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Abstract. Many parallel programming models guarantee that if all
sequentially consistent (SC) executions of a program are free of data
races, then all executions of the program will appear to be sequen-
tially consistent. This greatly simplifies reasoning about the program,
but leaves open the question of how to verify that all SC executions
are race-free. In this paper, we show that with a few simple modifica-
tions, model checking can be an effective tool for verifying race-freedom.
We explore this technique on a suite of C programs parallelized with
OpenMP.
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1 Introduction

Every multithreaded programming language requires a memory model to specify
the values a thread may obtain when reading a variable. The simplest such
model is sequential consistency [22]. In this model, an execution is an interleaved
sequence of the execution steps from each thread. The value read at any point
is the last value that was written to the variable in this sequence.

There is no known efficient way to implement a full sequentially consistent
model. One reason for this is that many standard compiler optimizations are
invalid under this model. Because of this, most multithreaded programming lan-
guages (including language extensions) impose a requirement that programs do
not have data races. A data race occurs when two threads access the same vari-
able without appropriate synchronization, and at least one access is a write.
(The notion of appropriate synchronization depends on the specific language.)
For data race-free programs, most standard compiler optimizations remain valid.
The Pthreads library is a typical example, in that programs with data races
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have no defined behavior, but race-free programs are guaranteed to behave in a
sequentially consistent manner [25].

Modern languages use more complex “relaxed” memory models. In this model,
an execution is not a single sequence, but a set of events together with various
relations on those events. These relations—e.g., sequenced before, modification
order, synchronizes with, dependency-ordered before, happens before [21]—must
satisfy a set of complex constraints spelled out in the language specification. The
complexity of these models is such that only the most sophisticated users can
be expected to understand and apply them correctly. Fortunately, these models
usually provide an escape, in the form of a substantial and useful language subset
which is guaranteed to behave sequentially consistently, as long as the program
is race-free. Examples include Java [23], C and C++ since their 2011 versions
(see [8] and |21, §5.1.2.4 Note 19]), and OpenMP [26, §1.4.6].

The “guarantee” mentioned above actually consists of two parts: (1) all exe-
cutions of data race-free programs in the language subset are sequentially con-
sistent, and (2) if a program in the language subset has a data race, then it has
a sequentially consistent execution with a data race [8]. Putting these together,
we have, for any program P in the language subset:

(SCADRF) If all sequentially consistent executions of P are data
race-free, then all executions of P are sequentially consistent.

The consequence of this is that the programmer need only understand sequen-
tially consistent semantics, both when trying to ensure P is race-free, and when
reasoning about other aspects of the correctness of P. This approach provides
an effective compromise between usability and efficient implementation.

Still, it is the programmer’s responsibility to ensure that all sequentially
consistent executions of the program are race-free. Unfortunately, this problem
is undecidable [4], so no completely algorithmic solution exists. As a practical
matter, detecting and eliminating races is considered one of the most challeng-
ing aspects of parallel program development. One source of difficulty is that
compilers may “miscompile” racy programs, i.e., translate them in unintuitive,
non-semantics-preserving ways [7]. After all, if the source program has a race,
the language standard imposes no constraints, so any output from the compiler
is technically correct.

Researchers have explored various techniques for race checking. Dynamic
analysis tools (e.g., [18]) have experienced the most uptake. These techniques
can analyze a single execution precisely, and report whether a race occurred,
and sometimes can draw conclusions about closely related executions. But the
behavior of many concurrent programs depends on the program input, or on
specific thread interleavings, and dynamic techniques cannot explore all possible
behaviors. Moreover, dynamic techniques necessarily analyze the behavior of
the executable code that results from compilation. As explained above, racy
programs may be miscompiled, even possibly removing the race, in which case
a dynamic analysis is of limited use.

Approaches based on static analysis, in contrast, have the potential to verify
race-freedom. This is extremely challenging, though some promising research
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prototypes have been developed (e.g., [10]). The most significant limitation is
imprecision: a tool may report that race-free code has a possible race— a “false
alarm”. Some static approaches are also not sound, i.e., they may fail to detect
a race in a racy program; like dynamic tools, these approaches are used more as
bug hunters than verifiers.

Finite-state model checking [15] offers an interesting compromise. This app-
roach requires a finite-state model of the program, which is usually achieved
by placing small bounds on the number of threads, the size of inputs, or other
program parameters. The reachable states of the model can be explored through
explicit enumeration or other means. This can be used to implement a sound and
precise race analysis of the model. If a race is found, detailed information can
be produced, such as a program trace highlighting the two conflicting memory
accesses. Of course, if the analysis concludes the model is race-free, it is still pos-
sible that a race exists for larger parameter values. In this case, one can increase
those values and re-run the analysis until time or computational resources are
exhausted. If one accepts the “small scope hypothesis"—the claim that most
defects manifest in small configurations of a system—then model checking can
at least provide strong evidence for the absence of data races. In any case, the
results provide specific information on the scope that is guaranteed to be race-
free, which can be used to guide testing or further analysis.

The main limitation of model checking is state explosion, and one of the
most effective techniques for limiting state explosion is partial order reduction
(POR) [17]. A typical POR technique is based on the following observation:
from a state s at which a thread t is at a “local” statement—i.e., one which
commutes with all statements from other threads—then it is often not necessary
to explore all enabled transitions from s; instead, the search can explore only
the enabled transitions from ¢. Usually local statements are those that access
only thread-local variables. But if the program is known to be race-free, shared
variable accesses can also be considered “local” for POR. This is the essential
observation at the heart of recent work on POR in the verification of Pthreads
programs [29].

In this paper, we explore a new model checking technique that can be used
to verify race-freedom, as well as other correctness properties, for programs in
which threads synchronize through locks and barriers. The approach requires
two simple modifications to the standard state reachability algorithm. First,
each thread maintains a history of the memory locations accessed since its last
synchronization operation. These sets are examined for races and emptied at
specific synchronization points. Second, a novel POR is used in which only lock
(release and acquire) operations are considered non-local. In Sect. 2, we present
a precise mathematical formulation of the technique and a theorem that it has
the claimed properties, including that it is sound and precise for verification of
race-freedom of finite-state models.

Using the CIVL symbolic execution and model checking platform [31], we
have implemented a prototype tool, based on the new technique, for verify-
ing race-freedom in C/OpenMP programs. OpenMP is an increasingly popular
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directive-based language for writing multithreaded programs in C, C++, or For-
tran. A large sub-language of OpenMP has the SC4ADRF guarantee.! While
the theoretical model deals with locks and barriers, it can be applied to many
OpenMP constructs that can be modeled using those primitives, such as atomic
operations and critical sections. This is explained in Sect. 3, along with the results
of some experiments applying our tool to a suite of C/OpenMP programs. In
Sect. 4, we discuss related work and Sect. 5 concludes.

2 Theory

We begin with a simple mathematical model of a multithreaded program that
uses locks and barriers for synchronization.

Definition 1. Let TID be a finite set of positive integers. A multithreaded pro-
gram with thread ID set TID comprises

1. a set Lock of locks
2. a set Shared of shared states
3. for each 7 € TID:

(a) a set Local;, the local states of thread i, which is the union of five disjoint
subsets, Acquire;, Release;, Barrier;, Nsync;, and Term;

(b) a set Stmt; of statements, which includes the lock statements acquire;(l)
and release;(I) (for | € Lock), and the barrier-exit statement exit;; all
others statements are known as nsync (non-synchronization) statements

(c) for each o € Acquire; U Release; U Barrier;, a local state next(c) € Local;

(d) for each o € Acquire; U Release;, a lock lock(o) € Lock

(e) for each o € Nsync;, a nonempty set stmts(c) C Stmt; of nsync statements
and function

update(o): stmts(o) x Shared — Local; x Shared.
All of the sets Local; and Stmt; (i € TID) are pairwise disjoint. O

Each thread has a unique thread ID number, an element of TID. A local state
for thread 7 encodes the values of all thread-local variables, including the program
counter. A shared state encodes the values of all shared variables. (Locks are not
considered shared variables.) A thread at an acquire state ¢ is attempting to
acquire the lock lock(a). At a release state, the thread is about to release a lock.
At a barrier state, a thread is waiting inside a barrier. After executing one of
the three operations, each thread moves to a unique next local state. A thread
that reaches a terminal state has terminated. From an nsync state, any positive
number of statements are enabled, and each of these statements may read and
update the local state of the thread and/or the shared state.

! Any OpenMP program that does not use non-sequentially consistent atomic direc-
tives, omp_test_lock, or omp_test_nest_lock [26, §1.4.6].
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For i € TID, the local graph of thread i is the directed graph with nodes
Local; and an edge o — o' if either (i) o € Acquire; U Release; U Barrier; and
o’ = next(o), or (ii) o € Nsync; and there is some ¢’ € Shared such that (¢’ (")
is in the image of update(o).

Fix a multithreaded program P and let

LockState = (Lock — {0} U TID)

State = ( H Local,-) x Shared x LockState x 27'P.

i€TID

A lock state specifies the owner of each lock. The owner is a thread ID, or 0 if the
lock is free. The elements of State are the (global) states of P. A state specifies
a local state for each thread, a shared state, a lock state, and the set of threads
that are currently blocked at a barrier.

Let i € TID and L; = Local; x Shared x LockState x 2T'P. Define

enabled; : L; — 25tmti

{acquire;(1)} if o € Acquire; Al = lock(c) AO(1) =
{release; (1)} if sigma € Release; Al =lock(c) AO(1) =4

A= ¢ {exit; } if o € Barrier; At ¢ w
stmts(o) if o € Nsync;
0 otherwise.

where A = (0,(,0,w) € L;. This function returns the set of statements that are
enabled in thread ¢ at a given state. This function does not depend on the local
states of threads other than i, which is why those are excluded from L;. An
acquire statement is enabled if the lock is free; a release is enabled if the calling
thread owns the lock. A barrier exit is enabled if the thread is not currently in
the barrier blocked set.

Execution of an enabled statement in thread i updates the state as follows:

execute;: {(\,t) € L; X Stmt; | ¢ € enabled;(\)} — L;

(¢,¢,0[l — i],w") if o € Acquire; At = acquire;(I) A o’ = next(o)

(¢/,(,0[l — 0],w’) if o € Release; At = release;(1) A o’ = next(o)
(A, t) — (¢,¢, 9 w’) if o € Barrier; At = exit; A ¢/ = next(o)

(o/,¢",0,w") if 0 € Nsync; At € stmts(o) A

update(o)(t,¢) = (o, (")
where A = (0,(,0,w) and in each case above
wU{i} if o’ € Barrier; Aw U {i} # TID
w'=<0 if ' € Barrier; Aw U {i} = TID

w otherwise.
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Note a thread arriving at a barrier will have its ID added to the barrier blocked
set, unless it is the last thread to arrive, in which case all threads are released
from the barrier.

At a given state, the set of enabled statements is the union over all threads
of the enabled statements in that thread. Execution of a statement updates the
state as above, leaving the local states of other threads untouched:

enabled: State — 25t™t

s U enabled; (¢, ¢, 6, w)

FETID
execute: {(s,t) € State x Stmt | ¢ € enabled(s)} — State
(s,8) = (&li = 0], ¢, 0, '),

where s = (£, ¢, 0, w) € State, t € enabled(s), ¢ = tid(t), and
execute; (&;, ¢, 0,w,t) = (o, ', 0", w').

Definition 2. A transition is a triple s 1, s', where s € State, t € enabled(s),
and s’ = execute(s,t). An execution « of P is a (finite or infinite) chain of
transitions sg =5 s; -3 ---. The length of o, denoted ||, is the number of

transitions in «. O

Note that an execution is completely determined by its initial state sg and its
statement sequence t1tg - - -.

Having specified the semantics of the computational model, we now turn to
the concept of the data race. The traditional definition requires the notion of
“conflicting” accesses: two accesses to the same memory location conflict when
at least one is a write. The following abstracts this notion:

Definition 3. A symmetric binary relation conflict on Stmt is a conflict relation
for P if the following hold for all 1, ¢ € Stmt:

1. if (¢t1,12) € conflict then ¢; and t5 are nsync statements from different threads
2. if t; and t5 are nsync statements from different threads and (t1,¢2) ¢ conflict,
then for all s € State, if ¢1,%2 € enabled(s) then

execute(execute(s, 1), ta) = execute(execute(s, ta),t1). O

Fix a conflict relation for P for the remainder of this section.

The next ingredient in the definition of data race is the happens-before rela-
tion. This is a relation on the set of events generated by an execution. An event
is an element of Event = Stmt x N.

Definition 4. Let o = (s > s; 23 ---) be an execution. The trace of a is
the sequence of events tr(a) = (t1,n1)(t2,n2) -+, of length ||, where n; is the

number of j € [1,¢] for which tid(¢;) = tid(¢;). We write [] for the set of events
occurring in tr(a). O
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A trace labels the statements executed by a thread with consecutive integers
starting from 1. Note the cardinality of [@] is |a|, as no two events in tr(a)
are equal. Also, [] is invariant under transposition of two adjacent commuting
transitions from different threads.

Given an execution «, the happens-before relation of «, denoted HB(«), is a
binary relation on [«]. It is the transitive closure of the union of three relations:

1. the intra-thread order relation
{(<t17n1>, <t2,n2>) S [a] X [0[} ‘ tld(tl) = tld(tz) ANnp < ’I’LQ}.

2. the release-acquire relation. Say tr(c) = ejes ... and e; = (t;,n;). Then (e;, €;)
is in the release-acquire relation if there is some [ € Lock such that all of the
following hold: (i) 1 <4 < j < |a], (ii) ¢; is a release statement on [, (iii) ¢; is
an acquire statement on [, and (iv) whenever i < k < j, ¢ is not an acquire
statement on [.

3. the barrier relation. For any e = (t,n) € [a], let ¢ = tid(¢) and define

epoch(e) = |{¢' € [a] | € = (exit;, j) for some j € [1,n]}],

the number of barrier exit events in thread i preceding or including e. The
barrier relation is

{(e,€") € [a] x [a] | epoch(e) < epoch(e)}.
Two events “race” when they conflict but are not ordered by happens-before:

Definition 5. Let o be an execution and e,e¢’ € [a]. Say e = (t,n) and ¢ =
(t',n'). We say e and e’ race in « if (¢,t') € conflict and neither (e, e’) nor (¢, e)
is in HB(«). The data race relation of « is the symmetric binary relation on [«]

DR(a) = {(e,€¢’) € [a] x [a] | e and €’ race in a}. O

Now we turn to the problem of detecting data races. Our approach is to
explore a modified state space. The usual state space is a directed graph with
node set State and transitions for edges. We make two modifications. First,
we add some “history” to the state. Specifically, each thread records the nsync
statements it has executed since its last lock event or barrier exit. This set is
checked against those of other threads for conflicts, just before it is emptied after
its next lock event or barrier exit. The second change is a reduction: any state
that has an enabled statement that is not a lock statement will have outgoing
edges from only one thread in the modified graph.

A well-known technical challenge with partial order reduction concerns cycles
in the reduced state space. We deal with this challenge by assuming that P comes
with some additional information. Specifically, for each i, we are given a set R;,
with Release; U Acquire; C R; C Local;, satisfying: any cycle in the local graph
of thread ¢ has at least one node in R;. In general, the smaller R;, the more
effective the reduction. In many application domains, there are no cycles in the
local graphs, so one can take R; = Release; UAcquire;. For example, standard for
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loops in C, in which the loop variable is incremented by a fixed amount at each
iteration, do not introduce cycles, because the loop variable will take on a new
value at each iteration. For while loops, one may choose one node from the loop
body to be in R;. Goto statements may also introduce cycles and could require
additions to R;.

Definition 6. The race-detecting state graph for P is the pair G = (V, E), where
V = State x ( H 25tmti)
i€TID

and E CV x Stmt x V consists of all ((s,a),t,(s’,a’)) such that, letting o; be
the local state of thread 7 in s,

1. s 5 ¢ is a transition in P
a; U{t} if¢is an nsync statement in thread i

2. VieTID,a, =<0 if t = exitg or i = tid(¢t) Ao; € R;
otherwise
3. if there is some ¢ € TID such that o; € R; and thread 7 has an enabled
statement at s, then tid(¢) is the minimal such i. O

The race-detecting state graph may be thought of as a directed graph in which
the nodes are V' and edges are labeled by statements. Note that at a state where
all threads are in the barrier, exity is the only enabled statement in the race-
detecting state graph, and its execution results in emptying all the a;. A lock
event in thread ¢ results in emptying a; only.

Definition 7. Let P be a multithreaded program and G = (V, E) the race-
detecting state graph for P.

1. Let u = (s,a) € V and i € TID. We say thread i detects a race in u if there
exist j € TID\ {i}, t1 € a;, and t2 € a; such that (¢1,t2) € conflict.

2. Lete=v 50 € E, i = tid(t), o the local state of thread i at v, and ¢’ the
local state of thread i at v'. We say e detects a race if either (i) o € R;\Acquire;
and thread i detects a race in v, (ii) o’ € Acquire; and thread ¢ detects a race
in v/, or (ii) ¢ = exitp and any thread detects a race in v.

3. We say G detects a race from wu if FE contains an edge that is reachable from
u and detects a race, or there is some v = (s,a) € V that is reachable from
u, and ¢ € TID, such that enabled(s) = §) and thread 4 detects a race in v. O

Definition 7 suggests a method for detecting data races in a multithreaded
program. The nodes and edges of the race-detecting state graph reachable from
an initial node are explored. (The order in which they are explored is irrelevant.)
When an edge from a thread at an R; \ Acquire; state is executed, the elements
of a; are compared with those in a; for all j € TID\ {¢} to see if a conflict exists,
and if so, a data race is reported. When an edge in thread i terminates at an
Acquire; state, a similar race check takes place. When an exitg occurs, or a node
with no outgoing edges is reached, a; and a; are compared for all 7, j € TID with
1 # j. This approach is sound and precise in the following sense:



Model Checking and Sequential Consistency for Data-Race-Free Programs 273

Theorem 1. Let P be a multithreaded program, and G = (V,E) the race-
detecting state graph for P. Let sy € State and let ug = (so,07'P) € V. Assume
the set of nodes reachable from ug is finite. Then

1. P has an execution from sy with a data race if, and only if, G detects a race
from ug.

2. If there is a data race-free execution of P from sy to some state sy with
enabled(sy) = () then there is a path in G from ug to a node with state com-
ponent Sy.

A proof of Theorem 1 is given in https://arxiv.org/abs/2305.18198.

Ezxample 1. Consider the 2-threaded program represented in pseudocode:

ti1: acquire(ly); x=1; release(ly);
to: acquire(la); x=2; release(ls);

where [; and Iy are distinct locks. Let R; = Release; U Acquire; (i = 1,2). One
path in the race-detecting state graph G executes as follows:

acquire(ly); x=1; release(ly); acquire(lz); x=2; release(ls);.

A data race occurs on this path since the two assignments conflict but are not
ordered by happens-before. The race is not detected, since at each lock operation,
the statement set in the other thread is empty. However, there is another path

acquire(ly); x=1; acquire(ls); x=2; release(l1);

in G, and on this path the race is detected at the release.

3 Implementation and Evaluation

We implemented a verification tool for C/OpenMP programs using the CIVL
symbolic execution and model checking framework. This tool can be used to ver-
ify absence of data races within bounds on certain program parameters, such as
input sizes and the number of threads. (Bounds are necessary so that the num-
ber of states is finite.) The tool accepts a C/OpenMP program and transforms
it into CIVL-C, the intermediate verification language of CIVL. The CIVL-C
program has a state space similar to the race-detecting state graph described
in Sect. 2. The standard CIVL verifier, which uses model checking and symbolic
execution techniques, is applied to the transformed code and reports whether
the given program has a data race, and, if so, provides precise information on
the variable involved in the race and an execution leading to the race.

The approach is based on the theory of Sect. 2, but differs in some implemen-
tation details. For example, in the theoretical approach, a thread records the set
of non-synchronization statements executed since the thread’s last synchroniza-
tion operation. This data is used only to determine whether a conflict took place
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between two threads. Any type of data that can answer this question would
work equally well. In our implementation, each thread instead records the set of
memory locations read, and the set of memory locations modified, since the last
synchronization. A conflict occurs if the read or write set of one thread intersects
the write set of another read. As CIVL-C provides robust support for tracking
memory accesses, this approach is relatively straightforward to implement by a
program transformation.

In Sect. 3.1, we summarize the basics of OpenMP. In Sect. 3.2, we provide the
necessary background on CIVL-C and the primitives used in the transformation.
In Sect. 3.3, we describe the transformation itself. In Sect. 3.4, we report the
results of experiments using this tool.

All software and other artifacts necessary to reproduce the experiments, as
well as the full results, are included in a VirtualBox virtual machine available at
https://doi.org/10.5281 /zenodo.7978348.

3.1 Background on OpenMP

OpenMP is a pragma-based language for parallelizing programs written in C,
C++ and Fortran [13]. OpenMP was originally designed and is still most com-
monly used for shared-memory parallelization on CPUs, although the language
is evolving and supports an increasing number of parallelization styles and hard-
ware targets. We introduce here the OpenMP features that are currently sup-
ported by our implementation in CIVL. An example that uses many of these
features is shown in Fig. 1.

The parallel construct declares the following structured block as a parallel
region, which will be executed by all threads concurrently. Within such a parallel
region, programmers can use worksharing constructs that cause certain parts of
the code to be executed only by a subset of threads. Perhaps most importantly,
the loop worksharing construct can be used inside a parallel region to declare
a omp for loop whose iterations are mapped to different threads. The mapping
of iterations to threads can be controlled through the schedule clause, which
can take values including static, dynamic, guided along with an integer that
defines the chunk size. If no schedule is explicitly specified, the OpenMP run time
is allowed to use an arbitrary mapping. Furthermore, a structured block within
a worksharing loop may be declared as ordered, which will cause this block
to be executed sequentially in order of the iterations of the worksharing loop.
Worksharing for non-iterative workloads is supported through the sections con-
struct, which allows the programmer to define a number of different structured
blocks of code that will be executed in parallel by different threads.

Programmers may use pragmas and clauses for barriers, atomic updates,
and locks. OpenMP supports named critical sections, allowing no more than
one thread at a time to enter a critical section with that name, and unnamed
critical sections that are associated with the same global mutex. OpenMP also
offers master and single constructs that are executed only by the master thread
or one arbitrary thread.
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1 || #pragma omp parallel shared(b) private(i) shared(u,v)
2

3 #pragma omp sections

4

5 #pragma omp section

6 {b=0; v=0;1}

7 #pragma omp section

8 u = randQ);

9 }

10

11

12 #pragma omp for reduction(+:b) schedule(dynamic,1)
13 for (i=0; i<10; i++) {

14 b=D>b+ i;

15 #pragma omp atomic seq_cst

16 v+=i;

17 #pragma omp critical (collatz)

18 u = (u%2==0) ? u/2 : 3*u+l;

19 }

20 ||}

Fig. 1. OpenMP Example

Variables are shared by all threads by default. Programmers may change
the default, as well as the scope of individual variables, for each parallel region
using the following clauses: private causes each thread to have its own vari-
able instance, which is uninitialized at the start of the parallel region and sep-
arate from the original variable that is visible outside the parallel region. The
firstprivate scope declares a private variable that is initialized with the value
of the original variable, whereas the lastprivate scope declares a private vari-
able that is uninitialized, but whose final value is that of the logically last work-
sharing loop iteration or lexically last section. The reduction clause initializes
each instance to the neutral element, for example 0 for reduction(+). Instances
are combined into the original variable in an implementation-defined order.

CIVL can model OpenMP types and routines to query and control the num-
ber of threads (omp_set_num_threads, omp_get_num_threads), get the cur-
rent thread ID (omp_get_thread_num), interact with locks (omp_init_lock,
omp_destroy_lock, omp_set_lock, omp_unset_lock, and obtain the current
wall clock time (omp_get_wtime).

3.2 Background on CIVL-C

The CIVL framework includes a front-end for preprocessing, parsing, and build-
ing an AST for a C program. It also provides an API for transforming the AST.
We used this APT to build a tool which consumes a C/OpenMP program and pro-
duces a CIVL-C “model” of the program. The CIVL-C language includes most
of sequential C, including functions, recursion, pointers, structs, and dynami-
cally allocated memory. It adds nested function definitions and primitives for
concurrency and verification.

In CIVL-C, a thread is created by spawning a function: $spawn £(...);.
There is no special syntax for shared or thread-local variables; any variable that
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is in scope for two threads is shared. CIVL-C uses an interleaving model of
concurrency similar to the formal model of Sect.2. Simple statements, such as
assignments, execute in one atomic step.

Threads can synchronize using guarded commands, which have the form
$when (e)S. The first atomic substatement of S is guaranteed to execute only
from a state in which e evaluates to true. For example, assume thread IDs are
numbered from 0, and a lock value of —1 indicates the lock is free. The acquire
lock operation may be implemented as $when (1<0) 1=tid;, where 1 is an inte-
ger shared variable and tid is the thread ID. A release is simply 1=-1;.

A convenient way to spawn a set of threads is $parfor (int :d)S. This
spawns one thread for each element of the 1d-domain d; each thread executes S
with 7 bound to one element of the domain. A 1d-domain is just a set of integers;
e.g., if a and b are integer expressions, the domain expression a..b represents
the set {a,a + 1,...,b}. The thread that invokes the $parfor is blocked until
all of the spawned threads terminate, at which point the spawned threads are
destroyed and the original thread proceeds.

CIVL-C provides primitives to constrain the interleaving semantics of a pro-
gram. The program state has a single atomic lock, initially free. At any state,
if there is a thread t that owns the atomic lock, only ¢ is enabled. When the
atomic lock is free, if there is some thread at a $local_start statement, and
the first statement following $local_start is enabled, then among such threads,
the thread with lowest ID is the only enabled thread; that thread executes
$local_start and obtains the lock. When ¢ invokes $1ocal_end, ¢ relinquishes
the atomic lock. Intuitively, this specifies a block of code to be executed atomi-
cally by one thread, and also declares that the block should be treated as a local
statement, in the sense that it is not necessary to explore all interleavings from
the state where the local is enabled.

Local blocks can also be broken up at specified points using function $yield.
If ¢ owns the atomic lock and calls $yield, then ¢ relinquishes the lock and does
not immediately return from the call. When the atomic lock is free, there is no
thread at a $local_start, a thread t is in a $yield, and the first statement
following the $yield is enabled, then ¢ may return from the $yield call and
re-obtain the atomic lock. This mechanism can be used to implement the race-
detecting state graph: thread i begins with $local_start, yields at each R;
node, and ends with $local_end.

CIVL’s standard library provides a number of additional primitives. For
example, the concurrency library provides a barrier implementation through a
type $barrier, and functions to initialize, destroy, and invoke the barrier.

The mem library provides primitives for tracking the sets of memory locations
(a variable, an element of an array, field of a struct, etc.) read or modified
through a region of code. The type $mem is an abstraction representing a set
of memory locations, or mem-set. The state of a CIVL-C thread includes a
stack of mem-sets for writes and a stack for reads. Both stacks are initially
empty. The function $write_set_push pushes a new empty mem-set onto the
write stack. At any point when a memory location is modified, the location is
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1 || int nthreads = ...;

2 || $mem reads[nthreads], writes[nthreads];

3 || void check_conflict(int i, int j) {

4 $assert ($mem_disjoint (reads[i], writes[j]) && $mem_disjoint(writes[il], reads[j]) &&
5 $mem_disjoint (writes[il, writes[j1));

6 ||

7 || void check_and_clear_all() {

8 for (int i=0; i<nthreads; i++)

9 for (int j=i+1; j<nthreads; j++) check_conflict(i, j);
10 for (int i=0; i<nthreads; i++) reads[i] = writes[i] = $mem_empty();
11 ||}
12 || void run(int tid) {

13 void pop() { reads[tid]=$read_set_pop(); writes[tid]=$write_set_pop(); }
14 void push() { $read_set_push(); $write_set_push(); }

15 void check() {

16 for (int i=0; i<nthreads; i++) { if (i==tid) continue; check_conflict(tid, i); }
17 }

18

19 $local_start(); push(); S pop(); $local_end();
20 ||}
21 || for (int i=0; i<nthreads; i++) reads[i] = writes[i] = $mem_empty();
22 || $parfor (int tid:0..nthreads-1) run(tid);
23 || check_and_clear_all();

Fig. 2. Translation of #pragma omp parallel S

added to the top entry on the write stack. Function $write_set_pop pops the
write stack, returning the top mem-set. The corresponding functions for the
read stack are $read_set_push and $read_set_pop. The library also provides
various operations on mem-sets, such as $mem_disjoint, which consumes two
mem-sets and returns true if the intersection of the two mem-sets is empty.

3.3 Transformation for Data Race Detection

The basic structure for the transformation of a parallel construct is shown in
Fig. 2. The user specifies on the command line the default number of threads to
use in a parallel region. After this, two shared arrays are allocated, one to record
the read set for each thread, and the other the write set. Rather than updating
these arrays immediately with each read and write event, a thread updates them
only at specific points, in such a way that the shared sets are current whenever
a data race check is performed.

The auxiliary function check_conflict asserts no read-write or write-write
conflict exists between threads ¢ and j. Function check_and_clear_all checks
that no conflict exists between any two threads and clears the shared mem-sets.

Each thread executes function run. A local copy of each private variable is
declared (and, for firstprivate variables, initialized) here. The body of this
function is enclosed in a local region. The thread begins by pushing new entries
onto its read and write stacks. As explained in Sect. 3.2, this turns on memory
access tracking. The body S is transformed in several ways. First, references to
the private variable are replaced by references to the local copy. Other OpenMP
constructs are translated as follows.
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Lock operations. Several OpenMP operations are modeled using locks. The
omp_set_lock and omp_unset_lock functions are the obvious examples, but we
also use locks to model the behavior of atomic and critical section constructs. In
any case, a lock acquire operation is translated to

pop(); check(); $yield(); acquire(l); pushQ;

The thread first pops its stacks, updating its shared mem-sets. At this point, the
shared structures are up-to-date, and the thread uses them to check for conflicts
with other threads. This conforms with Definition 7(2), that a race check occur
upon arrival at an acquire location. It then yields to other threads as it attempts
to acquire lock [. Once acquired, it pushes new empty entries onto its stack and
resumes tracking. A release statement becomes

pop(); $yield(); check(); release(l); pushQ;

It is similar to the acquire case, except that the check occurs upon leaving the
release location, i.e., after the yield. A similar sequence is inserted in any loop
(e.g., a while loop or a for loop not in standard form) that may create a cycle
in the local space, only without the release statement.

Barriers. An explicit or implicit barrier in S becomes

pop(); $local_end(); $barrier_call(); if (tid==0) check_and_clear_all();
$barrier_call(); $local_start(); push();.

The CIVL-C $barrier_call function must be invoked outside of a local region,
as it may block. Once all threads are in the barrier, a single thread (0) checks
for conflicts and clears all the shared mem-sets. A second barrier call is used
to prevent other threads from racing ahead before this check and clear is com-
plete. This protocol mimics the events that take place atomically with an exitq
transition in Sect. 2.

Atomic and Critical Sections. An OpenMP atomic construct is modeled by
introducing a global “atomic lock” which is acquired before executing the atomic
statement and then released. The acquire and release actions are then trans-
formed as described above. Similarly, a lock is introduced for each critical section
name (and the anonymous critical section); this lock is acquired before entering
a critical section with that name and released when departing.

Worksharing Constructs. Upon arriving at a for construct, a thread invokes a
function that returns the set of iterations for which the thread is responsible.
The partitioning of the iteration space among the threads is controlled by the
construct clauses and various command line options. If the construct specifies
the distribution strategy precisely, then the model uses only that distribution. If
the construct does not specify the distribution, then the decisions are based on
command line options. One option is to explore all possible distributions. In this
case, when the first thread arrives, a series of nondeterministic choices is made
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to construct an arbitrary distribution. The verifier explores all possible choices,
and therefore all possible distributions. This enables a complete analysis of the
loop’s execution space, but at the expense of a combinatorial explosion with
the number of threads or iterations. A different command line option allows the
user to specify a particular default distribution strategy, such as cyclic. These
options give the user some control over the completeness-tractability tradeoff.
For sectiomns, only cyclic distribution is currently supported, and a single
construct is executed by the first thread to arrive at the construct.

3.4 Evaluation

We applied our verifier to a suite comprised of benchmarks from DataRaceBench
(DRB) version 1.3.2 [35] and some examples written by us that use different
concurrency patterns. As a basis for comparison, we applied a state-of-the-art
static analyzer for OpenMP race detection, LLOV v.0.3 [10], to the same suite.?

LLOV v.0.3 implements two static analyses. The first uses polyhedral anal-
ysis to identify data races due to loop-carried dependencies within OpenMP
parallel loops [9]. It is unable to identify data races involving critical sections,
atomic operations, master or single directives, or barriers. The second is a phase
interval analysis to identify statements or basic blocks (and consequently mem-
ory accesses within those blocks) that may happen in parallel [10]. Phases are
separated by explicit or implicit barriers and the minimum and maximum phase
in which a statement or basic block may execute define the phase interval. The
phase interval analysis errs in favor of reporting accesses as potentially happen-
ing in parallel whenever it cannot prove that they do not; consequently, it may
produce false alarms.

The DRB suite exercises a wide array of OpenMP language features. Of the
172 benchmarks, 88 use only the language primitives supported by our CIVL
OpenMP transformer (see Sect. 3.1). Some of the main reasons benchmarks were
excluded include: use of C++, simd and task directives, and directives for GPU
programming. All 88 programs also use only features supported by LLOV. Of
the 88, 47 have data races and 41 are labeled race-free.

We executed CIVL on the 88 programs, with the default number of OpenMP
threads for a parallel region bounded by 8 (with a few exceptions, described
below). We chose cyclic distribution as the default for OpenMP for loops. Many
of the programs consume positive integer inputs or have clear hard-coded inte-
ger parameters. We manually instrumented 68 of the 88, inserting a few lines of
CIVL-C code, protected by a preprocessor macro that is defined only when the
program is verified by CIVL. This code allows each parameter to be specified on
the CIVL command line, either as a single value or by specifying a range. In a few
cases (e.g., DRB055), “magic numbers” such as 500 appear in multiple places,

2 While there are a number of effective dynamic race detectors, the goal of those tools
is to detect races on a particular execution. Our goal is more aligned with that
of static analyzers: to cover as many executions as possible, including for different
inputs, number of threads, and thread interleavings.
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int a, ij; int n=100, m=100; double *u, *v;
#pragma omp parallel private(i) |double b[n][ml;
{ #pragma omp parallel for \ |for (t=0; t<steps; t++) {

#pragma omp master private(j) #pragma omp parallel for

a = 0; for (i=1;i<n;i++) for (i=1; i<n-1; i++) {
#pragma omp for reduction(+:a) for (j=0;j<m;j++) ulil=vlil+c*(v[i-11+v[il);
for (i=0; i<10; i++)

a=a+ i b[i] [j1=b[i] [j-11; u=v; v=u;
¥ }

Fig. 3. Excerpts from three benchmarks with data races: two from DataRaceBench
(left and middle) and erroneous 1d-diffusion (right).

which we replaced with an input parameter controlled by CIVL. These modi-
fications are consistent with the “small scope” approach to verification, which
requires some manual effort to properly parameterize the program so that the
“scope” can be controlled.

We used the range 1..10 for inputs, again with a few exceptions. In three
cases, verification did not complete within 3 min and we lowered these bounds as
follows: for DRB043, thread bound 8 and input bound 4; for the Jacobi iteration
kernel DRB058, thread bound 4 and bound of 5 on both the matrix size and
number of iterations; for DRB062, thread bound 4 and input bound 5.

CIVL correctly identified 40 of the 41 data-race-free programs, failing only
on DRB139 due to nested parallel regions. It correctly reported a data race for
45 of the 47 programs with data races, missing only DRB014 (Fig. 3, middle) and
DRBO015. In both cases, CIVL reports a bound issue for an access to b[i] [j-1]
when i > 0 and j = 0, but fails to report a data race, even when bound checking
is disabled.

LLOV correctly identified 46 of the 47 programs with data races, failing to
report a data race for DRB140 (Fig. 3, left). The semantics for reduction specify
that the loop behaves as if each thread creates a private copy, initially 0, of
the shared variable a, and updates this private copy in the loop body. At the
end of the loop, the thread adds its local copy onto the original shared variable.
These final additions are guaranteed to not race with each other. In CIVL, this is
modeled using a lock. However, there is no guarantee that these updates do not
race with other code. In this example, thread 0 could be executing the assignment
a=0 while another thread is adding its local result to a—a data race. This race
issue can be resolved by isolating the reduction loop with barriers.

LLOV correctly identified 38 out of 41 data-race-free programs. It reported
false alarms for DRB052 (no support for indirect addressing), DRB054 (failure
to propagate array dimensions and loop bounds from a variable assignment),
and DRBO069 (failure to properly model OpenMP lock behavior).

The DRB suite contains few examples with interesting interleaving depen-
dencies or pointer alias issues. To complement the suite, we wrote 10 additional
C/OpenMP programs based on widely-used concurrency patterns (cf. [1]):

— 3 implementations of a synchronization signal sent from one thread to
another, using locks or busy-wait loops with critical sections or atomics;
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int x=0, s=0;
#pragma omp parallel sections \ #pragma omp parallel num_threads(2)
shared(x,s) num_threads(2)
{ int tid = omp_get_thread_num();
#pragma omp section if (tid == 0) omp_set_lock(&10);
else if (tid == 1) omp_set_lock(&ll);
x=1; #pragma omp barrier
#pragma omp atomic write seq_cst if (tid == 0) x=0;
s=1; if (tid == 0) {
} omp_unset_lock(&10);
#pragma omp section omp_set_lock(&11);
{ } else if (tid == 1) {
int done = 0; omp_set_lock(&10);
while (!done) { omp_unset_lock(&11);
#pragma omp atomic read seq_cst }
done = s; if (tid == 1) x=1;
} #pragma omp barrier
x=2; if (tid == 0) omp_unset_lock(&1l1);
} else if (tid == 1) omp_unset_lock(&10);
} }

Fig. 4. Code for synchronization using an atomic variable (left) and a 2-thread barrier
using locks (right).

— 3 implementations of a 2-thread barrier, using busy-wait loops or locks;

— 2 implementations of a 1d-diffusion simulation, one in which two copies of the
main array are created by two separate malloc calls; one in which they are
inside a single malloced object; and

— an instance of a single-producer, single-consumer pattern; and a multiple-
producer, multiple-consumer version, both using critical sections.

For each program, we created an erroneous version with a data race, for a total
of 20 tests. These codes are included in the experimental archive, and two are
excerpted in Fig. 4.

CIVL obtains the expected result in all 20. While we wrote these additional
examples to verify that CIVL can reason correctly about programs with complex
interleaving semantics or alias issues, for completeness we also evaluated them
with LLOV. It should be noted, however, that the authors of LLOV warn that it
“...does not provide support for the OpenMP constructs for synchronization. . .”
and “...can produce False Positives for programs with explicit synchronizations
with barriers and locks.” [9] It is therefore unsurprising that the results were
somewhat mixed: LLOV produced no output for 6 of our examples (the racy
and race-free versions of diffusion2 and the two producer-consumer codes) and
produced the correct answer on 7 of the remaning 14. On these problems, LLOV
reported a race for both the racy and race-free version, with the exception of
diffusionl (Fig. 3, right), where a failure to detect the alias between u and v leads
it to report both versions as race-free.

CIVL’s verification time is significantly longer than LLOV’s. On the DRB
benchmarks, total CIVL time for the 88 tests was 27 min. Individual times ranged
from 1 to 150 seconds: 66 took less than 5s, 80 took less than 30s, and 82 took
less than 1 min. (All CIVL runs used an M1 MacBook Pro with 16GB memory.)



282 W. Wu et al.

Total CIVL runtime on the 20 extra tests was 210s. LLOV analyzes all 88 DRB
problems in less than 15s (on a standard Linux machine).

4 Related Work

By Theorem 1, if barriers are the only form of synchronization used in a program,
only a single interleaving will be explored, and this suffices to verify race-freedom
or to find all states at the end of each barrier epoch. This is well known in other
contexts, such as GPU kernel verification (cf. [5]).

Prior work involving model checking and data races for unstructured con-
currency includes Schemmel et al. [29]. This work describes a technique, using
symbolic execution and POR, to detect defects in Pthreads programs. The app-
roach involves intricate algorithms for enumerating configurations of prime event
structures, each representing a set of executions. The completeness results deal
with the detection of defects under the assumption that the program is race-
free. While the implementation does check for data races, it is not clear that the
theoretical results guarantee a race will be found if one exists.

Earlier work of Elmas et al. describes a sound and precise technique for
verifying race-freedom in finite-state lock-based programs [16]. It uses a bespoke
POR-based model checking algorithm that associates significant and complex
information with the state, including, for each shared memory location, a set of
locks a thread should hold when accessing that location, and a reference to the
node in the depth first search stack from which the last access to that location
was performed.

Both of these model checking approaches are considerably more complex than
the approach of this paper. We have defined a simple state-transition system and
shown that a program has a data race if and only if a state or edge satisfying
a certain condition is reachable in that system. Our approach is agnostic to the
choice of algorithm used to check reachability. The earlier approaches are also
path-precise for race detection, i.e., for each execution path, a race is detected if
and only if one exists on that path. As we saw in the example following Theorem
1, our approach is not path-precise, nor does it have to be: to verify race-freedom,
it is only necessary to find one race in one execution, if one exists. This partly
explains the relative simplicity of our approach.

A common approach for verifying race-freedom is to establish consistent
correlation: for each shared memory location, there is some lock that is held
whenever that location is accessed. LOCKSMITH [27] is a static analysis tool for
multithreaded C programs that takes this approach. The approach should never
report that a racy program is race-free, but can generate false alarms, since there
are race-free programs that are not consistently correlated. False alarms can also
arise from imprecise approximations of the set of shared variables, alias analysis,
and so on. Nevertheless, the technique appears very effective in practice.

Static analysis-based race-detection tools for OpenMP include OMPRacer
[33]. OMPRacer constructs a static graph representation of the happens-before
relation of a program and analyzes this graph, together with a novel whole-
program pointer analysis and a lockset analysis, to detect races. It may miss
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violations as a consequence of unsound decisions that aim to improve perfor-
mance on real applications. The tool is not open source. The authors subse-
quently released OpenRace [34], designed to be extensible to other parallelism
dialects; similar to OMPRacer, OpenRace may miss violations. Prior papers by
the authors present details of static methods for race detection, without a tool
that implements these methods [32].

PolyOMP [12] is a static tool that uses a polyhedral model adapted for a
subset of OpenMP. Like most polyhedral approaches, it works best for affine
loops and is precise in such cases. The tool additionally supports may-write
access relations for non-affine loops, but may report false alarms in that case.
DRACO [36] also uses a polyhedral model and has similar drawbacks.

Hybrid static and dynamic tools include Dynamatic [14], which is based on
LLVM. It combines a static tool that finds candidate races, which are subse-
quently confirmed with a dynamic tool. Dynamatic may report false alarms and
miss violations.

ARCHER |[2] is a tool that statically determines many sequential or prov-
ably non-racy code sections and excludes them from dynamic analysis, then
uses TSan [30] for dynamic race detection. To avoid false alarms, ARCHER
also encodes information about OpenMP barriers that are otherwise not under-
stood by TSan. A follow-up paper discusses the use of the OMPT interface
to aid dynamic race detection tools in correctly identifying issues in OpenMP
programs [28], as well as SWORD [3], a dynamic tool that can stay within user-
defined memory bounds when tracking races, by capturing a summary on disk
for later analysis.

ROMP [18] is a dynamic/static tool that instruments executables using the
Dynlnst library to add checks for each memory access and uses the OMPT inter-
face at runtime. It claims to support all of OpenMP except target and simd con-
structs, and models “logical” races even if they are not triggered because the con-
flicting accesses happen to be scheduled on the same thread. Other approaches
for dynamic race detection and tricks for memory and run-time efficient race
bookkeeping during execution are described in [11,19,20,24].

Deductive verification approaches have also been applied to OpenMP pro-
grams. An example is [6], which introduces an intermediate parallel language and
a specification language based on permission-based separation logic. C programs
that use a subset of OpenMP are manually annotated with “iteration contracts”
and then automatically translated into the intermediate form and verified using
VerCors and Viper. Successfully verified programs are guaranteed to be race-free.
While these approaches require more work from the user, they do not require
bounding the number of threads or other parameters.

5 Conclusion

In this paper, we introduced a simple model-checking technique to verify that a
program is free from data races. The essential ideas are (1) each thread “remem-
bers” the accesses it performed since its last synchronization operation, (2) a
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partial order reduction scheme is used that treats all memory accesses as local,
and (3) checks for conflicting accesses are performed around synchronizations.
We proved our technique is sound and precise for finite-state models, using a
simple mathematical model for multithreaded programs with locks and barriers.
We implemented our technique in a prototype tool based on the CIVL symbolic
execution and model checking platform and applied it to a suite of C/OpenMP
programs from DataRaceBench. Although based on completely different tech-
niques, our tool achieved performance comparable to that of the state-of-the-art
static analysis tool, LLOV v.0.3.

Limitations of our tool include incomplete coverage of the OpenMP speci-
fication (e.g., target, simd, and task directives are not supported); the need
for some manual instrumentation; the potential for state explosion necessitat-
ing small scopes; and a combinatorial explosion in the mappings of threads to
loop iterations, OpenMP sections, or single constructs. In the last case, we have
compromised soundness by selecting one mapping, but in future work we will
explore ways to efficiently cover this space. On the other hand, in contrast to
LLOV and because of the reliance on model checking and symbolic execution,
we were able to verify the presence or absence of data races even for programs
using unstructured synchronization with locks, critical sections, and atomics,
including barrier algorithms and producer-consumer code.
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