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Abstract

The NLTS (No Low-Energy Trivial State) conjecture of Freedman and Hastings [FH14] posits that
there exist families of Hamiltonians with all low energy states of non-trivial complexity (with complexity
measured by the quantum circuit depth preparing the state). We prove this conjecture by showing
that a particular family of constant-rate and linear-distance qLDPC codes correspond to NLTS local
Hamiltonians, although we believe this to be true for all current constructions of good qLDPC codes.
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1 Introduction

Ground- and low-energy states of local Hamiltonians are the central objects of study in condensed matter
physics. For example, the QMA-complete local Hamiltonian problem is the quantum analog of the NP-
complete constraint satisfaction problem (CSP) with ground-states (or low-energy states) of local Hamiltoni-
ans corresponding to solutions (or near-optimal solutions) of the problem [KSV02]. A sweeping insight into
the computational properties of the low energy spectrum is embodied in the quantum PCP conjecture, which is
arguably the most important open question in quantum complexity theory [AAV13]. Just as the classical PCP
theorem establishes that CSPs with constant fraction promise gaps remain NP-complete, the quantum PCP
conjecture asserts that local Hamiltonians with a constant fraction promise gap remain QMA-complete. De-
spite numerous results providing evidence both for [AALV09,FH14,NV18] and against [BV05,BH13,AE15]
the validity of the quantum PCP conjecture, the problem has remained open for nearly two decades.

The difficulty of the quantum PCP conjecture has motivated a flurry of research beginning with Freedman
and Hastings’ No low-energy trivial states (NLTS) conjecture [FH14]. The NLTS conjecture posits that there
exists a fixed constant 𝜖 > 0 and a family of 𝑛 qubit local Hamiltonians such that every state of energy
≤ 𝜖𝑛 requires a quantum circuit of super-constant depth to generate. The NLTS conjecture is a necessary
consequence of the quantum PCP conjecture, because QMA-complete problems do not have NP solutions
and a constant-depth quantum circuit generating a low-energy state would serve as a NP witness. Thus, this
conjecture addresses the inapproximability of local Hamiltonians by classical means.

Previous progress [EH17,NVY18,Eld21,BKKT19,AN22,AB22] provided solutions to weaker versions
of the NLTS conjecture, but the complete conjecture had eluded the community.

Theorem 1 (No low-energy trivial states). There exists a fixed constant 𝜖 > 0 and an explicit family of
𝑂 (1)-local frustration-free commuting Hamiltonians {H(𝑛) }∞

𝑛=1 where H(𝑛) =
∑𝑚

𝑖=1 ℎ
(𝑛)
𝑖

acts on 𝑛 particles
and consists of 𝑚 = Θ(𝑛) local terms such that for any family of states {𝜓𝑛} satisfying tr

(
H(𝑛)𝜓

)
< 𝜖𝑛, the

circuit complexity of the state 𝜓𝑛 is at least Ω(log 𝑛).

The local Hamiltonians for which we can show such robust circuit-lower bounds correspond to constant-
rate and linear-distance quantum LDPC error-correcting codes with an additional property related to the
clustering of approximate code-words of the underlying classical codes. We show that the property holds
for the quantum Tanner code construction of Leverrier and Zémor [LZ22] (Section 3). We suspect that
the property is true for other constructions of constant-rate and linear-distance qLDPC codes [PK21,BE21,
DHLV22], however we do not prove this outright. While we show that the property is sufficient for NLTS, it
is an interesting open question if the property is inherently satisfied by all constant-rate and linear-distance
constructions.

Quantum code To formalize this property, recall a CSS code with parameters [[𝑛, 𝑘, 𝑑]]. The code is
constructed by taking two classical codes 𝐶x and 𝐶z such that 𝐶z ⊃ 𝐶⊥

x . The code 𝐶z is the kernel of a row-
and column-sparse matrix 𝐻z ∈ F𝑚z×𝑛

2 ; the same for𝐶x and 𝐻x ∈ F𝑚x×𝑛
2 . The rank of 𝐻z will be denoted as 𝑟z

and likewise 𝑟x is the rank of 𝐻x. Therefore, 𝑛 = 𝑘 + 𝑟x + 𝑟z. If the code is constant-rate and linear-distance,
then 𝑘, 𝑑, 𝑟x, 𝑟z = Ω(𝑛). For the codes considered in this work, we also have 𝑚z, 𝑚x = Ω(𝑛).

For any subset 𝑆 ⊂ {0, 1}𝑛, define a distance measure |·|𝑆 as |𝑦 |𝑆 = min𝑠∈𝑆 |𝑦 + 𝑠 | where |·| denoted
Hamming weight. We define 𝐺 𝛿

z as the set of vectors which violate at most a 𝛿-fraction of checks from 𝐶z,
i.e. 𝐺 𝛿

z = {𝑦 : |𝐻z𝑦 | ≤ 𝛿𝑚z}. We similarly define 𝐺 𝛿
x .
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Property 1 (Clustering of approximate code-words). We say that a [[𝑛, 𝑘, 𝑑]] CSS code defined by classical
codes (𝐶x, 𝐶z) clusters approximate code-words if there exist constants 𝑐1, 𝑐2, 𝛿0 such that for sufficiently
small 0 ≤ 𝛿 < 𝛿0 and every vector 𝑦 ∈ {0, 1}𝑛,

1. If 𝑦 ∈ 𝐺 𝛿
z , then either |𝑦 |𝐶⊥

x
≤ 𝑐1𝛿𝑛 or else |𝑦 |𝐶⊥

x
≥ 𝑐2𝑛.

2. If 𝑦 ∈ 𝐺 𝛿
x , then either |𝑦 |𝐶⊥

z
≤ 𝑐1𝛿𝑛 or else |𝑦 |𝐶⊥

z
≥ 𝑐2𝑛.

Note that this property holds for classical Tanner codes with spectral expansion (see [AB22, Theorem
4.3]) and was used to prove the combinatorial NLTS conjecture. In fact, Lemma 9 in the Appendix shows
that more general classical codes with small-set expanding interactions graphs satisfy Property 1 with |·|
used instead of |·|𝐶⊥

x
. The quantum analog above is sufficient for proving the full NLTS conjecture.

Local Hamiltonian definition The aforementioned quantum codes lead to a natural commuting frustration-
free local Hamiltonian. For every row 𝑤z of 𝐻z – i.e. a stabilizer term 𝑍𝑤z of the code, we associate a
Hamiltonian term 1

2 (I − 𝑍𝑤z). We define Hz as the sum of all such terms for 𝐻z. Hx is defined analogously
and the full Hamiltonian is H = Hx + Hz. The number of local terms is 𝑚x + 𝑚z = Θ(𝑛) and H has zero
ground energy. We refer the reader to the preliminaries of [AN22, Section 2] for more technical definitions
and notation.

Open questions There are three questions that we leave unanswered.

• Does Property 1 “morally” hold for all constant-rate and linear-distance quantum codes?

• Grigoriev [Gri01] constructs instances of 3-XOR problem that cannot be well approximated by 𝑂 (𝑛)
degree sum-of-squares algorithms. The proof relies on expansion (see [BS16, Lecture 3-2]) to
construct equivalence classes, similar to our construction of equivalence classes in Section 2. A recent
improvement to Grigoriev’s theorem [HL22] uses the small-set boundary and co-boundary expansion
similar to Property 1. It would be interesting to better understand this connection between quantum
circuit lower bounds and sum-of-squares lower bounds.

• Overlap Gap Property [Gam21] holds for some constraint satisfaction problems (CSPs) whose near-
optimal solutions are either close or far away in hamming distance. It is widely used in proving lower
bounds on ‘stable’ classical algorithms for such CSPs. Overlap gap property bears resemblance to
Property 1 (when the distance measure is hamming weight), which suggests possible connections
between the two lower bound techniques.

• Our construction does not require quantum local testability. Property 1 is sufficient for clustering
of the classical distributions of low-energy states but it is weaker than local testability. [EH17] used
local testability to argue clustering for their proof that local testability implies NLTS. What are the
implications of codes with Property 1 for the quantum PCP conjecture [AAV13]?

• Can our proof techniques be generalized to prove non-trivial lower bounds for non-commuting Hamil-
tonians?
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2 Proof of the NLTS theorem

The proof, that the local Hamiltonian corresponding to a constant-rate and linear-distance code satisfying
Property 1 is NLTS, is divided into a few steps. We first show that the classical distributions generated
by measuring any low-energy state in the standard or Hadamard bases are approximately supported on a
particular structured subset of vectors. Then, we show that the subsets cluster into a collection of disjoint
components which are far in Hamming distance from each other. Finally, we show that the distribution in
one of the two bases cannot be too concentrated on any particular cluster. This shows that the distribution is
well-spread which can be used to prove a circuit depth lower bound.

The supports of the underlying classical distributions Consider a state 𝜓 on 𝑛 qubits such that tr(𝐻𝜓) ≤
𝜖𝑛. Let 𝐷x and 𝐷z be the distributions generated by measuring the 𝜓 in the (Hadamard) 𝑋− and (standard)
𝑍− bases, respectively. We find that 𝐷z is largely supported on 𝐺

𝑂 (𝜖 )
z . Formally, this is because, by

construction,

𝜖𝑛 ≥ tr(H𝜓) ≥ tr(Hz𝜓) = E
𝑦∼𝐷z

|𝐻z𝑦 |.

Here, the last equality holds since for a Pauli operator 𝑍𝑎, ⟨𝑦 | ⊮−𝑍𝑎

2 |𝑦⟩ = 1−(−1)𝑎.𝑦
2 = 𝑎.𝑦. Let 𝑞 def

= 𝐷z(𝐺 𝜖1
z )

be the probability mass assigned by 𝐷z to 𝐺
𝜖1
z . Then,

E
𝑦∼𝐷z

|𝐻z𝑦 | ≥ 0 · 𝑞 + (1 − 𝑞) · 𝜖1𝑚z = (1 − 𝑞)𝜖1𝑚z.

Therefore, 𝐷z(𝐺 𝜖1
z ) ≥ 1 − 𝜖𝑛/(𝜖1𝑚z). A similar argument shows that 𝐷x(𝐺 𝜖1

x ) ≥ 1 − 𝜖𝑛/(𝜖1𝑚x). With the
choice 𝜖1 = 200𝑛

min{𝑚x,𝑚z } · 𝜖 , we find

𝐷z(𝐺 𝜖1
z ), 𝐷x(𝐺 𝜖1

x ) ≥ 199
200

for both the bases.

The supports are well clustered Given that 𝐷z is well supported on 𝐺
𝜖1
z , it is helpful to understand the

structure of 𝐺 𝜖1
z . For 𝑥, 𝑦 ∈ 𝐺

𝜖1
z , notice that 𝑥 ⊕ 𝑦 ∈ 𝐺

2𝜖1
z since 𝑥 ⊕ 𝑦 satisfies every check that both 𝑥 and 𝑦

satisfy. By Property 1 (and assuming 2𝜖1 ≤ 𝛿0), then either

|𝑥 ⊕ 𝑦 |𝐶⊥
x
≤ 2𝑐1𝜖1𝑛 or else |𝑥 ⊕ 𝑦 |𝐶⊥

x
≥ 𝑐2𝑛.

Define a relation ‘∼’ such that for 𝑥, 𝑦 ∈ 𝐺
𝜖1
z , 𝑥 ∼ 𝑦 iff |𝑥 ⊕ 𝑦 |𝐶⊥

x
≤ 2𝑐1𝜖1𝑛. To prove that the relation is

transitive and therefore an equivalence relation, notice that if 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧, then

|𝑥 ⊕ 𝑧 |𝐶⊥
x
≤ |𝑥 ⊕ 𝑦 |𝐶⊥

x
+ |𝑦 ⊕ 𝑧 |𝐶⊥

x
≤ 4𝑐1𝜖1𝑛.

However, 𝑥 ⊕ 𝑧 ∈ 𝐺
2𝜖1
z and for sufficiently small 𝜖1 such that 4𝑐1𝜖1 < 𝑐2, Property 1 implies that |𝑥 ⊕ 𝑧 |𝐶⊥

x
≤

2𝑐1𝜖1𝑛. Thus, 𝑥 ∼ 𝑧 and hence ∼ forms an equivalence relation. We can now divide the set 𝐺 𝜖1
z into clusters

𝐵1
z , 𝐵

2
z , . . . , according to the equivalence relation ∼. Furthermore, the distance between any two clusters is

≥ 𝑐2𝑛, since for 𝑥 in one cluster and 𝑥 ′ in another cluster, we have |𝑥 ⊕ 𝑥 ′ | ≥ |𝑥 ⊕ 𝑥 ′ |𝐶⊥
x
≥ 𝑐2𝑛. Lastly, the

same argument holds for 𝐺 𝜖1
x .
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The distributions are not concentrated on any one cluster To apply known circuit-depth lower bounding
techniques to 𝐷z, it suffices to show that 𝐷z is not concentrated on any one cluster 𝐵𝑖

z. However, it is not
immediate how to show this property for 𝐷z. Instead, what we can show is that is impossible for both 𝐷z to
be concentrated on any one cluster 𝐵𝑖

z and 𝐷x to be concentrated on any one cluster 𝐵 𝑗
x .

Lemma 2. For 𝜖1 such that 2𝑐1𝜖1 ≤
(
𝑘−1
4𝑛

)2
, either ∀ 𝑖, 𝐷z(𝐵𝑖

z) < 99/100 or else ∀ 𝑗 , 𝐷x(𝐵 𝑗
x ) < 99/100.

Proof. Assume there exists some 𝑖 such that 𝐷z(𝐵𝑖
z) ≥ 99/100. We will employ the following fact that

captures the well-known uncertainty of measurements in the standard and Hadamard bases; a proof is
provided in the appendix.

Fact 3. Given a state 𝜓 and corresponding measurement distributions 𝐷x and 𝐷z, for all subsets 𝑆, 𝑇 ⊂
{0, 1}𝑛, 𝐷x(𝑇) ≤ 2

√︁
1 − 𝐷z(𝑆) +

√︁
|𝑆 | · |𝑇 |/2𝑛.

For any 𝑗 , we employ this fact with 𝑆 = 𝐵𝑖
z and 𝑇 = 𝐵

𝑗
x . To bound |𝐵𝑖

z |, fix any string 𝑧 ∈ 𝐵𝑖
z. Any other

string 𝑧′ ∈ 𝐵𝑖
z has the property that its Hamming distance from 𝑧 ⊕ 𝑤 (for some 𝑤 ∈ 𝐶⊥

x ) is at most 2𝑐1𝜖1𝑛.
Since

��𝐶⊥
x
�� = 2dim𝐶⊥

x = 2𝑛−dim𝐶x = 2𝑟x , the size of the cluster 𝐵𝑖
z is at most

2𝑟x ·
(

𝑛

2𝑐1𝜖1𝑛

)
≤ 2𝑟x · 22

√
2𝑐1 𝜖1𝑛.

A similar bound can be calculated of
���𝐵 𝑗

x

��� ≤ 2𝑟z · 22
√

2𝑐1 𝜖1𝑛. Then applying Fact 3 with the bound on 𝜖1 as
stated in the Lemma,

∀ 𝑗 , 𝐷x

(
𝐵

𝑗
x

)
≤ 1

5
+

√︁
2𝑟x+𝑟z−𝑛 · 24

√
2𝑐1 𝜖1𝑛 =

1
5
+ 2

−𝑘
2 +2

√
2𝑐1 𝜖1𝑛 <

99
100

.

□

A lower bound using the well-spread nature of the distribution Assume, without loss of generality, from
Lemma 2 that 𝐷z is not too concentrated on any cluster 𝐵𝑖

z. Recall that 𝐷z(
⋃

𝑖 𝐵
𝑖
z) ≥ 199/200. Therefore,

there exist disjoint sets 𝑀 and 𝑀 ′ such that1

𝐷z

(⋃
𝑖∈𝑀

𝐵𝑖
z

)
≥ 1

400
and 𝐷z

( ⋃
𝑖∈𝑀′

𝐵𝑖
z

)
≥ 1

400
.

Furthermore, recall that since the distance between any two clusters is at least 𝑐2𝑛, the same distance lower
bound holds for the union of clusters over 𝑀 and 𝑀 ′ as well. This proves that the distribution 𝐷z is
well-spread which implies a circuit lower bound due to the following known fact2 (see Appendix for proof):

Fact 4. Let 𝐷 be a probability distribution on 𝑛 bits generated by measuring the output of a quantum circuit
in the standard basis. If two sets 𝑆1, 𝑆2 ⊂ {0, 1}𝑛 satisfy 𝐷 (𝑆1), 𝐷 (𝑆2) ≥ 𝜇, then the depth of the circuit is
at least

1
3

log

(
dist(𝑆1, 𝑆2)2

400𝑛 · log 1
𝜇

)
.

1Consider building the set 𝑀 greedily by adding terms until the mass exceeds 1/400. Upon adding the final term to overcome
the threshold, the total mass is at most 397/400 since no term is larger than 99/100. Therefore, the remainder of terms not included
in 𝑀 must have a mass of at least 199/200 − 397/400 = 1/400.

2Versions of this lower-bound for well-spread distributions can be found in [AB22], Theorem 4.6], [EH17, Corollary 43],
and [AN22, Lemma 13].

5



An immediate application of this fact gives a circuit-depth lower bound of Ω(log 𝑛) for 𝐷z since
dist(𝑆1, 𝑆2) ≥ 𝑐2𝑛 and 𝜇 = 1

400 . Since the circuit depth of 𝐷z is at most one more than the circuit depth of 𝜓,
the lower bound is proven.

Theorem 5 (Formal statement of the NLTS theorem). Consider a [[𝑛, 𝑘, 𝑑]] CSS code satisfying Property 1
with parameters 𝛿0, 𝑐1, 𝑐2 as stated. Let H be the corresponding local Hamiltonian. Then for

𝜖 <
1

400𝑐1

(
min{𝑚x, 𝑚z}

𝑛

)
· min

{(
𝑘 − 1
4𝑛

)2
, 𝛿0,

𝑐2
2

}
,

and every state 𝜓 such that tr(H𝜓) ≤ 𝜖𝑛, the circuit depth of 𝜓 is at least Ω(log 𝑛). For constant-rate and
linear-distance codes satisfying3 Property 1, the bound on 𝜖 is a constant.

3 Proof that Property 1 holds for quantum Tanner codes [LZ22]

Definition of quantum Tanner codes For a group 𝐺, consider a right Cayley graph Cay𝑟 (𝐺, 𝐴) and a
left Cayley graph Cayℓ (𝐺, 𝐵) for two generating sets 𝐴, 𝐵 ⊂ 𝐺, which are assumed to be symmetric, i.e.
𝐴 = 𝐴−1 and 𝐵 = 𝐵−1 and of the same cardinality Δ = |𝐴| = |𝐵 |. Further, we define the double-covers of
Cay𝑟 (𝐺, 𝐴) and Cayℓ (𝐺, 𝐵) that we will denote Cay𝑟2 (𝐺, 𝐴) and Cayℓ2 (𝐺, 𝐵).4 The vertex sets of Cay𝑟2 (𝐺, 𝐴)
and Cayℓ2 (𝐺, 𝐵) are {±} ×𝐺 and 𝐺 × {±}, respectively. The edges of Cay𝑟2 (𝐺, 𝐴) are labeled by 𝐴 ×𝐺 and
are of the form (+, 𝑔) ∼ (−, 𝑎𝑔). Similarly, the edges of Cayℓ2 (𝐺, 𝐵) are labeled by 𝐺 × 𝐵 and are of the
form (𝑔, +) ∼ (𝑔𝑏,−).

Quantum Tanner codes are defined on the balanced product of the two Cayley graphs 𝑋 ′ = Cay𝑟2 (𝐺, 𝐴)×𝐺

Cayℓ2 (𝐺, 𝐵), see [BE21, Section IV-B]. It is given by the Cartesian product Cay𝑟2 (𝐺, 𝐴) × Cayℓ2 (𝐺, 𝐵) with
the (canonical) anti-diagonal action of 𝐺 factored out. To understand the set of vertices 𝑉 ′ of 𝑋 ′, we first
note that the vertices of the Cartesian product are labeled by {±} × 𝐺 × 𝐺 × {±}. The group 𝐺 acts via
right-multiplication on the left copy of𝐺 and via inverse left-multiplication on the right copy of𝐺. Factoring
out this action identifies the vertices (±, 𝑎, 𝑏,±) with (±, 𝑎𝑔, 𝑔−1𝑏,±) for all 𝑔 ∈ 𝐺. This means that two
vertices (±, 𝑎, 𝑏,±) and (±, 𝑐, 𝑑,±) are identified if and only if 𝑎𝑏 = 𝑐𝑑 and the outer signs agree. By
passing from these equivalence classes to 𝑎𝑏 ∈ 𝐺, we obtain a unique labeling of the vertices 𝑉 ′ of 𝑋 ′ by
{±} × 𝐺 × {±}. Thus, 𝑉 ′ can be partitioned into the even-parity vertices 𝑉 ′

0, which are all vertices of the
form (+, 𝑔, +) and (−, 𝑔,−), and the odd-parity vertices 𝑉 ′

1, which are all vertices of the form (+, 𝑔,−) and
(−, 𝑔, +). The complex 𝑋 ′ is called the “quadripartite version” in [LZ22].

Note that besides the natural action of 𝐺, there is an addition action of Z2 = ⟨𝜎⟩ on Cay𝑟2 (𝐺, 𝐴)
and Cayℓ2 (𝐺, 𝐵), which operates on the labels {±} via 𝜎(+) = − and 𝜎(−) = +. Hence, there is an
operation of the group 𝐺 × Z2. We can thus analogously define the alternative balanced product complex
𝑋 = Cay𝑟2 (𝐺, 𝐴) ×(𝐺×Z2) Cayℓ2 (𝐺, 𝐵). The complex 𝑋 is called the “bipartite version” in [LZ22]. Here, we
will consider the complex 𝑋 instead of 𝑋 ′. Using the same arguments as previously for 𝑋 ′, we see that the
vertices 𝑉 of 𝑋 can be labeled by 𝐺 × {±} which fall into the sets 𝑉0, which are all vertices of the form
(𝑔, +), and 𝑉1, which are all vertices of the form (𝑔,−).

The quantum Tanner code is now defined as follows. From the balanced product complex 𝑋 we define
two graphs G□0 and G□1 . The vertices of G□0 are the vertices in 𝑉0. Note that there are exactly two vertices
belonging to 𝑉0 per face in 𝑋 , see Figure 1. Hence, we connect two vertices by an edge in G□0 if and only if

3While the distance parameter 𝑑 does not appear in the bound on 𝜖 , Property 1 for 𝛿 = 0 implies constant distance.
4The reason for defining the double-covers is convenience; the covering allows us to label each edge directly by specifying a

vertex (group element) and a generator, which is not immediately possible in the original Cayley graphs.
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(𝑎𝑔𝑏, +)(𝑔𝑏,−)

(𝑔, +) (𝑎𝑔,−)

Figure 1: A face of the balanced product complex 𝑋 = Cay𝑟2 (𝐺, 𝐴) ×(𝐺×Z2) Cayℓ2 (𝐺, 𝐵). Each face is
incident to two vertices in 𝑉0 (red) and two vertices in 𝑉1 (blue). This fact is used in [LZ22] to define
two graphs G□0 and G□1 whose edges connect the vertices in 𝑉0 (red dashed line) and 𝑉1 (blue dashed line),
respectively. Importantly, the edge-sets of G□0 and G□1 are both in one-to-one correspondence with the faces
of 𝑋 (and thus with each other).

they belong to the same face, or equivalently, all edges in G□0 are of the form (𝑔, +) ∼ (𝑎𝑔𝑏, +). Similarly,
we can define the graph G□1 using the fact that there are exactly two vertices in𝑉1 per face. Note that both G□0
and G□1 are regular graphs of degree Δ2, as edges surrounding a vertex are labeled by 𝐴 × 𝐵. Further, G□0
and G□1 are expanders: Let 𝜆(G) = max{|𝜆2(G)|, |𝜆𝑛 (G)|}, where 𝜆2(G), 𝜆𝑛 (G) are the second largest and
the smallest eigenvalues of the adjacency matrix of the graph G.

Lemma 6 ( [LZ22, Lemma 4]). If Cay𝑟 (𝐺, 𝐴) and Cayℓ (𝐺, 𝐵) are Ramanujan graphs, then

𝜆(G□0 ), 𝜆(G
□
1 ) ≤ 4Δ.

Taking two suitable local codes 𝐶𝐴, 𝐶𝐵 ⊂ FΔ2 , we define 𝐶0 = 𝐶𝐴 ⊗ 𝐶𝐵 and 𝐶1 = 𝐶⊥
𝐴
⊗ 𝐶⊥

𝐵
. Finally,

we define Tanner codes 𝐶z = 𝐶 (G□0 , 𝐶
⊥
0 ) and 𝐶x = 𝐶 (G□1 , 𝐶

⊥
1 ) [Tan81,SS96]. It can be shown [LZ22] that

𝐶z ⊃ 𝐶⊥
x , so that we obtain a well-defined CSS code.

For these codes to have constant-rate and linear-distance, the graphs and local codes need to fulfill certain
conditions: The Cayley graphs are required to be Ramanujan expanders [LPS88,Mar88]. Further, the local
codes are required to be robust and resistant to puncturing. More precisely, we call 𝐶⊥

1 = (𝐶⊥
𝐴
⊗ 𝐶⊥

𝐵
)⊥ =

𝐶𝐴 ⊗ F𝐵2 + F𝐴2 ⊗ 𝐶𝐵 𝑤-robust if any code word |𝑥 | of Hamming weight bounded as |𝑥 | ≤ 𝑤 has its support
included in |𝑥 |/𝑑𝐴 columns and |𝑥 |/𝑑𝐵 rows, where 𝑑𝐴 and 𝑑𝐵 are the minimum distances of 𝐶𝐴 and 𝐶𝐵,
respectively. Further, 𝐶⊥

1 has 𝑤-robustness with resistance to puncturing 𝑝 if for any 𝐴′ ⊂ 𝐴, 𝐵′ ⊂ 𝐵 with
|𝐴′ |, |𝐵′ | ≥ Δ − 𝑤′ with 𝑤′ ≤ 𝑝 the code 𝐶⊥

1 remains 𝑤-robust when punctured outside of 𝐴′ × 𝐵′.

Clustering of code-words We will now show that the quantum Tanner Codes defined above satisfy
Property 1. We start with the following claim which is stated along the same lines as [LZ22, Theorem 1],
and proved in the appendix. We have changed some constants, for consistency purposes.

Claim 7. Fix 𝜆 ∈ (0, 1
2 ), 𝛾 ∈ ( 1

2 +𝜆, 1) and 𝜅 > 0. Suppose𝐶𝐴, 𝐶𝐵 have distance at least 𝜅Δ and𝐶⊥
0 , 𝐶

⊥
1 are

Δ
3
2−𝜆-robust with Δ𝛾 resistance to puncturing. Then there exist constants 𝑐1, 𝑐2, 𝛿0 such that the following

holds when 𝛿 ≤ 𝛿0.
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1. For any 𝑥 ∈ 𝐺 𝛿
x with 𝑐1𝛿𝑚x ≤ |𝑥 | ≤ 𝑐2𝑛, there is a 𝑦 ∈ 𝐶⊥

z satisfying |𝑥 ⊕ 𝑦 | < |𝑥 |.

2. For any 𝑧 ∈ 𝐺 𝛿
z with 𝑐1𝛿𝑚z ≤ |𝑧 | ≤ 𝑐2𝑛, there is a 𝑤 ∈ 𝐶⊥

x satisfying |𝑧 ⊕ 𝑤 | < |𝑧 |.

Note that 𝛿0 is chosen simply to ensure that 𝑐1𝛿0𝑚x ≤ 𝑐2𝑛 and 𝑐1𝛿0𝑚z ≤ 𝑐2𝑛.

We will now establish Property 1 using this claim. For 𝑥 ∈ 𝐺 𝛿
x , if 𝑐1𝛿𝑚x ≤ |𝑥 |𝐶⊥

z
≤ 𝑐2𝑛, then there

is a 𝑦′ ∈ 𝐶⊥
z such that 𝑐1𝛿𝑚x ≤ |𝑥 ⊕ 𝑦′ | ≤ 𝑐2𝑛. Note that 𝑥 ⊕ 𝑦′ ∈ 𝐺 𝛿

x , since 𝐻x𝑦
′ = 0. Thus, we can

invoke Claim 7 (many times) to conclude that there is a 𝑦 ∈ 𝐶⊥
z such that |𝑥 ⊕ 𝑦 ⊕ 𝑦′ | < 𝑐1𝛿𝑚x. But |𝑥 |𝐶⊥

z
≤

|𝑥 ⊕ 𝑦 ⊕ 𝑦′ | < 𝑐1𝛿𝑚x, leading to a contradiction. Thus, either |𝑥 |𝐶⊥
z
≥ 𝑐2𝑛 or |𝑥 |𝐶⊥

z
≤ 𝑐1𝛿𝑚x = 𝑐1𝛿

𝑚x
𝑛

· 𝑛.
We can argue similarly for 𝐺 𝛿

z . Thus, Property 1 is satisfied with modified constant 𝛿0 → 𝛿0 · min{𝑚x,𝑚z }
𝑛

.

A Omitted Proofs

Proof of Fact 3: Consider a purification of the state 𝜓 as |𝜓⟩ on a potentially larger Hilbert space. Write |𝜓⟩
as

∑
𝑧∈{0,1}𝑛 |𝜓𝑧⟩⊗|𝑧⟩ where the second register is the original 𝑛 qubit code-space. Define𝐶 def

=
∑

𝑧∈𝑆 ∥ |𝜓𝑧⟩ ∥2

and

|𝜓 ′⟩ = 1
√
𝐶

∑︁
𝑧∈𝑆

|𝜓𝑧⟩ ⊗ |𝑧⟩ def
=

∑︁
𝑧∈𝑆

��𝜓 ′
𝑧

〉
⊗ |𝑧⟩ .

Since𝐶 = 𝐷z(𝑆)
def
= 1−𝜂, by the gentle measurement lemma [Win99] we have 1

2 ∥ |𝜓⟩⟨𝜓 | − |𝜓 ′⟩⟨𝜓 ′ | ∥1 ≤ 2√𝜂.
Measuring |𝜓 ′⟩ in the computational basis, we obtain a string 𝑧 ∈ 𝑆 with probability ∥

��𝜓 ′
𝑧

〉
∥2. Measuring

|𝜓 ′⟩ in the Hadamard basis, we obtain a string 𝑥 with probability

𝑝(𝑥) def
=

1
2𝑛






∑︁
𝑧

(−1)𝑥.𝑧
��𝜓 ′

𝑧

〉




2

=
1
2𝑛

(∑︁
𝑧,𝑤

(−1)𝑥.(𝑧⊕𝑤) 〈𝜓 ′
𝑤

��𝜓 ′
𝑧

〉)
.

Then we can compute the collision probability of 𝑝(𝑥):

∑︁
𝑥

𝑝(𝑥)2 =
1

22𝑛

∑︁
𝑥

(∑︁
𝑧,𝑤

(−1)𝑥.(𝑧⊕𝑤) 〈𝜓 ′
𝑤

��𝜓 ′
𝑧

〉)2

=
1

22𝑛

(∑︁
𝑥

∑︁
𝑠,𝑡 ,𝑧,𝑤

(−1)𝑥.(𝑧⊕𝑤⊕𝑠⊕𝑡) 〈𝜓 ′
𝑠

��𝜓 ′
𝑡

〉 〈
𝜓 ′
𝑤

��𝜓 ′
𝑧

〉)
=

1
2𝑛

( ∑︁
𝑠,𝑡 ,𝑧,𝑤:𝑧⊕𝑤⊕𝑠⊕𝑡=0

〈
𝜓 ′
𝑠

��𝜓 ′
𝑡

〉 〈
𝜓 ′
𝑤

��𝜓 ′
𝑧

〉)
=

1
2𝑛

( ∑︁
𝑠,𝑡 ,𝑤

〈
𝜓 ′
𝑠

��𝜓 ′
𝑡

〉 〈
𝜓 ′
𝑤

��𝜓 ′
𝑠⊕𝑡⊕𝑤

〉)
≤ 1

2𝑛

(∑︁
𝑠,𝑡



��𝜓 ′
𝑠

〉

 

��𝜓 ′
𝑡

〉

 · (∑︁
𝑤



��𝜓 ′
𝑤

〉

 

��𝜓 ′
𝑠⊕𝑡⊕𝑤

〉

))
≤ 1

2𝑛
©­«
∑︁
𝑠,𝑡



��𝜓 ′
𝑠

〉

 

��𝜓 ′
𝑡

〉

 · ©­«
√︄∑︁

𝑤

∥|𝜓 ′
𝑤⟩∥2

√︄∑︁
𝑤



��𝜓 ′
𝑠⊕𝑡⊕𝑤

〉

2ª®¬ª®¬
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=
1
2𝑛

(∑︁
𝑠,𝑡



��𝜓 ′
𝑠

〉

 

��𝜓 ′
𝑡

〉

) =
1
2𝑛

(∑︁
𝑠∈𝑆



��𝜓 ′
𝑠

〉

)2

≤ 1
2𝑛

· |𝑆 | ·
(∑︁

𝑠



��𝜓 ′
𝑠

〉

2
)
=

|𝑆 |
2𝑛

.

The previous line follows by an application of the Cauchy-Schwarz inequality. Apply it again to calculate
that ∑︁

𝑥∈𝑇
𝑝(𝑥) ≤

√︄
|𝑇 |

∑︁
𝑥

𝑝(𝑥)2 ≤
√︂

|𝑆 | · |𝑇 |
2𝑛

.

Since 1
2 ∥ |𝜓⟩⟨𝜓 | − |𝜓 ′⟩⟨𝜓 ′ | ∥1 ≤ 2√𝜂, we conclude that 𝐷x(𝑇) ≤ 2√𝜂 +

√︃
|𝑆 | · |𝑇 |

2𝑛 . □

Proof of Fact 4: Let |𝜌⟩ = 𝑈 |0⟩⊗𝑚 on 𝑚 ≥ 𝑛 qubits, where 𝑈 is a depth 𝑡 quantum circuit such that when
|𝜌⟩ is measured in the standard basis, the resulting distribution is 𝑝. Note that 𝑚 ≤ 2𝑡𝑛 without loss of
generality (see [AN22, Section 2.3] for a justification based on the light cone argument). The Hamiltonian

𝐺 =
𝑚

E
𝑖=1

𝑈 |1⟩⟨1|𝑖𝑈†

has |𝜌⟩ as its unique ground-state, is commuting, has locality 2𝑡 , and has eigenvalues 0, 1/𝑚, 2/𝑚, . . . 1.
There exists a polynomial 𝑃 of degree 𝑓 , built from Chebyshev polynomials, such that

𝑃(0) = 1, |𝑃(𝑖/𝑚) | ≤ exp
(
− 𝑓 2

100𝑚

)
≤ exp

(
− 𝑓 2

100 · 2𝑡𝑛

)
for 𝑖 = 1, 2, . . . , 𝑚.

See [AAG22, Theorem 3.1] (or [KLS96, BCDZ99]) for details on the construction of 𝑃. Applying the
polynomial 𝑃 to the Hamiltonian 𝐺 results in an approximate ground-state projector, 𝑃(𝐺), such that

∥ |𝜌⟩⟨𝜌 | − 𝑃(𝐺)∥∞ ≤ exp
(
− 𝑓 2

100 · 2𝑡𝑛

)
Furthermore, 𝑃(𝐺) is a 𝑓 · 2𝑡 local operator. Setting 𝑢

def
= dist(𝑆1, 𝑆2) and choosing 𝑓

def
= 𝑢

2𝑡+1 , we obtain

∥ |𝜌⟩⟨𝜌 | − 𝑃(𝐺)∥∞ ≤ exp
(
− 𝑢2

400 · 23𝑡𝑛

)
.

Let Π𝑆1 ,Π𝑆2 be projections onto the strings in sets 𝑆1, 𝑆2 respectively. Note that Π𝑆1𝑃(𝐺)Π𝑆2 = 0, which
implies

∥Π𝑆1 |𝜌⟩⟨𝜌 | Π𝑆2 ∥∞ ≤ exp
(
− 𝑢2

400 · 23𝑡 · 𝑛

)
.

However

∥Π𝑆1 |𝜌⟩⟨𝜌 | Π𝑆2 ∥∞ =
√︁
⟨𝜌 | Π𝑆1 |𝜌⟩ · ⟨𝜌 | Π𝑆2 |𝜌⟩ =

√︁
𝑝(𝑆1)𝑝(𝑆2) ≥ 𝜇.

Thus, 23𝑡 ≥ 𝑢2

400·log 1
𝜇
·𝑛 , which rearranges into the fact statement.

□
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Proof of Claim 7: We prove the first part of the claim. The second part follows along the same lines.
Following [LZ22], we define G□1,𝑥 as the sub-graph of G□1 that is induced by 𝑥 ∈ 𝐺 𝛿

x (in other words, we only
consider those edges of G□1 for which the corresponding squares have a ‘1’ assigned by 𝑥). Let 𝑆 ⊂ 𝑉1 be the
set of vertices in G□1,𝑥 . Most vertices 𝑣 in 𝑆 have their local view according to 𝐶⊥

1 . But, 𝑥 is an approximate
code-word from 𝐺 𝛿

x . So there are no restrictions on the local views of at most 𝛿𝑚x vertices in 𝑆. We now
modify the definition of ‘exceptional vertices’ from [LZ22]. Let 𝑆𝑒 ⊂ 𝑆 be the set of vertices 𝑣 which satisfy
one of the two conditions:

• The degree is at least Δ 3
2−𝜆 in G□1,𝑥 .

• The local view of 𝑥 at 𝑣 violates a check in 𝐶⊥
1 .

Since |𝑆 | ≥ 2 |𝑥 |
Δ2 , we choose 𝑐1

def
= Δ3−2𝜆

256 to conclude that |𝑆 | ≥ Δ1−2𝜆

128 𝛿𝑚x. Now, we establish the following
bound on |𝑆𝑒 |, which modifies [LZ22, Claim 9].

|𝑆𝑒 | ≤
256|𝑆 |
Δ1−2𝜆 + 2𝛿𝑚x ≤ 512|𝑆 |

Δ1−2𝜆 . (1)

To establish this bound, we proceed the same as [LZ22]. Note that all the vertices in 𝑆 that are not ‘violated’
by 𝑥 have degree at least 𝜅Δ (distance of the local code 𝐶⊥

1 ). Thus, setting 𝑐2
def
= 𝜅Δ

1
2 −𝜆

16 · |𝑉1 |
𝑛

and noting that
|𝑆 | ≥ 2𝛿𝑚x for large constant Δ, we obtain

|𝑆 |
2

≤ (|𝑆 | − 𝛿𝑚x) ≤
2|𝑥 |
𝜅Δ

=⇒ |𝑆 | ≤ 4|𝑥 |
𝜅Δ

≤ |𝑉1 |
4Δ 1

2+𝜆
.

If |𝑆𝑒 | ≤ 2𝛿𝑚x, Equation (1) is verified. Otherwise, by using the expander mixing lemma and Lemma 6, we
have

Δ
3
2−𝜆

2
|𝑆𝑒 | ≤ Δ

3
2−𝜆( |𝑆𝑒 | − 𝛿𝑚x) ≤ 𝐸 (𝑆𝑒, 𝑆) ≤

Δ2 |𝑆𝑒 | |𝑆 |
|𝑉1 |

+ 4Δ
√︁
|𝑆𝑒 | |𝑆 | ≤

Δ
3
2−𝜆

4
|𝑆𝑒 | + 4Δ

√︁
|𝑆𝑒 | |𝑆 |,

which implies |𝑆𝑒 | ≤ 256 |𝑆 |
Δ1−2𝜆 .

Having established Equation (1), which modifies a similar expression in [LZ22] by a constant factor
of 8, we proceed further in a very similar manner. We define the normal vertices (𝑆 \ 𝑆𝑒), heavy edges and
the set 𝑇 in the same manner. The upper bound on |𝑇 | in [LZ22, Claim 11] remains unchanged. To arrive
at [LZ22, Claim 12], the definition of 𝛼 is slightly modified according to Equation (1). We need a vertex
in 𝑇 that is not adjacent to large number of vertices in 𝑆𝑒. For this, [LZ22] upper bound |𝐸 (𝑆𝑒, 𝑇) | using the
expander mixing lemma. The modified constants lead to a new upper bound

|𝐸 (𝑆𝑒, 𝑇) | ≤
256
Δ

1
2−𝜆

|𝑇 | + 128Δ𝜆
√︁
|𝑆 | |𝑇 | def

= 𝛽Δ
1
2+𝜆 |𝑇 |, 𝛽 = 256 + 512

Δ
.

The rest of the argument remains unchanged with the modified constants 𝛼, 𝛽. □

Small-set expansion

Definition 8. Let 𝐺 be a 𝑑-left-regular bipartite graph between vertex sets 𝐿 and 𝑅. A subset 𝐴 ⊂ 𝐿 is said
to be 𝛾-expanding if |Γ(𝐴) | ≥ (1 − 𝛾)𝑑 |𝐴| where Γ(𝐴) ⊂ 𝑅 is the set of neighbors of 𝐴. We say that 𝐺 is
(𝛾, 𝛼)-small set expanding if every set 𝐴 of size ≤ 𝛼 |𝐿 | is 𝛾-expanding.
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Lemma 9. For a classical error correcting code with check matrix 𝐻 ∈ F𝑚×𝑛
2 , draw the interaction graph

𝐺 between the set of vertices, 𝑉 = [𝑛], and the set of checks, 𝐶 = [𝑚], with an edge 𝑣 ∼ 𝑐 if 𝑣 participates
in the check 𝑐. If 𝐺 is (𝛾, 𝛼)-small set expanding for 𝛾 < 1

2 , then the code satisfies the classical version of
Property 1.

Proof. Consider any 𝑦 ∈ {0, 1}𝑛. If |𝑦 | < 𝛼𝑛, then 𝑦 is the indicator vector for a small subset 𝐴 ⊂ 𝑉 , and
|Γ(𝐴) | ≥ (1 − 𝛾)𝑑 |𝐴|. Let Γ+(𝐴) be the subset of Γ(𝐴) with a unique neighbor in 𝐴. Since the number of
edges between 𝐴 and Γ(𝐴) is 𝑑 |𝐴|, then

𝑑 |𝐴| ≥
��Γ+(𝐴)

�� + 2 ·
(
|Γ(𝐴) | −

��Γ+(𝐴)
��)

= −
��Γ+(𝐴)

�� + 2(1 − 𝛾)𝑑 |𝐴|

Therefore, |Γ+(𝐴) | ≥ (1 − 2𝛾)𝑑 |𝐴|. Since every check in Γ(𝐴) is adjacent to a unique vertex in 𝐴, Γ+(𝐴) is
a subset of the checks that will be violated by 𝑦. Set 𝑐2

def
= 𝛼 and 𝑐1

def
= 𝑚

(1−2𝛾)𝑑𝑛 . If |𝑦 | < 𝛼𝑛, then

𝛿𝑚 ≥ |𝐻𝑦 | ≥
��Γ+(𝐴)

�� ≥ (1 − 2𝛾)𝑑 |𝐴| = (1 − 2𝛾)𝑑 |𝑦 |.

This shows that, in fact, |𝑦 | < 𝑐1𝛿𝑛.
□
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