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Abstract

We prove Howe duality for the theta correspondence arising from the p-adic dual
pair G2 (PUs o Z=2Z) inside the adjoint quasi-split group of type Eg.

Introduction

Let F be a p-adic eld, that is, a non-archimedean local eld of characteristic 0. Simple
exceptional Lie algebras over F can be constructed from pairs (0;J) where O is an octonion
algebra over F, and J a Freudenthal Jordan algebra. Let G = Aut(0) and G° = Aut(J). Let
g and & be the Lie algebras of G and GY, respectively. Then, by a construction of Tits [16],

h=gg o

J
has a structure of a simple exceptional Lie algebra over F, where O and J denote trace 0
elements in O and J, respectively. Let H = Aut(h). It is evident from the construction that
there is an inclusion

G G’ H:
The group G is a split exceptional group of type G,, whereas G° and H depend on J. A
Freudenthal Jordan algebra is a form of J3(C), the algebra of 33 Hermitian symmetric ma-
trices with coecients in a composition F-algebra C, see Chapter IX in [17]. A composition
algebra, roughly speaking, is a non-associative algebra with an anti-involution x | xsuch
that N¢c (x) = xxs a quadratic form satisfying composition, thatis, Nc(xy) = N¢c(x)N¢c(y) for
all x;y 2 C. The case treated in this paper is C = K, a quadratic eld extension of F. Then
G’ = PU3(K) o Gal(K=F);

where PU3(K) is the quotient of the unitary group Us(K) in three variables by its center,
and Gal(K=F) acts on coecients of U3(K) naturally. The group H is quasi-split of absolute
type Eg.

Let be the minimal representation of H. The goal of this paper is to understand the
restriction of to the dual pair G G°. More precisely, let be a smooth, irreducible
representation of G. Then there exists a smooth representation () of G° such that () is the
maximal -isotypic quotient of . If () is non-zero, we prove that it is a nite length G%-module,
and that it has a unique irreducible quotient (). Conversely, if is anirreducible representation
of GO then () is a nite length G-module and, if it is non-zero, then it has a unique irreducible
module (). The results are summarized in Theorem 4.1.
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These results are proved by a period ping-pong, introduced in [10], that can be viewed
as a generalization of the doubling method for classical theta correspondences [14], [18].
Here, just as for classical theta correspondences, one needs the following ingredient: If is
an irreducible quotient of (), then - is a quotient of (-), where - denotes the smooth
dual of . For classical theta correspondences this statement can be obtained using the
Mglin{Vigneras{Waldspurger involution [21]. Existence of such an involution is a non-trivial
matter; however, if is tempered then - is isomorphic to the complex conjugate. Since
= , it follows at once that () is the complex conjugate of (). Thus the method of period
ping-pong works well for tempered representations; however, separate treatment is needed
for non-tempered representations. These representations are realized as Langlands
qguotients of principal series representations and here the method of Jacquet functors
works well. Thus a principal contribution of this paper is a computation of the Jacquet
functors of with respect to maximal parabolic subgroups of G and G°.

For non-tempered representations we obtain the following explicit result. The group
GO is quasi-split of rank one. The Levi factor of a Borel subgroup is isomorphic to K o
Gal(K=F). Let be a character of K. Let i() be the two-dimensional representation of
K o Gal(K=F) obtained by inducing . Assume, for simplicity, that is not Gal(K=F)-
invariant. Then i() is irreducible and i() i(°Lif and only if is in the Gal(K=F )-orbit of .
Now, i() denes a principal series representation of G°. We now describe its theta lift to to
G. The group G has two conjugacy classes of maximal parabolic subgroups; we shall use
the letters Q; and Qy for parabolic subgroups in the two classes, where the unipotent
radical of Q; is a two step nilpotent group, and the unipotent radical of Q; is a three
step nilpotent group. The Levi factors of both parabolic groups are isomorphic to
GL,(F). Let Wg Wy denote the Weil groups of F and K. Recall, by local class eld
theory, that Wa = K. Thus can be viewed as a character of W¢. We induce to W and
obtain a paranfeter of a supercuspidal representation of GL,(F). The theta lift of is a
representation of G obtained by inducing from the maximal parabolic Q;.

The authors would like to thank Wee Teck Gan for initiating this project and for his
continued interest. One of his letters to the authors has been adapted to form Section 6 in
the present paper. We would also like to thank the referee for a number of useful
comments and suggestions. G. Savin is partially supported by a grant from the National
Science Foundation, DMS-1901745.

1 Preliminaries

1.1 Basic number theory, stealing title from Weil

Let F be a non-Archimedean local eld with the absolute value j j normalized as usual, and
let K=F be a quadratic extension. We let z denote the Galois conjugate of an elementz 2 K;
we set Ny_r (z) = z z andTr(z) = z+ z. We let !(_¢ denote the character of F that
corresponds to K by local class eld theory.

Let W W be the Weil groups of K and F respectively. The quotient of W¢ by the
commutator subgroup of W is the relative Weil group Wg_¢

11 K ! Wy ! Gal(K=F)! 1:
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Let D be the unique quaternion algebra over F. By Appendix Il in [29] W¢-f can be
realized as the normalizer of K in D. Thus

Wyi-f = K [ Kj

wherejz = 7 forallz2 K andj2isinF, but notin the index two subgroup N¢-f (K). Now
any character of K denes a two dimensional representation of W¢

() = Ind, (WFLemma

1.1. Let be a non-trivial element in Gal(K=F).
1. () = (°)if and only if = or .2. () is
irreducible if and only if = .

3. If = then () = 12 where; are two characters of F such that(Ng-f (z)) = (z) for all z
2 K

Proof. This is all a simple consequence of the explicit description of Wy_¢ . For the last,
observe that the condition = , by Hilbert 90, implies that is trivial on norm one elements
in K, thus the formula {(Ng-f (z)) = (z) denes ; and ; on the index two subgroup of F . The
two characters dier by the character ! (- . ]

The determinant of () is an Asai character of Wr denoted by As (). A character is
called conjugate dual if 1= . Note that this implies that is trivial on Nx-¢ (K). Thus the
restriction of to F is either trivial or !«_F . Respectively, we say that is

conjugate-orthogonal or conjugate-symplectic. The following lemma is now again a simple
exercise, using the explicit description of Wy_¢ .

Lemma 1.2. Assume that is a conjugate dual character of K. Then As () = 1 if is
conjugate-symplectic and As () = !x-f¢ if is conjugate-orthogonal.

1.2 Representations of p-adic groups

Let G denote the group of F-points of a reductive algebraic group G. We denote the cat-
egory of smooth (complex) G-representations by R(G); the set of (equivalence classes of)
irreducible representations of G will be denoted by Irr(G).

We recall the various functors which play a role in the representation theory of p-adic
groups. Let P be a parabolic subgroup of G with Levi decomposition P = MN. Wethen
have the parabolic induction functor Indp, as Well its normalized version, i®. If isPa smooth
representation of G, we may consider the Jacquet functor ! , where y denotes the space
of N-coinvariants of . The normalized version of the Jacquet functor will be denoted by rp
(). Recall that parabolic induction is adjoint to the Jacquet functor. First, we have the
(standard) Frobenius reciprocity, which states that there is a natural
isomorphism

Homg(;i%)) Hemm(rs(););

here and are representations of G and M, respectively. Equally useful is the second
(Bernstein) form of Frobenius reciprocity:

Homg(i§ ();) = Homm(; #());
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here P denotes the parabolic subgroup opposite to P. Finally, we will occasionally use the
compact induction functor, which we denote by c-ind.

1.3 Cubic Jordan algebras

The space J of Hermitian symmetric 3 3 matrices over K is a Jordan algebra with multi-
plication
Xy= 23‘XV+ yx) = 21(X+ y)? o Xyl

and identity 1. A typical element of J is

0 1
a x y
@x b zA;

Yy z

where x;y;z 2 K and a;b;c 2 F. We let J;; (for 1 i j 3) denote the subspace of J
consisting matrices whose entries are 0 except on the positions (i;j) and (j;i). For more
details on the subject of cubic Jordan algebras, the reader can consult Chapter 38 in [17]
and Chapter 4 in [20].

Let N and T denote the norm (determinant) and the (usual) trace of 3 3 matrices.
Recall that N(x) = xx® where x# is the usual adjoint matrix to x, i.e. made of 22 minors of
Xx. Let (x;y;z) be the symmetric trilinear form on J such that (x; x; x) = 6N (x), that is,

(x;y;2)= N(x+y+2z) N(y+z) N(x+2z) N(x+y)+ N(x)+ N(y)+ N(z):

Then T (x) = %(x; 1; 1) and the adjoint x# can be dened as the unique element in J such
that

(;xy) = (x*;y;1)
for all y 2 J. A basic fact of linear algebra is that any x 2 J satises the characteristic

polynomial
2 T(x)x>+ T(x*)x N(x)= o0

Multiplying this equation by x# and then factoring out N (x) gives
x2 Tx)x+ T(x*) x*¥=0

for all x 2 J. This implies that x2 and thus the Jordan multiplication is completely de-
termined by the cubic form N and the identity 1. It follows at once that the group of
automorphisms of the Jordan algebra is equal to the group of automorphisms of the cubic
pointed space (N; 1).

More generally, if e 2 J such that N(e) = ee# = 1, we can dene a Jordan multiplication
X y= 21lxe’q'y + ye¥x):
This is a Jordan algebra Je with identity e, and trace

1 1
Telx) 1= S(x;e;e) = E(e#;x; 1)
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The trace pairing is given by

(x;y) ! Telx y)= (e;e;x)(e;e;y)=4  (e;xy) = Te(X)Tely) (e;x;y):

For every x 2 J we can dene x#e by
(x;x;y) = (x*e;y;e)

for all y 2 J. Although we shall not need it, we record that x#e = exfe. Again, Je is
determined by N and e, thus the automorphism group of J. is the group of automorphisms of
the cubic pointed space (N;e).

Elements of J are Hermitian symmetric matrices, in particular, any e such that N(e) = 1
denes a symmetric Hermitian form on K 3 of discriminant one. Since F is p-adic, any two such
Hermitian spaces are isomorphic. It follows that the Jordan algebras J are isomorphic. In the
rest of this article, it will be convenient to x

0 1
e= @ 1 A.
1

To simplify notation, we will write J instead of Je.
Finally, we let L; denote the group of linear transformations of J which preserve N. Then
L, = (fg 2 GL3(K) :det(g) 2 U(1)g=U(1)) o Z=2Z:

Here U (1) is embedded into GL3(K) diagonally. The non-trivial element of Z=2Z acts by
transposition, and the action of GL3(K) onJ is given by

(g;X)! gXg; forg2lL, andX 2 J:

Here, g denotes the conjugate-transpose of g.

1.4 Groups

Here we describe the various groups that appear in this paper, including the quasi-split
group H of type Eg.4 and the dual pair G G° we wish to study.

Let H denote the adjoint quasi-split group of type Eg.4 dened over F, with splitting
eld K; its Dynkin diagram is given by
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The relative Dynkin diagram is

2 4 3 1

The groups we consider are best described on the level of Lie algebras. Here we follow the
construction in [26]. Let h denote the Lie algebra of H. By covering the vertex 4 in the
above diagram, we see that h contains a subalgebra hg = sl3 |, where | = sl3(K) is the Lie
algebra of L;. Under the adjoint action of hg, h decomposes as

h=sls | W
J W
J:

Here W = hej;ey;esi denotes the standard representation of sl;, and W = Pe;ze; esi
denotes its dual. We often use the trace pairing to identify ] with J. The Lie bracket
relations are described in [26].

Using the above description of h, we may now describe the dual pair G, (PUs3(K) o
Z=2Z). We let g° denote the centralizer of e in I:

g = Cile):

We then set
h(g?) = sls W

We let G and GP denote the closed subgroups of H which correspond to g and g°, respectively.
Then G GY is a dual pair inside H. Furthermore, G is a split group of type G,, and G@ is
isomorphic to PU3(K) o Z=2Z. Indeed, we may describe G° directly as the subgroup of L,
which xes e.

The proof of Howe duality will require us to consider another dual pair inside H, which we
now describe. Let E be an etale cubic F-algebra. We consider the set of E-isomorphism
classes of embeddings E ,! J. This set is in bijection with the set of (E-isomorphism)
classes of twisted composition algebras C such that J = E C; see Theorem 1.1 in [8] for
additional details. Fixing such a C, we let ic : E | J denote an embedding in the
corresponding isomorphism class; note that this also gives us embedding of E into J. Let
Gp.. denote the subgroup of G° xing ic. The centralizer of G¢ & in h contains

sl3 tg W
E W
E;

where tg is the Lie algebra of trace 0 elements in E, and E is embedded into J usingic. The
above Lie algebra is isomorphic to Lie(Gg), where Gg is the simply-connected quasi-split
group Spin§ . We thus get the dual pair G Gg.¢ inside H.

1.5 Minimal representations and theta correspondence

We will be interested in studying the minimal representation of H. We recall one possible
denition here. Let be an irreducible representation of H. A result of Harish-Chandra then
says that the character distribution of can be expressed as

X
= co"opoO
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where the sum is taken over all the nilpotent H-orbits in h, and A ¢ is the Fourier transform of a
(suitably normalized) H-invariant measure on O. There exists a minimal non-trivial orbit
Omin in h(F). Assuming Omin \ h consists of a single H-orbit Omin, we have the following

Denition 1.3. We say that is minimal if
= C0+ Aomin

For a detailed exposition of minimal representations and a construction of for exceptional
group, we refer the reader to [7].

Our goal is to study the restriction of to the dual pair G G introduced above, and the
exceptional theta correspondence which arises in this way. Fixing an irreducible
representation of G, the maximal -isotypic quotient of is of the form

();

for an admissible representation () of G° [21, Lemme 2.111.4]. This is the so-called big theta
lift of . Of course, one may start from 2 Irr(G°) to obtain the big theta lift () in the same
way.

2 Parabolic subgroups

In this section we describe the three maximal parabolic subgroups of H we consider in this
paper.
2.1 Three-step parabolic

The rst parabolic subgroup we consider is the maximal parabolic P; = M1N; which cor-
responds to the vertex 4 of the Dynkin diagram. On the level of Lie algebras, it can be

constructed as follows: let 0 1

s=@1 1 A 2 sls3:
2

Now set h(i) = fx 2 h:[s;x] = ixg. Then the Lie algebra of P; is p; = m1 + ny, where

0 1
mi; = h(0) = @ A

and ny = h(1) + h(2) + h(3) with

h(l) = hel,'Ezi

J; h(2) = hei
J; 0 1
h(3)= @ A sls:
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We also have

h( 1) = heI'ei2
J; h( 2) = hesi
J:

Since N; is a 3-step nilpotent group, we call P; the 3-step parabolic. We let
i denote the minimal non-trivial My-orbit on h( i), i = 1;2.
Setting uy(i) = h(i)\ gfori= 1;2, we see that

ui(1) = hey;esi
heiui(2) = he;
eiui(3) = h(3):

Looking at the intersection of P; with G G°, we get
(G G\ Py = Q; G%

Here Q; = L1U; is the maximal parabolic subgroup of G = G;; we identify the Levi factor
L; with GL, so that the action on u;(1) is the standard representation.

Now let V; be the orthogonal complement of uy(i) in h( i) (for i = 1;2) with respect to
the Killing form. Then

V]_ = hel; eZi
JO V) = h63i
Jo;

where Jo denotes the set of all elements X inJ such that tr(Xe) = 0, and J, is identied with
Jo using the trace pairing. We need to describe
i\ Vi, fori = 1;2. Letting r(X) denote the rank (over K) of X 2 J, we have (cf. [6], Lemma
4.1)

Lemma 2.1. The group L1 G° acts transitively on
i\ Vi, i = 1;2. Furthermore,

1 2 0
1\ V1= fw

X :w2 hejei;X21J;r(X)=1g
2\ Vo = fes

X :X 2Jg;r(X) = 1g:

2.2 Heisenberg parabolic

Here we consider the maximal parabolic P, = M>N; which corresponds to the vertex , of
the Dynkin diagram. On the level of Lie algebras, it can be constructed as follows: let

01 1
s= @ 0 A 2 sl
1

Again, set h(i) = fx 2 h : [s;x] = ixg. We intentionally abuse notation by reusing s and
h(i), not only to reduce the number of unnecessary symbols, but also to emphasize the
analogy in our constructions related to dierent parabolics. Since we never use these symbols
for dierent parabolics at the same time, there is no fear of confusion.
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The Lie algebra of Py is p, = my + ny, where

0 1
mp = h(O) =@ A I hezi
J he,i
J;
and n; = h(1) + h(2) with
0 1
h(1) = @ A heji
J hesi
0 J;
h(2) = @ 1
A S|32
We also note that 0 1
h( 1)= @ A hesi
J heyi

J:

We often refer to P, as the Heisenberg parabolic, because its unipotent radical N, is a
Heisenberg group with center Z = h(2), attached to the symplectic space N,=Z = h(1). Welet
denote the minimal non-trivial My-orbit on h( 1). It is the orbit of a highest weight vector.
We have

uz2(1) = g\ h(1) = F hey

ei he

ei F;
we identify the intersection h(1)\ sls with F F. Looking at the intersection of P, with G
GO, we get

(G G°\ P, = Q G":

Here Q; = L, U, is the maximal parabolic subgroup of G = G, whose Levi factor L, we
identify with GL, so that its action on u;(1) is the symmetric cube representation twisted by
jdetj 1 (see Section 3 in [3]). Once again, U, is a Heisenberg group (with center Z)
attached to the space u;(1).

Now let V be the orthogonal complement of uy(1) in h( 1) with respect to the Killing
form. Then

V = h63i -
1 0

Jo hei

J Jo Jo:

Once again, we need to describe
\ V. Following the proof of Proposition 7.4 in [19], one shows the following

Lemma 2.2. We have

\V="~Ff(X;Y)2Jo Jo: r(X);r(y) 1; dimhX;Yi = 1g:

Furthermore, L, G9 acts transitively on this set.
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2.3 Bj parabolic

Finally, we consider the maximal parabolic P = MON© which corresponds to the vertex 1 of
the relative Dynkin diagram. Set

01 1
s= @ ¢ A 2 sl3(K)
1

and h(i) = fx 2 h:[s;x] = ixg. Then the Lie algebra of P%is p°= m%+ n0. Here

0 1 0 1
m’= h(0) = sls 1(0) W
@ A W
@ A
and ny = h(1) + h(2), with
h(1) = (1) W
Jio W
Jii W
J33:
We also have
h( 1)=1( 1) W
Jos W
Jig;h( 2)=1( 2) W
J33 W
J11;
where 0 1 0 1
I( 1)= @ A 2 and I( 2)= @ A 2 sl3(K):
sl3(K)
We let .
0 denote the minimal non-trivial M1-orbit on h( i), fori = 1;2.The

intersection of P® with G GO is
(G G°\ P°= G B:

Here BO denotes the semidirect product of Z=2Z with the Borel subgroup consisting of all
upper-triangular matrices in PU3(K). There is a Levi decomposition B% = TOU? with T?=
K 0Z=2Z; we identify the diagonal torus in PU3(K) with K using the isomorphism

0 1

@ b Al

C

a
b

(a;b; ¢ satisfy ac= 1 and bb = 1).
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Just like before, we let u%(i) = h(i)\ & fori = 1;2. We get
0 1

n
u’(1) = f@ A 2 sl3(K)g = K
1
0 y
uw(2) = f@ A 2 sl3(K) :Tr(y) = Og:

We let VO be the orthogonal complement of u%(i) in h( i) (for i = 1;2) with respect to the
Killing form. Direct computation shows that we have

0 1
Vi= f@x A :x2Kg W
Joz W
X
J15;0 1
Vi= f@A :y2Fg W
Jz3 W
Ji1ty

It is convenient to use the following identications (cf. [6, p.137]):

Vi= 0 ¢
K; V2= Oo
F;

here we use Og to denote the space of traceless octonions. Then G = G, acts naturally on
0o, Whereas z 2 K T acts by 1 and 1=Ng-¢ (z) on K and F, respectively. As before,

z
we want to describe the GT? orbits on i
OV0Ofori= 1;2. HoweVer, a direct computation
now shows that

1\ V1 = ;. On the other hand, we have (cf. [6], Lemmz% 2.4.211) Lemma 2.3. The
group G TO acts transitively on
0\ VO.

We close this section with the following

Remark 2.4. One can work in a more general setting, starting with a Jordan algebra J of
Hermitian symmetric 3 3 matrices with coecients in a composition algebra C. In
particular, we have an exceptional Lie algebra

h= (sl3(F) I) W
J (W
J):
Observe that sl3(F) |, where x 2 sl3(F) acts ony 2 J by xy + yx where y is the
transpose of y. This works even when C is the non-associative algebra of octonions.
In particular, one can dene the parabolic subgroup B? in G° = Aut(J) starting with the
same choice of s as above (note that s 2 sl3(F) 1). Let U° be the unipotent radical of BY, and

U9(2) the center of U%. Then U%(2) = Cg, trace 0 elements in C, and U%=U%(2) = C. We will
need this in x4 where we prove Howe duality.

3 Jacquet modules

Recall that is the minimal representation of H. Our goal in this section is to compute
Uir Uy» and uo.
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3.1 Three-step parabolic

To compute y,, we begin by looking at n,. Recall that N; is a three-step nilpotent
group: we have
flg = N1(4) N1(3) N1(2) Ni(1)= N

with N1(i)=N1(i + 1) = h(i). This gives us a Itration of ,
(3.1) f0g=43210=;
where iTi+1 = (i)Nl(i+1)- We have

0! 3 ! ! =3 10
0! =31 =31 =1 00! 1=5!
= ! O
We need to compute =1, 1=5, and ,=3. The rst quotient is simply y,; the remaining two
can be computed using the work of Mglin and Waldspurger [22]. We provide only a rough
outline here; see e.g. [6] or [19] for additional details.

Recall that
1 is the minimal Mj-orbit in h( 1). Let f; be an arbitrary element of
1, and denote by My, its stabilizer in My. Then f; denes a character f* on N1=N1(2). Then
[22] shows that the space y;,; 1 (i.e. the maximal quotient of on which N; acts by £,)
is 1-dimensional; M¢, acts on it by a character 1. In short, we get

— = i P
1=2=C IndelNl(l

f1) = CC(
1):

We compute =3 similarly. We choose an arbitrary element f; 2
2 and we let Mg, denote its stabilizer in Mj. Again, the results of [22] (see also [6, x5]) show
that f, denes a certain Heisenberg representation, which we denote by Ws,. We get

273 = c—indezF;\fl(sz) = Ccf
2 sz):

Having computed the Nj-coinvariants, we proceed to investigate the Uj-coinvariants. The
unipotent radical U; of Q; inherits the Itration from Nq:

(3.2) fOg = U1(4) U1(3) U1(2) U1(1) = Uy

where Uq(i) = U; \ N1(i). In particular, U1(3) = Ni1(3). We apply the U;-coinvariants
functor to the exact sequences above. From the rst one, we see that y, = (=3)u,. The
remaining two sequences become

0! (2=3)u; ! wu,! (=2)u, ! O

0! (1=2)u, ! (=2)u, ! (=1)u, ! O
Thus, to determine y,, we need to describe (=1)u,, (1=2)u,, and (2=3)u,-

First, notice that (=1)u, = (n,)u, = N;- The Nji-coinvariants can be computed following
[27, x4], and the exponents of have been determined in Proposition 8.4 of [7]. As an L1 G°-
module,

. .2 . . 7
Ny = jdetja1a, ly-fjdetjz a,:

12
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Recall that the Levi factor M; consists of two parts (which correspond to the two parts of the
F, diagram one obtains by removing the vertex 4): A, and Aj. Here 1,, is the trivial
representation of A, (in this case, SL3(K)), whereas a, is a principal series representation of
Aq (i.e. SLy(F)). Furthermore, jdetj denotes the standard determinant of L; = GL,.

Next, we consider (1=2)u,. Just like in [19, Lemma 2.2], we obtain

(1=2)u; = Ccl

1\ Vi)
Recall L 0 that
1 \ \}1 = fw
X : w2 hejei;X 2 J;r(X) = 1g. The stabilizer of a line in
1\ V1 (excluding 0) is a product of Borel subgroups.—For the sake of concréteness, we
consider the line through e,

xx, where x = (1;0;0) (once more, we identify J with Jo). The stabilizer of e; in L1 = GL;
is the subgroup B = TU consisting of all lower-triangular matrices in GL, (recall that we are
considering the action of GL, on W , the dual of the standard representation); here T
denotes the diagonal torus. The stabilizer of xx is the Borel subgroup B? = TOUC of GO

introduced in x2.3. The group T T?acts transitively on the above line, which we identify with
F: The action of

, 2 2TK

on C.(F) is translation by a 1 N¢-¢ (z) (and Z=2Z acts trivially).
We deduce that
Cel BB
1\ Vi) = 80
Cc(F))
(normalized induction) where 1 is a character of the diagonal torus in L1 GL, which is yet
to be determined.

Finally, we detelrmine (2=3)u . Recall that
2 \ \') = fes
X :X 2Jg;r(X) = 1gis asingle L1 GPY-orbitl We simplify the notation by identifying hesi
J with J, keeping in mind that L, = GL, acts on
2\ V, by det . We start by observing that

Cel(

2; W,)u,(2) = Cel

2\ Va; Wy, ):

Notice that (L;y G°) \ My, = RU, where
R = f(g;(z;)) 2 L1 (K o Z=2Z) : det(g) = Nk-f (z)g

and U is the unipotent radical. Therefore C(

RU
2\ Va2; Wy,) = C-indLlGOsz and thus

(2=3)u; = c-ind" 1 (W, )y, ):

It remains to determine (Wjk Zu , to do that, we need an explicit model for W¢ . With this
in mind, we choose f, = xx 2 J, with x = (1;0;0). Following [22] (see also [6]), we consider
the alternating form on h(1) = heq; esi
J given by

(v
X; w
Y)= (v;w) (f2; X; Y ):
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Here (v; w) is the standard symplectic form on hey; e,i, and (f,; X; Y ) is the natural trilinear
form on J. With our choice of f,, the kernel of the bilinear form (f;; X;Y ) is

0 1
a x ¥

= f@xA 2Jg:y

We let ° denote the orthogonal complement of in J:

0 4 ot
P=f@0b zA 21g:0
z C

The corresponding quadratic form is given by 2 aiz.b We x the maximal isotropic

subspace consisting of elements of the form

00001 00001 00001
€1
@o- 0 ZA + e;
@0 o 0A + e
@ o 0A:0 z 0 00
by 0 0 by

With this choice of polarization, the action of U;=U1(2) = hey;eji
hei is given by

(u)f(z;bs1;by) = (uthy  uzb1)f(z; b1; b2);

where u = (uje; +use;)
e. We see that U;=U4(2) acts trivially gn functiolns supported on the subspace
0 0O
fe1

It follows that
(sz)U1=U1(2) = W;

where W is the Heisenberg representation associated with the symplectic space hej; e;i
K; here we identify z 2 K with 0 1
0 0O

@0 0 zA:
0z O
Unraveling the denitions, we see that w2 K T%acts on z2 K by

z
(w;z) ! W;

and Z=2Z acts by Galois conjugation. Recall that we also have a GL, action on the orbit
>\ Va: anelement g2 Ly = GL, acts by det(g) 1. In summary, we have

(2=3)u, = c-indLlGoR\{y:

We now recall the work of Roberts [24]: there is a Weil representation ! of R which induces
to a representation ¥ of' R = L1 TCO The correspondence which arises from * can be

14



P. Bakic, G. Savin 3 JACQUET MODULES

thought of as a similitude version of the usual SL, SO(K) corrsepondence. As noted
before, we have My, \ R' = R, so we are precisely in the situation studied in [24].

An application of Schur’s Lemma now shows that the action of R on W is a twist (by a
character of R) of the action of R on !. However, as one checks directly, every character of R
is a restriction of a character of R. We thus get

. G
(2=3)u, = 'Lle(l

1);

C

where is a character yet to be determined. In fact, in x3.4, we show that is the trivial
character. Thus, we have

Proposition 3.1. As a representation of Ly G9, ry,() has a Itration with successive (top
to bottom) subquotients

(T1) Q Ny = jdetj 1a, lyop jdetj 4, (M1)
. 0
ILlG (1 EB c
Cc(F))
X 0
(B1) IS (@):

Recall that 14, is the trivial representation of A,, whereas », is a principal series represen-
tation of A;. Furthermore, jdetj is the standard determinant of L1 = GL; and q, = jdetji$
the modular character of Q;. The center of Ly = GL; acts trivially on a, and a,. In x3.4,
we show that 1 = 1

!K=F'

3.1.1 The Fourier{Jacobi period

We digress slightly to describe the Fourier{Jacobi period of the minimal representation .
Although it is not required for the main results of the present paper (i.e. for the proof of
Howe duality), the Fourier{Jacobi period becomes useful in various similar settings. Since
the computation is similar to the one we just performed to obtain y,, we take a moment to
describe it here.

Recall the Itration (3.2): U; is a three-step nilpotent group, and the quotient U;=U4(3) is
a three-dimensional Heisenberg group. Let be a character of its center U;(2)=U1(3).
Our goal is to describe the space of -twisted coinvariants

U1(2);

i.e. the maximal quotient of on which U1(2)=U1(3) acts by . Notice that this is (in
addition to being a G°® module) a module for the Jacobi group, FJ = Qlder=U1(3). Here Qlder
denotes the derived group of Q;.

Using the notation from (3.1), we have u,2; = (2=3)u ) - Recall that ;=3 = C(
2; Ws, ). To nd the U1(2) coinvariants we looked at Cel
2\V2; Wy, ), where V, was the orthogonal complement of u1(2) in h( 2); this was identied with
the space Jo of traceless elements in J. However, we are now looking for the twisted
coinvariants. We get

Cel
2; W,)us(2); = Cel
2\ J1; Wy,):
Here J1 is the set of trace 1 elements in J. One checks that G° has two orbits on

2\ J1 (theset of rank 1, trace 1 elements in J). Thus, as a representation of GO =
PU3(K) o Z2=2Z,

15
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the space C¢(
2\ J1; W4,) splits into a direct sum of two induced representations. Indeed, one choice of
representatives for these orbits is

0 1 o 12 1
i=@ 1 ;0 j=@ B
1=2 1=(4")
where " is an element of F which is not in the image of the norm map N : K | F. (Indeed,

j cannot be written as xx for some x 2 K3, which shows that it is not in the same orbit as
i). The stabilizer of i (resp.j) in PU3(K) is a unitary group in two variables, which we denote
by U(2); (resp. U(2);). We thus have
_ i GO ; GO .
U12); = Tu2)oz=22(Wi)  Ty(2)0z=22(Wj):

Here W; (resp. Wj) denotes the corresponding Weil representation, i.e. the ber ati (resp. j).
For example, the stabilizer of i in PU3(K) consists of all elements of the form

0 1
@ 1 A 2U;3(K):

Thus we may identify the group U(2); with the unitary group
2 GLa(K) : g8 4 8= g

in the obvious way. We obtain an explicit model of W; the same way we found W¢, above.
Here it is convenient to x f, = i; then

0 1 0 -1
X a
=f@x— b zA 2Jg and ° = f@ YA 2 )g:
z y C
Here ? can be identied with the space | = f a Z g of 22 Hermitian matrices. Thus

the representation W; can be realized on the space C.(l), where the action of U(2); on
A 2| is given by (g; A) ! gAg.

3.2 Heisenberg parabolic

We compute y, using the same general approach. Since N, is a Heisenberg group, there are
only two subquotients we need to consider: =1 and 1=5. Just like in the case of the three-step
parabolic, we have (=1)u, = (n,)u, = N,- Again, we may compute the Nj-coinvariants
following [27, x4]. We get

. . 3 . .
N, = jdetj2 ¢, o jdetj®:

Here ¢, denotes the minimal representation of M; (corresponding to the F4 diagram with
the , vertex removed).

16
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The description of (1=3)y, is similar to the one we had in the three-step case: we
have
(1=2)u, = Ccl
\ V):
Recall that
\ V is a single orbit for L, G°, and that

\V="F(X;Y)21Jg Jo: r(X);r(y) 1; dimhX;Yi = 1g:

For the sake of concreteness, we consider the line through es
XX - 2
\ V, where x = (1;0;0). The stabilizer of this line is again the product B B? of Borel
subgroups (here we are abusing notation by using B = TU to denote the group of all lower-
triangular matrices, but this time in L,). The group T T? acts transitively on the above line,
which we identify with F: The actionyof

b ;z 2T K on

Cc(F) is translation by a Ng_f (z). We deduce that

Cc( LaG
\ V) =i
Ce(F))

where ; is a character yet to be determined. To summarize, we have

Proposition 3.2. As a representation of L, G°, ry,() has a Itration with successive (top
to bottom) subquotients

= . . 1
(T2) Qi N> = ¢ lk=r jdetj2:(B2)
. 0
IBBO (2 LZG
Cc(F)):

Here q, = jdetj® denotes the modular character of Q,. The center of L, = GL; acts

trivially on ¢;. In x3.4 we show that , = 1

Pk=F

3.3 B3 parabolic

This case is entirely analogous to the previous two, so we just briey sketch the results.
First, the top part in the Itration of yo is simply no. Secondly, recall that in this
( ( case
4 does not intersect V;, so the middle part of the Itration vanishes. The computation of the
bottom (subrepresentation) part is equivalent to the one we described in detail in
x3.1; in fact, the bottom part is induced from the same representation as the bottom part
in Proposition 3.1. We omit the details and simply state the results:

Proposition 3.3. As a representation of G T9, ryo() has a ltration with successive (top
to bottom) subquotients

(T3) SN0 = B, JN=r (2)j (B3)

. C
IL].TD(T): GT

Here g, denotes the minimal representation of the Levi factor M?, and go = jN¢-f (2)j?is
the modular character of B . ¢
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We take a moment to describe the restriction of the representation g to 3G TO. Recall
that MO is the Levi factor of the parabolic P® which corresponds to the D4 part of the
Dynkin diagram (i.e. B3 in the relative diagram). The derived group of M? is Di, the
simply connected quasi-split form of Sping attached to the etale cubic algebra E = K + F;
these groups are described in detail in Section 2 of [8]. By looking at the exponents, one
veries that the restriction of the representation (T3) to Spin_is the minimal representation.
Note that K  TO acts trivially on g,. However, the action of the Galois group Z=2Z is
non-trivial; in fact, this is precisely the situation studied in [15] and [5]. There is a
dual pair G, S¢ inside D (here Sg denotes the twisted form of S3 attached to E). In
[5], the authors use the correspondence arising in this way to construct the so-called cubic
unipotent A-packets of G,. In our case, Sg = Z=22Z, so the corresponding A-packet contains
two elements. One of them is a supercuspidal representation; the other is the Langlands
guotient of i%2(jdet;j
), with equ:nglto the tempered representation 1 !_; of GL,. See Proposition 6.2 of [5] for a
detailed description of local A-packets arising in this way.

3.4 Filling in the details

In this section, we determine the characters 1, 5, and that appear in the Itrations
discussed above (recall that is introduced in the discussion preceding Proposition 3.1).

Both the bottom piece of rOJ) (B3) and the bottom piece of ry,() (B1) are in-duced
from the Weil representation*. The similitude correspondence between GL, (F) and GO(K)
= K 02=22Z established by * amounts to the usual base change K I GLy(F).
Let be a character of K. By Lemma 1.1, there are two possibilities:

(i) = . In this case, extends to two characters of K o Z=2Z, only one of which appears in
the correspondence. We label that character *, and we let be the other one. Then *
lifts to the principal series ; ; (see Lemma 1.1).

(ii) = . In this case, lifts to a cuspidal representation of GL,(F).

See Section 7 of [25] for a brief account of this correspondence.

We now prove that the character introduced in the discussion preceding Proposition
3.1is trivial. First, note that is the restriction of a character jj° ~
of R, where s 2 Rand is a unitary character of T%. The above description of the T? $
GL,(F) correspondence shows that

L s .o c
i1 0% .
i (")

appears as ‘ a guotient of it1G,(

L1B
*t). (To simplify notation, we write instead of * in the rest of this secBion.) For a generic
choice of we may assume that iGl(j j°1 j j*2) and igo() are irreducible, so we get
. .. .. c
i® (i1 %) B
iGo()I

But now notice that iSg() = iGO(BOl 1) = Gy (B2 1)) and we can apply the same reasoning
to the character 0= 1. This shows that
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needs to appear in the Jacquet module of igl(jjsljjsz). Computing the said Jacquet
module shows this to be possible only if s= 0and 2= 1.

It remains to prove that is trivial. Looking at the quotient (T2) in ry, () and applying
Frobenius reciprocity, we see that

iq, (f=r idetj2)

1
where 1 denotes the trivial representation of PU3(K). The representation iGQZ( eor jdetj2 )
is of length 2 (cf. Proposition 4.1 in [23]); from the above map we get

1
where is the unique (Langlands) guotient of iG (jdetj
(1'g=r )). Applying the Jacquet functor ry, to the above map, and comparing wtih the
subrepresentation (B1) in the Itra-tion ry, (), we conclude that = 1.

Once we have established that is the trivial character, it is not hard to determine 4, the
character that appears in the middle piece of the Itration (M1). Recall that ; is a character
of the diagonal torus in L; = GL;. As explained above, the bottom piece of the Itration (B1)
shows that we have

() iq(162) 6*
iBo()I

Here we are still assuming the choice of is such that both representations appearing on the
right-hand side are irreducible. Applying the Jacquet module with respect to U;, we see that,
C

in addition 6 to 1 2
iGgg) (which appears in the bottom piece of the Itration), contains

1 (or Bo Bo

i%1() and 21 lk=f

.G

| o()I

These quotients come from the middle part of the Itration; in other words, we have
-LlGo(
1

|
E3(F) ! ly-r
i%();

for i = 1;2. Using the Bernstein form of Frobenius reciprocity, and computing the appro-
priate Jacquet modules, we see that this is possible if and only if

C
B

1=1

!K=F:
A similar argument can be used to determine : we apply the Jacquet module ry, to (),
observing that_i® (12) = _i® (2!k=¢ ). Then certain quotients of ru, (i® (2
lk=F )) come Ofrl‘om the bottom of the Itration (B2), and one veries *that , = 1
!K=F'

Remark 3.4. The fact that i;;O(CC(F )) is responsible for the two quotients appearing

above (even though we have a single orbit) is explained by the action of B B® on C.(F).
Recall that

a b ;(z;) 2T 71O

acts by a INy-¢ (z), so we view this as an action of F N¢-¢ (K). Since a character of N¢_¢

(K ) (or equivalently, a Galois-invariant character of K ) extends to a character of F
in two ways, both

and

< R PP
" n
m M

appear as quotients of C.(F).
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4 Howe duality

Our main result is the following theorem (Howe duality).

Theorem 4.1. (i) Let be an irreducible representation of G,. If () = 0, then it is a
representation of nite length, with a unique irreducible quotient ().

(ii) For 1;2 2 Irr(Gy),
0=1(1)=1(2)=) 1= 2:

(iii) 1f () = 0, then () is tempered if and only if is tempered.
(iv) Let 2 Irr(G°%). Then () is either 0 or a representation of nite length.

The proof will take up the rest of this section; we provide an outline:

1) First, we consider the non-tempered correspondence in x4.1. In particular, we prove (i)
and (ii) for non-tempered ; (iii) is then a consequence of the proof. These results will
follow from our computations of Jacquet modules in x3.

Next, we study the lifts of tempered representations. If is tempered, we decompose () into
its cuspidal and non-cuspidal part: () = ()¢ (Jnc. We have the analogous decomposition () =

()c ()nc for tempered 2 Irr(GO).

2) The niteness of ()nc and ()nc is proved in Proposition 4.5 using the Jacquet module
computations from x3.

To analyze the cuspidal part we employ the strategy from [10]. The main idea is the \period
ping-pong" introduced there | see Lemma 4.7 and 4.12.

3) We show that (). is either irreducible or zero in Proposition 4.9 (for generic ) and
Proposition 4.14 (for non-generic ). The uniqueness of the irreducible quotient in (i) is
then deduced easily as a consequence of the period ping-pong; see Proposition 4.16.
This proves (i).

4) Part (ii) is also shown to be a consequence of the period ping-pong; see Prop. 4.17.

5) Finally, the niteness of ()¢ in (iv) follows from Propositions 4.8 and 4.15.

4.1 Non-tempered correspondence

Using the results of the Section 3, we now compute the lifts of non-tempered representations.
We begin by recalling the Langlands classication for G = G;,. Any non-tempered 2 Irr(G) is
isomorphic to exactly one of the following representations:

jdetj%o, where o is a tempered irre-

a) Unique irreducible quotient of igl() for
ducible representation and s > 0.

b) Unique irreducible quotient of i‘éz() for jdetjo, where ¢ is a tempered irre-

ducible representation and s > 0.
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c) Unique irreducible quotient of igl(), where is the unique (Langlands) quotient of ;
2; here jij = j j5t and joj = j j52 with s; > s, > 0.

In case of PU3(K), the situation is even simpler. Any character of K can be written as a
product jNg-f j° where is unitary and s 2 R. We let I(; s) denote the principal series
representation of PU3(K) obtained by inducing this character of K . If s > 0 thisis a
standard module and has a unique irreducible quotient. Before doing computations, we
need to address the question of distinguishing extensions to G° = PU3(K) o Gal(K=F) of
Gal(K=F)-invariant representations of PU3(K). Fortunately, for principal series the
extension can be done at the level of inducing data. Given a Gal(K=F)-invariant character
of K, only one extension to K o Gal(K=F), denoted by *, appears in the quadratic base
change (cf.3.4). Let denote the other extension. Thus, for Galois-invariant , I(;s)
extends to G° in two ways: |(*;s) and I( ;s). When is not invariant, only one extension
exists; in the following proposition, we denote it by I(*; s) to enable uniform statements.

Proposition 4.2. (i) Let ,! iGQ(l—) with as in (a) above. If comes from a char-acter
jNk=f j° of K via base change K | GL(F) (with s> 0 and unitary), then () is a
non-zero quotient of I ( ;s); in particular, it has nite length. If does not come from
a character of K via base change, then does not appear in the theta correspondence.

Conversely, let * denote the unique irreducible quotient of I (*; s). Then (*) = 0.

(ii) Let ,! iGQ(Z—) with as in (b) or (c) above. Then does not appear in the theta
correspondence.

Proof. We use the fact that () = Homg(;) (non-smooth linear dual). Thus, from ,! i (-)
we getQ(_) = Homg(;) Homg(;i® (-)) = Homy,(ru,();-) ldsing Frobenius reciprocity. We now
analyze the space Hom,(ry,(); ) using Propositions 3.1and 3.2. _

(i) Let S1;S2 and S3 denote the subquotients of ry (), appearing in (T1), (M1) and (B1),
respectively. Comparing the central characters, one sees that Ext,(S1;-) = 0 (recall

that s > 0, so the central character is a negative power of j j). We thus get the
following exact sequence:

0! Hom,(S2;-)! Homy,(ru,();-)! Hom,(S3;-)! Ext.,(S2;-):

Recall that S; = i;isogl
Cc(F)). Using the Bernstein form of Frobenius reci-procity we see that

Exty,(S2;-) = ExtaryaL, (1
Cc(F);ra(-)):

Recall that the second GL, factors acts on 1
Cc(F) by !¢ —f ; by our assumption on, this is dierent from the correspondijng action on

rg(-). Therefore Ext, (S;-) = O for all i, and the above long exact sequerfce becomes

Homy, (ru,();-) = Homy,(Ss;-):
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Now (B1) shows that S3 = LierBd('!’). By Lemma 9.4 of [4], the maximal --isotypic
quotient ¢ of Bc 1% () is -
i%1((-)), where (-) is the big theta lift of - with respect to the similitude

correspondence described in x3.4. Hence, if () is non-zero, then - must come from a
character of K via base change. Note that the character corresponding to 1 3 (or ) is

in fact 1 (and not ); this is accounted for by the fact that w 2 K acts on K by 1=w
(see x3.1). Thus, if = 1j j° 2j j* or = jjs for a unitary character , we get () = *j j°.
This proves () Hom_ (§3;—) = I(*;s). Taking the smooth vectors (and the

contragredient), we see that () is a quotient of I (*; s), as claimed. Furthermore, notice
that the above proof shows that I(*; s) is a quotient of , so () = 0.

(ii) This is proved by comparing the central character, the same way we did in (i). We
omit the details.

O

Not surprisingly, we get analogous results for lifts from G° = PU3(K) o Z=2Z. The
following proposition is proved just like Proposition 4.2, by analyzing ryo():

Proposition 4.3. As before, let * (resp. ) denote the unique irreducible quotient of I (*; s)
(resp. I( ;s)), where is a unitary character of K ands> 0. Then( )= 0,and (*) is a non-
zero quotient of i® (), where is the representation of GL, obtained from j j° by base change K
I GL(F). In particular, () has niteqiength. Further-more, () = 0, where is the unique

irreducible quotient of i (). .

Remark 4.4. Notice that Propositions 4.2 and 4.3 combine to give us the following: Assume
that and are irreducible representations of G and G°, respectively, such that is a quotient
of . Then

is tempered () is tempered:

4.2 Finiteness of theta lifts

Our rst task is to prove that the big theta lift () has nite length. To do this, we recall that
() can be decomposed as

() = Onc Oc;

the sum of its non-cuspidal and cuspidal part. We rst prove the following

Proposition 4.5. (i) Let 2 Irr(G°) be tempered. Then ()nc has nite length.

(ii) Let 2 Irr(G) be tempered. Then ()nc has nite length.

Proof. (i) Recall that we have two maximal parabolic subgroupsin G, Qj = LjU; fori = 1;2.1t
suces to show that the Jacquet module ry,(()) is a nite-length representation of L;, i.e. that
the -isotypic quotient of ry,() has nite length. To do that, we use the Jacquet module
ltrations computed in Section 3.

Consider ry, () rst. Again, we let S1;S; and S3 denote the subquotients appearing in
(T1), (M1) and (B1), respectively. We need to show that the multiplicity space of the -
isotypic quotient of S; has nite length, fori = 1;2;3.
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At the bottom, we have

s5() -= Homgo(S3;) HorrLso(iLlBo('f)%BGH‘omTo(‘?':r—o()): .

Now £ is a nite-length representation of T® K.. Taking any irreducible subquotient

(whicﬁ is in fact a character of K), we have Homto(¥;) +(). where +() is the theta lift of

with respect to the Weil representation *. The fact that +() has nite length follows from

the Howe duality theorem for classical (similitude) correspondences, cf. x3.4. This in turn

shows (after taking the smooth vectors) that s, () itself is of nite length as an Lj-module.
In the middle, we have

s,() .= Homgo(S2;) = HomGO(iLlGo(gB ¢
Lc(F));) Eomro(iy(a
Cc(F)); ¥ ()):

Again, rg() is a nite-length representation of T. Taking an irreducible subquotient of
re(), we see that

HomTo('L%(l G G
Cc(F));) = igly "
Pk=r) ig(s !

'k=r)

(see Remark 3.4); in particular, we get a representation of nite length. Taking the smooth
vectors, we see that s () has nite length.

Finally, we need to check Si, the top part of the Itration. However, B? acts trivially
on S, so the -isotypic quotient is zero.

The Jacquet module with respect to U, is analyzed in the same way. Let S; and S;
be the subquotients of ry, () appearing in (T2) and (B2), respectively. To show that the -
isotypic quotient of S, has nite length we proceed just like in the U; case; we omit the
details.

As for Sy, recall that P, = M3N, is the Heisenberg parabolic in H. The Levi factor M»
(which corresponds to the C3 part of the relative diagram) has been described in [9,
x7.2]] one can think of it roughly as a unitary group Ug(K)| and ¢, is its minimal
representation. We thus need to analyze the -isotypic quotient of ¢ as a representation of L,
= GL,(F). On the other hand, we have the central isogeny GL> (F)K I* GU,(K). Thus the
correspondence that arises from ¢, can roughly be viewed as (the similitude version) of the
classical correspondence

Ua(K) ! U3z(K)

for unitary groups. It follows that the theta lift of with respect to ¢, is a nite length
representation of GL,(F).

Part (ii) can be proved in the same way, by analyzing ryo() as a T%-module. We let
S, and S3 denote the subquotients appearing in (T3) and (B3), respectively. To prove that
the -isotypic quotient of S3 has nite length we repeat the arguments from the U; case; we
leave the details to the reader.

In order to analyze S3 we need to consider the -isotypic quotient of the representation g
. Rgcall that g s t3he minimal representation of the Levi factor M?. This Levi factoris a
quasi-split group D E wQere E = K F, and we are thus looking at the correspondence
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for the dual pair G, Aut(E) inside the group D, .E The niteness now follows from the
results of [15], where this correspondence has been studied in detail.

O

Having established the niteness of ()nc, we turn to ()c. Here our approach is based on
the \ping-pong" of periods utilized in [10]. We will need to consider generic and non-generic
representation separately. We begin by recalling the relevant periods.

4.3 Shalika periods

First, we recall the parabolic subgroup B9 of GO discussed in Remark 2.4. The unipotent
radical U° of B has a Itration fOg UC(2) U% with U%(2) Co_and U%=U°%2) C. We let
uo be the character of U% which, via the identication U%=U%(2) = C is given by Trc_g.
Finally, let S be the semi-direct product of U? and the stabilizer of of o in the Levi of

Bc. We note that the stabilizer is isomorphic to Aut(C). We denote by s the

(Shalika) character of S equal to yo on U® and trivial on Aut(C).

Let V be the unipotent radical of the Borel subgroup Q;:\Q, in G, andlet y :V ! C
be a Whittaker character for G = G;. Just like in [28, Lemma 4.5], one shows that

(4.1) V; = c—inds% S

Vv

holds for general C. Here y; | denotes the maximal quotient of on which V acts byy
. This immediately implies

Corollary 4.6. Let be an irreducible representation of G° Then () is (non-zero) generic if
and only if has a non-trivial Shalika period.

For C = K we have Aut(C) = Z=22Z, and the Shalika functional is simply the Whittaker
functional extended trivially to Z=2Z.

Conversely, recall that Q, is the three step maximal parabolic in G. Let leer be its de-
rived group. In particular Q‘ie"=U1 SL,(F), and U1=U4(3) is a three-dimensional Heisen-
berg group. Then

5; 5 cand®ac

(1))

where is the unique irreducible representation of U1=U(3), extended to SL,{F ), and (1) is the
big theta lift of the trivial representation of Aut(C) to SL,(F ) via the correspondence arising
from SL,(F) fAut(C) acting on the Weil representation on C¢(Cq) given by L f
C is the algebra of 2 2 matrices, this is given by Proposition 11.6 in [10]. Of course, the proof
generalizes. If C = K then (1) is an irreducible even Weil representation. The even Weil
representation is a quotient of a principal series representation | () (notation of [10, Section
11]) for a character such that jj = jj=2. Thus, by [10, Corollary 11.4], we have

1

(4.2) dim Homg(s; ;) 1

for any Whittaker generic and tempered irreducible representation of G.
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4.4 Howe duality for tempered representations
We now have all the ingredients required for the ping-pong game:

Lemma 4.7. Let be the minimal representation of H. Let 2 Irr(G) be tempered, and let
2 Irr(G°) be tempered such that

H0mGGo(,‘ )= 0:

Then we have the following (natural) inclusions

(1) (2)
Homy (; v) Homy((); v) Homs(-; )

(3) (4) _
Homs((-); s) Hemg(s, s ;-)If is

generic, than all the above spaces are one-dimensional.

Proof. This is analogous to Lemma 12.1 in [10]. First, (1) follows from () . The
isomorphism (2) follows from

Homy ((); v) = Homyego(; v
) = Homeo( ;)

combined with (4.1). Next, (3) follows from the fact that () is the complex conjugate of ().
Since = - and = -, we have (-) -. Finally, (4) is

Homs((-); ) = Homes(; - N -
s) = Homg(s, s ;-):

If the representation is generic, then Homy (; v) is one-dimensional. However, (4.2)
shows that Homg(s. s-;-) is one-dimensional as well. The lemma follows. ]

We now have two immediate consequences of the above lemma (cf. Propoisition 12.2 and
12.3 of [10]):

Proposition 4.8. Let 2 Irr(G°) be tempered. Then () cannot have two irreducible
tempered and generic quotients.

Proof. Assume that 1 and , are tempered and generic such that () 1 2. Then dim()y;

2. However, Lemma 4.7 asserts that dim ()v, , = 1, s0 we have a

contradiction. O

Proposition 4.9. Let 2 Irr(G) be tempered and generic. Then () cannot have two
tempered irreducible quotients. In particular, its cuspidal part (). is either irreducible or zero.

Proof. Let 1;, be irreducible and tempered such that () 12. Lemma 4.7 (applied to -; -, and
again tqg -; -) implies )

1= dimHoms(1; s)= dimHoms((); s) = dimHoms(2; s):
But ; ;, is a quotient of (), so we have
1= dimHoms((); s) dimHoms(y; s)+ dimHoms(2; s) = 2;

a contradiction. ]

25



P. Bakic, G. Savin 4 HOWEDUALITY

Thus, we have proved that (). has nite length in case is generic. To prove the same
result for non-generic we need another version of period ping-pong, which we now describe.

Recall the groups Gg = SpingE and GOE;C = Aut(ic : E ,! J) introduced in x1.4.
Together with G and GO, they constitute a see-saw dual pair

Ge = Spin§ GO

=

G‘z GE,c = Aut(

ic:E ,lJ):

This gives us the standard see-saw identity
Homg, (();1) = Home, (Rc(E););

where R¢c (E) = (1) denotes the big theta lift of the trivial representation of GOE;C to Gg.

To better understand the representations R¢ (E) (for various C), we need to relate them

to a certain degenerate principal series of Gg. Here we use the results of [10, x5]. Let Pg

= MgNg be the Heisenberg parabolic subgroup of Gg = SpingE. We consider the
degenerate principal series

le;1_p (s) = IndQE (I-r jdet):
We then have
Proposition 4.10. Let 2 Irr(Gy) be tempered. Then
(i) Te;r . (1=2) . ¢ Rc(E), where the sum is taken over all C such thatE C = J.
(i) Homg, (Ig;1,., (1=2);) = Homp,(=; €).
Proof. These results are taken, mutatis mutandis, from propositions 5.2 and 5.5 in [10]. O

The nal ingredient we need is a description of the twisted N,-coinvariants of :

Lemma 4.11. We have N M .
E = cc—ind@E?C(l);
where the sum is taken over all twisted composition algebras C such thatE C = J.

Proof. This is essentially Lemma 2.9 in [13]; the only dierence is that here we have more
than one isomorphism class of embeddings E ,! J. ]

We are now ready for the second game of period ping-pong.

Lemma 4.12. Let 2 Irr(G,) and 2 Irr(G°) be tempered representations such that

Homg,go(; ) = O:
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Then we have the following sequence of natural inclusions:

(1) 2
Homy,(; €) Homn,((); €) Homg (-2)c

(I M

Home, ((();1)  Hama,( Re(E)i-):c
C

Here the sum is taken over all C such that E C = J. If any one of these spaces is
nite-dimensional, then inclusions (1) and (3) are in fact isomorphisms.

Proof. This is analogous to Lemma 6.4 in [10]. First, (1) follows from () . Next, (2) follows
from
Homny,((); e) = Homeo(n,; ;)

combined with Lemma 4.11 and Frobenius reciprocity. The inclusion (3) is a consequence
of (-) -; this follows from the fact that () is the eomplex conjugate of (),
combined with —_and -. Finally, (4) is the see-saw identity.

Now if any one of the above spaces is nite-dimensional, it follows that Homp,(; ¢)
is nite-dimensional as well. By Proposition 4.10, we then have

dimHomg,( Rc(E);-) dimHomg,(le(1=2;x-¢);-) = dimHomp,(; €):c

The result follows. O

The following result will allow us to use the above lemma when analyzing non-generic
representations:

Lemma 4.13. Let be an irreducible non-generic innite-dimensional representation of G,.

Then there exists an etale cubic algebra E such that y,. . IS non-zero. Moreover,
N,; ¢ IS hite-dimensional for any E.
Proof. This is Lemma 3.4 in [10] ]

The two games of period ping-pong allow us to conclude the proof of Theorem 4.1. First,
we prove the niteness of (). (cf. Proposition 6.7 in [10]).

Proposition 4.14. Let 2 Irr(G) be tempered and non-generic. Then () cannot have two
tempered irreducible quotients. In particular, ()¢ is irreducible or 0.

Proof. Let 1;, 2 Irr(GP) be irreducible and tempered; assume that () 1 . Since is non-
generic, there is an etale cubic algebra E such that d .= dimHomy (-; ,¢) is nite-
dimensional and non-zero. Lemma 4.12 (applied rst to -; -, and theln to -, -) now showa
d=dimpy HomGE;C(l;l) = dim HomGE;c(();l) =dim HomGE;c(z;l):
C 0 C 0 C 0
However, this is impossible, since it would imply
M M
d= dim HomG%'c(();l) dim HomGE'c(lbl)+ dim HomGE'c(z;a)= 2d: ¢
C C

Therefore, we have arrived at a contradiction, and the Proposition is proved. ]
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We will also need the following result:

Proposition 4.15. Let 2 Irr(G°) be tempered. Let 2 Irr(G) be a tempered, non-generic
quotient of (). Then is the unique irreducible tempered quotient of ().

Proof. Since is non-generic, Lemma 4.13 shows that there is a cubic algebra E such thatd
.= dimHompy (; ) is nite-dimensional and non-zero. Now Lemma 4.12 shows that

dim HomNz((); £) = d. If Ois another tempered irreducible quotient of (), then Lemma
4.12 shows that dim Homy,(%; ) = d. But this implies

d= dimHomp,((); £) dimHomp,(; e)+ dim HomNz(O; ) = 2d;
which is a contradiction. The Proposition is proved. L]

Next, we prove that (), if non-zero, has a unique irreducible quotient.

Proposition 4.16. Let 2 Irr(G) be tempered such that () = 0. Then () has aunique
irreducible quotient.

Proof. Remark 4.4 shows that () can only have tempered quotients. The result now follows
from Proposition 4.9 (when is generic) and Proposition 4.14 (when is non-generic).

Proposition 4.17. Let 1;5 2 Irr(G) be tempered. Then 0 = (1) = (2) implies; = ;.

Proof. If 1 and ; are both generic, this follows from Proposition 4.8 applied to = (1) = (2). If
either is non-generic, then the result follows from Proposition 4.15. ]

5 Explicit theta correspondences
In this section we discuss lifts of (non-cuspidal) tempered representations of G°.

5.1 Representations of the unitary group

Recall that I(;s) denotes the principal series representation of PU3(K) obtained by in-
ducing jN-¢ j° (with unitary) from T9= K. We shall denote I (; 0) simply by I(). The unique

non-trivial element of the Weyl group conjugates Yto , where is the non-
trivial element of Gal(K=F). It is easy to argue that the principal series representations
I(; s) have reducibility points only if 1 = , that is, is conjugate-dual. Then there is a

dichotomy at play. If 1() is reducible, then I(;s) is irreducible for all s = 0. If I() is
irreducible then there exists sg > 0 such that I(;s) are irreducible for s = sg. The rep-
resentation I(; sg) is a standard module of length two, with a unique irreducible quotient and
a discrete series representation as a unique submodule. By [12] I() is irreducible if and only
if
L(; s)L(As (); 2s)

has a (simple) pole at s = 0. More precisely, if L(; s) has a pole at 0, then = 1 andsg= 1;
if L(As ();2s) has a pole at 0, then is conjugate-symplectic and sg = 1=2. Now the following
summarizes our discussion:
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Proposition 5.1. Let be a conjugate-dual character of K. Then the principal series
I(;s), for s 0, reduces as follows:

1. If = 1, the trivial representation is the quotient, and the Steinberg representation St is
a submodule at s = 1.

2. If = 1is conjugate-orthogonal then reduction occurs at s = 0,

() = |()gen |()deg
where [()gen is Whittaker generic.

3. If is conjugate-symplectic then I(;s) reduces at s = 1=2. The Whittaker generic
submodule is a discrete series () whose Langlands parameter [2, Section 10] is a 3-
dimensional conjugate-orthogonal representation

2
V,

of K SL;, a quotient of the Weil{Deligne group of K by the commutator of Wy,
where V5 is the irreducible two-dimensional representation of SL,.

Remark 5.2. The Langlands parameter of () should perhaps be expressed using 1 =
instead of . However, the theta lift of both () and () is the same representation of G5, so this

imprecision is harmless.

We may now describe the theta correspondence for (limits of) discrete series of PU3(K)
discussed above, and for extensions of those representations to PU3(K) o Gal(K=F), when
Gal(K=F)-invariant. These lifts will be computed using Jacquet functors and the following
additional inputs that are, roughly speaking,

The correspondence is one-to-one.
It preserves tempered representations.
It preserves generic representations.

Recall that there are two ways to extend I () to PUs (K)o Gal(K=F) when is Galois-
invariant: 1(*) and I( ). Here * is the extension of which appears in the quadratic base
change (see x3.4). Another way to characterize I(*) is via Whittaker functionals:
Gal(K=F) acts trivially on the one-dimensional space of Whittaker functionals. If is a
constituent of I (), let * (resp. ) be the extension of contained in I(*) (resp. I( )). Using
Jacquet functors like in Proposition 4.2, it follows that theta lifts of constituents of I ( ) are
trivial unless the constituent is St .

In order to state the result, let be a conjugate-dual character of K and let () be the
irreducible representation of GL, (F) corresponding to the two-dimensional representation ()
of the Weil group W. Let 16 ((); s) denote the principal series where we induce () twisted
by jdetjs. If s conjugate—orthogonél, = 1, then the central character of () is !'x-f and
lq, (()) is reducibleS

16, (0)) = Tq, (B)gen lq,(()deg:
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If is conjugate-symplectic, then the central character of () is trivial and 1 © (&)f' 1=2) has a
Whittaker generic tempered submodule. If is not Gal(K=F)-invariant, then () is a cuspidal
representation and the tempered submodule is a discrete series representation. If is Gal(K=F)-
invariant, then () = 1, for a pair of mutually inverse characters of F, and the tempered
submodule is

1§, (st;) = Igdst,);

where st; denotes a twist of the Steinberg representation of GL,(F) by the character
i(det).

Finally, we recall the A-packet discussed in Section 3.3. The packet contains two repre-
sentations: a supercuspidal, and  the LanglandsQl guotient  of iGz(jdetj
), with equal to the tempered representation 1 !¢_f . In the following proposition, we
consider the corre-sponding discrete series L-packet (again attached to the subregular
unipotent orbit and the cubic etale algebra F + K). Its elements are obtained by applying
the Aubert involutions to the elements of the A-packet; in particular, we have a
supercuspidal representation, and a generic discrete series representation contained in
i% (jdet] @

) as a submodule.

Proposition 5.3. We have:

1. f(St*); (St )g is the discrete series L-packet of G attached to the subregular unipo-
tent orbit and the cubic etale algebra F + K. (St ) is supercuspidal.

2. If = 1is conjugate-orthogonal then

(l()gen) = |Q1(?))gen and (l()deg) = |Q1(())deg(§
If is Gal(K=F)-invariant, then the statements involve constituents of I (*).

3. If is conjugate-symplectic then (()) is a Whittaker generic, tempered submodule of 16
((0); gﬁZ). If is Gal(K=F)-invariant, the lift is of ()*.

Proof. 1. Let f; g be the L-packet, with supercuspidal. We use the description of
ruo() from Proposition 3.3. First, note that () (a representation of G°) is non-
trivial, because appears as a quotient of (T3). Thus () appears as a quotient of the
minimal representation . It follows that
ruo(()) is a quotient of ryo(). Since is supercuspidal,
rua(()) cannot appear in (B3); therefore, it is a quotient of (T3). Thus ryo(()) is one-
dimensional, a quotient of (T3); notice that ryo(()) is precisely the exponent of St .
Moreover, the supercuspidal part of () is necessarily 0 because of the one-to-one
property (Theorem 4.1). This shows () = St .

It remains to determine (St*). We know that (St*) = 0 (because St* is generic; see
Corollary 4.6) and tempered. This implies, using Proposition 3.3 again, that (St*)
appears as a quotient in B3. From here it follows that (St*) is a subquotient of
i§2(jdet;] 1
(1 'g=¢)). Since (St*) is tempered, the claim follows.

2. Again, we look at the description of the Jacquet module in Proposition 3.3. The two
constituents of | () are not distinguished by Jacquet modules: we have ryo(l()gen) =
ruo(l()deg) = . Note that appears as a quotient in (B3). As explained in 3.4,
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the similitude correspondence arising from the representation * in (B3) now shows
that G ()
is a quotient of *. Inducing, we get that I,*(()) is a quotieﬁt of r9 (); in other words

u Q
(using Frobenius reciprocity), 12(()) is a quotient of . In

particular, both b‘iz(())gen and IGcil(())gen have non-zero theta lifts which are
constituents of I(). Since lifts of generic representations remain generic (Corollary
4.6), we must have (I()gen) = IQZ((‘f)lgen; by the one-to-one property it now follows

that (l()deg) = |Q2(())deg- Gl

3. The proof here is the same as for (St*) in case (i). O

6 Mini theta

It is possible that a cuspidal representations of G lift to non-cuspidal representations of G.
From Jacquet functors, it is clear that such representations of G° are lifts from the Levi
L, = GL,(F) via the minimal representation of M,. We shall describe this mini-theta
correspondence by relating it to a classical theta correspondence for unitary groups.

6.1 The similitude theta correspondence for GU(2)9¢t GU(3)

Let GU(n) denote the group of similitudes of an n-dimensional Hermitian space, and let
GU(n)9et denote the index two subgroup of elements such that the similitude takes value in
Ng-f (K). The forms of GU(2) can be described using quaternion algebras. Let B be a
guaternion algebra and x an embedding of K into B. The right multiplication by K turns
B into a 2-dimensional symmetric Hermitian space, the Hermitian form given by the
quaternion norm. We have
GU(2)= (B K)=F

where B acts on B from the left, and K from the right, by inverse. The center of this group
is(F K)=F = K. The subgroup GU(2)9¢t consists of pairs (g; z) such that the norm of g is in
Ng=r (K).

The mini-theta correspondence is related to the similitude theta correspondence for
GU(2)9et GU(3), which ts into the seesaw

GU(3) GU(6)det
@
@

G
GU(1) = K GU(2)det

One uses the splitting character 1 on GU(3) and GU(1) on the left hand side, on
GU(6)9et and 3 on GU(2)9et [1, Section 7]; here is a character of K which restricts to | (¢
on F. We start by considering this, without referring to the mini-theta yet.

In this see-saw, one starts with the trivial representation of GU(1) on the bottom left,

and one takes an irreducible representation of GU(2)9¢t on the bottom right. Then the
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see-saw identity is
Homgy(z)eet((1);) = Homgy(y)((); 1):

Hence, () is a representation of GU(3)=GU(1) i.e. a representation of GU(3) with trivial
central character. Moreover, with the choice of splitting characters as above, the theta
correspondence carries representations of GU(3) with trivial central character to represen-
tations of GU(2)9et with central character 3. One can describe this theta correspondence,
as a lifting from GU(2)9et to U(3)=U(1) GU(3)=GU(1) as follows.

An irreducible representation of GU(2) {GL,(F) K)=F is of the form for an
irreducible representation of GL, (F) and a character of K, so that the central character of
is j . Since we are interested only in those irreducible representations of GU(2) with

F .
the central character 3, we must take = 3. In other words, we are looking at
irreducible representations of GL,(F) whose central character is !¢_¢ (sincejg = !x-¢).
Note that:

the contragredient of such a is - =

lk=¢, so is dihedral with respect to K=F if and only if is self-dual.

hence, the restriction of to GL,(F)det is irreducible if and only if is not self-dual; if
is self-dual, the restriction breaks into 2 pieces.

With 3 given, it gives an L-packet of
U(2) = f(g; z) : det(g) = N(z)g=F GU(2):

If denotes the L-parameter of (as a GL,(F)-representation), then the L-parameter of this
U(2) L-packet is the conjugate-symplectic representation of the Weil group W

Jw,

32

Assume now that is a discrete series representation of GL,(F). Then jw, is irre-ducible

if and only if is non-dihedral with respect to K=F, i.e. is not self-dual. In any case, the
representations of U(3) we get by theta lifting from GU(2)9¢t to U(3)=U(1) have the L-
parameter

= jwe + L
see Theorem A in [11]. Observe that this is a conjugate-orthogonal representation of W
of determinant one: jw, has trivial determinant, since det() = !¢-f .

More precisely:

if is not self-dual, i.e. not dihedral, we are starting with a singleton L-packet on

GU(2)9et and its lift is the unique generic representation in the L-packet of U(3) with
the L-parameter . That L-packet has another element which is lifted from the non-
quasi-split form of GU(2)det,

if is self-dual, then the L-packet we started with on GU(2)9¢t has 2 elements, distin-

guished by their Whittaker support, and their theta lifts are two representation gen
and geg in the L-packet with the L-parameter ; there are two other representations
lifted from he non-quasi-split form of GU(2)det,
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6.2 The lifts coming from mini-theta

With the above understanding of the similitude theta lifting in hand, we return to the
problem of mini-theta.

Let M, be the connected component of My. Take a generator of the group of algebraic
characters of M5, and let M9t be the index two subgroup of M, of elements such that the
character takes values in Ng_¢ (K ). Furthermore, the restriction of the characterto L, =
GL;(F) is the determinant (or its inverse) and we can dene Ldet = GL2(F2)C'et analogously.
Thus we have a group isomorphic to PU(3) GL;(F)9et contained in Md9et, We can desc5ibe
Mdet and this embezdding explicitly within the framework of x6.1.

Assume that the quaternion algebra B from x6.1 is split, so that B = GL,(F). Let U(6)
be the unitary group corresponding to the Hermitian space B B B. Then by
Section 7.2 in [9]

Mt = f(z;g) 2 (K U(6))=U(1) j z== detgg

where U(1) is embedded into K U(6) by z ! (z3;z) and zdenotes the action of the non-
trivial element in Gal(K=F). Let U(3) U(2) be a dual pair in U(6) so that U(2) acts
diagonally on the three copies of B. We map U(3) into M‘Z1Et by

g! (det(g);g):

It is easy to check that this map is well dened and trivial on the center U(1). Now letg
2 GLy(F)det, Let z2 K such that N¢-f (z) = det(g). Then (g; z) denes an element in U(2),
using the above description of GU(2), and

g! (z %(g2)

is a well dened map from GLde; into Mdezt which does not depend on the choice of z.

In this way, we may view PU(3) GL;,(F)det as (a subgroup of) the dual pair discussed in
x6.1. The representation 1 (1) of K U(6) descends to a representation of Md¢twhich is,
now independent of ; see Section 8.4 in [9]. Furthermore,

Indyie * (1)

is the minimal representation of M, From the formulas for the embedding of PU(3) and
GL,(F)d9et into Mg“'t, it is easy to check that these two groups act on 1 (1) in the same
way as they act in the classical see-saw pair above. Combining this with the two bullet points
at the end of x6.1, we get:

Proposition 6.1. Let be a discrete series representation of GL,(F) with the central
character I -¢. Then = jw, + 1is a PU(3)-parameter and:

If is not self-dual, i.e. not dihedral w.r.t. K=F, the L-packet of has one represen-tation
we are considering. Under the mini-theta, it lifts to + -, and under the theta lift to G,,

it lifts to Indg? = Indg?(-) © °

If is self-dual, i.e. dihedral w.r.t. K=F, then the L-packet of has two representa-tions
gen and deg We are considering. Under the mini-theta, they lift to . Under the theta lift

to G,, these two representations of PU(3) lift to the two constituents of IndQZ().
G
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We still need to go from PU(3) to PU(3) o Z=2Z. The action of Z=2Z on Irr(PU(3)) is
sending to - (see [21]). The representations in the L-packet of are all self-dual, and hence
each has two extensions to PU(3) o Z=2Z. Of course, by the one-to-one result, only one of

these extensions can lift to a summand of Ind®2. ThePother extension should not lift to G,
however, we cannot exclude that it lifts to a cuspidal representation of G,.

Finally, let us discuss what happens on the level of L-parameters. The L-parameter is
a 3-dimensional rep : Wi ! SL3(C) of the form = jw, + 1, where : W | GL,(C) has
det() = '¢=f . Also, is the restriction to Wy of an L-parameter

O:We | SL(3)o0 z=22

where the latter is the L-group of PU(3). Using the further inclusion SL(3) 0 Z=2Z ! G,
the 7-dimensional representation of G,(C), as a W -module, decomposes as

(Ind\f )+ Tkop = ((lk=p + + 14 Dgop )+ Tgops
Recalling that !(_f = -, and regrouping (i.e. conjugating), we rewrite this as: ( +
bk=p )+ (=4 Ix=f )+ Lt

This parameter factors through the Levi GL,(C) in SL3(C) G,(C), therefore it is a
parameter of the induced representation Ind§? = Ind, &(-).
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