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Abstract

We prove concentration bounds for the following classes of quantum states: (i) output
states of shallow quantum circuits, answering an open question from [DPMRF23]; (ii)
injective matrix product states; (iii) output states of dense Hamiltonian evolution,
i.e. states of the form eιH

(p) · · · eιH(1) |ψ0〉 for any n-qubit product state |ψ0〉, where
each H(i) can be any local commuting Hamiltonian satisfying a norm constraint,
including dense Hamiltonians with interactions between any qubits. Our proofs use
polynomial approximations to show that these states are close to local operators.
This implies that the distribution of the Hamming weight of a computational basis
measurement (and of other related observables) concentrates.
An example of (iii) are the states produced by the quantum approximate optimisa-
tion algorithm (QAOA). Using our concentration results for these states, we show
that for a random spin model, the QAOA can only succeed with negligible probabil-
ity even at super-constant level p = o(log log n), assuming a strengthened version of
the so-called overlap gap property. This gives the first limitations on the QAOA on
dense instances at super-constant level, improving upon the recent result [BGMZ22].
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1 Introduction
Concentration bounds deal with the deviation of random variables from their expectation. Such
bounds describe important structural properties of probability distributions that carry low cor-
relation, and as a result have become ubiquitous tools in mathematics, computer science, and
physics. A series of recent works has extended concentration bounds to the quantum many-body
setting, where weakly correlated quantum states hold physical and computational relevance and
their concentration properties explain important physical effects. For example, the concentration
of expectation values in various quantum states such as product states [GV89, HMH04, Abr20],
Gibbs quantum states [DPR22, KS20b], and finitely correlated states [Ans16] explains the equival-
ence of ensembles [BC15, BCG15, Tas18, Alh22] and eigenstate thermalisation [KS20a] in quantum
statistical mechanics. Concentration bounds are also an important proof technique in quantum com-
plexity theory: for example, concentration properties of quantum states generated by low-depth
quantum circuits have been used to prove circuit lower bounds on low-energy states of quantum
Hamiltonians [EH17], leading to the recent proof of the NLTS conjecture [AN22, AB22, ABN22].
Furthermore, concentration results play an important role in analysing and bounding the per-
formance of variational quantum algorithms for classical constraint optimisation problems, e.g. the
quantum approximate optimisation algorithm (QAOA) [FGG14, FGG20, CLSS22, BGMZ22].

The standard method to prove concentration inequalities is the moment method. The slow
growth of the moments of weakly correlated probability distributions or quantum states serves as
a signature of concentration. Arguably the simplest example is the classical Chernoff-Hoeffding
bound, which shows that the probability that the sum of n independent random variables deviates
from its expectation value by more than k is at most e−Ω(k2/n). We call this Gaussian concen-
tration. The moment method also extends to non-commuting observables with product quantum
states [Kuw16] or quantum states with exponential decay of correlation [Ans16], albeit sometimes
with weaker bounds of the form e−Ω(kα/nβ) for some α, β > 0. We call these weaker bounds
exponential concentration.1

An alternative to the moment method was introduced in [KAAV17]. The idea of this approach is
to approximate the quantum state of interest by a local operator and use this approximation to prove
concentration bounds. Because the local approximation is usually constructed from low-degree
polynomials, we call this the polynomial-based method. The strength of the resulting concentration
bounds depends on the locality of the approximation; see Section 2.4 for details. [KAAV17] used this
method to show exponential concentration of the form e−Ω(k/

√
n) for local classical observables on

the ground states of gapped local Hamiltonians. However, their method was not able to produce
Gaussian concentration even for the simplest case of local observables on an i.i.d. distribution
(e.g. the sum of i.i.d. random variables), a case in which the Chernoff-Hoeffding bound does give
Gaussian concentration results.

1.1 Main results
We extend the polynomial-based method in two ways: we show that in cases where the moment
method produces Gaussian concentration, the polynomial-based method can do so, too; and we

1Note that with this definition, technically Gaussian concentration is a special case of exponential concentration
for α = 2 and β = 1. However, when we say “exponential concentration” it is usually implicit that α and β are such
that the bounds are generally weaker than for Gaussian concentration. A typical case is α = 1 and β = 1/2.
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show that the polynomial-based method can be applied to a much wider class of states, including
the output states of shallow quantum circuits, injective matrix product states, and the output states
of dense Hamiltonian evolutions (explained below). An example of a dense Hamiltonian evolution
is the QAOA for solving classical constraint optimisation problems (COPs). We therefore obtain
concentration bounds for the QAOA, and combining this with the so-called overlap gap property first
introduced in the classical literature [GL18, GJ21], we prove strong limitations on the performance
of the QAOA even at (admittedly only slightly) super-constant level p = o(log log n). Crucially, our
method works for dense COPs, which may have constraints between any variables, and our proofs
are fairly straightforward. This improves upon the recent work [BGMZ22], which proved similar
results for constant-level QAOA on dense instances using a highly technical proof.

We now describe our main results in more detail. In all cases, concentration bounds are obtained
by approximating the quantum state of interest by a local operator, so in sketching the proof ideas,
we only focus on the construction of such a local approximation. Below, we only give concentration
bounds for the Hamming weight distribution Wρ of an n-qubit quantum state ρ, i.e. the probability
distribution over {1, . . . , n} describing the Hamming weight of a computational basis measurement
of ρ. More formally, Pr[Wρ = i] =

∑
x∈{0,1}n:|x|=i〈x|ρ|x〉. However, it is straightforward to extend

these bounds to other observables that only change slowly as the Hamming weight changes; for an
example, see Corollary 4.8.

Prior work This work

Depth t quantum states e−Ω(k/
√

22tn) (implicit in
[KAAV17]) e−Ω(k2/22tn)

Injective matrix product
states e−Ω(k/

√
n) ([KAAV17, Ans16]) e−Ω(k2/n)

Dense Hamiltonian evolution
on(1) for the special case
of QAOA with level p =
O(1) [BGMZ22]

e−Ω(n1/8) for k = o(n) and
level p = o(log log n)

Table 1: Main results and comparison with prior work. For each case, we consider a state on n qubits and bound
the probability that the Hamming weight of a computational basis measurements deviates by more than k ∈ [0, n]
from its median (or mean). Note that [BGMZ22] were able to show concentration over both the choice of instance
and the randomness of the QAOA output, whereas our bounds, while stronger, only deal with concentration over
the latter.

Shallow quantum circuits. Consider a depth-t quantum circuit, i.e. a circuit comprised of t
layers of arbitrary 2-qubit gates applied to the initial state |0〉⊗n. We denote the unitary im-
plemented by this circuit by U . The output state of this circuit is the unique maximum-energy
eigenstate of a 2t-local Hamiltonian that is a sum of commuting projectors. To see this, observe
that U |0〉⊗n is the unique joint (+1)-eigenstate of the operators Hi = U |0〉〈0|iU †, where |0〉〈0|i acts
as identity on all qubits except i. By a standard lightcone argument, Hi only acts non-trivially
on 2t qubits, so H = 1

n

∑
Hi is a 2t-local Hamiltonian with U |0〉⊗n as its unique (+1)-eigenstate.

Therefore, the output of the circuit can be written as U |0〉〈0|⊗nU † = δ1(H), where δ1(1) = 1 and
δ1(x) = 0 for x 6= 1. We can now approximate δ1(x) using a degree-d polynomial Pd constructed
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in [KLS96, BCDZ99, AAG22]. Polynomials spread the locality of operators in a controllable way.
We can therefore show that Pd(H) is a (d·2t)-local operator that approximates U |0〉〈0|⊗nU †. Hence,
we have constructed a local operator approximation to U |0〉〈0|⊗nU † and can use this approxima-
tion to show that for any depth-t circuit, the output state |ψ〉〈ψ| = U |0〉〈0|⊗nU † has the following
concentration property for k ∈ (2t

√
n, 2tn) (see Corollary 3.2 for the formal statement):

Pr[|Wψ −median(Wψ)| ≥ k] ≤ e
−Ω
(

k2
22tn

)
.

This generalises the Chernoff-Hoeffding bound for product distributions (which corresponds to the
case of a single layer (t = 1), since then the measurement distribution of the output state is a
product of distributions on one or two bits) and shows Gaussian concentration for any constant-
depth quantum circuit, answering an open question from [DPMRF23]. Similar statements have
also appeared in [AN22, AB22, ABN22]. Note that the same argument applies to any ground state
of a Hamiltonian that is a sum of commuting projectors, not just output states of shallow circuits.

Injective matrix product states. Matrix product states (MPSs) are a widely used tensor net-
work representation of quantum states. Injective MPSs have an additional property that ensures
that they are the unique ground state of a local “parent Hamiltonian” with a constant spectral
gap. We can therefore approximate an injective MPS as a polynomial of its parent Hamilto-
nian. Using near-optimal polynomial approximations constructed in [AAG22], we obtain Gaussian
concentration bounds for injective MPSs (Lemma 3.3). Our bounds are stronger than previous
ones [Ans16, KAAV17], which only showed exponential concentration. We also note that condi-
tionally independent probability distributions can be encoded into injective MPSs, and that in that
case our concentration bounds reproduce a (version of) Azuma’s inequality.

Dense Hamiltonian evolution. Concentration bounds are natural for quantum states that have
weak long-range correlations such as the output states of shallow quantum circuits. A priori, one
would not expect similar bounds to hold for quantum states with long-range correlations. Recently,
[BGMZ22] considered the output distribution of the QAOA (explained below) on random dense
COPs, i.e. local COPs that can have constraints between any variables. For dense COPs, the
operations implemented by the QAOA can include interactions between any qubits, and as a result
the output distribution can have long-range correlations. Remarkably, [BGMZ22] showed that the
variance of the average energy density (averaged over the randomness of the QAOA as well as
the choice of random instance) vanishes asymptotically. This means that the energy density of the
output, which corresponds to the quality of the COP solution produced by the QAOA, concentrates
about the average. However, [BGMZ22] were only able to prove an asymptotic statement without
explicit tail bounds and the proof was highly non-trivial.

We consider a more general class of states that includes the output states of the QAOA as a
special case. Specifically, we define the output of a dense Hamiltonian evolution as a state of the
form eιH

(p) · · · eιH(1) |ψ0〉 for any n-qubit product state |ψ0〉. Here, each H(i) can be any commuting
local Hamiltonian (though the different H(i) themselves are of course not required to commute).
Importantly, H(i) are allowed to be dense Hamiltonians, i.e. Hamiltonians with interactions between
any qubits. As explained below, the QAOA applied to a dense COP is a special case of dense
Hamiltonian evolution.

For our concentration bounds, we further require each H(i) to satisfy a norm constraint, which
limits the norm of the Hamiltonian restricted to a subset of the qubits (see Equation (4.1) for the
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formal statement). In particular, this condition is satisfied with overwhelming probability for the
random dense model from [BGMZ22]. Under this condition, we can prove (Theorem 4.1) that the
output state of a dense Hamiltonian evolution is ε-close in operator norm to a kp-local operator for

kp ≤ cp1n
1−(1−α)p/4 , ε ≤ e−Ω(n1/8) .

Here, c1 and 0 ≤ α < 1 are constants and p is level of the dense evolution, i.e. the number of
unitaries eιH(i) that have been applied. In particular, if we choose p = o(log log n), then k = o(n).
This implies the following exponential concentration result (Corollary 4.7): for ρp the output of a
dense Hamiltonian evolution with level p = o(log log n) satisfying the above conditions,

Pr
[
|Wρp −median(Wρp)| > o(n)

]
≤ e−Ω(n1/8) .

Here, we have only stated the asymptotic result, but in Corollary 4.7 we give explicit bounds for
any choice of p. This concentration result can also be extended beyond just the Hamming weight
of a computational basis measurement: for example, it also holds for the energy density of ρp with
respect to any classical Hamiltonian satisfying a similar norm constraint to the one mentioned
above (Corollary 4.8).

To prove that the output of a dense Hamiltonian evolution can be approximated by a local
operator, we again make use of polynomial approximations. Recall that we are interested in states
of the form ρp = eιH

(p) · · · eιH(1) |ψ0〉〈ψ0|e−ιH
(1) · · · e−ιH(p) for a pure product state |ψ0〉. As a

first step, we approximate |ψ0〉〈ψ0| by a local operator (Lemma 4.5). For this, we observe that
since |ψ0〉 = ⊗i|ψ0〉i is a product state, it is the unique ground state of the 1-local Hamiltonian
H = 1

n

∑
|ψ0〉〈ψ0|i. If we apply a linear combination of Chebyshev polynomials to this Hamiltonian,

we obtain a good local approximation to |ψ0〉〈ψ0|. Then, for each unitary eιH
(i) in the dense

Hamiltonian evolution, we approximate the exponential function by its truncated Taylor series.
The fact that the Hamiltonian evolution is applied to an approximately local operator allows us
to use the norm constraint mentioned above to obtain an improved error bound for the truncated
Taylor series (see Lemma A.2 for details). Therefore, the truncated Taylor series spreads the locality
of the state in a controllable way without degrading the quality of the approximation too much.
Applying this argument recursively for each layer of the dense Hamiltonian evolution, we obtain a
local approximation to the output state ρp.

Limitations on the QAOA from concentration bounds. The QAOA [FGG14] is an al-
gorithm for solving local COPs (i.e. COPs consisting of any number of clauses, each with at most
q = O(1) variables) on a quantum computer. We can associate a q-local Hamiltonian H with every
q-local COP C by replacing the variables in C with Pauli-Z matrices acting on different qubits.
The resulting Hamiltonian is diagonal in the computational basis and has the property that for
any string x ∈ {0, 1}n, C(x) = 〈x|H |x〉. The QAOA attempts to find a “good” solution x (i.e. one
for which C(x) is as large as possible) by starting from the state |+〉⊗n and then applying p layers
of unitaries of the form eιβiσ

⊗n
X eιγiH . Here, βi and γi are real parameters that can be tuned to the

problem instance. It is clear that this is a special case of the dense Hamiltonian evolution we have
described earlier. Our results will apply for any choice of βi and γi and we will always implicitly
consider a family of COPs, one for each number n of input bits, in order to make asymptotic
statements.
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[BGMZ22] considered the performance of the QAOA on a random spin model on n qubits,
described by the q-local Hamiltonian

Hq
n(J) = 1

n(q−1)/2

n∑
i1,...iq=1

Ji1,...iqσ
Z
i1 . . . σ

Z
iq , (1.1)

where Ji1,...iq ∼ N (0, 1) are sampled from i.i.d. standard Gaussians. For this model, [BGMZ22]
were able to show that for constant even q ≥ 4 and level p = O(1), the value achieved by the QAOA
(for fixed βi, γi) in expectation over J and the internal randomness of the QAOA is bounded away
from the optimal value by a constant as n → ∞. They were also able to show the asymptotic
concentration property described above.

Here, we use our concentration results to show limitations on the QAOA for a class of COPs
that includes the random spin model above. For this, we consider local COPs that have the so-
called overlap gap property (OGP) [Gam21], which roughly says that “good” solutions to the COP
are clustered in the sense that two good solutions are either close or far in Hamming distance.
Combining this with our concentration results for dense Hamiltonian evolution, we can show that
for any COP with a sufficiently strong OGP whose associated Hamiltonian satisfies Equation (4.1),
if the QAOA produced a good solution with noticeable probability, then the probability distribution
over good solutions produced by the QAOA would have to be concentrated on one such cluster.
This allows us to show that the QAOA cannot succeed with noticeable probability on symmetric
COPs (i.e. COPs that are invariant under flipping all the input bits) that have a strong OGP. This
is because the symmetry of the COP is in contradiction with the existence of a single cluster on
which most of the probability distribution is concentrated: if such a cluster existed, we could take
the strings in that cluster and flip all their bits to produce another cluster which, by symmetry,
must have the same probability weight, a contradiction. This argument is similar to [BKKT]. As
a result, we obtain the following limitation on the QAOA (see Lemma 5.5).

Theorem (informal). Consider a local symmetric COP C(x) with a sufficiently strong OGP and
suppose that the associated Hamiltonian H satisfies the norm constraint in Equation (4.1). Then,
the value of the solution to C(x) produced by the QAOA with level p = o(log log n) is bounded away
from the optimal value by at least a constant except with probability e−Ω(n1/8).

For even q, the random spin model from Equation (1.1) is symmetric and satisfies the norm con-
straint in Equation (4.1) with overwhelming probability. Furthermore, it was shown in [CGPR19]
that it satisfies the OGP with overwhelming probability. However, we note that here we need a
stronger version of the OGP than was shown in [CGPR19]. This stronger version appears to be
implicit in their proof, too, although we leave its formal proof for future work and assume it here
as a conjecture. Assuming this stronger OGP, we can show the following (see Section 5.3).

Theorem (informal). With probability 1 − O(e−n) over the choice of J (with i.i.d. Gaussian
entries), the value of the solution to the random spin model (Equation (1.1)) produced by the
QAOA with level p = o(log log n) is bounded away from the optimal value by at least a constant
except with probability e−Ω(n1/8).

This places strong limitations on the performance of the QAOA because it does not just bound
the expectation value away from the optimal value as in [BGMZ22], but instead asserts that the
QAOA output is bounded away from the optimal value with overwhelming probability, even at
super-constant level p = o(log log n).
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1.2 Discussion and open questions
We have shown that polynomial approximations can be used to derive Gaussian concentration
bounds for the output states of constant-depth quantum circuits and injective matrix product
states, and exponential concentration bounds for the output states of dense Hamiltonian evolution.
The latter can be used to derive strong limitations on the performance of the QAOA at super-
constant level p = o(log log n) even on dense instances such as random spin models.

At first sight, it is surprising that the (provably optimal) polynomial approximations [KLS96,
BCDZ99] we use for shallow quantum circuits are able to reproduce the (likewise provably op-
timal) Chernoff-Hoeffding bound in the classical case. It would be interesting to explore whether
there is a deeper conceptual connection between optimal polynomial approximations and optimal
concentration bounds.

On a more technical level, there are a number of interesting improvements one could hope to
make to our bounds. Firstly, our bounds for MPSs (Lemma 3.3) can only deal with sub-linear
deviations k = O(n1−δ) for any δ > 0. It would be desirable to extend this result to arbitrary
values of k. Additionally, one could hope to prove similar concentration bounds for PEPSs, the
two-dimensional analogue of MPSs.

Secondly, we only achieve exponential, not Gaussian, concentration bounds for dense Hamilto-
nian evolutions with level p = o(log log n). Can one improve these results to Gaussian concentration
and also extend them to higher levels, e.g. p = O(log n) or even p = O(nδ) for a small δ > 0? Fur-
thermore, we show concentration for the output states of dense Hamiltonian evolution for a fixed
instance, but we cannot show that for random COPs, the output states also have concentration
properties over the choice of random instance, e.g. over the choice of Ji1...iq ∼ N (0, 1) in the case
of the random spin model introduced earlier. [BGMZ22] do show such a concentration property,
albeit only in the asymptotic regime without explicit bounds. Can our polynomial approximation
techniques also be used to prove explicit concentration bounds over the choice of random instance?
If so, it might be possible to extend the limitations on the performance of dense evolutions for
COPs we prove in Section 5.2 beyond symmetric COPs and optimisers.

Finally, our techniques may also be useful for problems in condensed matter physics. As an ex-
ample, consider the Lieb-Schultz-Mattis theorem [LSM61] and its higher-dimensional generalisation
[Has04], seminal results in condensed matter physics. Their main idea is that sufficient symmetry
and non-degeneracy of the ground space prevents a Hamiltonian from being gapped. Inspired by
our application to symmetric QAOA (Section 5.3), we can ask whether an alternative proof of this
result can be obtained using concentration bounds and polynomial approximations, e.g. by showing
that the concentration properties of unique gapped ground states are in conflict with the symmetry
requirements.
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helpful discussions and especially for suggesting the application to symmetric QAOA (Section 5.3).
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2 Preliminaries
2.1 Notation
For a bitstring x ∈ {0, 1}n, we denote by (−1)x the string ((−1)x1 , . . . , (−1)xn). For n ∈ N,
[n] := {1, . . . , n}. We consider the n-qubit Hilbert space H = (C2)n throughout. L(H) is the set
of linear operators on H, and D(H) = {A ∈ Pos(H) | Tr[A] = 1} is the set of density matrices on
H. For a subset S ∈ {0, 1}n, we use ΠS to denote the projector onto S, i.e. ΠS =

∑
x∈S |x〉〈x|. The

single qubit Pauli operators are σX = ( 0 1
1 0 ) and σZ =

( 1 0
0 −1

)
.

For a vector |ψ〉 ∈ H with entries ψi and p ∈ [1,∞], the p-norm is defined as ‖|ψ〉‖p =
(
∑
i |ψi|p)

1/p. For an operator A ∈ L(H) and p ∈ [1,∞], the Schatten p-norm ‖A‖p is the (vector)
p-norm of the vector of singular values of A. For p =∞, this norm is called the operator norm and
can also be written as ‖A‖∞ = sup‖|ψ〉‖2=1 ‖A|ψ〉‖2. For convenience, we usually drop the subscript
for the operator norm, i.e. ‖A‖ := ‖A‖∞.

Definition 2.1 (Hamming weight distribution). For a quantum state ρ ∈ D(H) we denote by
Wρ the random variable indicating the Hamming weight of the outcome of measuring ρ in the
computational basis, i.e.

Pr[Wρ = i] =
∑

x∈{0,1}n:|x|=i
〈x|ρ|x〉 .

2.2 Local operators
Definition 2.2 (Local operators). Let k ∈ N and ε > 0. An operator R ∈ L(H) is called k-local
if it can be written as R =

∑
iRi for operators Ri that only act non-trivially on k subsystems.

Whenever we write R =
∑
iRi for a k-local operator R, this is understood to be such a local

decomposition. An operator Q ∈ L(H) is called (k, ε)-local if there exists a k-local operator R such
that ‖Q−R‖ ≤ ε.

We will frequently consider local operators with additional properties and extend the above
definition in the obvious way: for example, a (k, ε)-local state is a quantum state that is ε-close in
operator norm to a k-local operator R. Note that the operator R does not need to be a quantum
state itself.

Definition 2.3 (Total local norm). A k-local operator R has total local norm tln(R) ≤ r if there
exists a local decomposition R =

∑
Ri such that

∑
‖Ri‖ ≤ r. Similarly, a (k, ε)-local operator Q

has approximate total local norm tlnε(Q) ≤ q if there exists a k-local operator R within ε-distance
(in operator norm) from Q with tln(R) ≤ q.

Note that in the definition of tln(R) and tlnε(Q), it always has to be clear from the context
which locality k we are considering, since for different choices of k, different values of the total
local norm can be achieved. Therefore we will always make statements of the form: R is a k-local
operator with tln(R) = . . . (and likewise for the approximate case). Hence, strictly speaking the
subscript in tlnε(Q) is unnecessary as it must anyway be specified that Q is a (k, ε)-local operator
for some values of k and ε, but we find it useful to include the subscript as a reminder of this
nonetheless.
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Example 2.4. The locality of an operator increases in a controllable way when we apply a polyno-
mial. Specifically, consider a k-local operator R =

∑
Ri and a degree-d polynomial P . Then, P (R)

is a (d · k)-local operator because we can expand it into a sum of terms, each of which contains a
product of at most d different local terms Ri.
Example 2.5. The state |+〉〈+|⊗n is a non-local operator. However, it can be approximated by
a local operator. For this, consider the Hamiltonian H0 = 1

n

∑n
i=1 |+〉〈+|i, where |+〉〈+|i acts as

identity everywhere except on the i-th qubit. H0 is a 1-local operator, with ground state |+〉〈+|⊗n
and spectral gap 1/n. It is easy to see that ‖|+〉〈+|⊗n−Hk

0 ‖ ≤ (1− 1
n)k ≤ e−k/n, and by Example 2.4

Hk
0 is a k-local operator. We therefore have shown that |+〉〈+|⊗n is a

(
k, (1− 1

n)k
)
-local operator.

Expanding Hk
0 = 1

nk
∑
i1,i2,...ik

|+〉〈+|i1 · · · |+〉〈+|ik into nk terms each with operator norm at most
1, we also see that tln(Hk

0 ) ≤ 1 for any k, and consequently tlnε(|+〉〈+|⊗n) ≤ 1 for any ε.
Definition 2.6 (Subset operator). For any k-local operator R =

∑
Ri and a subset S ⊆ [n], we

define the subset operator RS as

RS =
∑

i s.t. Ri acts non-trivially
on at least one qubit in S

Ri .

The decomposition of a k-local operator R =
∑
iRi we have considered so far is not unique.

It will occasionally be useful to define a canonical such decomposition. This can easily be done as
follows: noting that the n-qubit Pauli matrices (with identity) form a basis of L(H), for any operator
R ∈ L(H) there is a unique decomposition in terms of the n-qubit Pauli matrices. Furthermore,
if R is k-local, only basis elements that act non-trivially on at most k qubits will appear in this
decomposition. Starting from this unique decomposition, we can group basis elements that act
non-trivially on the same set of qubits. This way, we obtain a unique decomposition of a k-local
operator R as

R =
∑

T⊆[n] s.t. |T |≤k
O(T ) , (2.1)

where O(T ) is a (weighted) sum of all Pauli operators that act non-trivially exactly on qubits in the
set T . The following lemma bounds the operator norm of an individual term in this decomposition.
Lemma 2.7. Given an operator R, consider the unique decomposition R =

∑
T O(T ) from Equa-

tion (2.1). Then, for all T ⊆ [n]:
‖O(T )‖ ≤ 2|T |‖R‖ .

Proof. Defining O′(S) :=
∑
T⊆S O(T ), we can write O′(S) as a Pauli twirl applied to the operator R:

O′(S) = Eiσ
i
[n]\S(R)σi[n]\S ,

where {σi[n]\S}
4n−|S|
i=1 is the set of all multi-qubit Pauli operators that act as identity on S. By the

inclusion-exclusion principle (see e.g. [GGL95, Thm. 12.1]),

O(T ) =
∑
U⊆T

(−1)|T\U |O′(U) .

Thus,
‖O(T )‖ ≤ 2|T |max

U⊆T
‖O′U‖ ≤ 2|T |max

U⊆T
‖Eiσi[n]\U (R)σi[n]\U‖ = 2|T |‖R‖ ,

where the last equality holds because the Pauli twirl is a unital channel.
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2.3 Polynomial approximations
Definition 2.8 (Chebyshev polynomials). The Chebyshev polynomials are defined as

Tk(x) = k

2

b k2 c∑
r=0

(−1)r

k − r

(
k − r
r

)
(2x)k−2r :=

b k2 c∑
r=0

αrx
k−2r .

We have already seen the utility of the powering function x 7→ xs in creating local operator
approximations in Example 2.5. However, the powering function does not result in approximations
with an optimal tradeoff between approximation error and locality. For this purpose, we require
an approximation to the function x 7→ xs as a linear combination of Chebyshev polynomials.

Lemma 2.9. Let Tk be the degree-k Chebyshev polynomial and ps,k the probability that an s-step
symmetric random walk on integers (starting from 0) is at k or −k. For any a ≤ s, we define the
degree-a polynomial

Ps,a(x) =
a∑
k=0

ps,kTk(x) .

Then, Ps,a provides a good approximation to xs in the sense that for any operator O with ‖O‖ ≤ 1,

‖Os − Ps,a(O)‖ ≤ 2e−
(a+1)2

2s .

Proof. As shown in [SV14, Theorem 3.1], the monomial xs can be viewed as a random walk over
the Chebyshev polynomials. More precisely, for any s > 0 we have

xs =
s∑

k=0
ps,kTk(x) = Ps,s(x) . (2.2)

By the Chernoff bound,
∑
k≥a ps,k ≤ 2e−

a2
2s . This means that the contributions from the high-degree

Chebyshev polynomials in Equation (2.2) are suppressed, and we can obtain a good approximation
to xs by truncating Equation (2.2) at a degree a < s. Specifically, for any operator O with ‖O‖ ≤ 1
we can bound ∥∥∥∥∥Os −

a∑
k=0

ps,kTk(O)
∥∥∥∥∥ =

∥∥∥∥∥∥
s∑

k=a+1
ps,kTk(O)

∥∥∥∥∥∥ ≤
s∑

k=a+1
|ps,k| ≤ 2e−

(a+1)2
2s .

Here, the first inequality holds by the triangle inequality and because |Tk(x)| ≤ 1 for |x| ≤ 1.

2.4 Concentration bounds from local operator approximations
Our general strategy for proving concentration bounds on quantum states will be to show that
these states can be approximated by local operators. From this we can obtain concentration bounds
from the following lemma, adapted from [KAAV17]. We state this lemma for the Hamming weight
distribution Wρ of a state ρ, but it can easily be generalised to the distribution of any function of
bitstrings that varies slowly as the Hamming weight is changed (see Corollary 4.8 for an example).
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Lemma 2.10. Let ψ = |ψ〉〈ψ| be a (k, ε)-local pure quantum state and let m be the median of Wψ.
Then

Pr[Wψ > m+ k] ≤ 4ε2 and Pr[Wψ < m− k] ≤ 4ε2 .

Proof. We only prove the first bound, the second is analogous. We define

Π>m+k =
∑

x∈{0,1}:|x|>m+k
|x〉〈x|

as the projector onto all computational basis states with Hamming weight greater than m+ k. We
define Π≤m analogously. Because strings in the support of Π>m+k and Π≤m differ on more than k
positions, for any operator O that only acts non-trivially on k qubits we have that Π>m+kOΠ≤m =
0. By linearity we also get Π>m+kRΠ≤m = 0 for any k-local operator R.

Because ψ is (k, ε)-local, there exists a k-local operator R that is ε-close to ψ. We therefore get
that

ε ≥ ‖ψ −R‖ ≥ ‖Π>m+k(ψ −R)Π≤m‖ = ‖Π>m+kψΠ≤m‖ .

By the variational definition of the operator norm and inserting ψ = |ψ〉〈ψ|:

‖Π>m+kψΠ≤m‖ ≥ ‖Π>m+k|ψ〉〈ψ|Π≤m|ψ〉‖2
= 〈ψ|Π≤m|ψ〉 ‖Π>m+k|ψ〉‖2
= Tr[Π≤mψ] · (Tr[Π>m+kψ])1/2

= Pr[Wψ ≤ m] · (Pr[Wψ > m+ k])1/2 .

The lemma now follows by noting that since m is the median of Wψ, Pr[Wψ ≤ m] ≥ 1/2.

More generally, we observe that approximately local quantum states have the following cluster-
ing property (see also [AN22, AB22, ABN22]).

Lemma 2.11. Let ψ = |ψ〉〈ψ| be a (k, ε)-local operator and consider two sets S, S′ ⊂ {0, 1}n with
Hamming distance more than k from each other. Then, either Tr[ΠSρ] ≤

√
ε or Tr[ΠS′ρ] ≤

√
ε (or

both).

Proof. Letting R be the k-local operator ε-close to ψ, we can bound

Tr[ΠSψ]Tr[ΠS′ψ] = 〈ψ|ΠSψΠS′ |ψ〉 ≤ ‖ΠSψΠS′‖ ≤ ‖ΠSRΠS′‖+ ε = ε .

The last equality follows by the same reasoning as in the proof of Lemma 2.10. This implies the
lemma.

3 Concentration bounds for shallow circuits and matrix product states
[AAG22] showed that the ground states of various local Hamiltonians can be approximated by local
operators using polynomials. Combining this with Lemma 2.10, we can easily obtain concentration
bounds for such states. As concrete examples, we prove concentration bounds for the output states
of shallow quantum circuits and injective matrix product states (MPSs).

We begin by considering the special case of ground states (or, for convenience, maximum-energy
eigenstates) of commuting local Hamiltonians H =

∑
Hi, where each Hi is a projector.
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Lemma 3.1. Let H =
∑r
i=1Hi be a sum of r commuting projectors each acting on ` qubits, and |ψ〉

the maximum-energy eigenstate of H. Then, for any d ∈ (
√
r, r), the state |ψ〉〈ψ| is

(
`d, 2−

d2
28r

)
-

local and

Pr[Wψ > m+ `d] ≤ 4 · 2−
d2

27r and Pr[Wψ < m− `d] ≤ 4 · 2−
d2

27r ,

where m is the median of Wψ.

Proof. Because H is a sum of commuting projectors, |ψ〉〈ψ| =
∏
Hi. [AAG22, Theorem 3.1] (see

also [KLS96, BCDZ99]) construct multi-variate degree-d polynomials Pd (with d ∈ (
√
r, r)) such

that for any x1, . . . , xr ∈ {0, 1}:

|Pd(x1, . . . , xr)−
∏
i

xi| ≤ 2−
d2

28r .

If we insert the `-local projectors xi = Hi, whose spectrum is {0, 1}, we get that

‖Pd(H1, · · · , Hr)− |ψ〉〈ψ|‖ ≤ 2−
d2

28r ,

and Pd(H1, · · · , Hr) is a (`d)-local operator by Example 2.4. This shows that ψ is
(
`d, 2−

d2
28r

)
-local,

and the concentration bound follows directly from Lemma 2.10.

As an application of this, we consider quantum circuits with arbitrary 2-local gates between
any two qubits, arranged into t layers. The number of layers t is called the circuit depth. The
key property of shallow circuits is that they spread locality in a controllable way: by a standard
lightcone argument, it is easy to see that if O is a k-local operator and U is a unitary implemented
by a depth-t circuit, then UOU † is a (2t · k)-local operator. Therefore, the output state U |0〉 of the
circuit is the maximum-energy eigenstate of the 2t-local Hamiltonian H =

∑
i U(|0〉〈0|i ⊗ 1\i)U †,

and the local terms of the Hamiltonian are clearly commuting projectors. Hence, we obtain the
following corollary, answering an open question from [DPMRF23].

Corollary 3.2. Let U be a unitary implemented by a depth-t circuit. Then, the output state
|ψ〉〈ψ| = U |0〉〈0|⊗nU † is

(
k, 2−

k2
22t+8·n

)
-local operator for k ∈ (2t

√
n, 2tn). Furthermore, denoting

the median of Wψ by m, the following Gaussian concentration bounds hold:

Pr[Wψ > m+ k] ≤ 4 · 2−
k2

22t+7·n and Pr[Wψ < m− k] ≤ 4 · 2−
k2

22t+7·n .

A more general case considered in [AAG22] is that of a 1D local Hamiltonian H =
∑
Hi, where

0 ≤ Hi ≤ 1 and H needs to satisfy the local gap property (see [AAG22] for a definition). For such
Hamiltonians, [AAG22, Theorem 3] gives local approximations to the ground state, and we can use
this and our Lemma 2.10 to obtain concentration bounds. We do not spell out the full statement
and instead consider a useful example, injective matrix product states (MPSs) with constant bond
dimension. We refer to [CPGSV21] for an introduction to MPSs. For our purposes, the main
property of injective MPSs is that they are the unique ground state of a “parent Hamiltonian” with
constant locality spectral gap (see e.g. [CPGSV21, Section IV.C] for details). In fact, the proof of
the spectral gap lower bound also implies a constant local gap lower bound [PGVWC07]. From
this, the following result is immediate.
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Lemma 3.3. Let |ψ〉 be an injective MPS on a chain with n qubits with a constant bond dimension.
Then, for every δ ∈ (0, 1

4), |ψ〉〈ψ| is a
(
k, e−c1(δ) k

2
n

)
-local operator for k ≤ c2(δ)n1−δ for some

c1,2(δ) independent of n. Furthermore, denoting by m the median of W|ψ〉〈ψ|,

Pr[Wρ > m+ k] ≤ e−2c1(δ) k
2
n and Pr[Wρ < m− k] ≤ e−2c1(δ) k

2
n .

An injective MPS can be used to encode conditionally independent distributions on a line. For
this, consider a distribution P (x1, . . . xn) such that P (xi|x1, . . . xi−1) = P (xi|xi−1) and assume that
all these conditional probabilities are positive. Note that P (x1, . . . xn) = P (x1)P (x2|x1) . . . P (xn|xn−1).
Then, it is easy to verify that the state

∑
x1,...xn

√
P (x1, . . . , xn)|x1, x2, . . . xn〉 can be written as an

injective MPS with constant bond dimension. The output distribution after a computational basis
measurement is precisely P , which allows us to show Gaussian concentration using Lemma 3.3,
reproducing a (version of) Azuma’s inequality. In this sense, Lemma 3.3 can be understood as a
quantum version of Azuma’s inequality.

4 Concentration bounds for dense Hamiltonian evolution
In the previous section we considered the output states of shallow quantum circuits and showed
that they can be approximated by local operators. A depth-t circuit can be written as a product of t
unitaries U1U2 . . . Ut, where each Ui is a tensor product of one- or two-qubit gates acting on disjoint
sets of qubits. Each Ui can also be written as a Hamiltonian evolution eιH(i) , where H(i) is a 2-local
Hamiltonian and each qubit participates in at most one local term. Therefore, we can rephrase
the result from the previous section as saying that for any sequence of t 2-local Hamiltonians
H(i) where each qubit participates in at most one local term, the state eιH(t) · · · eιH(1) |0〉⊗n can be
approximated by a local operator. Since each local term in H(i) acts on different qubits, H(i) is
obviously a commuting Hamiltonian.

In this section, we generalise this result to more general families of commuting Hamiltonians
H(i). In particular, we drop the requirement that each qubit can only participate in at most one
local term of H(i) and instead allow local commuting Hamiltonians with dense interaction graphs,
i.e. any qubit is allowed to participate in an arbitrary number of terms. Evolution under such
dense Hamiltonians cannot be implemented by a shallow circuit. Nonetheless, we show that as
long as such Hamiltonians satisfy a norm constraint explained in Equation (4.1), the output state
eιH

(t) · · · eιH(1) |0〉⊗n can still be approximated by a local operator just like for shallow circuits, and
as a consequence also obeys concentration bounds. This is of particular relevance as quantum
optimisation algorithms such as the QAOA apply an evolution of this form when applied to dense
constrained optimisation problems (COPs). Therefore, our concentration bounds apply to the
output of the QAOA for dense COPs, which previously required a highly technical analysis that
only yielded an asymptotic statement without explicit bounds [BGMZ22]. We can also use these
concentration bounds to prove limitations on the performance of the QAOA (and dense evolutions
more generally) at solving COPs; see Section 5 for details.

More formally, let H(1), H(2), . . . H(p) be a collection of `-local commuting Hamiltonians (i.e. the
local terms in each Hamiltonian commute, but the different H(i) need not commute), where each
qubit is allowed to participate in arbitrarily many local terms of each Hamiltonian H(i). Define
Ui = e−ιH

(i) . Because each Hamiltonian H(i) may have a dense interaction graph, we call U1 · · ·Up
a dense Hamiltonian evolution with level p. To prove concentration bounds, we will require that
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there exist constants α ∈ [0, 1) and C̃ > 1 such that for every i and every subset S ⊆ [n] of qubits,
the subset Hamiltonian H(i)

S (see Definition 2.6) satisfies∥∥∥H(i)
S

∥∥∥ ≤ C̃nα|S|1−α . (4.1)

In the special case of sparse Hamiltonians, we get that Equation (4.1) is satisfied with α = 0.
However, crucially, for random dense classical COPs, Equation (4.1) can still be satisfied with high
probability. For example, in Section 4.3 we show that a class of random spin models satisfies Equa-
tion (4.1) with high probability even though it allows for constraints between any variables, i.e. its
constraint (hyper-)graph is the complete (hyper-)graph. The well-known Sherrington-Kirkpatrick
model is an example of such a spin model.

We consider any pure product state ρ0 and denote by

ρp =
(
Up · · ·U1

)
ρ0
(
U †1 · · ·U

†
p

)
(4.2)

the output of the dense Hamiltonian evolution. The purpose of this section is to show that the out-
put state ρp satisfies certain concentration properties even if p grows (slowly) with n. Our strategy
for proving such concentration bounds will be to approximate the state ρp by a local operator (The-
orem 4.1). Once we have established such a local approximation, Lemma 2.10 immediately implies
a concentration bound for the Hamming weight distribution Wρp (Corollary 4.7). In Corollary 4.8,
we extend this to a concentration bound for the energy density of ρp with respect to any classical
Hamiltonian satisfying Equation (A.2).

4.1 Local approximations to output states of dense Hamiltonian evolution
We start by giving the main result of this section, a local approximation to the output state ρp.
The proof of this result proceeds inductively: we first show how to approximate the starting state
ρ0 by a local operator; then, we can analyse how the locality and approximation error evolves
under application of the unitaries Ui. We emphasise that the bounds in Theorem 4.1 are optimised
for ease of use, not tightness; one can easily obtain a tighter final result by keeping around more
parameters.

Theorem 4.1. Consider the output state ρp from Equation (4.2) for a family of `-local commuting
Hamiltonians H(1), . . . H(p) satisfying Equation (4.1) for some α ∈ [0, 1) and C̃ > 0 (independent
of n). Then, for sufficiently large n and p = o(log(n)), there exists a constant c1 > 0 such that ρp
is (kp, εp)-local with

kp ≤ cp1n
1−(1−α)p/4 , εp ≤ 4e−n1/8/

√
2 .

Remark 4.2. In general, the above bound is useful when k = o(n). For sparse COPs, where
α = 0, the bound on kp simplifies to kp ≤ cp1n

3/4. Therefore, we get kp = o(n) for p = o(log n).
(Note that for sparse Hamiltonians, the circuit is in fact low depth, so one can alternatively use
Corollary 3.2.) For dense COPs, where α > 0, we need p = o(log log n) for kp = o(n). For the
remainder of this section, we will focus on dense Hamiltonians and always impose the requirement
that p = o(log log n).
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Remark 4.3. As an example of why such a local operator approximation is useful, we observe that
Theorem 4.1 combined with Lemma 2.11 gives a clustering property for the output of dense evolu-
tions. Such a clustering property is used in the proof of the NLTS theorem [ABN22], which shows
that the low energy states of recently discovered [PK22, LZ22] linear-rank and linear-distance
quantum LDPC code Hamiltonians require Ω(log n) quantum circuit depth to prepare. Repla-
cing [ABN22, Fact 4] with the clustering property for the output states of dense evolutions, we
can show that if one were to try to prepare the low-energy states of LDPC codes using dense
Hamiltonian evolution instead of shallow circuits, one would need at least Ω(log log n) levels of
dense evolution.

Proof of Theorem 4.1. We invoke Lemma 4.4 shown below, which gives general (albeit complicated)
expressions for kp and εp. Setting c1 = 40 · `C̃, which is a constant by assumption, we immediately
obtain the bound on kp. To bound εp, we use the expression from Lemma 4.4:

εp ≤ 3 e−n1/8/
√

2 + 6
p∑
j=1

e−4·(20·l)j−1C̃jn1−(1−α)j/4+
√
n+2(j−1) log(2n)kj−1 .

We first bound the exponent of the second term for j ∈ {1, . . . , p}:

− 4 · (20 · l)j−1C̃jn1−(1−α)j/4 +
√
n+ 2(j − 1) log(2n)kj−1

≤ −C̃n1−(1−α)j/4 +
√
n+ 2(p− 1) log(2n)cp1n1−(1−α)j−1/4

For p = o(log n) and sufficiently large n and p, we see that the first term −C̃n1−(1−α)j/4 is dominant
for any j. Therefore, there exist constants c3, c4 such that

εp ≤ 3e−n1/8/
√

2 + 6pc3e
−c4n3/4 ≤ 4e−n1/8/

√
2

for sufficiently large n and p = o(log(n)).

As mentioned above, Theorem 4.1 is a simplification of the following technical lemma.

Lemma 4.4. Consider the output state ρp from Equation (4.2) for a family of `-local commuting
Hamiltonians H(1), . . . H(p) satisfying Equation (4.1) for some α ∈ [0, 1) and C̃ such that n ≥ k

C̃1/α .
Then, ρp is (kp, εp)-local for

kp ≤ 2 · (20 · `C̃)pn1−(1−α)p/4 , εp ≤ 3 e−n1/8/
√

2 + 6
p∑
j=1

e−4·(20·l)j−1C̃jn1−(1−α)j/4+
√
n+2(j−1) log(2n)kj−1 .

Proof. For i ≤ p we define the intermediate states ρi in the obvious way, i.e.

ρi =
(
Ui · · ·U1

)
ρ0
(
U †1 · · ·U

†
i

)
.

We now claim that each ρi is (ki, εi)-local with

ki ≤ 2 · (20 · `C̃)in1−(1−α)i/4 ,

εi ≤ 3 e−n1/8/
√

2 + 6
i∑

j=1
e−4·(20·l)j−1C̃jn1−(1−α)j/4+

√
n+2(j−1) log(2n)kj−1 ,

tlnεi(ρi) ≤ 2 e
√
n+2i log(2n)ki . (4.3)
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We prove this by induction. The base case i = 0, i.e. the approximation of the starting state ρ0,
follows from Lemma 4.5. For the inductive step, we will make use of a simplification of Lemma A.2,
stated as Lemma 4.6 below. Concretely, suppose that Equation (4.3) holds for ρi. Since

ρi+1 = Ui+1ρiU
†
i+1 ,

we can apply Lemma 4.6 with

δ = (1− α)i/4 and C = 2 · (20 · lC̃)i .

This implies the bounds in Equation (4.3) after minor simplifications.

We now show the two missing statements in the proof of Lemma 4.4: Lemma 4.5 for the base
case of the induction and Lemma 4.6 for the inductive step. We will show both of these statements
in slightly more generality than is required for Lemma 4.4, with additional parameters that could
be optimised to obtain tighter bounds in Lemma 4.4 for specific applications.

For the base case of the induction, we need to approximate the starting state ρ0. By assumption,
this is a pure product state. Since all pure product states are related to each other by 1-local
unitaries, it suffices to show the lemma for any one particular product state. For simplicity, we
show it for ρ0 = |+〉〈+|⊗n, which we have already considered in Example 2.5. There, we gave the
following simple approximation: we defined the local Hamiltonian H0 = 1

n

∑n
i=1 |+〉〈+|i and noted

that |+〉〈+|⊗n can be approximated by powers of this Hamiltonian. Here, we will require a better
tradeoff between locality and approximation error. This will be achieved using the approximation to
the powering function established in Lemma 2.9. Because we additionally need to bound the total
local norm of the approximation, which becomes large when using the function from Lemma 2.9, we
will combine the simple powering from Example 2.5 with the function from Lemma 2.9 to achieve
an approximation that has both low locality and low total local norm. The requirement that our
approximation should have small total local norm is also the reason why we cannot use Lemma 3.1
to approximate ρ0 in this setting.

Lemma 4.5. The state ρ0 := |+〉〈+|⊗n is (k0, ε0)-local with

k0 = 2n3/4 , ε0 = 3e−(n1/8)/
√

2 , tlnε0(ρ0) ≤ 2e
√
n.

Proof. LetH0 = 1
n

∑n
i=1 |+〉〈+|i and consider the polynomial Ps,a(x) =

∑a
j=0 ps,jTj(x) from Lemma 2.9.

We define the (a ·m)-local operator

R = Ps,a(Hm
0 ) ,

where a,m, and s will be chosen later. We can then bound

‖ρ0 −R‖ ≤ ‖ρ0 − (Hm
0 )s‖+ ‖(Hm

0 )s − Ps,a(Hm
0 )‖ ≤ e−

ms
n + 2e−

(a+1)2
2s ,

where the second inequality uses Example 2.5 and Lemma 2.9. If we now choose m = dn1/4e,
a = dn1/2e, and s = d 1√

2n
7/8e, then we get that

ms

n
≥ 1√

2
n1/8 and (a+ 1)2

2s = (dn1/2e+ 1)2

2d 1√
2n

7/8e
≥ n1/2 n1/2 + 1√

2n7/8 + 1
≥ 1√

2
n1/8 ,
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where the last inequality holds because
√

2n7/8 ≥ n1/2. Consequently, R has locality k0 = a ·m ≤
2n3/4 and approximates ρ0 up to error ε0 ≤ e−

ms
n + 2e−

(a+1)2
2s ≤ 3e−(n1/8)/

√
2 as claimed.

To bound tlnε0(ρ0) = tln(R), we can first bound the norms of the coefficients in the Chebyshev
polynomial (Definition 2.8) by

b j2 c∑
r=0
|αr| =

b j2 c∑
r=0

j

2 ·
1

j − r

(
j − r
r

)
2j−2r ≤

b j2 c∑
r=0

(
j − r
r

)
2j−2r ≤ 2j

b j2 c∑
r=0

(
j

r

)
1
4r ≤ 2j · 5j

4j ≤ e
j .

The second-to-last inequality holds because
∑b j2 c
r=0

(j
r

) 1
4r ≤

∑j
r=0

(j
r

) 1
4r = (1 + 1

4)j by the binomial
formula. Therefore,

tln(R) = tln

 a∑
j=0

ps,jTj(Hm
0 )

 ≤ a∑
j=0

b j2 c∑
r=0

ps,j · |αr| · tln
(
H
m(j−2r)
0

)
≤

a∑
j=0

ps,j · ej ≤ ea.

The second inequality holds because tln
(
H
m(j−2r)
0

)
= 1 as noted in Example 2.5, and the last

inequality holds because
∑a
j=0 ps,j ≤ 1 as ps,j forms a probability distribution. Inserting a =

dn1/2e ≤ n1/2 + 1
2 , we get ea ≤ 2en1/2 .

For the inductive step in Lemma 4.4, we need to analyse how the locality and approximation
error change under application of one unitary Ui. This is done in the following lemma, which is a
simplification of Lemma A.2. If one wishes to obtain the tightest possible bounds in Lemma 4.4,
one can use Lemma A.2 directly instead of this simplified statement.

Lemma 4.6. Let ρ be a (k, ε)-local quantum state with k ≤ Cn1−δ for some C > 1, δ > 0, and
H an `-local commuting Hamiltonian satisfying Equation (4.1) for some α ∈ [0, 1) and n ≥ k

C̃1/α .
Then, the state

ρ′ := e−ιHρeιH

is (k′, ε′)-local for

k′ ≤ 20`C̃Cn1−(1−α)δ , ε′ = 3e−4C̃Cn1−(1−α)δtlnε(ρ) + ε , tlnε′(ρ′) ≤ e2 log(2n)k′tlnε(ρ).

Proof. Let R be a k-local operator within ε-distance from ρ. We apply Lemma A.2 to R for the
Hamiltonian H, which satisfies ‖HS‖ ≤ C̃nα|S|1−α. Setting µ = 1 + 4/e, we get that e−ιHReιH is
a (k′, ε̃)-local operator with

k′ ≤ 2`d7C̃nακ1−αe+ k , ε̃ = 3e−4 C̃nακ1−αtln(R) , tlnε̃
(
e−ιHReιH

)
≤ (2n)k′ (tln(R) + ε̃) ,

for κ ≥ k to be chosen later. Since e−ιHReιH is (k′, ε̃)-local, it immediately follows from the triangle
inequality that e−ιHρeιH is (k′, ε′)-local for ε′ = ε̃ + ε. We can now simplify the resulting bounds
as follows choosing κ = C

1
1−αn1−δ ≥ k:

(i) Because l ≥ 1, n ≥ k
C̃1/α , and κ ≥ k, it is clear that 2`d7C̃nακ1−αe + k ≤ 20`C̃nακ1−α.

Inserting κ = C
1

1−αn1−δ, we get the claimed bound on k′.
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(ii) The bound on ε′ follows immediately from ε′ = ε̃+ ε, tln(R) = tlnε(ρ), and κ = C
1

1−αn1−δ.

(iii) To bound tlnε′(ρ′), observe that since ρ is a quantum state, we are only interested in approx-
imations where ε̃ ≤ 1 ≤ (2n)k′tln(R), as otherwise the claim becomes trivial. Combining
this and inserting tln(R) = tlnε(ρ) yields the claimed bound.

4.2 Concentration bounds for output states of dense Hamiltonian evolution
Combining Lemma 2.10 and Theorem 4.1, we immediately obtain the following concentration
bound. One can of course also derive an analogous but tighter and more explicit statement from
Lemma 4.4 instead of Theorem 4.1.
Corollary 4.7. Let ρp and c1 be as in Theorem 4.1, p = o(log log n), and m be the median of Wρp.
Then for sufficiently large n and p,

Pr
[
|Wρp −m| > cp1n

1−(1−α)p/4
]
≤ 128 e−

√
2n1/8

.

While the above statement is about concentration with respect to Hamming weight, we can
also prove concentration with respect to other observables. Let G =

∑
iGi be a classical local

Hamiltonian (i.e. a local Hamiltonian that is diagonal in the computational basis) that satisfies the
following condition analogous to Equation (4.1): for all S ⊂ [n],

‖GS‖ ≤ Dnα
′ |S|1−α′ .

In this case, we can also prove a concentration bound on the expectation of ρp with respect to G.
More specifically, we can define a random variable Eρp indicating the “energy” of ρp according to
G, i.e. if we take the spectral decomposition G =

∑
giΠi for orthogonal projectors Πi, then Eρp

takes value gi with probability Tr[Πiρp].
Corollary 4.8. Let ρp and c1 be as in Theorem 4.1 with p = o(log log n), and G and Eρp as above.
Let E be the median energy, i.e. the median of Eρp. Then

Pr
[
|Eρp − E| > 2Dcp(1−α

′)
1 n1−(1−α)p(1−α′)/4

]
≤ 128 e−

√
2n1/8

.

Proof. Consider strings x, y ∈ {0, 1}n and let S := {i : xi 6= yi}. Suppose |S| ≤ cp1n
1−(1−α)p/4.

Expanding G =
∑
iGi, consider the energy difference

Tr[(|x〉〈x| − |y〉〈y|)G] =
∑
i

Tr[(|x〉〈x| − |y〉〈y|)Gi]

=
∑

i s.t. Gi acts non-trivially
on at least one qubit in S

Tr[(|x〉〈x| − |y〉〈y|)Gi]

= Tr[(|x〉〈x| − |y〉〈y|)GS ]

≤ 2‖GS‖ ≤ 2Dnα′ |S|1−α′ ≤ 2Dcp(1−α
′)

1 n1−(1−α)p(1−α′)/4 .

Let

Π>E+f =
∑

x∈{0,1}n:〈x|H|x〉>E+f
|x〉〈x|, Π≤E =

∑
x∈{0,1}n:〈x|H|x〉≤E

|x〉〈x| .

If f > 2Dcp(1−α
′)

1 n1−(1−α)p(1−α′)/4, then by the above argument strings in the support of Π>E+f
and Π≤E differ on more than cp1n

1−(1−α)p/4 positions. Thus, a (cp1n1−(1−α)p/4)-local operator O
satisfies Π>E+fOΠ≤E = 0. The corollary now follows along the same lines as Lemma 2.10.
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4.3 Example: random spin models
As an example of a family of dense Hamiltonians that satisfies Equation (4.1), we consider the pure
q-spin model, which was also considered in [BGMZ22]. The pure q-spin model is a random COP
with cost function

Cqn(z; J) = 1
n(q+1)/2

n∑
i1,...iq=1

Ji1,...iqzi1 . . . ziq , (4.4)

where the coefficients J = (Ji1,...iq)i1,...iq∈[n] are i.i.d. standard Gaussian random variables Ji1,...iq ∼
N (0, 1). Here, zi ∈ {±1} and the objective is to maximise Cq(z1, . . . , zn). This can be identified
with a q-local Hamiltonian

Hq
n(J) = 1

n(q−1)/2

n∑
i1,...iq=1

Ji1,...iqσ
Z
i1 . . . σ

Z
iq . (4.5)

We note the different normalisation factors: Cqn(z) is normalised such that on average over J ,
maxz Cqn(z; J) = Θ(1). In contrast, Hn has an additional factor of n, so that on average over
J , ‖Hq

n(J)‖ = Θ(n). We use these different normalisations because the former is common in the
classical literature (see e.g. [GJW20]), whereas the latter is common in the quantum literature.

The following lemma shows that this model satisfies Equation (4.1) with overwhelming probab-
ility, and as a result we can apply Corollary 4.7 and Corollary 4.8 to obtain concentration bounds.

Lemma 4.9. With probability at least 1−e−n over the choice of Ji1,...iq ∼ N (0, 1), the Hamiltonian
Hq
n(J) = 1

n(q−1)/2
∑n
i1,...iq=1 Ji1,...iqσ

Z
i1 . . . σ

Z
iq satisfies Equation (4.1) with α = 1

2 and C̃ =
√

6 for
every subset S ⊆ [n].

Proof. Fix any subset S ⊆ [n]. Recall the definition of the subset Hamiltonian from Definition 2.6,
and define analogously

Cqn,S(z; J) = 1
n(q+1)/2

n∑
{i1,...iq}∩S 6=∅

Ji1,...iqzi1 . . . ziq .

Because all terms of Hq
n,S are proportional to tensor products of Pauli-Z operators, it is easy to see

that
∥∥∥Hq

n,S

∥∥∥ = n ·maxz1,...,zn∈{±1}Cn,S(z; J). For any fixed choice of z1, . . . , zn ∈ {±1}, the random
variable Cn,S(z; J) is a sum of ` ≤ |S|

( n
q−1
)
≤ |S|nq−1 standard Gaussians with a normalisation

factor 1
n(q+1)/2 , and is therefore distributed as N (0, `/nq+1). By the standard upper deviation

inequality for Gaussians, we have that

PrJi1,...iq∼N (0,1)

[
Cqn,S(z; J) ≥

√
6|S|/n

]
≤ e−3n .

Since we are interested in upper-bounding the probability that CqS(z; J) ≥
√

6|S|/n for any choices
of z1, . . . , zn and |S|, we can apply the union bound over the possible 2n · 2n ≤ e2n choices of
z1, . . . , zn and |S|. We therefore see that the probability that Equation (4.1) is violated (for any
S ⊆ [n]) is at most e−3n · e2n = e−n as claimed.
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[BGMZ22] also consider a mixed q-spin model, which is a sum over pure j-spin models for j ≤ q.
Specifically, the cost function can be written as

Cq,mixed
n (z; J) =

q∑
j=1

cj C
j
n(z; J) ,

where cj are arbitrary real coefficients and Cjn is as defined in Equation (4.4). We can again associate
a Hamiltonian Hq,mixed

n with this cost function. The following corollary follows immediately from
Lemma 4.9 by the triangle inequality.

Corollary 4.10. With probability at least 1−e−n, the Hamiltonian Hq,mixed
n satisfies Equation (4.1)

for α = 1
2 and C̃ =

√
6
∑
|cj |.

We can use this property of the (mixed) random spin model to obtain concentration bounds for
the output states of the QAOA applied to the COPs Cqn(z; J) and Cq,mixed

n (z; J). This in turn can
also be used to prove limitations on the success probability of the QAOA on these COPs. We spell
this out in detail in Corollary 5.6.

5 Limitations on dense evolutions for constraint optimisation problems
Using our local operator approximations and concentration bounds for the output states of dense
evolutions, we can show that such states have limitations as optimisers for COPs. We begin by
introducing a structural property of random COPs, called the overlap gap property (OGP), that
roughly says that good solutions to a COP must cluster, i.e. different good solutions must either
be close to each other or far from each other. We then combine the OGP with our concentration
results and the symmetry of the QAOA output to show that for most instances of random spin
models, the QAOA can only produce a good solution with negligible probability.

5.1 Overlap gap property and existence of high-weight sets for local quantum optimisers
We consider an objective function Cn(z) for z = (z1, . . . , zn) ∈ {±1}n that we want to maximise.
We begin by recalling a few general definitions from [GJW20], adapted to the case where algorithms
for COPs output probability distributions or quantum states rather than a single element of {±1}n.

Definition 5.1. For parameters µ ∈ R and δ ∈ [0, 1], we say that a probability distribution P over
{±1}n (µ, δ)-optimises the objective Cn(z) if

Prz∼P [Cn(z) ≥ µ] ≥ 1− δ .

We will use the same notation for quantum states ρ, which we identify with a probability distribution
over {±1}n in the natural way, i.e. Prρ[(−1)x] = 〈x|ρ|x〉 for x ∈ {0, 1}n.

Definition 5.2. An objective function Cn(z) satisfies the (µ, ν1, ν2)-overlap gap property (OGP)
with parameters µ ∈ R and 0 ≤ ν1 < ν2 ≤ 1 if for every z1, z2 ∈ {±1}n satisfying Cn(z1) ≥ µ and
Cn(z2) ≥ µ, we have that 1

n |〈z1, z2〉| ∈ [0, ν1]∪ [ν2, 1]. Here, 〈z1, z2〉 denotes the usual inner product
of vectors.
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Suppose that the objective function Cn(z) has the (µ, ν1, ν2)-OGP. Then, we can define the set
of “good outputs”

Gn = {x ∈ {0, 1}n | Cn((−1)x) ≥ µ} .

Because Cn(z) has the (µ, ν1, ν2)-OGP, any two x, x′ ∈ Gn must satisfy 1
n |〈(−1)x, (−1)x′〉| ∈ [0, ν1]∪

[ν2, 1] . Since the Hamming distance between x and x′ is given by |x − x′| = n−〈(−1)x,(−1)x′ 〉
2 , this

implies that

|x− x′| ∈ [0, ν̃1 · n] ∪ [ν̃2 · n, n]

for ν̃1 := 1−ν2
2 < ν̃2 := 1−ν1

2 . Assuming that 2ν̃1 < ν̃2, we can partition Gn = ∪iSin into sets (or
clusters) Sin such that for all i 6= j:

x, x′ ∈ Sin =⇒ |x− x′| ≤ ν̃1 · n and x ∈ Sin, x′ ∈ Sjn =⇒ |x− x′| ≥ ν̃2 · n . (5.1)

We note that the condition 2ν̃1 < ν̃2 is necessary for this clustering property to hold. To see
this intuitively, consider three points x1, x2, x3 ∈ Gn. The (µ, ν1, ν2)-OGP then requires that
|xi − xj | ∈ [0, ν̃1n] ∪ [ν̃2n, n] for all pairs (i, j). Without any condition on ν̃1 and ν̃2, this would
allow the following situation: the three points could be arranged “on a line” in the sense that
|x1 − x2| ≤ ν̃1n and |x2 − x3| ≤ ν̃1n, but |x1 − x3| ≥ ν̃2n. This means that the points are not
clustered. However, if 2ν̃1 < ν̃2, then by the triangle inequality |x1−x2| ≤ ν̃1n and |x2−x3| ≤ ν̃1n
together imply |x1 − x3| ≤ 2̃ν1n < ν̃2n. By the OGP this means that we must in fact have
|x1 − x3| ≤ ν̃1n, so we get the clustering behaviour described above.

We can now show that for (approximately) local quantum states that optimise Cn(z), the
measurement distribution must be concentrated on one of these sets, which we will call the high-
weight set.

Lemma 5.3. Suppose the objective Cn(z) has the (µ, ν1, ν2)-OGP with 2ν̃1 < ν̃2 and there exists
a (k, ε)-local operator ψn = |ψn〉〈ψn| for k = o(n) that (µ, 1 − 4

√
ε)-optimises Cn(z). Then there

exists a (unique) i such that for sufficiently large n, Tr
[
ΠSin

ψn
]
≥ Tr[ΠGnψn]−

√
ε.

Proof. Because k = o(n), for sufficiently large n, we have k < ν̃2n. Therefore, by Lemma 2.11, it
suffices to show that there exists an Sin for which Tr

[
ΠSin

ψn
]
>
√
ε. This is because if such an Sin

exists, we can consider the set S′ = Gn \ Sin, which is at least ν̃2n-far from Sin. By Lemma 2.11
and the assumption Tr

[
ΠSin

ψn
]
>
√
ε, this means that Tr[ΠS′ψn] ≤

√
ε. Therefore, Tr

[
ΠSin

ψn
]

=
Tr[Gnψn]− Tr[S′ψn] ≥ Tr[Gnψn]−

√
ε.

Now suppose for the sake of contradiction that for all i, Tr
[
ΠSin

ψn
]
≤
√
ε. Since ψn is assumed to

be a (µ, 1− 4
√
ε)-optimiser,

∑
iTr

[
ΠSin

ψn
]

= Tr[Gnψn] ≥ 4
√
ε. Therefore, we can find two disjoint

sets of indices I and I ′ such that
∑
i∈I Tr

[
ΠSin

ψn
]
>
√
ε and

∑
i∈I′ Tr

[
ΠSin

ψn
]
>
√
ε. However,

this contradicts Lemma 2.11 since ∪i∈ISin and ∪i∈I′Sin are separated by Hamming distance at least
ν̃2n > k.

The claim that i is unique holds because if there were at least two such sets Sin and Si
′
n ,

then Tr[ΠGnψn] ≥ Tr
[
ΠSin

ψn
]

+ Tr
[
ΠSi

′
n
ψn
]
≥ 2Tr[ΠGnψn] − 2

√
ε, which is a contradiction since

Tr[ΠGnψn] ≥ 4
√
ε.
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5.2 Limitations on symmetric optimisers for symmetric COPs
From Lemma 5.3 we immediately obtain limitations on the performance of symmetric local op-
timisers, i.e. optimisers that are invariant under the operation σ⊗nX , on symmetric COPs Cn(z),
i.e. COPs that satisfy Cn(z) = Cn(−z).

Corollary 5.4. Suppose the objective Cn(z) has the (µ, ν1, ν2)-OGP with 2ν̃1 < ν̃2 and satisfies
Cn(z) = Cn(−z). Then, no (k, ε)-local quantum state ψn = |ψn〉〈ψn| for k = o(n) that satisfies
σ⊗nX ψnσ

⊗n
X = ψn can (µ, 1− 4

√
ε)-optimise Cn(z).

Proof. Suppose for the sake contradiction that such a local symmetric ψn does (µ, 1−4
√
ε)-optimise

Cn(z). Then it follows from Lemma 5.3 that there exists a unique Sin for which Tr
[
ΠSin

ψn
]
≥

Tr[ΠGnψn] −
√
ε. Now consider the set S = {x ⊕ 1n | x ∈ Sin}, where 1n is the all-1 string. By

symmetry of Cn(z) we have that for x ∈ S, Cn((−1)x) = Cn((−1)x⊕1n) ≥ µ, where the inequality
holds because x ⊕ 1n ∈ Sin. Furthermore, it is easy to see that |x − x′| ≤ ν̃1 · n for x, x′ ∈ S.
Therefore, there must exist an Sjn in the partition of Gn such that S ⊂ Sjn. (In fact, by symmetry
it is easy to see that S = Sjn for some j, but we will not need this here.) Since there exist strings
x ∈ Sin and x′ ∈ S with Hamming distance n, we must have i 6= j. Furthermore, by symmetry of
ψn and the fact that ΠS = σ⊗nX ΠSin

σ⊗nX ,

Tr
[
Π
Sjn
ψn
]
≥ Tr[ΠSψn] = Tr

[
ΠSin

σ⊗nX ψnσ
⊗n
X

]
= Tr

[
ΠSin

ψn
]
≥ Tr[ΠGnψn]−

√
ε .

This contradicts the uniqueness of the high-weight set in Lemma 5.3.

5.3 Example: QAOA on symmetric COPs
An example of practical relevance is the QAOA for approximately solving local COPs. A q-local
COPs and its associated q-local Hamiltonian can be written in terms of coefficients J = (Ji1,...,iq) ∈
Rnq as2

Cqn(z; J) = 1
n(q+1)/2

n∑
i1,...iq=1

Ji1,...iqzi1 . . . ziq , Hq
n(J) = 1

n(q−1)/2

n∑
i1,...iq=1

Ji1,...iqσ
Z
i1 . . . σ

Z
iq .

The QAOA works by repeatedly applying the unitaries

VHq
n(J)(γ) = e−ιγH

q
n(J) and VX(β) =

(
e−ιβσx

)⊗n
to the initial state ρ0 = |+〉〈+|⊗n for some parameters γ, β > 0. The output state of the QAOA
can therefore be written as

ρp,n(J) =
(
VX(βp)VHq

n(J)(γp) · · ·VX(β1)VHq
n(J)(γ1)

)
ρ0
(
VHq

n(J)(γ1)†VX(β1)† · · ·VHq
n(J)(γp)†VX(βp)†

)
.

(5.2)

The parameters γi and βi may depend arbitrarily on J , but we will always assume that they are
chosen from some fixed bounded range that is independent of n.

2Note that because here we consider arbitrary coefficients J , the normalisation factors 1
n(q+1)/2 and 1

n(q−1)/2 can
be chosen arbitrarily, too; we use these ones to keep the notation consistent with Section 4.3, but emphasise that
here the coefficients need not be chosen from a Gaussian distribution.
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If q is even, both the COP Cqn(z; J) and the QAOA output state ρp,n are symmetric in the
sense of Corollary 5.4. Therefore, if Cqn(z; J) satisfies the (µ, ν1, ν2)-OGP (for some fixed value of
J) and the associated Hamiltonian Hq

n(J) satisfies the norm constraint from Equation (4.1), we
can combine Theorem 4.1 and Corollary 5.4 to obtain the following result, which shows that at
level p = o(log log n), the probability that the QAOA will produce a “µ-good” string x decays with
e−n

1/8 .

Lemma 5.5. Fix q even. Suppose that the COP Cqn(z; J) (for some choice of J) has the (µ, ν1, ν2)-
OGP with 2ν̃1 < ν̃2 and the Hamiltonian Hq

n satisfies Equation (4.1). Then, no QAOA output
state ρp,n(J) (for any choice of γi and βi within an arbitrary bounded range independent of n)
can (µ, 1− 8e−n1/8/

√
8)-optimise Cqn(z; J). In other words, if one measures the QAOA output state

ρp,n(J) with level p = o(log log n) in the computational basis, the probability of receiving a string x
that satisfies Cqn((−1)x; J) ≥ µ is at most e−Ω(n1/8).

Proof. It is easy to verify that the QAOA for this Hq
n(J) implements an instance of dense Hamilto-

nian evolution with H(1) = γ1H
q
n(J), H(2) = β1

∑
i σ

(i)
x , H(3) = γ2H

q
n(J), etc. Since Hq

n(J) satisfies
the condition in Equation (4.1) for some C̃ = O(1) and α < 1, each H(i) also satisfies Equation (4.1)
for C̃ → max(C̃γi, βi) = O(1) and the same α. Therefore, we can apply Theorem 4.1 and find that
for p = o(log log n), ρp,n(J) is a (k, ε)-local operator for k = o(n) and ε ≤ 4e−n1/8/

√
2. Furthermore,

since Cqn(z; J) is symmetric under z 7→ −z for even q and any J , Hq
n(J) commutes with σ⊗nx , so the

QAOA output state ρp,n(J) satisfies σ⊗nx ρp,n(J)σ⊗nx = ρp,n(J). Therefore, the lemma follows from
Corollary 5.4.

An example of a COP that satisfies the requirements of Lemma 5.5 is the pure q-spin model
from Section 4.3, for which we showed in Lemma 4.9 that Equation (4.1) is satisfied except with
probability e−n. It is known that for fixed q, the limit Eq(J) := limn→∞maxz∈{±1}n C

q
n(z; J) exists

almost surely [GT02]. Furthermore, for even q ≥ 4, with probability at least 1 − O(e−n) over
the choice of J (with i.i.d. standard Gaussian entries), the objective function Cqn(z; J) satisfies the
(µ, ν1, ν2)-OGP for constants 0 < ν1 < ν2 < 1 and 0 < µ < Eq(J) [CGPR19, GJW20, GJ21].
We note that [CGPR19] do not explicitly show that 2ν̃1 < ν̃2, although it appears to be implicit
in the proof that ν̃1 can be made an arbitrarily small constant by choosing µ arbitrarily close to
Eq(J). We leave a detailed proof of this statement for future work. Therefore, we get the following
implication of Lemma 5.5, giving the first provable (modulo the conjectured strengthened OGP)
limitations on the QAOA on dense instances at super-constant level and improving upon the result
of [BGMZ22].

Corollary 5.6. Assuming the strengthened OGP stated above, with probability 1−O(e−n) over the
choice of J (with i.i.d. standard Gaussian entries), the value of the solution to the COP Cqn(z; J)
produced by the QAOA with level p = o(log log n) is bounded away from the optimal value by at
least a constant except with probability e−Ω(n1/8).

Using Corollary 4.10 instead of Lemma 4.9, this result can easily be extended to mixed spin
models Cq,mixed

n (z; J) =
∑q
j=1 cj C

j
n(z; J) that only contain contributions from even pure spin mod-

els, i.e. cj is non-zero only for even j ≥ 4.
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A Locality spread under Hamiltonian evolution
Lemma A.1. Let O be an operator that acts non-trivially on at most k qubits and H an `-local
Hamiltonian. Then e−ιHOeιH is a (k′, ε′)-local operator for

k′ = 2`d+ k , ε′ = 3e−(d−e‖H‖) ‖O‖ ,

for any integer d ≥ e ‖H‖.

Proof. Let

Q = 1 +
d∑

m=1

(−ιH)m

m!

be the Taylor series of e−ιH truncated at degree d. By Taylor’s theorem,
∥∥∥e−ιH −Q∥∥∥ ≤ e−(d−e‖H‖),

so it follows from the triangle inequality and submultiplicativity of the norm that for d ≥ e ‖H‖,∥∥∥e−ιHOeιH −QOQ†∥∥∥ ≤ 3e−(d−e‖H‖) ‖O‖ .

Because Hd can be expanded as a sum of terms that each contain at most d of the `-local terms
Hi, we see that Q is (`d)-local. Therefore, QOQ† is (2`d+ k)-local, concluding the proof.

Lemma A.2. Let R =
∑
iRi be a k-local operator and H =

∑
Hi an `-local commuting Hamilto-

nian. Suppose that there exist constants α ∈ [0, 1) and C̃ > 0 such that for every subset S ⊆ [n]
of qubits, the subset Hamiltonian HS (see Definition 2.6) satisfies ‖HS‖ ≤ C̃nα|S|1−α. Then,
e−ιHReιH is a (k′, ε′)-local operator for

k′ = 2`dµC̃enακ1−αe+ k , ε′ = 3e−(µ−1)C̃enακ1−αtln(R) , (A.1)

for any µ > 1 and κ ≥ k. Furthermore,

tlnε′
(
e−ιHReιH

)
≤ (2n)k′

(
tln(R) + ε′

)
. (A.2)

Proof. For each i ∈ [t], we define Si as the subset of qubits on which Ri acts non-trivially. Since R
is k-local, |Si| ≤ k for all i. Because H is commuting,

e−ιHRie
ιH = e−ιHSiRie

ιHSi .

Recall that ‖HSi‖ ≤ C̃nαk1−α ≤ C̃nακ1−α. We can therefore apply Lemma A.1 with d =
dµC̃enακ1−αe > e ‖HSi‖ to find that e−ιHSiRieιHSi is a (k′, ε′i)-local operator with

k′ = 2`dµC̃enακ1−αe+ k , ε′i = 3e−(µ−1)C̃enακ1−α ‖Ri‖ .
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We define R̃i as the local operator approximations to e−ιHSiRieιHSi (as given by Lemma A.1) and
R̃ =

∑
i R̃

i. (We use superscripts for R̃i because each R̃i is itself a k′-local operator, not an operator
that acts non-trivially on only k′ qubits, i.e. R̃ =

∑
i R̃

i is not our usual local decomposition.) Since
the sum of k′-local operators is still k′-local, we see that R̃ is k′-local operator and, by the triangle
inequality, approximates e−ιHReιH =

∑
i e
−ιHSiRie

ιHSi to within error

ε′ ≤
∑
i

ε′i = 3e−(µ−1)C̃enακ1−α∑
i

‖Ri‖ = 3e−(µ−1)C̃enακ1−αtln(R) .

This completes the proof of Equation (A.1).
To show Equation (A.2), we first bound tln(R̃i) in terms of

∥∥∥R̃i∥∥∥. Since R̃i is k′-local, we can
expand

R̃i =
∑

T⊆[n] s.t. |T |≤k′
R̃i(T )

using the unique decomposition from Equation (2.1). The number of terms R̃i(T ) is at most∑k′
j=0

(n
j

)
≤ nk′ . Therefore,

tln(R̃i) ≤
∑
T

∥∥∥R̃i(T )

∥∥∥ ≤ nk′ max
T

∥∥∥R̃i(T )

∥∥∥ ≤ nk′ · 2k′ · ∥∥∥R̃i∥∥∥ ,
where the last inequality follows from Lemma 2.7. Due to unitary invariance of the norm:∥∥∥R̃i∥∥∥ ≤ ∥∥∥e−ιHSiRieιHSi∥∥∥+ ε′i = ‖Ri‖+ ε′i

Finally, we combine the above bounds to obtain Equation (A.2):

tlnε′
(
e−ιHReιH

)
≤
∑
i

tln(R̃i) ≤ (2n)k′
(
tln(R) + ε′

)
.
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