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Cumulative cultural evolution (CCE) occurs among humans who may be
presented with many similar options from which to choose, as well as
many social influences and diverse environments. It is unknown what gen-
eral principles underlie the wide range of CCE dynamics and whether they
can all be explained by the same unified paradigm. Here, we present a scal-
able evolutionary model of discrete choice with social learning, based on a
few behavioural science assumptions. This paradigm connects the degree
of transparency in social learning to the human tendency to imitate others.
Computer simulations and quantitative analysis show the interaction of
three primary factors—information transparency, popularity bias and popu-
lation size—drives the pace of CCE. The model predicts a stable rate of
evolutionary change for modest degrees of popularity bias. As popularity
bias grows, the transition from gradual to punctuated change occurs, with
maladaptive subpopulations arising on their own. When the popularity
bias gets too severe, CCE stops. This provides a consistent framework for
explaining the rich and complex adaptive dynamics taking place in the
real world, such as modern digital media.
1. Introduction
Cumulative cultural evolution (CCE) [1–6], in which innovations accumulate
over time through social learning, has been integral to human evolution [7–9]
and inter-generational cultural adaptations of small traditional societies
[10–15]. When expertise and/or performance are transparent, the rate of CCE
correlates with the number of interacting individuals [16–19], in the complexity
of forager assemblages [20–22] and in controlled social psychology experiments
[23–27] in which small groups can outperform the most skilled/knowledgeable
group member on short-term tasks [28–32].

It is not clear what implications CCE studies in small groups should have
for larger populations, such as the urban environments humans have lived in
for millennia. Extrapolating the hypothesized correlation between CCE and
population size, it would seem that larger social learning networks would sur-
face the best technologies [16,33,34], productive organizations [35], government
institutions [36,37] and technical knowledge [38–40]. As innovation rate scales
with population density [18,41], however, the number of similar options can
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Figure 1. Conceptual ‘dimensions’ of information transmission, with points
indicating established models in the continuous space.
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increase by orders of magnitude, and social learners need
to update more frequently to keep up. While copying
recent success is an adaptive strategy in a highly variable
environment [26,42–44] at some point this capacity may be
overwhelmed. When intrinsic pay-offs are no longer trans-
parent, copying recent popularity can become a substitute
for copying recent success—an understandable shortcut by
human psychology evolved for a few hundred social relation-
ships [9,45–48]. Long-run persistence of old information may
limit the adoption of adaptations in this scenario [49].

Previous models must be expanded in order to disentan-
gle the interplay between individual and collective levels.
Game theory models of binary options, which are effective
at characterizing social conformity in animals and small-
scale human societies [44,50], cannot adequately reflect
modern environments in which numerous ‘games’ are
being played concurrently among thousands, if not millions,
of agents competing for popularity of their views. The bewil-
dering array of choices is not reducible to a single binary
decision, and the transparency of information and social
learning criteria vary widely, ranging from zero to a vast
range [51,52].

In order to bridge this ‘population gap’ in CCE theory, here
we propose a non-equilibrium model that can accommodate
any number of similar options as well as varying degrees of
information transparency and degree of popularity bias in a
population. To recreate a wide range of cultural behaviours,
we aim here for the simplest model that relies on the fewest
assumptions and parameters. When simulated through
heterogeneous interactions, the transparency–popularity link
produces a spectrum of collective dynamics spanning from
gradual [53] to punctuated change [17,34,54,55] that is essen-
tially independent of specific system properties. Here,
discontinuous events do not require highly skilled individuals
making ‘great leaps’ [17]. Instead, a frequency-dependent
balance of transparency and popularity bias limits the pace
of cultural evolution, resulting in stasis associated with
spontaneously arising ‘barriers’ that only infrequent events
may overcome. In the future, this framework might provide
a broad foundation for CCE, allowing it to be adjusted to
specific real-world contexts.
2. Evolutionary model of discrete choice with
social learning

Our conceptual model [56] consists of, firstly, the continuum
between individual and social learning (horizontal axis
in figure 1), and secondly, transparency of information or
learning criteria (vertical axis). This model, grounded in
discrete theory under social influence [57], unifies a range
of approaches, from those emphasizing intrinsic pay-offs
of the choices [58], learning from experts or successful
individuals [22,42,59], all the way to models that assume
copying is done with zero transparency of pay-offs or
expertise [52,60–66].

This continuous parameter space includes certain well-
known reference points. Rational decisions, per the standard
social science model, are individual and transparent
(upper left in figure 1), whereas learning from experts,
per much of cultural evolutionary theory, is transparent
and social (upper right). The bottom half of the conti-
nuous space includes random copying (lower right) and
guesswork as opaque individual learning (lower left). As
these disparate models are reference points within a continu-
ous space of possibility (figure 1), the framework could serve
as a conceptual bridge from CCE in small-scale experiments
and traditional societies to rapid change under massive,
globalized communication.

Although there are many strategies for social learning
[59], here we start pragmatically with popularity bias
as the horizontal dimension, which we parametrize as J
[56,67,68]. High J means doing as others do. The second
key parameter, the vertical dimension, is transparency of
learning, which ranges from informed to uninformed
[56,69–71]. We parametrize information transparency as β,
where high β enables selection for the best option. As the
parameters are continuous, unlimited intermediate scenarios
are possible.

Transparency represents an individual’s sensitivity to
differences in choice, acting on the intrinsic utility difference
between options. Effectively the weight of individual learn-
ing, transparency amounts to the extent to which one’s
behavioural choice is influenced by the objective pay-off
related to that behaviour. In the absence of popularity bias
(J = 0), the larger the transparency is, the smaller is the var-
iance in decision-making across the alternatives. When
transparency is near zero in the absence of popularity bias,
choice is random over the choice set, and each option is
chosen with the same probability. When transparency is
large, the relative values of pay-offs of each choice are high,
such that the choice with the highest pay-off is reliably
identified.

In each time step of the model, a new set of N choices are
made. This could represent a new ‘generation’ of N agents
that replace the previous generation, or it could represent
the N agents making a new choice to replace the choice
held in the previous time step. As both are mathematically
equivalent, the model can represent successive generations
over long time periods of cultural evolution, or successive
time intervals within a time span as agents make Bayesian
updates to their decisions. It could also represent successive
samples, of size N of a large interconnected population,
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whose choices are evolving through time. Popular choices
have their own ‘inertia’ by virtue of stochastic change
under popularity bias and/or the persistence of choices
with high intrinsic utility under significant transparency.

The model proceeds in each time interval with each of the
N agents identifying another agent to potentially copy. First,
an option, i, is observed with probability Pr(i, t + 1) among all
the k(t) different alternatives in the most recent time interval.
Following cultural evolutionary theory [72,73], we set this
probability to its frequency, pi(t), modified by exponent J

Prði, tþ 1Þ/ piðtÞJ , ð2:1Þ
where the parameter J can bias this frequency-dependent
selection. This popularity bias parameter ranges continuously
from J = 0 for zero frequency effect, to J = 1 for probability in
strict proportion to frequency (random copying) to J > 1 for
conformist bias.

Subsequently, agent evaluates the intrinsic utility, Ui of its
chosen option i and keeps it with probability, Pr(i, t + 1),
which is determined logistically by βUi, where β is the trans-
parency of choice [22,57,74–76]

Prði, tþ 1Þ/ ebUiþc, ð2:2Þ
where ψ represents the random Gaussian error in the pay-off
estimation [77,78]. Equation (2.2) is typical in formulations of
discrete choice theory or quantal response theory [57,79,80].
For parsimony, we leave aside the matter of different intrinsic
preferences [81], which would necessitate an additional error
term on utilities Ui.

Combining the steps, equations (2.1) and (2.2), yields
the probability, Pr(i, t + 1), that the agent selects variant i at
time t + 1

Prði, tþ 1Þ ¼ 1
Yt

piðtÞJ ebUiþc, ð2:3Þ

where Yt is a normalizing term across all k(t) variants

Yt ¼
Xk
j¼1

p jðtÞJ ebUjþc: ð2:4Þ

Alternatively, we can define the propensity PðUi, piÞ of
choosing the trait with utility Ui and popularity pi as follows:

PðUi, piÞ ¼ Prði, tþ 1ÞYt ¼ piðtÞJ ebUi ec: ð2:5Þ

Equations (2.3)–(2.5) span a decision space. The formu-
lation also informs our basic expectations at certain
reference points. In the high-transparency realm without
social learning (J = 0), we recover (2.2), which is a form of
bounded rationality. We will see in our results what happens
as J is increased from this reference point. At the other end of
the spectrum, along the zero-transparency extreme, if β = 0
and J = 0, there is random selection among the k(t) alterna-
tives, Pr(i, t + 1) = 1/k(t) + ψ. If β = 0 and J = 1, then it
becomes a random copying, or Yule, model, where Pr(i, t +
1)∝ pi(t)e

ψ, i.e. proportional to approximated frequency.
Lastly, a small fraction of agents, μ, invents something

new by modifying an existing variant i, such that its pay-
off becomes Ui + ϵ, where the random perturbation ϵ is
drawn from a normal distribution with mean zero. In simu-
lations, we vary μ from 0.005 to 0.1, consistent with ranges
proposed for human invention [82–85]. With new index
k(t) + 1, this new variant becomes part of the pool from
which agents may choose in the next time step. Iterating
(2.3) generates different probability distribution functions
from the same starting point, under conditions of high
transparency β or high popularity bias J.
3. Results
The model is multifarious, with an endless number of
alternative outcomes. Here, we examine how the major
modes of behaviour are affected by β and J, using a range
of population sizes N and low mutation rates in our simu-
lations (more comprehensive findings are reported in the
electronic supplementary material throughout a grid of β–J
pairings). We also provide analytical predictions for how
the rate of utility gain (CCE) varies not just with population
size but also with the J/β ratio.

Figure 2 shows the evolution of utility values chosen by
1000 agents over 200 time steps, showing a rich diversity of
behaviours from this simple model. We identify general evol-
utionary regimes in the β–J space, including steady evolution,
punctuated evolution, stochastic drift and random noise
(clockwise from upper left in figure 2). Under zero transpar-
ency (bottom half of figure 2), there is little to no regular
increase in utility. Without transparency or popularity bias
(β = 0, J = 0), there is noise (figure 2, lower left). With popular-
ity bias and no transparency (β = 0, J = 1.5), as in the lower
right of figure 2, there are two notable effects. First, a majority
of agents never escape their choices (horizontal red
bar). Second, among the remaining minority of agents, a
drifting ‘consensus’ (greenish band)—a minority of agents
overall, but a majority of those not in the red band—is held
together by popularity bias. If we were to draw a cross-
section at a time step in the β = 0, J = 1.5 case, the frequency
distribution would have multiple modes: a sharp peak at
the majority utility value (red bar), but also a wider, second-
ary mode (greenish band) and other smaller modes, drifting
through time.

At the top of figure 2, transparency β facilitates a cumulat-
ive increase in median utility, as we would expect. For
positive transparency (β = 0.25) in the upper half of figure 2,
the utility values undergo steady increase for J = 0 (upper
left) and punctuated increases for J = 1.5 (upper right). Com-
paring utility increase by the end of these two simulations
under the same value of β = 0.25 indicates that CCE can be
faster with popularity bias (J = 1.5) than without (J = 0). The
progress at (β = 0.25, J = 1.5) is not optimal, however—for
example, the group drifting into negative utility values in
the first 50 time steps and other suboptimal ‘tendrils’ are vis-
ible throughout that simulation (figure 2, upper right). This
resembles homophily, via sorting into subpopulations
around drifting modal utility values, some of which decline.
This sorting of the population through popularity bias simply
emerges, without having imposed any network or group
structure on the model, or any intrinsic preferences instilled
among the agents.

The optimal rate of CCE should require moderate values
of both transparency and popularity bias. Locating the exact
optimum β−J coordinate is not trivial, however, as it depends
on the other parameters (μ, N) and requires a large number of
simulations [68]. More coarsely, we can determine that CCE
(rate of utility increase) is typically optimized with J at or
slightly above 1, as long as transparency β is positive.
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Computational simulations show CCE decreasing as J is
moved away from 1 (figure 3). For large populations and
low transparency values, this optimal CCE occurs towards
J = 1 (discussed below).

Note the increases in utility on the top row of figure 2 are
smooth with J = 0 and punctuated with J = 1.5. In between,
we find the transition from gradual to punctuated evolution
lies at J = 1, which is simple frequency-proportional copying.
Increasing J above 1, while maintaining sufficient β (see
below), induces stagnation where plateaus of utility emerge
for extended periods, with sporadic jumps to higher plateaus.
The population bifurcates upon each new jump, as some
agents continue copying the same choice while other agents
increase their pay-offs with better (higher utility) choices.
We can zoom in to look for early warning signals in time
series activity before each jump, such as increased variance
before a critical transition [86]. Indeed, for J > 1, we do see
such signals. In a case with β = 0.1 and J = 1.75, figure 4a
shows the utility values of each agent choice over the first
1000 time steps, which increase cumulatively through punc-
tuated leaps. Each red bar indicates a large concentration of
individual pay-offs around one utility value; each red point
indicates nearly all the agents have copied the same variant
(see §3 of the electronic supplementary material for a three-
dimensional rendering of the same dataset). Above and
below each red plateau in utility are those agents copying
variants that differ from the majority. Just before each
jump, the variance in utility values, as well as the entropy,
increases as a spike (figure 4b). Aggregating results from 20
steps before and after each jump, figure 4c reveals the
abrupt rise and fall of variance and entropy in utility
values before and after each jump. This is a recurrent (and
statistically repeatable) pattern (figure 4c).

Another approach to explain the punctuated mode is to
consider whether uncommon utility gains are likely to be
adopted by others. It has been argued that social systems
exist in a condition of stasis for extended periods of time,
punctuated by rapid shifts resulting in radical transform-
ations, which are frequently associated with major
inventions [34]. Here, we investigate whether punctuated
changes are an emergent characteristic of an inherent conflict
between transparency and popularity bias. Such ‘utility bar-
riers’ to improvement (figure 5a) resemble valleys on a
fitness landscape [87], but they are a fundamentally
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dynamical phenomena caused by cultural evolutionary
mechanisms rather than the underlying landscape features.
In the mode of punctuated evolution, the population alter-
nates between periods of apparent stasis and abrupt shifts
to the next utility U + ΔU (light grey region in figure 6).
When J is larger than 1, utility barriers emerge, such that
small utility increases below a threshold (ΔU < ΔUc) are not
selected. Depending on ΔUc, the system may be unable to
select for new variants of higher utility, due to their low initial
frequency (red bar in figure 2, lower right), such that some
agents remain stuck with their initial utility value, U0.

Figure 5 illustrates the effect on CCE of the probability,
P(Ut+1 >Ut), that an agent obtains a higher utility in the
next time step t + 1 (see Methods). For each new invention
(produced at rate μ), the utility change, (ΔU), from the
agent’s existing variant is drawn from a Gaussian distri-
bution. The Gaussian distribution is centred at zero, so (ΔU)
can be either beneficial (+) or deleterious (−). Figure 5a
shows three different scenarios of increasing conformity
from bottom to top. Below a utility barrier (ΔUc), the inven-
tions will probably not be copied (figure 5a). Increasing
popularity bias J raises the value of the utility barrier
(figure 5a, bottom to top), such that popularity bias that is too
strong (J > 1) will slow down CCE (figure 5b,c). Conversely, if
popularity bias is too weak or absent, CCE is not maximized
either (figure 5b,c). The optimal value is very close to J = 1,
where maladaptations are forbidden and every possible
random change can be selected by the population.

The suggested CCE ‘soft spot’ reflects the utility barrier
being minimized at J = 1. Overcoming these utility barriers
requires the accumulation of sufficient diversity in utility
values within the population, as generated by the Gaussian
error, ψ, in each agent’s pay-off estimation. While population
size determines the number of inventions, μN, the stronger
the popularity bias, J, the more trials (inventions) the popu-
lation needs to make to be likely to overcome the utility
barrier ΔUc > 0. Since β and J determine the utility barrier,
the relationship between population size and CCE (utility
increase rate) will also depend on these parameters. As
derived in the Methods section, we can describe the minimal
utility improvement, ΔU, that can reliably be copied by at
least one agent in one time step, as

DU � DUc ¼
J � 1
b

lnðN � 1Þ: ð3:1Þ

Note ΔUc = 0 when J = 1. As equation (3.1) shows, utility bar-
riers are lowered by transparency β and increased by
popularity bias J and the logarithm of population size N.

The larger the popularity bias, the larger transparency β
needs to be for utility gains to be discovered. Figure 6 further
highlights the interplay between these variables, the utility
barrier and CCE. In the ΔU versus J space of figure 6b, the pre-
diction of (3.1) is the blue diagonal—changes can occur above
this line. Whether changes are positive is delineated by the
horizontal at ΔU = 0. The space in figure 6b is thus divided
into four distinct regions: adaptive behaviour (light blue),
maladaptive learning (red), forgettable (white) and ‘missed
opportunities’ (grey). The adaptive (blue) region yields gra-
dual, steady evolution without significant plateaus. In the
red triangular (maladaptive) region, the population may
adopt negative utility displacements, which can send sub-
populations into decline (see down-sloping tendrils in
figure 4a). The grey area is called missed opportunities
because this is where new inventions with positive utility
differences are not adopted because they lie below the utility
barrier. These spaces in figure 6b change with the ratio ΔUc≈
lnN/β: as this ratio increases, the boundary rotates counter-
clockwise, expanding the region of maladaptive adoptions
(red) and missed opportunities (grey), that is, the maladap-
tive parameter space increases and adaptive space decreases.

When conformity is significant (J > 1), utility improve-
ments (ΔU) below the critical utility barrier ΔUc, or utility
barrier, cannot be widely adopted by the population. The
duration of the utility plateaus increases with J until even-
tually, at some conformity limit, JC, the utility barrier is
never overcome and CCE ceases. As derived in the Methods
(5.2), we can predict how JC increases with population size, N

J , JC ¼ 1þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðN=2Þ
logðN � 1Þ

s
ð3:2Þ

which, if we assume that population size is large enough
(then N− 1≈N), indicates that CCE can occur as long as
J � 1þ ffiffiffi

2
p

b. In other words, the crucial ratio is (J− 1)/β. If
this ratio exceeds the variance of the innovation distribution
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(approx. 1.4 for the Gaussian), CCE ceases. As long as popu-
larity bias is less than JC, CCE can proceed. When the bias
exceeds JC, most selections remain stuck at their initial
value, U0. Figure 7 shows how the conformity limit, JC,
depends on population size. Increasing population from
small to medium sizes pushes the boundary up to higher J
values, but this effect is asymptotic as the boundary
converges to a finite quantity for very large populations.

4. Discussion
Unifying distinct aspects of different behavioural disciplines
[88], we established a cultural evolutionary model based
on the interaction between social learning and transparency
of information. As the model is non-deterministic and
every simulation is unique, we focus on general effects,
their implications for cultural evolution, and future potential
modifications. The model is relatively simple, but there are
numerous variants, aspects and components of individual
and social learning that were left out; we will go through
some of them below. This parsimony was essential in order
to examine model behaviours, which were already quite
rich with just the few parameters used.

Our study demonstrates multiple phases in the space of
CCE, ranging from stasis to stochastic drift, gradual change
and punctuated change. By integrating these behaviours
through few parameters, the model suggests fundamental
insights. Firstly, it begins to untangle the much-discussed
dependence of CCE on population size [20,21,24,69]. In the
model, this relationship depends on a interaction between
information transparency β and popularity bias J. Secondly,
while CCE is facilitated by the combination of β and J,
it is usually optimized close to J = 1, or simple frequency-
dependence, which we suggest was significant in human
evolution. Third, when popularity bias increases to
conformist bias J > 1, changes in median utility gains
become punctuated, with spikes in variance before each
leap that may serve as early warning signals. It is worth
noting that we do not incorporate any extra (e.g. cognitive)
mechanisms to account for the emergence of punctuated
changes [17,89]. That is, the model shows how gradual and
punctuated change are two sides of the same basic set of evol-
utionary rules. Conformist bias also induces homophily,
where suboptimal groups lag behind the population’s best
utility. When the conformist bias becomes too strong, CCE
ceases totally, which might be a dramatic transition.

In terms of cultural evolution, the parameters of information
transparency and popularity bias are fundamental [56]. Consist-
ent with expectations, popularity bias and information
transparency combine to maximize CCE. While the best combi-
nation depends on other parameters, generally innovation is
optimized near J = 1. When popularity bias is increased from
frequency dependence (J= 1) into conformist bias (J> 1), it
begins to hinder innovation until eventually (J≫ 1) collapses
into a single choice. Conformist bias (J > 1) also underlies a
punctuated mode of change. As J is increased beyond 1, stasis
periods emerge and then become longer as J increases. The
pauses in CCE reflect clustering of agents that become stuck
at suboptimal utility values through conformist bias toward
popular traits. In a process resembling homophily, these mala-
daptive groups emerge without any network structure [23,30]
or changes in invention process [17] imposed upon the model.

In the model, increasing J modestly above 1 can compen-
sate for a decrease in information transparency β. Conversely,
the effects of excessive conformity (J≫ 1) can be countered by
increasing information transparency β, but the larger popu-
lation size N, the more transparency is needed to overcome
the utility barriers induced by conformist bias. Increasing J
too far, without increasing β to compensate, stalls CCE. The
relationship between CCE and population size depends on
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the ratio of J− 1 to β. This helps contextualize the discussion
of CCE and whether improvements can be discovered in
large populations [19,31,69,90,91].

Among our goals has been to establish a foundation for
understanding the future of cultural evolution using
fundamental principles that applied in the deep past.
In terms of the latter, we find it significant that CCE
is optimized near J = 1, equivalent to simple frequency-
proportional copying. This result was unexpected, as we
did not model any cost–benefit function [92] to facilitate it.
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As this was a robust outcome of the model, we suspect that it
has wider evolutionary significance. We hypothesize that a
cognitively frugal copy-popular strategy, was a natural start-
ing point for the further evolution of the uniquely human
Social Brain [93,94]. This would be similar to the copy-
recent strategy that allows a majority to follow the well-in-
formed minority [95–101], analogous to high β and J≈ 1. As
hominin groups became larger in the last two million years
[102], they would have benefited from conformist bias, J > 1,
made possible by cognitive evolution towards numeracy
and working memory [103,104]. In human groups, confor-
mity can enhance group cooperation and learning through
the collective awareness of shared attention [9,47,105,106].

Subsequent modifications of this model could incorporate
a parameter for memory, as reputation—memory of an indi-
vidual’s interaction history [59]—affects levels of reciprocity
among humans and non-human primates [48,107–109] with
different functional network components of the brain acti-
vated for direct and indirect reciprocity [110–112]. Other
parameters could include decay of intrinsic utility with age
[113], emotions [114], boom-bust population dynamics [115],
variable invention rates [17,82,116] or intrinsic preferences
[81]. Parameters should be added incrementally, however,
as each will multiplicatively increase the complexity of
outcomes. Another question is how our results would
change under skewed error distributions, such as the
Gumbel distribution [22,69,90], such that utility barriers can
be exceeded more often. Also, our parameters were applied
to the entire simulated population; future work could
model subpopulations with different β and J values.

As themodel accordswith other approaches to CCE featur-
ing popularity bias as a key parameter [117,118], the additional
parameter of transparency is relevant to contemporary con-
texts [119–121]. Popularity bias is exacerbated by algorithms
that prioritize recent and popular information [119,122], such
that low-cost, low-utility information is copied across massive
online networks [123–125]. In the modern era, information is
often not transparent, and popularity is no longer the best
proxy for quality. Contemporary social media, for instance,
do not necessarily surface the best ideas. Instead, online homo-
phily, or the tendency for similar people in social groups to be
connected together, has frequently polarized ideas and beliefs
[126–129]. For example, clear pay-offs often lose out to the
spread of misinformation [119,124,130–136]. In addition,
such a large number of competing, similar options exist that
informed, social learning may not be the best null hypoth-
esis—thousands of daily social media influences amid
billions of users, tens of thousands of discernible topics [125]
and thousands of daily decisions [137].

For understanding online misinformation, a key factor
should be how β and J act upon the sharing of information
that are explicitly labelled by popularity (likes) as well as
varying micro-levels of intrinsic utility, iterated over thou-
sands/millions of online actions [61,124]. The interaction
between β and J indicates a reason why culture with massive
numbers of users (large J and N, low β) arguably change con-
tinually without necessarily getting ‘better’ [61,66,91,138–
140]. Additionally, the homophily under conformity in the
model resembles the well-known sorting and polarization
in social media and politics [129,134,135,141].

For these reasons, the model of CCE we have presented
could help explore how popularity bias and transparency of
information have been pivotal from the evolution of social
learning to contemporary culture. In the future, the model
could be used as a foundation for connecting the evolution
of the Social Brain, in small groups of transparent social
learning, towards anticipating cumulative ‘cultural evolution
in the digital age’ [119] and its limitless options of varying
quality and degree of social conformity.
5. Methods
5.1. Emergence of utility barriers
In our model, reproduction rate of each variant i depends on
both its utility Ui and trait frequency pi (2.3). If there is no trans-
parency (β = 0) and popularity bias is small (J≈ 0), however, then
their is neither population bias nor selection based on utility, and
all traits are equally probable Pr(Ui)≈ 1/k, where k is the number
of different variants (see equation (2.4)). If β = 0 and J≈ 0 and also
there are no new innovations introduced, μ ≈ 0, then eventually
one variant will become fixed, i.e. the homogeneous choice,
with probability 1/k [72].

Alternatively, assume a homogeneous population with J > 1,
β > 0 and innovation rate μ > 0, in which all but one of the N
agents, fraction 1− 1/N, have a variant with utility U0 or less.
The single agent, fraction 1/N, has chosen (or invented) a better
variant, with utility U0 + ΔU, where ΔU > 0 (figure 6a). Here, the
propensity (2.5) of choosing the variant with utility U0 is

P(U0, 1� 1=N) ¼ 1� 1
N

� �J

ebU0þc ; P0,

while the propensity of choosing the better variant is increased by
a factor of eDU

P(U0 þ DU , 1=N) ¼ 1
N

� �J

ebU0þbDUþc ; PD:

We hypothesize that there is a critical utility improvement,
DU . DUc , such that we expect the variant to be chosen at least
once in the next interval, among the N selections of the N
agents. As a mean-field approximation, this occurs when the var-
iant can be expected to be selected by at least one agent (a
conservative assumption, as this allows for it to be selected



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220570

9
multiple times as well)

N
PD

Yt

� �
� 1,

where the normalization term equals the sum of the propensities,
i.e. Yt ¼ P0 þPD. This condition may be rewritten as

PDðN � 1Þ � P0:

By taking natural logarithms of both sides of the previous
equation, we obtain

lnðN � 1Þ þ J ln
1
N

� �
þ bDU þ bU0 � J ln 1� 1

N

� �
þ bU0:

Hence, the critical utility barrier (DUc ) relates to the model par-
ameters as follows:

DU � DUc ¼
J � 1
b

lnðN � 1Þ:

This inequality predicts the critical utility barrier grows with
the logarithm of population size (N) and popularity bias (J). Note
we have assumed all alternative variants have utility U0 or less, so
this is a conservative threshold.

Figure 6c compares the theoretical estimate for DUc (blue line)
with numerical simulations for various parameter values and mul-
tiple choices. The simulations show our theoretical prediction
applies even to a non-homogeneous population.Multiple new var-
iants could exceed the utility barrier; due to stochastic factors, it is
impossible to anticipate which one of these inventions will finally
be transmitted; all that can be predicted is that at least one of
those located beyond the critical utility barrier will survive to the
next generation.

5.2. The pace of cultural evolution
The pace of CCE is driven by the rate of invention μ and social
adoption (the interaction between popularity bias J and transpar-
ency β). Stochastic effects are important here because
populations would become stationary and incapable of adapting
to environmental changes if there is no source of variation. In
this context, populations can improve existing utilities (Ut) by per-
forming many small random changes to them, i.e. Ut + Δ→Ut+1.
What is the probability P(Ut+1 >Ut) of making this transition?
How probable it is that innovations drive populations towards
greater utility?

Let us assume that random changes (Δ) follow a normalized
Gaussian distribution N ðDÞ. Given the symmetry in the normal
distribution, changes can be either beneficial (Δ+) or deleterious
(Δ−) (figure 5a). That is, we will observe utility increases when
there are beneficial but not deleterious change events

PðUtþ1 . UtÞ ¼ PðDþ > :D�Þ ¼ PðDþÞ � PðDþ > D�Þ,
where the first term on the right side defines the probability of
beneficial change

PðDþÞ ¼
ð1
0
N ðDÞdD ¼ 1

2
:

and the second term is the probability of maladaptative and neu-
tral changes. As previously stated, variations of size Δ must
overcome the utility barrier to be inherited in the next time
step, i.e. D . jDUc j. Taking into account the utility barrier, this
probability can be expressed as follows:

PðDþ > D�Þ ¼
ðjDUc j

0
N ðDÞdD:

When we put these definitions into the first equation, we get
the following expression for the probability of increasing
population utility:

PðUtþ1 . UtÞ ¼ 1
2
�
ðjDUc j

0
N ðDÞdD: ð5:1Þ

This expression implies that the maximum rate of improve-
ment (1/2) is restored at J = 1, i.e. when there is no utility barrier
(DUc ¼ 0) and maladaptive and neutral changes are excluded.

5.3. Approaching the optimal popularity bias
The popularity bias J > 1, which amplifies the pace of cultural
evolution as a function of degree of transparency β and popu-
lation size N, is approximated in this section. According to
computer simulations, removing maladaptive and neutral
changes enhances the rate of improvement dramatically. Theor-
etical arguments suggests this takes place in the vicinity of the
J = 1 transition (see above section and the peak in figure 3b).
On the other hand, evolutionary stasis is prolonged when popu-
larity bias is too strong, only amplifying the current dominant
trait. What is the optimal value of J = Js that discards irrelevant
changes without slowing down evolution?

We can use a geometrical argument to estimate the popular-
ity bias’s value. The utility barrier ΔUc(Js) should be as near to the
Gaussian distribution’s centre as allowed, so that most neutral
changes (however minor) are ignored (figure 5a). Formally, we
need to solve the following equation:ð1

DUcðJsÞ
N ðDÞdD ¼ 1

2

ð1
0
N ðDÞdD,

where the left- and right-hand sides represent the probability of
adaptive changes (5.1) and the probability of discarded positive
changes, respectively. Using the exponential approximation for
the complementary error function

ð1
DU cðJsÞ

N ðDÞdD ¼ e�ðDUcðJsÞ=2Þ2

2
,

we can obtain the equivalent expression

e�ðDUcðJsÞ=2Þ2 ¼ 1
2
:

At this point, we can substitute the definition of the utility
barrier ΔUc(Js) (following equation (3.1)) to find that popularity
bias Js satisfies this condition

Js � 1
b

log (N � 1) ¼ +2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
logð2Þ

q
:

Taking the positive boundary,

Js ¼ 1þ b

log (N � 1)
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
logð2Þ

q
:

This equation suggests that the value of the popularity bias Js
optimizing the pace of cultural evolution is a balance
between transparency and population size. Increasing the trans-
parency of information β > 0 pushes the popularity bias Js away
from 1 (and increasing the likelihood of neutral changes). On
the other hand, popularity bias Js≈ 1 for large population sizes
(N→∞).

5.4. Effect of population size
In this work, we hypothesized that utility barriers occur when
there is a large popularity bias J > 1. The rate of cultural change
is determined by the location of the utility barrier, which is influ-
enced by both transparency and population size (see previous
section). The likelihood of evolutionary slowdown increases as
the utility barrier rises. It is also possible that the effect of
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frequency-dependence copying is so powerful for large popu-
lation sizes that it halts the evolutionary process.

To compute the size-dependent bounds of popularity bias
JC > J, we estimate the probability that no one in the population
finds a variant crossing the utility barrier ΔUc(JC). As before,
the probability of adaptive changes is

ð1
DUcðJCÞ

N ðDÞ dD ¼ e�(DU cðJCÞ=2)2

2
:

Using a mean-field approach, we assume that the maximum
popularity bias corresponds to an average number of individuals
discovering an innovation being less than one

N
2
exp � JC � 1

2b
log (N � 1)

� �2
" #

, 1:

After some algebra, we arrive at the expression

log
2
N

� �
.

(JC � 1)2

2b2 logðN � 1Þ:

At this point, we can extract a limit of popularity bias JC > J that
depends on the population size N

JC ¼ 1þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðN=2Þ
logðN � 1Þ

s
:

For large population N with J > 1, we obtain the following
precondition for CCE:

JCðN ! 1Þ ¼ lim
N!1

1þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðN=2Þ
log (N � 1)

s
� 1þ b

ffiffiffi
2

p
,

which can be alternatively described as

J � 1
b

�
ffiffiffi
2

p
: ð5:2Þ

This equation suggests that in order to observe cumulative
cultural behaviour, the ratio between conformity and
transparency must be bounded by the corrected variance of the
innovation distribution. Above this threshold, the probability of
reaching higher utility values decreases exponentially.
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