ELSEVIER

Covalent RNA modifications and their budding L
crosstalk with plant epigenetic processes

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in

Plant Biology

Check for
updates

Garima Bhatia', Wil Prall’, Bishwas Sharma' and

Brian D. Gregory

Abstract

Our recent cognizance of diverse RNA classes undergoing
dynamic covalent chemical modifications (or epitranscriptomic
marks) in plants has provided fresh insight into the underlying
molecular mechanisms of gene expression regulation.
Comparatively, epigenetic marks comprising heritable modifi-
cations of DNA and histones have been extensively studied in
plants and their impact on plant gene expression is quite
established. Based on our growing knowledge of the plant
epitranscriptome and epigenome, it is logical to explore how
the two regulatory layers intermingle to intricately determine
gene expression levels underlying key biological processes
such as development and response to stress. Herein, we focus
on the emerging evidence of crosstalk between the plant
epitranscriptome with epigenetic regulation involving DNA
modification, histone modification, and non-coding RNAs.
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Introduction

It is well established that various covalent chemical
modifications are added to RNA molecules in organisms
throughoutall kingdoms of life. This collection of covalent
RNA modifications, referred to as the epitranscriptome of
an organism, can significantly influence transcript fate [1].
With the advancements in high-throughput sequencing
technologies, we have witnessed an exponential increase
in the identification and characterization of the specific

covalent modifications of RNA nucleotides that make up
the epitranscriptome in plant transcriptomes. Notably,
owing to its high abundance in messenger RNAs
(mRNAs), N6-methyladenosine (m6A) has surfaced as the
most well-studied epitranscriptomic mark across diverse
plant species [2—4]*. In fact, the occurrence of m°A in
mRNAs of multicellular eukaryotes like mammals and
plants is now quite clear [5—9]. Alongside many break-
through studies from mammalian research, the plant
research community has also made significant contribu-
tions in m°A research. For instance, it was first established
that m°A is essential for embryo development in multi-
cellular eukaryotic organisms from pioneering studies in
the model plant Arabidopsis thaliana [10]. Similarly, several
recent studies in animals and plants have investigated the
role of m°A marks on RNA metabolic fate via the
involvement of the YI'H-domain containing family of
RNA-binding proteins as readers of mCA. In fact, it was
demonstrated for the first time that the YI'H domain-
containing protein ECT2 relocates into stress granules
and not processing bodies in the context of plant response
to heat stress [11]. Additionally, the plant YT H-family
protein CPSF30 is the first known m°A reader whose
role in regulating mRNA polyadenylation site selection
was established, along with its role in the nitrate signaling
pathway [12]. While it is not possible here to highlight all
the pioneering research within the landscape of plant
epitranscriptomics, many recent reviews have extensively
covered the scope and details of plant RNA modifications
characterized to-date [3,4,13—16]; the role of associated
writers, erasers, and readers [17,18]; the impact of specific
RNA modifications during distinct RNA life cycle stages
[2*]; and the regulation of key biological processes by
important riboregulators [19—21].

Mirroring the epitranscriptome, the relatively extensively
studied epigenome comprises the collection and distri-
bution of covalent chemical modifications of DNA and
histone proteins [22,23]. The epigenome has been found
to influence genome structure and stability without any
alterations at the genome sequence level, and conse-
quently regulates plant response to both internal and
external signals [24]. Global profiles of plant epigenomic
marks such as DNA methylation (5-methylcytosine
(5 mQC)), histone modifications such as methylation,
acetylation, and ubiquitination, and their impact on
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2 Epigenetics and gene regulation

chromatin remodeling have been widely investigated
[25—27]*. In addition to the canonical regulators
(including proteins such as writers, erasers, and readers
[28]) of these epigenomic marks, non-coding RNAs such
as long non-coding RNNAs (IncRNAs) [29,30], microRNAs
(miRNAs) [31—33], and more recently chromatin-
associated RNAs (caRNAs) [34—36] have been found
to interact with the epigenetic machinery to specifically
modulate gene expression at both transcriptional and
post-transcriptional levels in plants.

With both the epigenome and epitranscriptome serving
as layers in regulation of gene expression in plants,
crosstalk between the two and the subsequent effects of
these interactions on regulatory processes, are only
beginning to be studied. To provide a glimpse of this
new research dimension in plants, we highlight some
recently surfaced promising links of the plant epitran-
scriptome with DNA methylation, histone modifica-
tions, and ncRNAs as modulators of gene expression at
the epigenetic level. We also discuss their importance
and direction for future inquiry in plants.

Figure 1

The interplay between RNA and DNA
modifications in plants: m 6A, 5 mC, and the
fruit ripening nexus

DNA methylation is a conserved epigenetic mark in
plants that has been associated with maintenance and
regulation of genome stability, thereby, affecting gene
expression during development and stress response
[26,37]. Across eukaryotes, 5 mC is the most widely
studied DNA methylation mark [38]. In plants,
genome-wide mapping of 5 mC has revealed the dis-
tribution of this mark can vary across different cell
types and in response to varying environmental condi-
tions, which can lead to important biological conse-
quences [39—41]. As a dynamic process in plants, DNA
methylation can be passively lost or diluted during
successive DNA replication events [37]. Alternatively,
active demethylation can occur by the involvement of
5 mC DNA glycosylases/lyases such as REPRESSOR
OF SILENCING 1 (ROS1), DEMETER (DME),
DEMETER-LIKE 2 (DML2), and DML3 to inhibit
hypermethylation at genomic locations and allow
proper levels of gene expression [26,37].
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RNA and DNA demethylation machinery in tomato ripening: During tomato ripening, the promoter of the SIALKBHZ2 gene gets demethylated and
activated. The SIALKBH2 protein demethylates m®A on the SIDML2 transcript, which prevents it from being degraded. SIDML2, a DNA demethylase
activates ripening related genes and also possibly feeds back to activate the SIALKBHZ locus.
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In tomato, an initial investigation of potential epitran-
scriptome and epigenome interplay during the process of
fruit ripening revealed some interesting findings
(Figure 1). Previously, wide-spread 5 mC demethylation of
the genome was associated with the transcription of well-
established fruit ripening genes in tomato [42,43]. Sub-
sequently, Zhou et al. [44]** explored the
epitranscriptome-wide m°A profile of tomato mRNAs and
observed an overall decline in this covalent modification
during fruit ripening. Previously, 5 mC was found to
potentially regulate the transcrlptlon of the S/ALKBH?2
locus, which encodes an m°A eraser (RNA demethylase)
in this plant. This m°A eraser protein can in turn bind with
the S/DMI1.2 mRNA that encodes a 5 mC eraser protein
(DNA demethylase) in tomato, thereby, facilitating its

m®A demethylation and consequently, promoting the
stability of this transcript. In their study, the authors used a
CRISPR/Cas9 gene editing system to target exons of
SIALKBH2. While their subsequent analysis of three
resulting independent mutants clearly validated the
indispensability of SIALKBH2Z protein function for normal
fruit ripening in tomato, it also revealed decreased
S/DMI.2 mRNA levels and increased m®A modification on
this specific mRNA in the mutant plants. However,
mechanistically, the reciprocity of S/ALKBHZ2-SIDMI1.2
demethylation mediated by the proteins encoded by the
opposite transcript currently relies heavily on the findings
of transient expression assays done in Nicotiana benthamiana
leaves. Thus, further investigation in tomato is required to
consolidate the proposed DNA-RNA demethylation reg-
ulatory model. Nevertheless, overall, these findings draw
our attention to the importance of demethylation at both
the epigenomic and epitranscriptomic levels, and the
potential of epigenomic and epitranscriptomic feedback
loops regulating fundamental processes, such as fruit
ripening in climacteric fruits.

Likewise, efforts are being made to understand the
regulation of ripening in non-climacteric fruits, such as
strawberry, at both the epigenomic and epitran-
scriptomic levels. Similar to tomato, strawberry exhibits
a striking overall trend of DNA hypomethylation during
fruit ripening [45]. Mechanistically, the global reduction
in DNA methylation in tomato has been attributed to
increased expression levels of transcripts encoding DNA
demethylases, such as S/DMIL2 [43]. However, in
strawberry, Cheng et al. [45] observed no such expres-
sion trend for S/DMI.2 homologs, FoeDME1, FoeROS1.1,
FoeROS1.2, and FoeROS1.3. Instead, transcripts of 5 mC
writers (DNA methyltransferases) such as DOMAINS
REARRANGED METHYLASEs (DRMs) (e.g.,
FoDRM1.3 and FoDRM3.1) were downregulated. DRMs
are de novo DNA methyltransferases that are involved in
the RNA-directed DNA methylation (RdDM) pathway
in plants [46] (reviewed in [37]). Cheng et al. [45]
further examined the expression profile of transcripts
encoding the other components of this pathway such as
those associated with siRNA biogenesis (Po/ IV, RDR2,
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and DCL3) and siRNA-guided DNA methylation (Po/ V]
AGO4/6, and DRM?Z2) and found that they were down-
regulated along with RADM-dependent 24 nucleotide
(nt) siRNA products. From these observations, it was
concluded that the RADM pathway rather than a DNA
demethylation pathway is involved in reprogramming of
5 mC during strawberry ripening. At the epitran-
scriptomic level, Zhou et al. [47] have recently inves-
tigated m®A profiles in strawberry during ripening.
Unlike the chmacterlc fruit model plant (tomato) that
likely involves m °A demethylase S/AL.KBH? in positive
regulation of ripening, the non-climacteric fruit model
plant (strawberry) exhibits an indispensable involve-
ment of m°A methyltransferases, M7TA and MTB, in
positive regulation of strawberry fruit ripening, which
was demonstrated by agroinfiltration-mediated tran-
sient transformation of strawberry fruit resulting in
delayed ripening in M7TA or MTB RNAI fruits and early
ripening in MTA- or MT7TB-overexpressing fruits
compared to the respective control fruits (agro-
infiltrated with empty vectors). Finally, although the
results of Zhou et al. [44]** could support the proposal
of a nexus between DNA and RNA (de)methylation in
tomato rlpenlng, this research team did not observe any
differential m°A profile for transcripts of DNA methyl-
transferases involved in the RADM pathway in straw-
berry ripening [47]. Overall, more work is needed to
understand the interconnections between epigenomic
and epitranscriptomic machinery that is involved in
regulation of ripening in non-climacteric fruits, while
conclusive evidence of this nexus directly in planta is
needed for climactic fruit ripening.

Based on the tomato ripening case study, the interplay
between the epigenome and epitranscriptome needs to
be further explored in additional biological processes, as
the potential of these combined regulatory mechanisms
is immense. Even in the context of fruit ripening, Zhou
et al. [44]** noted that in addition to their current
findings, SIALKBH2 could potentially modify tran-
scripts of other ripening-associated genes in tomato,
which needs further investigation. Moreover, at the
epigenomic level, SIDMLZ2 could activate several
ripening-related genes as evidenced by the drastic
negative impact on fruit ripening in a loss-of-function
sidm/2 mutants [43]. Therefore, much work is still to
be done in this context and other biological processes to
get at the true importance of the interplay between the
epigenomic and epitranscriptomic pathways in plants.

Correlating histone and RNA modifications
in plants: H3K36me2 and m A

Prominent chemical modifications like methylation,
acetylation, and ubiquitination of histone protein resi-
dues occur post-translationally. These modifications are
well known to regulate gene expression by influencing
chromatin accessibility and subsequently activation or
repression of transcription [48]. Based on an extensive
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review of Arabidopsis histone post-translational modifi-
cation ChIP-seq data, Lengetal. [27] have highlighted a
genomic positioning system (or genomic distribution)
that potentially guides different stages of RNA Pol 11
transcription such as initiation; early and productive
elongation; and termination. Interestingly, histone
modification marks can not only recruit and/or guide
plant RNA Pol II transcription, but can also potentially
recruit RNA modification complexes to specifically de-
posit chemical modifications on RNAs in eukaryotes.
The link between histone modifications and m®A was
first explored in mammals, and m°A deposition on
mRNAs was found to be associated with tri-methylation
on histone H3 lysine 36 (H3K36me3) [49]. However,
the same mechanism of potential direct recruit of
methyltransferase components by this specific histone
modification has not been demonstrated in any plant
system to date. Inspired by this initial study, Shim et al.
[50]** conducted a similar, but first such analysis in
plants, based on comparisons of global distribution of
seven Arabidopsis histone marks (H3K4me2, H3K4me3,
H3K9Ac, H3K18Ac, H3K27me3, H3K36me2, and
H3K36me3) as compared to published m°A mRNA
profiles [51,52]. Surprisingly, their study revealed a
strong correlation between H3K36me?2 and m®A mRNA
localization patterns in this model plant. More specif-
ically, Shim et al. observed that both H3K36me2 and
m®A are enriched at the 3’ end of genes/transcripts,
respectively [50]**, and this specific gene 3’ end dis-
tribution for H3K36me2 has been confirmed by addi-
tional studies [27]*. Relatedly, the authors also
investigated the  plausible interplay between
H3K36me2 and m°A machineries and reported a direct
interaction between the histone methylation writer,
SET DOMAIN GROUP 8 (SDG8/AT1G77300) [53]
and an important m®A writer complex component,
FKBP12 interacting protein 37 kDa (FIP37/
AT3G54170) [54]. However, it must be added here that
the authors did not observe physical interaction be-
tween any other H3K36me2 metabolic enzymes and
m®A writer complex components (such as MTA and
HAKAI) that were tested in the study suggesting the
more than likely involvement of other regulatory RNA-
and chromatin-binding proteins and transcription fac-
tors in site-specific m®A deposition. Additionally, the
authors have not validated their  siico findings by
performing comprehensive # vivo assays such as exten-
sive bimolecular fluorescence complementation and/or
co-immunoprecipitation. This and a significant amount
more experimental investigation still needs to be con-
ducted  planta to determine the interplay between
epigenomic marks and m®A deposition on plant tran-
scripts. Furthermore, studies in multiple plant species
should be undertaken to determine the interplay be-
tween specific histone modifications and mPA, as such
interactions might show some specificity between
various plant species. Similar studies in the context of
plant stress responses might yield important new

insights in regards to these epigenomic and epitran-
scriptomic interactions. Nonetheless, taken together,
this work describes the first likely direct interaction
between known components of epigenomic and
epitranscriptomic writing machinery in a plant system,
and thereby highlights a potential role of the histone
mark H3K36me2 in recruiting or providing a bridging
mechanism for the m°A writer complex to chemically
modify mRNAs co-transcriptionally in plants (Figure 2).
In general, significant future research focus should be
dedicated to determining the exact mechanisms
directing specific deposition of m°A to the 3’ end of
plant transcripts.

There are additional intriguing connections between
H3K36me2 and various RNA modifications. For
instance, this histone mark has been associated with
intron retention in rice [55], and previous studies in
mammalian systems have demonstrated m°A enrich-
ment associated with alternatively spliced introns [56].
However, this link needs further exploration specifically
in plant systems. In support of this potential cross talk in
plants, a previous study focusing on mRNA modifica-
tions that alter Watson-Crick base pairing in the Arabi-
dopsis transcriptome found this class of RNA covalent
additions to be associated with alternatively spliced in-
trons, suggesting their involvement in the regulation of
splicing [57]. Overall, there is suggestive evidence for
the co-transcriptional interplay between covalent base
modification of cognate mRNAs in an H3K36me2-
dependent manner that could potentially regulate
various transcription and RNA-processing events (e.g.,
alternative splicing), thereby strongly effecting gene
expression in plants. These connections need further
inquiry in future research projects.

The effects of over-expressing mammalian
mRNA demethylases in plants

The identification of genetic linkage between F70,
which encodes an RNA demethylase, and human
obesity and diabetes sparked renewed excitement in
research focused on covalent RNA modifications [58].
This demethylase has been demonstrated to remove the
RNA modifications m6A, mbAm, and m'A from mRNAs
in human cells [58—60], but this functionality likely
does not have any connection to human metabolic
phenotypes. Besides, FTO exhibits context-dependent
activity that varies between tissues, subcellular locali-
zation, and based on RNA secondary structure and
sequence (reviewed extensively in [61]). Recent
studies on the role of FTO in RNA demethylation in
mammalian systems are making it clear that this
demethylase targets transcripts that are chromatin
associated (caRNAs) and encoded by repetitive ecle-
ments. These findings provide a mechanism for gene
expression regulation mediated by RNA demethylation
by FTO through increasing chromatin accessibility and
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Figure 2
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Histone modification H3K36me2 is correlated with RNA modification m®A in Arabidopsis. Comparison of the distribution of histone modification
within gene body regions with mRNA m®A deposition revealed a correlation between histone mark H3K36me2 and m®A in populations of transcripts.
Biochemical analysis revealed an interaction between the m®A writer complex protein FIP37 (AT3G54170) and the histone modifying enzyme SDG8/
ASHH2 (AT1G77300) a well-known H3K36 modifying enzyme. Depicted here is a proposed model for the co-transcriptional deposition of méA through

histone modification binding.

transcription [62]. In plants, there are currently no
known FTO orthologs. Recently, Yu et al. [63]** artifi-
cially introduced an over-expression cassette encoding
human FTO into rice and potato plants. Intriguingly, the
ectopic expression of this RNA demethylase led to a
nearly 50% increase in the grain (rice) and tuber
(potato) vyield and biomass of the two crop plants.
Furthermore, improved physiological traits such as
increased root growth, tiller formation, photosynthesis
efficiency, and drought tolerance were observed in F70
rice plants. Additionally, demethylation of m°A was
observed in mRNA, repeat RNA, non-ribosomal RNA,
and non-ribosomal nuclear RNA in the F7O-transgenic
plants. The transgenic plants also exhibited a decline in
the levels of transcription-repressing histone marks
(such as H3K9me2 and H3K27me3), which facilitates
an open chromatin state in these plant genomes. Based
on these findings, the researchers speculated that m°A
demethylation of caRNAs (such as repeat RNAs) results

in a more open chromatin state resulting in the observed
increased transcript abundance for mRNAs that encode
proteins involved with the processes linked to the
improved plant traits [63,64]. This model is supported
by the recent findings of similar effects of this deme-
thylase in mammalian cells [61,64]. However, more
work is needed to directly prove that the FT'O deme-
thylase can target similar collections of caRNAs in plant
cells. Additionally, identifying whether there is a plant
demethylase that functions similarly encoded by plant
genomes is also an area for future research inquiry.
Overall, this study highlights the potential of epige-
nomic and epitranscriptomic crosstalk, which might be a
key feature to leverage in the pursuit in achieving a
positive impact on crop improvement in the areas of
production and vyield and potentially improved stress
response, as was exhibited by the FTO-expressing rice
plants. Additionally, identifying a plant demethylase
with similar function and effects could aid in such
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studies by providing a plant protein to be used for
potentially improving various crop plants as compared to
using proteins from mammalian systems.

Towards understanding covalent
modifications in regulatory non-coding
RNAs involved in plant epigenetic
processes

Regulatory non-coding RNAs such as miRNAs, IncRNAs,
and caRNAs play important roles in several epigenetic
regulatory mechanisms underlying gene expression
modulation in plant transcriptomes [23,29,30,34].
Although widespread reciprocal associations have been
observed among regulatory RNAs and epigenetic modi-
fications at histone, DNA, and RNA levels for regulating
complex gene expression mechanisms of several diseases
in mammals [65,66], in plants, such correlations are still
in need of direct inquiry. For instance, the human
IncRNA X/S7 has been found to be strongly m®A meth-
ylated and in the absence of the m °A writer, METTL3,
the functionality of the IncRNA, which is to silence
specific target genes, was compromised [67]. A similar
mechanism was demonstrated for the first time in plants
for the IncRNA COOILAIR [68] and the m®A modification
was similarly found to be associated with its mechanism
of action of triggering chromatin silencing [69]**. Spe-
cifically, COOIL.AIR is known to function in forming a R-
loop (a DNA-RNA hybrid that includes the displaced
single-stranded DNA) at the Arabidopsis floral repressor
locus FLC. COOLAIR also is known to directly interact
with the RNA binding protein FLOWERING CON-
TROL LOCUS A (FCA) and the 3’ RNA processing
factor FY (WDR33) to promote its own proximal poly-
adenylation, which allows the subsequent recruitment of
other proteins such as histone demethylases (FLLD) that
ultimately come together to repress FLC expression.
This FCA-mediated FLC repressmn was found to be
promoted spec1ﬁcally by m°®A modified COOLAIR. In the
absence of m°A methyltransferase (MTA) activity, FCA
was functionally suppressed and FLC expression was
increased. Additionally, the authors suggested that mC®A
deposition on COOLAIR likely altered its secondary
structure to promote the FCA-COOLAIR interaction.
They also found that m°A enhances FCA nuclear
condensate formation ## vive, which in turn provides
increased local concentrations of FY (WDR33) to cease
transcription and allow resolution of the R-loop. Finally,
FY physically interacts with the H3K4mel demethylase
FLD to induce chromatin silencing at F1.C' [69]**. Thus,
in this context, the modification status of IncRNAs has
important functional consequences for their recruitment
of chromatin modifying enzymes and the ultimate regu-
lation of their target loci.

With the ongoing progress in plant lnCRNA research
[30,70], it will be worthwhile to explore the m A-related
IncRNA signature and examine its involvement in

regulatory processes. Interestingly, in their study based
on the high-throughput annotation of modified ribonu-
cleotides (HAMR) pipeline in Arabidopsis, Vand1v1er
et al. [57] found RNA modifications other than m oA,
which impact the Watson-Crick base pairing of the
modified nucleotides, to be associated with distinct
classes of non-coding RNAs such as IncRNNAs, miRNAs,
and snoRNAs in addition to mRNAs. Studying such
modifications will likely further widen the scope of our
understanding of IncRNA-mediated epigenetic regula-
tion in plants and how they are involved in regulating
plant growth and stress responses.

Finally, the involvement of the RNA modification ma-
chinery in regulation of miRNA biogenesis has also been
recently reported. Spemﬁcally, Bhat et al. [71]** found
that in the absence of m°A deposition, the biogenesis of
at least one-fourth of Arabidopsis miRNAs was affected.
Mechanistically, the authors observed that an Arabidopsis
mC®A writer complex component, MTA, deposits m°A
marks on small subset of primary miRNA transcripts
(pri-miRNAs), which consequently induces the forma-
tion of the most favorable secondary structure for sub-
sequent miRNA processing. This further facilitates
direct interaction of MTA and TOUGH to recruit the
Microprocessor complex to pri-miRNAs and in turn
enable thelr processing [71]**. Importantly, this study
utilizes m A—RNA immunoprecipitation followed by
sequencing (m A—IP—seq) for the detection of m°A
marks on pri-miRNAs, a technique that has limitations
associated with m6A stoichiometry, specificity, and
sensitivity. Therefore, future studies based on antibody-
independent methods [72] should also be conducted for
subsequent analysis in this direction, especially with the
known low levels of pri-miRNA abundance within the
plant transcnptome and the high levels of RNA needed
for m A—IP—seq Additionally, it Wlll be 1nterest1ng to
further explore if the miRNA-m°A interaction is recip-
rocal, that is, whether and how miRNAs regulate the
expression levels of important components of the m°A
machinery such as MTA in plants. Overall, considering
the new findings on methylation status of various classes
of ncRNAs in plants, we have only begun accumulating
evidence towards unraveling the interplay between the
epitranscriptome and epigenome, and this crosstalk
should be an area of intense research focus in the future.

Concluding remarks

The exploration of the crosstalk between the epitran-
scriptome and epigenome has resulted in increasingly
complicated and crowded models involving the deposi-
tion, removal, and subsequent function of DNA/histone
and RNA modifications in mammals, particularly in the
context of complicated diseases such as cancer [66].
Here, we have highlighted current research in plant
systems, which attempts to understand specific mech-
anisms where the epigenome and epitranscriptome
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plausibly interact and influence one another. While
insightful, these limited studies have hardly scratched
the surface of this new and exciting field of inquiry.
Research in this area needs to be more comprehensively
and carefully explored in plant research systems,
including in the context of their stress response systems.
We have highlighted areas of future research focus that
should be addressed in this area and that will improve
our understanding in this important area of inquiry.
Additionally, future # planta investigation of the epige-
nomic and epitranscriptomic regulators not merely in
isolation but also in combination would be critical in
enhancing our current understanding of plant gene
expression regulation and the resulting plant pheno-
types, which could potentially be leveraged as a potent
strategy for crop improvement. In conclusion, increasing
our understanding of the interplay between the epige-
nome and epitranscriptome will improve our under-
standing of how these interactions affect plant gene
expression regulation and how it can be targeted for
future crop improvement applications in the context of
yield, biomass, and improved stress response.
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