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The NLTS (No Low-Energy Trivial State) conjecture [M.H. Freedman & M.B. Hast-

ings, Quantum Info. Comput., 14, 144 (2014)] posits that there exist families of

Hamiltonians with all low energy states of high complexity (with complexity mea-

sured by the quantum circuit depth preparing the state). Here, we prove a weaker

version called the combinatorial NLTS, where a quantum circuit lower bound is shown

against states that violate a (small) constant fraction of local terms. This general-

izes the prior NLETS results [L. Eldar & A.W. Harrow, FOCS, 58, 427 (2017)] and

[C. Nirkhe, U. Vazirani & H. Yuen, ICLAP, 45 (2018)]. Our construction is obtained

by combining tensor networks with expander codes [M. Sipser & D. Spielman, IEEE

ToIT, 42, 1710 (1996)]. The Hamiltonian is the parent Hamiltonian of a perturbed

tensor network, inspired by the ‘uncle Hamiltonian’ of [C. Fernández-González et al.,

Communications in Mathematical Physics, 333, 299 (2015)]. Thus, we deviate from

the quantum CSS code Hamiltonians considered in most prior works.
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I. INTRODUCTION

The approximation of the ground energy of a local Hamiltonian continues to be a leading

goal of quantum complexity theory and quantum many-body physics. While a generic,

accurate and efficient approximation method is unlikely, due to the seminal result of Kitaev3,

physically motivated ansatzes such as tensor networks26 and low depth quantum circuits6,18,30

continue to explore the low energy spectrum of many interesting Hamiltonians.

A fundamental question on the power of low-depth quantum circuits is the NLTS

conjecture14, which posits the existence of local Hamiltonians with all low energy states

having high quantum circuit complexity. This is a necessary consequence of the quantum

PCP conjecture1, under the reasonable assumption that QMA ̸= NP. We refer the reader

to existing works1,7,8,12,22 for a detailed discussion on the NLTS conjecture and its close

connection with quantum error correction, robustness of entanglement and the power of

variational quantum circuits.

To formally define the NLTS conjecture, we introduce a n-qubit local Hamiltonian H as

a sum of local terms H =
∑m

i=1 hi (each 0 ⪯ hi ⪯ I is supported on O(1) qubits and each

qubit participates in O(1) local terms) with m = Θ(n). The ground states of H are the

eigenstates with eigenvalue λmin(H). An ε-energy state ψ satisfies Tr (Hψ) ≤ εm+λmin(H).

Conjecture 1 (NLTS14). There exists a fixed constant ε > 0 and an explicit family of

O(1)-local Hamiltonians {H(n)}∞n=1, such that for any family of ε-energy states {ψn}, the

circuit complexity CC(ψn) grows faster than any constant.

Here, CC(ψ) is quantum circuit depth, the depth of the smallest quantum circuit that

prepares ψ. An interesting property of any (potential) NLTS Hamiltonian is that it must

live on an expanding interaction graph, ruling out all the finite-dimensional lattice Hamilto-

nians that have been very well studied in quantum many-body physics. The same holds for

(potential) Hamiltonians that may witness the quantum PCP conjecture1.

A weaker version of this conjecture is known, called the NLETS theorem. A local Hamil-

tonian H (as defined above) is frustration-free if λmin(H) = 0. A state ψ is called ε-error if

there exists a set S of qubits of size at least (1 − ε)n such that ψS = ϕS, where ϕ is some

ground state of H and the subscript S means that we take a partial trace over the qubits in

[n] \ S.
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Theorem 2 (12,22). There exists a fixed constant ε > 0 and an explicit family of O(1)-local

frustration-free Hamiltonians {H(n)}∞n=1, such that for any family of ε-error states {ψn} ,

the circuit complexity CC(ψn) is Θ(log n).

Note that the ε-energy states include the set of O(ε)-error states, but the reverse direction

is not true. The NLETS theorem was first proved by12, by considering the hypergraph

product34 of two Tanner codes on expander graphs32. In the follow-up work,22 constructed

an NLETS Hamiltonian that in fact lived on a one-dimensional lattice. In the recent work7,

super-constant circuit lower bounds were shown for o(1)-energy states (such as O( 1
logn

)-

energy) of all quantum code Hamiltonians that have near-linear rank or near-linear distance.

Interestingly, such lower bounds are again possible with the two-dimensional, punctured toric

code, showing that expansion of the underlying interaction graph is not needed for circuit

lower bounds on ‘almost constant’ energy states.

Both12,22 identified the intermediate question of combinatorial NLTS (cNLTS), which

aims at finding frustration-free Hamiltonians with super-constant circuit lower bounds for

states ψ that satisfy at least 1− ε fraction of local terms. The main interest in this question

stems from the fact that any (potential) cNLTS Hamiltonian must also live on an expanding

interaction hypergraph, hence exhibiting the geometric features of an NLTS Hamiltonian.

Here, we provide the first construction of a cNLTS Hamiltonian.

Theorem 3 (Main result). There exists a fixed constant ε > 0 and an explicit family of O(1)-

local frustration-free Hamiltonians {H(n)}∞n=1, where H
(n) =

∑m
i=1 h

(n)
i acts on n particles and

consists of m = Θ(n) local terms, such that for any family of states {ψn} satisfying

|i : Tr
(
h
(n)
i ψn

)
> 0|

m
≤ ε,

the circuit complexity CC(ψn) is Θ(log n).

The set of states that satisfy 1 − ε fraction of local terms also include O(ε)-error states.

Thus, the above family of Hamiltonians are also NLETS.

Other related results

In11, thermal states of certain quantum codes were shown to have circuit lower bounds.8

showed circuit lower bounds for quantum states with a ‘Z2 symmetry’. The work12 showed
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that locally testable quantum CSS codes2 of linear distance are NLTS. Such codes are not

known to exist, with the best distance thus far being
√
n19. However, the dramatic recent

progress in quantum codes9,15,27,28 opens up the exciting possibility that such codes may

exist.

New results: The follow-up work5 supersedes the main result here, as it shows the NLTS

property for good quantum codes19,28. It uses a different Hamiltonian family, but the under-

lying connection is that it proves a quantum analogue of Theorem 9. We believe that the

Hamiltonian family in this work are also NLTS, when the parameter δ is set to a constant.

Outline of the construction

Our starting point is the NLETS theorem shown in22. It is based on the observation

that the CAT state 1√
2
|00 . . . 0⟩+ 1√

2
|11 . . . 1⟩ is close to the unique ground state of Kitaev’s

clock Hamiltonian. This clock Hamiltonian is obtained from the circuit preparing the CAT

state and then padding with identity gates. We observe that yet another Hamiltonian can

be constructed, by viewing the CAT state as a Matrix Product State (MPS). The MPS

representation of the CAT state is obtained by starting with n
2
EPR pairs

(|00⟩+ |11⟩)1,2 ⊗ (|00⟩+ |11⟩)3,4 ⊗ . . . (|00⟩+ |11⟩)n−1,n

and then projecting qubits i, i + 1, for even i, with the projector M = |00⟩⟨00| + |11⟩⟨11|.

Most MPS are the unique ground states of a parent Hamiltonian (such MPS are called

injective). But the CAT state MPS clearly does not have this privilege, since M is not an

invertible map. However, inspired by13, we can perturb M to consider a state obtained by

mapping qubits i, i+1 withM+δI (for δ ≈ 1√
n
). This is an invertible map, which makes the

resulting MPS injective. Using the corresponding parent Hamiltonian, we obtain another

construction of the NLETS Hamiltonian.23

Since any cNLTS Hamiltonian must be on an expanding interaction graph, an approach to

construct the desired Hamiltonian is to write down a tensor network for the CAT state on an

expanding graph, perturb the tensors and then take the parent Hamiltonian. Unfortunately,

this argument seems not to work, since the tensor network for the CAT state is extremely

brittle. If we remove one EPR pair and allow arbitrary inputs to the tensors acting on this
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EPR pair, we can produce the states |00 . . . 0⟩ or |11 . . . 1⟩. This brittleness reflects in the

nearby parent Hamiltonian and there are product states that violate just one local term.

Our second observation is that the CAT state tensor network can be viewed as a repetition

Tanner code on an expanding graph. Thus, we can generalize the tensor network and look

at Tanner codes defined on expander graphs, as proposed by Sipser-Spielman32 (Section III).

The tensor network state is now a uniform superposition over all the codewords of this

Tanner code. With (1) linear distance and (2) linear rank (and with a suitable choice of

parameters) such a code protects us from two sources of brittleness:

1. Removing an ε fraction of EPR pairs (analogously, local terms of the Hamiltonian)

weakens the expansion properties of the underlying graph. Linear distance ensures

that the codewords, while no longer far away from each other, are partitioned into

distant groups for a small constant ε.

2. Removing an ε fraction of EPR pairs (analogously, local terms of the Hamiltonian)

can drastically reduce the number of strings appearing in the superposition. Linear

rank ensures that the number of strings is large enough, if ε is a small constant.

See Section IV for full details. We note that tensor networks have previously been combined

with local (quantum) codes to obtain global properties29.

Local systems and non-isotropic Gauß’s laws

Tanner codes can be understood in terms of homology with local systems33, where dif-

ferentials take values in the space of local checks21. A trivial example is the toric code,

where the differential at each vertex detects violations of Z2-flux conservation, or in other

words, violations of a local parity-check code (this is of course nothing but the usual sim-

plicial Z2-homology). The family of Hamiltonians that we construct can be understood in

terms of differentials defined from more complicated local codes. The Hamiltonians ensure

that these differentials are zero for ground states, which means they enforce a non-isotropic

Gauß’s law that takes the directionality of the incoming fluxes into account. Together with

the expansion of the underlying graph, this leads to the cNLTS property.

5



Tensor networks and quantum complexity

Kitaev’s clock construction is a powerful method to map quantum computations to the

ground states of local Hamiltonians. It turns out that the tensor networks provide a similar

mapping. As shown in31, any measurement-based quantum computation can be mapped onto

a tensor network. One could thus imagine a form of circuit-to-Hamiltonian mapping different

from Kitaev’s: perturb the above tensor network and consider its parent Hamiltonian. A

standard objection to this approach is that the mapping also works for post-selected quantum

circuits, which is far more powerful than QMA. However, this objection is not expected to

apply to our case, as injective tensors cannot post-select on events of very small probability.

We leave an understanding of the promise gap of this mapping for future work.

II. TANNER CODE

In this section we review a construction of linear codes from regular graphs called Tanner

codes. A (classical) linear code C of length n and rank k is a subspace of dimension k of

the vector space Fn
2 = {0, 1}n. A linear code C can be defined by specifying a parity check

matrix H ∈ Fm×n
2 , such that kerH = C. We call the m rows of H checks of the code C.

Consider a regular graph G = (V,E) with degree d and n = |V | vertices. For S, S ′ ⊂ V ,

we denote the number of edges between S and S ′ as E(S, S ′) (we count an edge {u, v} twice

if u, v ∈ S∩S ′). Let λ = max (|λ2|, |λn|), where λ2, λn are the second largest and the smallest

eigenvalues of the adjacency matrix.

A Tanner code T (C,G) ⊂ {0, 1}|E| is defined using the graph G and a classical linear code

C ⊂ {0, 1}d of rank k0 and distance ∆0. We imagine bits on edges and checks on the vertices.

Let the edges be numbered using the integers {1, 2, . . . |E|} in some arbitrary manner. Given

a string x ∈ {0, 1}|E| and a vertex v, let xv ∈ {0, 1}d be the restriction of x to the edges

incident to v, where the ith bit of xv is the value on the edge with the ith smallest number.

Formally,

T (C,G) = {x : xv ∈ C ∀v ∈ V }. (1)

We will abbreviate T (C,G) as T for convenience. Since there are d − k0 independent

checks in C, the number of independent checks in T is at most n(d− k0). Thus, the rank k
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of T is k ≥ nd
2
− n(d− k0) = n

(
k0 − d

2

)
.

Lemma 4. Suppose ∆0 ≥ 2λ. The distance of T is lower bounded by
n∆2

0

4d
=

|E|∆2
0

2d2
.

Proof. Let x ∈ T be the non-zero code-word of smallest Hamming weight and let Ex be the

edges where x takes value 1. Let S be the set of all vertices on which at least one edge

in Ex is incident. Since the distance of C is ∆0, at least ∆0 edges from any vertex in S stay

within S (and those edges belong to Ex). Thus, |E(S, S)| ≥ |S|∆0. However, the expander

mixing lemma35 (Lemma 4.15) ensures that

|E(S, S)| ≤ d|S|2

n
+ λ|S|.

Thus,

|S|∆0 ≤ |E(S, S)| ≤ d|S|2

n
+ λ|S| ≤ d|S|2

n
+

∆0|S|
2

=⇒ |S| ≥ n∆0

2d
.

Since |Ex| ≥ |S|∆0

2
(every vertex in S is associated to at least ∆0 edges in Ex and every edge

in Ex is associated to 2 vertices in S), the lemma concludes.

III. INJECTIVE TENSOR NETWORK FROM THE CODE T (C,G)

Let |EPR⟩ = |00⟩ + |11⟩ be an unnormalized EPR pair. Given G, we consider a Hilbert

space consisting of nd qubits, with d qubits for each vertex v ∈ V . For a v ∈ V , we identify

each qubit with a unique edge incident on v and label the qubit as ve. As a result, given

an edge e = (v, v′), qubits ve, v
′
e come in pairs (Figure 1). We will often denote the joint

Hilbert space Hve ⊗Hv′e as He and abbreviate |0⟩ve |0⟩v′e as |0⟩e and |1⟩ve |1⟩v′e as |1⟩e. Thus,

|0⟩ve |0⟩v′e + |1⟩ve |1⟩v′e will be referred to as |EPR⟩e. Define the unnormalized state

|Θ0⟩ :=
⊗
e∈E

|EPR⟩e .

For each vertex v, define the projector that only accepts the codewords of the local code

at v:

Pv :=
∑
c∈C

|c1⟩⟨c1|ve1 ⊗ |c2⟩⟨c2|ve2 ⊗ · · · ⊗ |cd⟩⟨cd|ved ,

where ci is the ith bit of c and ei is the ith edge incident on v (in the ascending numbering

specified on the edges). The tensor network state is obtained by projecting the d qubits on
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FIG. 1: (Left) A degree d = 4 graph with a Tanner code defined on it. (Right) The

associated tensor network, where d qubits (red) are placed on each vertex (green circle) and

qubits are connected according to the edge structure using EPR pairs (blue wavy lines).

The qubits on each vertex are projected according to the local code.

each vertex using these projectors:

|Φ⟩ := 1√
2k

⊗
v

Pv |Θ0⟩ =
1√
2k

∑
x∈T

⊗
e=(v,v′)

|xe⟩e .

Note that the normalization follows since there are 2k codewords in T . We can think of the

string x as an edge assignment and |Φ⟩ as a uniform superposition over edge assignments

from T . Now, we can make the tensor network ‘injective’ by defining

Qv := Pv + δI = (1 + δ)Pv + δ(I− Pv), |Ψ⟩ := 1√
Z

⊗
v

Qv |Θ0⟩ .

Claim 5. It holds that

Z ≤ 2k(1 + 2δ + δ22(d−k0))n

and

| ⟨Ψ|Φ⟩ | ≥ (1 + δ)n

(1 + 2δ + δ22(d−k0))
n
2

Proof. Consider,

Z = ⟨Θ0|
⊗
v

Q2
v |Θ0⟩ = ⟨Θ0|

⊗
v

(
(1 + 2δ)Pv + δ2I

)
|Θ0⟩

=
∑
S⊂V

(1 + 2δ)|S|δ2n−2|S| ⟨Θ0|
⊗
v∈S

Pv |Θ0⟩
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Let us evaluate ⟨Θ0|
⊗

v∈S Pv |Θ0⟩. This is essentially the number of codewords when parity

checks only act on the vertices in S. If we were to include the parity checks in V \S as well,

we would obtain the original code. Since there are at most (d − k0)(n − |S|) independent

checks, the following inequality holds:

⟨Θ0|
⊗
v∈S

Pv |Θ0⟩ · 2−(d−k0)(n−|S|) ≤ 2k =⇒ ⟨Θ0|
⊗
v∈S

Pv |Θ0⟩ ≤ 2k · 2(d−k0)(n−|S|).

This shows that

Z ≤ 2k ·
∑
S⊂V

(1 + 2δ)|S|δ2n−2|S| · 2(d−k0)(n−|S|) = 2k ·
∑
S⊂V

(1 + 2δ)|S|
(
δ22(d−k0)

)(n−|S|)

= 2k(1 + 2δ + δ22(d−k0))n.

Further,

⟨Ψ|Φ⟩ = 1√
2kZ

⟨Θ0|
⊗
v

QvPv |Θ0⟩ =
(1 + δ)n√

2kZ
⟨Θ0|

⊗
v

Pv |Θ0⟩

=
(1 + δ)n

√
2k√

Z
≥ (1 + δ)n

(1 + 2δ + δ22(d−k0))
n
2

.

This completes the proof.

The nice property of |Ψ⟩ is that it is the unique ground state of a local Hamiltonian. For

e = (v, v′), define

ge = (Qv ⊗Qv′)
−1 (I− |EPR⟩⟨EPR|e) (Qv ⊗Qv′)

−1 , he = span (ge)

where ‘span’ means that he is the projector onto the image of ge. Since ge |Ψ⟩ = 0, we have

he |Ψ⟩ = 0. Let

H :=
∑
e∈E

he.

Then |Ψ⟩ is a ground state of H with ground energy 0. In fact, we have the following claim,

which is well known about injective tensor networks.

Claim 6. |Ψ⟩ is the unique ground state of H.

Proof. Suppose |Ψ′⟩ is a ground state of H. Then it is also a ground state of
∑

e ge. Write

|Ψ′⟩ =
⊗

v∈V Qv |Θ′⟩, for a (possibly unnormalized) quantum state |Θ′⟩. This is possible

since
⊗

v∈V Qv is invertible. Observe that |Θ′⟩ is a ground state of
∑

e(I − |EPR⟩⟨EPR|e).

This is possible only if |Θ′⟩ = |Θ0⟩, which proves the claim.
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FIG. 2: (Left) The dashed edges have been removed. W denotes the set of yellow vertices.

The remaining edges are E1. (Right) In the tensor network picture, some qubits are no

longer required to be connected by an EPR pair. These qubits, called residuals, are shown

as thick red dots inside yellow circles. Their set is R.

IV. THE HAMILTONIAN H IS CNLTS

Suppose ε|E| local terms from H are removed (see Figure 2). Since each local term corre-

sponds to an edge, let E1 be the remaining edges and let H1 =
∑

e∈E1
he be the Hamiltonian

that remains. We will show that any state |ψ⟩ that is a ground state of H1 has a large circuit

complexity, if ε is a sufficiently small constant.

A. Structure of the ground space of H1

Let W ⊂ V be the set vertices on which the removed edges were incident. Among the

d|W | qubits in these vertices, some qubits were associated to the removed edges. We will call

these qubits ‘residual’ and denote their set by R = {1, 2, . . . 2ε|E|}. We are free to choose

any ‘assignment’ |0⟩ , |1⟩ to the residual qubits. Since we have been thinking of assignments

as occurring on the edges, we will sometimes refer to R as a set of edges (Figure 2). Thus,

we will continue using the terminology of ‘edge assignment’. Note the following cardinality

bounds:

|W | ≤ |R| = 2ε|E|, |E1| = |E|(1− ε) =
d|V | − |R|

2
. (2)
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Let

|Θ1⟩ :=
⊗
e∈E1

|EPR⟩e .

We have the following claim, which is analogous to Claim 6.

Claim 7. The ground space of H1 is

G := span

(⊗
v∈V

Qv(|Θ1⟩ ⊗r∈R |br⟩r), such that b := b1, . . . b|R| ∈ {0, 1}|R|

)
.

Proof. Let |ω⟩ =
⊗

v∈V Qv |τ⟩ be a ground state of H1 for some |τ⟩, which is possible since⊗
v∈V Qv is invertible. Note that

H1 |ω⟩ = 0 =⇒ ∀e ∈ E1, he |ω⟩ = 0 =⇒ ∀e ∈ E1, ge |ω⟩ = 0.

Thus, for all e ∈ E1, (I− |EPR⟩⟨EPR|e) |τ⟩ = 0. This shows that |τ⟩ belongs to the space

spanned by the vectors {|Θ1⟩ ⊗r∈R |br⟩r , such that b := b1, . . . b|R| ∈ {0, 1}|R|}, as there are

no constraints on the residual qubits. This completes the proof.

Consider the following basis within G:

|Ψb⟩ ∝
⊗
v∈V

Qv(|Θ1⟩ ⊗r∈R |br⟩r), ∀b ∈ {0, 1}|R|,

where each |Ψb⟩ is normalized as ⟨Ψb|Ψb⟩ = 1. Note that this is an orthonormal basis, as the

residual qubits are fixed according to b (the operators Qv do not change any computational

basis state). Along the lines of Claim 5, we would expect that this state is close to the

following state (ignoring normalization)⊗
v∈V

Pv(|Θ1⟩ ⊗r∈R |br⟩r), ∀b ∈ {0, 1}|R|.

But we have to be careful: if Pv (⊗r∈R |br⟩r) = 0 for any v ∈ W 24, the above state is 0;

whereas |Ψb⟩ is non-zero for all b. With this in mind, we let Wb ⊂ W denote all the vertices

with which b is consistent (Figure 3 (left)). We observe that

|Ψb⟩ =
1√
Zb

⊗
v∈(V \W )∪Wb

Qv(|Θ1⟩ ⊗r∈R |br⟩r),

since Qv acts as δI at any v ∈ W \Wb (above Zb is a normalization constant) and define

|Φb⟩ =
1√
2kb

⊗
v∈(V \W )∪Wb

Pv(|Θ1⟩ ⊗r∈R |br⟩r),
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b0

b1

b2

b3

S

FIG. 3: (Left) The residual qubits are no longer connected by EPR pairs. Thus, they can

be assigned any computational-basis state |b⟩ : b ∈ {0, 1}|R| (in fact, they can be assigned

any quantum state on |R| qubits; but we focus on computational-basis states at the

moment). A given assignment b may violate checks on some vertices in W (yellow circle).

Here, we depict shaded yellow circles, where b does not cause any violated checks. This is

the set Wb ⊂ W . (Right) Vertices in Wb are now depicted by yellow dots with shaded

surrounding. In Claim 8, a set S ⊂ (V \W ) ∪Wb is considered. Equation 4 can be verified

from here.

where kb will be determined shortly. Note that the states {|Φb⟩}b∈{0,1}|R| are mutually or-

thogonal. The following claim is analogous to Claim 5.

Claim 8. It holds that

kb ≥
(
2k0
d

− 1

)
|E| − |R|

and

| ⟨Φb|Ψb⟩ | ≥
(1 + δ)n

(1 + 2δ + δ22(d−k0))
n
2

.

Proof. We write down an expression for kb. Note that |Φb⟩ is simply a superposition over

edge assignments that satisfy the Tanner code with checks on (V \ W ) ∪ Wb, where we

condition the edges in R to have fixed edge assignments according to b. Conditioning the

edge assignments in R to be b leads to a set of parity check over edges in E1 (some of these

checks may also impose a parity of 1 on the edge assignments in E1). Each vertex in V \W

contributes to d− k0 checks. Each vertex in Wb contributes to anywhere between 0 to d− k0
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independent checks. If we define cv as the number of independent checks due to v ∈ Wb that

involve edges in E1, we have

kb ≥ |E1| − (d− k0)(|V \W |)−
∑
v∈Wb

cv. (3)

Since cv ≤ d− k0 and Wb ⊆ W , a lower bound on kb is

kb ≥ |E1| − (d− k0)(|V \W |+ |Wb|) ≥ |E1| − (d− k0)|V |
Eq.2
= |E1| −

d− k0
d

(2|E1|+ |R|) =
(
2k0
d

− 1

)
|E1| −

d− k0
d

|R|

≥
(
2k0
d

− 1

)
|E1| − |R|.

Next,

Zb = ⟨Θ1| ⊗r∈R ⟨br|r
⊗

v∈(V \W )∪Wb

Q2
v |Θ1⟩ ⊗r∈R |br⟩r

= ⟨Θ1| ⊗r∈R ⟨br|r
⊗

v∈(V \W )∪Wb

((1 + 2δ)Pv + δ2I) |Θ1⟩ ⊗r∈R |br⟩r

=
∑

S⊂(V \W )∪Wb

(1 + 2δ)|S|δ2(|(V \W )∪Wb|−|S|) ⟨Θ1| ⊗r∈R ⟨br|r
⊗
v∈S

Pv |Θ1⟩ ⊗r∈R |br⟩r

(1)

≤ 2kb
∑

S⊂(V \W )∪Wb

(1 + 2δ)|S|δ2(|(V \W )∪Wb|−|S|) · 2(d−k0)(|V \W |−|S\W |)+
∑

v∈Wb\S
cv

≤ 2kb
∑

S⊂(V \W )∪Wb

(1 + 2δ)|S|δ2(|(V \W )∪Wb|−|S|) · 2(d−k0)(|V \W |−|S\W |+|Wb\S|)

(2)
= 2kb

∑
S⊂(V \W )∪Wb

(1 + 2δ)|S|
(
δ2 · 2d−k0

)(|(V \W )∪Wb|−|S|)

= 2kb(1 + 2δ + δ2 · 2d−k0)(|(V \W )∪Wb|).

For (1), note that ⟨Θ1| ⊗r∈R ⟨br|r
⊗

v∈S Pv |Θ1⟩ ⊗r∈R |br⟩r is the number of edge assignments

that satisfy parity checks in S (with the condition that edges in R are assigned b). If we

were to add parity checks on remaining vertices in (V \W ) \S and Wb \S, we would obtain

the 2kb codewords accounted for in Eq. 3. The number of such linearly independent parity

checks that are added is at most (d − k0)(|V \W | − |S \W |) +
∑

v∈Wb\S cv. This gives us

the upper bound

⟨Θ1| ⊗r∈R ⟨br|r
⊗
v∈S

Pv |Θ1⟩ ⊗r∈R |br⟩r · 2
−(d−k0)(|V \W |−|S\W |)−

∑
v∈Wb\S

cv ≤ 2kb ,

13



and (2) uses (see Figure 3(right))

|V \W | − |S \W |+ |Wb \ S| = |V \W |+ |Wb| − |S| = |(V \W ) ∪Wb| − |S|, (4)

where we repeatedly used the fact that S ⊂ (V \W ) ∪Wb. Thus,

| ⟨Φb|Ψb⟩ | =
1√
2kbZb

⟨Θ1| ⊗r∈R ⟨br|r
⊗

v∈(V \W )∪Wb

PvQv |Θ1⟩ ⊗r∈R |br⟩r

=
(1 + δ)|(V \W )∪Wb|

√
2kbZb

⟨Θ1| ⊗r∈R ⟨br|r
⊗

v∈(V \W )∪Wb

Pv |Θ1⟩ ⊗r∈R |br⟩r

=
(1 + δ)|(V \W )∪Wb|

√
2kbZb

· 2kb = (1 + δ)|(V \W )∪Wb| ·

√
2kb

Zb

≥ (1 + δ)|(V \W )∪Wb| · 1√
(1 + 2δ + δ2 · 2d−k0)(|(V \W )∪Wb|)

≥ (1 + δ)n

(1 + 2δ + δ22(d−k0))
n
2

.

Above, last inequality holds since |(V \W ) ∪Wb| ≤ n.

Thus, if δ is small enough, it suffices to understand the properties of the space

G ′ := span
(
|Φb⟩ , such that b ∈ {0, 1}|R|) .

From Claim 8, each |Φb⟩ is a superposition over 2kb edge assignments. Moreover, each such

edge assignment satisfies all the checks in V ′ := V \W . Thus, let us understand the properties

of edge assignments that satisfy such checks. Define a new Tanner code T ′ := T (C,G′), where

G′ = (V ′, E ′ ∪ F ), E ′ is the set of edges in the subgraph induced by V ′ and F is the set of

edges which connected V ′ with W . We will think of each edge in F as ‘free’, being incident

to just one vertex in V ′ (Figure 4). Theorem 9 below shows that the Hamming distance

between the codewords of T ′ is either small or large.

B. Properties of the Tanner code T ′

Let I ⊂ V ′ be the set of vertices on which an edge in F is incident (Figure 4). From Eq.

2, note the following bounds

|I| ≤ |F | ≤ d|W | ≤ 2dε|E| and |E| ≥ |E ′| ≥ |E1| − d|W | ≥ |E| (1− 3dε) . (5)
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FIG. 4: Any edge assignment appearing in |Φb⟩ still satisfies all the checks at the green

vertices (V ′). If we restrict to V ′, the shaded edges have only one end-point in V ′. We will

call such edges F . I ⊂ V ′ is the set of vertices on which the edges in F are incident. In

Theorem 9, some care is needed in analyzing the Hamming weight of edge assignments

satisfying checks on V ′, as vertices in I are responsible for the breakdown of expansion in

V ′. While checks on I are satisfied, this may happen due to edges in F and may not

contribute to expansion.

Since G′ may no longer be an expander, we do not have any guarantees on the distance of T ′.

But we can show some structure in the codewords of T ′.

Theorem 9. Suppose ε ≤ 1
6d

and ∆0 ≥ 4λ. The Hamming distance between the codewords

of T ′ is either ≤ 8d2ε|E ′ ∪ F | or ≥ ∆2
0

4d2
· |E ′ ∪ F |.

Proof. Since T ′ is a linear code, we show that the Hamming weight of a non-zero codeword x

is either ≤ 8d2ε|E ′ ∪ F | or ≥ ∆2
0

8d2
· |E ′ ∪ F |. Let Jx ⊂ E ′ ∪ F be the set of edges on which x

assigns 1. Suppose |Jx| ≤ 8d2ε|E ′ ∪ F |; then we are done. Else

|Jx| ≥ 8d2ε|E ′ ∪ F | ≥ 8d2ε|E ′|
Eq.5

≥ 8d2ε|E| (1− 3dε) ≥ 4d2ε|E|.

We consider this case and show that |Jx| must be significantly larger. Let S ⊂ V ′ be the

vertices on which the edges in Jx are incident. We can apply expander mixing lemma to the

original graph G and obtain

|E(S, S)| ≤ d|S|2

n
+ λ|S|.

On the other hand, we can lower bound |E(S, S)| as follows. Every vertex in S \I has degree

at least ∆0 and each edge incident to such a vertex belongs to E(S, S) (since such an edge

15



is not in F , both its endpoint are in S). Edges incident to vertices in S ∩ I may not belong

to E(S, S), thus we won’t count them (see Figure 4). Overall, we have

|E(S, S)| ≥ ∆0|S \ I|
Eq.5

≥ ∆0(|S| − 2dε|E|) = ∆0

(
|S|
2

+
|S|
2

− 2dε|E|
)
. (6)

Since |Jx| ≥ 4d2ε|E|, we can naively bound |S| ≥ |Jx|
d

≥ 4dε|E|. Thus,

d|S|2

n
+ λ|S| ≥ |E(S, S)|

Eq.6

≥ ∆0

2
|S|

λ≤∆
4=⇒ |S| ≥ n∆0

4d
.

From here, we obtain

|Jx|
(1)

≥ ∆0|S|
2

≥ n∆2
0

8d
= |E| · ∆

2
0

4d2
≥ |E ′ ∪ F | · ∆

2
0

4d2
.

Here, (1) follows since every vertex in S is associated to at least ∆0 edges in Jx and every

edge in Jx is associated to at most 2 vertices in S. This completes the proof.

C. Structure of the states |Φb⟩

Recall that |Φb⟩ is a superposition over the edge assignments to E1 ∪ R. We now show

that these edge assignments form distant clusters.

Theorem 10. Suppose ε ≤ ∆2
0

300d4
and ∆0 ≥ 4λ. There are disjoint sets B1, B2, . . . ⊂

{0, 1}|E1∪R| such that for any x, y ∈ Bi, the Hamming distance between x and y is ≤

10d2ε|E1∪R| and for any x ∈ Bi and y ∈ Bj with i ̸= j, the Hamming distance between x, y

is ≥ ∆2
0

10d2
· |E1 ∪ R|. Furthermore, the states {|Φb⟩}b∈{0,1}|R| are uniform superpositions over

some edge assignments in ∪iBi.

Proof. Any two edge assignments x, y appearing in |Φb⟩, when restricted to the edges in G′

(which we denote xG′ , yG′), belong to T ′. The edge assignment x is obtained from xG′ by

appending assignments to the edges in (E1∪R)\(E ′∪F ). There are at most d|W |
Eq.2

≤ 2dε|E|

such edges. Thus, invoking Theorem 9, the Hamming distance between x, y is either at most

8d2ε|E ′∪F |+2dε|E| ≤ 8d2ε|E1∪R|+2dε|E|
Eq2

≤ 8d2ε|E1∪R|+2dε|E1∪R| ≤ 10d2ε|E1∪R|

or at least

∆2
0

4d2
· |E ′ ∪ F | − 2dε|E| ≥ ∆2

0

4d2
· |E1 ∪R| −

∆2
0

4d2
· 2dε|E| − 2dε|E|

Eq.2

≥ ∆2
0

4d2
· |E1 ∪R| − 4dε|E1 ∪R| ≥

∆2
0

10d2
· |E1 ∪R|.
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Next, consider a relation R between the edge assignments: x, y ∈ R if the Hamming distance

between them is ≤ 10d2ε|E1 ∪ R|. The relation is transitive: x, y ∈ R and y, z ∈ R implies

the Hamming distance between x, z is ≤ 20d2ε|E1 ∪ R| < ∆2
0

10d2
· |E1 ∪ R|, which in turn

requires that the Hamming distance between x, z is ≤ 10d2ε|E1 ∪ R|. This forces x, z ∈ R.

The sets B1, B2, . . . are the equivalence classes formed by this relation, which completes the

proof.

Let

ΠBi
:=
∑
x∈Bi

⊗
e∈E1

|xe⟩⟨xe|e
⊗
r∈R

|xr⟩⟨xr|r

be the projector onto the edge assignments in Bi. The following claim holds.

Claim 11. Let δ2 ≤ 2−d

10000n
, ε ≤ 1

20000d2
and k0 ≥ 0.55d. For any i and any b, b′ ∈ {0, 1}|R|

(with b ̸= b′), ⟨Ψb|ΠBi
|Ψb⟩ ≤ 1

50
and ⟨Ψb|ΠBi

|Ψb′⟩ = 0.

Proof. Since |Φb⟩ is a uniform superposition over 2kb edge assignments and the size of each

Bi is at most
( |E1∪R|
10d2ε|E1∪R|

)
≤ 22d

√
10ε|E1∪R| ≤ 28d

√
ε|E|, we have

⟨Φb|ΠBi
|Φb⟩ ≤ 2−kb · 28d

√
ε|E| Claim8

≤ 28d
√
ε|E|−0.1|E|+|R|

Eq.2

≤ 210d
√
ε|E|−0.1|E| ≤ 1

100
.

Above, the last inequality assumes that |E| is larger than some constant. Now, Claim 8

ensures that

| ⟨Φb|Ψb⟩ | ≥
(1 + δ)n

(1 + 2δ + δ22(d−k0))
n
2

≥
(

1

1 + 2dδ2

)n
2

≥ e−
1

20000 ≥ 1− 1

10000
.

Thus, 1
2
∥ |Φb⟩⟨Φb| − |Ψb⟩⟨Ψb| ∥1 ≤ 1

100
, which ensures that

Tr (ΠBi
|Ψb⟩⟨Ψb|) ≤ Tr (ΠBi

|Φb⟩⟨Φb|) +
1

100
≤ 1

50
.

To argue that ⟨Ψb|ΠBi
|Ψb′⟩ = 0, note that |Ψb⟩ is a superposition over edge assignments

with the fixed b on the edges in R. That is, |Ψb⟩ = |. . .⟩ ⊗r∈R |br⟩r. Thus, ΠBi
, being a

projector onto computational basis states, satisfies ΠBi
|Ψb⟩ = |. . .⟩ ⊗r∈R |br⟩r. Similarly,

|Ψb′⟩ = |. . .′⟩ ⊗r∈R |b′r⟩r. Since b ̸= b′, the claim follows.
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D. Circuit lower bound

We will assume that ε ≤ 1
20000d2

,
∆2

0

300d4
; ∆0 ≥ 4λ; k0 ≥ 0.55d and δ2 ≤ 2−d

10000n
. Note that

these conditions can be met with constant k0,∆0, d, which ensures that ε is a constant (see

Section V). Our main theorem is below, which proves that H is cNLTS. The argument is

directly inspired by the quantum circuit lower bound argument in12, based on the partition-

ing of quantum codewords. However, we consider a simpler argument based on the tight

polynomial approximations to the AND function4,10,16, inspired by17.

Theorem 12. Let |ρ⟩ = U |0⟩⊗m on m ≥ nd qubits, where U is a depth t quantum circuit,

such that 1
2
∥ |Γ⟩⟨Γ| − |ρ⟩⟨ρ| ∥1 ≤ 0.1 for some ground state25 |Γ⟩ of H1. It holds that

t = Ω

(
log

n∆4
0

d3

)
.

Proof. Note that m ≤ 2tnd without loss of generality, as H1 acts on nd qubits (see7 (Section

2.3) for a justification based on the light cone argument). We can expand

|Γ⟩ =
∑

b∈{0,1}|R|

|µb⟩ ⊗ |Ψb⟩ ,

such that
∑

b∈{0,1}|R| ∥ |µb⟩ ∥2 = 1. The (possibly unnormalized) vectors |µb⟩ act on m − nd

qubits outside V . Using Claim 11, we find that for any i,

⟨Γ|ΠBi
|Γ⟩ =

∑
b,b′∈{0,1}|R|

⟨µb′ |µb⟩ ⟨Ψb′ |ΠBi
|Ψb⟩ =

∑
b∈{0,1}|R|

∥ |µb⟩ ∥2 ⟨Ψb|ΠBi
|Ψb⟩ ≤

1

50
. (7)

On the other hand, all edge assignments over E1 ∪R appearing in |Γ⟩ belong to some Bi. In

other words,
∑

i ⟨Γ|ΠBi
|Γ⟩ = 1. Thus, we can find two disjoint sets of indices M,M ′, such

that ∑
i∈M

⟨Γ|ΠBi
|Γ⟩ ≥ 1

2
− 1

50
≥ 1

3
,
∑
i∈M ′

⟨Γ|ΠBi
|Γ⟩ ≥ 1

2
− 1

50
≥ 1

3
.

Define BM = ∪i∈MBi, BM ′ = ∪i∈M ′Bi, ΠM =
∑

i∈M ΠBi
and ΠM ′ =

∑
i∈M ′ ΠBi

. From

Theorem 10, the Hamming distance between the sets BM and BM ′ is ≥ ∆2
0

10d2
· |E1 ∪ R| ≥

∆2
0

20d2
· nd. On the other hand, we just established that ⟨Γ|ΠM |Γ⟩ ≥ 1

3
and ⟨Γ|ΠM ′ |Γ⟩ ≥ 1

3
.

From4,10,16, there exists a f · 2t-local operator L such that

∥ |ρ⟩⟨ρ| − L∥∞ ≤ e−
f2

2t·100nd .
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Setting f · 2t = ∆2
0

100d2
· nd, we obtain

∥ |ρ⟩⟨ρ| − L∥∞ ≤ e−n· ∆4
0

23t·106d3 .

Since ΠMLΠM ′ = 0, we have

∥ΠM |ρ⟩⟨ρ|ΠM ′∥∞ ≤ e−n· ∆4
0

23t·106d3 .

However

∥ΠM |ρ⟩⟨ρ|ΠM ′∥∞ =
√
⟨ρ|ΠM |ρ⟩ · ⟨ρ|ΠM ′ |ρ⟩

≥
√

(⟨Γ|ΠM |Γ⟩ − 0.1) · (⟨Γ|ΠM ′ |Γ⟩ − 0.1) ≥ e−2.

Thus, 23t ≥ n · ∆4
0

2·106·d3 , which completes the proof.

V. EXPLICIT CONSTRUCTION OF THE TANNER CODE T (C,G)

In this section we give an explicit construction of a suitable family of Tanner codes {T (C,Gi)}∞i=1

from which the family of cNLTS-Hamiltonians {H(i)}∞i=1 of Theorem 3 is obtained.

For the graphs Gi underlying the Tanner codes, we employ a construction of spectral

Cayley-expanders due to Lubotzky, Phillips and Sarnak.

Theorem 13 (20). Assume that p and q are distinct, odd primes such that q > 2
√
p and

q is a square modulo p. Then there exists a symmetric generating set Γ of PSL2(Fq) such

that the Cayley graph Cay(PSL2(Fq),Γ) is a non-bipartite, p+1-regular expander graph with

λ < 2
√
p.

By fixing a suitable prime p we obtain a family of regular graphs Gi of degree d = p+ 1

and order q(q2 − 1)/2 with spectral bound λ < 2
√
d− 1. We mention in passing that by a

result due to Alon and Boppana, this is the best possible bound that any family of regular

graphs can achieve and such families are called Ramanujan graphs.

Further, we require a linear, binary code C. More specifically, for the construction of

the cNLTS-Hamiltonians to go through, we require the existence of a classical linear binary

code C of block size d encoding at least k0 ≥ 0.55 d bits with distance ∆0 ≥ 4λ. As the

degree d of the graphs is constant, it suffices to show that a suitable code C exist, as a brute-

force search has time-complexity bounded by a constant O(1). The existence of a suitable

code is guaranteed by the Gilbert–Varshamov bound (see e.g.36 (Chapter 5) for a proof).
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Theorem 14 (Gilbert-Varshamov). Let 0 ≤ µ ≤ 0.5 and let 0 ≤ R0 ≤ 1−H2(µ), then there

exists a binary, linear code of block size d, rank k0 = R0d and distance ∆0 = µd.

We can now give an explicit construction of a suitable code family {T (C,Gi)}∞i=1. By

Theorem 14 there exists a code C encoding k0 ≥ 0.55d bits when µ ≤ 0.09. We further

require that C has distance ∆0 = µd ≥ 4λ. This is the case via Theorem 13 by choosing,

for example, µ = 0.09 and prime p = 7901.
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