in I'(F"). Thus

Bx’ < .

Also, since F' has size 2’ -
IT(F")| > (1 — 2’e)Da’aN — 2e2”?D. So 3 < a'e + 2%
Hence (B(8 — 2;]”\”,/)/6 < ~x. Thus 8 < \/yxe + %f]”\”,' and
P = (1 ZBDIF| > (1 - \57E)DIF| - 3222 D.
When 5% > ¢, the algorithm sets A = /37 + 7. So
IT'(F")] > (1 — A)D|F'|. When 4% < e, the algorithm sets
A = e+ 2n'. Notice that \/yre < /(32 +1n')e < e+ 7.
Hence again [T'(F")| > (1 — A)D|F’|.

If 2/ < 1, then again we have two cases. When 4% > ¢,
we know A > ¢+ . So by expansion, |T'(F’)| > (1 —
e)D|F'| > (1 — A)D|F’'|. When 4Z < ¢, the algorithm sets
A=c+21.So |L(F')| > (1-¢)D|F'| > (1—- A)DI|F|.

aN, by Lemma 11 we have
2ex’

Given the guarantee in Claim 25, one can show that L
contains all the errors.
Claim 26: After step 9 in Algorithm 4, we have F' C L.
Proof: By Claim 25,VF' C F,|I'(F")| > (1-A)-D|F’|.
So VE' C F,[TY(F")| > (1 — 2A) - D|F'|, since (1 —2A) >
0 in our setting. By Lemma 17, we know F' C L after FIND.
O
Then we calculate the decoding radius and the size of L.
Claim 27: For the branch A = \/3Ze + 7/, if x < ‘fg—;l —

n' /e, then |L| < 352 aN.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMPROVED DECODING OF EXPANDER CODES

Proof: We will use the fact A <, /yxe+n' (since yx €
[¥Z,74Z + 7] in the correct guessing) extensively in this proof.
Now suppose after the iterations, > 1;—:504N . By Claim 25
and Lemma 19, we denote L’ as a set constituted by first

adding F and then adding another ~—20JZE+m) mem’)aN —zaN

elements. Let § = ‘LL;J/F‘ 1= Q(VWEM’) — x. Notice that
IL'| = 2 Wsﬂ) < 122 we show that even having this

L’ leads to a contradlctlon
We show that 6 > 0 and x+6 > 1. The reason is as follows.
First consider the case x > 1. Notice that v < xe + 25’3 ~ by

Lemma 11 when & > 1. So § = 220t _ g > 215 (1+

@)x —1n'/e. When z < % —n'/e and € < 1/8,

this is at least 0. x + d > 1 immediately follows. Second if
x < 1, then 3% < va < ¢, since vz € [§&,7Z+n'] and v < &
by definition of ~. Thus the algorithm should not go to this
branch.

Next notice that all the unsatisfied checks are in I'(F) where
IT(F)| = (1—7)D|F|, and every element in L'\ F' contributes
at most 2A D vertices to R. Hence |I'(L')| < |T'(F)|+2AD-
daN. On the other hand, Lemma 11 implies [I'(L")] > (1 —
(x +6)e)D - (x + §)aN — 2e(x + §)2D. Thus we have

(1 —(z+8)e) - (x+8)aN — 2(z + §)?
<(1 —y)zaN +2A - 6aN < (1 —y)zaN + 2(/yze +1') - SaN.

In the rest of this proof, we show that our choice of § yields

2e(x + 6)

A= (z+0)e) (z+0) - —

> (1 =)z +2(y/2e +1') - 6,
©))
which gives a contradiction. Towards that, we rewrite inequal-
ity (9) as
2e(x +9)
aN

When (2ex—1+2(,/Aze+1'))?—4e (5:1: —vr 25(1+5)) -

0, the quadratic polynomial will be negative at ¢
1—2ex—2(y/yZe+n")

0 > 0%+ (2ex — 1 + 2(\/yae + 7)) d+ea® —vya+

P . To verify this, we set z = ex and only
need to guarantee that

(22 — 1+ 272)? —4 22 + 4y2 +2(22 — 1+ 2/72)n’ > 0.
This is equivalent to

8vz+ (82 —4)\/7z+1—42—2n >0

2z -1\ 2z —1\°
s(ﬁw : > 277’+1428< 24) 0.
When z = ex < ‘/52 Ly (namely z < f L p//e), the
residue 1 — 4z — 8(21)2 — 27/ —7—22—22 —277 > 0.
So the inequality holds. (]

Claim 28: For the branch A = e+2n/, if z < 172227 /e,

then |L| < :52€aN.
Proof Suppose |L| > 15525041\7. Consider L' C L with
|L'| = 3522aN. Let § = 152 — z. Notice that § > 0 because

x < 1425 27’]/6 e < 1/8 Also x+ 0 > 1 since € < 1/8.

By (L") > (1—(x+6)e)D|L'|—2¢(x+6)%D.
By Lemma 19 we can consider L’ as being constituted by
first adding all elements in F and then add another dalN

3585

elements by the algorithm. Notice that all the unsatisfied
checks are in T'(F), |T'(F)| , and every element
in L' \ F contributes at most 2AD vertices to R. Hence
IT'(L")| < D|F| 4 2ADéaN. So we have

(1 — (z+06)e)D|L'|—2¢(x 4+ 6)*D < |T(L')| < D|F|4+2ADéaN.

Thus

(1—(x+5)5).(x+5)—M;5)

< 2+42A8 = 2+2(e+21)4.
a

So this is equivalent to

2)
(1-2e—¢e(x+9))(xz+d) —40n — %(@+9) < (1 —2¢)z.
alN
Recall that 6 +x = 15525' To get a contradiction, we only need
2e(x 4 9)
1—28)x < (1 —2¢)%/4e — 46y — ————.
(1= 20)o < (1= 26)% /e — 4o/ = =
This is satisfied by = < 1522 — 25 /e. O

Proof of Theorem 24: In Algorithm 4, one of our enumer-
ations has 4Z such that vz € [¥Z, 5% 4 n’]. Now consider this
specific enumeration. After the function Find, all the errors
are in L by Claim 26.

Now we bound |L|. We can pick the smaller bound of z
from Claim 27 and Claim 28. If ¢ < 3_2‘/5 then f—s_l <
22 So by Clalm 27 and Claim 28 when x < V22l gy /e

we have IL| < 52aN. If ¢ € [3=22 1/g], then % >
1— 25 .So by Cla1m 27 and Claim 28, when:z: < 1% 25 —2n'[e,
we have |L| < 352€aN. Since the expander is an (aN (1-
€)D) expander, by Theorem 16, one can correct all the errors
efficiently using L (as the set of erasures) and the corrupted
codeword.

The decoding algorithm runs in linear time because we
only have a constant number of enumerations, and each
enumeration takes linear time.]

VII. L1ST-DECODING RADIUS

In this section, we consider expander graphs with bounded
maximum degree Dpax = O(1). Our main result of this
section is the following theorem about the list-decoding radius
of almost-regular expander codes. For convenience, we only
consider relative distance and relative radii. Throughout this
section, 4 = «/2¢ denotes the relative distance, r denotes
the relative decoding radius from the Johnson bound, and p
denotes the relative decoding radius that we will prove.

Theorem 29: Given any (aN, (1—¢)D)-expander G with a
regular degree D in V7, and a maximum degree Dy,.x in Vg,
its expander code has a relative list-decoding radius at least

= (3 + Q1/Dax)) - 0 and list size O(1).

In particular, when ¢ < 1/4, a/e < 0.1, and Dpax <
1.1 Dpg for the average right degree Dp, the relative
list-decoding radius p is strictly larger than the Johnson bound
r of binary codes with relative distance § = 3-.
We remark that Dy, < 1.1 Dp is a relaxation for Dg-regular
graphs, which are a standard instantiation of LDPC codes. One
immediate open question is to design efficient list-decoding
algorithms for expander codes. Since these algorithms provide
efficient algorithms for unique decoding with a radius up to

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

3586

half of the distance, they would improve our decoding results
immediately. Hence, we leave this as a future direction.

We finish the proof of Theorem 29 in the rest of this section.
For y € FY, let |y| denote its Hamming weights. To prove
Theorem 29, recall that the Johnson bound 7 of binary codes
with relative distance § is 1_7\/21_725 [2], which is the limit of
the inequality

§/2+7%—r > 0.

Our basic idea is to use locality (which we will define
more precisely in the proof) of expander codes to improve
the average case in the argument of the Johnson bound.
In particular, for L codewords C, ..., Cr, within distance pN
to some string y, we will show that the 1s in C1+y, ..., Cr+y
are concentrated on a constant fraction of positions. More
precisely, we pick a threshold 6 := 0.9/Dy,.x to show the
concentration of 1s. We use the following fact about # and r
in the proof.

Claim 30: When ¢ < 1/4 and «o/e < 0.1, the relative
list-decoding radius r of the Johnson bound of relative distance
d := «/2¢e of binary codes is less than 0.530. Furthermore,
when Dy, < 1.1 Dg, our choice 0 := 0.9/D,,.x is at least
0.5444, which is greater than r.

We defer the proof of Claim 30 to Section VII-B.1 and
finish the proof of Theorem 29 here.

Proof of Theorem 29: We fix the threshold 6 :=
0.9/Dynax as in Claim 30. For convenience, we assume that
p < 0.546 in this proof — otherwise p > 0.549 satisfies
p=3(14 Q1/Dyax)) and p > 0.54 is strictly larger than
r < 0.536 (from the above claim) for the second case.

We fix an arbitrary string y € FYY and consider codewords
within relative distance p to it, say, there are L codewords
C1,...,and Cp. Let T',34(S) denote the neighbors of S with
an odd number of edges to S. Given z € Fév , let S, denote
the set of l-entries and I'p44(2) := ['pqa(S:). Back to the
codewords C1,...,Cp, since (y+C;)+ (y+C;) = C; +C;
is a codeword, Togqq(y + C1) =+ -+ = Toaa(y + Cr) from the
definition of the expander code — all codewords satisfy those
parity checks. Hence we use I',44 to denote this neighbor set
Foaa(y +C1) = - =Toaaly + CL).

First of all, we lower bound |T',q4|. We pick C; such that
ly+C;| € [0.56 - N, p- N]. Note that such a C; exists as long
as L > 2. Then |Tpqq(y+C;)| > (1—25-%)D~|y+0j|—
16eD from Lemma 11. This is at least 0.46pD - N — 16D
given the range of |y + C;| € [0.50 - N,0.545 - N] (recall p <
0.549 in this proof). For ease of exposition, we use a simplified
lower bound |T's44| > 0.45p - DN in the rest of this proof.

Let 7; denote how many codewords of C; have ith bit
different from the corresponding bit in y, i.e., Zle 1{i €
supp(y + C;)}. Since |y + C;| < pN, we have >, 7, < pN-
L — in another word, E;[r;] < pL. The key difference
between our calculation and the Johnson bound is that we
will prove 71,...,7, have a large deviation. We call ¢ € V},
heavy if and only if 7; > 0 - L for § = 0.9/D,.x and show
that their sum is ©(NL):

Spi= Y 7 > 045pN - (L — Dipax - 0L) = 0.045pN L.
heavy

(10)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

In particular, for certain choices of parameters, 8 > 0.5449
(from Claim 30) would be strictly larger than p < 0.546. This
implies that 71,..., 7y have a large deviation.

To prove Eq (10), the starting observation is that for each
v € Toga € Vg, ZiGF(v) 7; > L by the definition of T'ygq.
Since v has < Dy, neighbors,

>

heavy €T (v)

Ti Z L— Dmax -0L.

By the double counting argument,

PIEDY

v€l a4 heavy 1€T(v)
> (L — Dyax - 0L) - 0.45pD - N.

T; Z (L - Dmax : oL) : |Fodd|

So

Zvefodd Zheavy 1EN(v) Ti
Z Ti 2 D

heavy %

> 0.45pN - (L — Diyax - OL).

Moreover, let N; denote the number of heavy elements.
We have 0L - N, < S}, which upper bounds Nj, by Sy, /(6L).

Similar to the argument of the Johnson bound, let 7" denote
all triples of the form (4, ji1, j2) where ¢ € [N], j1,j2 € [L]
and Cj, (i) # C},(4). Since the distance between C;, and C},
is at least NV for any j; # js, the number of triples is at least
(£) .

On the other hand, T'is equal to 3, ., 7i(L —7;). Then we

provide an upper bound on Zie[n] 7:(L — 7;) under the two
constraints >, 7; < pN-Land) 7; > 0.45pN-(L—Dmax-

heavy %
6L).
Claim 31: Given), 7; < pN - L, the threshold § > p, and
> 7i > 0.45pN - (L—Diyax - L), we have

heavy i:7;,>0L

Y 7i(L—7i) < Ny -6L(L—0L)+ (N = Nj)-nL(L—nL),

i€[n]
where N is equal to the upper bound S} /(0L) for S} =

0.45pN - (L—Dinax - 01) and n = £E525

In another word, the lower bound is ob{lained when (1) all
heavy 7;s are equal to 6 with a sum S} equal to the lower
bound 0.45pN - (L—Dyax - OL); and (2) the light ones have
the same value 7, which is < p, such that the total sum N;' -
0+ (N — Nj)-n=pN where N; = S; /0.

We defer the proof of Claim 31 to Section VII-B.2 and
combine the two bounds of 7" to get

L
(2)51\7 <T < Nj-0L(L—60L) + (N — Nj) - nL(L — nL)

where the right hand side is obtained at N} = S} /0L for S} =
0.45pN - (L—Dyyax - 0L) > 0.045 - pNL and 1) = L2

h
This implies

N N — N}

So L = O(1) when the decoding radius p satisfies §/2 +
%62 + %nz — p = Q(1). For convenience, let p* be the

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMPROVED DECODING OF EXPANDER CODES

limit of p satisfying the above inequality such that
N - Ny,
-
Next, we provide explicit bounds on p based on (11)
and equation %0 + X NNhn p- Recall that the Johnson
bound 7 is obtained from (11) with =n = r:

N*
5/Q+Wh92+ —p*=0. (11)

§/2+1r*—r=0. (12)

This implies r = 2=Y1=20 which is § + ©(?) for small 6.

A. Showing p* = (3 + Q(1/Dyax))d

When 1/Dp.x < 2.50, the list-decoding radius r =
¢ +Q(6?) from the Johnson bound is (3 + Q(1/Dpmax))d.
Hence we only consider 1/Dy.x > 2.50 to prove p* =
(3 4+ Q(1/Dpmax))6. Observe that § = 0.9/Dyax > 26 is
larger than p here. We simplify p* in (11) to

N7 St
* 9 h n2 2 h .

RecallNy = Sy /(6L)fromClaim 31
> §/2 + 0.045p" - 0.9/ Dynax
Sp > 0.045 - p* N Lfrom our choice off.

Toelr— = 0/2+ (1+Q(1/Dimax)).!

This implies p* >

B. Showing p* > r

In this case, we show p* = r+Q(63) given e < 1/4, a/e <
0.1 and Dpax < 1.1 Dpg, which implies the list-decoding
radius of such an expander code is larger than the Johnson

bound. To simplify p* in (11), the key is to apply NT’*‘O +
N—N;

~ 1 = p* to rewrite the two middle terms as
Ny N—-N; N; N—-N;}
02 B2 (%2 h(g_ p*)2 R o#\2
T (") 4+ 5 (O0=p") "+ = (n—p")
Ny N - N

=)+ ~ (O =m)*

Comparing to (12), the extra term Jﬁ A= Nh (0—n)? would
always increase the range of p*. Speciﬁcally, (11) minus (12)
implies

. N-N;
()2 =72 + —

0 — —p* =0
iy e Ul Ml s
N} N — Ny

& (o =) (L= pr —r) = SE S (=P
N; N-— N
pra o Uil

1-—- p -
Since 6 > 0.5446 and n < p € [0.54, 0.544] (from Claim 31),
we have § —n = Q(J). Moreover, Nj/N = % from
Claim 31 is Q(p/0) which is (- Diax) given 8 = 0.9/ Dyyax
and p > §/2; then both r and p* are less than 0.05 because
the distance § = ;‘—E < 0.05 from the condition /e < 0.1 of

this case. From all discussion above, we have p* —
Q(Dpax - 63).

& ph—r =

ol

"While a better constant in ©(1/Dmax) is 0.1125 obtained via § =

ﬁ, we did not intend to optimize the constants in this work.
max

3587

1) Proof of Claim 30: When «/e < 0.1, the Johnson bound
-2
= 3(1—V/1 — 26) has a Taylor expansion g—&—%-(?é)%—
for § = a /2. This is at most 1.06 - 3 = 9265

€
Then, we show 75— > 023 — (k:D/M) We plan to apply

the 2nd lower bound in Lemma 11 for k := 0.95/¢. A subset
of size kaN exists because 0.95a/e < $% - (1 + ;%) from
Fact 12. Since D > D > 4 for ¢ < 1/4, 0.95a/¢ is less
than 1 such that one could find a subset S of size kaN in V.
Next we apply Lemma 11 to I'(S) and obtain

k 2ke — 1
—(1—- - DaN — -D) < M.
2(3—2/k) alV - O(k- D) <
For k = 0.95/¢, we use DN = DM to simplify it to
0.95 0.9
(1-— -aDrM — O(kD) < M.
2% < 3—25/0.95> aDpM = O(kD) <

Since ¢ < 1/4, we have

02955 (1 - 039> -a <1/Dn+ O(kD/M),

which shows 1/Dp > 2:3325¢ _ O(kD/M)

Given Dy.x < 1.1 Dg, we have that 6 := 0.9/Dy.x >
0.9/(1.1 Dgr) > 0.272a/e is strictly larger than r <
0.265/¢.

2) Proof of Claim 31: Our goal is to provide an upper bound

on
Z T (L — TZ‘>
i€[n]
given) . 7; < pN - L, threshold 6 > p, and ooz
heavy 72:7;,>0L
0.45pN - (L—Dpayx - 0L). We divide the argument into four
steps. IV, denotes the number of heavy 7; and S}, denotes their
SUM ey ¢ Ti i0 this proof.

e When » .7, S, and Nj, are fixed, Z

Ti) = Zz Y ZheavyiTi - Z:non—heavyiTi2
imized at 7, = Sy/Nj, for all heavy elements and

= (>, 7%—Sn)/(N — Np) for non-heavy elements.
So we assume heavy elements and non-heavy elements
have the same values of 7; separately. So (13) becomes

Np - (L —) + (N = Ny) - nL(L — nL) for n =
2. Ti—Sh
L(N=Np)*

e Then we fix S}, and N}, and focus on ZZ 7;. From the
Ist step, 7; = nL for all non-heavy elements where 1 =

% This is less than 1/2 since n < p < 1/2 for
bmary codes. Increasmg >, 7 will increase n(L—mn) and
Ny - S2-(L — 84 + (N — Ny) - nL(L — 11L). So we fix
> 7'1 = pLN to be the largest for an upper bound.

o Next, when S}, is fixed, consider the upper bound with

(13)

TZ(L —

is max-

NhZ
Sh Sh,
Nyt (L - Nh) (14)
pLN — S}, pLN — Sy
=
2 o 2
_pr2N - Sh (PLN = S5n)7 (15)

Ny, N — Ny,

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

3588

PLN—Sh)2
N,

h

Its derivative (%)2 —(on N, is positive,
because]‘3—’;
% is the value for non-heavy ones. To estimate
an uppL6r bound, we fix N = S;,/0L to be the largest
possible value.

« Finally, since Y, 7 = pLN is fixed and), 77 are
convex, the upper bound in (15) is maximized when
in — % is minimized. This is achieved at the

smallest possible S} = 0.45pN (L — Dpax - 0L).
So we obtain an upper bound where for the smallest possible

Sy =0.45pN (L — Dyax - L), Njf = S} /0L heavy elements

have 7; = L and the rest of the elements have 7; = 2 JL\,IX;VSh
h

is the 7-value for heavy elements and

VIII. OPEN QUESTIONS

Our work leaves many intriguing open questions, and we

list some of them here.

1) Our distance in Theorem 1 is only shown to be tight
by a graph that is not strictly regular on the right. For
bipartite expander graphs that are regular on both sides,
is it possible to get an improved distance bound, or is
the bound in Theorem 1 still tight?

2) Can one design efficient algorithms to correct more
errors? In particular, much less is know about ¢ >
1/4 — so far all our improvements over previous results
are only for the case of ¢ < 1/4. Can one get any
improvements for the case of € > 1/4?

3) Alternatively, is there any hardness result that prevents
us from decoding close to the half distance bound?

4) Can one get a better list-decoding radius for gen-
eral expander codes? Can one design efficient list-
decoding algorithms? As mentioned before, any efficient
list-decoding algorithm would also immediately improve
our results on unique decoding, and in particular imply
unique decoding up to half distance. If there is any hard-
ness result for unique decoding close to half distance,
this would also rule out the possibility of list-decoding
for general expander codes.

APPENDIX A
SUPPLEMENTAL PROOFS

We finish the calculation omitted in Section III-A here,
by showing that random bipartite graphs with certain param-
eters are good expanders with high probability. We provide
one calculation for graphs that is not necessarily regular on
the right and another calculation for regular graphs.

Proposition 32: If parameters «, e, M, N, D satisfies (<) -

(ol)SD < 1, then the probability of a random bipartite

graph, where each vertex in V; has D random neighbors,

is (aN, (1 — €)D)—expander is > 1 — ((g) : (e(zANf)ED o

Proof: Suppose the left part of the bipartite graph is [N].
Fix a subset X of [N] with size N, and let y}, - - - , y” be the
neighbours of the i—th vertex in X. Then the expansion of X
is less than (1 —€)D is equivalent to # {yf} < (1—¢€)DaN,
where ¢ € X and j € [D].

Arrange yf in the lexicographic order of (i,j). The prob-
ability of the value of yf has been taken before it does not
#{vl | @ 3)=60)} _ aND

M M -

exceed

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

So the probability that the expansion of X is less than (1 —

€)D, is less than (EO(;IXI%)) (Q%D)WND

Hence, the probability of the random graph is not (aN, (1—
€)D)—expander is less than

N aND aND\ NP
alN eaND M
A

By the approximation of binomial coefficient: (B) <
eA\B .
(<4)", (16) is less than

B
ﬂ aN eaND eaND aND eaND
aN ealND M
eD alN
_ (E). eaND
a « eM
O

Given any constant € € (0, 1), by choosing a large enough
constant D and let D = %V be the average degree on
the right, Proposition 32 immediately implies the following
proposition.

Proposition 33: For any constants €,n € (0,1), there exist

constants D, o and (aN, (1 —¢)D)-expanders such that < >
1/e—

DRn'

One can also obtain a regular expander by choosing an

integer D = SN and generating D permutations. That

such a random graph is an expander has been proved in [1].
We provide an argument for completeness.
Here is a technical lemma summarized from [1].

Proposition 34: Let B be arandom (D, Dp)-regular bipar-
tite graph with left size IV and right size %.2 Then for all
—aN

, all sets of an

(16)

0 < a < 1, with probability > 1 — (3
vertices in the left part have at least

N(é)R(l—(l—a)DR)—Qa-\/m>

neighbours.

Before we prove this proposition, we show how to choose
the parameters to make the expansion at least (1 —¢)D. Recall
that in the proof of Theorem 10 in Section III-A, we are
looking at a random bipartite graph with Ny = N — N’ >
N/2 left vertices, My = M — DN'/2 right vertices, regular
left degree D and regular right degree D = Ny - D/M;.
Since My > M/2 > N/4 and N; < N, we have Dg <
4D. Next we choose o = 1073 - (¢/D)? such that for any
o <2a, (1-a)Pr e[l —a’Dg,1— (1 —¢/2)a’Dg] and
1—(1-a)Pr € [(1—¢/2)a/Dg,a’'Dg|. Note that any
subset of size N has size o/ N; with o < o/ < 2a. Thus we
simplify the bound in the above proposition to get the desired
expansion

Ni (s (1= /20D — 20 - /DTaie/a))

2One can think of the random graph as being generated following the
Gallager’s distribution, i.e. there are D rounds. In each round, randomly
generate N/Dpg new right vertices by randomly partition the left vertices
evenly into N/Dpg groups and connect vertices in the i-th group to the i-th
right vertex.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMPROVED DECODING OF EXPANDER CODES

In(e/a’)
D

>N1Da'-(1—¢)=aND-(1—¢),

=N,Do/ - (1—¢/2 -2

for a sufficiently large constant D = D(e).

Proof: [Proof of Proposition 34] First, we fix a set of a/V
vertices in the left part, V', and estimate the probability that
(V) is small. The probability of a certain vertex in the right
part is contained in T'(V') is at least 1 — (1 — «)P®. Thus the

expected number of neighbours of V' is at least M - (1 — (1 —
n —(1—a)? . . :
a)Pr) = W. We will use Azuma inequality to

derive that [I'(V')| has a small deviation property, and hence
the probability that |I'(V)| less than the expectation minus
some deviation is exponentially small.

Actually, we number the edges outgoing from V by
1 through DaN. Let X; be the random variable of the
expected size of |I'(V')| given the choice of the first ¢ edges
leaving from V. Clearly, X;,- -, Xpon form a martingale
and |Xi+1 — Xl| < 1.

By Azuma’s inequality, we have:

P (IEI (Xpan) — Xpan >)\\/DaN) < exp (—22/2)

Since there are ((ﬁ'\,

choose A such that

) choices for the set V/, it suffices to

N
(>e>‘2/ 2 is exponentially small.
aN

Since (a[}[\r) < (e/a)*N, we choose A = 2 - \/aN -In(e/a)

to make it exponentially small. Then the deviation becomes

VDaN -2y/aN -In(e/a) = 2aN - /Dln(e/a)

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for many useful suggestions regarding the presentation of this
article.

REFERENCES

[1] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. Inf.
Theory, vol. 42, no. 6, pp. 1710-1722, Nov. 1996.

[2] M. Sudan. (2000). A Crash Course on Coding Theory. [Online]. Avail-
able: http://people.seas.harvard.edu/madhusudan/MIT/coding/ibm/

[3] M. Viderman, “Linear-time decoding of regular expander codes,” ACM
Trans. Comput. Theory, vol. 5, no. 3, pp. 1-25, Aug. 2013.

[4] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA,
USA: MIT Press, Sep. 1963, doi: 10.7551/mitpress/4347.001.0001.

[5] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear program-
ming to decode binary linear codes,” IEEE Trans. Inf. Theory, vol. 51,
no. 3, pp. 954-972, Mar. 2005.

[6] J. Feldman, T. Malkin, R. A. Servedio, C. Stein, and M. J. Wainwright,
“LP decoding corrects a constant fraction of errors,” IEEE Trans. Inf.
Theory, vol. 53, no. 1, pp. 82-89, Jan. 2007.

[7]1 S. Arora, C. Daskalakis, and D. Steurer, “Message-passing algorithms
and improved LP decoding,” IEEE Trans. Inf. Theory, vol. 58, no. 12,
pp. 7260-7271, Dec. 2012.

[8] A. G. Dimakis, R. Smarandache, and P. O. Vontobel, “LDPC codes
for compressed sensing,” IEEE Trans. Inf. Theory, vol. 58, no. 5,
pp. 3093-3114, May 2012.

[9]1 J. Mosheiff, N. Resch, N. Ron-Zewi, S. Silas, and M. Wootters, “LDPC
codes achieve list decoding capacity,” in Proc. IEEE 61st Annu. Symp.
Found. Comput. Sci. (FOCS), Nov. 2020, pp. 458—-469.

3589

[10] M. G. Luby, M. A. Shokrolloahi, M. Mizenmacher, and D. A. Spielman,

“Improved low-density parity-check codes using irregular graphs and

belief propagation,” in Proc. IEEE Int. Symp. Inf. Theory, Jan. 1998,

p. 117.

[11] T.J. Richardson and R. L. Urbanke, “The capacity of low-density parity-

check codes under message-passing decoding,” IEEE Trans. Inf. Theory,

vol. 47, no. 2, pp. 599-618, Feb. 2001.

M. Viderman, “LP decoding of codes with expansion parameter above

2/3) Inf. Process. Lett., vol. 113, no. 7, pp. 225-228, Apr. 2013.

M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson, “Randomness

conductors and constant-degree lossless expanders,” in Proc. 34th Annu.

ACM (STOC), 2002, pp. 659-668.

P. Elias, “List decoding for noisy channels,” Res. Lab. Electron.,

Massachusetts Inst. Technol., Cambridge, MA, USA, Tech. Rep. 335,

1957.

[15] J. M. Wozencraft, “List decoding,” Res. Lab. Electron., Massachusetts
Inst. Technol., Cambridge, MA, USA, Quart. Prog. Rep., Jan. 1958,
vol. 48, pp. 90-95.

[12]

[13]

[14]

[16] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. IT-27, no. 5, pp. 533-547, Sep. 1981.
[17] A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs,” Combi-

natorica, vol. 8, no. 3, pp. 261-277, 1988.
[18] N. Alon and F. R. K. Chung, “Explicit construction of linear
sized tolerant networks,” Discrete Math., vol. 72, no. 1, pp. 15-19,
Dec. 1988. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/0012365X88901896
A. Shokrollahi, “LDPC codes: An introduction,” in Coding, Cryptog-
raphy and Combinatorics, K. Feng, H. Niederreiter, and C. Xing, Eds.
Basel, Switzerland: Birkhauser Basel, 2004, pp. 85-110.
N. Ron-Zewi, M. Wootters, and G. Zemor, “Linear-time erasure list-
decoding of expander codes,” IEEE Trans. Inf. Theory, vol. 67, no. 9,
pp. 5827-5839, Sep. 2021.
S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their
applications,” Bull. Amer. Math. Soc., vol. 43, pp. 439-561, Aug. 2006.
N. Kahale, “Eigenvalues and expansion of regular graphs,” J. ACM,
vol. 42, no. 5, pp. 1091-1106, Sep. 1995.
N. Alon and M. Capalbo, “Explicit unique-neighbor expanders,” in Proc.
43rd Annu. IEEE Symp. Found. Comput. Sci., Nov. 2002, p. 73.
S. Kopparty. (2018). Expander Graphs, Mixing Lemma and
Applications to Randomness. [Online]. Available: https://sites.math.
rutgers.edu/sk1233/courses/topics-S18/lec2.pdf

[19]

[20]

[21]
[22]
(23]

[24]

Xue Chen received the bachelor’s degree from Tsinghua University through
Yao Class and the Ph.D. degree from The University of Texas at Austin.
He was a Post-Doctoral Researcher with the Theory Group, Northwestern
University, USA, and an Assistant Professor with George Mason University,
USA. He is currently a Faculty Member of the School of Computer Science
and Technology, USTC, China. His research interests include theoretical
computer science.

Kuan Cheng received the B.S.E. degree from Shandong University in 2011,
the M.S.E. degree from Tsinghua University in 2014, and the Ph.D. degree
from Johns Hopkins University in 2019. He was a Post-Doctoral Researcher
at The University of Texas at Austin. He is currently an Assistant Professor
with the Center on Frontiers of Computing Studies, Peking University. His
research interests include randomness in computation, coding theory, and
machine learning.

Xin Li received the B.S. and M.S. degrees from Tsinghua University, China,
and the Ph.D. degree from The University of Texas at Austin in 2011. He is
currently an Associate Professor with the Computer Science Department,
Johns Hopkins University. His research interests include theoretical computer
science, the use of randomness in computation, complexity theory, coding
theory, cryptography, and algorithms.

Minghui Ouyang received the B.S. degree from Peking University in
2021, where he is currently pursuing the Ph.D. degree with the School of
Mathematical Science.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 25,2023 at 14:53:13 UTC from IEEE Xplore. Restrictions apply.

