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ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a type of
bacteria resistant to certain antibiotics, making it difficult to prevent
MRSA infections. Among decades of efforts to conquer infectious
diseases caused by MRSA, many studies have been proposed to
estimate the causal effects of close contact (treatment) on MRSA
infection (outcome) from observational data. In this problem, the
treatment assignment mechanism plays a key role as it determines
the patterns of missing counterfactuals — the fundamental chal-
lenge of causal effect estimation. Most existing observational studies
for causal effect learning assume that the treatment is assigned indi-
vidually for each unit. However, on many occasions, the treatments
are pairwisely assigned for units that are connected in graphs,
i.e., the treatments of different units are entangled. Neglecting the
entangled treatments can impede the causal effect estimation. In
this paper, we study the problem of causal effect estimation with
treatment entangled in a graph. Despite a few explorations for en-
tangled treatments, this problem still remains challenging due to
the following challenges: (1) the entanglement brings difficulties
in modeling and leveraging the unknown treatment assignment
mechanism; (2) there may exist hidden confounders which lead to
confounding biases in causal effect estimation; (3) the observational
data is often time-varying. To tackle these challenges, we propose
a novel method NEAT, which explicitly leverages the graph struc-
ture to model the treatment assignment mechanism, and mitigates
confounding biases based on the treatment assignment modeling.
We also extend our method into a dynamic setting to handle time-
varying observational data. Experiments on both synthetic datasets
and a real-world MRSA dataset validate the effectiveness of the
proposed method, and provide insights for future applications.
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1 INTRODUCTION

In the past a few decades, a burgeoning body of studies [13, 21,
42] have been proposed for preventing infectious diseases such as
Methicillin-resistant Staphylococcus aureus (MRSA). MRSA is a
type of bacteria that is resistant to antibiotics, including methicillin
and other penicillins. It can cause infections in the skin, respiratory
tract, and urinary tract and can be spread through close contact with
infected individuals or contaminated surfaces. In these scenarios,
in-person contact relations are crucial for MRSA-related studies,
and graphs are naturally used for modeling these relations. An
important question that medical specialists are interested in is:
“What is the causal effect of close contact (treatment) on the spread
of MRSA (outcome) in a room-sharing network?" Inspiringly, an
emerging field that aims to investigate causal effects rather than the
statistical correlations between variables in graph data has attracted
arising attention recently [12, 26]. In general, causal effect learning
[20, 33] aims to estimate the causal effect of a certain treatment
on an outcome for different units. On graph data, causal effect
learning has great potential in many real-world applications such
as epidemiology [10, 25]. The progress in this area provides us with
effective tools for investigating contact impact on MRSA infection.

As discussed in [20], the fundamental challenge of causal effect
learning is data missing—only one potential outcome (the one that
corresponds to the treatment assignment) can be observed for each
unit. For example, for a patient with frequent physical contact with
others, the potential outcome for this individual with infrequent
contact (i.e., counterfactual) is unavailable. As the treatment assign-
ment mechanism (i.e., how the treatment is assigned to different
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units) determines which part of the data is missing, treatment as-
signment plays an essential role in causal studies. Currently, most
existing studies are based on the individualistic treatment assign-
ment [20], where the treatment is assigned individually for each
unit. However, in graphs, the treatment is often assigned in a pair-
wise manner to units that are connected. For example, the in-room
contact in a room-sharing network is often not individually applied
to each person. Instead, it often happens between a pair of people.
In these scenarios, treatments are not individually applied to each
unit (i.e., treatments cannot be determined only by each unit’s own
properties). This setting is referred to as entangled treatment [44].
Motivated by these scenarios, in this work, we study the problem
of causal effect learning in graphs under entangled treatment.

A few previous works [44, 45] have made preliminary explo-
rations of this problem, but many challenges remain unaddressed:
1) As discussed in [44], treatment entanglement increases the risk
of misspecification of the treatment effect estimator. If the entangle-
ment through the graph is not considered, causal effect estimators
tend to incorrectly attribute the observed treatment assignments to
each unit’s individual properties, and thus degrade the performance
of causal effect estimation. To handle this entanglement problem,
existing works [44] assume that the treatment assignment is de-
termined by a pre-determined function over the graph (e.g., the
treatment can be the node degree on the graph). However, on many
occasions, this function is unknown. 2) Existing works [44, 45]
rely on the unconfoundedness assumption [36] (or its weaker ver-
sion) that there do not exist unobserved confounders (confounders
are variables which causally influence both the treatment and the
outcome. For example, patients’ behavior habits are hidden con-
founders that influence their physical contact and infection risk.
However, hidden confounders often exist in the real world and
could lead to confounding biases. 3) Existing works are often lim-
ited to a static setting. However, the graph, treatment, outcome, and
unit covariates are naturally dynamic in many real-world scenarios.
For example, the patient data is evolving over time; the causal asso-
ciation across different timestamps also brings more difficulties in
learning causal effects.

To address the aforementioned challenges, in this paper, we pro-

pose a novel framework NEAT to estimate causal effects under
Network EntAngled Treatments. Specifically: 1) To handle the en-
tangled treatment, for each node, we explicitly leverage its relevant
graph topology to model the unknown treatment assignment with
a learnable neural network module. 2) To tackle the hidden con-
founders, we take the graph structure regarding each node as an
instrumental variable (IV) [16]. IV can eliminate the biases brought
by hidden confounders in causal effect estimation. In the previous
example, the room-sharing network is a valid IV if it is assumed to
be independent of the patient’s behavior habits, and its influence
on the MRSA infection is fully mediated by the physical contact.
A valid IV can provide a sort of randomization in the process of
causal effect estimation and improve the estimation performance.
3) To learn causal effects in a dynamic setting, we generalize the
setting and develop our framework to handle this problem across
multiple timestamps.

Notice that our work differs from other two areas of causal effect
learning on graphs: 1) interference: these works [27, 28] assume
that the treatment of each unit could causally affect the outcome of
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(a) Static

(b) Dynamic

Figure 1: The causal graph of the studied problem in a static
setting and in a dynamic setting. Each vertex in the causal
graph represents a variable, and each arrow A — Brepresents
a causal relation from A to B. The observable variables are
shown in white while the unobserved ones are shown in grey.

other units; 2) network deconfounding [12, 26]: these works assume
that hidden confounders are buried in the graph structure. These
two lines of work and our paper study separate research problems
with different assumptions and application scenarios. In this work,
our contributions can be summarized as follows:

e Problem. Motivated by the MRSA clinical studies, we in-
vestigate the important problem of causal effect estimation
under entangled treatment. We address the challenges of
treatment entanglement, hidden confounders, and a time-
evolving environment. To the best of our knowledge, this is
the first work addressing these challenges of this problem.

e Method. We propose a novel method, NEAT, to address this
problem. NEAT estimates causal effects with treatments en-
tangled through a graph. This method leverages the graph
topology w.r.t. each node to better model the treatment as-
signment and facilitate treatment effect estimation even with
hidden confounders. This method works for both static and
dynamic settings.

e Experiment. We conduct extensive experiments to evaluate
our method on both synthetic and real-world graphs. Espe-
cially, we include real-world clinical data for MRSA infection.
The results validate the effectiveness of our proposed method
in different aspects.

2 PRELIMINARIES

2.1 Notations and Definitions

The observational data is denoted by {X, A, T, Y}l’“"P , which cor-
responds to the node features (e.g., patients’ covariates), graph
adjacency matrices (e.g., room-sharing network), treatment assign-
ments (e.g., close contact), and observed outcomes (e.g., MRSA
test result), respectively, in P timestamps. We use (-)? to denote
the data in the p-th timestamp. When we focus on a static setting
or a single timestamp, we drop this superscript for notation sim-
plicity. We assume there are N units (nodes) with dy covariates,
with X? = {Xf}ie[N]: and for each unit i, X; € R%. The graph
structure connecting these units at each timestamp is an N X N
binary matrix AP = {A‘Z}.}i,je[N], where A‘Zj = 1 when there is
an edge from node i to node j, otherwise A‘Z i = 0. The treatment

isTP = {Tip}ie[N]. In most studies, treatment is assumed to be a
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binary value, but in this work, we allow it to be a d;-size vector
(e.g., a vector that describes patients’ close contact patterns). The
observed outcomes are denoted by Y? = {Yip }ie[n- For each unit i
at timestamp p, Ylp € R. In this paper, we use bold letters (e.g., X?)
to denote variables for all units, and use unbold letters (e.g., X;.D ) to
denote variables for a single unit. For simplicity, we use the same
notation for both variables and data. The subscript (-); denotes the
index of a unit. If it is not necessary to emphasize the index of a
specific unit, we drop the subscript to denote a random unit. The
causal graph for this study is shown in Fig. 1; in this case, not all
the confounders can be directly observed or measured, thus they
can often lead to biased treatment effect estimation. The hidden
confounders are denoted by U? = {U; }fe (N]"

This work is based on the well-known Neyman-Rubin potential
outcome framework [37]. The potential outcome is defined as the
outcome which would have been realized when the treatment as-
signment had been set to a certain value. We denote the potential
outcomes under treatment T = t as Y? (t) = {Y;(t) }fe (N] Consider
a baseline treatment as T = tj, for a treatment T = ¢, the treatment
effect conditioned on covariates X in a static setting is defined as:

t(X) = E[Yi(2) - Yi(to) IX]. 1

In a dynamic setting, we denote the historical information before
timestamp p as M? = {X, A,T,Y}> =1, Similar to the above, we
denote the historical information regarding unit i before timestamp
pas Mf) . When estimate causal effects at timestamp p, only the data
no later than timestamp p can be used. We define the treatment
effect at timestamp p as:

r(XP, MP) = B[YP (£) - YP (10)|XP, MP]. @)

Similar as [38], we define the treatment effect for each unit i at
timestamp p as Tlp = T(Xf, MP).
We define the entangled treatment as follows:

DEFINITION 2.1. (Entangled treatment) The treatment here can be
a function T (-) over the graph structure, the observed features, and
the hidden confounders:

T=7(AX,U). (3)

In a dynamic setting, the treatment is also a function over historical
information

TP = T (AP, XP,UP, MP). (4)

Notice that as the treatment function has the graph structure
as an input, the treatments across different units are no longer
individualistic (i.e., T; cannot be determined only based on variables
of unit i). A typical example of the treatment function 7 (-) is the
degree of each node. But under many real-world circumstances,
7 (-) is an unknown function.

The problem we study in this work is formally defined as:

DEFINITION 2.2. (Causal effect estimation under entangled treat-
ments) Given the observational data {X, A, T,Y}">F, we aim to
estimate the treatment effect t(XP, MP) for different units at each
timestamp p with treatments entangled in the graph.
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2.2 Assumptions

We assume that the outcome is generated by treatment, features,
historical information, and hidden confounders as follows:

YP = Y (TP, XP, MP) + g(U?), (5)

where Y and g are unknown and (nonlinear) functions. We assume
E[g(UP)] = 0. In this work, we take the graph structure as an
instrumental variable for IV analysis. An implicit assumption of our
work is that the graph information of each node i can be represented
as a variable A;, and its samples in observational data are sufficient
for us to capture the patterns it influences the treatment assignment.
The following assumptions make the graph structure as a valid IV.

Assumption 1. (Relevance) Given XP, MP for any random unit, the
treatment is relevant to the graph structure, i.e., AP Y TP|XP MP.

Assumption 2. (Exclusion restriction) For any random unit, the
causal effect of AP on YP is fully mediated by T?, i.e, YP(T,A) =
YP(T,A’),YA # A’. Here, YP (T, A) denotes the potential outcome
for treatment T and graph A at timestamp p.

Assumption 3. (Instrumental unconfoundedness) There is no un-
blocked backdoor path from AP to YP, ie, AP 1 YP(A)|XP, MP
for any random unit. Here, YP (A) denotes the potential outcome for
graph A at timestamp p.

Inspired by recent IV studies [16], we use the above assumptions
to effectively leverage the graph structure as an IV for treatment
effect estimation. More analysis can be found in Appendix A.

3 THE PROPOSED FRAMEWORK

In this section, we introduce the proposed NEAT framework for
causal effect learning under entangled treatment on the graph. Fig. 2
shows an illustration of the proposed framework. Specifically, this
framework contains three modules: node representation learning,
entangled treatment modeling, and outcome prediction.

3.1 Overall Pipeline

The whole framework is designed in a classical two-stage IV study
pipeline [1, 16]. Generally, in this pipeline, the first stage predicts
the treatment with IVs, and the second stage estimates the poten-
tial outcomes based on the treatment predicted by the first stage.
The key intuition behind this design is that, as the IVs are uncon-
founded, the predicted treatment from the first stage can provide
more randomization, and thus it can help mitigate the confounding
bias brought by hidden confounders.

In our framework, in the first stage, we train a treatment model-
ing module to predict treatment assignments for each node at each
timestamp. In this module, we leverage the graph structure as an IV,
and utilize it to capture the patterns of entangled treatment in the
graph. Simultaneously, we learn a representation for each node to
encode its properties, including its current features and historical in-
formation. In the second stage, we predict potential outcomes based
on the original node features, the learned node representations, and
the predicted treatment. In this two-stage IV framework, the biases
brought by hidden confounders can be effectively eliminated.
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Figure 2: The proposed framework NEAT. It contains three components: node representation learning, entangled treatment

modeling, and outcome prediction.

3.2 Node Representation Learning

The treatment effects are often different for nodes with different
properties. For example, close contact may influence patients of
different ages differently. To model such heterogeneity, we capture
the properties of each node through node representation learning.
For each node i, we learn a representation Z; to encode its properties
based on its node features X;:

Zi = $(X). (6)
Here, ¢(-) is implemented by a neural network module with learn-
able parameters.
Dynamic setting. In a time-evolving environment, as illustrated
in Fig. 1 (b), the current properties of each node can be influenced
by the historical data in previous timestamps. To capture the time-
evolving properties and model the causal mechanism in a dynamic
setting, for each node i, we embed the historical information before
each timestamp p into a representation Mf with a recurrent neural
network (RNN) [7, 18]. MIP is then incorporated into Zf7 . At each
timestamp, we update the historical embedding as:
MP = RNN(MP L TP yP T 2P P, @)

Here, we learn the representation for each node i at timestamp p
with a transformation function ®(-):

P _ P AP
7P = o(x?, MP). ®)

3.3 Entangled Treatment Modeling

The treatment function 7 (-) in Eq. (3) or Eq. (4) is often not pre-
determined. To better estimate treatment effects from observational
data, we capture the treatment assignment patterns by training a
module F(-) to model the conditional distribution of treatment Tip

given AP, Xf , Mf . The treatment modeling module is trained in the
first stage together with node representation learning:

TP = F(AP, xP M) = f(AP, 0(XP, MP)). 9)

Treatment Entanglement. As the treatments of different units
are entangled through the graph structure, to effectively capture
the patterns of treatment assignment, we explicitly leverage the
graph structure in the treatment modeling module. As a feasible
implementation, we design this module F(-) based on graph neural
networks (GNNs) [22, 46]. Here we use one-layer graph convolun-
tional network (GCN) [22] to predict the treatment as follows:

TP = (AP ([XP, ZP])Wy), (10)

where o(+) is an activation function such as Softmax. AP is the
normalized adjacency matrix calculated from the graph AP before-
hand with the renormalization trick [22]. Here [, -] stands for the
concatenation operation. Wy denotes the parameters in GCNs.
Loss for treatment modeling. The loss for treatment prediction
is denoted by L;. Generally, L; is defined as:

P N P N
L= 3 u@T) =3 S u(Far X M), TP, ()
p=1i=1 p=1i=1
where [ (-) is a loss term to measure the prediction error of treat-
ment modeling. Noticeably, in this work, we do not restrict the data
type of treatment. To handle different types of treatment, we de-
sign a different implementation for this module. More specifically,
for discrete treatments (e.g., whether a patient has frequent close
contact), we implement treatment prediction F(-) as a classification
model with the cross-entropy loss function; for continuous treat-
ments (e.g., values that describe the patient’s contact patterns) we
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implement this module as a prediction task with mean square error
(MSE) loss.

3.4 Outcome Prediction

We train an outcome prediction module H(-) in the second stage,
which predicts Yl.p based on Mf’,XlP, and Tip:

vP _ TP AP P TP P AfP
7= [ HE MDA M. )
We denote the loss function for outcome prediction by:
P N
Ly=) ) (YD), (13)
p=1i=1

where [, () is a loss function (e.g., MSE) to measure the prediction
error of the outcome. For each node i, the potential outcome w.r.t.
treatment T = ¢ is predicted by Yi(t) = H(t, M;, X;). We thereby
estimate the treatment effect for each node i as:

7 = Yi(t) - Yi(to). (14)

3.5 Implementation Details

In node representation learning, we implement ®(-) with a multi-
layer perceptron (MLP) and use a Gated Recurrent Unit (GRU) [7] for
RNN. In entangled treatment modeling, we implement F(-) with a
GCN layer. For discrete treatments, we use Softmax as the final layer,
and take the output logits to model the probability of treatment
values. For continuous treatments, we model them with a mixture
of Gaussian distribution with component weights wy (A?, X?, MP)
and parameters (ui (AP, XP, MP), o3 (AP, XP, MP)) for each compo-
nent k. In outcome prediction, we use an MLP module to implement
H(-), and use MSE loss for [;(-). We use two optimizers to train
the first and the second stage, respectively.

3.6 Discussion

Many graph learning techniques (e.g., GCNs) mainly focus on local
graph information (generally, k-layer GCNs can handle neighbors
within k hops), but if the treatment assignment is affected by a
wider range on the graph (e.g., the length of the longest path which
contains node i), it would be more difficult to capture and handle
such information. However, it is worth noting that the proposed
framework should not be limited to the specific implementation as
introduced above. Instead, we can replace each component with a
different implementation to achieve better specifications if relevant
prior knowledge is given.

4 EXPERIMENTS

In this section, we validate the effectiveness of our proposed method
by conducting extensive evaluations. More specifically, our experi-
ments are designed to answer the following research questions: (1)
RQ1: How does the proposed framework perform under treatment
entanglement compared with state-of-the-art baselines? (2) RQ2:
How does the proposed framework perform under different levels
of treatment entanglement and hidden confounders? (3) RQ3: How
does each component of the proposed framework contribute to the
final treatment effect estimation? (4) RQ4: How does the proposed
framework perform under different parameter settings?
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Table 1: Detailed statistics of the datasets.

Dataset Random Transaction Social MRSA
# of nodes 30,000 186,509 52,406 11,044
# of edges 208,193 61,572 107,394 31,403
# of features 32 21 16 8

# of timestamps 12 15 10 13

4.1 Dataset and Simulation

In our experiment, we use four datasets with dynamic graph data,
including synthetic, semi-synthetic, and real-world data. As it is no-
toriously hard to obtain the true causal models and counterfactuals
from the real world, on the first three datasets, we follow regular
practice to evaluate our method on data with simulated causal mod-
els. Nevertheless, we encourage our simulation to be as close to
reality as possible, thus, our synthetic and semi-synthetic datasets
are based on graphs that are generated by real-world relational
information and node features. Based on these graph data, we sim-
ulate the time-varying hidden confounders, treatment assignments,
and outcomes.

4.1.1 Simulation. We describe the way we simulate different vari-
ables as follows. More details of simulation are in Appendix B.
Hidden confounders. In a static setting, we simulate the hidden
confounders as:

Ui ~ N(0, uI). (15)
Here, I denotes an identity matrix of size dy, (i.e., the dimension of
hidden confounders). We set u = 20 by default.
Features. If the node features are available in the dataset, we di-
rectly use them. Otherwise, we simulate them by:

Xi = y(Ui) + ex, (16)

where /() is a linear function RY% — R Here, d is the dimen-
sion of node features. €, is a noise vector in Gaussian distribution.
Treatment. We simulate the treatment with function 7

1
T, =BI((1- VO] Xi + Az > (07, X)) + O] Ui +er), (17)

NIl

where O x, ©; 4 are parameter vectors with dimension dy and d,,,
respectively. Each parameter in O : is in Gaussian distribution
N(0,0.52). Nj is the set of neighbors of node i in the graph. We use
only one-hop neighbors by default. A € [0, 1] is the parameter that
controls the strength of treatment entanglement, i.e., the larger A is
set, the stronger the graph influences the treatment assignments.
BI(-) is a function that maps the input to a binary value. A regular
implementation is to transform the input to a probability using
a Sigmoid function, and then sample the output with Bernoulli
distribution. Noticeably, we do not restrict the treatment to be a
binary value. Continuous treatment can be simulated without the
BI(-) function; and high-dimensional treatment with dimension
d; can be simulated by replacing the parameter vector ©; x with a
parameter matrix ©; , with dimension dx X d; (similarly for ©; ).
€ ~ N(0,0.01%) is a random Gaussian noise.

Potential outcome. We simulate the potential outcomes as follows:

Yi(t) =t-©,X; + 07 X; + fO, Ui + ey, (18)
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where ©, and @ are parameter vectors of dimension dy, and ©
is of dimension dy,. f > 0 is a parameter that controls the strength
of the hidden confounder. e, ~ N (0, 0.1%) is a noise.

Dynamic setting. In a dynamic setting, we simulate the historical
data and hidden confounders over time as:

R
ME = 3 (WIURT + WiXET + WITRTT Wiy ET), (19)

r=1
U,P =Yu (Mlp) + €y (20)

where R is the number of previous timestamps which influence
the current one. We set R = 3 by default. Generally, the histori-
cal information at each timestamp encodes the previous hidden
confounders, node features, treatments, and outcomes. Parameters
Wy, Wy, W/, and Wy control these four types of influence from
timestamp R — r. We generate time-varying hidden confounders
with a transformation over the historical information. Here, ¢/,(-)
is a linear transformation function. €, ~ N(0, I) is a noise. We use
the same way as Eq. (16) to simulate features. The treatments and
outcomes are also generated similarly as above description in Eq.
(17) and Eq. (18), but the historical information Mf) is incorporated

by concatenating it with Xf as input.

4.1.2  Datasets. We further introduce more details about each dataset
used in this paper. More details of data statistics are shown in Table
1, including the number of nodes, edges, features, and timestamps.
Random graph. This dataset contains synthetic graphs generated
by the Erdds-Rényi (E-R) model [11] at each timestamp. We use
NetworkX [14] to generate these graphs. Based on these graphs,
we simulate other variables as described in Section 4.1.1.
Real-world graphs. We use two real-world dynamic graphs with
each node representing a real person and each edge representing
a certain type of connection between them. Based on the type
of connection, these two datasets are referred as Transaction
and Social, respectively. We use the covariates of people in these
datasets as node features, and simulate the treatments and outcomes
as described in Section 4.1.1. More details of these datasets can be
found in Appendix B.

MRSA. This dataset contains real-world hospital data for studying
Methicillin-resistant Staphylococcus aureus (MRSA) infection. We
construct a dynamic graph for the room-sharing relations between
patients. At each timestamp, each node is a patient, and an edge
exists between a pair of patients if and only if they have shared at
least one room during this timestamp. The patient information such
as medicine usage and length of stay are taken as node features.
We investigate the causal effect of the number of in-room contacts
(treatment) on MRSA infection test results (outcome). We consider
there exist hidden confounders such as patients’ behavior habits. In
this dataset, we do not use any simulated data, and do not evaluate
our causal effect estimation based on simulated counterfactuals.
Instead, we use the domain knowledge regarding MRSA to confirm
our findings.

4.2 Baselines

In the experiments, we compare our method with some state-of-
the-art baselines. These baselines can be divided into the following
three main categories:
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o Individual units. These methods are based on the assump-
tion that different units are independent. They estimate the
treatment effect by adjusting for confounders based on unit
covariates. We adopt the widely-used methods including S-
Learner (SL) [23], causal forest (CF) [47], and counterfactual
regression (CFR) [39].

o Network deconfounder. These methods assume that there
is a graph connecting different units. They mitigate con-
founding biases by using the graph structure as a proxy
for hidden confounders. We use the network deconfounder
(NetDeconf) [12] and the dynamic network deconfounder
(DNDC) [26].

e DeeplV. This method [16] uses instrumental variables to
mitigate the confounding biases. For each node i, we take
the i-th row in the adjacency matrix as its IV.

We use the implementation released in the EconML package® for
S-Learner, causal forest, and DeepIV.

4.3 Evaluation Metrics

We adopt two widely-adopted metrics for treatment effect estima-
tion, including Rooted Precision in Estimation of Heterogeneous
Effect (PEHE) [17] and Mean Absolute Error (ATE) [49] at each

timestamp p:
[ 1 Z ~
6j;’EHE = \/ﬁ i€[N] <Tip - TIP)Z’ (21)

1 1
P P - —
€are = Iy Zie[N] TN Zie[N] 7l (22)
For all the experiments, we calculate the average values of these

metrics over all timestamps, and still denote them by /epgyE and
eark for simplicity.

4.4 Setup

For all datasets, we randomly split them into 60%/20%/20% train-
ing/validation/test data. By default, we focus on the dynamic setting
and set the number of training epochs as 2000, the learning rate
as 0.004, the dimension for node representation and history em-
bedding as 32 and 20, respectively, A = 0.5, § = 0.5. We report the
mean and standard deviation of performance over ten repeated
executions on test data. More details of experiment setup are in
Appendix B.

4.5 RQ1: Performance of Different Methods

To demonstrate the effectiveness of the proposed method, in Table 2,
we show the treatment effect estimation performance of our method
and the baselines in both static and dynamic settings. We observe
that in both settings, the proposed method NEAT outperforms
other baselines in different metrics. We attribute the improvement
to two key factors: 1) We explicitly incorporate the graph structure
to model the treatment assignment. During this process, we can
better utilize the observational data for treatment effect estimation.
Among the baselines, SL, CF, and CFR do not consider the graph
which connects different units; NetDeconf and DNDC can leverage
graph structure, but they use the graph as a proxy to infer the
hidden confounders. These methods, however, do not fit in well in

!https://github.com/microsoft/EconML
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Table 2: Performance of treatment effect estimation for different methods.

Static Dynamic
Method Random Transaction Social Random Transaction Social
VEPEHE €EATE VEPEHE €EATE VEPEHE €EATE VEPEHE €ATE VEPEHE €EATE VEPEHE €EATE

SL 67.2+30 7.3x05 40.9+14 7.1x03 483+25 9.2:07 | 69.4+31 7.7+x04 55.8=+18 8.4:06 45314 6.5203
CF 33.7+21  7.0x02 30.9+18 6.9+03 23.6+x1.1 5.9=x04 | 36.2+24 7.4x06 39.6x12 6.2x04 31.4x10 5.8+04
CFR 28.1+24 6.3x05 34.4+23 5.6+09 27.3x20 5.2=x05 | 33.3+27 6.7+04 30.0x26 5.9x04 27.7+22 6.0x05
NetDeconf | 35.6+3.0 6.2+03 28.6+20 5.8+x07 30.5+27 6.3204 | 34.0+25 6.8207 29.4x15 6.1x05 329222 581038
DNDC 32.9+24 6.8+03 29.8+22 6.0x05 33.2+31 6.6+07 | 29.9+22 6.2z04 28918 57x05 35830 6.4+07
DeepIV 31.0+23 5.9zx04 26.7+19 54x06 21.4+16 5.1x03 | 32.2x31 5.8=x05 30.2+19 5.8x04 24.1x18 5.6x06
NEAT 22.4+18 5.2x03 18.8x14 4.6x04 17.9x12 4.1x05 | 20.1x1.4 5.0x02 22.5x10 53203 18.2x16 5.0zx04

120| === SLearner®® @ Netdecon Deepr‘ 12 45 10

100| == CF EEE DNDC NEAT 10 40 9
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Figure 3: Treatment effect estimation performance under dif-
ferent levels of treatment entanglement on Random dataset.
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Figure 4: Treatment effect estimation performance under
different levels of hidden confounders on Random dataset.

the problem setting studied in this paper. 2) We utilize the graph
structure as an instrumental variable to eliminate the confounding
biases. Among the baselines, SL, CF, and CFR are based on the
unconfoundedness assumption; NetDeconf and DNDC assume the
hidden confounders can be inferred from the graph structure. These
assumptions cannot be satisfied in our datasets. DeepIV also takes
the graph information as an instrumental variable to handle hidden
confounders, but its performance is impeded due to the lack of
proper techniques to handle graph data.

4.6 RQ2: Performance under Different Levels of
Treatment Entanglement and Confounders

To evaluate our method more comprehensively, we test it under
different levels of treatment entanglement. In the simulation, we
control the treatment entanglement with parameter A: the larger

Figure 5: Ablation study for different variants of NEAT on
Random dataset.
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Figure 6: Parameter study for NEAT on Random dataset.

A is set, the stronger the treatment assignment of each node is
entangled with neighbors. Fig. 3 shows the causal effect estima-
tion performance when we set A as different values. Generally, we
observe more obvious performance gain when A is larger. This ob-
servation indicates that our method can well handle the entangled
treatments by leveraging the graph structure. We only show the
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Table 3: Estimated treatment effect of roommate number on
MRSA infection in different populations of patients.

Population T=0 T=1 T=2
All 0 0.025 £ 0.002 0.082 + 0.004
General Surgery 0 0.016 £ 0.002 0.058 + 0.003
Intensive Care 0 0.033 £0.003 0.119 + 0.005
Gerontology 0 0.024 £ 0.002 0.082 + 0.004

results on the Random dataset, but similar observations can also be
found on other datasets.

We also evaluate our method under different levels of hidden
confounders. In Fig. 4, we show the results when we change the
strength of hidden confounders. Specifically, we change the strength
by multiplying the hidden confounders in simulation with the pa-
rameter f§ > 0. From Fig. 4, it can be observed that compared with
baselines, our method is more robust with hidden confounders.
This is because we effectively utilize the graph as an instrumental
variable to mitigate confounding biases.

4.7 RQ3: Ablation Study

To verify the effectiveness of each component in our method, we
conduct an ablation study including the following variants: (1)
NEAT-NT: In this variant, we replace the treatment modeling mod-
ule with a random sampling over the space of treatment assignment;
(2) NEAT-NG: In this variant, we do not use the graph in treatment
modeling, and replace the input adjacency matrix with an identity
matrix. (3) NEAT-NH: In this variant, we remove the RNN in our
method and do not use historical information. Fig. 5 reports the
performance of our method and these variants. The results show
that all the different components contribute to the final superior
performance of our method.

4.8 ROQ4: Parameter Study

To investigate the performance of our proposed method under
different parameter settings, we vary the parameters including:
learning rate in range of {le — 4, le — 3, 1le — 2, 1e — 1}, number of
epochs in the range of {100, 300, 500, 1000}, node representation di-
mension d; € {16, 32, 64, 128}, and historical embedding dimension
dm € {16, 32, 64, 128}. From the results shown in Fig. 6, we observe
that our method is generally not sensitive to parameter setting, but
proper choices of parameters still benefit the performance.

4.9 Case Study on Real-world Hospital Data

Methicillin-resistant Staphylococcus aureus (MRSA) is a difficult-
to-treat pathogen (owing to multi-drug resistance) that is known
to spread efficiently within hospitals via contact. One important
avenue of hospitalized patient-to-patient MRSA transmission is
thought to be through contamination of hospital room surfaces
and equipment [29]. In addition, patients may be more or less
susceptible to acquiring MRSA given individual factors [40], and
MRSA transmission rates may vary according to particular hospital
wards (or hospital units) [32].
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Table 4: Estimated treatment effect of hospital unit type on
MRSA infection.

Hospital Unit Type Estimated ATE
General Surgery 0 (baseline)
Intensive Care 0.135 £ 0.002
Gerontology 0.138 + 0.004
Transitional Care —0.042 + 0.006
Internal Medicine 0.000 + 0.002
Cardiology 0.072 £ 0.004
Orthopedic Surgery 0.000 + 0.001
Gastroenterology 0.000 =+ 0.001
Hematology and Oncology  —0.083 + 0.005

The MRSA dataset contains observational data including patient
covariates, room-sharing information, and MRSA test record from
a real-world hospital. We construct a room-sharing network, in
which an edge connects two patients (nodes) if and only if they
have appeared in at least one same room simultaneously. We use
our method to investigate the following causal questions: (1) How
does the number of in-room contacts causally influence the MRSA
infection risk? (2) How do other treatments, such as the type of hos-
pital unit (e.g. Cardiology, Internal Medicine, etc.) causally influence
the MRSA infection risk? As the ground-truth causal model is un-
known, it is infeasible to evaluate our method on this dataset with
the aforementioned metrics. Instead, we show some case studies
and verify our key findings with domain knowledge.

For the first question, we map the number of in-room contacts
into three levels of treatment. Here, treatments 0, 1, 2 represent the
roommate number from low to high. We take T = 0 as the control
group, and calculate the treatment effect for T = 1 and T = 2 by
comparing the estimated potential outcomes of them with the case
of T = 0, respectively. Table 3 shows the estimated averaged treat-
ment effect (ATE) of roommate number on MRSA infection over
all the patients, and also shows the estimated conditional averaged
treatment effect (CATE) conditioned on each subpopulation of pa-
tients in a specific group of rooms. From the results, we observe
that: 1) In general, the increase in roommate number could result
in an increase in MRSA infection risk. This observation holds in
the whole population and different subpopulations. As MRSA is
contagious through physical contact, this observation is consistent
with domain knowledge. 2) The CATE of roommate number on
MRSA infection is the strongest in Intensive Care and Gerontology.
In Intensive Care, it is frequent for patients to share devices such
as ventilators, which leads to a more severe risk of infection when
the number of in-room contacts increases. Besides, most patients in
Gerontology rooms are older adults with comorbidities associated
with MRSA susceptibility (i.e., age >79, prior nursing home resi-
dence, antibiotic exposure, dementia, stroke, or diabetes), which
brings a higher risk for acquiring MRSA from the environment
with more physical contact [41].

For the second question, we take the hospital unit type as treat-
ment, and show the estimated ATE of each hospital unit type on
MRSA infection in Table 4. Here, we take General Surgery as the
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baseline treatment (control group). From Table 4, we observe that
staying in Intensive Care and Gerontology rooms increases the
MRSA infection risk most obviously. The reason might lie in the
properties of these units (equipment sharing in the intensive care
units, and more MRSA carriers in Gerontology). We also observe
a relatively low treatment effect among beds in Transitional Care
and Hematology/Oncology units. Most of these rooms are private
(as opposed to other semi-private or 2-patient shared rooms), and
may lead to less infection risk.

5 RELATED WORK

In this section, we introduce some representative studies related to
this work, including causal inference on graph data and instrumen-
tal variable analysis.

Causal inference on graph data. Causal inference on graph data
has recently attracted arising attention [12, 26, 31, 48, 51]. Under
this broad area, the topics which are most related to this work
include: 1) Entangled treatment: a few initial explorations [44, 45]
have been made for entangled treatment. These works discuss the
challenges of entangled treatment modeling, and extend the tradi-
tional propensity score method for this problem. In our work, we
do not limit the method to be propensity score-based, and consider
a more general setting of entangled treatment with unknown treat-
ment function, hidden confounders, and dynamic data. 2) Network
deconfounding: A line of works [12, 26] leverage the graph struc-
ture among units to capture the hidden confounders. Netdeconf
[12] develops a GCN-based framework to learn the representa-
tions of hidden confounders, and adjusts for the confounders on
top of the learned representations. DNDC [26] further proposes to
learn time-varying confounder representations from observational
dynamic graphs. Although we also allow the existence of hidden
confounders, our work differs from their application scenarios, as
we focus on the setting in which the graph structure is an IV rather
than a proxy for confounders. 3) Network interference: Traditional
causal effect estimation studies are based on the Stable Unit Treat-
ment Value (SUTVA) assumption [34, 35] that the treatment of each
unit does not causally affect the outcome of other units (i.e., inter-
ference does not exist). However, interference often exists between
connected units in graph data [2, 5, 52]. There have been many
works [2, 19, 27, 28, 43, 50] addressing the problem of causal infer-
ence under interference. Our work differs from them as we do not
assume the existence of interference in graphs. Instead, we focus
on the case when the graph influences the treatment assignment.

Instrumental variable. Hidden confounders can bring biases in
causal effect estimation. Different from most causal inference meth-
ods which assume that all the confounders are observed, instrumen-
tal variable (IV) based methods provide an alternative approach to
identifying causal effects even with the existence of hidden con-
founders. One of the most well-known lines of IV studies is two-
stage methods [1, 8, 16, 30]. The two-stage least squares method
(2SLS) [1] is the most representative work in this line, which first
fits a linear model to predict treatment with features and I'Vs, and
then fits another linear model to predict the outcome with the fea-
tures and the predicted treatment. 2SLS is based on two strong
assumptions: homogeneity (treatment effect is the same for differ-
ent units) and linearity (the linear models are correctly specified).
There have been many follow-up works to relax these assumptions.
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DeeplV [16] is a neural network-based two-stage method that al-
lows nonlinearity and heterogeneity. Another line of IV studies
is based on the generalized method of moments (GMM) [15, 24].
Among them, DeepGMM [4] leverages the moment conditions to
identify the counterfactual generation function and estimate causal
effects. But most of the existing IV studies focus on instrument
variables in simple structures, such as scalars and vectors.

6 CONCLUSION

In this paper, motivated from the task of investigating the impact
of close contact on MRSA infection in a room-sharing network, we
studied the problem of causal effect estimation under entangled
treatment. We discussed the related challenges and applications of
this problem. To address this problem, we proposed a novel method
NEAT, which leverages the graph structure to better model the
treatment assignments, and mitigates the confounding biases by
using the graph structure as an instrumental variable. Considering
the fact that the observational data is often time-varying in the
real world, we further generalize the problem to a dynamic setting.
Extensive experiments on synthetic, semi-synthetic, and real-world
graph data validate the effectiveness of the proposed method. Es-
pecially, the validation of our method on real-world data provides
insights for its future applications in real-world clinical studies. In
the future, interesting directions of entangled treatment modeling
on graphs include incorporating different levels of graph informa-
tion (e.g., local-level and global-level) in treatment modeling, and
considering entanglements in different types of graph data such as
heterogeneous graphs and knowledge graphs.
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A ANALYSIS

In this section, we provide a more detailed analysis of the proposed

method. Again, the outcome generation function defined in Eq. (5)
is:

YP = Y (TP, XP, MP) + g(UP). (23)

Inspired by [16], a counterfactual prediction function is defined as:

H(TP, XP, MP) = Y (TP, XP, MP) + E[g(UP)|XP, MP].  (24)

Here, H (TP, XP, MP) is what we aim to estimate. As the hidden
confounders U? cannot be observed, it is difficult for classical meth-
ods to directly fit this function from observational data. Fortunately,
based on the assumptions mentioned in Section 2.2, we have:

E[yP |XP’MP’AP] = E[y(TP,Xp,Mp) +g(Up)|XP,MP,Ap]
=E[Y (TP, XP, MP)|XP, MP, AP]
+E[g(UP)|XP, MP, AP]
=E[Y (TP, XP, MP)|XP, MP, AP]
+E[g(UP)IXP, MP]

=/y(Tp,XP,MP)dT(TP|XP,MP,AP)
+/E[g(UP)|Xp,Mp]dT(TP|XP,MP,AP)

= [ e xe mprar arixe. e, a),

(25)
where F (T?|XP, MP, AP) is the conditional distribution of treat-
ment. Here, H can be estimated with an inverse problem based on
observable functions E[Y?|X?P, MP  AP] and F (TP|XP, MP, AP).In
our two-stage IV analysis, the first stage can model F (T? | X?, MP, AP),
and the second stage can model H (TP, XP, MP).

B DETAILS OF EXPERIMENTS

In this section, we introduce more details of the experimental setup
for the reproducibility of the experimental results.

B.1 Baseline Settings
Here are more details for the settings of each baseline:
e S-Learner: We use linear regression as the estimator in S-
Learner.
e Causal forest: We set the number of trees as 100, the mini-
mum number of samples required to be at a leaf node as 10,
and the maximum depth of the tree as 10.
o Counterfactual regression: The number of epochs is set
as 500, the learning rate is 0.001, the batch size is 4000, the
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representation dimension is 25. We choose Wasserstein-1
distance [39] for representation balancing.

e NetDeconf: We set the number of epochs as 500, the learn-
ing rate as 0.005, the representation dimension as 32, and
the representation balancing weight as 0.5.

e DNDC: We set the number of epochs as 800, the learning
rate as 0.001, and the representation dimension as 32.

e DeeplIV: We use the default parameter setting in the EconML
package.

B.2 Experiment Settings

All the experiments in this work are conducted in the following
environment:

e Ubuntu 18.04

e Python 3.6

e Scikit-learn 1.0.1

e Scipy 1.6.2

e Pytorch 1.10.1

e Pytorch-geometric 1.7.0
e Networkx 2.5.1

e Numpy 1.19.2

e Cuda 10.1

B.3 Dataset Details

Transaction. This dataset is collected from the anti-money laun-
dering (AML) financial system [3, 6] which provides transaction
records between users over time. At each timestamp, we construct a
transaction network to represent the transactions occurring inside
this timestamp. In the transaction network, each user is represented
by a node, and a transaction is an edge between users. We use the
user profiles such as location as their covariates.

Social. This dataset contains a real-world social network of people
at different timestamps based on tracking from smart devices [9].
Each node represents a user, and each edge represents a friendship
between two users.

B.4 Simulation Details

By default, in our potential outcome simulation, we generate the
elements in ®, from a random Gaussian distribution N (0, 0.1%),
and O from N (0, 0.05?). In the dynamic setting, we generate the
weights W/ with random sampling from N (1 - (r/R), (1/R)?). In
this way, when r is larger, the weights become smaller. This is
consistent with the general observation that earlier information
has weaker influence on the future data.
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