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ABSTRACT
Recommender systems (RSs) have become an indispensable part of
online platforms. With the growing concerns of algorithmic fair-
ness, RSs are not only expected to deliver high-quality personalized
content, but are also demanded not to discriminate against users
based on their demographic information. However, existing RSs
could capture undesirable correlations between sensitive features
and observed user behaviors, leading to biased recommendations.
Most fair RSs tackle this problem by completely blocking the influ-
ences of sensitive features on recommendations. But since sensitive
features may also affect user interests in a fair manner (e.g., race
on culture-based preferences), indiscriminately eliminating all the
influences of sensitive features inevitably degenerate the recommen-
dations quality and necessary diversities. To address this challenge,
we propose a path-specific fair RS (PSF-RS) for recommendations.
Specifically, we summarize all fair and unfair correlations between
sensitive features and observed ratings into two latent proxy medi-
ators, where the concept of path-specific bias (PS-Bias) is defined
based on path-specific counterfactual inference. Inspired by Pearl’s
minimal change principle, we address the PS-Bias by minimally
transforming the biased factual world into a hypothetically fair
world, where a fair RS model can be learned accordingly by solv-
ing a constrained optimization problem. For the technical part, we
propose a feasible implementation of PSF-RS, i.e., PSF-VAE, with
weakly-supervised variational inference, which robustly infers the
latent mediators such that unfairness can be mitigated while nec-
essary recommendation diversities can be maximally preserved
simultaneously. Experiments conducted on semi-simulated and
real-world datasets demonstrate the effectiveness of PSF-RS.

CCS CONCEPTS
• Information systems→ Recommender systems; • Mathe-
matics of computing→ Causal networks.
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1 INTRODUCTION
As content grows exponentially on the web, recommender systems
(RSs) are becoming increasingly critical in modern online service
platforms [51]. RSs capture user interests based on their historical
behaviors [17, 40], profiles [11, 54], and the content of items they
have interacted with [48, 53], aiming to automatically deliver new
items tailored to users’ personalized interests. Nevertheless, the
observed user behaviors may be unfairly correlated with certain
sensitive user features, such as gender, race, and age, which can
be unintentionally captured by the RSs and perpetuate into future
recommendations [25]. Consequently, users may find the recom-
mended items offensive, especially when people’s concerns for
discrimination have grown substantially over time [9, 10, 34, 37].

In recent years, considerable efforts have been devoted to promot-
ing fairness of RSs from both academia and industry [44]. From the
industry’s perspective, several platforms are beginning to provide
interfaces to encourage users to report potentially unfair recommen-
dations when using the platform [12, 23]. Meanwhile, researchers
are investigating new approaches to incorporate fairness-aware
mechanisms into RSs (i.e., fair RSs) to avoid discrimination. Early
fair RSs mainly rely on statistical parity to evaluate the fairness
of recommendations. For instance, demographic parity demands
the same positive rate (e.g., the probability of recommending an
item) for different user groups. However, recent research demon-
strates that statistical parity may not be adequate to reason with
fairness, as different causal relations between sensitive features and
outcomes may result in divergent conclusions [22]. For example, in
the Berkeley admission dataset, the lower admission rate of female
applicants is because females tend to apply for difficult departments
[3], and naively increasing the acceptance of female applicants to
achieve statistical parity may be unfair to male applicants. There-
fore, causality-aware fairness gains more attention, where causal
models are established with domain knowledge to reason with the
causal influence of sensitive features on the observed outcomes and
prevent it from negatively influencing future decisions [26].

Existing causality-aware fair RSs mainly seek to eliminate all
causal effects of sensitive features on recommendations, e.g., by
constraining the user latent variables learned from observed ratings
to be independent of sensitive features via strategies such as adver-
sarial training [43] or maximum mean discrepancy minimization
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[30]. However, a dilemma for these methods is that, most of these
features may also influence user interest in a fair manner. Take race
as an example. Indeed, race can be associated with various negative
social stereotypes, and recommendations based on these stereo-
types can be offensive to users. However, race can also determine
users’ cultural background [42], such as accustomed tablewares,
etc., and recommending chopsticks to East-Asian users is rarely
considered offensive for online shopping platforms. Consequently,
indiscriminately eliminating all the causal influence of race on rec-
ommendations may degenerate the cultural diversity critical for
personalization. Another widely acknowledged example is from
Pearl [39], which states that the education level of job applicants
should not affect job recommendations based on negative stereo-
types, but may indirectly influence the decision via certain job-
related applicant features correlated with education level, such as
skills. Therefore, a better strategy to achieve fair RS is path-specific
causal analysis, where only unfair correlations between sensitive
features and observed ratings are eliminated in recommendations.

However, the problem remains difficult because of the following
multifaceted challenges. First, a prerequisite for most path-specific
causal inference algorithms is the prior knowledge of the causal
model, where factors that lead to fair or unfair correlations between
sensitive features and outcomes are known and measured in ad-
vance [8, 21, 36, 46]. However, this assumption does not hold for
RSs, as factors that causally determine the observed user behaviors
are usually latent, which makes it difficult to judge whether or not
they mediate the fair influences of sensitive features and can be
generalized to other users. In addition, although recent awareness
of fair RS from the industry has made it possible to collect poten-
tial unfair recommendations based on users’ feedback to facilitate
the identification of unfair latent mediators of sensitive features,
such observations are usually extremely sparse, and it is difficult to
ensure fairness for users with sparse or no known unfair items (i.e.,
path-specific fairness for RS suffers from cold-start issues [27]).

To address the aforementioned challenges, we propose a novel
path-specific fair RS (PSF-RS) for recommendations. We first estab-
lish a causal graph to reason with the causal generation process of
the biased observed ratings, assuming that the fair and unfair corre-
lations between sensitive features and the observed ratings can be
summarized into two latent proxy mediators. We then define the
concept of path-specific bias (PS-Bias) based on path-specific coun-
terfactual analysis on the causal graph, where we demonstrate that
naive RSs can be unfair even if they do not explicitly use users’ sensi-
tive features for recommendations. To remedy the bias, inspired by
Pearl’s minimal change principle [39], we minimally transform the
biased factual world into a hypothetically fair world with zero PS-
Bias, where a fair RS model can be learned accordingly by solving a
constrained optimization problem. We demonstrate that although
existing fair RSs can also achieve zero PS-Bias, their modification
of the biased factual world is not minimal, which destroys causal
structures necessary for the diversities in recommendations. In
contrast, PSF-RS eliminates the PS-Bias while maximally preserv-
ing the fair influences of sensitive features simultaneously. For the
technical part, we propose a feasible implementation of PSF-RS, i.e.,
PSF-VAE, with weakly-supervised variational inference, where the
latent proxy mediators of sensitive features can be inferred for all
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Figure 1: Causal graph that depicts the generation process of
the observed ratings 𝑅 and semi-observed unfair items 𝑅𝑏 .

users with weak supervisions from the extremely sparse known
unfair items. The contribution of this paper can be summarized as:
• To the best of our knowledge, we are the first to investigate
path-specific fairness for RSs to ensure fairness while maximally
preserving the necessary diversities in recommendations.
• Theoretically, a novel path-specific fair RS (PSF-RS) is proposed
based on latent mediation analysis and path-specific counterfac-
tual analysis, which minimally alters the biased factual world
into a hypothetically fair world, where a fair RS can be learned
accordingly by solving a constrained optimization problem.
• A feasible implementation of PSF-RS, i.e., PSF-VAE, is proposed
based on weakly-supervised variational inference, where the
fairness of recommendations can be generalized to users with
sparse or no observed unfair item recommendations.

2 THEORETICAL ANALYSIS
2.1 Task Formulation
The focus of this paper is on fairness of recommendations with
implicit feedback [18]. Consider a dataset D = {(r𝑖 , s𝑖 , x𝑖 )}𝐼𝑖=1 of
𝐼 users, where r𝑖 ∈ {0, 1}𝐽 is a binary vector indicating whether
user 𝑖 has interacted with each of the 𝐽 items, s𝑖 ∈ R𝐾𝑠 denotes
the sensitive user features such as race, gender, etc., and x𝑖 ∈ R𝐾𝑥
denotes the non-sensitive user features that are not causally de-
pendent on s𝑖 . Features s𝑖 are sensitive in that carelessly basing
recommendations on themmay result in discrimination. In addition,
due to the increasing awareness of fair RS from the industry, for a
subset of users, we also collect certain items that each may consider
unfair if these items are explicitly recommended (e.g., through self-
reported unfair recommendations). We use another binary vector
r𝑏,𝑖′ ∈ {0, 1}𝐽 to indicate the known unfair items for user 𝑖′. r𝑏,𝑖′ is
extremely sparse and is unavailable for the majority of the users1.

Observing the dilemma that sensitive features can both unfairly
correlate with the observed ratings and causally influence user inter-
ests, the purpose of this paper is to design a path-specific fair RS that
maximally eliminates the former while maximally preserving the
latter, such that fairness can be achieved while necessary diversities
in recommendations can be maximally preserved simultaneously.

2.2 Causal Model and Assumptions
Throughout this paper, we assume that the causal graph that gen-
erates the observed biased ratings 𝑅 and the semi-observed unfair
items 𝑅𝑏 can be represented by Fig. 1, where the edges denote the
direction of causal influences. The details are introduced as follows.
1In the remainder, the subscripts 𝑖 and 𝑖′ would be omitted if no ambiguity exists. The
capital non-boldface symbols 𝑅, 𝑆,𝑋, 𝑅𝑏 are used to denote the random vectors.
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2.2.1 User Fair Latent Variable. Most existing probabilistic RSs
aggregate the hidden factors that causally determine the observed
user behaviors 𝑅 into the user latent variable 𝑈 [18, 24, 28], which
is usually assumed to be causally influenced by user features 𝑆 and
𝑋 [26]. Existing fair RSs consider all the variation of 𝑈 due to 𝑆
as unfair and indiscriminately eliminate them when making new
recommendations. However, we postulate that for each user, we
can find 𝑈𝑓 ∈ R𝐾𝑓 contained in 𝑈 that mediates the fair influence
of 𝑆 on 𝑅 (or has no causal relations with 𝑆). We name 𝑈𝑓 the user
fair latent variable.𝑈𝑓 has the property of being resolving2 for 𝑆 in
that any influence of 𝑆 on 𝑅 mediated by 𝑈𝑓 should be preserved
to facilitate necessary diversities in recommendations. For example,
sensitive feature race can determine a user’s cultural preference 𝐶𝑡
(could be several dimensions of 𝑈 ), which is a crucial factor that
determines users’ personalized interest. Therefore, 𝐶𝑡 should be
subsumed in𝑈𝑓 such that the causal influence of 𝑆 on𝑅mediated by
𝐶𝑡 , which can be denoted by a causal path 𝑆 → 𝐶𝑡 → 𝑅, is allowed
to be captured by RSs to promote culture-tailored recommendations.

2.2.2 User Bias Latent Variable: The Proxy Mediator. In ad-
dition, we use the user bias latent variable 𝑈𝑏 ∈ R𝐾𝑏 to summarize
the remaining variations of 𝑈 due to 𝑆 , which captures the unfair
correlations between sensitive features 𝑆 and the observed ratings
𝑅 in the collected data. The unfair influence of 𝑆 mainly lies in two-
fold. From the users’ perspective, sensitive features 𝑆 can determine
some social stereotypes𝐶𝑏 (which could be some other dimensions
of 𝑈 ) associated with certain demographic groups. Although some
users may behave just according to the stereotypes (which leads
to another causal path from 𝑆 to 𝑅, i.e., 𝑆 → 𝐶𝑏 → 𝑅), we should
not generalize them to other users with the same sensitive features.
In addition, the unfair influence of 𝑆 can also be attributed to the
previous RS, where items unfairly associated with certain demo-
graphic groups may be overly exposed to these users that bias their
behaviors [29]. Formally, the assumption that describes the unfair
correlations between 𝑆 and 𝑅 can be summarized as follows:

Assumption 1. The unfair correlations between 𝑆 and 𝑅 are com-
posed of (1) the direct effect of 𝑆 on 𝑅; (2) all indirect mediated effects
of 𝑆 on 𝑅 not resolved by 𝑈𝑓 , where the latter is assumed to be able
to be summarized by a one-step latent proxy mediator 𝑈𝑏 ∈ R𝐾𝑏 .

The above assumption of unfair correlations between 𝑆 and 𝑅 is
based on the skeptical view of Kilbertus et al. [21], which states that
all potential influences of sensitive features on outcomes should be
assumed as discriminatory unless they can be justified by a resolv-
ing mediator, which is the user fair latent variable 𝑈𝑓 in our case.
We summarize all indirect unfair influences of 𝑆 into a user bias la-
tent variable𝑈𝑏 because it is intractable to enumerate and measure
all unfair mediators of sensitive features (e.g., all discriminatory
stereotypes). One sufficient condition that allows such a substitu-
tion is that𝑈𝑏 blocks every mediated unfair path between 𝑆 and
𝑅 while unblocking every fair path resolved by 𝑈𝑓 . This could
be the case where all unfair mediators of 𝑆 causally determine 𝑈𝑏
and through which influence 𝑅, which is a common assumption in
latent mediation analysis [1, 7]. Since our primary task is to analyze
the fair and unfair influences of sensitive features 𝑆 on the observed
2For readers without much background knowledge in causal inference, we provide
simple and intuitive definitions for the terms highlighted in bold in Appendix A.
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Figure 2: Comparisons between potential outcome that sets
sensitive features 𝑆 to s′ and nested potential outcome that
sets 𝑆 to different values along different causal paths.

ratings 𝑅, other exogenous variables that causally determine 𝑈𝑓
and𝑈𝑏 are omitted and summarized into their uncertainties.

2.2.3 Path-Specific Counterfactuals. After introducing the la-
tent factors𝑈𝑓 and𝑈𝑏 that mediate the fair and unfair influences of
sensitive features 𝑆 on observed ratings 𝑅 and the causal graph in
Fig. 1, we are ready to define the unfairness inherent in the dataset
D, which is a crucial first step toward achieving fairness in RSs.

According to the causal graph in Fig. 1, we can represent the
variation of 𝑅 due to 𝑆 (with fixed 𝑋 ) in D with the distribution
𝑝 (𝑅 |𝑆, 𝑋 ), which is governed by latent mediators𝑈𝑓 ,𝑈𝑏 as follows:

𝑝 (𝑅 |𝑆, 𝑋 ) = E𝑝 (𝑈𝑓 |𝑆,𝑋 ),𝑝 (𝑈𝑏 |𝑆 )
[
𝑝 (𝑅 |𝑈𝑓 ,𝑈𝑏 )

]
, (1)

where F = {𝑝 (𝑅 |𝑈𝑓 ,𝑈𝑏 ), 𝑝 (𝑈𝑓 |𝑆, 𝑋 ), 𝑝 (𝑈𝑏 |𝑆)} are the structural
equations associated with the causal graph. However, we should
note that not all variations of 𝑅 due to 𝑆 encapsulated in 𝑝 (𝑅 |𝑆, 𝑋 )
are discriminatory, as the causal influences of 𝑆 mediated by 𝑈𝑓 ,
e.g., the cultural-based preferences (𝑆 → 𝐶𝑡 → 𝑅), are crucial
manifestations of diversity and personalization in user interests.

To address the above challenge, we measure the unfair variation
of𝑅 due to 𝑆 with path-specific counterfactual inference [22], where
we determine how ratings 𝑅 will change if users’ sensitive features
𝑆 are set to a counterfactual value s′ along the unfair paths 𝑆 →
𝑈𝑏 → 𝑅 and 𝑆 → 𝑅, while maintaining its factual value s along the
fair path 𝑆 → 𝑈𝑓 → 𝑅. To achieve this objective, it is necessary to
introduce the Nested Potential Outcome (NPO) defined as follows:

Definition 2.1. We use the Nested Potential Outcome (NPO)
𝑅𝑆←s′ (𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s′ ) to denote the random variable of user rat-
ings where user sensitive features 𝑆 are set to s′ on the unfair paths
𝑆 → 𝑅 and 𝑆 → 𝑈𝑏 → 𝑅 and to s on the fair path 𝑆 → 𝑈𝑓 → 𝑅.

The NPO 𝑅𝑆←s′ (𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s′ ) can be intuitively represented
by an intervened causal graph in Fig. 2-(b). However, the uncon-
ditional NPO reasons with the intervention conducted upon the
whole population, whose factual sensitive features 𝑆 do not neces-
sarily equal s. Therefore, to constrain the NPO to users with factual
sensitive feature 𝑆 = s (and non-sensitive features 𝑋 = x) such that
the fair influence of 𝑆 = s on 𝑅 is excluded from the unfairness
measurement, we condition it on 𝑋 = x and 𝑆 = s as follows:

𝑅𝑆←s′ (𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s′ ) |𝑋 = x, 𝑆 = s. (2)

The conditional NPO described in Eq. (2) essentially reasons with
the observed ratings of hypothetical users whose sensitive features
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Figure 3: Naive RS that infers 𝑈 from 𝑅 and (possibly) 𝑆 for
rating predictions. If the inference is accurate, all influences
of 𝑆 on 𝑅 are allowed in future recommendations.

are in a "superposition" state: Their sensitive features 𝑆 preserve the
factual value 𝑆 = s along the fair path 𝑆 → 𝑈𝑓 → 𝑅 while having
the counterfactual value 𝑆 = s′ along the unfair paths 𝑆 → 𝑈𝑏 → 𝑅

and 𝑆 → 𝑅. This allows the theoretical analysis of path-specific
bias/fairness of different RS models in the following subsections.

2.3 Unfairness of Naive RSs
Based on the conditional NPO, we are now ready to formally analyze
the unfairness of naive RSs whose rating predictions are consistent
with the causal mechanisms that generate the biased observed rat-
ings. We show that even if these models do not directly use sensitive
features 𝑆 for recommendations, they can still capture the unfair
correlations between 𝑆 and 𝑅 and make biased recommendations.

2.3.1 Path-Specific Bias for Naive RSs. Naive RSs assume that
the observed ratings 𝑅 are generated from user latent variables 𝑈
via generative distribution 𝑝𝑛𝑎𝑖𝑣𝑒 (𝑅 |𝑈 )3, where 𝑝𝑛𝑎𝑖𝑣𝑒 (𝑅 |𝑈 ) and𝑈
can be obtained by maximizing the log-likelihoodL of the observed
ratings𝑅 (and possibly with the support of user features 𝑆 and𝑋 ) via
factorization [35] or variational inference [28]. The inferred 𝑈 and
the generative distribution 𝑝𝑛𝑎𝑖𝑣𝑒 (𝑅 |𝑈 ) are then used to predict new
ratings for recommendations (Fig. 3-(a)). If the learned generative
and inference distributions of the naive RSs are accurate,𝑈 captures
all latent factors that causally influence the observed user behaviors
𝑅, i.e.,𝑈 = {𝑈𝑓 ,𝑈𝑏 } (or its bijective), and 𝑝𝑛𝑎𝑖𝑣𝑒 (𝑅 |𝑈 ) is consistent
with the causal mechanism that generates the observed ratings,
i.e., 𝑝 (𝑅 |𝑈𝑓 ,𝑈𝑏 ). Therefore, the unfairness of the naive RSs can be
quantified by the path-specific effects of 𝑆 on 𝑅 through the unfair
paths on the factual causal graph, which can be defined as:

𝑃𝑆𝐵𝑖𝑎𝑠 (x, s, s′) = E
[
𝑅𝑆←s′

(
𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s′

) ���𝑋 = x, 𝑆 = s
]

− E
[
𝑅𝑆←s

(
𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s

) ���𝑋 = x, 𝑆 = s
]
.

(3)

Intuitively, for users with factual features 𝑋 = x and 𝑆 = s, path-
specific bias 𝑃𝑆𝐵𝑖𝑎𝑠 (x, s, s′) defined in Eq. (3) denotes the difference
of rating predictions from naive RSs if their sensitive features 𝑆
change to s′ along the unfair paths 𝑆 → 𝑅 and 𝑆 → 𝑈𝑏 → 𝑅, while
𝑆 is held unchanged along the fair path 𝑆 → 𝑈𝑓 → 𝑅, and the
non-sensitive features 𝑋 are held unchanged along all the paths.
𝑃𝑆𝐵𝑖𝑎𝑠 (x, s, s′) won’t be zero for naive RSs if causal path 𝑆 → 𝑈𝑏 →
𝑅 is not trivial, but the claim is not self-evident from Eq. (3), and
we show how to calculate 𝑃𝑆𝐵𝑖𝑎𝑠 (x, s, s′) in the next subsection.
3We use 𝑝𝑚𝑜𝑑𝑒𝑙 to represent the distributions assumed by an RS model, which should
be distinguished with the structural causal equations 𝑝 (with no subscription) in F
that describe the causal generative process of the biased observed ratings.
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Figure 4: Existing fair RS that constrains the inferred 𝑈 to
be independent of 𝑆 . If the constraint is satisfied, both fair
and unfair influences of 𝑆 are blocked in recommendations.

2.3.2 Calculation of PS-Bias. It is generally intractable to cal-
culate 𝑃𝑆𝐵𝑖𝑎𝑠 (x, s, s′) because it contains NPOs that reason with
hypothetical users with counterfactual sensitive features 𝑆 = s′

along the unfair paths. However, with the Sequential Ignorability
Assumption commonly used in causal mediation analysis [19], the
first counterfactual term in Eq. (3) can be calculated as follows:

E
[
𝑅𝑆←s′

(
𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s′

) ���𝑋 = x, 𝑆 = s
]

=

∫
r,u𝑓 ,u′𝑏

𝑝 (r|s′, u𝑓 , u′𝑏 ) · 𝑝 (u𝑓 |s, x) · 𝑝 (u
′
𝑏
|s′) · r

=

∫
r,u𝑓 ,u′𝑏

𝑝 (r|u𝑓 , u′𝑏 (s
′)) · 𝑝 (u𝑓 |s, x) · 𝑝 (u′𝑏 |s

′) · r,

(4)

where in the final step, we summarize the direct unfair influence of
sensitive features 𝑆 on ratings 𝑅 into𝑈𝑏 for simplicity. The rigorous
proof can be referred to in Appendix B.1. Similarly, the second
factual term in Eq. (3) can be calculated as follows:

E
[
𝑅𝑆←s

(
𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s

)
= r

���𝑋 = x, 𝑆 = s
]

=

∫
r,u𝑓 ,u𝑏

𝑝 (r|u𝑓 , u𝑏 ) · 𝑝 (u𝑓 |s, x) · 𝑝 (u𝑏 |s) · r,
(5)

where Eqs. (4) and (5) can be plugged into Eq. (3) to calculate the
𝑃𝑆𝐵𝑖𝑎𝑠 (x, s, s′). Clearly, 𝑃𝑆𝐵𝑖𝑎𝑠 (x, s, s′) for naive RSs cannot be
zero, because sensitive features 𝑆 can unfairly influence the ob-
served ratings 𝑅 via the user bias latent variable 𝑈𝑏 , which makes
the 𝑝 (𝑈𝑏 |𝑆) and 𝑝 (𝑅 |𝑈𝑓 ,𝑈𝑏 ) terms in Eqs. (4) and (5) non-trivial.

2.4 Minimal Change Principle and Over-
Fairness of Existing Fair RSs

To remedy the bias, existing fair RSs impose constraints upon the
naive RSs. An exemplar strategy is to maximize the log-likelihood
L of the observed ratings in D, i.e., D𝑅 , while constraining the
inferred user latent variables 𝑈 to be independent of the sensitive
features 𝑆 (see Fig. 4-(a)). This can be formulated as follows:

max
𝑈 , 𝑝𝑒𝑓

L
(
𝑝𝑒 𝑓 (𝑅 | 𝑈 );D𝑅

)
𝑠 .𝑡 .,𝑈 ⫫ 𝑆. (6)

The constraint can be implemented via strategies such as adver-
sarial training [26] or maximum mean discrepancy (MMD) mini-
mization [30]. To satisfy such a constraint, the causal mechanisms
𝑝 (𝑈𝑓 |𝑆, 𝑋 ) and 𝑝 (𝑈𝑏 |𝑆) that underlie the generation of the observed
ratings must be altered into 𝑝𝑒 𝑓 (𝑈𝑓 |𝑋 ), 𝑝𝑒 𝑓 (𝑈𝑏 ) by dropping the
dependence on 𝑆 , which can be represented by a new causal graph
illustrated in Fig. 4-(b) (with causal edges marked by × removed).
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Figure 5: PSF-RS that minimally changes the biased factual
world represented by Fig. 1 into a hypothetically fair world,
where a PS-Fair RS model can be learned accordingly.

We can prove that existing fair RSs can eliminate the PS-Bias if
the constraint is tight, such that 𝑈 and 𝑆 are strictly independent
(see Appendix B.2 and B.3 for details). However, it can also lead
to over-fairness issues, where the causal structure 𝑝 (𝑈𝑓 |𝑆, 𝑋 ) that
denotes the fair influences of 𝑆 on 𝑅 mediated by𝑈𝑓 is destroyed.
Therefore, necessary diversities in recommendations due to the
fair influence of sensitive features (e.g., cultural diversity) can be
undesirably lost. Essentially, the independence constraint of ex-
isting fair RSs is against the Minimal Change Principle of Pearl
[39], which states that counterfactuals (i.e., a fair rating generation
model) should be reasoned with by minimally adjusting the factual
world (i.e., the causal model that generates biased observed ratings).

2.5 Path-Specific Fairness for RSs
To address the over-fairness drawbacks of existing fair RSs, we
propose a path-specific fair RS, i.e., PSF-RS, that minimally alters
the biased factual world (represented by the causal graph in Fig.
1) into a hypothetically fair world, and based on it generates new
ratings for recommendations. Specifically, we aim to find a counter-
factual distribution 𝑝𝑝𝑠 𝑓 (𝑅 |𝑈𝑓 ,𝑈𝑏 ) close to the factual distribution
𝑝 (𝑅 |𝑈𝑓 ,𝑈𝑏 ) that causally generates the biased observed ratings
(measured by KL-divergence), while inducing a new causal model
with zero 𝑃𝑆𝐵𝑖𝑎𝑠∗ (x, s, s′)4, where other factual causal mechanisms
in F , i.e., 𝑝 (𝑈𝑓 |𝑆, 𝑋 ) and 𝑝 (𝑈𝑏 |𝑆), remain unchanged.

Assuming for now that the latentmediators𝑈𝑓 and𝑈𝑏 are known
for each user (where the inference of 𝑈𝑓 and𝑈𝑏 with weak super-
vision in 𝑅𝑏 will be thoroughly discussed in the next section), since
the observed ratings 𝑅 in the dataset D are generated according to
𝑝 (𝑅 |𝑈𝑓 ,𝑈𝑏 ), the minimization of the KL between 𝑝𝑝𝑠 𝑓 (𝑅 |𝑈𝑓 ,𝑈𝑏 )
and 𝑝 (𝑅 |𝑈𝑓 ,𝑈𝑏 ) is equivalent to the maximization of the likelihood
L of the observed ratings in D. Therefore, the objective of PSF-RS
can be formulated as a constrained optimization problem as follows:

max
𝑝𝑝𝑠𝑓

L
(
𝑝𝑝𝑠 𝑓 (𝑅 | 𝑈𝑓 ,𝑈𝑏 );D𝑅

)
𝑠 .𝑡 ., 𝑃𝑆𝐵𝑖𝑎𝑠∗ (x, s, s′) = 0, ∀x, s, s′ .

(7)
The constraint essentially restricts the family of RS models that we
can use for recommendations into the ones that induce a new causal
model with zero 𝑃𝑆𝐵𝑖𝑎𝑠∗ (x, s, s′). The simplest distribution family
that satisfies the constraint is the one that uses only𝑈𝑓 to generate
recommendations, i.e., 𝑝𝑝𝑠 𝑓 (𝑅 | 𝑈𝑓 ) (see Appendix B.4 for the proof
of zero PS-Bias for the PSF-RS). The newly-induced causal graph

4we use ∗ to distinguish the PS-Bias of new causal model induced by PSF-RS from the
PS-Bias of naive RSs that recommend according to the biased factual causal model.

that changes 𝑝 (𝑅 |𝑈𝑓 ,𝑈𝑏 ) to 𝑝𝑝𝑠 𝑓 (𝑅 |𝑈𝑓 ) while keeping 𝑝 (𝑈𝑓 |𝑆, 𝑋 )
and 𝑝 (𝑈𝑏 |𝑆) intact is shown in Fig. 5-(b) for reference.

3 PS-FAIR VARIATIONAL AUTO-ENCODER
Previous sections have demonstrated PSF-RS’s theoretical advan-
tage of achieving path-specific fairness while maximally preserving
the necessary diversities in recommendations. However, its practi-
cal implementation still faces two challenges as follows:
• First, since both fair and unfair mediators of 𝑆 , i.e., 𝑈𝑓 and 𝑈𝑏 ,
are latent, the objective of PSF-RS in Eq. (7) cannot be directly
optimized to obtain the PS-Fair rating predictor 𝑝𝑝𝑠 𝑓 (𝑅 |𝑈𝑓 ).
• In addition, although the known unfair items 𝑅𝑏 , i.e., another
indirect causal effect of 𝑆 mediated by𝑈𝑏 , can be used to infer
𝑈𝑏 and distinguish it from 𝑈𝑓 , 𝑅𝑏 is extremely sparse and is
only partially observable for a small subset of users.

To address the aforementioned challenges, we propose a novel
semi-supervised deep generative model called path-specific fair
variational auto-encoder (PSF-VAE) as the implementation of PSF-
RS. Specifically, in the factual modeling step, PSF-VAE infers 𝑈𝑓
and𝑈𝑏 from the biased observational ratings 𝑅 in the datasetD via
deep neural networks (DNNs), where user features 𝑆 and𝑋 are used
as extra covariates and 𝑅𝑏 as additional weak supervision signals.
Then, in the counterfactual reasoning step, 𝑈𝑏 that explains away
the unfair influences of 𝑆 is eliminated according to Eq. (7), and𝑈𝑓
that maximally preserves the fair influence of 𝑆 and other aspects
of user interests is utilized to generate new recommendations.

3.1 Factual Generative Process
The factual generative process of PSF-VAE is consistent with the
causal model in Fig. 1, such that latent mediators𝑈𝑓 and𝑈𝑏 can be
properly inferred from the biased observational data. PSF-VAE starts
by generating for each user the user fair and bias latent mediators
𝑈𝑓 and𝑈𝑏 from Gaussian priors 𝑝𝜃 (𝑈𝑓 |𝑆, 𝑋 ) and 𝑝𝜃 (𝑈𝑏 |𝑆) as

u𝑓 ∼ N(𝑓𝑢𝑓 ( [s| |x]), I𝐾𝑓 ), u𝑏 ∼ N(𝑓𝑢𝑏 (s), I𝐾𝑏 ), (8)

where 𝑓𝑢𝑓 and 𝑓𝑢𝑏 are two functions, [·| |·] represents vector con-
catenation, and 𝜃 denotes the trainable parameters associated with
the generative network, respectively. Then, for the small subset of
users with known unfair items r𝑏 , r𝑏 are generated from u𝑏 via
𝑝𝜃 (𝑅𝑏 |𝑈𝑏 ) parameterized as the following Bernoulli distribution,

r𝑏 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑀𝐿𝑃𝑏 (u𝑏 )), (9)

where𝑀𝐿𝑃𝑏 is a multi-layer perceptron (MLP) with sigmoid final
layer activation (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (x) = 1/(1 + 𝑒−x)). Finally, the observed
ratings r are generated from both u𝑓 and u𝑏 via 𝑝𝜃 (𝑅 |𝑈𝑓 ,𝑈𝑏 ) pa-
rameterized as the following multinomial distribution,

r ∼ 𝑀𝑢𝑙𝑡𝑖 (𝑀𝐿𝑃𝑟 ( [u𝑓 | |u𝑏 ]), 𝑁 ), (10)

where𝑀𝐿𝑃𝑟 is another MLP with softmax final layer activation, i.e.,
[𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (x)]𝑖 = 𝑒𝑥𝑖 /

∑
𝑗 𝑒
𝑥 𝑗 ; 𝑁 is the number of interacted items.

3.2 Weakly-Supervised Variational Inference
Given that the (factual) generative distributions of both 𝑅 and 𝑅𝑏
are parameterized by DNNs, and 𝑅𝑏 is only partially observable for
a small subset of users, the true posterior distributions of the latent
variables, i.e., 𝑝𝜃 (𝑈𝑓 |𝑅, 𝑆, 𝑋 ) and 𝑝𝜃 (𝑈𝑏 |𝑅𝑏 , 𝑅, 𝑆), are intractable.
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Therefore, we resort to variational inference [4, 28], where we
introduce tractable distribution families of𝑈𝑓 and𝑈𝑏 parameterized
by DNNs with trainable parameters 𝜙 , i.e., 𝑞𝜙 (𝑈𝑓 |·) and 𝑞𝜙 (𝑈𝑏 |·),
and in 𝑞𝜙 find the distributions closest to the true but intractable
posteriors measured by KL-divergence as the approximations.

The variational posterior for 𝑈𝑓 , i.e., 𝑞𝜙 (𝑈𝑓 |𝑅, 𝑆, 𝑋 ), is straight-
forward. However, for 𝑈𝑏 , we eschew the normally-adopted varia-
tional posterior𝑞𝜙 (𝑈𝑏 |𝑅𝑏 , 𝑅, 𝑆) but use𝑞𝜙 (𝑈𝑏 |𝑅, 𝑆) with𝑅𝑏 omitted
instead, such that the inference of𝑈𝑏 does not depend on the par-
tially observed 𝑅𝑏 . Therefore, it can be generalized to users with
no observed unfair items. Under such circumstances, if 𝑅 and 𝑆
contain sufficient information of 𝑅𝑏 , which can be guaranteed since
both 𝑅 and 𝑅𝑏 are under the unfair causal influence of 𝑆 mediated
by𝑈𝑏 , weak supervision signals in 𝑅𝑏 from the subset of users with
observed unfair items can still guide the training of the inference
network 𝑞𝜙 (𝑈𝑏 |𝑅, 𝑆) to provide good variational approximations.

3.3 Evidence Lower Bound
The minimization of the KL-divergence between variational and
true posterior distributions is equivalent to the maximization of
the evidence lower bound (ELBO) as (proofs see Appendix B.5)5:

𝐸𝐿𝐵𝑂 = E𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 | · ) [ln𝑝𝜃 (𝑅 |𝑈𝑓 ,𝑈𝑏 )] + E𝑞𝜙 (𝑈𝑏 | · ) [𝑝𝜃 (𝑅𝑏 |𝑈𝑏 )]
− KL[𝑞𝜙 (𝑈𝑓 |𝑅, 𝑆, 𝑋 ) | |𝑝𝜃 (𝑈𝑓 |𝑆, 𝑋 )] − KL[𝑞𝜙 (𝑈𝑏 |𝑅, 𝑆) | | 𝑝𝜃 (𝑈𝑏 |𝑆)],

(11)
which is a lower bound of the model evidence ln 𝑝𝜃 (𝑅, 𝑅𝑏 |𝑆, 𝑋 ). In
Eq. (11), the first two terms are the expected log-likelihood of 𝑅 and
𝑅𝑏 given the latent mediators 𝑈𝑓 and 𝑈𝑏 , which encourage 𝑈𝑓 and
𝑈𝑏 to best explain the observed biased ratings (where the bias in 𝑅
is explained-away from𝑈𝑓 by𝑈𝑏 ), and the last two terms are the
KL-divergence between the variational posteriors and the priors.

For users with no observed unfair items 𝑅𝑏 , the second expected
log-likelihood term E𝑞𝜙 (𝑈𝑏 |𝑅,𝑆 ) [𝑝𝜃 (𝑅𝑏 |𝑈𝑏 )] is dropped from the
ELBO, and we only use the observed ratings 𝑅 and the user sensitive
features 𝑆 to infer the corresponding user bias latent variable𝑈𝑏 via
the variational posterior 𝑞𝜙 (𝑈𝑏 |𝑅, 𝑆). For these users, when maxi-
mizing the first term of the ELBO, i.e.,E𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 | · ) [ln 𝑝𝜃 (𝑅 |𝑈𝑓 ,𝑈𝑏 )],
the inferred 𝑈𝑏 can still help explain away the unfair influence
of 𝑆 on 𝑅, such that𝑈𝑓 can focus exclusively on capturing the fair
user interests that are generalizable to future recommendations.

3.4 Disentanglement via Adversarial Training
Before introducing 𝑝𝑝𝑠 𝑓 (𝑅 |𝑈𝑓 ) that minimally changes the biased
factual world into a hypothetically fair world to make fair recom-
mendations, we note that the theoretical PS-Fairness of PSF-RS
requires a correctly specified inference model (as Eq. (7) requires
known𝑈𝑓 and𝑈𝑏 ). Especially, we need to ensure𝑈𝑓 ⫫ 𝑈𝑏 |𝑆 , which
prevents𝑈𝑓 from directly depending on𝑈𝑏 , such that the unfair
information of 𝑆 cannot be leaked to𝑈𝑓 . Since the true posteriors
of 𝑈𝑓 and 𝑈𝑏 are not guaranteed to be in the variational family
𝑞𝜙 , the unfair information of 𝑆 in 𝑈𝑏 may be leaked to 𝑈𝑓 due to
potential mis-specification of the inference model, especially when
supervision signals in 𝑅𝑏 are available only for a subset of users.

5In practice, we further simplify the ELBO by dropping the dependence of the priors of
𝑈𝑓 and𝑈𝑏 on 𝑆 and 𝑋 , i.e., u𝑓 ∼ N(0, I𝐾𝑓 ), u𝑏 ∼ N(0, I𝐾𝑏 ) . In addition, we first
optimize the𝑈𝑏 -specific terms in the ELBO, and then fix𝑈𝑏 and learn other terms.

We utilize an adversarial training-based strategy [14] to ensure
the conditional independence of𝑈𝑓 and𝑈𝑏 given 𝑆 in case of infer-
ence model mis-specification. Following [2], we first parameterize
a discriminator model 𝑝𝑑 that predicts𝑈𝑏 from𝑈𝑓 and 𝑆 as:

𝑝𝑑 (𝑈𝑏 |𝑈𝑓 , 𝑆) = N(𝑀𝐿𝑃𝑑 ( [𝑈𝑓 | |𝑆]), I𝐾𝑑 ) . (12)

Then, concurrent with the maximization of the ELBO in Eq. (11),
𝑈𝑓 and𝑈𝑏 obtained from variational posteriors 𝑞𝜙 are used to train
the discriminator 𝑝𝑑 . Specifically, we fix 𝑞𝜙 (𝑈𝑏 |𝑅, 𝑆), sample û𝑏
from it and train the discriminator 𝑝𝑑 (𝑈𝑏 |𝑈𝑓 , 𝑆) to best predict û𝑏
from 𝑈𝑓 and 𝑆 . Meanwhile, we constrain the inference model of
𝑈𝑓 , i.e., 𝑞𝜙 (𝑈𝑓 |𝑅, 𝑆, 𝑋 ), to fool the discriminator. The above process
can be formulated as a GAN-like mini-max game as follows:

min
𝑞𝜙

max
𝑝𝑑
E𝑞𝜙 (𝑈𝑓 |𝑅,𝑆,𝑋 ) [ln 𝑝𝑑 (û𝑏 |𝑈𝑓 , 𝑆)], û𝑏 ∼ 𝑞𝜙 (𝑈𝑏 |𝑅, 𝑆). (13)

With a sufficient capacity of the discriminator 𝑝𝑑 , Li et al. [26]
showed that 𝑈𝑓 ⫫ 𝑈𝑏 |𝑆 holds when the equilibrium of Eq. (13) is
achieved. Therefore, the direct dependence of 𝑈𝑓 on𝑈𝑏 that leads
to the leak of unfair information of 𝑆 can be further mitigated.

3.5 PS-Fair Rating Predictions
Finally, we introduce 𝑝𝑝𝑠 𝑓 (𝑅 |𝑈𝑓 ), the counterfactual rating genera-
tor that minimally modifies the biased factual world while ensuring
path-specific fairness and necessary diversities in recommenda-
tions. Specifically, after optimizing the "factual step" of PSF-VAE
via Eqs. (11) and (13), we fix 𝑞𝜙 (𝑈𝑓 |𝑅, 𝑆, 𝑋 ) and obtain the user
fair latent variables û𝑓 as the posterior mean. Then the PS-Fair
rating predictor 𝑝𝑝𝑠 𝑓 (𝑅 |𝑈𝑓 ) can be obtained by optimizing Eq. (7)
with the inferred û𝑓 and the observed ratings r. Specifically, we
parameterize 𝑝𝑝𝑠 𝑓 (𝑅 |𝑈𝑓 ) as the following multinomial distribution,

r ∼ 𝑀𝑢𝑙𝑡𝑖 (𝑀𝐿𝑃𝑝𝑠 𝑓 (û𝑓 ), 𝑁 ), (14)

where𝑀𝐿𝑃𝑝𝑠 𝑓 is another MLP with softmax as the last layer activa-
tion. Finally, the multinomial probabilities of all previously uninter-
acted items can be obtained via 𝑝𝑝𝑠 𝑓 (𝑅 |𝑈𝑓 ), which are then ranked
such that𝑀 most relevant ones are fetched for recommendations.

4 EXPERIMENTS
In this section, we present the extensive experiments conducted on
two semi-simulated datasets and one real-world dataset to demon-
strate the effectiveness of the proposed PSF-VAE, with an emphasis
on answering the following three research questions6:
• RQ1. How well can PSF-VAE achieve fairness compared with
different RS methods with and without fairness constraints?
• RQ2. How well can PSF-VAE preserve necessary fair influences
of sensitive features compared with existing fair RS algorithms?
• RQ3. How does the number of users with known unfair items
𝑅𝑏 influences the fairness performance of PSF-VAE?

4.1 Datasets
It is difficult to directly evaluate PSF-VAE on real-world datasets,
as the true fair and unfair causal effects of sensitive features on the
observed ratings cannot be identified from the datasets. Therefore,
we first establish semi-simulated datasets with known causal mech-
anisms between sensitive features and rating observations. We then
6Codes are available at https://github.com/yaochenzhu/PSF-VAE.

https://github.com/yaochenzhu/PSF-VAE
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Table 1: Statistics of the semi-simulated (ML-1M and AM-VG)
and the real-world (LinkedIn) datasets. #Int. stands for the
number of observed interactions. Sps. (𝑅) and Sps. (𝑅𝑏 ) denote
the sparsity of observed ratings, unfair items, respectively.

Dataset #Int. #Users #Items Sps. (𝑅) Sps. (𝑅𝑏 )

ML-1M 993,504 6, 000 3, 706 95.53% 99.76%
AM-VG 127,741 7, 253 4, 338 99.60% 99.93%
LinkedIn 1,055,241 8, 896 5, 931 98.01% 99.62%

introduce a real-world dataset collected from LinkedIn7, where for
a subset of users, their negative feedback on recommendations (i.e.,
explicit dismissals of Ads) is treated as the proxy of unfair items.

4.1.1 Semi-Simulated Dataset. The semi-simulated datasets
are established based on the widely-used MovieLens-1M (ML-1M)
[16] and Amazon Videogames (AM-VG) datasets [33]. For each
dataset, we train a Multi-VAE model [28] on the binarized ratings,
where the decoder 𝑓𝑔𝑒𝑛 = 𝑀𝐿𝑃𝑔𝑒𝑛 (u) maps the user latent variable
𝑈 ∼ N(0, I𝐾 ) to the multinomial parameters 𝑅̃ of the ratings 𝑅.
The latent dimension 𝐾 is fixed to 200 as [28]. We then assume
that the first 𝐾𝑓 and the remaining 𝐾𝑏 = 𝐾 − 𝐾𝑓 dimensions of 𝑈 ,
which we denote as 𝑈𝑓 and 𝑈𝑏 , mediate the fair and unfair influ-
ences of sensitive features 𝑆 on the observed ratings 𝑅, respectively.
In the simulation, for each user, we first generate a confounder
c ∼ N(0, I𝐾𝑓 ) that simultaneously affects u𝑓 and u𝑏 , where user
sensitive features s are derived from c by 𝑃𝐶𝐴(c, 𝐾𝑠 ). The fair and
unfair latent mediators u𝑓 and u𝑏 are then generated as follows:

u𝑓 = 𝜆𝑓 c +
√︃
(1 − 𝜆2

𝑓
)𝝐𝑓 ; u𝑏 = 𝜆𝑏𝑅𝑒𝑑𝑖𝑚(c, 𝐾𝑏 ) +

√︃
(1 − 𝜆2

𝑏
)𝝐𝑏 ,

where the exogenous variables 𝝐𝑓 ∼ N(0, I𝐾𝑓 ), 𝝐𝑏 ∼ N(0, I𝐾𝑏 ), the
function 𝑅𝑒𝑑𝑖𝑚 reduces the dimension of c to 𝐾𝑏 through random
selection, and the coefficients 𝜆𝑓 and 𝜆𝑏 determine the noise level of
u𝑓 and u𝑏 , which are empirically fixed as 0.9 and 0.9, respectively.

The observed ratings are generated from u𝑓 and u𝑏 by first
calculating the multinomial parameters r̃ = 𝑓𝑔𝑒𝑛 ( [u𝑓 | |u𝑏 ]), where
the top 100×𝑝𝑟% (ranked among all users) are selected as the rating
observations r. 𝑝𝑟 is set to be the same as the original datasets.
The unfair items r𝑏 are simulated with the sub-network 𝑓 𝑏𝑔𝑒𝑛 in
𝑓𝑔𝑒𝑛 that corresponds to u𝑏8. Similarly, we obtain the multinomial
parameters r̃𝑏 = 𝑓 𝑏𝑔𝑒𝑛 (u𝑏 ), where the top 100 × 𝑝𝑏% are selected
as the unfair items. 𝑝𝑏 is determined such that the ratio of the
average number of observed ratings and unfair items is the same
as the real-world dataset introduced later. We do not simulate non-
sensitive features x because the sequential ignorability assumption
automatically holds with the above data generation process.

4.1.2 Real-World Dataset. In addition, we collect a real-world
dataset from LinkedIn for job recommendations, where ratings 𝑅
denote users’ interactions with the job Ads. We use the data where
users actively dismissed the recommended jobs as substitutes for the
unfair items 𝑅𝑏 . User sensitive features 𝑆 include age, gender, and
education level, all of which can influence the job recommendation
7https://www.linkedin.com/.
8If we denote 𝑓𝑔𝑒𝑛 (u) as 𝑓𝑔𝑒𝑛 (Wu + b) , the subnetwork can be obtained by 𝑓 𝑏𝑔𝑒𝑛 =

𝑓𝑔𝑒𝑛 (W:,𝐾−𝐾𝑏 :𝐾u𝑏 + b) , whereW:,𝐾−𝐾𝑏 :𝐾 selects the last 𝐾𝑏 columns ofW.

in a fair manner. For example, age can determine the experience
and seniority of the users, whereas education level can determine
their knowledge and skills. To avoid privacy issues in user data
collection, we train a generative model (VAE) to encode the raw data
into a joint distribution 𝑝𝑔𝑒𝑛 (𝑅, 𝑅𝑏 , 𝑆) where 𝑆 is embedded into a
50-dimensional continuous vector, and we generate anonymized
data from 𝑝𝑔𝑒𝑛 accordingly for the experiments to protect privacy
[52]. The statistics of the datasets are summarized in Table 1.

4.2 Experimental Settings
4.2.1 Setups. In our experiments, we randomly split the users into
train, validation, and test sets based on the ratio of 8:1:1 [28]. For
each user, 20% of the observed ratings are held out for evaluation.
For the ML-1M and AM-VG datasets, the simulated unfair items r𝑏
for 100 × (1 − 𝑐𝑟 )% of the training and validation users are masked
out as zero (where 𝑐𝑟 is set to 0.3 as with the LinkedIn dataset),
while r𝑏 for all test users are used to obtain unbiased evaluations
of the fairness of different methods. In our experiments, we first
fix the simulated dimension of 𝑈𝑏 , i.e., 𝐾𝑏 , to 50 in the ML-1M and
AM-VG datasets to compare the recommendation performance and
fairness across different methods. We then simulate the datasets
with varied 𝐾𝑏 to further demonstrate the robustness of PSF-VAE
to different levels of unfair correlations between observed ratings
and sensitive features. Finally, we show the sensitivity of PSF-VAE
to the percentage of users with observed unfair items. All reported
results are averaged over ten random splits of the datasets.

4.2.2 Evaluation Metrics. We evaluate different RSs from two
aspects: recommendation performance and fairness. The recommen-
dation performance is measured by two widely-used ranking-based
metrics: Recall (R@𝑀) and truncated normalized discounted cumu-
lative gain (N@𝑀)9. Fairness is measured by the hit rate of top𝑀
items on unfair items (HiR@𝑀). For the semi-simulated datasets,
the true unfair items J𝑏,𝑖 are available for all test users, while for
the LinkedIn dataset, we can only calculate HiR@𝑀 for test users
with observed unfair items. In our experiments, we find that𝑀 gen-
erally does not affect the relative performance of different methods.
Therefore, we set𝑀 to 20 for Recall and 100 for NDCG as with [28],
and set𝑀 to 10 for HiR due to the sparsity of observed unfair items.

4.2.3 Model Selection. During the training stage, we monitor
the composite metric𝑀𝑒𝑡𝑟 𝑓 (𝑖) = R@20(𝑖) + N@100(𝑖) - HiR@10(𝑖)
on validation users with known unfair items and𝑀𝑒𝑡𝑟 (𝑖) = R@20(𝑖)
+ N@100(𝑖) on validation users with no observed unfair items, and
calculate the weighted average of𝑀𝑒𝑡𝑟 𝑓 and𝑀𝑒𝑡𝑟 , i.e.,𝑀𝑒𝑡 , over
all validation users. We then select the model with the largest 𝑀𝑒𝑡
and report the recommendation and fairness metrics on test users.

4.3 Comparisons with Baselines
4.3.1 Baseline Descriptions. To answer RQs 1 and 2, we com-
pare the proposed PSF-VAE with various state-of-the-art RSs with/
without fairness-aware mechanisms. The main baselines included
for comparisons can be categorized into four classes as follows:
• Unawareness. RSs with unawareness use only seemingly non-
sensitive information (i.e., observed ratings and non-sensitive

9We also use the recommendation quality (i.e., R@𝑀 and N@𝑀 ) as an indirect measure
of RSs’ ability to preserve the fair influences of sensitive features on ratings.

https://www.linkedin.com/
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Table 2: Comparison between PSF-VAE and various baselines.
↑ denotes the larger the better, while ↓ denotes the opposite.

AM-VG Rec: R@20 ↑ Rec: N@100 ↑ Fair: HiR@10 ↓

Multi-VAE 0.2454 ± 0.0130 0.2350 ± 0.0093 0.0297 ± 0.0030

CondVAE 0.2780 ± 0.0103 0.2599 ± 0.0058 0.0315 ± 0.0045

CondVAE-ES 0.2686 ± 0.0115 0.2493 ± 0.0061 0.0302 ± 0.0053

Fair-MMD 0.2304 ± 0.0118 0.2147 ± 0.0094 0.0279 ± 0.0025

Fair-ADV 0.2285 ± 0.0081 0.2119 ± 0.0076 0.0274 ± 0.0020

PSF-NN 0.2702 ± 0.0124 0.2549 ± 0.0095 0.0310 ± 0.0029

PSF-VAE 0.2691 ± 0.0104 0.2507 ± 0.0075 0.0288 ± 0.0032

ML-1M Rec: R@20 ↑ Rec: N@100 ↑ Fair: HiR@10 ↓

Multi-VAE 0.5493 ± 0.0133 0.6556 ± 0.0064 0.0938 ± 0.0075

CondVAE 0.5689 ± 0.0145 0.6757 ± 0.0065 0.0953 ± 0.0077

CondVAE-ES 0.5615 ± 0.0151 0.6665 ± 0.0069 0.0949 ± 0.0080

Fair-MMD 0.5312 ± 0.0119 0.6350 ± 0.0069 0.0893 ± 0.0074

Fair-ADV 0.5304 ± 0.0129 0.6348 ± 0.0060 0.0886 ± 0.0063

PSF-NN 0.5654 ± 0.0104 0.6701 ± 0.0051 0.0942 ± 0.0040

PSF-VAE 0.5601 ± 0.0148 0.6668 ± 0.0070 0.0904 ± 0.0084

LinkedIn Rec: R@20 ↑ Rec: N@100 ↑ Fair: HiR@10 ↓

Multi-VAE 0.1665 ± 0.0043 0.2553 ± 0.0046 0.0703 ± 0.0034

CondVAE 0.2056 ± 0.0037 0.3042 ± 0.0031 0.0718 ± 0.0037

CondVAE-ES 0.1991 ± 0.0047 0.2965 ± 0.0036 0.0705 ± 0.0023

Fair-MMD 0.1579 ± 0.0054 0.2398 ± 0.0066 0.0608 ± 0.0040

Fair-ADV 0.1573 ± 0.0062 0.2372 ± 0.0070 0.0591 ± 0.0034

PSF-NN 0.2032 ± 0.0024 0.3005 ± 0.0028 0.0709 ± 0.0023

PSF-VAE 0.2024 ± 0.0045 0.2987 ± 0.0034 0.0647 ± 0.0029

features) for recommendations. In this regard, the Unawareness
counterpart of PSF-VAE is the vanilla Multi-VAE [28].
• Naive. Naive RSs explicitly utilize the sensitive features 𝑆 for
recommendations. In our case, it can be implemented as a gen-
eralized Multi-VAE where the rating inputs are augmented with
the sensitive features 𝑆 . The augmentation is implemented as
with the user conditional Multi-VAE (CondVAE) in [38].
• Total Fairness. RSs with total fairness block all the effects
of sensitive features 𝑆 on recommendations. Built upon the
Unawareness model (i.e., Multi-VAE), the inferred user latent
variables 𝑈 are constrained to be disentangled from the user
sensitive features 𝑆 while fitting on the observed ratings 𝑅. We
consider the following two disentanglement strategies:
– Fair-ADV. Fair-ADV constrains the user latent variables of
Multi-VAE to be independent with sensitive features 𝑆 via
adversarial training; details can be referred to in [26].

– Fair-MMD. Fair-MMD minimizes the maximum mean dis-
crepancy (MMD) of user latent variables given sensitive fea-
tures 𝑆 in Multi-VAE [30]. Specifically, we randomly select
one dimension of 𝑆 and binarize it for the minimization.

• PS-Fairness. We consider the following naive PS-Fair strategy
for RSs, i.e., PSF-NN, where for each user, we calculate the sim-
ilarities with all users with available 𝑅𝑏 measured by sensitive
features. Then we select the 𝑁 closest neighbors, get the top 𝐾
unfair items, and remove them if they appear in the list.
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Figure 6: Comparison between PSF-VAE and baselines with
different dimension of𝑈𝑏 , 𝑖 .𝑒 ., 𝐾𝑏 , for the simulated datasets.

Finally, since a simple strategy to improve the fairness over the
Naive model is through underfitting on the observed ratings 𝑅, we
design an early-stop baseline, CondVAE-ES, which has the closest
N@100 on the validation users with PSF-VAE, to demonstrate the
fairness improvement of PSF-VAE is not due to simple underfitting.

4.3.2 Comparison Results. The comparison between PSF-VAE
and various baselines is shown in Table 2. The best results (com-
pared across four classes) are shown in bold, and the runner-ups
are underlined. In summary, we have the following observations:
(1) By utilizing all information in sensitive features for recommen-
dations, CondVAE has the best recommendation performance and
the worst fairness. (2) By simply ignoring the sensitive features, the
Unawareness model (Multi-VAE) has improved fairness over the
Naive model, while the recommendation performance is decreased
simultaneously. (3) RSs with Total Fairness further improve the
fairness over Multi-VAE, since the correlations between sensitive
features and observed ratings are removed from user latent vari-
ables. However, since the fair influences of sensitive features are
indiscriminately discarded, they also have the worst recommenda-
tion performance. (4) Although PSF-NN achieves better fairness
than CondVAE, the improvement is not significant. The reason
could be that the nearest-neighbor strategy is too crude to model
the complicated unfair influences of sensitive features on observed
ratings. (5) PSF-VAE has much better recommendation performance
than the Total Fairness models and better fairness than the Naive
and Unawareness models, because PSF-VAE only blocks the unfair
influence of sensitive features on ratings, while their fair effects on
user interests are maximally preserved for recommendations.

In addition, we set the simulated dimension of 𝑈𝑏 , i.e., 𝐾𝑏 , to
different values in the AM-VG and ML-1M datasets to change the
relative strengths of fair and unfair causal influences of sensitive
features on the observed ratings and repeat the experiments in
Fig. 6, which further demonstrates that PSF-VAE achieves a better
balance between the recommendation performance and fairness.

4.4 Ablation Study
In this section, we compare the proposed PSF-VAE with the follow-
ing variants as the ablation study to further verify its effectiveness.
• PSF-VAE-nLat removes the user bias variable𝑈𝑏 and directly
constrains the user latent variables 𝑈 in Multi-VAE to be inde-
pendent of the observed unfair items 𝑅𝑏 via adversarial training.
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Table 3: Comparisons between different variants of PSF-VAE.

AM-VG Rec: R@20 ↑ Rec: N@100 ↑ Fair: HiR@10 ↓

PSF-VAE-nLat 0.2276 ± 0.0080 0.2102 ± 0.0045 0.0270 ± 0.0022

PSF-VAE-nWSL 0.2729 ± 0.0084 0.2543 ± 0.0046 0.0299 ± 0.0021

PSF-VAE-nADV 0.2721 ± 0.0093 0.2528 ± 0.0061 0.0297 ± 0.0029

PSF-VAE-Mask 0.2624 ± 0.0096 0.2463 ± 0.0074 0.0291 ± 0.0031

PSF-VAE 0.2691 ± 0.0104 0.2507 ± 0.0075 0.0288 ± 0.0032

ML-1M Rec: R@20 ↑ Rec: N@100 ↑ Fair: HiR@10 ↓

PSF-VAE-nLat 0.5163 ± 0.0152 0.6246 ± 0.0073 0.0869 ± 0.0083

PSF-VAE-nWSL 0.5647 ± 0.0135 0.6691 ± 0.0069 0.0932 ± 0.0081

PSF-VAE-nADV 0.5630 ± 0.0149 0.6687 ± 0.0075 0.0925 ± 0.0072

PSF-VAE-Mask 0.5577 ± 0.0132 0.6659 ± 0.0063 0.0911 ± 0.0068

PSF-VAE 0.5601 ± 0.0148 0.6668 ± 0.0070 0.0904 ± 0.0084

LinkedIn Rec: R@20 ↑ Rec: N@100 ↑ Fair: HiR@10 ↓

PSF-VAE-nLat 0.1868 ± 0.0048 0.2832 ± 0.0035 0.0614 ± 0.0033

PSF-VAE-nWSL 0.2047 ± 0.0041 0.3009 ± 0.0032 0.0675 ± 0.0035

PSF-VAE-nADV 0.2032 ± 0.0046 0.3004 ± 0.0040 0.0660 ± 0.0039

PSF-VAE-Mask 0.2016 ± 0.0039 0.2969 ± 0.0051 0.0654 ± 0.0044

PSF-VAE 0.2024 ± 0.0045 0.2987 ± 0.0034 0.0647 ± 0.0029

• PSF-VAE-nWSL removes the weakly-supervised learning mod-
ule of PSF-VAE, i.e., when fitting on the biased observed ratings
𝑅 as Eq. (11), we only introduce the user bias latent variable𝑈𝑏
for the subset of users with observed unfair items 𝑅𝑏 .
• PSF-VAE-nADV removes the adversarial training module in
PSF-VAE that ensures the conditional independence between
latent mediators 𝑈𝑓 and𝑈𝑏 given user sensitive features 𝑆 .
• PSF-VAE-Mask trains the same generative and inference net-
works as PSF-VAE. However, instead of learning a new model
𝑝𝑝𝑠 𝑓 (𝑅 |𝑈𝑓 ), it masks out theweights in 𝑝𝜃 (𝑅 |𝑈𝑓 ,𝑈𝑏 ) that corre-
spond to𝑈𝑏 , which leads to a new distribution 𝑝𝑚𝑎𝑠𝑘𝑒𝑑 (𝜃 ) (𝑅 |𝑈𝑓 ),
and uses 𝑝𝑚𝑎𝑠𝑘𝑒𝑑 (𝜃 ) to make the recommendations.

From Table 3 we can find that, PSF-VAE-nLat has the worst rec-
ommendation performance among all the variants, which shows
that directly conducting adversarial training on the observed unfair
items r𝑏 is not stable, as r𝑏 are high dimensional sparse vectors.
In addition, PSF-VAE-nWSL, PSF-VAE-nADV, and PSF-VAE-Mask
have worse fairness compared with PSF-VAE, with comparable rec-
ommendation performance. The results further validate the effec-
tiveness of the weakly supervised learning and adversarial training
modules of PSF-VAE to promote PS-Fairness in recommendations.

4.5 Sensitivity Analysis
To answer RQ 3, we vary the mask rate of users with known unfair
items in the simulated datasets, i.e., 1−𝑐𝑟 , and plot the relations with
recommendation performance and fairness in Fig. 7. From Fig. 7 we
can find that, the fairness of PSF-VAE generally improves with the
increase of 𝑐𝑟 , with slight negative influences on recommendation
performance. This indicates that although PSF-VAE can perform
well with small 𝑐𝑟 , encouraging more users to provide feedback on
unfair items can further promote PS-Fairness in recommendations.
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Figure 7: Sensitivity of PSF-VAEwith different percentages of
users with observed unfair items in AM-VG, ML-1M datasets.

5 RELATEDWORK
Fair RSs. Traditional fair RSs mainly rely on statistic parity to
ensure the fairness of recommendations for users, with metrics
such as demographical parity, equalized odds, etc. [5, 15, 45, 57, 58].
However, recent research indicates that the statistical discrepancy
between the outcomes of different user groups may be well ex-
plained by some important non-sensitive factors [20, 49, 50], and
algorithms that indiscriminately enforce statistical parity may still
be biased against certain user groups or individuals [22, 31].

Causal RSs. Through a causal lens [6, 32, 56], user-oriented unfair-
ness can be viewed as a non-confounder-induced bias due to the
undesirable causal effects of sensitive features on observed user rat-
ings [47, 55]. Existing causality-aware fair RSs treat all causal effects
of sensitive features as unfair and remove them indiscriminately
[30]. In contrast, PSF-RS preserves the fair influences of sensitive
features on recommendations by identifying the fair and unfair la-
tent mediators of sensitive features, where fairness can be achieved
with the diversity of recommendations maximally preserved.

6 CONCLUSIONS
In this paper, we propose a path-specific fair recommender sys-
tem (PSF-RS) to address the unfairness in recommendations while
maximally preserving the fair influences of sensitive features on
user interest. Specifically, PSF-RS summarizes all fair and unfair
correlations between sensitive features and observed user ratings
into two latent proxy mediators, which can be disentangled with
weakly supervised variational inference based on the extremely
sparse observed unfair items. To address the bias, we minimally al-
ter the biased factual world into a hypothetically fair world, where a
fair RS is learned accordingly by solving a constrained optimization
problem. Extensive experiments show the effectiveness of PSF-RS.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation (NSF)
under grants (IIS-2006844, IIS-2144209, IIS-2223769, CNS-2154962,
and BCS-2228534), the Commonwealth Cyber Initiative Awards
(VV-1Q23-007 and HV-2Q23-003), the JP Morgan Chase Faculty
Research Award, the Cisco Faculty Research Award, the Jefferson
Lab Subcontract 23-D0163, the UVA 3Cavaliers Seed Grant, and the
4-VA Collaborative Research Grant.



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yaochen Zhu, Jing Ma, Liang Wu, Qi Guo, Liangjie Hong, and Jundong Li

REFERENCES
[1] Jeffrey M Albert, Cuiyu Geng, and Suchitra Nelson. 2016. Causal mediation

analysis with a latent mediator. Biometrical Journal 58, 3 (2016), 535–548.
[2] Alexis Bellot and Mihaela van der Schaar. 2019. Conditional independence testing

using generative adversarial networks. In NeurIPS, Vol. 32.
[3] Peter J Bickel, Eugene A Hammel, and J William O’Connell. 1975. Sex bias in

graduate admissions: Data from Berkeley: Measuring bias is harder than is usually
assumed, and the evidence is sometimes contrary to expectation. Science 187,
4175 (1975), 398–404.

[4] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. 2017. Variational inference:
A review for statisticians. J. Amer. Statist. Assoc. 112, 518 (2017), 859–877.

[5] Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. 2009. Building classifiers
with independency constraints. In ICDMW. 13–18.

[6] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan
He. 2020. Bias and debias in recommender system: A survey and future directions.
arXiv preprint (2020).

[7] Lu Cheng, Ruocheng Guo, and Huan Liu. 2022. Causal mediation analysis with
hidden confounders. InWSDM. 113–122.

[8] Silvia Chiappa. 2019. Path-specific counterfactual fairness. In AAAI, Vol. 33.
7801–7808.

[9] Yushun Dong, Jing Ma, Song Wang, Chen Chen, and Jundong Li. 2023. Fairness
in graph mining: A survey. IEEE TKDE (2023).

[10] Yingqiang Ge, Shuchang Liu, Zuohui Fu, Juntao Tan, Zelong Li, Shuyuan Xu,
Yunqi Li, Yikun Xian, and Yongfeng Zhang. 2022. A survey on trustworthy
recommender systems. arXiv preprint arXiv:2207.12515 (2022).

[11] Xue Geng, Hanwang Zhang, Jingwen Bian, and Tat-Seng Chua. 2015. Learning
image and user features for recommendation in social networks. In ICCV. 4274–
4282.

[12] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. 2019. Fairness-
aware ranking in search and recommendation systems with application to
LinkedIn talent search. In SIGKDD. 2221–2231.

[13] Madelyn Glymour, Judea Pearl, and Nicholas P Jewell. 2016. Causal inference in
statistics: A primer. John Wiley & Sons.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial
networks. Commun. ACM 63, 11 (2020), 139–144.

[15] Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of opportunity in
supervised learning. In NeurIPS, Vol. 29.

[16] F Maxwell Harper and Joseph A Konstan. 2015. The MovieLens datasets: History
and context. ACM TIIS 5, 4 (2015), 1–19.

[17] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. InWWW. 173–182.

[18] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In ICDM. 263–272.

[19] Kosuke Imai, Luke Keele, and Dustin Tingley. 2010. A general approach to causal
mediation analysis. Psychological Methods 15, 4 (2010), 309.

[20] Aria Khademi, Sanghack Lee, David Foley, and Vasant Honavar. 2019. Fairness
in algorithmic decision making: An excursion through the lens of causality. In
WWW. 2907–2914.

[21] Niki Kilbertus, Mateo Rojas Carulla, Giambattista Parascandolo, Moritz Hardt,
Dominik Janzing, and Bernhard Schölkopf. 2017. Avoiding discrimination through
causal reasoning. In NeurIPS.

[22] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfac-
tual fairness. In NeurIPS.

[23] G Roshan Lal, Sahin Cem Geyik, and Krishnaram Kenthapadi. 2020. Fairness-
aware online personalization. arXiv preprint arXiv:2007.15270 (2020).

[24] Xiaopeng Li and James She. 2017. Collaborative variational autoencoder for
recommender systems. In SIGKDD. 305–314.

[25] Yunqi Li, Hanxiong Chen, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2021.
User-oriented fairness in recommendation. InWWW. 624–632.

[26] Yunqi Li, Hanxiong Chen, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. 2021.
Towards personalized fairness based on causal notion. In SIGIR. 1054–1063.

[27] Yunqi Li, Dingxian Wang, Hanxiong Chen, and Yongfeng Zhang. 2023. Trans-
ferable fairness for cold-start recommendation. arXiv preprint arXiv:2301.10665
(2023).

[28] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational autoencoders for collaborative filtering. InWWW. 689–698.

[29] Dugang Liu, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Weike Pan, and
ZhongMing. 2020. A general knowledge distillation framework for counterfactual

recommendation via uniform data. In SIGIR. 831–840.
[30] Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard S Zemel.

2016. The variational fair autoencoder. In ICLR.
[31] Jing Ma, Ruocheng Guo, Mengting Wan, Longqi Yang, Aidong Zhang, and Jun-

dong Li. 2022. Learning fair node representations with graph counterfactual
fairness. InWSDM. 695–703.

[32] Jing Ma, Ruocheng Guo, Aidong Zhang, and Jundong Li. 2021. Multi-cause effect
estimation with disentangled confounder representation. In IJCAI. 2790–2796.

[33] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In SIGIR. 43–52.

[34] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. 2021. A survey on bias and fairness in machine learning. ACM CSUR
54, 6 (2021), 1–35.

[35] Andriy Mnih and Russ R Salakhutdinov. 2007. Probabilistic matrix factorization.
In NeurIPS.

[36] Razieh Nabi and Ilya Shpitser. 2018. Fair inference on outcomes. In AAAI, Vol. 32.
[37] Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. 2019.

Dissecting racial bias in an algorithm used to manage the health of populations.
Science 366, 6464 (2019), 447–453.

[38] Bo Pang, Min Yang, and Chongjun Wang. 2019. A novel top-N recommendation
approach based on conditional variational auto-encoder. In PAKDD. 357–368.

[39] Judea Pearl. 2009. Causality. Cambridge university press.
[40] Xubin Ren, Lianghao Xia, Jiashu Zhao, Dawei Yin, and Chao Huang. 2023. Dis-

entangled contrastive collaborative filtering. In SIGIR.
[41] Donald B Rubin. 1980. Randomization analysis of experimental data: The Fisher

randomization test comment. J. Amer. Statist. Assoc. 75, 371 (1980), 591–593.
[42] Markus Schedl, Hamed Zamani, Ching-Wei Chen, Yashar Deldjoo, and Mehdi

Elahi. 2018. Current challenges and visions in music recommender systems
research. International Journal of Multimedia Information Retrieval 7, 2 (2018),
95–116.

[43] Christina Wadsworth, Francesca Vera, and Chris Piech. 2018. Achieving fairness
through adversarial learning: An application to recidivism prediction. arXiv
preprint arXiv:1807.00199 (2018).

[44] Yifan Wang, Weizhi Ma, Min Zhang, Yiqun Liu, and Shaoping Ma. 2022. A survey
on the fairness of recommender systems. JACM (2022).

[45] Tianxin Wei and Jingrui He. 2022. Comprehensive fair meta-learned recom-
mender system. In ACM SIGKDD. 1989–1999.

[46] Yongkai Wu, Lu Zhang, Xintao Wu, and Hanghang Tong. 2019. PC-fairness: A
unified framework for measuring causality-based fairness. In NeurIPS.

[47] Shuyuan Xu, Jianchao Ji, Yunqi Li, Yingqiang Ge, Juntao Tan, and Yongfeng
Zhang. 2023. Causal inference for recommendation: Foundations, methods and
applications. arXiv preprint arXiv:2301.04016 (2023).

[48] Jing Yi, Yaochen Zhu, Jiayi Xie, and Zhenzhong Chen. 2021. Cross-modal vari-
ational auto-encoder for content-based micro-video background music recom-
mendation. IEEE TMM (2021).

[49] Junzhe Zhang and Elias Bareinboim. 2018. Fairness in decision-making—The
causal explanation formula. In AAAI, Vol. 32.

[50] Lu Zhang, YongkaiWu, and XintaoWu. 2016. A causal framework for discovering
and removing direct and indirect discrimination. arXiv preprint arXiv:1611.07509
(2016).

[51] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based rec-
ommender system: A survey and new perspectives. ACM CSUR 52, 1 (2019),
1–38.

[52] Xinyang Zhang, Shouling Ji, and TingWang. 2018. Differentially private releasing
via deep generative model. arXiv preprint arXiv:1801.01594 (2018).

[53] Yaochen Zhu and Zhenzhong Chen. 2022. Mutually-regularized dual collaborative
variational auto-encoder for recommendation systems. InWWW. 2379–2387.

[54] Yaochen Zhu and Zhenzhong Chen. 2023. Variational bandwidth auto-encoder
for hybrid recommender systems. IEEE TKDE 35, 5 (2023), 5371–5385.

[55] Yaochen Zhu, Jing Ma, and Jundong Li. 2023. Causal inference in recommender
systems: A survey of strategies for bias mitigation, explanation, and generaliza-
tion. arXiv preprint arXiv:2301.00910 (2023).

[56] Yaochen Zhu, Jing Yi, Jiayi Xie, and Zhenzhong Chen. 2022. Deep causal reasoning
for recommendations. arXiv preprint arXiv:2201.02088 (2022).

[57] Ziwei Zhu, Xia Hu, and James Caverlee. 2018. Fairness-aware tensor-based
recommendation. In CIKM. 1153–1162.

[58] Ziwei Zhu, Jingu Kim, Trung Nguyen, Aish Fenton, and James Caverlee. 2021.
Fairness among new items in cold start recommender systems. In SIGIR. 767–776.



Path-Specific Counterfactual Fairness for Recommender Systems KDD ’23, August 6–10, 2023, Long Beach, CA, USA

A DEFINITION OF CAUSAL CONCEPTS
Causal Graph. A causal graph 𝐺 = (V, E) is a directed acyclic

graph that describes the causal relationships among the vari-
ables of interests, whereV is the set of nodes (which represent
random variables in this paper), and E is the set of edges, respec-
tively. Specifically, a directed edge from variable 𝑋 to variable
𝑌 indicates that 𝑋 has a causal influence on 𝑌 .

Structural Equations. Each causal graph 𝐺 = (V, E) can be
associatedwith a set of structural equations F = {𝑝 (𝑋 |𝑃𝑎(𝑋 )) |
𝑋 ∈ V}, where 𝑝 (𝑋 |𝑃𝑎(𝑋 )) quantifies the causal influence of
the parents nodes of 𝑋 , i.e., 𝑃𝑎(𝑋 ), on 𝑋 .

Causal Path. A causal path 𝑃 between variables 𝑋 and 𝑌 is a
sequence of edges (from 𝑋 to 𝑌 ) in E such that each edge starts
with the node that ends the previous edge. A directed causal
path is a causal path whose edges point in the same direction.

Mediator/Mediate. In a directed causal path 𝑃 between 𝑋 and
𝑌 , e.g., 𝑋 → 𝑀 → 𝑌 , any intermediate node 𝑀 is a mediator,
where the causal effects of 𝑋 on 𝑌 are mediated by𝑀 .

Block/Unblock. If conditioning on𝑀 =𝑚 blocks the causal path
𝑃 between𝑋 and𝑌 , no dependence (both causal and non-causal
ones) can be passed from 𝑋 to 𝑌 along the path 𝑃 when 𝑀 is
known (see [13] for a formal definition). Otherwise, we say that
conditioning on𝑀 =𝑚 unblocks the causal path 𝑃 .

Intervention. Given a causal graph 𝐺 , we can conduct interven-
tions on a variable 𝑋 , which means that we set 𝑋 to a value 𝑥
regardless of its observed values as well as the values of its par-
ents 𝑃𝑎(𝑋 ). If unspecified, the intervention is conducted upon
the whole population, but we can also conduct the intervention
conditional on 𝐶 = 𝑐 , which means that we set 𝑋 = 𝑥 on the
sub-population specified by the conditions.

Potential Outcome. Potential outcomes can be used to formal-
ize the definition of interventions. Specifically, we define the
potential outcome 𝑌𝑋←𝑥 (𝑖) as the value of 𝑌 for unit 𝑖 had 𝑋
been 𝑥 . Based on 𝑌𝑋←𝑥 (𝑖), we can further define the potential
outcome random variable 𝑌𝑋←𝑥 to denote the unconditional
intervention that set 𝑋 = 𝑥 uniformly upon the population. Fur-
thermore, the conditional potential outcome random variable
𝑌𝑋←𝑥 |𝐶 = 𝑐 can be used to denote the intervention conducted
upon the sub-population specified by the condition 𝐶 = 𝑐 .

Counterfactuals. For 𝑌𝑋←𝑥 |𝐶 = 𝑐 , when 𝐶 = 𝑋 and 𝑐 = 𝑥 ′,
the conditional potential random variable 𝑌𝑋←𝑥 |𝑋 = 𝑥 ′ can
be used to define the counterfactual distribution of 𝑌 had 𝑋
for the units with the factual value of 𝑋 = 𝑥 ′ been set to a
counterfactual value 𝑥 . The above analysis also applies to the
Nested Potential Outcome introduced in Definition 2.1.

B THEORETICAL ANALYSIS
B.1 Proof of Identification of PS-Bias in Eq. (3)
Assumption 2. Sequential Ignorability [19].
Step 1.We assume that given 𝑋 , the sensitive features 𝑆 are ignorable
for the mediators 𝑈𝑓 ,𝑈𝑏 and user ratings 𝑅 as follows:

𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s′ , 𝑅𝑆←s′,𝑈𝑓←u𝑓 ,𝑈𝑏←u′
𝑏
⫫ 𝑆 |𝑋 . (15)

Step 2.We also assume that given𝑋 , the post-interventional mediators
𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s′ are ignorable for the user ratings 𝑅 as follows:

𝑅𝑆←s′,𝑈𝑓←u𝑓 ,𝑈𝑏←u′
𝑏
⫫ 𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s′ |𝑋 . (16)

The difference between the potential outcome 𝑅𝑆←s′,𝑈𝑓←u𝑓 ,𝑈𝑏←u′
𝑏

and the nested potential outcome 𝑅𝑆←s′ (𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s′ ) lies in
the fact that the former directly sets the mediators 𝑈𝑓 and 𝑈𝑏 to
the values u𝑓 and u′

𝑏
, whereas the latter conducts interventions on

𝑆 by setting 𝑆 to s and s′ and let them influence 𝑈𝑓 and𝑈𝑏 .
The sequential ignorability assumption holds for the causal graph

specified in Fig. 1, because there are no unobserved confounders
for the causal paths 𝑆 → 𝑈𝑓 , 𝑆 → 𝑈𝑏 and 𝑆 → 𝑅 (and thus Eq. (15)
holds) and 𝑈𝑓 → 𝑅 and𝑈𝑏 → 𝑅 (and thus Eq. (16) holds).

B.1.1 Proof. Based on the sequential ignorability assumption de-
fined above, Eq. (4) can be proved with six steps as follows:

E
[
𝑅𝑆←s′

(
𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s′

)
= r

��𝑋 = x, 𝑆 = s
]

(𝑎)=
∫
r,u𝑓 ,u′𝑏

𝑝

(
𝑅𝑆←s′

(
𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s′

)
= r

���𝑋 = x, 𝑆 = s,𝑈𝑓 ,𝑆←s = u𝑓 ,

𝑈𝑏,𝑆←s′ = u′
𝑏

)
· 𝑝

(
𝑈𝑓 ,𝑆←s = u𝑓

��𝑋 = x, 𝑆 = s
)
·

𝑝

(
𝑈𝑏,𝑆←s′ = u′

𝑏

��𝑋 = x, 𝑆 = s
)
· r

(𝑏 )=
∫
r,u𝑓 ,u′𝑏

𝑝

(
𝑅𝑆←s′,𝑈𝑓←u𝑓 ,𝑈𝑏←u′

𝑏
= r

���𝑋 = x, 𝑆 = s,𝑈𝑓 ,𝑆←s = u𝑓 ,

𝑈𝑏,𝑆←s′ = u′
𝑏

)
· 𝑝

(
𝑈𝑓 ,𝑆←s = u𝑓

��𝑋 = x, 𝑆 = s
)
·

𝑝

(
𝑈𝑏,𝑆←s′ = u′

𝑏

��𝑋 = x, 𝑆 = s
)
· r

(𝑐 )=
∫
r,u𝑓 ,u′𝑏

𝑝

(
𝑅𝑆←s′,𝑈𝑓←u𝑓 ,𝑈𝑏←u′

𝑏
= r

��𝑋 = x, 𝑆 = s
)
· r·

𝑝

(
𝑈𝑓 ,𝑆←s = u𝑓

��𝑋 = x, 𝑆 = s
)
· 𝑝

(
𝑈𝑏,𝑆←s′ = u′

𝑏

��𝑋 = x, 𝑆 = s
)

(𝑑 )=
∫
r,u𝑓 ,u′𝑏

𝑝

(
𝑅𝑆←s′,𝑈𝑓←u𝑓 ,𝑈𝑏←u′

𝑏
= r

��𝑋 = x
)
·

𝑝

(
𝑈𝑓 ,𝑆←s = u𝑓

��𝑋 = x
)
· 𝑝

(
𝑈𝑏,𝑆←s′ = u′

𝑏

��𝑋 = x
)
· r

(𝑒 )=
∫
r,u𝑓 ,u′𝑏

𝑝 (r|u𝑓 , u′𝑏 , s
′, x) · 𝑝 (u𝑓 |s, x) · 𝑝 (u′𝑏 |s

′, x) · 𝑝 (x) · r

(𝑓 )=
∫
r,u𝑓 ,u′𝑏

𝑝 (r|u𝑓 , u′𝑏 (s
′)) · 𝑝 (u𝑓 |s, x) · 𝑝 (u′𝑏 |s

′) · 𝑝 (x) · r.

(17)
Step (a) is based on the total probability theory; step (b) is based
on the consistency rule of counterfactuals [41]; step (c) is based on
the second step of sequential ignorability; steps (d)(e) are based on
the first step of sequential ignorability; and step (f) is based on the
conditional independence assumptions implied by the causal graph
in Fig. 1. Similar procedures can be used to prove the identification
of Eq. (5), where Eq. (3) can be calculated as Eq. (4) - Eq. (5).

B.2 PS-Bias for RS Models with Constraints
In section 2.3, we have introduced the PS-Bias of the naive RSs that
predict new ratings according to the exact causal mechanism that
generates the biased observed ratings. This section generalizes the
PS-Bias for RS models with extra constraints, which serves as the
basis for proving the PS-Bias for existing fair RSs and PSF-RS.
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We note that the causal mechanism that generates the observed
ratings is composed of three structural equations:F = {𝑝 (𝑅 |𝑈𝑓 ,𝑈𝑏 ),
𝑝 (𝑈𝑓 |𝑆, 𝑋 ), 𝑝 (𝑈𝑏 |𝑆)}, which induces the causal graph in Fig. 1 by
setting the variables on the RHS of 𝑝 ∈ F as the parents and the
variable on the LHS as the child. An RSmodel with extra constraints
can be viewed as generating ratings in two steps: (1) Certain struc-
tural equations 𝑝 in F are minimally changed to 𝑝𝑚𝑜𝑑𝑒𝑙 according
to the constraints (where the irrelevant ones remain intact). We
use F𝑚𝑜𝑑𝑒𝑙 to denote the new set of structural equations, which
induces a new causal graph (e.g., Figs. 3-(b) and 4-(b)). (2) Ratings
are generated according to the newly-induced causal model. There-
fore, PS-Bias for an RS with constraints can be calculated as the
path-specific effects of sensitive features 𝑆 on ratings 𝑅 along the
unfair paths of the newly-induced causal model.

B.3 Proof of Zero PS-Bias for Existing Fair RSs
B.3.1 Further Analysis. Existing fair RSs constrain the user la-
tent variables 𝑈 to be independent of the user sensitive features
𝑆 as Eq. (6). To satisfy such a constraint, we need to change at
least two structural equations in F , i.e., 𝑝 (𝑈𝑓 |𝑆, 𝑋 ), 𝑝 (𝑈𝑏 |𝑆) into
𝑝𝑒 𝑓 (𝑈𝑓 |𝑋 ), 𝑝𝑒 𝑓 (𝑈𝑏 ) (although in practice, when maximizing the
likelihood of observed ratings, 𝑝 (𝑅 |𝑈𝑓 ,𝑈𝑏 ) will also be changed
into 𝑝𝑒 𝑓 (𝑅 |𝑈𝑓 ,𝑈𝑏 ) since the distributions of 𝑈𝑓 ,𝑈𝑏 are altered),
where the causal structure 𝑝 (𝑈𝑓 |𝑆, 𝑋 ) necessary for recommenda-
tion diversity is inevitably lost. We use 𝑃𝑆𝐵𝑖𝑎𝑠∗∗ (x, s, s′) to denote
the PS-Bias of the altered causal model induced by existing fair RSs.

B.3.2 Proof. 𝑃𝑆𝐵𝑖𝑎𝑠∗∗ (x, s, s′) can be calculated by substituting
the three 𝑝𝑒 𝑓 terms introduced above for the 𝑝 terms in Eq. (3).
After the substitution, the first expectation term becomes

E∗∗
[
𝑅𝑆←s′

(
𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s′

) ���𝑋 = x, 𝑆 = s
]

=

∫
r,u𝑓 ,u′𝑏

𝑝𝑒 𝑓 (r|u𝑓 , u′𝑏 ) · 𝑝𝑒 𝑓 (u𝑓 |x) · 𝑝𝑒 𝑓 (u
′
𝑏
) · r.

(18)

Similarly, the second expectation term becomes

E∗∗
[
𝑅𝑆←s

(
𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s

)
= r

���𝑋 = x, 𝑆 = s
]

=

∫
r,u𝑓 ,u𝑏

𝑝𝑒 𝑓 (r|u𝑓 , u𝑏 ) · 𝑝𝑒 𝑓 (u𝑓 |x) · 𝑝𝑒 𝑓 (u𝑏 ) · r.
(19)

Since 𝑃𝑆𝐵𝑖𝑎𝑠∗∗ (x, s, s′) = Eq. (18) - Eq. (19), the equality of Eqs. (18)
and (19) proves that 𝑃𝑆𝐵𝑖𝑎𝑠∗∗ (x, s, s′) = 0 for existing fair RSs.

B.4 Proof of Zero PS-Bias for PSF-RS
In the hypothetically fair world induced by the proposed PSF-RS,
𝑝𝑝𝑠 𝑓 (𝑅 |𝑈𝑓 ) is substituted for 𝑝 (𝑅 |𝑈𝑓 ,𝑈𝑏 ) in F while other causal
mechanisms invariant to the RS remain unchanged. Similarly, the
first expectation term in 𝑃𝑆𝐵𝑖𝑎𝑠∗ (x, s, s′) can be calculated as

E∗
[
𝑅𝑆←s′

(
𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s′

) ���𝑋 = x, 𝑆 = s
]

=

∫
r,u𝑓 ,u′𝑏

𝑝𝑝𝑠 𝑓 (r|u𝑓 ) · 𝑝 (u𝑓 |s, x) · 𝑝 (u′𝑏 |s
′) · r

=

∫
u′
𝑏

𝑝 (u′
𝑏
|s′)

∫
r,u𝑓

𝑝𝑝𝑠 𝑓 (r|u𝑓 ) · 𝑝 (u𝑓 |s, x) · r

=

∫
r,u𝑓

𝑝𝑝𝑠 𝑓 (r|u𝑓 ) · 𝑝 (u𝑓 |s, x) · r.

(20)

Furthermore, the second expectation term becomes

E∗
[
𝑅𝑆←s

(
𝑈𝑓 ,𝑆←s,𝑈𝑏,𝑆←s

)
= r

���𝑋 = x, 𝑆 = s
]

=

∫
r,u𝑓 ,u𝑏

𝑝𝑝𝑠 𝑓 (r|u𝑓 ) · 𝑝 (u𝑓 |s, x) · 𝑝 (u𝑏 |s) · r

=

∫
r,u𝑓

𝑝𝑝𝑠 𝑓 (r|u𝑓 ) · 𝑝 (u𝑓 |s, x) · r.

(21)

Since 𝑃𝑆𝐵𝑖𝑎𝑠∗ (x, s, s′) = Eq. (20) - Eq. (21), the equality of the RHS
of Eqs. (20) and (21) proves that 𝑃𝑆𝐵𝑖𝑎𝑠∗ (x, s, s′) = 0 for PSF-RS.

B.5 Proof of ELBO for PSF-VAE
In this section, we prove the ELBO of PSF-VAE in Eq. (11) as follows:

ln 𝑝𝜃 (𝑅, 𝑅𝑏 |𝑆, 𝑋 ) = ln
∫
𝑈𝑓 ,𝑈𝑏

𝑝𝜃 (𝑅, 𝑅𝑏 ,𝑈𝑓 ,𝑈𝑏 |𝑆, 𝑋 )

= ln
∫
𝑈𝑓 ,𝑈𝑏

𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑆, 𝑋 ) ·
𝑝𝜃 (𝑅, 𝑅𝑏 ,𝑈𝑓 ,𝑈𝑏 |𝑆, 𝑋 )
𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑆, 𝑋 )

(𝑎)
≥

∫
𝑈𝑓 ,𝑈𝑏

𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑆, 𝑋 ) · ln
𝑝𝜃 (𝑅, 𝑅𝑏 ,𝑈𝑓 ,𝑈𝑏 |𝑆, 𝑋 )
𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑆, 𝑋 )

=

∫
𝑈𝑓 ,𝑈𝑏

𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑆, 𝑋 ) · ln
𝑝𝜃 (𝑈𝑓 ,𝑈𝑏 |𝑆, 𝑋 ) · 𝑝𝜃 (𝑅, 𝑅𝑏 |𝑈𝑓 ,𝑈𝑏 )

𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑆, 𝑋 )

= E𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅,𝑆,𝑋 )

[
ln
𝑝𝜃 (𝑈𝑓 ,𝑈𝑏 |𝑆, 𝑋 ) · 𝑝𝜃 (𝑅, 𝑅𝑏 |𝑈𝑓 ,𝑈𝑏 )

𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑆, 𝑋 )

]
= E𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅,𝑆,𝑋 )

[
ln 𝑝𝜃 (𝑅, 𝑅𝑏 |𝑈𝑓 ,𝑈𝑏 )

]
+

E𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅,𝑆,𝑋 )

[
𝑝𝜃 (𝑈𝑓 ,𝑈𝑏 |𝑆, 𝑋 )
𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑆, 𝑋 )

]
= E𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅,𝑆,𝑋 ) [ln 𝑝𝜃 (𝑅 |𝑈𝑓 ,𝑈𝑏 )] + E𝑞𝜙 (𝑈𝑏 |𝑅,𝑆 ) [ln 𝑝𝜃 (𝑅𝑏 |𝑈𝑏 )]
− KL[𝑞𝜙 (𝑈𝑓 |𝑅, 𝑆, 𝑋 ) | | 𝑝𝜃 (𝑈𝑓 |𝑆, 𝑋 )] − KL[𝑞𝜙 (𝑈𝑏 |𝑅, 𝑆) | | 𝑝𝜃 (𝑈𝑏 |𝑆)],

(22)
where step (a) is the application of Jensen’s inequality, and the final
step is based on the conditional independence assumptions implied
by the causal graph in Fig. 1, which leads to the ELBO in Eq. (11).

We can further show that the difference between the ELBO
and the log evidence ln 𝑝𝜃 (𝑅, 𝑅𝑏 |𝑆, 𝑋 ) is exactly the KL-divergence
between variational posterior𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑆, 𝑋 ) = 𝑞𝜙 (𝑈𝑓 |𝑅, 𝑆, 𝑋 )×
𝑞𝜙 (𝑈𝑏 |𝑅, 𝑆) and the true posterior 𝑝𝜃 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑅𝑏 , 𝑆, 𝑋 ). To prove
this, we can add the KL term to the RHS of (a) in Eq. (22) as follows:
(𝑎) + KL[𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑆, 𝑋 ) | | 𝑝𝜃 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑅𝑏 , 𝑆, 𝑋 )]

= E𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅,𝑆,𝑋 )

[
ln
𝑝𝜃 (𝑅, 𝑅𝑏 ,𝑈𝑓 ,𝑈𝑏 |𝑆, 𝑋 )
𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑆, 𝑋 )

·
𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑆, 𝑋 )

𝑝𝜃 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑅𝑏 , 𝑆, 𝑋 )

]
= E𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅,𝑆,𝑋 )

[
ln
𝑝𝜃 (𝑅, 𝑅𝑏 ,𝑈𝑓 ,𝑈𝑏 |𝑆, 𝑋 )
𝑝𝜃 (𝑈𝑓 ,𝑈𝑏 |𝑅, 𝑅𝑏 , 𝑆, 𝑋 )

]
= E𝑞𝜙 (𝑈𝑓 ,𝑈𝑏 |𝑅,𝑆,𝑋 ) [ln 𝑝𝜃 (𝑅, 𝑅𝑏 |𝑆, 𝑋 )] = ln 𝑝𝜃 (𝑅, 𝑅𝑏 |𝑆, 𝑋 ),

(23)
where the RHS of Eq. (23) is the log evidence ln 𝑝𝜃 (𝑅, 𝑅𝑏 |𝑆, 𝑋 ).
This further proves our claim that minimizing the KL divergence
between the variational posteriors defined by PSF-VAE and the true
posteriors is equivalent to maximizing the ELBO as Eq. (11).
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