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Abstract

We prove Howe duality for the theta correspondence arising from the p-adic dual
pair G2  (PU3 o  Z=2Z)  inside the adjoint quasi-split group of type E6 .

Intro duct ion

Let F  be a p-adic eld, that is, a non-archimedean local eld of characteristic 0. Simple
exceptional Lie algebras over F  can be constructed from pairs (O; J )  where O is an octonion
algebra over F ,  and J  a Freudenthal Jordan algebra. Let G  =  Aut(O) and G0 =  Aut(J ).  Let
g and g0 be the Lie algebras of G  and G0, respectively. Then, by a construction of Tits [16],

h =  g  g0  O
 J

has a structure of a simple exceptional Lie algebra over F ,  where O and J  denote trace 0
elements in O and J ,  respectively. Let H  =  Aut(h). It is evident from the construction that
there is an inclusion

G   G0  H :

The group G  is a split exceptional group of type G2, whereas G0 and H  depend on J .  A
Freudenthal Jordan algebra is a form of J3 (C ) ,  the algebra of 33 Hermitian symmetric ma-
trices with coecients in a composition F -algebra C , see Chapter I X  in [17]. A  composition
algebra, roughly speaking, is a non-associative algebra with an anti-involution x  !  x such
that N C ( x )  =  x x is a quadratic form satisfying composition, that is, N C (xy )  =  N C (x )N C (y )  for
all x; y 2  C .  The case treated in this paper is C  =  K ,  a quadratic eld extension of F .  Then

G0 =  PU 3 (K )  o  Gal(K =F );

where PU 3 (K )  is the quotient of the unitary group U3 (K )  in three variables by its center,
and Ga l (K =F )  acts on coecients of U3 (K )  naturally. The group H  is quasi-split of absolute
type E6 .

Let  be the minimal representation of H .  The goal of this paper is to understand the
restriction of  to the dual pair G   G0. More precisely, let  be a smooth, irreducible
representation of G. Then there exists a smooth representation () of G0 such that ()  is the
maximal -isotypic quotient of . If ()  is non-zero, we prove that it is a nite length G0-module,
and that it has a unique irreducible quotient (). Conversely, if  is an irreducible representation
of G0 then () is a nite length G-module and, if it is non-zero, then it has a unique irreducible
module (). The results are summarized in Theorem 4.1.
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These results are proved by a period ping-pong, introduced in [10], that can be viewed
as a generalization of the doubling method for classical theta correspondences [14], [18].
Here, just as for classical theta correspondences, one needs the following ingredient: If  is
an irreducible quotient of (), then _  is a quotient of (_ ),  where _  denotes the smooth
dual of . For classical theta correspondences this statement can be obtained using the
Mglin{Vigneras{Waldspurger involution [21]. Existence of such an involution is a non-trivial
matter; however, if  is tempered then _  is isomorphic to the complex conjugate . Since
=  , it follows at once that ()  is the complex conjugate of (). Thus the method of period
ping-pong works well for tempered representations; however, separate treatment is needed
for non-tempered representations. These representations are realized as Langlands
quotients of principal series representations and here the method of Jacquet functors
works well. Thus a principal contribution of this paper is a computation of the Jacquet
functors of  with respect to maximal parabolic subgroups of G  and G0.

For non-tempered representations we obtain the following explicit result. The group
G0 is quasi-split of rank one. The Levi factor of a Borel subgroup is isomorphic to K  o
Gal(K =F ).  Let  be a character of K .  Let i ( )  be the two-dimensional representation of
K  o  Ga l (K =F )  obtained by inducing . Assume, for simplicity, that  is not Gal(K =F )-
invariant. Then i ()  is irreducible and i()   i(0) if and only if 0 is in the Gal(K=F )-orbit of .
Now, i ( )  denes a principal series representation  of G0. We now describe its theta lift to  to
G. The group G  has two conjugacy classes of maximal parabolic subgroups; we shall use
the letters Q1 and Q2 for parabolic subgroups in the two classes, where the unipotent
radical of Q2 is a two step nilpotent group, and the unipotent radical of Q1 is a three
step nilpotent group. The Levi factors of both parabolic groups are isomorphic to
GL2 (F ) .  Let WF  W K  denote the Weil groups of F  and K .  Recall, by local class eld
theory, that W ab =  K .  Thus  can be viewed as a character of WK . We induce  to WF and
obtain a parameter of a supercuspidal representation  of GL2 (F ) .  The theta lift of  is a
representation of G  obtained by inducing  from the maximal parabolic Q1.

The authors would like to thank Wee Teck Gan for initiating this project and for his
continued interest. One of his letters to the authors has been adapted to form Section 6 in
the present paper. We would also like to thank the referee for a number of useful
comments and suggestions. G. Savin is partially supported by a grant from the National
Science Foundation, DMS-1901745.

1 Prel iminaries

1.1 Basic number theory, stealing t it le from We i l

Let F  be a non-Archimedean local eld with the absolute value j  j normalized as usual, and
let K = F  be a quadratic extension. We let z denote the Galois conjugate of an element z 2  K ;
we set N K = F  (z) =  z  z and Tr(z ) =  z +  z. We let ! K = F  denote the character of F  that
corresponds to K  by local class eld theory.

Let W K   WF be the Weil groups of K  and F  respectively. The quotient of WF by the
commutator subgroup of W K  is the relative Weil group W K = F

1 !  K  !  W K = F  !  Ga l (K =F )  !  1:
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Let D  be the unique quaternion algebra over F .
realized as the normalizer of K  in D .  Thus

By Appendix I I I  in [29] W K = F  can be

W K = F  =  K  [  K j

where j z =  zj for all z 2  K  and j 2  is in F ,  but not in the index two subgroup N K = F  ( K ) .  Now
any character  of K denes a two dimensional representation of WF

() =  IndK  (): Lemma

1.1. Let  be a non-trivial element in Gal (K =F ) .

1. ()  =  (0) if and only if 0 =   or . 2. ()  is

irreducible if and only if  =  .

3. If  =   then () =  12 where i  are two characters of F  such that i ( N K = F  (z )) =  (z) for all z
2  K  .

Proof. This is all a simple consequence of the explicit description of W K = F  . For the last,
observe that the condition  =   , by Hilbert 90, implies that  is trivial on norm one elements
in K ,  thus the formula i ( N K = F  (z )) =  (z) denes 1 and 2 on the index two subgroup of F  . The
two characters dier by the character ! K = F  .

The determinant of ()  is an Asai character of WF denoted by As (). A  character  is
called conjugate dual if  1 =  . Note that this implies that  is trivial on N K = F  ( K ) .  Thus the
restriction of  to F is either trivial or ! K = F  . Respectively, we say that  is
conjugate-orthogonal or conjugate-symplectic. The following lemma is now again a simple
exercise, using the explicit description of W K = F  .

Lemma 1.2. Assume that  is a conjugate dual character of K .  Then As ()  =  1 if  is
conjugate-symplectic and As ()  =  ! K = F  if  is conjugate-orthogonal.

1.2 Representations of p-adic groups

Let G  denote the group of F -points of a reductive algebraic group G .  We denote the cat-
egory of smooth (complex) G-representations by R ( G ) ;  the set of (equivalence classes of )
irreducible representations of G  will be denoted by Irr(G).

We recall the various functors which play a role in the representation theory of p-adic
groups. Let P  be a parabolic subgroup of G  with Levi decomposition P  =  M N . We then
have the parabolic induction functor IndP , as well its normalized version, iG .  If  is a smooth
representation of G, we may consider the Jacquet functor  !  N , where N  denotes the space
of N -coinvariants of . The normalized version of the Jacquet functor will be denoted by r P
(). Recall that parabolic induction is adjoint to the Jacquet functor. First, we have the
(standard) Frobenius reciprocity, which states that there is a natural
isomorphism

HomG (; iG ())  HomM (rP (); );

here  and  are representations of G  and M, respectively. Equally useful is the second
(Bernstein) form of Frobenius reciprocity:

HomG (iP (); ) =  HomM (; r ());
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here P  denotes the parabolic subgroup opposite to P . Finally, we will occasionally use the
compact induction functor, which we denote by c-ind.

1.3 Cubic Jordan algebras

The space J  of Hermitian symmetric 3  3 matrices over K  is a Jordan algebra with multi-
plication

x   y =  
2

(xy +  yx) =  
2

[(x +  y)2 x2 y2]

and identity 1. A  typical element of J  is
0

a x      
 1

@x b z A ;
y z c

where x; y; z 2  K  and a; b; c 2  F .  We let J i j  (for 1  i   j   3) denote the subspace of J
consisting matrices whose entries are 0 except on the positions ( i ; j )  and (j; i).  For more
details on the subject of cubic Jordan algebras, the reader can consult Chapter 38 in [17]
and Chapter 4 in [20].

Let N  and T denote the norm (determinant) and the (usual) trace of 3  3 matrices.
Recall that N (x )  =  x x #  where x #  is the usual adjoint matrix to x, i.e. made of 22 minors of
x. Let (x; y; z) be the symmetric trilinear form on J  such that (x; x; x) =  6N (x), that is,

(x; y; z) =  N ( x  +  y +  z) N (y +  z) N ( x  +  z) N ( x  +  y) +  N (x )  +  N (y ) +  N (z):

Then T (x) =  1 (x; 1; 1) and the adjoint x #  can be dened as the unique element in J  such
that

(x; x; y) =  (x# ; y ; 1)

for all y 2  J .
polynomial

A  basic fact of linear algebra is that any x  2  J  satises the characteristic

x3 T (x)x2 +  T ( x # ) x  N (x )  =  0:

Multiplying this equation by x #  and then factoring out N (x )  gives

x2 T (x)x +  T (x # )  x #  =  0

for all x  2  J .  This implies that x2 and thus the Jordan multiplication is completely de-
termined by the cubic form N  and the identity 1. It follows at once that the group of
automorphisms of the Jordan algebra is equal to the group of automorphisms of the cubic
pointed space (N; 1).

More generally, if e 2  J  such that N (e) =  ee#  =  1, we can dene a Jordan multiplication

x   y =  
2

(xe# y +  ye# x):

This is a Jordan algebra J e  with identity e, and trace

Te (x) : =  
2

(x; e; e) =  
2

(e# ; x; 1)
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The trace pairing is given by

(x; y) !  Te (x  y) =  (e; e; x)(e; e; y)=4 (e; x; y) =  Te(x)Te(y) (e; x; y):

For every x  2  J  we can dene x # e  by

(x; x; y) =  (x#e ; y; e)

for all y 2  J .  Although we shall not need it, we record that x # e      =  ex# e. Again, J e  is
determined by N  and e, thus the automorphism group of J e  is the group of automorphisms of
the cubic pointed space (N; e).

Elements of J  are Hermitian symmetric matrices, in particular, any e such that N (e) =  1
denes a symmetric Hermitian form on K 3  of discriminant one. Since F  is p-adic, any two such
Hermitian spaces are isomorphic. It follows that the Jordan algebras J e  are isomorphic. In the
rest of this article, it will be convenient to x

0
 1

1
e =  @  1 A :

 1

To  simplify notation, we will write J  instead of Je .

Finally, we let L J  denote the group of linear transformations of J  which preserve N . Then

L J  =  (fg 2  G L 3 ( K )  : det(g) 2  U (1)g=U (1)) o  Z=2Z:

Here U (1) is embedded into G L 3 ( K )  diagonally. The non-trivial element of Z=2Z acts by
transposition, and the action of G L 3 ( K )  on J  is given by

(g ; X )  !  gX g ; for g 2  L J  and X  2  J :

Here, g denotes the conjugate-transpose of g.

1.4 Groups

Here we describe the various groups that appear in this paper, including the quasi-split
group H  of type E6;4 and the dual pair G   G0 we wish to study.

Let H  denote the adjoint quasi-split group of type E6;4 dened over F ,  with splitting
eld K ;  its Dynkin diagram is given by

1 3 4 5 6

2
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The relative Dynkin diagram is

2 4 3 1

The groups we consider are best described on the level of Lie algebras. Here we follow the
construction in [26]. Let h denote the Lie algebra of H .  By covering the vertex 4 in the
above diagram, we see that h contains a subalgebra h0 =  sl3 l, where l =  sl3 (K )  is the Lie
algebra of L J .  Under the adjoint action of h0, h decomposes as

h =  sl3  l  W
 J   W
 J :

Here W =  he1; e2; e3i denotes the standard representation of sl3, and W  =  he; e; e3i
denotes its dual. We often use the trace pairing to identify J      with J .  The Lie bracket
relations are described in [26].

Using the above description of h, we may now describe the dual pair G2  (PU3 (K )  o
Z=2Z).  We let g0 denote the centralizer of e in l:

g0 =  Cl (e):

We then set
g =  Ch(g0) =  sl3  W
 e  W
 e:

We let G  and G0 denote the closed subgroups of H  which correspond to g and g0, respectively.
Then G   G0 is a dual pair inside H .  Furthermore, G  is a split group of type G2, and G0 is
isomorphic to PU 3 (K )  o  Z=2Z. Indeed, we may describe G0 directly as the subgroup of L J
which xes e.

The proof of Howe duality will require us to consider another dual pair inside H ,  which we
now describe. Let E  be an etale cubic F -algebra. We consider the set of E-isomorphism
classes of embeddings E  , !  J .  This set is in bijection with the set of (E-isomorphism)
classes of twisted composition algebras C  such that J  =  E   C ;  see Theorem 1.1 in [8] for
additional details. Fixing such a C , we let i C  : E  !  J  denote an embedding in the
corresponding isomorphism class; note that this also gives us embedding of E  into J .  Let
G E ; C  denote the subgroup of G0 xing iC .  The centralizer of G E ; C  in h contains

sl3  t E   W
 E   W
 E ;

where t E  is the Lie algebra of trace 0 elements in E ,  and E  is embedded into J  using iC .  The
above Lie algebra is isomorphic to L i e (G E ) ,  where G E  is the simply-connected quasi-split
group Spin8 . We thus get the dual pair G E   G E ; C  inside H .

1.5 Minimal representations and theta correspondence

We will be interested in studying the minimal representation  of H .  We recall one possible
denition here. Let  be an irreducible representation of H .  A  result of Harish-Chandra then
says that the character distribution of  can be expressed as

 =  
X

c O ^ O  O

6
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where the sum is taken over all the nilpotent H-orbits in h, and ^O is the Fourier transform of a
(suitably normalized) H-invariant measure on O. There exists a minimal non-trivial orbit
Omin in h(F ). Assuming Omin \  h consists of a single H-orbit Omin, we have the following

Denit ion 1.3. We say that  is minimal if

 =  c0 +  ^O m i n

For a detailed exposition of minimal representations and a construction of  for exceptional
group, we refer the reader to [7].

Our goal is to study the restriction of  to the dual pair G   G0 introduced above, and the
exceptional theta correspondence which arises in this way. Fixing an irreducible
representation  of G, the maximal -isotypic quotient of  is of the form

 ();

for an admissible representation () of G0 [21, Lemme 2.III.4]. This is the so-called big theta
lift of . Of course, one may start from  2  Irr(G0) to obtain the big theta lift ()  in the same
way.

2 Parab olic subgroups

In this section we describe the three maximal parabolic subgroups of H  we consider in this
paper.

2.1 Three-step parabolic

The rst parabolic subgroup we consider is the maximal parabolic P1 =  M1N1 which cor-
responds to the vertex 4 of the Dynkin diagram. On the level of Lie algebras, it can be

constructed as follows: let 0
1

1
s =  @ 1 A  2  sl3:

 2

Now set h(i) =  f x  2  h : [s; x] =  ixg. Then the Lie algebra of P1 is p1 =  m1 +  n1, where

0
     

1
m1 =  h(0) =  @     A   l

and n1 =  h(1) +  h(2) +  h(3) with

h(1) =  he1; e2i
 J ;  h(2) =  hei
 J ;

h(3) =  @ A   sl3:
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We also have

h( 1) =  he; ei
 J ;  h( 2) =  he3i

 J :

Since N1 is a 3-step nilpotent group, we call P1 the 3-step parabolic. We let
i  denote the minimal non-trivial M1-orbit on h( i), i  =  1; 2.

Setting u1(i) =  h(i) \  g for i  =  1; 2, we see that

u1(1) =  he1; e2i
 hei u1(2) =  he3

 ei u1(3) =  h(3):

Looking at the intersection of P1 with G   G0, we get

(G   G0) \  P1 =  Q1  G0:

Here Q1 =  L1 U1 is the maximal parabolic subgroup of G  =  G2; we identify the Levi factor
L 1  with GL 2  so that the action on u1(1) is the standard representation.

Now let Vi be the orthogonal complement of u1(i) in h( i )  (for i  =  1; 2) with respect to
the Killing form. Then

V1 =  he1; e2i
 J 0  V2 =  he3i
 J0 ;

where J 0  denotes the set of all elements X  in J  such that tr(X e) =  0, and J 0  is identied with
J 0  using the trace pairing. We need to describe
i  \  Vi, for i  =  1; 2. Letting r ( X )  denote the rank (over K )  of X  2  J ,  we have (cf. [6], Lemma
4.1)

Lemma 2.1. The group L 1   G0 acts transitively on
i  \  Vi , i  =  1; 2. Furthermore,

1 \  V1 =  fw
 X  : w 2  he; ei; X 2  J ; r ( X )  =  1g

2 \  V2 =  fe3

 X  : X  2  J 0 ; r (X )  =  1g:

2.2 Heisenberg parabolic

Here we consider the maximal parabolic P2 =  M2N2 which corresponds to the vertex 2 of
the Dynkin diagram. On the level of Lie algebras, it can be constructed as follows: let

0
1

1
s =  @ 0 A  2  sl3:

 1

Again, set h(i) =  f x  2  h : [s; x] =  ixg. We intentionally abuse notation by reusing s and
h(i), not only to reduce the number of unnecessary symbols, but also to emphasize the
analogy in our constructions related to dierent parabolics. Since we never use these symbols
for dierent parabolics at the same time, there is no fear of confusion.
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The Lie algebra of P2 is p2 =  m2 +  n2, where

0 1
m2 =  h(0) =  @  A   l  he2i

 J   he2i
 J ;

and n2 =  h(1) +  h(2) with
0

h(1) =  @

0

h(2) =  @

1

A   he1i
 J   he3i
 J ;

1

A   sl3:

We also note that 0

h( 1) =  @

1

A   he3i
 J   he1i
 J :

We often refer to P2 as the Heisenberg parabolic, because its unipotent radical N2 is a
Heisenberg group with center Z  =  h(2), attached to the symplectic space N2 =Z =  h(1). We let
 denote the minimal non-trivial M2-orbit on h( 1). It is the orbit of a highest weight vector.

We have
u2(1) =  g \  h(1) =  F   he1
 ei  he
 ei  F ;

we identify the intersection h(1) \  sl3 with F   F .  Looking at the intersection of P2 with G
G0, we get

(G   G0) \  P2 =  Q2  G0:

Here Q2 =  L2 U2 is the maximal parabolic subgroup of G  =  G2 whose Levi factor L 2  we
identify with G L 2  so that its action on u2(1) is the symmetric cube representation twisted by
jdetj 1 (see Section 3 in [3]). Once again, U2 is a Heisenberg group (with center Z )
attached to the space u2(1).

Now let V be the orthogonal complement of u2(1) in h( 1) with respect to the Killing
form. Then

V =  he3i
 J 0   hei
 J   J 0   J0 :

Once again, we need to describe
 \  V . Following the proof of Proposition 7.4 in [19], one shows the following

Lemma 2.2. We have

 \  V =  f (X ; Y  ) 2  J 0   J 0  : r (X ) ; r (Y )  1; dimhX; Y i  =  1g:

Furthermore, L 2   G0 acts transitively on this set.
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2.3 B 3  parabolic

Finally, we consider the maximal parabolic P 0 =  M0N0 which corresponds to the vertex 1 of
the relative Dynkin diagram. Set

0
1

1
s =  @ 0 A  2  sl3 (K )

 1

and h(i) =  f x  2  h : [s; x] =  ixg. Then the Lie algebra of P 0 is p0 =  m0 +  n0. Here

0 1 0 1
m0 =  h(0) =  sl3  l(0)  W

 @ A   W
 @ A

and n1 =  h(1) +  h(2), with

h(1) =  l(1)  W
 J12  W
 J23 h(2) =  l(2)  W
 J11  W
 J33 :

We also have

h( 1) =  l( 1)  W
 J23  W

 J12 ; h( 2) =  l( 2)  W
 J33  W

 J11 ;

where 0

l( 1) =  @

1

A  2
sl3 (K )

0

and l( 2) =  @

1

A  2  sl3 (K ):

We let
0 denote the minimal non-trivial M1-orbit on h( i), for i  =  1; 2. The
intersection of P 0 with G   G0 is

(G   G0) \  P 0 =  G   B0:

Here B0 denotes the semidirect product of Z=2Z with the Borel subgroup consisting of all
upper-triangular matrices in PU3 (K ).  There is a Levi decomposition B0 =  T0U0 with T0 =
K  o Z=2Z ;  we identify the diagonal torus in PU 3 (K )  with K  using the isomorphism

0
a

1
@ b     

c
A  !  

b

(a; b; c satisfy ac =  1 and bb =  1).
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Just like before, we let u0(i) =  h(i) \  g0 for i  =  1; 2. We get
0

n
1

u0(1) =  f@  n A  2  sl3 (K )g =  K

0

u0(2) =  f@
y

1

A  2  sl3 (K )  : Tr(y ) =  0g:

We let Vi
0 be the orthogonal complement of u0(i) in h( i )  (for i  =  1; 2) with respect to the

Killing form. Direct computation shows that we have
0 1

V1 =  f@x A  : x  2  K g   W
 J23  W

 J12; 0        
x  

1

V2 =  f@A  : y 2  F g  W
 J33  W
 J11: y

It is convenient to use the following identications (cf. [6, p.137]):

V1 =  O0

 K ; V2 =  O0

 F ;

here we use O0 to denote the space of traceless octonions. Then G  =  G2 acts naturally on

O0, whereas z 2  K   T0 acts by       and 1=NK = F  (z) on K  and F ,  respectively. As before,

we want to describe the GT 0 orbits on
0 \ Vi

0 for i  =  1; 2. However, a direct computation
now shows that

1 \  V1 =  ; .  On the other hand, we have (cf. [6], Lemma 2.4.11) Lemma 2.3. The

group G   T0 acts transitively on
0 \  V 0.

We close this section with the following

Remark 2.4. One can work in a more general setting, starting with a Jordan algebra J  of
Hermitian symmetric 3  3 matrices with coecients in a composition algebra C .  In
particular, we have an exceptional Lie algebra

h =  (sl3 (F )  l)  W
 J   (W
 J ) :

Observe that sl3 (F )  l, where x  2  sl3 (F ) acts on y 2  J  by xy +  yx where y is the
transpose of y. This works even when C  is the non-associative algebra of octonions.

In particular, one can dene the parabolic subgroup B0 in G0 =  Aut(J )  starting with the
same choice of s as above (note that s 2  sl3 (F )  l). Let U0 be the unipotent radical of B0, and
U 0(2) the center of U0. Then U 0(2) =  C0 , trace 0 elements in C , and U0=U0(2) =  C .  We will
need this in x4 where we prove Howe duality.

3 Jacquet modules

Recall that  is the minimal representation of H .  Our goal in this section is to compute
U1 , U2 , and U0.
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3.1 Three-step parabolic

To  compute U1 , we begin by looking at N1 . Recall that N1 is a three-step nilpotent
group: we have

f1g =  N1 (4)  N1 (3)  N1 (2)  N1 (1) =  N1

with N1 (i)=N1 (i +  1) =  h(i). This gives us a ltration of ,

(3.1) f0g =  4  3  2  1  0 =  ;

where i = i + 1  =  ( i )N 1 ( i + 1 ) .  We have

0 !  3 !   !  =3 !  0
0 !  2=3 !  =3 !  =2 !  0 0 !  1=2 !
=2 !  =1 !  0:

We need to compute =1, 1=2, and 2=3. The rst quotient is simply N1 ; the remaining two
can be computed using the work of Mglin and Waldspurger [22]. We provide only a rough
outline here; see e.g. [6] or [19] for additional details.

Recall that
1 is the minimal M1-orbit in h( 1). Let f1  be an arbitrary element of
1, and denote by Mf1  its stabilizer in M1. Then f1  denes a character f 1

 on N1=N1(2). Then
[22] shows that the space N1 ; (i.e. the maximal quotient of  on which N1 acts by f 1 )
is 1-dimensional; Mf1  acts on it by a character 1. In short, we get

1=2 =  c-indMf1 N1
(1

 f 1 )  =  Cc (
1):

We compute 2=3 similarly. We choose an arbitrary element f2  2
2 and we let Mf2  denote its stabilizer in M1. Again, the results of [22] (see also [6, x5]) show
that f2  denes a certain Heisenberg representation, which we denote by Wf2 . We get

2=3 =  c-indMf2 N1
(Wf2 ) =  Cc (

2; Wf2 ):

Having computed the N1-coinvariants, we proceed to investigate the U1-coinvariants. The
unipotent radical U1 of Q1 inherits the ltration from N1:

(3.2) f0g =  U1(4)  U1(3)  U1(2)  U1(1) =  U1;

where U1(i) =  U1 \  N1 (i). In particular, U1(3) =  N1 (3). We apply the U1-coinvariants
functor to the exact sequences above. From the rst one, we see that U1 =  (=3)U1 . The
remaining two sequences become

0 !  (2=3)U1 !  U1 !  (=2)U1 !  0
0 !  (1=2)U1 !  (=2)U1 !  (=1)U1 !  0:

Thus, to determine U1 , we need to describe (=1)U1 , (1=2)U1 , and (2=3)U1 .

First, notice that (=1)U1     =  (N1 )U1      =  N1 . The N1-coinvariants can be computed following
[27, x4], and the exponents of  have been determined in Proposition 8.4 of [7]. As an L 1   G0-
module,

N 1  =  jdetj 2 1A2   ! K = F  jdetj 2  A1 :

12
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Recall that the Levi factor M1 consists of two parts (which correspond to the two parts of the
F4  diagram one obtains by removing the vertex 4): A2 and A1. Here 1A 2  is the trivial
representation of A2  (in this case, SL 3 (K ) ) ,  whereas A 1  is a principal series representation of
A1 (i.e. SL2 (F )).  Furthermore, jdetj denotes the standard determinant of L 1  =  GL2 .

Next, we consider (1=2)U1 . Just like in [19, Lemma 2.2], we obtain

(1=2)U1 =  Cc (
1 \  V1):

Recall that
1 \  V1 =  fw
 X  : w 2  he; ei; X 2  J ; r ( X )  =  1g. The stabilizer of a line in
1 \  V1 (excluding 0) is a product of Borel subgroups. For the sake of concreteness, we
consider the line through e1
xx,  where x  =  (1; 0; 0) (once more, we identify J  with J0 ). The stabilizer of e1 in L 1  =  GL 2
is the subgroup B  =  T U consisting of all lower-triangular matrices in GL 2  (recall that we are
considering the action of GL 2  on W , the dual of the standard representation); here T
denotes the diagonal torus. The stabilizer of x x  is the Borel subgroup B0 =  T0U0 of G0

introduced in x2.3. The group T  T0 acts transitively on the above line, which we identify with
F :  The action of

a

b ; z 2  T  K

on Cc (F )  is translation by a 1  N K = F  (z) (and Z=2Z acts trivially).
We deduce that

Cc (

1 \  V1) =  iL 1 G 0
(1

 Cc (F ) )

(normalized induction) where 1 is a character of the diagonal torus in L 1   GL 2  which is yet
to be determined.

Finally, we determine (2=3)U . Recall that
2 \  V2 =  fe3
 X  : X  2  J 0 ; r (X )  =  1g is a single L 1   G0-orbit. We simplify the notation by identifying he3i
 J  with J ,  keeping in mind that L 1  =  GL 2  acts on
2 \  V2 by det . We start by observing that

Cc (
2; Wf2 )U1 (2) =  Cc (
2 \  V2; Wf2 ):

Notice that (L 1   G0) \  Mf2  =  RU , where

R  =  f(g; (z; )) 2  L 1   ( K  o  Z=2Z)  : det(g) =  N K = F  (z)g

and U is the unipotent radical. Therefore Cc (

2 \  V2; Wf2 ) =  c-indL1 G0
Wf2 and thus

(2=3)U1 =  c-indL1 G0
((Wf2 )U1 ):

It remains to determine (Wf )U ; to do that, we need an explicit model for Wf . With this
in mind, we choose f2  =  x x  2  J ,  with x  =  (1; 0; 0). Following [22] (see also [6]), we consider
the alternating form on h(1) =  he1; e2i
 J  given by

(v
 X ; w
 Y ) =  (v; w)  (f2 ; X; Y ):
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Here (v; w) is the standard symplectic form on he1; e2i, and (f2 ; X; Y ) is the natural trilinear
form on J .  With our choice of f2 , the kernel of the bilinear form (f2 ; X; Y ) is

0
a x      y

1

 =  f@x A  2  J g: y

We let ?  denote the orthogonal complement of  in J :
0 0 0 01

?  =  f@0 b z A  2  J g: 0
z c

The corresponding quadratic form is given by 2  a     z. We x the maximal isotropic

subspace consisting of elements of the form
0 0 0 01 0 0     0 0 

1 0 0     0 0 
1

e1

 @0 0 z A  +  e1

 @0     0 0 A  +  e2

 @0     0 0 A :  0     z 0 0     0
b1 0     0     b2

With this choice of polarization, the action of U1=U1(2) =  he1; e2i
 hei is given by

(u)f (z; b1; b2) = (u1b2 u2b1)f (z; b1; b2);

where u =  (u1e1 + u2 e2 )
e. We see that U1=U1(2) acts trivially on functions supported on the subspace

0 0 0
fe1

 @0 0 z A  : z
2  K g:  0     z 0

It follows that
(Wf2 )U1 =U1 (2) =  W;

where W is the Heisenberg representation associated with the symplectic space he1; e2i
K ;  here we identify z 2  K  with

0 0 0
@0 0 z A :

0     z 0

Unraveling the denitions, we see that w 2  K   T0 acts on z 2  K  by

(w; z) !  
w

;

and Z=2Z acts by Galois conjugation. Recall that we also have a GL 2  action on the orbit
2 \  V2: an element g 2  L 1  =  GL 2  acts by det(g) 1. In summary, we have

(2=3)U1 =  c-indL1 G0
W:

We now recall the work of Roberts [24]: there is a Weil representation !  of R  which induces
to a representation !~  of R  =  L 1   T0. The correspondence which arises from !~  can be

14
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thought of as a similitude version of the usual SL2   SO( K )  corrsepondence. As noted
before, we have Mf2  \  R  =  R ,  so we are precisely in the situation studied in [24].

An application of Schur’s Lemma now shows that the action of R  on W is a twist (by a
character of R )  of the action of R  on ! .  However, as one checks directly, every character of R
is a restriction of a character of R .  We thus get

(2=3)U1 =  i L 1
B0(

 !~ );

where  is a character yet to be determined. In fact, in x3.4, we show that  is the trivial
character. Thus, we have

Proposition 3.1. As a representation of L 1   G0, rU1 () has a ltration with successive (top
to bottom) subquotients

(T1)  1=2
N1 =  jdetj  1A2   ! K = F  jdetj  A 1  (M1)

iL 1 G 0
(1

 Cc (F ) )

(B1) iL 1 G 0  
(!~ ):

Recall that 1A2  is the trivial representation of A2 , whereas A 1  is a principal series represen-
tation of A1 . Furthermore, jdetj is the standard determinant of L 1  =  GL 2  and Q 1  =  jdetj is
the modular character of Q1. The center of L 1  =  GL 2  acts trivially on A 2  and A 1 .  In x3.4,
we show that 1 =  1
 ! K = F  .

3.1.1 T h e  Four ier { Jacobi  period

We digress slightly to describe the Fourier{Jacobi period of the minimal representation .
Although it is not required for the main results of the present paper (i.e. for the proof of
Howe duality), the Fourier{Jacobi period becomes useful in various similar settings. Since
the computation is similar to the one we just performed to obtain U1 , we take a moment to
describe it here.

Recall the ltration (3.2): U1 is a three-step nilpotent group, and the quotient U1=U1(3) is
a three-dimensional Heisenberg group. Let be a character of its center U1(2)=U1(3).
Our goal is to describe the space of -twisted coinvariants

U1 (2); ;

i.e. the maximal quotient of  on which U1(2)=U1(3) acts by . Notice that this is (in
addition to being a G0 module) a module for the Jacobi group, F J  =  Qder=U1(3). Here Qder

denotes the derived group of Q1.
Using the notation from (3.1), we have U (2);      =  (2=3)U (2); . Recall that 2=3 =  Cc (

2; Wf2 ). To  nd the U1(2) coinvariants we looked at Cc (
2 \ V2 ; Wf2 ), where V2 was the orthogonal complement of u1(2) in h( 2); this was identied with
the space J 0  of traceless elements in J .  However, we are now looking for the twisted
coinvariants. We get

Cc (
2; Wf2 )U1 (2);      =  Cc (
2 \  J1 ; Wf2 ):

Here J 1  is the set of trace 1 elements in J .  One checks that G0 has two orbits on
2 \ J 1  (the set of rank 1, trace 1 elements in J ) .  Thus, as a representation of G0 =

PU 3 (K )  o  Z=2Z,

15
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the space Cc (
2 \  J1 ; Wf 2 ) splits into a direct sum of two induced representations. Indeed, one choice of
representatives for these orbits is

0 1 0  
" 1=2 

1
i  =  @ 1 A ; j  =  @ A

1=2         1=(4")

where " is an element of F  which is not in the image of the norm map N  : K  !  F .  (Indeed,
j  cannot be written as x x  for some x  2  K 3 ,  which shows that it is not in the same orbit as
i). The stabilizer of i  (resp. j )  in PU 3 (K )  is a unitary group in two variables, which we denote
by U(2)i (resp. U(2)j ). We thus have

U1 (2);      =  iU ( 2 ) i o Z =2 Z (Wi )  iU(2) i oZ=2Z (Wj ):

Here Wi (resp. Wj ) denotes the corresponding Weil representation, i.e. the ber at i  (resp. j ) .
For example, the stabilizer of i  in PU 3 (K )  consists of all elements of the form

0 1
@ 1 A  2  U3 (K ):

Thus we may identify the group U (2)i with the unitary group
 fg

2  G L 2 ( K )  : g     1           g
 =      1          g

in the obvious way. We obtain an explicit model of Wi the same way we found Wf2  above.
Here it is convenient to x f2  =  i; then

0
x

1 0
a y

1
 =  f@x  b z A  2  J g and ?  =  f@ A  2  J g:

z                                                        y           c

Here ?  can be identied with the space I  =  f  y c g of 2 2 Hermitian matrices. Thus

the representation Wi can be realized on the space Cc ( I ) ,  where the action of U (2)i on
A  2  I  is given by (g ; A) !  gAg.

3.2 Heisenberg parabolic

We compute U2 using the same general approach. Since N2 is a Heisenberg group, there are
only two subquotients we need to consider: =1 and 1=2. Just like in the case of the three-step
parabolic, we have (=1)U2 =  (N2 )U2  =  N2 . Again, we may compute the N2-coinvariants
following [27, x4]. We get

N 2  =  jdetj 2  C 3   ! K = F  jdetj2:

Here C 3  denotes the minimal representation of M2 (corresponding to the F4  diagram with
the 2 vertex removed).

16
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The description of (1=2)U2     is similar to the one we had in the three-step case: we
have

(1=2)U2 =  Cc (
 \  V ):

Recall that
 \  V is a single orbit for L 2   G0, and that

 \  V =  f (X ; Y  ) 2  J 0   J 0  : r (X ) ; r (Y )  1; dimhX; Y i  =  1g:

For the sake of concreteness, we consider the line through e3
 x x  2
 \  V , where x  =  (1; 0; 0). The stabilizer of this line is again the product B  B0 of Borel
subgroups (here we are abusing notation by using B  =  T U to denote the group of all lower-
triangular matrices, but this time in L2 ).  The group T T0 acts transitively on the above line,
which we identify with F :  The action of

b ; z 2  T  K  on

Cc (F )  is translation by a  N K = F  (z). We deduce that

Cc (

 \  V ) =  i
B B 0

0
(2

 Cc (F ) )

where 2 is a character yet to be determined. To  summarize, we have

Proposition 3.2. As a representation of L 2   G0, rU2 () has a ltration with successive (top
to bottom) subquotients

(T2)  1=2
N2 =  C 3   ! K = F   jdetj 2 : (B2)

i
B B 0

0
(2

 Cc (F )):

Here Q 2      =  jdetj3 denotes the modular character of Q2. The center of L 2  =  GL 2  acts
trivially on C 3 .  In x3.4 we show that 2 =  1
 ! K = F

3.3 B 3  parabolic

This case is entirely analogous to the previous two, so we just briey sketch the results.
First, the top part in the ltration of U0 is simply N 0 . Secondly, recall that in this

case
1 does not intersect V1, so the middle part of the ltration vanishes. The computation of the

bottom (subrepresentation) part is equivalent to the one we described in detail in
x3.1; in fact, the bottom part is induced from the same representation as the bottom part
in Proposition 3.1. We omit the details and simply state the results:

Proposition 3.3. As a representation of G   T0, rU 0 () has a ltration with successive (top
to bottom) subquotients

(T3)  1=2
N 0 =  B 3   jN K = F  (z)j (B3)

iL 1 T 0 (!~ ):

Here B 3  denotes the minimal representation of the Levi factor M0, and B 0 =  jN K = F  (z)j2 is
the modular character of B  .
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We take a moment to describe the restriction of the representation B       to G   T0. Recall
that M0 is the Levi factor of the parabolic P 0 which corresponds to the D 4  part of the
Dynkin diagram (i.e. B 3  in the relative diagram). The derived group of M0 is D E ,  the

simply connected quasi-split form of Spin8 attached to the etale cubic algebra E  =  K  +  F ;
these groups are described in detail in Section 2 of [8]. By looking at the exponents, one

veries that the restriction of the representation (T3)  to Spin is the minimal representation.
Note that K   T0 acts trivially on B 3 .  However, the action of the Galois group Z=2Z is

non-trivial; in fact, this is precisely the situation studied in [15] and [5]. There is a
dual pair G2  S E  inside D 4      (here S E  denotes the twisted form of S3 attached to E ) .  In

[5], the authors use the correspondence arising in this way to construct the so-called cubic
unipotent A-packets of G2. In our case, S E  =  Z=2Z, so the corresponding A-packet contains
two elements. One of them is a supercuspidal representation; the other is the Langlands
quotient of iG2 (jdetj
 ), with  equal to the tempered representation 1  ! K = F  of GL2 .  See Proposition 6.2 of [5] for a
detailed description of local A-packets arising in this way.

3.4 Fil l ing in the details

In this section, we determine the characters 1, 2, and  that appear in the ltrations
discussed above (recall that  is introduced in the discussion preceding Proposition 3.1).

Both the bottom piece of r0 ()  (B3) and the bottom piece of rU1 () (B1) are in-duced
from the Weil representation !~ .  The similitude correspondence between GL 2 (F )  and G O ( K )
=  K  o Z = 2 Z  established by !~  amounts to the usual base change K !  GL2 (F ) .
Let  be a character of K .  By Lemma 1.1, there are two possibilities:

(i)  =  . In this case,  extends to two characters of K  o  Z=2Z, only one of which appears in
the correspondence. We label that character + ,  and we let   be the other one. Then +
lifts to the principal series 1  2 (see Lemma 1.1).

(ii)  =  . In this case,  lifts to a cuspidal representation  of GL2 (F ) .

See Section 7 of [25] for a brief account of this correspondence.
We now prove that the character  introduced in the discussion preceding Proposition

3.1 is trivial. First, note that  is the restriction of a character j js

 of R ,  where s 2  R and  is a unitary character of T0. The above description of the T0 $
GL 2 ( F )  correspondence shows that

j  js
1  j  js

2

iG
0 (+ )

appears as a quotient of i L 1 G
0 (

 !~ ).  (To  simplify notation, we write  instead of +  in the rest of this section.) For a generic
choice of  we may assume that iG

1
(j  js

1  j  js
2) and iB 0 () are irreducible, so we get

  iG
1 (j  js

1  j  js
2)

 iG
0 ():

But now notice that iG
0 () =  iG

0 ( 1 1) =  iG
0 (  (  2 1 )) and we can apply the same reasoning

to the character 0 =   2 1. This shows that

j  js  2
1 

1

 j  js  2
2 

1
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needs to appear in the Jacquet module of i Q  (j js
1 j js

2). Computing the said Jacquet
module shows this to be possible only if s =  0 and 2 =  1.

It remains to prove that  is trivial. Looking at the quotient (T2)  in rU2 () and applying
Frobenius reciprocity, we see that

  i Q 2 ( ! K = F   jdetj 2 )
 1;

where 1 denotes the trivial representation of PU3 (K ).  The representation i G  ( ! K = F  jdetj 2 )
is of length 2 (cf. Proposition 4.1 in [23]); from the above map we get

 1;

where  is the unique (Langlands) quotient of i G  (jdetj
( 1 ! K = F  )). Applying the Jacquet functor rU1 to the above map, and comparing wtih the
subrepresentation (B1) in the ltra-tion rU1 (), we conclude that  =  1.

Once we have established that  is the trivial character, it is not hard to determine 1, the
character that appears in the middle piece of the ltration (M1). Recall that 1 is a character
of the diagonal torus in L 1  =  GL2 .  As explained above, the bottom piece of the ltration (B1)
shows that we have

()   iQ 1 (1  2)
 iB 0 ():

Here we are still assuming the choice of  is such that both representations appearing on the
right-hand side are irreducible. Applying the Jacquet module with respect to U1, we see that,
in addition to (1  2)
iG

0 () (which appears in the bottom piece of the ltration), contains

1 
1  ! K = F

 iG
0 () and 2 

1  ! K = F

 iG
0 ():

These quotients come from the middle part of the ltration; in other words, we have
iL 1 G 0

(1

 Cc (F ) )   
  1  ! K = F

 iG
0 ();

for i  =  1; 2. Using the Bernstein form of Frobenius reciprocity, and computing the appro-
priate Jacquet modules, we see that this is possible if and only if

1 =  1
 ! K = F  :

A  similar argument can be used to determine 2: we apply the Jacquet module rU     to (),
observing that i G  (1 2) =  i G  ( 2 ! K = F  ). Then certain quotients of rU 2 (iG  (2
! K = F  ))  come from the bottom of the ltration (B2), and one veries that 2 =  1
 ! K = F  .

Remark 3.4. The fact that i L 1 G 0
(Cc (F ))  is responsible for the two quotients appearing

above (even though we have a single orbit) is explained by the action of B  B0 on Cc (F ).
Recall that

b ; (z; ) 2  T  T0

acts by a 1 N K = F  (z), so we view this as an action of F  N K = F  ( K ) .  Since a character  of N K = F
( K  ) (or equivalently, a Galois-invariant character of K  )  extends to a character of F

in two ways, both
 1

 ! K = F and  1

 ! K = F

appear as quotients of Cc (F ).
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4 Howe dual i ty

Our main result is the following theorem (Howe duality).

Theorem 4.1. ( i )  Let  be an irreducible representation of G2 . If ()  =  0, then it is a
representation of nite length, with a unique irreducible quotient ().

( i i )  For 1; 2 2  Irr(G2 ),
0 =  (1 ) =  (2 ) = )  1 =  2:

( i i i)  If ()  =  0, then () is tempered if and only if  is tempered.

(iv) Let  2  Irr(G0). Then () is either 0 or a representation of nite length.

The proof will take up the rest of this section; we provide an outline:

1) First, we consider the non-tempered correspondence in x4.1. In particular, we prove (i)
and (ii) for non-tempered ; (iii) is then a consequence of the proof. These results will
follow from our computations of Jacquet modules in x3.

Next, we study the lifts of tempered representations. If  is tempered, we decompose ()  into
its cuspidal and non-cuspidal part: ()  =  ()c  ()nc. We have the analogous decomposition () =
()c  ()nc for tempered  2  Irr(G0).

2) The niteness of ()nc and ()nc is proved in Proposition 4.5 using the Jacquet module
computations from x3.

To  analyze the cuspidal part we employ the strategy from [10]. The main idea is the \period
ping-pong" introduced there | see Lemma 4.7 and 4.12.

3) We show that ()c is either irreducible or zero in Proposition 4.9 (for generic )  and
Proposition 4.14 (for non-generic ). The uniqueness of the irreducible quotient in (i) is
then deduced easily as a consequence of the period ping-pong; see Proposition 4.16.
This proves (i).

4) Part (ii) is also shown to be a consequence of the period ping-pong; see Prop. 4.17.

5) Finally, the niteness of ()c in (iv) follows from Propositions 4.8 and 4.15.

4.1 Non-tempered correspondence

Using the results of the Section 3, we now compute the lifts of non-tempered representations.
We begin by recalling the Langlands classication for G  =  G2. Any non-tempered  2  Irr(G) is
isomorphic to exactly one of the following representations:

a) Unique irreducible quotient of i G  ()  for  =  j det js
0, where 0 is a tempered irre-

ducible representation and s >  0.

b) Unique irreducible quotient of i G  ()  for  =  j det js
0, where 0 is a tempered irre-

ducible representation and s >  0.
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c) Unique irreducible quotient of i G  (), where  is the unique (Langlands) quotient of 1
2; here j1j =  j  js1 and j2j =  j  js2 with s1 >  s2 >  0.

In case of PU3 (K ),  the situation is even simpler. Any character of K  can be written as a
product   jN K = F  js where  is unitary and s 2  R. We let I (; s) denote the principal series
representation of PU 3 (K )  obtained by inducing this character of K  . If s >  0 this is a
standard module and has a unique irreducible quotient. Before doing computations, we
need to address the question of distinguishing extensions to G0 =  PU 3 (K )  o  Ga l (K =F )  of
Gal(K=F )-invariant representations of PU3 (K ). Fortunately, for principal series the
extension can be done at the level of inducing data. Given a Gal(K=F )-invariant character
of K ,  only one extension to K  o  Gal(K =F ),  denoted by + ,  appears in the quadratic base
change (cf.3.4). Let   denote the other extension. Thus, for Galois-invariant , I (; s)
extends to G0 in two ways: I (+ ; s)  and I (  ; s). When  is not invariant, only one extension
exists; in the following proposition, we denote it by I (+ ; s)  to enable uniform statements.

Proposition 4.2. ( i )  Let  , !  i G  ( _ )  with  as in (a) above. If  comes from a char-acter
jN K = F  js of K  via base change K  !  GL 2 (F )  (with s >  0 and  unitary), then () is a
non-zero quotient of I (  ; s); in particular, it has nite length. If  does not come from
a character of K  via base change, then  does not appear in the theta correspondence.

Conversely, let +  denote the unique irreducible quotient of I (+ ; s) .  Then ( + )  =  0.

( i i )  Let  , !  i G  ( _ )  with  as in (b) or (c) above. Then  does not appear in the theta
correspondence.

Proof. We use the fact that ()  =  HomG(; ) (non-smooth linear dual). Thus, from  , !  i G  ( _ )
we get ()  =  HomG(; )  HomG (; iG ( _ ) )  =  HomL i (rUi (); _ ) using Frobenius reciprocity. We now
analyze the space HomLi (rUi ();  )  using Propositions 3.1 and 3.2.

(i) Let S1 ; S2 and S3 denote the subquotients of rU ()  appearing in (T1), (M1) and (B1),
respectively. Comparing the central characters, one sees that ExtL 1 (S1 ; _ )  =  0 (recall
that s >  0, so the central character is a negative power of j  j). We thus get the
following exact sequence:

0 !  HomL1 (S2 ; _ ) !  HomL1 (rU1 (); _ ) !  HomL1 (S3 ; _ ) !  ExtL 1 (S2 ; _ ):

Recall that S2 =  iL 1 G 0
(1

 Cc (F )).  Using the Bernstein form of Frobenius reci-procity we see that

ExtL 1 (S2 ; _ )  =  ExtG L 1 G L 1 ( 1

 Cc (F ); rB (_ ) ) :

Recall that the second GL 1  factors acts on 1
C c (F )  by ! K = F  ; by our assumption on , this is dierent from the corresponding action on
r B ( _ ) .  Therefore E x t L  (S2 ; _ ) =  0 for all i, and the above long exact sequence becomes

HomL1 (rU1 (); _ ) =  HomL1 (S3 ; _ ):
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Now (B1) shows that S3 =  i L
1 B0(!~ ) .  By Lemma 9.4 of [4], the maximal _-isotypic

quotient of iG
0 (!~ ) is _

 iG
0 ((_ )), where ( _ )  is the big theta lift of _  with respect to the similitude

correspondence described in x3.4. Hence, if ()  is non-zero, then _  must come from a
character of K  via base change. Note that the character corresponding to 1  2 (or )  is
in fact  1 (and not ); this is accounted for by the fact that w 2  K  acts on K  by 1=w
(see x3.1). Thus, if  =  1j  js  2j  js or  =  jjs  for a unitary character , we get ()  =  + j   js.

This proves ()   HomL (S3 ; _ ) =  I (+ ; s).  Taking the smooth vectors (and the
contragredient), we see that ()  is a quotient of I (+ ; s),  as claimed. Furthermore, notice
that the above proof shows that I (+ ; s)  is a quotient of , so ()  =  0.

(ii) This is proved by comparing the central character, the same way we did in (i). We
omit the details.

Not surprisingly, we get analogous results for lifts from G0 =  PU 3 (K )  o  Z=2Z. The
following proposition is proved just like Proposition 4.2, by analyzing rU 0 ():

Proposition 4.3. As before, let +  (resp.  )  denote the unique irreducible quotient of I (+ ; s)
(resp. I (  ; s)), where  is a unitary character of K  and s >  0. Then (  )  =  0, and ( + )  is a non-
zero quotient of i G  (), where  is the representation of GL 2  obtained from j  js by base change K
!  GL 2 (F ) .  In particular, ()  has nite length. Further-more, ()  =  0, where  is the unique
irreducible quotient of iG

1
() .

Remark 4.4. Notice that Propositions 4.2 and 4.3 combine to give us the following: Assume
that  and  are irreducible representations of G  and G0, respectively, such that    is a quotient
of . Then

 is tempered ( )   is tempered:

4.2 Finiteness of theta lifts

Our rst task is to prove that the big theta lift ()  has nite length. To  do this, we recall that
() can be decomposed as

() =  ()nc  ()c;

the sum of its non-cuspidal and cuspidal part. We rst prove the following

Proposition 4.5. ( i )  Let  2  Irr(G0) be tempered. Then ()nc has nite length.

( i i )  Let  2  Irr(G) be tempered. Then ()nc has nite length.

Proof. (i) Recall that we have two maximal parabolic subgroups in G, Qi =  L i U i  for i  =  1; 2. It
suces to show that the Jacquet module rU i (())  is a nite-length representation of L i ,  i.e. that
the -isotypic quotient of rU i () has nite length. To  do that, we use the Jacquet module
ltrations computed in Section 3.

Consider rU1 () rst. Again, we let S1 ; S2 and S3 denote the subquotients appearing in
(T1), (M1) and (B1), respectively. We need to show that the multiplicity space of the -
isotypic quotient of S i  has nite length, for i  =  1; 2; 3.
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At the bottom, we have

S 3 ()  . =  HomG0 (S3; )  HomG0 (iL
1 B

0 (!~ ); )  HomT 0 (!~ ; r 0 ()):

Now r  0 is a nite-length representation of T0  K .  Taking any irreducible subquotient
 (which is in fact a character of K ) ,  we have HomT 0 (!~ ; )  !~ (),  where !~ ( )  is the theta lift of
with respect to the Weil representation !~ .  The fact that !~ ( )  has nite length follows from
the Howe duality theorem for classical (similitude) correspondences, cf. x3.4. This in turn
shows (after taking the smooth vectors) that S 3 ()  itself is of nite length as an L1-module.

In the middle, we have

S 2 ()  . =  HomG0 (S2; ) =  HomG0 (iL1 G0
(1

 Cc (F )); )   HomT 0 (iB (1

 Cc (F )); r  0 ()):

Again, r B ( )  is a nite-length representation of T . Taking an irreducible subquotient  of
rB (),  we see that

HomT 0 (iB (1

 Cc (F )); )  =  iB (1  
1

 ! K = F  )   iB (2  
1

 ! K = F  )

(see Remark 3.4); in particular, we get a representation of nite length. Taking the smooth
vectors, we see that S  ()  has nite length.

Finally, we need to check S1, the top part of the ltration. However, B0 acts trivially
on S1, so the -isotypic quotient is zero.

The Jacquet module with respect to U2 is analyzed in the same way. Let S1 and S2
be the subquotients of rU2 () appearing in (T2)  and (B2), respectively. To  show that the -
isotypic quotient of S2 has nite length we proceed just like in the U1 case; we omit the
details.

As for S1, recall that P2 =  M2N2 is the Heisenberg parabolic in H .  The Levi factor M2
(which corresponds to the C3  part of the relative diagram) has been described in [9,
x7.2]| one can think of it roughly as a unitary group U 6 (K )| and  C 3      is its minimal
representation. We thus need to analyze the -isotypic quotient of C      as a representation of L 2
=  GL2 (F ) .  On the other hand, we have the central isogeny G L 2 ( F ) K  !  GU2 (K ).  Thus the
correspondence that arises from C 3      can roughly be viewed as (the similitude version) of the
classical correspondence

U2 (K ) !  U3 (K )

for unitary groups. It follows that the theta lift of  with respect to C 3  is a nite length
representation of GL2 (F ) .

Part (ii) can be proved in the same way, by analyzing rU 0 () as a T 0-module. We let
S1 and S3 denote the subquotients appearing in (T3)  and (B3), respectively. To  prove that
the -isotypic quotient of S3 has nite length we repeat the arguments from the U1 case; we
leave the details to the reader.

In order to analyze S3 we need to consider the -isotypic quotient of the representation B
. Recall that B      is the minimal representation of the Levi factor M0. This Levi factor is a
quasi-split group D E  where E  =  K  F ,  and we are thus looking at the correspondence
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for the dual pair G2  Aut(E )  inside the group D 4  . The niteness now follows from the
results of [15], where this correspondence has been studied in detail.

Having established the niteness of ()nc, we turn to ()c. Here our approach is based on
the \ping-pong" of periods utilized in [10]. We will need to consider generic and non-generic
representation separately. We begin by recalling the relevant periods.

4.3 Shalika periods
First, we recall the parabolic subgroup B0 of G0 discussed in Remark 2.4. The unipotent

radical U0 of B0 has a ltration f0g  U 0(2)  U0 with U 0(2)  C0  and U0=U0(2)  C .  We let
U0 be the character of U0 which, via the identication U0=U0(2) =  C  is given by  T rC =F  .

Finally, let S  be the semi-direct product of U0 and the stabilizer of of     U0 in the Levi of
B  . We note that the stabilizer is isomorphic to Aut(C ). We denote by     S  the

(Shalika) character of S  equal to U0 on U0 and trivial on Aut(C ).
Let V be the unipotent radical of the Borel subgroup Q1 \ Q2  in G, and let V : V !  C

be a Whittaker character for G  =  G2. Just like in [28, Lemma 4.5], one shows that

(4.1) V; V      =  c-indS 
0      

S

holds for general C .  Here V; denotes the maximal quotient of  on which V acts by V
. This immediately implies

Corol lary 4.6. Let  be an irreducible representation of G0 Then () is (non-zero) generic if
and only if  has a non-trivial Shalika period.

For C  =  K  we have Aut(C ) =  Z=2Z, and the Shalika functional is simply the Whittaker
functional extended trivially to Z=2Z.

Conversely, recall that Q is the three step maximal parabolic in G. Let Qder be its de-
rived group. In particular Qder=U1  SL2 (F ),  and U1=U1(3) is a three-dimensional Heisen-
berg group. Then

S; S  
 c-indG

der (
 (1))

where  is the unique irreducible representation of U1=U1(3), extended to SL2 (F ),  and (1) is the
big theta lift of the trivial representation of Aut(C ) to SL2 (F ),  via the correspondence arising
from SL 2 (F )   Aut(C ) acting on the Weil representation on Cc (C0 ) given by . If
C  is the algebra of 2  2 matrices, this is given by Proposition 11.6 in [10]. Of course, the proof
generalizes. If C  =  K  then (1) is an irreducible even Weil representation. The even Weil
representation is a quotient of a principal series representation I  ()  (notation of [10, Section
11]) for a character  such that jj =  j j1=2. Thus, by [10, Corollary 11.4], we have

(4.2) dim HomG(S; S  ; )  1

for any Whittaker generic and tempered irreducible representation  of G.
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4.4 Howe duality for tempered representations

We now have all the ingredients required for the ping-pong game:

Lemma 4.7. Let  be the minimal representation of H .  Let  2  Irr(G) be tempered, and let
2  Irr(G0) be tempered such that

HomGG0 (;   )  =  0:

Then we have the following (natural) inclusions

HomV (; V )   HomV ((); V )  
(2) 

HomS (_ ; S )

 HomS ((_ ); S )  
(4) 

HomG(S; S  ; _ ): If  is

generic, than all the above spaces are one-dimensional.

Proof. This is analogous to Lemma 12.1 in [10]. First, (1) follows from ()  . The
isomorphism (2) follows from

HomV ((); V )  =  HomV G0 (; V

 )  =  HomG0 ( V  ; )

combined with (4.1). Next, (3) follows from the fact that ()  is the complex conjugate of ().
Since  =  _  and  =  _ , we have ( _ )   _ . Finally, (4) is

HomS ((_ ); S )  =  HomGS (; _

 S )  =  HomG(S; S  ; _ ):

If the representation  is generic, then HomV (; V )  is one-dimensional. However, (4.2)
shows that HomG(S; S  ; _ ) is one-dimensional as well. The lemma follows.

We now have two immediate consequences of the above lemma (cf. Propoisition 12.2 and
12.3 of [10]):

Proposition 4.8. Let  2  Irr(G0) be tempered. Then () cannot have two irreducible
tempered and generic quotients.

Proof. Assume that 1 and 2 are tempered and generic such that ()   1  2. Then dim ()V;
2. However, Lemma 4.7 asserts that dim ()V; =  1, so we have a
contradiction.

Proposition 4.9. Let  2  Irr(G) be tempered and generic. Then () cannot have two
tempered irreducible quotients. In particular, its cuspidal part ()c is either irreducible or zero.

Proof. Let 1; 2 be irreducible and tempered such that ()   1 2. Lemma 4.7 (applied to _ ; _ , and
again to _ ; _ )  implies

1 =  dim HomS (1; S )  =  dim HomS ((); S )  =  dim HomS (2; S ):

But 1  2 is a quotient of (), so we have

1 =  dim HomS ((); S )   dim HomS (1; S )  +  dim HomS (2; S )  =  2;

a contradiction.
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Thus, we have proved that ()c has nite length in case  is generic. To  prove the same
result for  non-generic we need another version of period ping-pong, which we now describe.

Recall the groups G E  =  SpinE and G0 =  Aut(iC  : E  , !  J )  introduced in x1.4.
Together with G  and G0, they constitute a see-saw dual pair

G E  =  Spin8

G2

G0

G E ; C  =  Aut(iC  : E  , !  J ) :

This gives us the standard see-saw identity

HomG E ; C  
((); 1) =  HomG 2 (RC (E ); );

where R C ( E )  =  (1) denotes the big theta lift of the trivial representation of G0         
 to G E .

To  better understand the representations R C ( E )  (for various C ),  we need to relate them
to a certain degenerate principal series of G E .  Here we use the results of [10, x5]. Let P E
=  M E N E  be the Heisenberg parabolic subgroup of G E  =  Spin8 . We consider the
degenerate principal series

I E ; ! K = F  (s) =  IndP E  
( ! K = F  j det js):

We then have

Proposition 4.10. Let  2  Irr(G2 ) be tempered. Then

(i)  I E ; ! K = F  (1=2)  
L

C  R C ( E ) ,  where the sum is taken over all C  such that E   C  =  J .

( i i )  Hom G 2 ( I E ; ! K = F  (1=2); ) =  HomN2 (_ ; E ) .

Proof. These results are taken, mutatis mutandis, from propositions 5.2 and 5.5 in [10].

The nal ingredient we need is a description of the twisted N2-coinvariants of :

Lemma 4.11. We have
=  

M
c-indG 0

(1);C
E ; C

where the sum is taken over all twisted composition algebras C  such that E   C  =  J .

Proof. This is essentially Lemma 2.9 in [13]; the only dierence is that here we have more
than one isomorphism class of embeddings E  , !  J .

We are now ready for the second game of period ping-pong.

Lemma 4.12. Let  2  Irr(G2 ) and  2  Irr(G0) be tempered representations such that

HomG2 G0 (;   )  =  0:
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Then we have the following sequence of natural inclusions:

HomN2 (; E )   HomN2 ((); E )  
(2) M

H o m G E ; C  
(_ ; 1) C

 
M

H o m G E ; C  
((_ ); 1) 

(4) 
Ho m G 2 (

M
R C ( E ) ; _ ) :  C

C

Here the sum is taken over all C  such that E   C  =  J .  If any one of these spaces is
nite-dimensional, then inclusions (1) and (3) are in fact isomorphisms.

Proof. This is analogous to Lemma 6.4 in [10]. First, (1) follows from ()  . Next, (2) follows
from

HomN2 ((); E )  =  HomG0 (N2 ; E  ; )

combined with Lemma 4.11 and Frobenius reciprocity. The inclusion (3) is a consequence
of ( _ )   _ ; this follows from the fact that ()  is the complex conjugate of (),
combined with   _  and   _ . Finally, (4) is the see-saw identity.

Now if any one of the above spaces is nite-dimensional, it follows that HomN2 (; E )
is nite-dimensional as well. By Proposition 4.10, we then have

dim Hom G 2 (
M

R C (E ) ; _ )   dim HomG 2 (IE (1=2; !K=F ); _ ) =  dim HomN2 (; E ) :  C

The result follows.

The following result will allow us to use the above lemma when analyzing non-generic
representations:

Lemma 4.13. Let  be an irreducible non-generic innite-dimensional representation of G2 .
Then there exists an etale cubic algebra E  such that N2 ; is non-zero. Moreover,
N2 ;  E  is nite-dimensional for any E .

Proof. This is Lemma 3.4 in [10]

The two games of period ping-pong allow us to conclude the proof of Theorem 4.1. First,
we prove the niteness of ()c (cf. Proposition 6.7 in [10]).

Proposition 4.14. Let  2  Irr(G) be tempered and non-generic. Then ()  cannot have two
tempered irreducible quotients. In particular, ()c is irreducible or 0.

Proof. Let 1; 2 2  Irr(G0) be irreducible and tempered; assume that ()   1  2. Since  is non-
generic, there is an etale cubic algebra E  such that d . =  dim HomN (_ ; E )  is nite-
dimensional and non-zero. Lemma 4.12 (applied rst to _ ; _ , and then to _ , _ )  now shows

d =  dim HomG E ; C  
(1; 1) =  dim HomG E ; C  

((); 1) =  dim HomG E ; C  
(2; 1):

C                                                                   C                                                                           C

However, this is impossible, since it would imply

d =  d i m
M

Ho m G E ; C  
((); 1)  d i m

M
Ho m G E ; C  

(1; 1) +  d i m
M

Ho m G E ; C  
(2; 1) =  2d: C

C C

Therefore, we have arrived at a contradiction, and the Proposition is proved.
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We will also need the following result:

Proposition 4.15. Let  2  Irr(G0) be tempered. Let  2  Irr(G) be a tempered, non-generic
quotient of (). Then  is the unique irreducible tempered quotient of ().

Proof. Since  is non-generic, Lemma 4.13 shows that there is a cubic algebra E  such that d
. =  dim HomN (; E )  is nite-dimensional and non-zero. Now Lemma 4.12 shows that
dim HomN ((); E )  =  d. If 0 is another tempered irreducible quotient of (), then Lemma
4.12 shows that dim HomN2 (0; E )  =  d. But this implies

d =  dim HomN2 ((); E )   dim HomN2 (; E )  +  dim HomN2 (0; E )  =  2d;

which is a contradiction. The Proposition is proved.

Next, we prove that (), if non-zero, has a unique irreducible quotient.

Proposition 4.16. Let  2  Irr(G) be tempered such that ()  =  0. Then () has a unique
irreducible quotient.

Proof. Remark 4.4 shows that ()  can only have tempered quotients. The result now follows
from Proposition 4.9 (when  is generic) and Proposition 4.14 (when  is non-generic).

Proposition 4.17. Let 1; 2 2  Irr(G) be tempered. Then 0 =  (1 ) =  (2 ) implies 1 =  2.

Proof. If 1 and 2 are both generic, this follows from Proposition 4.8 applied to  =  (1 ) =  (2). If
either is non-generic, then the result follows from Proposition 4.15.

5 E x p l i c i t  theta correspondences

In this section we discuss lifts of (non-cuspidal) tempered representations of G0.

5.1 Representations of the unitary group

Recall that I (; s) denotes the principal series representation of PU 3 (K )  obtained by in-
ducing jN K = F  js (with  unitary) from T0 =  K .  We shall denote I (; 0) simply by I () .  The unique
non-trivial element of the Weyl group conjugates to  , where  is the non-
trivial element of Gal(K=F ).  It is easy to argue that the principal series representations
I (; s) have reducibility points only if  1 =  , that is,  is conjugate-dual. Then there is a
dichotomy at play. If I ( )  is reducible, then I (; s) is irreducible for all s =  0. If I ( )  is
irreducible then there exists s0 >  0 such that I (; s) are irreducible for s =  s0. The rep-
resentation I (; s0 ) is a standard module of length two, with a unique irreducible quotient and
a discrete series representation as a unique submodule. By [12] I ( )  is irreducible if and only
if

L( ; s)L (As  (); 2s)

has a (simple) pole at s =  0. More precisely, if L(; s)  has a pole at 0, then  =  1 and s0 =  1;
if L ( A s  (); 2s) has a pole at 0, then  is conjugate-symplectic and s0 =  1=2. Now the following
summarizes our discussion:
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Proposition 5.1. Let  be a conjugate-dual character of K .  Then the principal series
I (; s), for s  0, reduces as follows:

1. If  =  1, the trivial representation is the quotient, and the Steinberg representation St is
a submodule at s =  1.

2. If  =  1 is conjugate-orthogonal then reduction occurs at s =  0,

I ( )  =  I ()gen  I ()deg

where I ()gen is Whittaker generic.

3. If  is conjugate-symplectic then I (; s) reduces at s =  1=2. The Whittaker generic
submodule is a discrete series ()  whose Langlands parameter [2, Section 10] is a 3-
dimensional conjugate-orthogonal representation

 2

 V2

of K   SL2 ,  a quotient of the Weil{Deligne group of K  by the commutator of W K ,
where V2 is the irreducible two-dimensional representation of SL2 .

Remark 5.2. The Langlands parameter of ()  should perhaps be expressed using  1 =
instead of . However, the theta lift of both () and () is the same representation of G2, so this
imprecision is harmless.

We may now describe the theta correspondence for (limits of ) discrete series of PU 3 (K )
discussed above, and for extensions of those representations to PU 3 (K )  o  Gal(K =F ),  when
Gal(K=F )-invariant. These lifts will be computed using Jacquet functors and the following
additional inputs that are, roughly speaking,

 The correspondence is one-to-one.

 It preserves tempered representations.

 It preserves generic representations.

Recall that there are two ways to extend I ( )  to PU 3 ( K ) o G a l ( K = F )  when  is Galois-
invariant: I ( + )  and I (  ). Here +  is the extension of  which appears in the quadratic base
change (see x3.4). Another way to characterize I ( + )  is via Whittaker functionals:
Ga l (K =F )  acts trivially on the one-dimensional space of Whittaker functionals. If  is a
constituent of I () ,  let +  (resp.  )  be the extension of  contained in I ( + )  (resp. I (  )). Using
Jacquet functors like in Proposition 4.2, it follows that theta lifts of constituents of I (  )  are
trivial unless the constituent is St .

In order to state the result, let  be a conjugate-dual character of K  and let ()  be the
irreducible representation of GL 2 ( F )  corresponding to the two-dimensional representation ()
of the Weil group WF . Let I G  ((); s) denote the principal series where we induce ()  twisted
by jdetjs. If  is conjugate-orthogonal,  =  1, then the central character of ()  is ! K = F  and
IQ 1

( ( ) )  is reducible,

IQ 1 ( ( ) )  =  IQ1 (())gen  IQ1 (())deg :
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If  is conjugate-symplectic, then the central character of ()  is trivial and I G  ((); 1=2) has a
Whittaker generic tempered submodule. If  is not Gal(K=F )-invariant, then () is a cuspidal
representation and the tempered submodule is a discrete series representation. If  is Gal(K=F )-
invariant, then () =  1 2 for a pair of mutually inverse characters of F ,  and the tempered
submodule is

IQ 2 (st1 ) =  IQ2 (st2 );

where sti     denotes a twist of the Steinberg representation of GL 2 (F )  by the character
i(det).

Finally, we recall the A-packet discussed in Section 3.3. The packet contains two repre-
sentations: a supercuspidal, and the Langlands quotient of iG2 (jdetj
 ), with  equal to the tempered representation 1  ! K = F  . In the following proposition, we
consider the corre-sponding discrete series L-packet (again attached to the subregular
unipotent orbit and the cubic etale algebra F  +  K ) .  Its elements are obtained by applying
the Aubert involutions to the elements of the A-packet; in particular, we have a
supercuspidal representation, and a generic discrete series representation contained in
iG2 (jdetj
 )  as a submodule.

Proposition 5.3. We have:

1. f(St+ ); (St  )g is the discrete series L-packet of G  attached to the subregular unipo-
tent orbit and the cubic etale algebra F  +  K .  (St )  is supercuspidal.

2. If  =  1 is conjugate-orthogonal then

(I ()gen ) =  IQ1 (())gen and (I ()deg ) =  IQ1 (())deg :

If  is Gal(K=F )-invariant, then the statements involve constituents of I ( + ) .

3. If  is conjugate-symplectic then (())  is a Whittaker generic, tempered submodule of I G

((); 1=2). If  is Gal(K=F )-invariant, the lift is of ( ) + .

Proof. 1. Let f; g be the L-packet, with  supercuspidal. We use the description of
rU 0 () from Proposition 3.3. First, note that ()  (a representation of G0) is non-
trivial, because  appears as a quotient of (T3). Thus ()  appears as a quotient of the
minimal representation . It follows that
rU 0 (()) is a quotient of rU 0 (). Since  is supercuspidal,
 rU 0 (()) cannot appear in (B3); therefore, it is a quotient of (T3). Thus rU 0 (()) is one-
dimensional, a quotient of (T3); notice that rU 0 (()) is precisely the exponent of St .
Moreover, the supercuspidal part of ()  is necessarily 0 because of the one-to-one
property (Theorem 4.1). This shows () =  St .

It remains to determine (St+ ).  We know that (St+ )  =  0 (because St +  is generic; see
Corollary 4.6) and tempered. This implies, using Proposition 3.3 again, that (St+ )
appears as a quotient in B 3. From here it follows that (St+ )  is a subquotient of
iQ1

(jdetj 1

 (1  ! K = F  )). Since (St+ )  is tempered, the claim follows.

2. Again, we look at the description of the Jacquet module in Proposition 3.3. The two
constituents of I ( )  are not distinguished by Jacquet modules: we have rU 0 (I ()gen) =
rU 0 (I ()deg) =  . Note that  appears as a quotient in (B3). As explained in 3.4,
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the similitude correspondence arising from the representation !~  in (B3) now shows
that ()
  is a quotient of !~ .  Inducing, we get that IQ

2 ( ( ) )  is a quotient of r0 (); in other words
(using Frobenius reciprocity), I G 2 ( ( ) )  is a quotient of . In
particular, both I G 2 (())gen and I G 2 (())gen have non-zero theta lifts which are
constituents of I () .  Since lifts of generic representations remain generic (Corollary
4.6), we must have (I ()gen ) =  IQ

2 (())gen ; by the one-to-one property it now follows
that (I ()deg ) =  IQ

2 (())deg .

3. The proof here is the same as for (St+ )  in case (i).

6 M i n i  theta

It is possible that a cuspidal representations of G0 lift to non-cuspidal representations of G.
From Jacquet functors, it is clear that such representations of G0 are lifts from the Levi
L 2  =  GL 2 ( F )  via the minimal representation of M2. We shall describe this mini-theta
correspondence by relating it to a classical theta correspondence for unitary groups.

6.1 The similitude theta correspondence for GU(2)d e t   G U ( 3 )

Let GU(n) denote the group of similitudes of an n-dimensional Hermitian space, and let
GU(n)det denote the index two subgroup of elements such that the similitude takes value in
N K = F  ( K ) .  The forms of GU(2) can be described using quaternion algebras. Let B  be a
quaternion algebra and x an embedding of K  into B .  The right multiplication by K  turns
B  into a 2-dimensional symmetric Hermitian space, the Hermitian form given by the
quaternion norm. We have

GU(2) =  ( B   K ) = F

where B  acts on B  from the left, and K  from the right, by inverse. The center of this group
is ( F   K ) = F  =  K .  The subgroup GU(2)det consists of pairs (g; z) such that the norm of g is in
N K = F  ( K ) .

The mini-theta correspondence is related to the similitude theta correspondence for
GU(2)det  GU(3), which ts into the seesaw

GU(3) GU(6)det

@
@

     @
GU(1) =  K GU(2)det

One uses the splitting character 1 on GU(3) and GU(1) on the left hand side,  on
GU(6)det and 3 on GU(2)det [1, Section 7]; here  is a character of K  which restricts to ! K = F
on F .  We start by considering this, without referring to the mini-theta yet.

In this see-saw, one starts with the trivial representation of GU(1) on the bottom left,
and one takes an irreducible representation  of GU(2)det on the bottom right. Then the
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see-saw identity is
HomGU(2)det ((1); ) =  HomGU(1) ((); 1):

Hence, ()  is a representation of GU(3)=GU(1) i.e. a representation of GU(3) with trivial
central character. Moreover, with the choice of splitting characters as above, the theta
correspondence carries representations of GU(3) with trivial central character to represen-
tations of GU(2)det with central character 3. One can describe this theta correspondence,
as a lifting from GU(2)det to U(3)=U(1)  GU(3)=GU(1) as follows.

An irreducible representation of GU(2)  (GL 2 (F )   K ) = F  is of the form    for  an
irreducible representation of GL 2 (F )  and  a character of K ,  so that the central character of
is j . Since we are interested only in those irreducible representations of GU(2) with
the central character 3, we must take  =  3. In other words, we are looking at
irreducible representations  of GL 2 ( F )  whose central character is ! K = F  (since jF  =  ! K = F  ).

Note that:

 the contragredient of such a  is _  =
! K = F  , so  is dihedral with respect to K = F  if and only if  is self-dual.

 hence, the restriction of  to GL2 (F )de t  is irreducible if and only if  is not self-dual; if
is self-dual, the restriction breaks into 2 pieces.

With   3 given, it gives an L-packet of

U(2) =  f(g; z) : det(g) =  N (z )g=F   GU(2):

If  denotes the L-parameter of  (as a GL2(F )-representation), then the L-parameter of this
U(2) L-packet is the conjugate-symplectic representation of the Weil group W K

jW K

 3:

Assume now that  is a discrete series representation of GL2 (F ) .  Then jW K      is irre-ducible
if and only if  is non-dihedral with respect to K = F ,  i.e.  is not self-dual. In any case, the
representations of U(3) we get by theta lifting from GU(2)det to U(3)=U(1) have the L-
parameter

 =  jW K  +  1;

see Theorem A  in [11]. Observe that this is a conjugate-orthogonal representation of W K
of determinant one: jW K  has trivial determinant, since det() =  ! K = F  .

More precisely:

 if  is not self-dual, i.e.  not dihedral, we are starting with a singleton L-packet on
GU(2)det and its lift is the unique generic representation  in the L-packet of U(3) with
the L-parameter . That L-packet has another element which is lifted from the non-
quasi-split form of GU(2)det.

 if  is self-dual, then the L-packet we started with on GU(2)det has 2 elements, distin-
guished by their Whittaker support, and their theta lifts are two representation gen

and deg in the L-packet with the L-parameter ; there are two other representations
lifted from he non-quasi-split form of GU(2)det.
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6.2 The lifts coming from mini-theta

With the above understanding of the similitude theta lifting in hand, we return to the
problem of mini-theta.

Let M  be the connected component of M2. Take a generator of the group of algebraic
characters of M2 , and let M det be the index two subgroup of M2 of elements such that the
character takes values in N K = F  ( K  ). Furthermore, the restriction of the character to L 2  =
GL 2 ( F )  is the determinant (or its inverse) and we can dene Ldet  =  GL2 (F )de t  analogously.
Thus we have a group isomorphic to PU(3)  GL2 (F )de t  contained in M det. We can describe
M det and this embedding explicitly within the framework of x6.1.
Assume that the quaternion algebra B  from x6.1 is split, so that B  =  GL2 (F ) .  Let U(6)

be the unitary group corresponding to the Hermitian space B   B   B .  Then by
Section 7.2 in [9]

M det =  f(z ; g) 2  ( K   U(6))=U(1) j z=z =  detgg

where U(1) is embedded into K   U(6) by z !  (z3; z) and z denotes the action of the non-
trivial element in Gal(K =F ).  Let U(3)  U(2) be a dual pair in U(6) so that U(2) acts
diagonally on the three copies of B .  We map U(3) into M det by

g !  (det(g); g):

It is easy to check that this map is well dened and trivial on the center U(1). Now let g
2  GL2 (F )det . Let z 2  K  such that N K = F  (z) =  det(g). Then (g; z) denes an element in U(2),
using the above description of GU(2), and

g !  (z  3; (g; z))

is a well dened map from GLde t  into M det which does not depend on the choice of z.
In this way, we may view PU(3) GL2 (F )det  as (a subgroup of ) the dual pair discussed in

x6.1. The representation  1  (1) of K   U(6) descends to a representation of M det which is
now independent of ; see Section 8.4 in [9]. Furthermore,

IndM det 
 1  (1)

is the minimal representation of M. From the formulas for the embedding of PU(3) and
GL2 (F )de t  into M det, it is easy to check that these two groups act on  1  (1) in the same
way as they act in the classical see-saw pair above. Combining this with the two bullet points
at the end of x6.1, we get:

Proposition 6.1. Let  be a discrete series representation of GL 2 ( F )  with the central
character ! K = F  . Then  =  jW K  +  1 is a PU(3)-parameter and:

 If  is not self-dual, i.e. not dihedral w.r.t. K = F ,  the L-packet of  has one represen-tation
we are considering. Under the mini-theta, it lifts to  +  _ ,  and under the theta lift to G2 ,
it lifts to IndQ

2  =  IndQ
2 (_ )

 If  is self-dual, i.e. dihedral w.r.t. K = F ,  then the L-packet of  has two representa-tions
gen and deg we are considering. Under the mini-theta, they lift to . Under the theta lift
to G2 , these two representations of PU(3) lift to the two constituents of IndQ2

().
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We still need to go from PU(3) to PU(3) o  Z=2Z. The action of Z=2Z on Irr(PU(3)) is
sending  to _  (see [21]). The representations in the L-packet of  are all self-dual, and hence
each has two extensions to PU(3) o  Z=2Z. Of course, by the one-to-one result, only one of
these extensions can lift to a summand of IndG2 . The other extension should not lift to G2,
however, we cannot exclude that it lifts to a cuspidal representation of G2.

Finally, let us discuss what happens on the level of L-parameters. The L-parameter is
a 3-dimensional rep  : W K  !  SL3 (C )  of the form  =  jW K  +  1, where  : WF !  GL 2 (C )  has
det() =  ! K = F  . Also,  is the restriction to W K  of an L-parameter

0 : WF !  SL(3)  o  Z=2Z

where the latter is the L-group of PU(3). Using the further inclusion SL(3)  o  Z=2Z !  G2
the 7-dimensional representation of G2 (C),  as a WF -module, decomposes as

(IndW K  
)  +  ! K = F  =  (   ! K = F  +   +  1 +  ! K = F  )  +  ! K = F  :

Recalling that   ! K = F  =  _ , and regrouping (i.e. conjugating), we rewrite this as: (  +

! K = F  )  +  ( _  +  ! K = F  )  +  1:

This parameter factors through the Levi GL 2 (C )  in SL3 (C )   G2 (C),  therefore it is a
parameter of the induced representation IndP

2  =  IndP
2 (_ ).
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