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The NLTS (No Low-Energy Trivial State) conjecture [M.H. Freedman & M.B. Hast-
ings, Quantum Info. Comput., 14, 144 (2014)] posits that there exist families of
Hamiltonians with all low energy states of high complexity (with complexity mea-
sured by the quantum circuit depth preparing the state). Here, we prove a weaker
version called the combinatorial NLTS, where a quantum circuit lower bound is shown
against states that violate a (small) constant fraction of local terms. This general-
izes the prior NLETS results [L. Eldar & A.W. Harrow, FOCS, 58, 427 (2017)] and
[C. Nirkhe, U. Vazirani & H. Yuen, ICLAP, 45 (2018)]. Our construction is obtained
by combining tensor networks with expander codes [M. Sipser & D. Spielman, IEEE
TolT, 42, 1710 (1996)]. The Hamiltonian is the parent Hamiltonian of a perturbed
tensor network, inspired by the ‘uncle Hamiltonian’ of [C. Fernandez-Gonzélez et al.,
Communications in Mathematical Physics, 333, 299 (2015)]. Thus, we deviate from

the quantum CSS code Hamiltonians considered in most prior works.
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I. INTRODUCTION

The approximation of the ground energy of a local Hamiltonian continues to be a leading
goal of quantum complexity theory and quantum many-body physics. While a generic,
accurate and efficient approximation method is unlikely, due to the seminal result of Kitaev?,
physically motivated ansatzes such as tensor networks?® and low depth quantum circuits®!83°
continue to explore the low energy spectrum of many interesting Hamiltonians.

A fundamental question on the power of low-depth quantum circuits is the NLTS
conjecture'*, which posits the existence of local Hamiltonians with all low energy states
having high quantum circuit complexity. This is a necessary consequence of the quantum
PCP conjecture!, under the reasonable assumption that QMA # NP. We refer the reader
to existing works'"®1222 for a detailed discussion on the NLTS conjecture and its close
connection with quantum error correction, robustness of entanglement and the power of
variational quantum circuits.

To formally define the NLTS conjecture, we introduce a n-qubit local Hamiltonian H as
a sum of local terms H = >_" h; (each 0 < h; < I is supported on O(1) qubits and each
qubit participates in O(1) local terms) with m = ©(n). The ground states of H are the
eigenstates with eigenvalue Ay, (H). An e-energy state ¢ satisfies Tr (Hy) < em + Apin(H).

Conjecture 1 (NLTS'). There exists a fixed constant ¢ > 0 and an explicit family of
O(1)-local Hamiltonians {H ™} | such that for any family of e-energy states {1}, the

circuit complexity CC(v,,) grows faster than any constant.

Here, CC(v) is quantum circuit depth, the depth of the smallest quantum circuit that
prepares ¢. An interesting property of any (potential) NLTS Hamiltonian is that it must
live on an expanding interaction graph, ruling out all the finite-dimensional lattice Hamilto-
nians that have been very well studied in quantum many-body physics. The same holds for
(potential) Hamiltonians that may witness the quantum PCP conjecture!.

A weaker version of this conjecture is known, called the NLETS theorem. A local Hamil-
tonian H (as defined above) is frustration-free if A\ (H) = 0. A state ¢ is called e-error if
there exists a set S of qubits of size at least (1 — ¢)n such that s = ¢g, where ¢ is some

ground state of H and the subscript S means that we take a partial trace over the qubits in

[\ S,



Theorem 2 ('%2?). There exists a fived constant € > 0 and an explicit family of O(1)-local
frustration-free Hamiltonians {H™Y>° | such that for any family of e-error states {1} ,

the circuit complezity CC(1)y,) is O(logn).

Note that the e-energy states include the set of O(e)-error states, but the reverse direction
is not true. The NLETS theorem was first proved by!?, by considering the hypergraph
product?® of two Tanner codes on expander graphs®?. In the follow-up work,?? constructed

an NLETS Hamiltonian that in fact lived on a one-dimensional lattice. In the recent work”,

super-constant circuit lower bounds were shown for o(1)-energy states (such as O( 1o;n)'
energy) of all quantum code Hamiltonians that have near-linear rank or near-linear distance.
Interestingly, such lower bounds are again possible with the two-dimensional, punctured toric
code, showing that expansion of the underlying interaction graph is not needed for circuit
lower bounds on ‘almost constant’ energy states.

Both'*?? identified the intermediate question of combinatorial NLTS (cNLTS), which
aims at finding frustration-free Hamiltonians with super-constant circuit lower bounds for
states 1) that satisfy at least 1 — ¢ fraction of local terms. The main interest in this question
stems from the fact that any (potential) cNLTS Hamiltonian must also live on an expanding

interaction hypergraph, hence exhibiting the geometric features of an NLTS Hamiltonian.

Here, we provide the first construction of a ¢cNLTS Hamiltonian.

Theorem 3 (Main result). There exists a fized constant € > 0 and an ezxplicit family of O(1)-
local frustration-free Hamiltonians { H™},, where H™W = YT hE") acts on n particles and
consists of m = O(n) local terms, such that for any family of states {1, } satisfying
i : Tr (hgn)lbn) > 0|
m

the circuit complexity CC(1)y,) is O(logn).

<eg,

The set of states that satisfy 1 — ¢ fraction of local terms also include O(g)-error states.

Thus, the above family of Hamiltonians are also NLETS.

Other related results

In'!, thermal states of certain quantum codes were shown to have circuit lower bounds.®

showed circuit lower bounds for quantum states with a ‘Z, symmetry’. The work'? showed
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that locally testable quantum CSS codes? of linear distance are NLTS. Such codes are not
known to exist, with the best distance thus far being \/n'”. However, the dramatic recent

9,15,27,28

progress in quantum codes opens up the exciting possibility that such codes may

exist.

New results: The follow-up work® supersedes the main result here, as it shows the NLTS
property for good quantum codes'®?®. It uses a different Hamiltonian family, but the under-
lying connection is that it proves a quantum analogue of Theorem 9. We believe that the

Hamiltonian family in this work are also NLTS, when the parameter ¢ is set to a constant.

Outline of the construction

Our starting point is the NLETS theorem shown in?2. It is based on the observation

that the CAT state \% |00...0)+ \/Li [11...1) is close to the unique ground state of Kitaev’s
clock Hamiltonian. This clock Hamiltonian is obtained from the circuit preparing the CAT
state and then padding with identity gates. We observe that yet another Hamiltonian can
be constructed, by viewing the CAT state as a Matrix Product State (MPS). The MPS
representation of the CAT state is obtained by starting with 7 EPR pairs

(100) + |11)); , © (|00) + |11))5, @ .. - (|00) +[11))

n—1n

and then projecting qubits 4,7 + 1, for even 4, with the projector M = |00)(00| + |11)(11].
Most MPS are the unique ground states of a parent Hamiltonian (such MPS are called
injective). But the CAT state MPS clearly does not have this privilege, since M is not an
invertible map. However, inspired by'?, we can perturb M to consider a state obtained by
mapping qubits 7,7+ 1 with M + T (for § ~ \/Lﬁ) This is an invertible map, which makes the
resulting MPS injective. Using the corresponding parent Hamiltonian, we obtain another
construction of the NLETS Hamiltonian.??

Since any ¢cNLTS Hamiltonian must be on an expanding interaction graph, an approach to
construct the desired Hamiltonian is to write down a tensor network for the CAT state on an
expanding graph, perturb the tensors and then take the parent Hamiltonian. Unfortunately,
this argument seems not to work, since the tensor network for the CAT state is extremely

brittle. If we remove one EPR pair and allow arbitrary inputs to the tensors acting on this
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EPR pair, we can produce the states |00...0) or |11...1). This brittleness reflects in the
nearby parent Hamiltonian and there are product states that violate just one local term.
Our second observation is that the CAT state tensor network can be viewed as a repetition
Tanner code on an expanding graph. Thus, we can generalize the tensor network and look
at Tanner codes defined on expander graphs, as proposed by Sipser-Spielman®? (Section I1T).
The tensor network state is now a uniform superposition over all the codewords of this
Tanner code. With (1) linear distance and (2) linear rank (and with a suitable choice of

parameters) such a code protects us from two sources of brittleness:

1. Removing an ¢ fraction of EPR pairs (analogously, local terms of the Hamiltonian)
weakens the expansion properties of the underlying graph. Linear distance ensures
that the codewords, while no longer far away from each other, are partitioned into

distant groups for a small constant ¢.

2. Removing an ¢ fraction of EPR pairs (analogously, local terms of the Hamiltonian)
can drastically reduce the number of strings appearing in the superposition. Linear

rank ensures that the number of strings is large enough, if € is a small constant.

See Section IV for full details. We note that tensor networks have previously been combined

with local (quantum) codes to obtain global properties.

Local systems and non-isotropic Gauf}’s laws

Tanner codes can be understood in terms of homology with local systems®?, where dif-
ferentials take values in the space of local checks?'. A trivial example is the toric code,
where the differential at each vertex detects violations of Zs-flux conservation, or in other
words, violations of a local parity-check code (this is of course nothing but the usual sim-
plicial Zy-homology). The family of Hamiltonians that we construct can be understood in
terms of differentials defined from more complicated local codes. The Hamiltonians ensure
that these differentials are zero for ground states, which means they enforce a non-isotropic
Gaufl’s law that takes the directionality of the incoming fluxes into account. Together with

the expansion of the underlying graph, this leads to the cNLTS property.



Tensor networks and quantum complexity

Kitaev’s clock construction is a powerful method to map quantum computations to the
ground states of local Hamiltonians. It turns out that the tensor networks provide a similar

31 any measurement-based quantum computation can be mapped onto

mapping. As shown in
a tensor network. One could thus imagine a form of circuit-to-Hamiltonian mapping different
from Kitaev’s: perturb the above tensor network and consider its parent Hamiltonian. A
standard objection to this approach is that the mapping also works for post-selected quantum
circuits, which is far more powerful than QMA. However, this objection is not expected to

apply to our case, as injective tensors cannot post-select on events of very small probability.

We leave an understanding of the promise gap of this mapping for future work.

II. TANNER CODE

In this section we review a construction of linear codes from regular graphs called Tanner
codes. A (classical) linear code C' of length n and rank k is a subspace of dimension k of
the vector space F§ = {0,1}". A linear code C' can be defined by specifying a parity check
matrix H € F;"", such that ker H = C. We call the m rows of H checks of the code C.

Consider a regular graph G = (V, F) with degree d and n = |V/| vertices. For S, 5" C V,
we denote the number of edges between S and S’ as F(S,S") (we count an edge {u,v} twice
if u,v € SNS’). Let A = max (|A2], |\n|), where Ao, A, are the second largest and the smallest
eigenvalues of the adjacency matrix.

A Tanner code T(C, G) C {0,1}/#l is defined using the graph G and a classical linear code
C C {0,1}% of rank ko and distance Ag. We imagine bits on edges and checks on the vertices.
Let the edges be numbered using the integers {1,2,...|E|} in some arbitrary manner. Given
a string # € {0,1}'¥l and a vertex v, let z, € {0,1}% be the restriction of x to the edges
incident to v, where the ith bit of x, is the value on the edge with the ith smallest number.

Formally,
TC,G)={z:2,€C YveV}. (1)

We will abbreviate T'(C,G) as T for convenience. Since there are d — ko independent

checks in C, the number of independent checks in 7" is at most n(d — ky). Thus, the rank &
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of Tis k> —n(d— ko) =n (ko — 2).

_ |E|A
242 -

Lemma 4. Suppose Ay > 2\. The distance of T is lower bounded by =

Proof. Let x € T be the non-zero code-word of smallest Hamming weight and let E, be the
edges where = takes value 1. Let S be the set of all vertices on which at least one edge
in F, is incident. Since the distance of C' is Ay, at least A edges from any vertex in S stay
within S (and those edges belong to E,). Thus, |E(S,S)| > |S|A. However, the expander

mixing lemma® (Lemma 4.15) ensures that

|E(S,9)| <

d|S|?
SE L \js).
n

Thus,

d|5|2 L Als] nAg

d|5\2
> —
n - — ISz

1180 < |E(S, 5)| < W25 4 AlS] <

Since |FE,| > IS\% (every vertex in S is associated to at least Ay edges in E, and every edge

in F, is associated to 2 vertices in ), the lemma concludes. [

III. INJECTIVE TENSOR NETWORK FROM THE CODE T(C,G)

Let |EPR) = |00) + |11) be an unnormalized EPR pair. Given G, we consider a Hilbert
space consisting of nd qubits, with d qubits for each vertex v € V. For a v € V| we identify
each qubit with a unique edge incident on v and label the qubit as v.. As a result, given
an edge e = (v,v’), qubits v, v, come in pairs (Figure 1). We will often denote the joint
Hilbert space H,, ® H,, as H. and abbreviate [0),, [0),, as |0}, and [1), [1),, as [1).. Thus,
0),. 0),, +[1),,

1),, will be referred to as |[EPR),. Define the unnormalized state

00) := Q) |[EPR),

eck

For each vertex v, define the projector that only accepts the codewords of the local code

at v:

P, .= Z |Cl><cl|vel ® |CQ><CQ|U62 Q- ® |Cd><cd|ued ,

ceC

where ¢; is the ith bit of ¢ and e; is the ith edge incident on v (in the ascending numbering

specified on the edges). The tensor network state is obtained by projecting the d qubits on
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FIG. 1: (Left) A degree d = 4 graph with a Tanner code defined on it. (Right) The
associated tensor network, where d qubits (red) are placed on each vertex (green circle) and
qubits are connected according to the edge structure using EPR pairs (blue wavy lines).

The qubits on each vertex are projected according to the local code.

each vertex using these projectors:
9) = —@Plo) =S @ ..
V2k - V/2k

Note that the normalization follows since there are 2% codewords in 7. We can think of the
string x as an edge assignment and |®) as a uniform superposition over edge assignments

from T'. Now, we can make the tensor network ‘injective’ by defining
Qyi=P,+6l=(140)P,+ 61— P,), |U):= ! ) Q. 1©0)
v - v v v/ . VC? - v 0/ -
Claim 5. It holds that
7 < 2F(1 4 28 + §22(d-Rohyn
and

(146)"
(14 26 + 622(d—ko))2

| (Y[Q) | >
Proof. Consider,
7 = (00| Q) Q2 160) = (00| Q) ((1+ 20) P, + 5°T) |6)

= 3" (14 26)957281 (00| R) P, [€0)

ScV vES



Let us evaluate (Og| @), cq Py |G0). This is essentially the number of codewords when parity
checks only act on the vertices in S. If we were to include the parity checks in V'\ S as well,
we would obtain the original code. Since there are at most (d — ko)(n — |S|) independent
checks, the following inequality holds:

(6| ®p 00) - —(d—ko)(n—|5]) <ok — — (O] ®Pu 109y) < 9k . 9(d=ko)(n—|S[)

vES vES

This shows that

7 S 2k . Z(l 4 26)‘5‘52n—2|3| . 2(d—k0)(n—|5|) — 2k . Z(l + 26)|S| (522(d—k0))(n*|5|)
Scv Scv

= 2F(1 4 26 + §%2(@Fohyn,

Further,
1 n
(W19) = e (Ol @ 6) = e @l @ 7 oo
C(140)" \/_ - (1+0)"
N T (1426 + §220d—ko)) 3
This completes the proof. O

The nice property of |[¥) is that it is the unique ground state of a local Hamiltonian. For

e = (v,v'), define

9¢=(Qu® Q)™ (L~ [EPR)(EPR|,) (Qu®Qu) ", he = span (g.)

where ‘span’ means that h,. is the projector onto the image of g.. Since g. |¥) = 0, we have

he |U) = 0. Let

H = Zhe.

eckE

Then |V) is a ground state of H with ground energy 0. In fact, we have the following claim,

which is well known about injective tensor networks.
Claim 6. |V) is the unique ground state of H.

Proof. Suppose [¥') is a ground state of H. Then it is also a ground state of > _g.. Write
) = @,cr Qv |©), for a (possibly unnormalized) quantum state |©’). This is possible
since @),y Qv is invertible. Observe that |©') is a ground state of ) (I — [EPR)(EPR],).
This is possible only if |©') = |©y), which proves the claim. O
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FIG. 2: (Left) The dashed edges have been removed. W denotes the set of yellow vertices.
The remaining edges are F;. (Right) In the tensor network picture, some qubits are no
longer required to be connected by an EPR pair. These qubits, called residuals, are shown

as thick red dots inside yellow circles. Their set is R.

IV. THE HAMILTONIAN H IS CNLTS

Suppose ¢|E| local terms from H are removed (see Figure 2). Since each local term corre-
sponds to an edge, let F be the remaining edges and let Hy = »___p he be the Hamiltonian
that remains. We will show that any state |¢) that is a ground state of H; has a large circuit

complexity, if € is a sufficiently small constant.

A. Structure of the ground space of H;

Let W C V be the set vertices on which the removed edges were incident. Among the
d|W| qubits in these vertices, some qubits were associated to the removed edges. We will call
these qubits ‘residual’ and denote their set by R = {1,2,...2¢|E|}. We are free to choose
any ‘assignment’ |0) ,|1) to the residual qubits. Since we have been thinking of assignments
as occurring on the edges, we will sometimes refer to R as a set of edges (Figure 2). Thus,
we will continue using the terminology of ‘edge assignment’. Note the following cardinality
bounds:

avi- R

Wl < |R]=2e|B], |E1] = |B|(1—¢) = ——

(2)
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Let

01) == (X) [EPR), .

ecFy

We have the following claim, which is analogous to Claim 6.

Claim 7. The ground space of H; is

G := span <® Qu(181) @ren|by),), such that b= by, ..bg € {0, ”Rl> |

veV
Proof. Let |w) = @,cy @uv|T) be a ground state of H; for some |7), which is possible since
X, Qo is invertible. Note that

Hi|w)y=0 = Vee€ Ey, hw)y=0 = Vec F;, g.|lw)=0.

Thus, for all e € Ey, (I — |[EPR)(EPR|,) |7) = 0. This shows that |7) belongs to the space

spanned by the vectors {|©1) ®,cr |by), , such that b:=by,...bg € {0, 1}/51} ) as there are

P

no constraints on the residual qubits. This completes the proof. O

Consider the following basis within G:
W) o< (X) Qu(|01) @rer [br),), Vb € {0, 1317,
veV

where each |¥,) is normalized as (¥,|W;,) = 1. Note that this is an orthonormal basis, as the
residual qubits are fixed according to b (the operators @), do not change any computational
basis state). Along the lines of Claim 5, we would expect that this state is close to the
following state (ignoring normalization)

) P.(101) @rer |br),), Vb € {0, 1},

veV
But we have to be careful: if P, (®er|bs),) = 0 for any v € W?**, the above state is 0;
whereas |¥,) is non-zero for all b. With this in mind, we let W}, C W denote all the vertices
with which b is consistent (Figure 3 (left)). We observe that

\/7 Q  QullOn) rer lbr),).

b ve(v\w)uw,

W) =

since @, acts as 01 at any v € W \ W, (above Z,, is a normalization constant) and define

1
|Dy) = &R Pu(161) @rer b)),
v 2k ve(V\IW)UW,,
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FIG. 3: (Left) The residual qubits are no longer connected by EPR pairs. Thus, they can
be assigned any computational-basis state |b) : b € {0, 1}/l (in fact, they can be assigned
any quantum state on |R| qubits; but we focus on computational-basis states at the
moment). A given assignment b may violate checks on some vertices in W (yellow circle).
Here, we depict shaded yellow circles, where b does not cause any violated checks. This is
the set W, C W. (Right) Vertices in W), are now depicted by yellow dots with shaded
surrounding. In Claim 8, a set S C (V' \ W)U W, is considered. Equation 4 can be verified

from here.

where &y, will be determined shortly. Note that the states {|®p)}ye(o1yim are mutually or-

thogonal. The following claim is analogous to Claim 5.

Claim 8. It holds that
2k
ky > (70 — 1) |E| — |R|

and
(1+9)"

Oy W) | > T
@l 0o} [ 2 (1+ 26 + 6220@-h))3

Proof. We write down an expression for k,. Note that |®,) is simply a superposition over
edge assignments that satisfy the Tanner code with checks on (V' \ W) U W}, where we
condition the edges in R to have fixed edge assignments according to b. Conditioning the
edge assignments in R to be b leads to a set of parity check over edges in E; (some of these
checks may also impose a parity of 1 on the edge assignments in Fy). Each vertex in V' \ W

contributes to d — kg checks. Each vertex in W, contributes to anywhere between 0 to d — kg
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independent checks. If we define ¢, as the number of independent checks due to v € W), that
involve edges in E, we have
by > |Bi| = (d = ko)([VAW]) = > co. (3)
veW,

Since ¢, < d — kg and W, C W, a lower bound on k; is

ko 2 |Ev| = (d = ko)([VA W]+ [Wi]) = |Er| = (d = ko) V]
d— ko

FEq.2
L\ B -

2k d—Fk
@B+ 17 = (52 1) 180 - SR
2ko
> ——1||FEi| —|R|.
> (20 1) 18- 1n
Next,

Zy= (01| @rer (b, @ Q2O Byer [br),

ve(V\W)UW,
= (O ®per (0], Q) ((1+20)P, +0°T)|01) @per |br),
vE(V\W)UW,,
_ Z (1+ 25)\3|52(\(V\W)uwb\—\sl) (01] ®rer (b, ® P,|01) @,er |by),
SC(VA\W)uw, veS

(2 9kb Z (1+ 25)\5|52(\(V\W)uwb\—\5|) . 9Ud=ko)(VAWI=[S\WD+2,ew, \s cv

SC(VA\W)UW,,

<o ST (14 26)SIGACIISIS) gk (VWIS EHWiAS)
SC(V\W)UW,

(i) 2/% Z (1 + 25)‘S| (52 X zdfko)(|(V\W)UWb|7‘S‘)
SC(VA\W)UW,

_ 2/%(1 + 20 + 52. Qd—ko)ﬂ(v\W)UWbD.

For (1), note that (O1| ®er (br], @,cq Po |©1) @rer |by), is the number of edge assignments
that satisfy parity checks in S (with the condition that edges in R are assigned b). If we
were to add parity checks on remaining vertices in (V'\ W)\ S and W, \ S, we would obtain
the 2% codewords accounted for in Eq. 3. The number of such linearly independent parity
checks that are added is at most (d — ko)(|[V \ W| =[S\ W) + >_,cyy,\ s ¢o- This gives us
the upper bound

(01] @rer (br], R Po101) @re [by), - 27 CIWWISWD-Eocys o < oby,

vES
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and (2) uses (see Figure 3(right))
VAW = [S\W]+ W\ S| = [VAW[+ [We| = [S] = [(VAW)UW| —|S],  (4)

where we repeatedly used the fact that S C (V' \ W)U W,. Thus,

1
| (o] W) | = ©1] @rer (e, Q) PuQulO1) ®yper [br)
ve(VAW)UW,
(1+ 5)\(V\W)UWb\
= <@1| Qrer <b1”| ® Pv |@1> Qrer |br>
vV kaZb " r
ve(VAW)UW,
VAW)UW,
— (1 - 5)‘( G .2kb — (1 + 5)|(V\W)UWb| . 2_]%
vV kaZb 2y
1

> (1+ 5)|(V\W)qu| .

\/(1 + 28 + 62 - 24k ) (I((VAW)UWS))
1+
T (1 + 26 + §22(d—ko)) 3

Above, last inequality holds since |[(V \ W)U W,| < n. O

Thus, if ¢ is small enough, it suffices to understand the properties of the space
G' := span (|®s) , such that b € {0,1}F).

From Claim 8, each |®;) is a superposition over 2% edge assignments. Moreover, each such
edge assignment satisfies all the checks in V' := V\W. Thus, let us understand the properties
of edge assignments that satisfy such checks. Define a new Tanner code 7" := T'(C, G'), where
G'= (V',E'UF), E is the set of edges in the subgraph induced by V' and F' is the set of
edges which connected V' with W. We will think of each edge in F as ‘free’, being incident
to just one vertex in V' (Figure 4). Theorem 9 below shows that the Hamming distance

between the codewords of 7" is either small or large.

B. Properties of the Tanner code T’

Let I C V' be the set of vertices on which an edge in F' is incident (Figure 4). From Eq.

2, note the following bounds
1] < |F| < dIW| < 2de|E| and |E| > |B'| > |Bi] - d|W| > |E|(1-3ds).  (5)
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FIG. 4: Any edge assignment appearing in |®;) still satisfies all the checks at the green
vertices (V'). If we restrict to V', the shaded edges have only one end-point in V’. We will
call such edges F'. I C V" is the set of vertices on which the edges in F' are incident. In
Theorem 9, some care is needed in analyzing the Hamming weight of edge assignments
satisfying checks on V', as vertices in I are responsible for the breakdown of expansion in
V’. While checks on I are satisfied, this may happen due to edges in F' and may not

contribute to expansion.

Since G’ may no longer be an expander, we do not have any guarantees on the distance of T".

But we can show some structure in the codewords of 7.

Theorem 9. Suppose ¢ < 6—1d and Ag > 4X. The Hamming distance between the codewords

of T is either < 8d*c|E' U F| or > % S |ETU .
Proof. Since T" is a linear code, we show that the Hamming weight of a non-zero codeword x
is either < 8d%¢|E' U F| or > 5%32 -|[E"UF|. Let J, C E'UF be the set of edges on which z
assigns 1. Suppose |J,| < 8d*¢|E’ U F|; then we are done. Else

Eq.5

| J,| > 8d%c|E' U F| > 8d%|E'| > 8d*¢|E|(1 — 3de) > 4d*¢|E)|.
We consider this case and show that |J,| must be significantly larger. Let S C V' be the
vertices on which the edges in J, are incident. We can apply expander mixing lemma to the
original graph G and obtain
|52

B(s,5) < 42

n

+AlS].

On the other hand, we can lower bound |E(S, S)| as follows. Every vertex in S\ I has degree

at least Ay and each edge incident to such a vertex belongs to F(S,.S) (since such an edge
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is not in F', both its endpoint are in S). Edges incident to vertices in S N I may not belong

to E(S,S), thus we won’t count them (see Figure 4). Overall, we have

Eq.5 S
B,5)) 2 Aals\ 112 8a(18] - 2aelD) = 80 (5 + Bl -2} 0

Since |J,| > 4d*¢|E|, we can naively bound |S]| > @ > 4de|E|. Thus,

2 Eq6 A <2 A
AL 4 M8t 125,901 2 2019 L s > 220

> v
From here, we obtain
D Ag|S| _ nAZ A2 A2
| > > 90— |E|.- 2> |FUF|:
& 2 = 8 ] 4d? — | : 442

Here, (1) follows since every vertex in S is associated to at least Ay edges in J, and every

edge in J, is associated to at most 2 vertices in S. This completes the proof. O]

C. Structure of the states |®;)

Recall that |®p) is a superposition over the edge assignments to E; U R. We now show

that these edge assignments form distant clusters.

Theorem 10. Suppose ¢ < % and Aoy > 4X. There are disjoint sets By, By,... C
{0, 1MF1YEBL sych that for any x,y € B;, the Hamming distance between x and y is <
1Od25|E1 UR| and for any x € B; and y € B; with i # j, the Hamming distance between x,y

is > -|Ey U R|. Furthermore, the states {|®y)}yeqo1yim1 are uniform superpositions over

10d2

some edge assignments in U; B;.

Proof. Any two edge assignments x,y appearing in |®,), when restricted to the edges in G’

(which we denote g/, ys/), belong to T". The edge assignment z is obtained from x¢g by
Eq.2

appending assignments to the edges in (F1UR)\ (E'UF’). There are at most d|W| < 2de|E|

such edges. Thus, invoking Theorem 9, the Hamming distance between x, y is either at most

Eq2
8d%|E'UF| + 2de| E| < 8d%|EyUR| +2de|E| < 8d%|E,UR|+2de|EyUR| < 10d%|Ey U R

or at least
A2 A2 A2
1P |E'UF| - 2de|EB| > =2 i |EyUR| - 4—d°2 - 2de|E| — 2de|E)|
Eq2 A2 A2
> L |BLUR| —4de| By UR| > =5 [BLUR|
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Next, consider a relation R between the edge assignments: z,y € R if the Hamming distance

between them is < 10d%c|E; U R|. The relation is transitive: z,y € R and y, z € R implies
A

the Hamming distance between z,z is < 20d°c|Ey U R| < 5% - |E1 U R|, which in turn

requires that the Hamming distance between x, z is < 10d%¢|E; U R|. This forces z,z € R.

The sets By, Bs, ... are the equivalence classes formed by this relation, which completes the
proof. O]
Let

Ip, = Z ® |J7e><xe|e® |2 ) (2|,

r€EB; e€Eq reR

be the projector onto the edge assignments in B;. The following claim holds.

Claim 11. Let 6% < 29 < m and ko > 0.55d. For any i and any b, € {0, 1}‘R|

100007 ? —
(Wlth b 7é b/), <\Ifb’ HBZ' qu> < L and <\Db‘ HBZ' \Ifb/> =0.

— 50

Proof. Since |®,) is a uniform superposition over 2% edge assighments and the size of each

Bi is at mOSt (10d|2E;|%?L|JR‘> S 22d\/ 10€|E1UR| S 28d\/E|E|’ we have

lai Eq.2
(@y| Tl . [@y) < 2~ Fs . 28dVEIE] C‘émg o8dvE|E|—0.11E|+| ] 2 910dv/E|E|-0.11E| 1

~ 100

Above, the last inequality assumes that |E| is larger than some constant. Now, Claim 8

ensures that

(1+0o)" 1 L 1
[ora\)s > — > — > 20000 > | — ———,
(@l | 2 (1120 +6226@—k)5 = \T+242) = 77 =7 10000
Thus, || [®y)(Ps| — [Ws)(Ty| |1 < 155, which ensures that
Tr (I, [W) (W) < Tr (I, [9)(®5]) + — < =
r ) r ) — —_—.
B; b bl) = B; b b 100 = 50

To argue that (¥,|1lg, |¥y) = 0, note that |¥;) is a superposition over edge assignments

with the fixed b on the edges in R. That is, |¥}) = |...) ®er |br),. Thus, Ilg,, being a
projector onto computational basis states, satisfies IIg, |¥y) = |...) ®vep |by),. Similarly,
|Wy) =|...") @per |b,.),. Since b # U/, the claim follows. O

17



D. Circuit lower bound

Ny > 4\; kg > 0.55d and 6% < . Note that

We will assume that ¢ < 10000

20000d27 300d4’
these conditions can be met with constant kg, Ag, d, which ensures that € is a constant (see
Section V). Our main theorem is below, which proves that H is ¢cNLTS. The argument is
directly inspired by the quantum circuit lower bound argument in'?, based on the partition-
ing of quantum codewords. However, we consider a simpler argument based on the tight

4,10,16

polynomial approximations to the AND function , inspired by'7

Theorem 12. Let |p) = U |0)*™ on m > nd qubits, where U is a depth t quantum circuit,
such that || IT)(T| = |p){p| 1 < 0.1 for some ground state® |T') of Hy. It holds that

A4
t=1 (log %) .

Proof. Note that m < 2'nd without loss of generality, as H; acts on nd qubits (see” (Section

2.3) for a justification based on the light cone argument). We can expand

D= Y lwelw),

be{0,1}I &l

such that 37, 1yim | 1) |> = 1. The (possibly unnormalized) vectors |u) act on m — nd
qubits outside V. Using Claim 11, we find that for any i,
1

< 50

D)= > (uylm) (Ty| g, [U) = > | ) |I” (W],

b,b'e{0,1}I18l bc{0,1}IEl

) <

(7)

On the other hand, all edge assignments over F; U R appearing in |[I') belong to some B;. In
other words, ). (I'|lIg, [I') = 1. Thus, we can find two disjoint sets of indices M, M’, such

that
1 1 1 1 1 1
MNH>-——>- [|Hp I) > = — — > =
Z< )25 2y Z<|B|>—2 023
ieM ieM’
Define BM = UieMBi7 BM/ = UiEM’B’i7 HM = ZzeM HB and HM/ = ZZEM’ HBZ-- From

Theorem 10, the Hamming distance between the sets By, and By is >

A2
20d2

10d2 B UR| >
-nd. On the other hand, we just established that (I'|IT5 |T') > 5 and (I'| Iy [T') > 3.

From*1%16 there exists a f - 2¢-local operator L such that

2
1P} (p] = Llloo < € Fiooma.
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A

Setting f - 2' = 5% - nd, we obtain

4

A
Hp){p| = Lllow < &~ 5705

Since 11, LI, = 0, we have

4

A
ITTa 1p) (] Tag || oo < e 3050

However
s [ 0) (ol Tarrlloo = v/ (ol Tar [ ) - ol Ta [ )
> /({0 T |T) — 0.1) - ((T| T pp [T) — 0.1) > &2
Thus, 23 > n - zﬁ—éﬁ, which completes the proof. O

V. EXPLICIT CONSTRUCTION OF THE TANNER CODE T(C,G)

In this section we give an explicit construction of a suitable family of Tanner codes {T'(C, G;)}2,
from which the family of cNLTS-Hamiltonians { ¥}, of Theorem 3 is obtained.
For the graphs G; underlying the Tanner codes, we employ a construction of spectral

Cayley-expanders due to Lubotzky, Phillips and Sarnak.

Theorem 13 (*°). Assume that p and q are distinct, odd primes such that q¢ > 2\/p and
q is a square modulo p. Then there exists a symmetric generating set I' of PSLy(F,) such
that the Cayley graph Cay(PSLy(F,),I") is a non-bipartite, p+ 1-reqular expander graph with
A< 2,/p.

By fixing a suitable prime p we obtain a family of regular graphs G; of degree d = p + 1
and order ¢(¢> — 1)/2 with spectral bound A < 2v/d — 1. We mention in passing that by a
result due to Alon and Boppana, this is the best possible bound that any family of regular
graphs can achieve and such families are called Ramanujan graphs.

Further, we require a linear, binary code C'. More specifically, for the construction of
the ¢cNLTS-Hamiltonians to go through, we require the existence of a classical linear binary
code C' of block size d encoding at least ky > 0.55d bits with distance Ay > 4. As the
degree d of the graphs is constant, it suffices to show that a suitable code C' exist, as a brute-
force search has time-complexity bounded by a constant O(1). The existence of a suitable

code is guaranteed by the Gilbert—Varshamov bound (see e.g.?® (Chapter 5) for a proof).
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Theorem 14 (Gilbert-Varshamov). Let 0 < u < 0.5 and let 0 < Ry < 1— Hy(u), then there

exists a binary, linear code of block size d, rank kg = Rod and distance Ay = pud.

We can now give an explicit construction of a suitable code family {T'(C,G;)}2,. By
Theorem 14 there exists a code C' encoding kg > 0.55d bits when p < 0.09. We further
require that C has distance Ay = ud > 4\. This is the case via Theorem 13 by choosing,
for example, ;= 0.09 and prime p = 7901.
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