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ABSTRACT ACM Reference Format:

Recommender systems (RSs) have become an indispensable part of
online platforms. With the growing concerns of algorithmic fair-
ness, RSs are not only expected to deliver high-quality personalized
content, but are also demanded not to discriminate against users
based on their demographic information. However, existing RSs
could capture undesirable correlations between sensitive features
and observed user behaviors, leading to biased recommendations.
Most fair RSs tackle this problem by completely blocking the influ-
ences of sensitive features on recommendations. But since sensitive
features may also affect user interests in a fair manner (e.g., race
on culture-based preferences), indiscriminately eliminating all the
influences of sensitive features inevitably degenerate the recommen-
dations quality and necessary diversities. To address this challenge,
we propose a path-specific fair RS (PSF-RS) for recommendations.
Specifically, we summarize all fair and unfair correlations between
sensitive features and observed ratings into two latent proxy medi-
ators, where the concept of path-specific bias (PS-Bias) is defined
based on path-specific counterfactual inference. Inspired by Pearl’s
minimal change principle, we address the PS-Bias by minimally
transforming the biased factual world into a hypothetically fair
world, where a fair RS model can be learned accordingly by solv-
ing a constrained optimization problem. For the technical part, we
propose a feasible implementation of PSF-RS, i.e., PSF-VAE, with
weakly-supervised variational inference, which robustly infers the
latent mediators such that unfairness can be mitigated while nec-
essary recommendation diversities can be maximally preserved
simultaneously. Experiments conducted on semi-simulated and
real-world datasets demonstrate the effectiveness of PSF-RS.

CCS CONCEPTS

+ Information systems — Recommender systems; - Mathe-
matics of computing — Causal networks.
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1 INTRODUCTION

As content grows exponentially on the web, recommender systems
(RSs) are becoming increasingly critical in modern online service
platforms [51]. RSs capture user interests based on their historical
behaviors [17, 40], profiles [11, 54], and the content of items they
have interacted with [48, 53], aiming to automatically deliver new
items tailored to users’ personalized interests. Nevertheless, the
observed user behaviors may be unfairly correlated with certain
sensitive user features, such as gender, race, and age, which can
be unintentionally captured by the RSs and perpetuate into future
recommendations [25]. Consequently, users may find the recom-
mended items offensive, especially when people’s concerns for
discrimination have grown substantially over time [9, 10, 34, 37].
In recent years, considerable efforts have been devoted to promot-
ing fairness of RSs from both academia and industry [44]. From the
industry’s perspective, several platforms are beginning to provide
interfaces to encourage users to report potentially unfair recommen-
dations when using the platform [12, 23]. Meanwhile, researchers
are investigating new approaches to incorporate fairness-aware
mechanisms into RSs (i.e., fair RSs) to avoid discrimination. Early
fair RSs mainly rely on statistical parity to evaluate the fairness
of recommendations. For instance, demographic parity demands
the same positive rate (e.g., the probability of recommending an
item) for different user groups. However, recent research demon-
strates that statistical parity may not be adequate to reason with
fairness, as different causal relations between sensitive features and
outcomes may result in divergent conclusions [22]. For example, in
the Berkeley admission dataset, the lower admission rate of female
applicants is because females tend to apply for difficult departments
[3], and naively increasing the acceptance of female applicants to
achieve statistical parity may be unfair to male applicants. There-
fore, causality-aware fairness gains more attention, where causal
models are established with domain knowledge to reason with the
causal influence of sensitive features on the observed outcomes and
prevent it from negatively influencing future decisions [26].
Existing causality-aware fair RSs mainly seek to eliminate all
causal effects of sensitive features on recommendations, e.g., by
constraining the user latent variables learned from observed ratings
to be independent of sensitive features via strategies such as adver-
sarial training [43] or maximum mean discrepancy minimization
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[30]. However, a dilemma for these methods is that, most of these
features may also influence user interest in a fair manner. Take race
as an example. Indeed, race can be associated with various negative
social stereotypes, and recommendations based on these stereo-
types can be offensive to users. However, race can also determine
users’ cultural background [42], such as accustomed tablewares,
etc., and recommending chopsticks to East-Asian users is rarely
considered offensive for online shopping platforms. Consequently,
indiscriminately eliminating all the causal influence of race on rec-
ommendations may degenerate the cultural diversity critical for
personalization. Another widely acknowledged example is from
Pearl [39], which states that the education level of job applicants
should not affect job recommendations based on negative stereo-
types, but may indirectly influence the decision via certain job-
related applicant features correlated with education level, such as
skills. Therefore, a better strategy to achieve fair RS is path-specific
causal analysis, where only unfair correlations between sensitive
features and observed ratings are eliminated in recommendations.
However, the problem remains difficult because of the following
multifaceted challenges. First, a prerequisite for most path-specific
causal inference algorithms is the prior knowledge of the causal
model, where factors that lead to fair or unfair correlations between
sensitive features and outcomes are known and measured in ad-
vance [8, 21, 36, 46]. However, this assumption does not hold for
RSs, as factors that causally determine the observed user behaviors
are usually latent, which makes it difficult to judge whether or not
they mediate the fair influences of sensitive features and can be
generalized to other users. In addition, although recent awareness
of fair RS from the industry has made it possible to collect poten-
tial unfair recommendations based on users’ feedback to facilitate
the identification of unfair latent mediators of sensitive features,
such observations are usually extremely sparse, and it is difficult to
ensure fairness for users with sparse or no known unfair items (i.e.,
path-specific fairness for RS suffers from cold-start issues [27]).
To address the aforementioned challenges, we propose a novel
path-specific fair RS (PSF-RS) for recommendations. We first estab-
lish a causal graph to reason with the causal generation process of
the biased observed ratings, assuming that the fair and unfair corre-
lations between sensitive features and the observed ratings can be
summarized into two latent proxy mediators. We then define the
concept of path-specific bias (PS-Bias) based on path-specific coun-
terfactual analysis on the causal graph, where we demonstrate that
naive RSs can be unfair even if they do not explicitly use users’ sensi-
tive features for recommendations. To remedy the bias, inspired by
Pearl’s minimal change principle [39], we minimally transform the
biased factual world into a hypothetically fair world with zero PS-
Bias, where a fair RS model can be learned accordingly by solving a
constrained optimization problem. We demonstrate that although
existing fair RSs can also achieve zero PS-Bias, their modification
of the biased factual world is not minimal, which destroys causal
structures necessary for the diversities in recommendations. In
contrast, PSF-RS eliminates the PS-Bias while maximally preserv-
ing the fair influences of sensitive features simultaneously. For the
technical part, we propose a feasible implementation of PSF-RS, i.e.,
PSF-VAE, with weakly-supervised variational inference, where the
latent proxy mediators of sensitive features can be inferred for all
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Figure 1: Causal graph that depicts the generation process of
the observed ratings R and semi-observed unfair items Rj,.

User latent variable U

users with weak supervisions from the extremely sparse known
unfair items. The contribution of this paper can be summarized as:

o To the best of our knowledge, we are the first to investigate
path-specific fairness for RSs to ensure fairness while maximally
preserving the necessary diversities in recommendations.

e Theoretically, a novel path-specific fair RS (PSF-RS) is proposed
based on latent mediation analysis and path-specific counterfac-
tual analysis, which minimally alters the biased factual world
into a hypothetically fair world, where a fair RS can be learned
accordingly by solving a constrained optimization problem.

o A feasible implementation of PSF-RS, i.e., PSF-VAE, is proposed
based on weakly-supervised variational inference, where the
fairness of recommendations can be generalized to users with
sparse or no observed unfair item recommendations.

2 THEORETICAL ANALYSIS
2.1 Task Formulation

The focus of this paper is on fairness of recommendations with
implicit feedback [18]. Consider a dataset D = {(r}, s}, Xi)}{:l of
I users, where r; € {0, l}J is a binary vector indicating whether
user i has interacted with each of the J items, s; € RXs denotes
the sensitive user features such as race, gender, etc., and x; € REx
denotes the non-sensitive user features that are not causally de-
pendent on s;. Features s; are sensitive in that carelessly basing
recommendations on them may result in discrimination. In addition,
due to the increasing awareness of fair RS from the industry, for a
subset of users, we also collect certain items that each may consider
unfair if these items are explicitly recommended (e.g., through self-
reported unfair recommendations). We use another binary vector
rp € {0, 1}/ to indicate the known unfair items for user i’. T 18
extremely sparse and is unavailable for the majority of the users!.
Observing the dilemma that sensitive features can both unfairly
correlate with the observed ratings and causally influence user inter-
ests, the purpose of this paper is to design a path-specific fair RS that
maximally eliminates the former while maximally preserving the
latter, such that fairness can be achieved while necessary diversities
in recommendations can be maximally preserved simultaneously.

2.2 Causal Model and Assumptions

Throughout this paper, we assume that the causal graph that gen-
erates the observed biased ratings R and the semi-observed unfair
items Ry, can be represented by Fig. 1, where the edges denote the
direction of causal influences. The details are introduced as follows.

!In the remainder, the subscripts i and i’ would be omitted if no ambiguity exists. The
capital non-boldface symbols R, S, X, Rp, are used to denote the random vectors.
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2.2.1 User Fair Latent Variable. Most existing probabilistic RSs
aggregate the hidden factors that causally determine the observed
user behaviors R into the user latent variable U [18, 24, 28], which
is usually assumed to be causally influenced by user features S and
X [26]. Existing fair RSs consider all the variation of U due to S
as unfair and indiscriminately eliminate them when making new
recommendations. However, we postulate that for each user, we
can find Uy € RK7 contained in U that mediates the fair influence
of S on R (or has no causal relations with ). We name Uy the user
fair latent variable. Uy has the property of being resolving? for S in
that any influence of S on R mediated by Uy should be preserved
to facilitate necessary diversities in recommendations. For example,
sensitive feature race can determine a user’s cultural preference C;
(could be several dimensions of U), which is a crucial factor that
determines users’ personalized interest. Therefore, C; should be
subsumed in Uy such that the causal influence of S on R mediated by
Cy, which can be denoted by a causal path S — C; — R, is allowed
to be captured by RSs to promote culture-tailored recommendations.

2.2.2 User Bias Latent Variable: The Proxy Mediator. In ad-
dition, we use the user bias latent variable Uy, € RX? to summarize
the remaining variations of U due to S, which captures the unfair
correlations between sensitive features S and the observed ratings
R in the collected data. The unfair influence of S mainly lies in two-
fold. From the users’ perspective, sensitive features S can determine
some social stereotypes Cp, (which could be some other dimensions
of U) associated with certain demographic groups. Although some
users may behave just according to the stereotypes (which leads
to another causal path from S to R, i.e., S = C, — R), we should
not generalize them to other users with the same sensitive features.
In addition, the unfair influence of S can also be attributed to the
previous RS, where items unfairly associated with certain demo-
graphic groups may be overly exposed to these users that bias their
behaviors [29]. Formally, the assumption that describes the unfair
correlations between S and R can be summarized as follows:

Assumption 1. The unfair correlations between S and R are com-
posed of (1) the direct effect of S on R; (2) all indirect mediated effects
of S on R not resolved by Uy, where the latter is assumed to be able

to be summarized by a one-step latent proxy mediator Uy, € RK».

The above assumption of unfair correlations between S and R is
based on the skeptical view of Kilbertus et al. [21], which states that
all potential influences of sensitive features on outcomes should be
assumed as discriminatory unless they can be justified by a resolv-
ing mediator, which is the user fair latent variable Uy in our case.
We summarize all indirect unfair influences of S into a user bias la-
tent variable U, because it is intractable to enumerate and measure
all unfair mediators of sensitive features (e.g., all discriminatory
stereotypes). One sufficient condition that allows such a substitu-
tion is that Uy, blocks every mediated unfair path between S and
R while unblocking every fair path resolved by Uy. This could
be the case where all unfair mediators of S causally determine Up
and through which influence R, which is a common assumption in
latent mediation analysis [1, 7]. Since our primary task is to analyze
the fair and unfair influences of sensitive features S on the observed

ZFor readers without much background knowledge in causal inference, we provide
simple and intuitive definitions for the terms highlighted in bold in Appendix A.
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Figure 2: Comparisons between potential outcome that sets
sensitive features S to s’ and nested potential outcome that
sets S to different values along different causal paths.

ratings R, other exogenous variables that causally determine Uy
and U, are omitted and summarized into their uncertainties.

2.2.3 Path-Specific Counterfactuals. After introducing the la-
tent factors Uy and Uy, that mediate the fair and unfair influences of
sensitive features S on observed ratings R and the causal graph in
Fig. 1, we are ready to define the unfairness inherent in the dataset
D, which is a crucial first step toward achieving fairness in RSs.
According to the causal graph in Fig. 1, we can represent the
variation of R due to S (with fixed X) in D with the distribution
P (RIS, X), which is governed by latent mediators Uy, Uy, as follows:

P(RIS, X) = Epwy(s.x),p(Usl5) [P(RIUF Up)], (1)

where & = {p(R|Uf, Up), p(Ur|S, X), p(Up |S)} are the structural
equations associated with the causal graph. However, we should
note that not all variations of R due to S encapsulated in p(R|S, X)
are discriminatory, as the causal influences of S mediated by Uy,
e.g., the cultural-based preferences (S — C; — R), are crucial
manifestations of diversity and personalization in user interests.
To address the above challenge, we measure the unfair variation
of R due to S with path-specific counterfactual inference [22], where
we determine how ratings R will change if users’ sensitive features
S are set to a counterfactual value s” along the unfair paths S —
Up — Rand S — R, while maintaining its factual value s along the
fair path § — Uy — R. To achieve this objective, it is necessary to
introduce the Nested Potential Outcome (NPO) defined as follows:

Definition 2.1. We use the Nested Potential Outcome (NPO)
Rses (Uf,scs, Up,scs') to denote the random variable of user rat-
ings where user sensitive features S are set tos’ on the unfair paths
S — RandS — U, — R and tos on the fair path S — Uy — R.

The NPO Rss/ (U se—s, Up,ses) can be intuitively represented
by an intervened causal graph in Fig. 2-(b). However, the uncon-
ditional NPO reasons with the intervention conducted upon the
whole population, whose factual sensitive features S do not neces-
sarily equal s. Therefore, to constrain the NPO to users with factual
sensitive feature S = s (and non-sensitive features X = x) such that
the fair influence of S = s on R is excluded from the unfairness
measurement, we condition it on X = x and S = s as follows:

RS<—S'(Uf,S<—Ss Ub,S<—s’)|X =xS5=s. 2

The conditional NPO described in Eq. (2) essentially reasons with
the observed ratings of hypothetical users whose sensitive features
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Figure 3: Naive RS that infers U from R and (possibly) S for
rating predictions. If the inference is accurate, all influences
of S on R are allowed in future recommendations.

are in a "superposition” state: Their sensitive features S preserve the
factual value S = s along the fair path S — Ug — R while having
the counterfactual value S = s’ along the unfair paths S — U, — R
and S — R. This allows the theoretical analysis of path-specific
bias/fairness of different RS models in the following subsections.

2.3 Unfairness of Naive RSs

Based on the conditional NPO, we are now ready to formally analyze
the unfairness of naive RSs whose rating predictions are consistent
with the causal mechanisms that generate the biased observed rat-
ings. We show that even if these models do not directly use sensitive
features S for recommendations, they can still capture the unfair
correlations between S and R and make biased recommendations.

2.3.1 Path-Specific Bias for Naive RSs. Naive RSs assume that
the observed ratings R are generated from user latent variables U
via generative distribution pngive (R|U)3, where Pnaive(R|U) and U
can be obtained by maximizing the log-likelihood £ of the observed
ratings R (and possibly with the support of user features S and X) via
factorization [35] or variational inference [28]. The inferred U and
the generative distribution ppgize (R|U) are then used to predict new
ratings for recommendations (Fig. 3-(a)). If the learned generative
and inference distributions of the naive RSs are accurate, U captures
all latent factors that causally influence the observed user behaviors
R,ie., U = {Uy, Up} (or its bijective), and ppaive (R|U) is consistent
with the causal mechanism that generates the observed ratings,
ie, p(R|Uf, Up). Therefore, the unfairness of the naive RSs can be
quantified by the path-specific effects of S on R through the unfair
paths on the factual causal graph, which can be defined as:

PSBias(x, s, s’) = E [R5<_S/ (Ufssﬂ, Ub,SH,) |X —x5= s]
(3)

-E [Rg(_s (Uf,&_s, Ub,5<_s) X=x5= s] .

Intuitively, for users with factual features X = x and S = s, path-
specific bias PSBias(x, s, s”) defined in Eq. (3) denotes the difference
of rating predictions from naive RSs if their sensitive features S
change to s’ along the unfair paths S — R and S — U, — R, while
S is held unchanged along the fair path S — Ur — R, and the
non-sensitive features X are held unchanged along all the paths.
PSBias(x,s,s”) won’t be zero for naive RSs if causal path S — Uj, —
R is not trivial, but the claim is not self-evident from Eq. (3), and
we show how to calculate PSBias(x,s, s’) in the next subsection.

3We use Pmodel to represent the distributions assumed by an RS model, which should
be distinguished with the structural causal equations p (with no subscription) in 7
that describe the causal generative process of the biased observed ratings.
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Figure 4: Existing fair RS that constrains the inferred U to
be independent of S. If the constraint is satisfied, both fair
and unfair influences of S are blocked in recommendations.

2.3.2 Calculation of PS-Bias. It is generally intractable to cal-
culate PSBias(x,s,s’) because it contains NPOs that reason with
hypothetical users with counterfactual sensitive features S = s’
along the unfair paths. However, with the Sequential Ignorability
Assumption commonly used in causal mediation analysis [19], the
first counterfactual term in Eq. (3) can be calculated as follows:

E [Rsbs' (Uf,ses, Ub,S(—s')

X =x5= s]
= [ bt ) s pGl) T
r,uf,ub

= / pxlup,u)(s) - plugls,x) - p(u)ls)) -1,
rupuy

where in the final step, we summarize the direct unfair influence of
sensitive features S on ratings R into Uy, for simplicity. The rigorous
proof can be referred to in Appendix B.1. Similarly, the second
factual term in Eq. (3) can be calculated as follows:

E [R&_s (U s Unses) = r’X —xS= s]

)
- / p(tlup up) - plugls, ) - plupls) -,
rus,up

where Egs. (4) and (5) can be plugged into Eq. (3) to calculate the
PSBias(x,s,s’). Clearly, PSBias(x,s,s’) for naive RSs cannot be
zero, because sensitive features S can unfairly influence the ob-
served ratings R via the user bias latent variable Uj,, which makes
the p(Up|S) and p(R|Uf, Up) terms in Eqgs. (4) and (5) non-trivial.

2.4 Minimal Change Principle and Over-
Fairness of Existing Fair RSs

To remedy the bias, existing fair RSs impose constraints upon the
naive RSs. An exemplar strategy is to maximize the log-likelihood
L of the observed ratings in D, i.e., D, while constraining the
inferred user latent variables U to be independent of the sensitive
features S (see Fig. 4-(a)). This can be formulated as follows:

(}nzz(f L (pef(R | U);Z)R) sk, U LS. (6)

The constraint can be implemented via strategies such as adver-
sarial training [26] or maximum mean discrepancy (MMD) mini-
mization [30]. To satisfy such a constraint, the causal mechanisms
p(Uf|S, X) and p(Up|S) that underlie the generation of the observed
ratings must be altered into p, ¢ (Ur|X), pe r(Uy) by dropping the
dependence on S, which can be represented by a new causal graph
illustrated in Fig. 4-(b) (with causal edges marked by X removed).
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Figure 5: PSF-RS that minimally changes the biased factual
world represented by Fig. 1 into a hypothetically fair world,
where a PS-Fair RS model can be learned accordingly.

We can prove that existing fair RSs can eliminate the PS-Bias if
the constraint is tight, such that U and S are strictly independent
(see Appendix B.2 and B.3 for details). However, it can also lead
to over-fairness issues, where the causal structure p(Uy|S, X) that
denotes the fair influences of S on R mediated by Uy is destroyed.
Therefore, necessary diversities in recommendations due to the
fair influence of sensitive features (e.g., cultural diversity) can be
undesirably lost. Essentially, the independence constraint of ex-
isting fair RSs is against the Minimal Change Principle of Pearl
[39], which states that counterfactuals (i.e., a fair rating generation
model) should be reasoned with by minimally adjusting the factual
world (i.e., the causal model that generates biased observed ratings).

2.5 Path-Specific Fairness for RSs

To address the over-fairness drawbacks of existing fair RSs, we
propose a path-specific fair RS, i.e., PSF-RS, that minimally alters
the biased factual world (represented by the causal graph in Fig.
1) into a hypothetically fair world, and based on it generates new
ratings for recommendations. Specifically, we aim to find a counter-
factual distribution p, £ (R|Uf, Up) close to the factual distribution
p(R|Uf, Up) that causally generates the biased observed ratings
(measured by KL-divergence), while inducing a new causal model
with zero PSBias*(x,s, s’ )4, where other factual causal mechanisms
in ¥, ie., p(UrlS, X) and p(Up|S), remain unchanged.

Assuming for now that the latent mediators Uy and Uj, are known
for each user (where the inference of Ur and U, with weak super-
vision in Ry, will be thoroughly discussed in the next section), since
the observed ratings R in the dataset D are generated according to
p(R|Uy, Up), the minimization of the KL between p,s ¢ (R|Uy, Up)
and p(R|Uy, Up) is equivalent to the maximization of the likelihood
L of the observed ratings in D. Therefore, the objective of PSF-RS
can be formulated as a constrained optimization problem as follows:

glax L (ppsf(R | Uy, Ub);Z)R) s.t., PSBias*(x,s,8") =0, Vx,s,s".
psf
(7)

The constraint essentially restricts the family of RS models that we
can use for recommendations into the ones that induce a new causal
model with zero PSBias* (x,s,s’). The simplest distribution family
that satisfies the constraint is the one that uses only U to generate
recommendations, i.e., ppsr(R | Ur) (see Appendix B.4 for the proof
of zero PS-Bias for the PSF-RS). The newly-induced causal graph

4we use * to distinguish the PS-Bias of new causal model induced by PSF-RS from the

PS-Bias of naive RSs that recommend according to the biased factual causal model.
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that changes p(R|Uf, Up) to ppsf(R|Uf) while keeping p(Uf|S, X)
and p(Up|S) intact is shown in Fig. 5-(b) for reference.

3 PS-FAIR VARIATIONAL AUTO-ENCODER

Previous sections have demonstrated PSF-RS’s theoretical advan-
tage of achieving path-specific fairness while maximally preserving
the necessary diversities in recommendations. However, its practi-
cal implementation still faces two challenges as follows:

e First, since both fair and unfair mediators of S, i.e., Uf and Up,
are latent, the objective of PSF-RS in Eq. (7) cannot be directly
optimized to obtain the PS-Fair rating predictor p,s ¢ (R|Uy).

e In addition, although the known unfair items Ry, i.e., another
indirect causal effect of S mediated by Uy, can be used to infer
Up and distinguish it from Uy, Ry, is extremely sparse and is
only partially observable for a small subset of users.

To address the aforementioned challenges, we propose a novel
semi-supervised deep generative model called path-specific fair
variational auto-encoder (PSF-VAE) as the implementation of PSF-
RS. Specifically, in the factual modeling step, PSF-VAE infers Uy
and Uy, from the biased observational ratings R in the dataset D via
deep neural networks (DNNs), where user features S and X are used
as extra covariates and Ry, as additional weak supervision signals.
Then, in the counterfactual reasoning step, Uj, that explains away
the unfair influences of S is eliminated according to Eq. (7), and Uy
that maximally preserves the fair influence of S and other aspects
of user interests is utilized to generate new recommendations.

3.1 Factual Generative Process

The factual generative process of PSF-VAE is consistent with the
causal model in Fig. 1, such that latent mediators U ' and Uj, can be
properly inferred from the biased observational data. PSF-VAE starts
by generating for each user the user fair and bias latent mediators
Uy and Uy, from Gaussian priors pg(Uy|S, X) and pg (Up|S) as

up ~ N(fup([slxD. Ixp), up ~ N(fup(s).1k;, ), (®)

where f, ¢ and f,;, are two functions, [-||-] represents vector con-
catenation, and 0 denotes the trainable parameters associated with
the generative network, respectively. Then, for the small subset of
users with known unfair items rp, r; are generated from u, via
po(Rp|Up) parameterized as the following Bernoulli distribution,

rp, ~ Bernoulli(MLPy(up)), )

where MLP), is a multi-layer perceptron (MLP) with sigmoid final
layer activation (sigmoid(x) = 1/(1 + e~*)). Finally, the observed
ratings r are generated from both us and uy, via pg(R|Uy, Up) pa-
rameterized as the following multinomial distribution,

r ~ Multi(MLP,([ug||up]), N), (10)

where MLP, is another MLP with softmax final layer activation, i.e.,
[softmax(x)]; = ¥/} ; €*/; N is the number of interacted items.

3.2 Weakly-Supervised Variational Inference

Given that the (factual) generative distributions of both R and Ry,
are parameterized by DNNs, and Ry, is only partially observable for
a small subset of users, the true posterior distributions of the latent
variables, ie., pg(Ur|R, S, X) and pg(Up|Rp, R, S), are intractable.
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Therefore, we resort to variational inference [4, 28], where we
introduce tractable distribution families of Uy and Uj, parameterized
by DNNs with trainable parameters ¢, i.e., g4 (Ur|-) and q4 (Up|-),
and in g4 find the distributions closest to the true but intractable
posteriors measured by KL-divergence as the approximations.
The variational posterior for Uy, ie. q¢,(U f|R, S, X), is straight-
forward. However, for U, we eschew the normally-adopted varia-
tional posterior gy (Up |Rp, R, S) but use g4 (Up|R, S) with Ry, omitted
instead, such that the inference of U, does not depend on the par-
tially observed Ry,. Therefore, it can be generalized to users with
no observed unfair items. Under such circumstances, if R and S
contain sufficient information of Ry, which can be guaranteed since
both R and Ry, are under the unfair causal influence of S mediated
by Uy, weak supervision signals in Ry, from the subset of users with
observed unfair items can still guide the training of the inference
network g4 (Up|R, S) to provide good variational approximations.

3.3 Evidence Lower Bound

The minimization of the KL-divergence between variational and
true posterior distributions is equivalent to the maximization of
the evidence lower bound (ELBO) as (proofs see Appendix B.5)°:

ELBO = Eg, ;|- [Inpo (RIU, Up)] + Eq, (v, |-) [P0 (Rp|Up)]

— KLIgy(UFIR S, X)|1pg (UF1S, X)] = KLIqg (Us R ) Il po(UpIS)],
(11)
which is a lower bound of the model evidence In pg(R, RS, X). In
Eq. (11), the first two terms are the expected log-likelihood of R and
Ry, given the latent mediators Uy and Up, which encourage Uy and
Up, to best explain the observed biased ratings (where the bias in R
is explained-away from Uy by Up), and the last two terms are the
KL-divergence between the variational posteriors and the priors.
For users with no observed unfair items Ry, the second expected
log-likelihood term Egy (U, IRS) [po(Rp|Up)] is dropped from the
ELBO, and we only use the observed ratings R and the user sensitive
features S to infer the corresponding user bias latent variable Uy, via
the variational posterior g4 (Up|R, S). For these users, when maxi-
mizing the first term of the ELBO, i.e., E% (UF,Up|) [Inpg(R|Uf, Up)],
the inferred Uj, can still help explain away the unfair influence
of S on R, such that Uy can focus exclusively on capturing the fair
user interests that are generalizable to future recommendations.

3.4 Disentanglement via Adversarial Training

Before introducing p,s r(R|Uy) that minimally changes the biased
factual world into a hypothetically fair world to make fair recom-
mendations, we note that the theoretical PS-Fairness of PSF-RS
requires a correctly specified inference model (as Eq. (7) requires
known Uy and Up). Especially, we need to ensure Uy 1L Up|S, which
prevents Uy from directly depending on Up, such that the unfair
information of S cannot be leaked to Uy. Since the true posteriors
of Uy and Uj, are not guaranteed to be in the variational family
g, the unfair information of S in Uy, may be leaked to Uy due to
potential mis-specification of the inference model, especially when
supervision signals in Ry, are available only for a subset of users.

5In practice, we further simplify the ELBO by dropping the dependence of the priors of
Uy and Up on S and X ie, up ~ N(o0, IKf), up ~ N(0, IKI; ). In addition, we first

optimize the Up-specific terms in the ELBO, and then fix Up, and learn other terms.
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We utilize an adversarial training-based strategy [14] to ensure
the conditional independence of Uy and Uy, given S in case of infer-
ence model mis-specification. Following [2], we first parameterize
a discriminator model py that predicts Uy, from Uy and S as:

pa(Up|Uy, S) = N(MLPg([Ur|IS]), Ik,)- (12)
Then, concurrent with the maximization of the ELBO in Eq. (11),
Uy and Uy, obtained from variational posteriors g, are used to train
the discriminator py. Specifically, we fix G4 (Up|R, S), sample @
from it and train the discriminator pg(Up|Uy, S) to best predict &,
from Ur and S. Meanwhile, we constrain the inference model of
Uf, ie., 94 (UflR, S, X), to fool the discriminator. The above process
can be formulated as a GAN-like mini-max game as follows:
rill(i/)nr%?lXEqd,(Uf\R,S,X) [Inpg(0p|Uf, S)1, G5 ~ Gy (Up|R, S). (13)
With a sufficient capacity of the discriminator pg, Li et al. [26]
showed that Uy 1L Up|S holds when the equilibrium of Eq. (13) is
achieved. Therefore, the direct dependence of Uy on U, that leads
to the leak of unfair information of S can be further mitigated.

3.5 PS-Fair Rating Predictions

Finally, we introduce p,s ¢ (R|Uy), the counterfactual rating genera-
tor that minimally modifies the biased factual world while ensuring
path-specific fairness and necessary diversities in recommenda-
tions. Specifically, after optimizing the "factual step” of PSF-VAE
via Egs. (11) and (13), we fix q4(Uy|R, S, X) and obtain the user
fair latent variables @ ¢ as the posterior mean. Then the PS-Fair
rating predictor py ¢ (R|Uy) can be obtained by optimizing Eq. (7)
with the inferred @y and the observed ratings r. Specifically, we
parameterize py, ¢ (R|Uy) as the following multinomial distribution,

r ~ Multi(MLPpf(iif), N), (14)

where MLP, ¢ is another MLP with softmax as the last layer activa-
tion. Finally, the multinomial probabilities of all previously uninter-
acted items can be obtained via p, ¢ (R|Uf), which are then ranked
such that M most relevant ones are fetched for recommendations.

4 EXPERIMENTS

In this section, we present the extensive experiments conducted on
two semi-simulated datasets and one real-world dataset to demon-
strate the effectiveness of the proposed PSF-VAE, with an emphasis
on answering the following three research questions®:
e RQ1. How well can PSF-VAE achieve fairness compared with
different RS methods with and without fairness constraints?
e RQ2. How well can PSF-VAE preserve necessary fair influences
of sensitive features compared with existing fair RS algorithms?
e RQ3. How does the number of users with known unfair items
Ry, influences the fairness performance of PSF-VAE?

4.1 Datasets

It is difficult to directly evaluate PSF-VAE on real-world datasets,
as the true fair and unfair causal effects of sensitive features on the
observed ratings cannot be identified from the datasets. Therefore,
we first establish semi-simulated datasets with known causal mech-
anisms between sensitive features and rating observations. We then

®Codes are available at https://github.com/yaochenzhu/PSF-VAE.
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Table 1: Statistics of the semi-simulated (ML-1M and AM-VG)
and the real-world (LinkedIn) datasets. #Int. stands for the
number of observed interactions. Sps. (R) and Sps. (R,,) denote
the sparsity of observed ratings, unfair items, respectively.

Dataset #Int. #Users #Items Sps.(R) Sps. (Rp)
ML-1M 993,504 6,000 3,706 95.53% 99.76%
AM-VG 127,741 7,253 4,338 99.60% 99.93%
LinkedIn 1,055,241 8,896 5,931 98.01% 99.62%

introduce a real-world dataset collected from LinkedIn?, where for
a subset of users, their negative feedback on recommendations (i.e.,
explicit dismissals of Ads) is treated as the proxy of unfair items.

4.1.1 Semi-Simulated Dataset. The semi-simulated datasets
are established based on the widely-used MovieLens-1M (ML-1M)
[16] and Amazon Videogames (AM-VG) datasets [33]. For each
dataset, we train a Multi-VAE model [28] on the binarized ratings,
where the decoder fyen = MLPgen (1) maps the user latent variable
U ~ N(0,Ig) to the multinomial parameters R of the ratings R.
The latent dimension K is fixed to 200 as [28]. We then assume
that the first K and the remaining Kj, = K — Ky dimensions of U,
which we denote as Uf and Uy, mediate the fair and unfair influ-
ences of sensitive features S on the observed ratings R, respectively.
In the simulation, for each user, we first generate a confounder
c~ N(o, IKf) that simultaneously affects uy and uy, where user
sensitive features s are derived from ¢ by PCA(c, K;). The fair and
unfair latent mediators uy and uy, are then generated as follows:

up =Apc+ J(1 - Ajzc)ef; up, = ApRedim(c, Kp) + /(1 — /li)eb,

where the exogenous variables €7 ~ N(0, IKf), €, ~ N(0,Ig, ), the
function Redim reduces the dimension of ¢ to Kj through random
selection, and the coefficients A and A, determine the noise level of
uy and up, which are empirically fixed as 0.9 and 0.9, respectively.
The observed ratings are generated from uy and uy, by first
calculating the multinomial parameters T = fyen ([u f||ub]), where
the top 100 X p,% (ranked among all users) are selected as the rating
observations r. p, is set to be the same as the original datasets.
The unfair items r;, are simulated with the sub-network ]?;fm in
fgen that corresponds to up8. Similarly, we obtain the multinomial
parameters Tj = ﬁ};n(ub), where the top 100 X p, % are selected
as the unfair items. pj is determined such that the ratio of the
average number of observed ratings and unfair items is the same
as the real-world dataset introduced later. We do not simulate non-
sensitive features x because the sequential ignorability assumption
automatically holds with the above data generation process.

4.1.2 Real-World Dataset. In addition, we collect a real-world
dataset from LinkedIn for job recommendations, where ratings R
denote users’ interactions with the job Ads. We use the data where
users actively dismissed the recommended jobs as substitutes for the
unfair items Ry,. User sensitive features S include age, gender, and
education level, all of which can influence the job recommendation

"https://www.linkedin.com/.
81f we denote fgen(0) as fgen (Wu +b), the subnetwork can be obtained by fgben =

ﬁ,en (W:,K—Kb:KUb +b), where W.k-K,:K selects the last K columns of W.
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in a fair manner. For example, age can determine the experience
and seniority of the users, whereas education level can determine
their knowledge and skills. To avoid privacy issues in user data
collection, we train a generative model (VAE) to encode the raw data
into a joint distribution pgen (R, Rp, S) where S is embedded into a
50-dimensional continuous vector, and we generate anonymized
data from pgen accordingly for the experiments to protect privacy
[52]. The statistics of the datasets are summarized in Table 1.

4.2 Experimental Settings

4.2.1 Setups. In our experiments, we randomly split the users into
train, validation, and test sets based on the ratio of 8:1:1 [28]. For
each user, 20% of the observed ratings are held out for evaluation.
For the ML-1M and AM-VG datasets, the simulated unfair items r;,
for 100 X (1 — ¢,)% of the training and validation users are masked
out as zero (where ¢, is set to 0.3 as with the LinkedIn dataset),
while rj, for all test users are used to obtain unbiased evaluations
of the fairness of different methods. In our experiments, we first
fix the simulated dimension of Uy, i.e., Kp, to 50 in the ML-1M and
AM-VG datasets to compare the recommendation performance and
fairness across different methods. We then simulate the datasets
with varied Kj, to further demonstrate the robustness of PSF-VAE
to different levels of unfair correlations between observed ratings
and sensitive features. Finally, we show the sensitivity of PSF-VAE
to the percentage of users with observed unfair items. All reported
results are averaged over ten random splits of the datasets.

4.2.2 Evaluation Metrics. We evaluate different RSs from two
aspects: recommendation performance and fairness. The recommen-
dation performance is measured by two widely-used ranking-based
metrics: Recall (R@M) and truncated normalized discounted cumu-
lative gain (N@M)’. Fairness is measured by the hit rate of top M
items on unfair items (HiR@M). For the semi-simulated datasets,
the true unfair items .}, ; are available for all test users, while for
the LinkedIn dataset, we can only calculate HiR @M for test users
with observed unfair items. In our experiments, we find that M gen-
erally does not affect the relative performance of different methods.
Therefore, we set M to 20 for Recall and 100 for NDCG as with [28],
and set M to 10 for HiR due to the sparsity of observed unfair items.

4.2.3 Model Selection. During the training stage, we monitor
the composite metric Metrf(i) = R@20(i) + N@100(i) - HIR@10(i)
on validation users with known unfair items and Met, (i) = R@20(i)
+ N@100(i) on validation users with no observed unfair items, and
calculate the weighted average of Met, s and Metr, ie., Met, over
all validation users. We then select the model with the largest Met
and report the recommendation and fairness metrics on test users.

4.3 Comparisons with Baselines

4.3.1 Baseline Descriptions. To answer RQs 1 and 2, we com-
pare the proposed PSF-VAE with various state-of-the-art RSs with/
without fairness-aware mechanisms. The main baselines included
for comparisons can be categorized into four classes as follows:
e Unawareness. RSs with unawareness use only seemingly non-
sensitive information (i.e., observed ratings and non-sensitive

9We also use the recommendation quality (i.e., R@M and N@M) as an indirect measure
of RSs’ ability to preserve the fair influences of sensitive features on ratings.
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Table 2: Comparison between PSF-VAE and various baselines.
T denotes the larger the better, while | denotes the opposite.

AM-VG Rec: R@20 T Rec: N@100 T Fair: HIR@10 |
Multi-VAE 0.2454 +0.0130  0.2350 + 0.0093 0.0297 +0.0030
CondVAE 0.2780 +0.0103 0.2599 +0.0058  0.0315 +0.0045

CondVAE-ES 0.2686 +0.0115  0.2493 =+ 0.0061 0.0302 + 0.0053

Fair-MMD 0.2304 +0.0118  0.2147 +0.0094 0.0279 +0.0025
Fair-ADV 0.2285 +0.0081  0.2119 +£0.0076  0.0274 =+ 0.0020
PSF-NN 0.2702 +0.0124  0.2549 + 0.0095 0.0310 + 0.0029
PSF-VAE 0.2691 +0.0104  0.2507 + 0.0075 0.0288 +0.0032
ML-1M Rec: R@20 T Rec: N@100 T Fair: HIR@10 |
Multi-VAE 0.5493 +0.0133  0.6556 + 0.0064 0.0938 +0.0075
CondVAE 0.5689 +0.0145 0.6757 +0.0065  0.0953 +0.0077

CondVAE-ES 0.5615 +0.0151  0.6665 + 0.0069 0.0949 =+ 0.0080

Fair-MMD 0.5312 £ 00119  0.6350 =+ 0.0069 0.0893 +0.0074
Fair-ADV 0.5304 +0.0129  0.6348 +0.0060  0.0886 =+ 0.0063
PSF-NN 0.5654 +0.0104 0.6701 + 0.0051 0.0942 + 0.0040
PSF-VAE 0.5601 +0.0148  0.6668 + 0.0070 0.0904 + 0.0084
LinkedIn Rec: R@20 7T Rec: N@100 T Fair: HIR@10 |
Multi-VAE 0.1665 +0.0043  0.2553 +0.0046 0.0703 + 0.0034
CondVAE 0.2056 +0.0037 0.3042 +0.0031  0.0718 +0.0037

CondVAE-ES 0.1991 +0.0047 0.2965 + 0.0036 0.0705 +0.0023

Fair-MMD 0.1579 +0.0054  0.2398 + 0.0066 0.0608 + 0.0040
Fair-ADV 0.1573 +0.0062  0.2372 +0.0070  0.0591 + 0.0034
PSF-NN 0.2032 +0.0024 0.3005 =+ 0.0028 0.0709 +0.0023
PSF-VAE 0.2024 +0.0045  0.2987 + 0.0034 0.0647 +0.0029

features) for recommendations. In this regard, the Unawareness
counterpart of PSF-VAE is the vanilla Multi-VAE [28].

o Naive. Naive RSs explicitly utilize the sensitive features S for
recommendations. In our case, it can be implemented as a gen-
eralized Multi-VAE where the rating inputs are augmented with
the sensitive features S. The augmentation is implemented as
with the user conditional Multi-VAE (CondVAE) in [38].

o Total Fairness. RSs with total fairness block all the effects
of sensitive features S on recommendations. Built upon the
Unawareness model (i.e., Multi-VAE), the inferred user latent
variables U are constrained to be disentangled from the user
sensitive features S while fitting on the observed ratings R. We
consider the following two disentanglement strategies:

— Fair-ADV. Fair-ADV constrains the user latent variables of
Multi-VAE to be independent with sensitive features S via
adversarial training; details can be referred to in [26].

— Fair-MMD. Fair-MMD minimizes the maximum mean dis-
crepancy (MMD) of user latent variables given sensitive fea-
tures S in Multi-VAE [30]. Specifically, we randomly select
one dimension of S and binarize it for the minimization.

o PS-Fairness. We consider the following naive PS-Fair strategy
for RSs, i.e., PSF-NN, where for each user, we calculate the sim-
ilarities with all users with available Rj, measured by sensitive
features. Then we select the N closest neighbors, get the top K
unfair items, and remove them if they appear in the list.
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Figure 6: Comparison between PSF-VAE and baselines with
different dimension of Uy, i.e., K, for the simulated datasets.

Finally, since a simple strategy to improve the fairness over the
Naive model is through underfitting on the observed ratings R, we
design an early-stop baseline, CondVAE-ES, which has the closest
N@100 on the validation users with PSF-VAE, to demonstrate the
fairness improvement of PSF-VAE is not due to simple underfitting.

4.3.2 Comparison Results. The comparison between PSF-VAE
and various baselines is shown in Table 2. The best results (com-
pared across four classes) are shown in bold, and the runner-ups
are underlined. In summary, we have the following observations:
(1) By utilizing all information in sensitive features for recommen-
dations, CondVAE has the best recommendation performance and
the worst fairness. (2) By simply ignoring the sensitive features, the
Unawareness model (Multi-VAE) has improved fairness over the
Naive model, while the recommendation performance is decreased
simultaneously. (3) RSs with Total Fairness further improve the
fairness over Multi-VAE, since the correlations between sensitive
features and observed ratings are removed from user latent vari-
ables. However, since the fair influences of sensitive features are
indiscriminately discarded, they also have the worst recommenda-
tion performance. (4) Although PSF-NN achieves better fairness
than CondVAE, the improvement is not significant. The reason
could be that the nearest-neighbor strategy is too crude to model
the complicated unfair influences of sensitive features on observed
ratings. (5) PSF-VAE has much better recommendation performance
than the Total Fairness models and better fairness than the Naive
and Unawareness models, because PSF-VAE only blocks the unfair
influence of sensitive features on ratings, while their fair effects on
user interests are maximally preserved for recommendations.

In addition, we set the simulated dimension of Uy, i.e., Kp, to
different values in the AM-VG and ML-1M datasets to change the
relative strengths of fair and unfair causal influences of sensitive
features on the observed ratings and repeat the experiments in
Fig. 6, which further demonstrates that PSF-VAE achieves a better
balance between the recommendation performance and fairness.

4.4 Ablation Study

In this section, we compare the proposed PSF-VAE with the follow-
ing variants as the ablation study to further verify its effectiveness.

e PSF-VAE-nLat removes the user bias variable U;, and directly
constrains the user latent variables U in Multi-VAE to be inde-
pendent of the observed unfair items Ry, via adversarial training.
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Table 3: Comparisons between different variants of PSF-VAE.

AM-VG Rec: R@20 T Rec: N@100 T Fair: HIR@10 |

PSF-VAE-nLat  0.2276 +0.0080 0.2102 + 0.0045
PSF-VAE-nWSL 0.2729 +0.0084 0.2543 + 0.0046
PSF-VAE-nADV 0.2721 +0.0093  0.2528 + 0.0061
PSF-VAE-Mask  0.2624 +0.0096  0.2463 + 0.0074

0.0270 + 0.0022
0.0299 + 0.0021
0.0297 +0.0029
0.0291 + 0.0031

PSF-VAE 0.2691 +0.0104  0.2507 +0.0075 0.0288 +0.0032
ML-1M Rec: R@20 T Rec: N@100 T Fair: HIR@10 |
PSF-VAE-nLat  0.5163 +0.0152 0.6246 + 0.0073 0.0869 + 0.0083

PSF-VAE-nWSL 0.5647 +0.0135 0.6691 + 0.0069
PSF-VAE-nADV 0.5630 +0.0149 0.6687 + 0.0075
PSF-VAE-Mask  0.5577 +0.0132  0.6659 + 0.0063

0.0932 +0.0081
0.0925 +0.0072
0.0911 =+ 0.0068

PSF-VAE 0.5601 +0.0148  0.6668 + 0.0070 0.0904 + 0.0084

LinkedIn Rec: R@20 T Rec: N@100 T Fair: HIR@10 |

PSF-VAE-nLat  0.1868 +0.0048 0.2832 +0.0035
PSF-VAE-nWSL 0.2047 +0.0041  0.3009 + 0.0032
PSF-VAE-nADV 0.2032 +0.0046 0.3004 + 0.0040
PSF-VAE-Mask 0.2016 +0.0039  0.2969 + 0.0051

0.0614 +0.0033
0.0675 +0.0035
0.0660 =+ 0.0039
0.0654 +0.0044

PSF-VAE 0.2024 +0.0045  0.2987 + 0.0034 0.0647 +0.0029

PSF-VAE-nWSL removes the weakly-supervised learning mod-
ule of PSF-VAE, i.e., when fitting on the biased observed ratings
R as Eq. (11), we only introduce the user bias latent variable Uy,
for the subset of users with observed unfair items Ry,.
PSF-VAE-nADYV removes the adversarial training module in
PSF-VAE that ensures the conditional independence between
latent mediators Uy and U, given user sensitive features S.
PSF-VAE-Mask trains the same generative and inference net-
works as PSF-VAE. However, instead of learning a new model
Ppsf(RIUp), it masks out the weights in pg (R|Uf, Up) that corre-
spond to Up, which leads to a new distribution ppasked(g) (RIUf),
and uses pyqsked(0) to make the recommendations.

From Table 3 we can find that, PSF-VAE-nLat has the worst rec-
ommendation performance among all the variants, which shows
that directly conducting adversarial training on the observed unfair
items ry, is not stable, as r;, are high dimensional sparse vectors.
In addition, PSF-VAE-nWSL, PSF-VAE-nADV, and PSF-VAE-Mask
have worse fairness compared with PSF-VAE, with comparable rec-
ommendation performance. The results further validate the effec-
tiveness of the weakly supervised learning and adversarial training
modules of PSF-VAE to promote PS-Fairness in recommendations.

4.5 Sensitivity Analysis

To answer RQ 3, we vary the mask rate of users with known unfair
items in the simulated datasets, i.e., 1—c,, and plot the relations with
recommendation performance and fairness in Fig. 7. From Fig. 7 we
can find that, the fairness of PSF-VAE generally improves with the
increase of ¢, with slight negative influences on recommendation
performance. This indicates that although PSF-VAE can perform
well with small ¢, encouraging more users to provide feedback on
unfair items can further promote PS-Fairness in recommendations.
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Figure 7: Sensitivity of PSF-VAE with different percentages of
users with observed unfair items in AM-VG, ML-1M datasets.

5 RELATED WORK

Fair RSs. Traditional fair RSs mainly rely on statistic parity to
ensure the fairness of recommendations for users, with metrics
such as demographical parity, equalized odds, etc. [5, 15, 45, 57, 58].
However, recent research indicates that the statistical discrepancy
between the outcomes of different user groups may be well ex-
plained by some important non-sensitive factors [20, 49, 50], and
algorithms that indiscriminately enforce statistical parity may still
be biased against certain user groups or individuals [22, 31].

Causal RSs. Through a causal lens [6, 32, 56], user-oriented unfair-
ness can be viewed as a non-confounder-induced bias due to the
undesirable causal effects of sensitive features on observed user rat-
ings [47, 55]. Existing causality-aware fair RSs treat all causal effects
of sensitive features as unfair and remove them indiscriminately
[30]. In contrast, PSF-RS preserves the fair influences of sensitive
features on recommendations by identifying the fair and unfair la-
tent mediators of sensitive features, where fairness can be achieved
with the diversity of recommendations maximally preserved.

6 CONCLUSIONS

In this paper, we propose a path-specific fair recommender sys-
tem (PSF-RS) to address the unfairness in recommendations while
maximally preserving the fair influences of sensitive features on
user interest. Specifically, PSF-RS summarizes all fair and unfair
correlations between sensitive features and observed user ratings
into two latent proxy mediators, which can be disentangled with
weakly supervised variational inference based on the extremely
sparse observed unfair items. To address the bias, we minimally al-
ter the biased factual world into a hypothetically fair world, where a
fair RS is learned accordingly by solving a constrained optimization
problem. Extensive experiments show the effectiveness of PSF-RS.
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Path-Specific Counterfactual Fairness for Recommender Systems

A DEFINITION OF CAUSAL CONCEPTS

Causal Graph. A causal graph G = (V, ) is a directed acyclic
graph that describes the causal relationships among the vari-
ables of interests, where V is the set of nodes (which represent
random variables in this paper), and & is the set of edges, respec-
tively. Specifically, a directed edge from variable X to variable
Y indicates that X has a causal influence on Y.

Structural Equations. Each causal graph G = (V,&) can be
associated with a set of structural equations 7 = {p(X|Pa(X)) |
X € V}, where p(X|Pa(X)) quantifies the causal influence of
the parents nodes of X, i.e., Pa(X), on X.

Causal Path. A causal path P between variables X and Y is a
sequence of edges (from X to Y) in & such that each edge starts
with the node that ends the previous edge. A directed causal
path is a causal path whose edges point in the same direction.

Mediator/Mediate. In a directed causal path P between X and
Y,eg.,X — M — Y, any intermediate node M is a mediator,
where the causal effects of X on Y are mediated by M.

Block/Unblock. If conditioning on M = m blocks the causal path
P between X and Y, no dependence (both causal and non-causal
ones) can be passed from X to Y along the path P when M is
known (see [13] for a formal definition). Otherwise, we say that
conditioning on M = m unblocks the causal path P.

Intervention. Given a causal graph G, we can conduct interven-
tions on a variable X, which means that we set X to a value x
regardless of its observed values as well as the values of its par-
ents Pa(X). If unspecified, the intervention is conducted upon
the whole population, but we can also conduct the intervention
conditional on C = ¢, which means that we set X = x on the
sub-population specified by the conditions.

Potential Outcome. Potential outcomes can be used to formal-
ize the definition of interventions. Specifically, we define the
potential outcome Yx (i) as the value of Y for unit i had X
been x. Based on Yx (i), we can further define the potential
outcome random variable Yx . , to denote the unconditional
intervention that set X = x uniformly upon the population. Fur-
thermore, the conditional potential outcome random variable
Yxx|C = ¢ can be used to denote the intervention conducted
upon the sub-population specified by the condition C = c.

Counterfactuals. For Yy, »|C = ¢, when C = X and ¢ = x/,
the conditional potential random variable Yx |X = x’ can
be used to define the counterfactual distribution of Y had X
for the units with the factual value of X = x’ been set to a
counterfactual value x. The above analysis also applies to the
Nested Potential Outcome introduced in Definition 2.1.

B THEORETICAL ANALYSIS

B.1 Proof of Identification of PS-Bias in Eq. (3)

Assumption 2. Sequential Ignorability [19].
Step 1. We assume that given X, the sensitive features S are ignorable
for the mediators Uy, Uy, and user ratings R as follows:

Uf,S<—Ss Ub,S<—s’s RS(—S',Uf(—Uf,Ub<—u;7 L SIX. (15)
Step 2. We also assume that given X, the post-interventional mediators
Uf,ses> Up,ses are ignorable for the user ratings R as follows:

RS<—S',Uf<—Uf,Ub<—u'b I Uf,S<—s, Ub,S<—s/ |X- (16)
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The difference between the potential outcome RS<—s’,Uf<—u £ Up ),
and the nested potential outcome R/ (Uf, s, Up 5c—s) lies in
the fact that the former directly sets the mediators Uy and Uy, to
the values u £ and v’ , whereas the latter conducts interventions on
S by setting S to s and s” and let them influence Uy and Uy,

The sequential ignorability assumption holds for the causal graph
specified in Fig. 1, because there are no unobserved confounders
for the causal paths S — Uy, S — Uy and S — R (and thus Eq. (15)
holds) and Uy — R and U, — R (and thus Eq. (16) holds).

B.1.1  Proof. Based on the sequential ignorability assumption de-
fined above, Eq. (4) can be proved with six steps as follows:

E [RSH/ (Ufys(_s, Ub,s(_s/) =X =x5= s]

(;i) =x,5=s, Uf’sgs =uy,

P(RS<—s’ (Uf,S%ss Ub,S(—s’) =r|X

ruguy
Uh’sgs/ = u;)) ‘p (Uf,sgs = uf|X =x85= S) .

P (Ub’sgsf = u;7|X =x8= s) T

—

)
= / P(RS<—S’ Up—up,Upeuy ‘X =x5=8Urges =1y,
rLuguy,

Upses = ub) p (Uf&_S = uf|X =x5= s)

P |\Ups—s _ub|X=x,S=s) By

Rse g Up—upUpeu), = r\X =x5= s) I

I=

(
o
p(Upscs =uplX=x5=5)p(Upscy =up/x =x5=5)
p (Uf,&—s =ug|X = X) p (Upsew =X =x) 1

© prlup,wp,s".x) - p(ugls,x) - p(uyls’,x) - p(x) -

r,uf,u;J

L[ plrlupuy(s)) - plaglsx) - plupls’) - p(x) - x.

T, SUF, u

(17)
Step (a) is based on the total probability theory; step (b) is based
on the consistency rule of counterfactuals [41]; step (c) is based on
the second step of sequential ignorability; steps (d)(e) are based on
the first step of sequential ignorability; and step (f) is based on the
conditional independence assumptions implied by the causal graph
in Fig. 1. Similar procedures can be used to prove the identification
of Eq. (5), where Eq. (3) can be calculated as Eq. (4) - Eq. (5).

B.2 PS-Bias for RS Models with Constraints

In section 2.3, we have introduced the PS-Bias of the naive RSs that
predict new ratings according to the exact causal mechanism that
generates the biased observed ratings. This section generalizes the
PS-Bias for RS models with extra constraints, which serves as the
basis for proving the PS-Bias for existing fair RSs and PSF-RS.
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We note that the causal mechanism that generates the observed
ratings is composed of three structural equations: ¥ = {p(R|U, Up),
p(UrlS, X), p(Up|S)}, which induces the causal graph in Fig. 1 by
setting the variables on the RHS of p € ¥ as the parents and the
variable on the LHS as the child. An RS model with extra constraints
can be viewed as generating ratings in two steps: (1) Certain struc-
tural equations p in F are minimally changed to p,,,qe1 according
to the constraints (where the irrelevant ones remain intact). We
use Fruodel to denote the new set of structural equations, which
induces a new causal graph (e.g., Figs. 3-(b) and 4-(b)). (2) Ratings
are generated according to the newly-induced causal model. There-
fore, PS-Bias for an RS with constraints can be calculated as the
path-specific effects of sensitive features S on ratings R along the
unfair paths of the newly-induced causal model.

B.3 Proof of Zero PS-Bias for Existing Fair RSs

B.3.1 Further Analysis. Existing fair RSs constrain the user la-
tent variables U to be independent of the user sensitive features
S as Eq. (6). To satisfy such a constraint, we need to change at
least two structural equations in ¥, i.e., p(Ur|S, X), p(Up|S) into
Pef(UrlX), pef(Up) (although in practice, when maximizing the
likelihood of observed ratings, p(R|Uy, Up) will also be changed
into p.r(R|Uf, Up) since the distributions of Uy, Uy, are altered),
where the causal structure p(Up|S, X) necessary for recommenda-
tion diversity is inevitably lost. We use PSBias**(x, s, s’) to denote
the PS-Bias of the altered causal model induced by existing fair RSs.

B.3.2  Proof. PSBias**(x,s,s’) can be calculated by substituting
the three p, ¢ terms introduced above for the p terms in Eq. (3).
After the substitution, the first expectation term becomes

B [Rg(_s» (U ss Unss) |X —x5= s]

, , (18)
= [ peptlug) - pepCugs) - pegu) -
ruguy
Similarly, the second expectation term becomes
E™ [RS<—s (Uf,&—s’ Ub,S(—s) = r‘X =x5= S]
(19)

:/ Pef(rlup,up) - per(urlx) - per(up) - 1.
LUuf,up

Since PSBias™* (x,s,s’) = Eq. (18) - Eq. (19), the equality of Eqgs. (18)
and (19) proves that PSBias**(x,s,s”) = 0 for existing fair RSs.

B.4 Proof of Zero PS-Bias for PSF-RS

In the hypothetically fair world induced by the proposed PSF-RS,
Ppsf(RIUy) is substituted for p(R|Ur, Up) in F while other causal
mechanisms invariant to the RS remain unchanged. Similarly, the
first expectation term in PSBias*(x,s,s”) can be calculated as

E* [RS<—s’ (Uf,5<—sa Ub,S«—s') ‘X =x5= S]

= [ ppsplelup) - pluglsin) - pluls) v
ruguy,

' (20)
= [ pyls) [ ppupiug) - pluglsn x
l.lb r,uf

- / ppsp(rlug) - pluglsx) - r.
r,uf
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Furthermore, the second expectation term becomes

E* [RSHS (Uf,S<—s’ Ub,S«—s) = T’X =x5= S]
B / Ppsr(rfup) - p(ugls,x) - p(upls) - r (21)
ruf,up

=/ Ppsf(rlup) - p(upls,x) - r.
rus

Since PSBias*(x,s,s’) = Eq. (20) - Eq. (21), the equality of the RHS
of Egs. (20) and (21) proves that PSBias*(x,s,s’) = 0 for PSF-RS.

B.5 Proof of ELBO for PSF-VAE
In this section, we prove the ELBO of PSF-VAE in Eq. (11) as follows:

lnpg(R, Rb|S,X) = ln/

Po(R Rp, Ur, Up|S, X)
UpU,

2o (R, Ry, Ur, Up|S, X)
- ln/ (Ug, Uy|R, S, X) -
vy, U OIS X0 G IR S %)
(a) R Ry, Ur,Up|S, X
;/ q¢,(Uf,Ub|R,S,X)~lnp9( bf b| )
UpUp 94Uy, Up|R, S, X)
20Uy, UplS, X) - po(R, Ry |Up, Up)

= (Ur, Up|R, S, X) - In
L 9000

_E >1n po(Uy, UplS, X) - pg(R, Rp|Uy, Up)
~ ©q4 (Ur,Up|RS.X) » qu(Uf’ UpIR, S, X)

44 (Ur, Up|R, S, X)

= Eqy (U U IRS.X) [P0 (R Ry |Up, Up) | +

. [ po(Up, UplS. X)
qlﬁ(Uf’UblR)S,X) »q(li)(Uf’ Ub|R, S,X)

=Eq, (y,upIRSx) [Inpo(RIUs, Up)] + Eqy (IR 5) [In po (Rp|Up) |

= KL[qy(UrIR, 8, X) Il po(UrlS, X)] = KL[qy (UpIR, S) || po(UplS)],

(22)
where step (a) is the application of Jensen’s inequality, and the final
step is based on the conditional independence assumptions implied
by the causal graph in Fig. 1, which leads to the ELBO in Eq. (11).

We can further show that the difference between the ELBO
and the log evidence In pg(R, Rp|S, X) is exactly the KL-divergence
between variational posterior g4 (Ur, Uy |R, S, X) = q¢ (Ur|R, S, X) ¥
44 (Up|R, S) and the true posterior pg(Uy, Up|R, Rp, S, X). To prove
this, we can add the KL term to the RHS of (a) in Eq. (22) as follows:

(a) +KL[q4(Us, Up|R, S, X) || po(Ug, Up|R, Ry, S, X)]

Po(R Ry, Ur, UplS, X)  qy(Upr, UplR, S, X)
q5(Up, UpIR S, X)  pg(Up, UpIR Rp, S, X)

Po(Ur, Up|R, Ry, S, X)

=Eq, (usU, RS X) [Inpg(R Rp|S, X)] = In pg (R, Rp|S, X),

= ch/)(Uf,Ub\R,S,X) In

= qus(Uf,Ub\R,S,X) In

(23)
where the RHS of Eq. (23) is the log evidence In py(R, RS, X).
This further proves our claim that minimizing the KL divergence
between the variational posteriors defined by PSF-VAE and the true
posteriors is equivalent to maximizing the ELBO as Eq. (11).
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