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ABSTRACT

Fairness-aware machine learning has attracted a surge of atten-
tion in many domains, such as online advertising, personalized
recommendation, and social media analysis in web applications.
Fairness-aware machine learning aims to eliminate biases of learn-
ing models against certain subgroups described by certain protected
(sensitive) attributes such as race, gender, and age. Among many
existing fairness notions, counterfactual fairness is a popular no-
tion defined from a causal perspective. It measures the fairness of
a predictor by comparing the prediction of each individual in the
original world and that in the counterfactual worlds in which the
value of the sensitive attribute is modified. A prerequisite for exist-
ing methods to achieve counterfactual fairness is the prior human
knowledge of the causal model for the data. However, in real-world
scenarios, the underlying causal model is often unknown, and ac-
quiring such human knowledge could be very difficult. In these
scenarios, it is risky to directly trust the causal models obtained
from information sources with unknown reliability and even causal
discovery methods, as incorrect causal models can consequently
bring biases to the predictor and lead to unfair predictions. In this
work, we address the problem of counterfactually fair prediction
from observational data without given causal models by propos-
ing a novel framework CLAIRE. Specifically, under certain general
assumptions, CLAIRE effectively mitigates the biases from the sen-
sitive attribute with a representation learning framework based
on counterfactual data augmentation and an invariant penalty. Ex-
periments conducted on both synthetic and real-world datasets
validate the superiority of CLAIRE in both counterfactual fairness
and prediction performance.
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1 INTRODUCTION

Recent years have witnessed a rapid development of machine learn-
ing based prediction [10, 14, 44] in various high-impact applications
such as personalized recommendation [36, 51], ranking in searches
[17, 40], and social media analysis [1, 32]. Recent literatures [7] have
shown that the predictions based on traditional machine learning
often exhibit biases against certain demographic subgroups that
are described by certain protected attributes (a.k.a. sensitive at-
tributes) such as race, gender, age, and sexual orientation. Thus,
how to develop a fair predictor has attracted a surge of attentions
(5,9, 20, 22,49, 54, 55]. Among them, the seminal work of counterfac-
tual fairness [30] makes use of the causal mechanism to model how
discrimination is exhibited, and eliminates it at the individual level
based on the Pearl’s causal structural models [39]. The intuition of
counterfactual fairness is to encourage the predictions made from
different versions of the same individual to be equal. For example,
the predictions for “in an online talent search, how would a certain
candidate be ranked if this candidate had been a male/female?"
should be identical to achieve the notion of counterfactual fairness.

A prerequisite of existing methods to achieve counterfactual
fairness is the prior human knowledge of causal models. A causal
model [38, 39] typically consists of a causal graph and the corre-
sponding structural equations that describe the causal relationships
among different variables. Existing works on counterfactual fair-
ness [30, 42, 52, 53] overwhelmingly rely on the assumption that the
underlying causal model is (at least partially) known and correct,
in order to mitigate the biases across different sensitive subgroups.
However, existing work often suffers from the following major limi-
tation: In real world, the underlying causal model is often unknown,
especially when the data is high-dimensional [6, 50]. The construc-
tion of a trustworthy causal model often requires knowledge from
domain experts, which is expensive in both time and labor. In ad-
dition, it is extremely challenging to validate the correctness of
the obtained causal model. Without external guidance of human
knowledge, other existing works mostly rely on causal discovery
techniques [23, 26, 31, 38, 46, 47] to learn the causal model from
observational data, but these methods can suffer from various mis-
takes in discovering the causal relations, and thus lead the predictor
to pick up biased information of the sensitive attribute [37].
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Figure 1: An illustrative example of incorrect causal models.

Here, the toy example in Fig. 1 intuitively explains two scenarios
with incorrect causal models. Fig. 1(a) shows an example of a true
causal model (often determined by domain experts) in which we
aim to predict the salary (prediction target Y) of people in different
races (described by the sensitive attribute S). We assume that the
level of education (observed feature X1) of each person is a cause,
and the salary also influences the type of car each person would
like to purchase (observed feature X3). Unobserved variables U (e.g.,
geographic location) could also have a causal effect on the observed
variables. To learn a counterfactually fair predictor, most existing
works [30, 42] utilize a given causal model, and only use those
variables which are not causally influenced by the sensitive attribute
(i-e., non-descendants of S) for prediction. We now consider two
cases when the given causal model is incorrect: 1) Consider an
incorrect causal model M; in Fig. 1(b), where the direction of the
causal relation Y — X3 is reversed (highlighted in red). Note that X
is causally influenced by S in the true causal model M. If a predictor
is based on My, Xz would be directly used in prediction, and thus
it violates counterfactual fairness with biases from the sensitive
attribute. 2) Consider another incorrect causal model M, where
an existing causal relation S — Xj in the true causal model M is
ignored. Predictors based on M would directly use X; in prediction,
which results in biases. Unfortunately, causal models are quite
common to be incorrectly assumed or discovered [26, 31, 38, 46].

To address the aforementioned issues of insufficient human
knowledge of causal model, we study a novel problem of learn-
ing counterfactually fair predictor with unknown causal models. Al-
though it is in principle impossible to achieve counterfactual fair-
ness without any causal model [30], we take initial explorations to
mitigate the unfairness based on certain general assumptions, and
circumvent the prerequisite of explicit prior knowledge. However,
this studied problem remains a daunting task mainly due to the
following challenges: 1) In order to achieve counterfactual fairness,
the causal effect from the sensitive attribute S to the prediction
must be removed [30, 42], but an unknown causal model brings
challenges to track the influence of the sensitive attribute and elim-
inate the biases; 2) There might exist unobserved variables which
can be used to predict the target (e.g., “geographic location" in the
salary prediction example), but without a correct causal model, it
is harder to capture these unobserved variables for prediction due
to the lack of prior knowledge regarding these variables. 3) Many
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factors (e.g., failure in obtaining correct causal relations) may lead
to unfair predictions, but it is difficult to exclude their influence
without a correct causal model. In a nutshell, all of these challenges
are essential due to the lack of counterfactual data.

To tackle these challenges, we propose a novel framework —
CounterfactuaLly fAIr and invariant pREdictor (CLAIRE), which
learns counterfactually fair representations for target prediction. To
remove the biases from sensitive attributes without any given causal
model (challenge 1), we develop a counterfactual data augmenta-
tion module to implicitly capture the causal relations in data, and
generate counterfactuals for each individual with different sensitive
attribute values. In this way, CLAIRE can learn fair representations
by using a counterfactual fairness constraint to minimize the dif-
ference between the predictions made on the original data and on
its counterfactuals. To capture the unobserved variables which can
help counterfactually fair prediction (challenge 2), CLAIRE maps
the observed variables to a latent representation space to encode the
unobserved variables that can facilitate the prediction. The afore-
mentioned counterfactual fairness constraint can preserve those
unobserved variables which are not biased. To further reduce the
factors which potentially impede counterfactual fairness (challenge
3), we exclude the variables with spurious correlations to the target
(i.e., variables that appear to be causal to the target but are not, e.g.,
X5 in Fig. 1(a)) from the learned representations. Spurious correla-
tions can easily lead to incorrect causal models. Besides, removing
these variables can often benefit model prediction performance, as
shown in [3]. We summarize our main contributions as follows:

e Problem: We study an important problem of learning coun-
terfactually fair predictor from observational data. We ana-
lyze its importance, challenges, and impacts.

o Algorithm: We propose a novel framework CLAIRE for this
problem. Specifically, we learn fair representations based
on counterfactual data augmentation. Besides, we exclude
spurious correlations to further reduce potential biases.

o Experiments: We conduct extensive experiments to evalu-
ate our framework on synthetic and real-world datasets. The
results show that CLAIRE outperforms the existing baselines.

2 PRELIMINARIES
2.1 Notations

In this paper, we use upper-cased letters, e.g., X, to denote ran-
dom variables, lower-cased letters, e.g., x, to denote specific values.
P(X) refers to the probabilistic function of X. We use X, S, U, Y
to represent the observed non-sensitive features/attributes, sensi-
tive attribute, unobserved variables, prediction label/target for any
instance, respectively. Specifically, we use X°, Y* to denote the cor-
responding features and target of any instance with the observation
of a specific sensitive attribute value S = s, where s € S, and S is
the space of the sensitive attribute value. Y denotes the predicted
label (for classification tasks) or target (for regression tasks).

2.2 Counterfactual Fairness

Counterfactual fairness [30] is an individual-level fairness notion
based on the causal mechanism. It is built upon the Pearl’s causal
framework [39], which is defined as a triple (U, V, F) such that:
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e U is the set of latent variables, which are often assumed to
be exogenous and consequently independent of each other;
e V is a set of observed variables, which are endogenous and
determined by variables in U U V;
o F={fi(), ("), .. fiv| (")} is a set of functions (referred to
as structural equations) which describe the causal relation-
ships among the above variables. For each variable V; € V,
Vi = fi(pai, Upq,), where “pa; € V\ V;” and “Upq, C U" are
variables that directly determine V;.
A causal model is associated with a causal graph, which is a directed
acyclic graph (DAG). Each node in the causal graph corresponds to
a variable in the causal model, and each directed edge represents a
causal relationship. For example, for observed variables A, B, the
value of the counterfactual "what would A have been if B had been
set to b?" is denoted by Ag. .
Based on a given causal model, a predictor uses a function Y=
f(X,S) to make the prediction for each instance. The predictor is
counterfactually fair [30] if under any context X = x and S =5,

P(Yses=ylX=x,5=5) =P(Ysy =ylX =x,5=5), (1)

forally and s” # s. Here ?&_s = f(Xscs, s) denotes the prediction
made on the counterfactuals when the value of S had been set to s.

2.3 Biases under Incorrect Causal Models

To achieve the notion of counterfactual fairness, existing works
often [30, 42] follow a two-step process: 1) First, they use the ob-
served data to fit the causal model and infer the posterior distri-
bution P(U|X, S) of unobserved variables U; 2) Second, they train
a counterfactually fair predictor based on the fitted causal model.
In particular, this step can be achieved in different ways: an initial
work [30] trains the predictor with only unobserved variables U
and the non-descendants of S as input. We refer to this method
as CFP-U. Another work [42] considers a counterfactual fairness
objective |f(Xscs,s) — f(Xs—s,s")| for each instance, aiming to
minimize the difference between the predictions made on different
counterfactuals of the sensitive attribute. We refer to this method
as CFP-O. In this subsection, we use some simple examples to show
the biases in the prediction of these existing counterfactual fairness
methods when the given causal model is incorrect.

Example 1. First, we consider the case when the counterfactual
fairness methods have been given an incorrect causal model as
shown in Fig. 1(b). In the aforementioned salary prediction example,
the ground truth causal model M is shown in Fig. 1(a). It indicates
that people’s salary can causally influence their choices of cars to
purchase. In this example, we let the causal model M be as follows:

P(S=1)=05P(5=0) =05,e1,ey,€2 ~ N(0,1),
X1 <—S+U+€1,YFX1+€y,X2 — Y +e.

X is correlated with Y because it is Y’s child node, but this cor-
relation may lead the model to incorrectly take X, as one of Y’s
parent nodes, as the incorrect causal model M; shown in Fig. 1(b).

Then the goal of counterfactual fairness: P(/};M1 X =x,S=s)=

Ses
P(YSA&JX = x,S = s) defined on M; is different from what is
defined on the true causal model M. Based on the incorrect causal
model M;, CFP-U will take X3 as an input to the predictor, but X»

contains biased information because it is actually a descendant of
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the sensitive attribute, thus it will bring bias into prediction. For
CFP-O, if we assume a linear predictor Y = W1 X; + WoXo + WsS,
then the fairness penalty on the incorrect causal model would be:
M M
E(If(Xg 2 1) = f(X5 0, 0) = [Wi + W],
while the fairness penalty based on the true causal model would be:

E(fxt ) - fxt,

0)) = [W1 + Wy + Ws|.

Such difference can lead to inappropriate learning results for the
parameters in the predictor. As the fairness penalty based on the
incorrect causal model has no constraint on W, the predictor can
not exclude the biases contained in X.

Example 2. We now consider another case of incorrect causal
model shown in Fig. 1(c). In the salary prediction example, consider
that the dataset contains a majority sensitive subgroup S = 0 (e.g.,
race A) and a minority sensitive subgroup S = 1 (e.g., race B). The
ground-truth causal model is assumed to be as below:

P(S=1)=0.1,P(§=0) =0.9,€1,€y,€2 ~ N(0, 1),
X1 <—S+U+€1,Y(—X1+€y,X2 — Y +er.

As the subgroup S = 1 is underrepresented, the fitted causal model
may miss the causal relation S — Xj for S = 1, i.e, the fitted causal
model is biased (as the causal model M shown in Fig. 1(c)). Then
for CFP-U, X; and X, will be taken as input for prediction because
they are considered to be non-descendants of S, but as X; and X are
actually biased because they are descendants of S, the predictor will
also be biased consequently. Let us take the predictor Y = X; for
example. The predictor makes prediction YS<—0 =X150=U+¢€;
and ?Sel =Xj5c1 =U+e+1inwhenS <~ 0and S « 1,
respectively, and this is obviously not counterfactually fair. For
CFP-O, the fairness penalty on this biased causal model My is:
E(f(x2%.1) - (X200 = W,
while the fairness penalty based on the true causal model M is:

E(fx2t ) - fx2t,

0)) = [Wi + W + Ws|.
Such difference may lead to inappropriate use of X; and X3, and
thus bring biases to the predictor.

As a summary, existing counterfactual fairness machine learning
methods heavily rely on given causal models, and would result in

biases when the given causal models are incorrect.

3 THE PROPOSED FRAMEWORK

In this section, we introduce the proposed framework CLAIRE,
which targets at achieving counterfactual fairness without relying
on explicit prior knowledge about the causal model. To achieve
this goal, CLAIRE learns counterfactually fair representations with
counterfactual data augmentation, and then makes predictions
based on the learned representations.

3.1 Assumptions and Examples

Before technical details, we first present the key concepts and as-
sumptions of CLAIRE, and then use general examples of causal
models (Fig. 2) to describe the information needed in CLAIRE.
Previous works of counterfactual fairness [30] have discussed
three levels of required prior knowledge about the causal model:
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Figure 2: Case studies of different kinds of variables in causal models. Each white (gray) node denotes an observed (unobserved)
variable, each arrow denotes a causal relationship, and each dashed arrow denotes a possible causal relationship. S, Y, U denotes
the sensitive attribute, the prediction target, and the unobserved variable, respectively. X; is a causal variable of Y and is a
descendent of S, X is a causal variable of Y and is non-descendent of S, and X> is a variable with spurious correlations to Y.

1) Level 1 only requires to know which observed features are non-
descendants of the sensitive attribute, and only uses them for predic-
tion; 2) Level 2 postulates and infers the unobserved variables with
partial prior knowledge of the causal model, and also uses them for
prediction; 3) Level 3 makes assumptions on the causal model (e.g.,
additive noise model [24]), postulates the complete causal model,
and then uses the inferred unobserved/observed non-descendants
of the sensitive attribute for prediction. These three levels make
increasingly stronger assumptions on the underlying causal model.
But even the first level still requires to figure out which variables
are non-descendants of the sensitive attribute. In this work, we aim
to propose a principled way for counterfactually fair prediction
without relying on the prior knowledge of the causal model. The
main assumptions in our framework are listed as follows:

AssuMPTION 1. The sensitive attribute is not causally influenced
by any other variables. This is a common assumption in most of
existing fairness works [7, 30, 42], as the commonly-used sensitive
attributes such as race and gender usually do not have any causes.

AssUMPTION 2. If a variable X directly affects Y (i.e., an edge
Xc — Y exists in the causal model), we assume P(Y|X,) is stable
across different sensitive subgroups, but for the variables Xs which
do not causally affect Y, P(Y|Xs) may be unstable in different sensi-
tive subgroups. This assumption and its variants are widely used in
invariant learning [2, 3].

As the ground truth causal model can be complicated, to inves-
tigate more general settings, we consider several different types
of variables in the causal model, including descendant and non-
descendant variables of S, causal and non-causal variables of Y, and
observed and unobserved variables. Here we conduct several case
studies on the causal model, and each corresponds to a causal graph
shown in Fig. 2. Suppose there is a ground truth causal model M, we
call the variables in M which causally affect the prediction target Y
(i.e., Y is the descendant of such variables) as causal variables of Y.
In all the causal models in Fig. 2, Xj is a causal variable of Y, but it is
also a descendant of S, thus it can not be directly used for counter-
factually fair prediction. As shown in Fig. 2(b) and (c), X is also a
causal variable of Y, and is non-descendant of S, thus Xj is supposed
to be used for fair prediction. X7 is not a causal variable of Y, but it
has statistically spurious correlations to Y. The reason may be that
Xy is Y’s descendant, as shown in Fig. 2(b), or X3 and Y are affected
by some common variables, as shown in Fig. 2(c). As discussed

in [3, 11], the spurious correlations between X, and Y often vary
across different sensitive subgroups and thus degrade the model
prediction performance. Besides, if these non-causal variables are
also descendants of sensitive attribute, incorporating them into
prediction would also impede counterfactual fairness. Therefore,
in our framework, we exclude these non-causal variables to further
avoid potential biases. Above cases are all about observed variables,
for those unobserved variables which are causative to Y, such as U
in Fig. 2(d), we try to better capture these unobserved variables by
utilizing the observed variables which have correlations with them.
Overall, in our framework, we learn representations to capture the
causal variables which are not influenced by the sensitive attribute.

3.2 Overview of CLAIRE Framework

Existing counterfactual fairness works [30, 42] involve counterfac-
tual inference for predictor training, but it is often infeasible in
real-world applications due to the lack of a correct causal model, es-
pecially when the data is noisy and high-dimensional [6]. Without
enough knowledge about the causal model, inferring the unob-
served variables and learning a fair predictor can be quite chal-
lenging. Here, we define the goal of our framework with respect to
counterfactual fairness, and show an overview of the methodology.
Based on the aforementioned preliminaries, we know that the key
point of this problem is to capture the information which elicits a
fair predictor, such as the causal variables that are non-descendants
of S. In our framework, we use the observed features to learn a
representation Z = ®(X) which captures the fair information, and
then build a predictor Y = g(Z) on top of it. In the implementa-
tion, we learn the representations Z in the following ways: (1) To
capture the causal variables of Y, we leverage the invariant risk
minimization loss [3] to exclude those non-causal variables with
unstable spurious correlations to Y. (2) To avoid taking the biases
from the sensitive attribute into prediction, we develop a coun-
terfactual data augmentation module, and encourage the learned
representation to achieve the following goal: for any s # s’, and
any x, P(®(xs—s)) = P(P(xs—s)). Intuitively, it means that for
each individual with observed features x and sensitive attribute
value s, the distributions of the representations learned from its
original version and its counterfactuals should be the same.
Algorithm 1 shows an overview of our framework, including
counterfactual data augmentation and fair representation learning.
Detailed techniques will be introduced in the following subsections.
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Algorithm 1: The proposed CLAIRE framework

Data: Instances of observable variables {X, S, Y}

Result: Counterfactually fair predictor Y= f(X,S)

/* 1. Counterfactual Data Augmentation */

Train a VAE with encoder ¥(-) and decoder D(-) with loss
function in Eq. (3) (CLAIRE-M) or Eq. (4) (CLAIRE-A)

for each instance of random variables {X, S, Y} do

HX with H = ¥(X,Y)

Generate K samples HL ..,
fors € Sdo

‘ XSCF, YSCF = AGGREGATE(D(H,s), ...,
end

D(HK  5))

end
/* 2. Fair representation learning */
Train a model f = g o ® consisting of a representation
learner @(-) and a predictor g(-)
for each instance of random variables {X, S, Y} do
Z=9(X).Y =4(2)
fors € S do
| 287 = o), X = g(25T)
end
Back-propagation with loss function in Eq. (7)
end

3.3 Counterfactual Data Augmentation

The lack of counterfactual data is the essential challenge to achieve
counterfactual fairness. Thus, we pretrain a counterfactual data
augmentation module to generate counterfactuals for each instance
by manipulating its sensitive attribute. Then, the augmented coun-
terfactuals together with original data are utilized to learn fair
representations. The counterfactual data augmentation module is
based on a variational auto-encoder (VAE) [28] with an encoder-
decoder structure. Specifically, the encoder in the VAE takes {X, Y}
as input, encodes them into a latent embedding space, and then the
decoder reconstructs the original data {X, Y} with the embeddings
H (notice that the embedding H is different from the representation
Z introduced in the previous subsection. H is the output of the
bottleneck layer of the VAE in counterfactual data augmentation
to generate counterfactuals) and sensitive attribute S. Note that S
is only used as an input of the decoder to enable counterfactual
generation in later steps. The reconstruction loss £, is:

Lr =Eq(m|x,y) [~ log(p(X, Y|H,$))|+KL[q(H|X., Y)||p(H)]. (2)

where p(H) is a prior distribution, e.g., standard normal distribution
N(0,I). KL[-||-] is the Kullback-Leibler (KL) divergence.

To generate counterfactuals with the embeddings H and a ma-
nipulated sensitive attribute value later, we need to capture more
“fair" generative factors (i.e., those generative factors which are
not causal influenced by S) in the embeddings, i.e., in encoder, we
remove the causal influence of the sensitive attribute on the embed-
ding H. Based on Assumption 1, if there is no dependency between
the embeddings and sensitive attribute, then the embeddings en-
code no descendants of sensitive attributes. Now, we introduce two
different implementations to remove the causal effect of S on H by
minimizing the dependency between them. These implementations

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

include the distribution matching based CLAIRE (CLAIRE-M) and
the adversarial learning based CLAIRE (CLAIRE-A).
Distribution matching based CLAIRE. To remove the influence
of the sensitive attribute, we use the distribution matching tech-
nique [33, 45] on the embeddings for different sensitive subgroups.
We refer this implementation as CLAIRE-M. In particular, we mini-
mize the Maximum Mean Discrepancy (MMD) [33, 45] among the
embedding distributions of different sensitive subgroups.

The loss function of training the counterfactual data augmenta-
tion model with distribution matching is as below:

min £y + @y Z <oy MMD(P(H]s), P(H]5")), 3)

where Np = W is the number of pairs of different sensi-
tive attribute values, and |S| is the number of different sensitive at-
tribute values. The second term is the distribution matching penalty,
which aims to achieve P(H|S = s) = P(H|S = s’) for all pairs of dif-
ferent sensitive subgroups (s, s”). Here a > 0 is a hyperparameter
which controls the importance of the distribution balancing term.
Adversarial Learning based CLAIRE. We also propose an ad-
versarial learning based implementation, referred as CLAIRE-A. In
this implementation, we train a discriminator h(-) which uses the
embeddings to distinguish instances that bear different values of
the sensitive attribute. The objective function is as below:

{Pn(ll’)l rlgl(ax Lr+ad |S| ZseSEXSJSS [log P(h(H) =5)], (4)

where ¥(-) is the encoder. The first term is the aforementioned
reconstruction loss. The second term calculates the probability that
the discriminator makes correct predictions for each instance’s
sensitive attribute. Therefore, the sensitive attribute predictor h(-)
is playing an adversarial game with the encoder ¥(-). In this way,
the embeddings are encouraged to exclude the information related
to the sensitive attribute. Here &’ > 0is a hyperparameter to control
the weight of the sensitive attribute discriminator. The minimax
problem is optimized with an alternating gradient descent process.

3.4 Fair Representation Learning

3.4.1 Counterfactually Fair Representations. With the counterfac-
tual data augmentation module, we generate counterfactuals by
feeding the embeddings H and a sensitive attribute value s different
from the original one s into the decoder D(-), and taking the output
(XEF , YSF ) = D(H,s’) as the counterfactuals corresponding to
S « s’. For each instance and each sensitive attribute value, we
generate K samples of embeddings (H', ..., HX), and aggregate the
corresponding counterfactuals by an operation AGGREGATE(-) (e.g.,
mean). For notation simplicity, we still denote the aggregated coun-
terfactual data as (XSF, YSC,‘F) = AGGREGATE(D(HY,s'), ..., D(HK, s")).
Based on these counterfactuals, we train a representation learner
®(-) which maps instance features X into representations: Z =
®(X), and we use a predictor g(-) to make predictions based on Z.

To learn counterfactually fair representations Z, we add a coun-
terfactual fairness constraint to mitigate the discrepancy between
the representations learned from original data and its corresponding
counterfactuals The constraint is formulated as:

Z d2.25" = g7 Zd(cboo ®(X5"), ()

e ISI
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where XSC,F is the counterfactual generated in counterfactual data
augmentation corresponding to S « s’, and d(-, -) is a distance
metric such as cosine distance to measure the discrepancy between
two representations.

3.4.2  Invariant Representations. As aforementioned, the non-causal
variables which have spurious correlations to the target Y are likely
to degrade the model prediction performance, and may also incor-
porate potential biases from sensitive attributes to prediction. It
has been shown in [3] that the relationships from these variables
to Y often vary across different domains, e.g., different sensitive
subgroups. Therefore, to exclude the influence of such non-causal
variables on the learned representations and capture the causal
variables of Y, we leverage the invariant risk minimization (IRM)
loss [3] for the sensitive subgroup s as below:

Ligy =R (g0 @) + 4[|y pmroR(w- (go @5, (6)

where L], is the IRM loss in the sensitive subgroup s, the first
term R°(g o ®) = E[L(g(D(X?,5%)),Y")] is the prediction loss
under sensitive subgroup s, and w is a scalar and is fixed as w = 1.0.
According to [3], the gradient of R*(w - (g o ®)) w.r.t. w can reflect
the “invariance" of the learned representations. Therefore, in the
above formulation, the second term measures the invariance of
the relationship between the representations and the target across
different sensitive groups. Here, 1 is a hyperparameter for the trade-
off between the prediction performance and the level of invariance.
The IRM loss aims to ensure that the predictor can be optimal in
all the different sensitive subgroups, thus the unstable spurious
correlations varying across sensitive subgroups can be excluded.

To put it all together, the overall loss function for fair represen-
tation learning is as follows:

1
L= 5] ZSE s Lirm + BLe, (7)

where f is the weight of the counterfactual fairness constraint.
More implementation details can be found in Appendix A.

4 EXPERIMENTAL EVALUATIONS

In this section, we conduct extensive experiments to evaluate the
proposed framework CLAIRE on two real-world datasets and one
synthetic dataset. Before showing the detailed results, we first
present the details of used datasets and the experimental settings.

4.1 Datasets

Law School. This dataset contains academic information of stu-
dents in 163 law schools. Our goal is to predict each student’s first
year average grade (FYA), and this is a regression task. We take
race as their sensitive attribute, and take grade-point average (GPA)
and entrance exam scores (LSAT) as two observed features. Here,
we select persons in races of white, black, and asian. The dataset
contains 20, 412 instances. We use the level-2 causal model in [30]
as the true causal model with causal graph shown in Fig. 3(a).

Adult. UCI Adult income dataset! contains census data for different
adults and the target here is to predict whether their income exceeds
50K/yr. We take race as the sensitive attribute S, and their income as
the prediction label Y. This is a binary classification task. We select

Thttps://archive.ics.uci.edu/ml/datasets/adult
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persons in the races of white, black, and Asian-Pac-Islander. In
addition to the sensitive attribute of race, we use other 5 attributes
for prediction. The dataset contains 31,979 instances. Here, we
follow [52] and consider the causal model used by them as the
ground truth. The causal graph is shown in Fig. 3(b).

Synthetic Dataset. Here, we use a ground truth causal model
to generate the synthetic data. The true causal graph is shown
in Fig. 4(a), containing a sensitive attribute S with four different
categorical values {0, 1, 2,3}, an unobserved variable U, a causal
variable Xy which is non-descendant of S, a causal variable X3
which is descendant of S, and a variable X, which is the descendant
of Y. The structural equations are as follows:

S ~ Catgorical(r), U ~ N(0, ag,),Xo = N(0, 0'3),
X1 =WsS+U+N(0,05,),Y =X1 +Xo + N(0,0% ),
Xy =Y +N(0,03,), )

where 7 = {0.5,0.4,0.05,0.05}, oy = 09 = 1, g5+ and Wy are
set as {0.5,1.0,1.5,2.0} and {0.1, 0.2, 1.0, 2.0} respectively for four
values of sensitive attribute. In this dataset, the spurious correlation
X — Y and the imbalanced distribution of sensitive subgroups
may lead to incorrect causal models, as shown in [37]. We will
further investigate the impact of these two situations in Section 4.4.

4.2 Experimental Settings

Baselines. To investigate the effectiveness of our framework in
learning counterfactually fair predictors from observational data,
we compare the proposed framework with multiple state-of-the-
art methods. First, we briefly introduce all the compared baseline
methods and their settings:

e Constant Predictor: A predictor which has constant output
for any input. We obtain this constant predictor by finding a
constant which can minimize the mean squared error (MSE)
loss on the training data.

e Full Predictor: Full predictor takes all the observed at-
tributes (except the attribute used as label) as input for pre-
diction.

e Unaware Predictor: Unaware predictor is based on the
notion of fairness through unawareness [20]. It takes all
features except the sensitive attribute as input to predict the
label.

e Counterfactual Fairness Predictor: We use two differ-
ent counterfactual fairness predictors here, including CFP-
U [30] and CFP-O [42]. These methods require a given causal
model.

For baselines full/unaware/counterfactual fair predictors, we use
linear regression for regression and logistic regression for classifi-
cation. More details of baselines can be found in Appendix B.
Evaluation Metrics. Generally, the evaluation metrics consider
two different aspects: prediction performance and counterfactual
fairness. To measure the model prediction performance, we employ
the commonly used metrics — Root Mean Square Error (RMSE) and
mean absolute error (MAE) for regression tasks and accuracy for
classification tasks. To evaluate different methods with respect to
counterfactual fairness, we compare the distribution divergence
of the predictions made on different counterfactuals generated by
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Table 1: Results comparison of different predictors on two real-world datasets. Our method CLAIRE can achieve the best
performance in counterfactual fairness with competitive prediction performance.

Method Law school Adult
RMSE (]) MAE (]) MMD (]) Wass(|) Accuracy (T) MMD (]) Wass ()

Constant 0.952 £0.003 0.772 £ 0.002 0.000 = 0.000 0.000 £+ 0.000 0.745 £ 0.001  0.000 £ 0.000 0.000 £ 0.000
Full 0.896 £ 0.004 0.723 £0.003 259.744 £5.213 65.656 + 1.326 || 0.815 £ 0.002 50.513 +3.283 5.217 + 0.582
Unaware 0.909 £ 0.002  0.734 £0.004  39.144 +3.248 10.093 + 1.254 || 0.809 +£0.003  16.832 + 2.377 1.983 + 0.462
CFP-U (true) 0.932 £0.003  0.738 £ 0.002 4.307 £ 0.003 0.019 + 0.001 0.745 £ 0.002  3.582+0.007  0.025 £ 0.002
CFP-O (true) 0.929 £0.004 0.735 £ 0.003 4.325 £ 0.002 0.020 £ 0.012 0.748 + 0.003 3.623 £0.004  0.029 £ 0.004
CLAIRE-M (ours) || 0.909 +0.002  0.733 + 0.003 4.297 + 0.002 0.019 + 0.001 0.778 £ 0.002 3.552 + 0.021 0.023 + 0.002
CLAIRE-A (ours) 0.910 £ 0.002  0.734 £ 0.002 4.289 + 0.002 0.018 + 0.001 0.780 £0.003  3.547 +£0.007  0.023 + 0.002

(b) Adult

(a) Law school

Figure 3: The ground truth causal models of two real-world
datasets Law School and Adult.
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Figure 4: The true causal model (M) and two incorrect causal
models (M; and M) of the synthetic dataset.

Table 2: Study on synthetic data about the adverse effects of
incorrect causal model M;.

Method RMSE MAE MMD Wass

CFP-U (true) 1.34 £ 0.01 0.88 + 0.01 8.42 £ 0.70 3.07 £ 0.01
CFP-U (false) 1.30 + 0.01 0.83 + 0.02 10.11 +£0.52  3.79+0.03
CFP-O (true) 1.32 £0.01 0.87 £ 0.01 8.48 +0.83 3.32+£0.02
CFP-O (false) 1.29+0.01 0.81+£0.01 10.94 £ 0.61 3.84 £0.02
CLAIRE-M 1.32 £ 0.01 0.87 +0.02 7.52 + 0.08 2.63 +0.02
CLAIRE-A 1.31+0.01 0.85 +0.03 7.49+0.05 2.58+0.01

the ground truth causal model. If a predictor is counterfactually
fair, the distributions of the predictions under different ground-
truth counterfactuals are expected to be the same. Here, we use
two distribution distance metrics (including Wasserstein-1 distance

Table 3: Study on synthetic data regarding the adverse effects
of incorrect causal model M.

Method S—0andS «1 S—o0andS « 2
MMD WASS MMD Wass

CFP-U (true) 6.05 + 0.02 1.10 £ 0.02 7.97 £ 0.03 2.55+0.02
CFP-U (false) 6.63 + 0.09 1.24 +0.04 9.33+1.00 3.62+0.01
CFP-O (true) 6.34 + 0.07 1.13 £0.03 8.31+0.98 2.84 £ 0.03
CFP-O (false) 6.83 +0.08 1.35 £ 0.05 9.92+1.01 3.98 £ 0.02
CLAIRE-M 6.12 + 0.04 1.13 £ 0.02 7.94 + 0.06 2.52 +£0.01
CLAIRE-A 6.05+0.03 1.11+0.03 7.42+0.04 2.49+£0.01

(Wass) [41] and Maximum Mean Discrepancy (MMD) [33, 45]) to
measure the distribution divergence. We compute the divergence
of prediction distributions in every pair of counterfactuals (S « s
and S « ¢’ for any s # s’), then take the average value as the
final result. The smaller the average values of MMD and Wass are,
the better a predictor performs in counterfactual fairness. For the
synthetic data, the ground truth causal model is known, while for
the real-world datasets, we adopt the widely accepted causal models
as mentioned in Section 4.1.

Hyperparameter Settings. For all these three datasets, we split
the training/validation/test set as 60%/20%/20%. All the presented
results are on the test data. We set the number of training epochs as
500, the representation dimension as 10, ¢ = 2.0, @’ = 1.0, K = 20,
p =5.0,and A = 1.0.

4.3 Experimental Results on Real-world Data

To assess the superiority of the proposed framework CLAIRE, we
compare its two implementations CLAIRE-M and CLAIRE-A against
other predictors on two real-world datasets Law School and Adult.
We show the ground truth causal models of these two datasets in
Fig. 3 although our proposed framework and its variants do not rely
on the causal model. Table 1 presents the performance of different
methods regarding prediction and counterfactual fairness. The best
results are shown in bold, and the runner-up results are underlined.
Generally speaking, existing methods which are not designed for
counterfactual fairness have higher MMD and Wass, although they
can use the biased features to achieve better prediction performance.
We make the following observations from Table 1:
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o Among all the compared methods, the constant predictor has
the worst performance in prediction as it lacks capability to
distinguish different instances. However, it always satisfies
counterfactual fairness because it has constant output.

o The full predictor performs well in prediction, as it utilizes
all the features (both sensitive and non-sensitive). But the
use of sensitive attribute also brings biases to the prediction,
as demonstrated by its high values on fairness metrics.

e The unaware predictor removes certain biases by ignoring
the sensitive attribute, but it cannot exclude the implicit
biases caused by inappropriate usage of the descendants of
the sensitive attribute.

e Both CFP-U and CFP-O infer the latent variables based on
the given causal model, so they perform well if the given
causal model is correct.

e Our proposed CLAIRE consistently outperform other base-
lines (except the constant predictor) under different fairness
metrics, and also have better prediction performance than
many other fairness-aware baselines (including CFP-U and
CFP-0). It implies that CLAIRE can achieve a good balance
between prediction performance and counterfactual fairness.

o The variants CLAIRE-M and CLAIRE-A generally have simi-
lar performance, but CLAIRE-A is slightly better in fairness,
it may benefit from the effectiveness of its adversarial learn-
ing mechanism in removing the sensitive information.

4.4 Experimental Results on Synthetic Data

The above experiments on real-world datasets have demonstrated
the superiority of CLAIRE. Here, we perform further studies on the
synthetic dataset to show the impact of incorrect causal models.

Incorrect causal model Mj. In this experiment, we use the syn-
thetic data to showcase the impact of an incorrect causal model
as the example shown in Fig. 4(b). The true causal model of the
synthetic data is shown in Fig. 4(a). Here, causal relations regard-
ing X in M are reversed. As all the baselines (except CFP-U and
CFP-0) do not rely on the causal model for prediction, so their
results are not influenced by the correctness of the causal model.
Here, we investigate the influence of the incorrect causal model
on CFP-U and CFP-O and compare their performance with our
proposed framework. From the results shown in Table 2, we find
the fairness of CFP-U and CFP-O are obviously affected by the
incorrect causal model. Although CFP-U and CFP-O with incorrect
causal model have slightly better performance in prediction, that
is because based on the incorrect causal model, they may take X
into prediction, which however, brings biases for prediction. Our
proposed framework does not assume the existence of any given
causal model for prediction. The counterfactual data augmentation
enables us to eliminate the influence of sensitive attributes to the
prediction. Furthermore, the learned invariant representations in
CLAIRE exclude the adverse impacts of non-causal variables with
spurious correlations and leverage the causal variables to learn rep-
resentations, thus Xj is encouraged to be excluded from prediction.
Incorrect causal model M. Now, we use the synthetic data to
showcase the impact of another incorrect causal model as shown
in Fig. 4(c). As described in Section 4.1, we set the parameter Ws in
Eq. (8), which determines the relation S — Xj, to be small on the
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Figure 5: Ablation Study on Synthetic Dataset.

majority sensitive subgroups (S = 0, 1) but relatively large on the
minority sensitive subgroups (S = 2, 3). Here, the incorrect causal
model misses the causal relation S — X (as shown in Fig. 4(c)). We
compare the prediction differences between pairs of different coun-
terfactuals generated by the true causal model shown in Fig. 4(a).
The results are shown in Table 3, where we select two pairs of coun-
terfactuals: (S «— 0and S « 1) and (S < 0 and S « 2). As Ws is
small when S = 0 and S = 1, the biased causal model would not
bring too much bias from the sensitive attribute to the prediction
in the two counterfactuals (S <— 0 and S « 1), so the discrepancy
between this pair is relatively lower than the other pair. But for
the counterfactuals of S « 2 (and also S « 3), CFP-U and CFP-
O suffer more from the biased causal model. As observed in Table
3, when CFP-U and CFP-O are under the biased causal model, the
prediction discrepancy between the pair of counterfactuals (S « 0
and S < 2) becomes larger than the case when CFP-U and CFP-
O are under the true causal model. Similar observations can also
be found in the pair (S « 2 and S < 3), as shown in Appendix
C. Our framework outperforms the baselines due to the following
key factors: the fair generative factors captured in counterfactual
data augmentation remove the influence of the observed sensitive
attribute to the generated counterfactuals. Therefore, the coun-
terfactual fairness constraint mitigates the influence of sensitive
attribute on the learned representations, and makes our framework
suffer less from imbalanced sensitive subgroups.

4.5 Ablation Study

To evaluate the effectiveness of each component in our method, we
provide ablation study with the following variants: 1) Empirical
Risk Minimization (ERM): ERM can be considered as a variant of
our proposed framework CLAIRE. Here, we only use the empirical
risk minimization loss (the first term of Eq. (6)) in prediction with-
out the counterfactual fairness constraint and invariant penalty by
setting f = 0 and A = 0. 2) Invariant Risk Minimization (IRM)
[3]: Here, we remove the counterfactual fairness constraint in our
framework by setting = 0. 3) CLAIRE-NI: As the third variant
of our proposed framework, we remove the invariant penalty by
setting A = 0 in CLAIRE. From the results shown in Fig. 5, the coun-
terfactual data augmentation and invariant penalty both contribute
to the overall fairness performance.

4.6 Parameter Study

We set the hyperparameter « € {0.01,0.1, 1.0, 10, 100}, the sam-
pling number K € {1,5, 10, 20,100}, § € {0.01,0.1,1.0,10, 100},
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Figure 6: Performance of CLAIRE with different settings of
hyperparameters.

A € {0.01,0.1,1.0, 10, 100}, and compare the performance of our
proposed framework in Fig. 6. Here we only show the results of
CLAIRE-M on the law school dataset, as similar patterns can be
observed in CLAIRE-A and other datasets. As observed in Fig. 6(a),
a controls the “fairness" of the embedding in counterfactual data
augmentation. Larger values of a can improve the counterfactual
fairness of the framework, and have no obvious impact on the pre-
diction performance. With larger K in Fig. 6(b), the performance
of counterfactual fairness also improves because more samples
are generated in counterfactual data augmentation.  controls the
importance of counterfactual fairness constraint, A controls the in-
variance penalty of the representations. As shown in Fig. 6(c), with
the increase of f, the framework focuses more on removing the
biases from the sensitive attribute, which may sacrifice some infor-
mation to predict the target, and thus results in higher RMSE, but
can achieve better fairness. As shown in Fig. 6(d), with the increase
of A, the framework may exclude more variables with unstable rela-
tionships to the target across different sensitive subgroups, it may
thus lose some information specific to each sensitive subgroup, but
can also contribute to better fairness. From the observations, the
framework achieves a good trade-off on the prediction performance
and counterfactual fairness with proper parameter settings.

5 RELATED WORK

Counterfactual Fairness. Recently, aside from traditional statisti-
cal fairness notions [4, 12, 13, 16, 22, 54, 55], causal-based fairness
notions [30, 35, 42] have attracted a surge of attentions because of
its strong capability of modeling how the discrimination is exhibited.
Among them, the notion of counterfactual fairness [30] assesses
fairness at the individual level. Most of the existing counterfactual
fairness studies [18, 30, 53] are based on a given ground-truth causal
model or rely on causal discovery methods [26, 38, 46]. Multi-world
fairness [42] considers the situation when the ground-truth causal
model cannot be decided, but it still requires a candidate set contain-
ing causal models which may be true, and proposes an optimization
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based method to achieve counterfactual fairness with the average
of the causal models in the candidate set. Many methods based on
traditional causal discovery are limited in certain scenarios, such as
low-dimensional and linear settings. Recent studies [19, 27, 56] pro-
vide more discussion about counterfactual fairness under different
assumptions and scenarios. But in conclusion, most of the above
methods require much explicit prior knowledge of the causal model
to remove the influence of the sensitive attribute on the prediction,
and lack discussion of the impact of incorrect causal models.
Invariant Risk Minimization. Invariant risk minimization (IRM)
[3] and its variants [2, 11, 21, 25, 29, 34] are originally proposed
for out-of-distribution (OOD) generalization [29, 43]. It is based on
the theorem that the representations of causal features elicit the
existence of an optimal predictor across different domains. From a
causal perspective, IRM identifies these causal features and excludes
those features with spurious correlations as these correlations are
not robust across different domains. The connections between fair-
ness and IRM are discussed in [3, 15, 48]. IRM can learn representa-
tions to capture causal features which have invariant relationships
to the prediction target. However, the representations may still con-
tain the information of domains (e.g., different sensitive attributes),
which may cause biases to prediction. Our work investigate to
bridge this gap between IRM and counterfactual fairness.

6 CONCLUSION

In this work, we study a novel problem of learning counterfactu-
ally fair predictors from observational data with unknown causal
models. We propose a principled framework CLAIRE. More specifi-
cally, we specify this framework by learning counterfactually fair
representations for each instance, and make predictions based on
the representations. To learn fair representations, a variational
auto-encoder based counterfactual data augmentation module is
developed to generate counterfactual data with different values of
sensitive attribute for each instance. We further reduce potential
biases by applying the invariant penalty in each sensitive subgroup
to exclude the variables with spurious correlations to the target.
We evaluate the proposed framework under both real-world bench-
mark datasets and synthetic data. Extensive experimental results
validate the superiority of the proposed framework over existing
fairness predictors in different aspects. Overall, this paper provides
insights for promoting counterfactual fairness in a more realistic
scenario without given correct causal models, and also shows the
impact of incorrect causal models. In the future, more research work
on counterfactual fairness in real-world cases, such as missing and
noisy data, is worth further exploration.
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Learning for Counterfactual Fairness from Observational Data

A IMPLEMENTATION DETAILS

We use two fully connected layers in neural networks to implement
®(-), g(+) and h(-), respectively. The softmax function is used on
top of h(-) when the sensitive attribute is categorical. LeakyRelu is
used as activation functions in our framework. We aggregate the
counterfactuals with mean operation, and we use mean square error
(MSE) to compute the target prediction loss. For CLAIRE-M, we
adopt the implementation of MMD from [33], and the optimization
problem can be solved by traditional stochastic gradient descent al-
gorithms. For CLAIRE-A, following [11], the minimax optimization
problem is conducted with an alternating gradient descent process.
We use cosine distance to implement d(-, -).

B DETAILS OF EXPERIMENT SETTINGS
B.1 Full Introduction of Baselines

o Constant Predictor: A predictor which has constant output
can obviously satisfy counterfactual fairness. We obtain this
constant predictor by finding a constant which can minimize
the mean squared error (MSE) loss on the training data.

e Full Predictor: Full predictor takes all the observed at-
tributes (except the attribute used as label) as input for pre-
diction. We use linear regression for the regression task and
logistic regression for the classification task.

e Unaware Predictor: Unaware predictor is based on the
notion of fairness through unawareness [20]. It takes all
features except the sensitive attribute as input to predict the
label through linear regression for the regression task and
logistic regression for the classification task.

e Counterfactual Fairness Predictor: We use two differ-
ent counterfactual fairness predictors here: 1) As introduced
in [30], the predictor infers the latent variables and uses them
along with the observed variables which are non-descendants
of the sensitive attributes; 2) As described in [42], the pre-
dictor takes the input of both sensitive and non-sensitive
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attributes, with a fairness term added in the loss function
which minimize the difference of the predictions made on
two counterfactuals. We refer to these two methods as CFP-
U and CFP-O, respectively. We follow the original implemen-
tations in [30, 42], where CFP-U uses linear regression for the
regression task and logistic regression for the classification
task, and CFP-O is implemented with neural networks.

B.2 Detailed Experimental Setup

We use Pyro [8] to implement the causal models. The number of
sampling in the counterfactual generation is set as 500. For the base-
lines CFP-U and CFP-O, the epochs for the causal model training is
set as 2,000 and the learning rate is set as 0.001. All the presented
results are averaged over ten executions of experiments.

C MORE EXPERIMENTAL RESULTS

Table 4 shows the discrepancy of predictions made on different
counterfactuals. In addition to the two pairs of counterfactuals
(S« 0andS « 1)and (S « 0 and S « 2) shown in Table 3,

Table 4 also shows the results in pair (S « 2 and S « 3). Generally,
the observation on the pair (S < 2 and S « 3) is similar to the

aforementioned observation on the pair (S < 0 and S « 2).

Table 4: Study on synthetic data regarding the adverse effects
of incorrect causal model M.

S« 2andS « 3

Method MMD WASS

CFP-U (true) || 8.407 = 0810 2.900 = 0.092
CFP-U (false) || 10.317 + 1.011  3.780 + 0.052
CFP-O (true) || 8.79340.927  3.136 + 0.040
CFP-O (false) || 10.337 £ 1.002  3.864 + 0.030
CLAIRE-M || 8.1080.024  2.860 « 0.004
CLAIRE-A | 7.902+0.055 2.761 + 0.005
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