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Abstract
For any right-angled Artin group A! , we construct a finite-dimensional space O! on
which the group Out.A!/ of outer automorphisms of A! acts with finite point stabi-
lizers. We prove that O! is contractible, so that the quotient is a rational classifying
space for Out.A!/. The space O! blends features of the symmetric space of lattices
in Rn with those of outer space for the free group Fn. Points in O! are locally CAT(0)
metric spaces that are homeomorphic (but not isometric) to certain locally CAT(0)
cube complexes, marked by an isomorphism of their fundamental group with A! .
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1. Introduction
A latticeƒ in a semisimple Lie groupG acts discretely on the symmetric spaceG=K ,
and a very well-developed theory shows that the algebraic structure ofƒ is intimately
connected to the geometric structure of G=K . The study of surface mapping class
groups by Thurston, Harvey, and Harer among others borrowed ideas from this clas-
sical subject, using Teichmüller space as a substitute for the symmetric space, and this
point of view proved to be extremely fruitful. An analogue of symmetric spaces and
Teichmüller spaces called Culler–Vogtmann’s outer space was later produced for the
purpose of studying the group of outer automorphisms of a free group (see [18]). The
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study of this group, space, and action has frequently been guided by Thurston’s ideas,
but there are some respects in which Out.Fn/ more closely resembles a lattice than
a mapping class group. For example, mapping class groups are automatic (see [29]),
while for n! 3, Out.Fn/ (see [9]) and GL.n;Z/ (see [23]) are not.

In this article, we study outer automorphism groups of right-angled Artin groups,
a class which includes both Out.Fn/ and the most basic lattice, GL.n;Z/DOut.Zn/.
Recall that a right-angled Artin group (RAAG) is defined by a presentation with a
finite set of generators together with relations specifying that some of the generators
commute. A convenient way of expressing this is to draw a graph ! with one vertex
for every generator and one edge connecting each pair of commuting generators; the
resulting RAAG is denoted A! . In recent years, RAAGs and their automorphism
groups have played a prominent role in geometric group theory and low-dimensional
topology. RAAGs are linear groups and they arise naturally as subgroups of many
other groups such as mapping class groups, Coxeter groups, and more general Artin
groups (see, e.g., [15], [16], [19], [26]). Conversely, while all subgroups of free (or
free abelian) groups are themselves free (or free abelian), a surprisingly diverse array
of groups can be realized as subgroups of RAAGs, including surface groups and many
3-manifold groups (see [2], [24], [32]). The fact that the fundamental group of every
closed hyperbolic 3-manifold virtually embeds in a RAAG was central to Agol’s proof
of the virtual Haken conjecture in [1], the final step in Thurston’s program to classify
3-manifolds. The diversity of subgroups has also made RAAGs a fertile source of
counterexamples for a variety of conjectures (see [3], [17]).

To date, outer automorphism groups of RAAGs have primarily been studied from
an algebraic point of view (see, e.g., [13], [14], [20], [22]). As the case of mapping
class groups and Out.Fn/ clearly demonstrates, geometric approaches to studying
such groups can be very effective. In this work, we focus on constructing an ana-
logue of outer space for RAAGs that will allow us to apply similar methods to the
study of Out.A!/. Some initial steps in this direction appear in previous papers. In
[11], Charney and Vogtmann, together with Crisp, constructed a candidate outer space
for 2-dimensional RAAGs (those for which ! contains no triangles), but there is no
apparent way to generalize this to higher dimensions. Then in [12], together with
Stambaugh, they constructed a contractible space K! with a proper action of a cer-
tain subgroup of Out.A!/. This subgroup, denoted U.A!/, is made up of “untwisted”
outer automorphisms of A! that behave more like automorphisms of free groups. In
particular, it excludes transvections between commuting pairs of generators. Here, we
use the spaceK! as a starting point to build an outer space for the full outer automor-
phism group.

Outer space for free groups, CVn, can be described as a space of marked metric
graphs with fundamental group Fn, where the marking specifies an isomorphism of
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"1 with Fn. Similarly, the symmetric space Qn D SO.n/nSL.n;R/ can be described
as the space of marked flat tori with fundamental group Zn, where the marking gives
an isomorphism of "1 with Zn. Thus the basic objects in Qn (tori) are all homeo-
morphic but have different flat metrics, while the basic objects in CVn (graphs) have
different homeomorphism types as well as different metrics. These different homeo-
morphism types, however, all have a common quotient, an n-petaled rose, obtained
by collapsing any maximal tree. For a general RAAG, there is a canonical construc-
tion of a CAT(0) cube complex S! with fundamental group A! , known as the Salvetti
complex, which has a k-torus for each k-clique in ! . In the new outer space, this
complex plays the role of the n-petaled rose. The basic objects in our outer space
O! are locally CAT(0) metric spaces .Y; d/ containing contractible subspaces (anal-
ogous to maximal trees) that can be collapsed to produce a quotient homeomorphic
to S! . Each .Y; d/ is made up of a collection of (intersecting) flat tori marked by the
free abelian groups generated by cliques in ! . A point in O! consists of one of these
metric spaces .Y; d/ marked by an isomorphism of "1.Y / with A! .

More precisely, the spaces Y are homeomorphic (but not isometric) to nonposi-
tively curved cube complexes called !-complexes, which were previously introduced
in [12]. Marked !-complexes form a partially ordered set whose geometric realization
is the simplicial complex K! mentioned above. In K! , !-complexes are viewed as
combinatorial objects, not as metric objects, and the markings are of restricted type,
allowing only an action of the subgroup U.A!/. In the current paper, !-complexes
are endowed with locally CAT(0) metrics that make the interior of each “cube” iso-
metric to a Euclidean parallelotope. We call this a skewed !-complex. The objects
.Y; d/ in O! are isometric to skewed !-complexes. The markings are arbitrary, and
objects are equivalent if they are isometric by a map that commutes with the marking,
up to free homotopy. As in the special cases of GL.n;Z/ acting on Qn and Out.Fn/
acting on CVn, Out.A!/ acts on O! by changing the marking. Our main theorem
states the following.

THEOREM 1.1
For any right-angled Artin group A! , the space O! is finite-dimensional, con-
tractible, and the action of the group Out.A!/ has finite point stabilizers.

We now give a brief outline of the proof. The proof begins with the space K!
which, as noted above, was shown in [12] to be contractible. The passage from K! to
O! involves several intermediate steps. First, we embed K! into a new space †! by
endowing !-complexes with metrics making “cubes” into orthotopes, that is, orthog-
onal products of intervals of various lengths; these are called rectilinear !-complexes.
In the case of a free group, this corresponds to embedding the spine of outer space
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into the full outer space CVn. As in the case of K! , the action on †! is restricted
to the subgroup U.A!/. This is a result of allowing only certain types of markings,
called untwisted markings. It is easy to show that K! is a deformation retract of †! ,
so that †! is contractible.

Next, we allow the orthotopes in a !-complex to skew so that they become paral-
lelotopes. This is done in a controlled manner, resulting in an allowable parallelotope
structure which is still locally CAT(0). The collection of skewed !-complexes with
untwisted markings is denoted T! . We show that there is a deformation retraction of
T! onto †! defined by straightening the parallelotopes, so T! is also contractible.

The action on T! is still restricted to the subgroup U.A!/. To get a space on
which all of Out.A!/ acts we must allow for transvections between commuting ele-
ments; these are called twists. To see how this is done, consider the case of a marked
metric torus T n. One can think of a change of marking as either a change in the
isomorphism "1.T

n/! Zn, or as a change in the shape of the parallelotope whose
quotient is T n. To reconcile these viewpoints in the case of a skewed !-complex, we
put an equivalence relation on the points in T! . Namely, two skewed !-complexes
with specified markings are equivalent if they are isometric by a map that takes one
marking to the other (up to homotopy), where this map need not preserve the combi-
natorial structure. Then up to equivalence, we can accomplish twists by adjusting the
skewing of appropriate tori in the !-complex.

The points in the new outer space O! are equivalence classes of points in T! ,
thus there is a natural surjection T! ! O! . The proof of Theorem 1.1 consists in
showing that this map is a fibration with contractible fibers. The key problem is
understanding to what extent the combinatorial structure on a marked skewed !-
complex is determined by its metric. For this, we divide the hyperplanes into two
classes, twist-minimal and twist-dominant, and show that the twist-minimal hyper-
planes are completely determined by the metric. The twist-dominant hyperplanes on
the other hand, depend on the shapes of the parallelotopes and can vary within a fiber.
To show contractibility, we encode the allowable skewings by a vector in a Euclidean
space and prove that the set of points in a fiber corresponds to a convex subspace of
this Euclidean space.

Theorem 1.1 is a first step toward a more geometric study of Out.A!/. It leads to
many natural questions, a few of which we now discuss briefly.

The dimension of O! can be computed (with some effort) by looking at the
graph ! . As is the case for symmetric spaces and Teichmüller spaces, the action
of Out.A!/ on O! is not cocompact, and this dimension is quite a bit larger than the
virtual cohomological dimension (VCD) of Out.A!/. An algebraic algorithm for com-
puting this VCD has been established by Day, Sale, and Wade [21]. For both GL.n;Z/
and Out.Fn/, there is an equivariant deformation retract (a “spine”) of dimension
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equal to the VCD, and it would be interesting to find an analogous spine for O! . The
construction of such a spine might be fairly subtle, as it was shown in [28] that the
dimension of K! , though often equal to the VCD of U.A!/, is sometimes strictly
larger. As an aside, we remark that no natural spine has yet been constructed for the
action of the mapping class group of a closed surface on Teichmüller space.

Much of the work on Out.Fn/ and GL.n;Z/ (as well as surface mapping class
groups) depends on understanding the structure of the associated space at or near
infinity, for example, by adding a “boundary” that compactifies either the space or
its quotient, and studying the action on this boundary. Thurston compactified Teich-
müller space by embedding it into the space of projective length functions for the
fundamental group of the surface, outer space can be compactified by embedding
it into the space of projective length functions on Fn, and the symmetric space Qn
embeds into the space of projective length functions on Zn. Vijayan [33] initiated a
study of length functions on A! , which was further developed by Beyrer and Fiora-
vanti [5], who used length functions to compactify the “untwisted” outer space K!
of [12]. A different way of understanding the structure at infinity is by “bordifying”
the space, which compactifies not the space but rather the quotient. There are bordi-
fications of Qn (defined in much more generality by Borel and Serre [6]) and CVn
(defined by Bestvina and Feighn [4]). These were used to prove that the respective
groups are virtual duality groups in the sense of Bieri and Eckmann. Is there an anal-
ogous bordification of O!? The question is subtle, as Brück and Wade [10] showed
that Out.A!/ is not always a virtual duality group.

A space is a classifying space for proper G-actions if fixed point sets of finite
subgroups are contractible. Such a space is called an EG-space. These are useful,
for example, for studying centralizers of finite-order elements. In addition, we recall
that the Baum–Connes conjecture relates the topological K-theory of the reduced C !-
algebra of G to an appropriate equivariant homology theory evaluated at EG. Both
Qn and CVn are classifying spaces for proper actions, so it is natural to ask whether
O! is likewise for Out.A!/.

Finally, both symmetric spaces and outer space for free groups can be equipped
with useful metrics (though the most intensively studied metric structure on outer
space is an asymmetric metric). A geometric approach often gives a simpler, more
natural explanation for algebraic features of the group. Is there a good metric on O!?
How do geodesics in this metric behave?

The paper is organized as follows. In Section 2, we establish basic terminology,
recall the construction of the space K! , and embed it into a space †! . In Section 3,
we establish some basic properties of !-complexes which will be needed later on. In
Section 4, we introduce the notion of twist-dominant and twist-minimal hyperplanes
and investigate the extent to which these notions depend on the choice of !-structure
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and the marking. In Section 5, we define an allowable parallelotope structure on a
!-complex and show that the resulting path metric is locally CAT(0). In Section 6,
we prove that the space T! of skewed !-complexes deformation retracts to†! , hence
is contractible. Finally, in Section 7, we define our outer space O! and show that the
natural map T!!O! is a fibration with contractible fibers.

2. Preliminaries
We fix a finite simplicial graph ! D .V;E/ throughout the paper, and denote by A!
the associated right-angled Artin group. In this section we give a brief account of the
contents of [12]. We refer the reader to [12] for further details.

2.1. Graph terminology
For v 2 V , the link, lk.v/, is the full subgraph of ! spanned by vertices adjacent to
v, and the star, st.v/, is the full subgraph spanned by lk.v/ and v. If W " V , then
lk.W /DTw2W lk.w/ and st.W / is the full subgraph spanned by lk.W /[W .

Define v #w to mean lk.v/$ st.w/. This can happen in one of two ways: either
lk.v/ $ lk.w/, in which case we write v #f w, or st.v/ $ st.w/, in which case we
write v #t w. These are mutually exclusive unless vDw.

The following elementary lemma puts a restriction on the star- and link-orderings.

LEMMA 2.1
If u#t v #f w, then either vD u or vDw.

Proof
Suppose that u ¤ v. Since u 2 lk.v/ and lk.v/ $ lk.w/, u 2 lk.w/. Since st.u/ $
st.v/, this implies that w 2 lk.v/. Hence v #t w, which is impossible unless v D
w.

If v #! w andw #! v, then we say that v andw are equivalent and writew %! v,
where & D f; t or ;. The notation v #! w is justified by the fact that the induced
relation on equivalence classes Œv# is a partial ordering. It will often be important to
be more specific, so if lk.v/D lk.w/, then we say that v and w are fold-equivalent,
and if st.v/D st.w/, then we say v and w are twist-equivalent.

For each v 2 V , we divide the elements of V"v D ¹u j u ! vº into two groups;
namely,
# lkC.v/D ¹u j u! v and u 2 lk.v/º D ¹u 2 V j u!t v;u¤ vº,
# dlk.v/D ¹u j u! v and u … lk.v/º D ¹u 2 V j u!f vº.
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Figure 1. lk.v/D ¹u1; u2; u3º, lkC.v/D ¹u3º, dlk.v/D ¹v;w1;w2º.

(See Figure 1 for an example.) Observe that dlk.v/ is equal to the “double link”
lk.lk.v//, that is, every vertex in dlk.v/ commutes with every vertex in lk.v/. Also
observe that if u;u0 !t v, then u is connected to u0, so ¹vº [ lkC.v/ is a clique.

The following distinction will be critical when we define the points in our new
outer space.

Definition 2.2
A vertex v 2 ! is twist-dominant if there is some u ¤ v with v !t u, and is twist-
minimal otherwise.

Note that elements of lkC.v/ are all twist-dominant, while elements of dlk.v/
may be either twist-dominant or twist-minimal.

2.2. Salvetti complexes
For a simplicial graph ! , the Salvetti complex S! is a cube complex with one k-cube
for each k-clique in ! ; in particular, it has a single 0-cube (for the empty clique)
and a 1-cube for each vertex (D1-clique) of ! . The 2-skeleton of S! is the standard
presentation complex for A! , so "1.S!/Š A! . The addition of higher-dimensional
cubes guarantees that S! satisfies Gromov’s link condition; that is, all links are flag.
Therefore, if all cubes of S! are identified with standard Euclidean cubes Œ0; 1#k ,
then the induced path metric on S! is nonpositively curved (locally CAT(0)) and its
universal covereS! is CAT(0). In Figure 2, we show a simple example of a graph !
and its Salvetti complex. In this example, the Salvetti is made of two tori glued along
a circle labeled b plus a loop labeled d at the basepoint. In the right-hand picture we
have cut open the tori.

Throughout this paper, we will assume familiarity with the language of locally
CAT(0) and CAT(0) cube complexes, including hyperplanes, minsets, and so on, as
can be found, for example, in [8].
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Figure 2. (Color online) A graph ! and its Salvetti S! .

2.3. !-Whitehead partitions

2.3.1. Definition and examples
Let V [V $1 be the generators of A! and their inverses, and letm be a vertex of ! . A
!-Whitehead partition P based at m is a partition of V [ V $1 into three parts PC,
P$ (called the sides of P ) and lk.P /, where
# lk.P / consists of all generators that commute with m, and their inverses;
# the sides of P form a thick partition of V [V $1 n lk.P / (recall that a partition

is thick if it has at least two elements on each side);
# m and m$1 are in different sides of P ;
# if v¤w are in the same component of ! n st.m/, then v, v$1, w and w$1 are

all in the same side of P .
A more succinct way to define a !-Whitehead partition P based at m is by forming a
graph !˙ with one vertex for each element of V [V $1 and an edge between distinct
vertices x and y whenever x and y commute but are not inverses. If we let lk˙.m/
be the link of m in !˙ and let C.m/D ¹m;m$1;C1; : : : ;Ckº be the components of
!˙ n lk˙.m/, then
# lk.P / consists of vertices in lk˙.m/, and
# the sides of P form a thick partition of C.m/ that separates m from m$1.
The components C1; : : : ;Ck are called m-components. Thus m together with any
proper subset ofm-components gives one side of a valid !-Whitehead partition based
at m.

A !-Whitehead partition P based atm determines an automorphism $.P ;m/ of
A! called a !-Whitehead automorphism. Examples of !-Whitehead automorphisms
include partial conjugations and elementary folds (for details see [12]). Different
bases for P give different automorphisms, but the partition P itself does not depend
on the choice of base, and we will often not specify a base. Note that a !-Whitehead
partition is completely determined by giving one of its sides.
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Example 2.3
The following are three examples of !-Whitehead partitions for the graph ! depicted
in Figure 2:
# P D .PCjP$j lk.P //D .¹b;dºj¹b$1; d$1ºj¹a;a$1; c; c$1º/,
# QD .QCjQ$j lk.Q//D .¹a;dº j¹a$1; d$1; c; c$1ºj¹b; b$1º/,
# RD .RCjR$j lk.R//D .¹a; c; d º j¹a$1; d$1; c$1ºj¹b; b$1º/.
Here P is based at b, Q is based at a, and R can be based at either a or c.

2.3.2. Properties

Definition 2.4
If v and v$1 are in different sides of P , then we say that P splits v. Define split.P /
to be the set of vertices of ! that are split by P , and

max.P /D
®
v 2 V j v is a maximal element in split.P /

¯
;

where maximality is with respect to the relation “#” defined above. For a vertex
v 2 V , it is convenient to also define max.v/D ¹vº.

LEMMA 2.5
If P is based at m and P splits v, then v #f m.

Proof
Since P splits v, v is not in the link of m. Suppose that w is in the link of v. Since
P splits v, v and w are not in the same component of ! ) st.m/, so w must be in the
link of m. This shows that v #f m.

It follows that the elements of max.P / are precisely the bases of P , and they are
all fold-equivalent.

LEMMA 2.6
If P splits a twist-dominant vertex v, then max.P /D ¹vº.

Proof
Letm 2max.P /. By Lemma 2.5, v #f m. Since v is twist-dominant, there is aw¤ v
with v !t w. But then vDm by Lemma 2.1.

We extend our orderings on vertices of ! to !-Whitehead partitions by declaring
P #! Q for &D f or t if for some (and therefore any) v 2max.P / and w 2max.Q/
we have v #! w.
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2.3.3. Adjacency, compatibility, consistency

Definition 2.7
Let P and Q be !-Whitehead partitions. We say that P and Q are adjacent if
max.P /" lk.Q/. A vertex v is adjacent to P if v 2 lk.P /, and v and w are adjacent
if they are adjacent in ! .

Since all elements of max.P / have the same link, max.P /" lk.Q/ if and only
if max.Q/" lk.P /, that is, the definition is symmetric.

Warning. In [12], we said “P and Q commute” instead of “P and Q are adjacent.”
There are two reasons for changing the terminology here. First, two partitions based
at the same vertex v do not “commute” in the sense of [12] even though the generator
v certainly commutes with itself; this caused confusion for several readers. The sec-
ond reason is that the definition of “commute” written in [12] is not actually the one
used in the proofs of the lemmas: we mistakenly added a condition in the definition
requiring that the twist-equivalence classes of max.P / and max.Q/ be different. The
proofs of all lemmas in that paper about commuting partitions are correct, however,
if one replaces “commuting” by the definition of “adjacent” given above.

Definition 2.8
Let P and Q be distinct !-Whitehead partitions.
(1) P and Q are compatible if either P and Q are adjacent or they have sides P %

and Q% with P % \Q% D;.
(2) Sides P % of P and Q% of Q are consistent if either P and Q are adjacent or

P % \Q% ¤;.

If P and Q are compatible but are not adjacent, then exactly three of the four
possible choices of pairs of sides are consistent, by Lemma 3.6 of [12]. (If they are
adjacent, then any choice of sides is consistent.)

Define an involution P % 7! P % that switches sides of P , that is, PC D P$ and
P$ D PC.

LEMMA 2.9
If P and Q are compatible but not adjacent and P %\Q% D;, then P %\ lk.Q/D;
so P % "Q%; similarly, Q% " P %.

Proof
This is Lemma 3.4 of [12]. It is illustrated in Figure 3.
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Figure 3. (Color online) Nonadjacent partitions P and Q have disjoint sides P% and Q% that are
also disjoint from lk.P /[ lk.Q/ (see Lemma 2.9).

2.4. Blowups
In this section, we fix a collection … D ¹P1; : : : ;Pkº of pairwise-compatible !-
Whitehead partitions and construct a locally CAT(0) cube complex S… with funda-
mental group A! , whose edges are labeled either by a partition in … or by a vertex
of ! .

Definition 2.10
A choice of sides for a set of !-Whitehead partitions is consistent if each pair is
consistent. A consistent choice of sides P %i for all Pi 2… is a region.

LEMMA 2.11
Any consistent choice of sides for a subset of … can be extended to a region.

Proof
This is Lemma 3.9 in [12]. It follows easily by induction on k, the number of parti-
tions.

Regions will form the vertices of our cube complex. To describe the higher-
dimensional cubes, it is convenient to define a graph !… that realizes our notion of
“adjacency” for partitions in ….

Definition 2.12
Let… be a collection of pairwise-compatible !-Whitehead partitions. Then !… is the
(simplicial) graph with
# one vertex for each element of V […, and
# an edge between A and B whenever A and B are adjacent according to Defi-

nition 2.7, that is, max.A/" lk.B/.
The link of a vertex A 2 !… will be denoted lk….A/, the star by st….A/, and the
double link by dlk….A/.
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Every v 2 V [ V $1 is in PCi , P$i or lk.Pi / for each i . If v … lk.Pi /, define the
v-side of Pi to be the side containing v. Then the set of v-sides for those Pi that
are not adjacent to v form a consistent set and can be extended to a region. Any such
region is called a terminal region for v.

Definition 2.13
The blowup S… is a cube complex with one vertex for each region rD ¹P %1 ; : : : ;P %k º.
The edges of S… are constructed as follows.
# If two regions differ only by changing the side of Pi , then we connect them

by an (unoriented) edge labeled Pi .
# If r is a terminal region for v, then the region r!v obtained by switching sides

of all Pi that split v is a terminal region for v$1, and we connect the two by
an oriented edge labeled v that goes from r!v to r.

Higher-dimensional cubes are attached whenever a set of edges forms the 1-skeleton
of a cube whose labels span a clique in !….

From the definition, we immediately see the following.
# There is an edge labeled v terminating at the vertex rD ¹P %1 ; : : : ;P %k º if and

only if for each i , either v 2 P %i or v 2 lk.Pi /. If no Pi splits v, then an edge
labeled v in S… is a loop at r.

# There is an edge labeled Pj with one endpoint at r D ¹P %1 ; : : : ;P %k º if and
only if for each i ¤ j , either Pi and Pj are adjacent or some side of Pj
is contained in P %i . In particular, if Pi and Pj are not adjacent, then both
P %j \P %i and P

%
j \P %i are nonempty. An edge labeled Pi is never a loop.

In Figures 4–6, we show three blowups of S! for the graph ! shown in Fig-
ure 2. As before, edges with the same label in the right-hand diagram are identified.
In Figures 4 and 5, the blowups are two tori identified along a circle, with an extra
edge attached. In Figure 6, the blowup is two tori identified along a cylinder, with an

Figure 4. (Color online) The blowup SQ for QD .¹a;dºj¹a$1; d$1; c; c$1ºj¹b; b$1º/.
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Figure 5. (Color online) The blowup S… for … D ¹P ;Qº, P D .¹b;dºj¹b$1; d$1ºj¹a;a$1;
c; c$1º/.

Figure 6. (Color online) The blowup S… for … D ¹P ;Rº, R D .¹a; c; dºj¹a$1; d$1; c$1ºj
¹b; b$1º/.

extra edge attached. The structure of blowups will be explored in much more detail in
Section 3.

2.5. Collapsing hyperplanes

Definition 2.14
LetH be a hyperplane in a cube complexX . The closure of the set of cubes that inter-
sectH is called the hyperplane carrier %.H/, and the hyperplane collapse associated
to H is the map cH on X that collapses %.H/ to H .

Recall from [12] that hyperplanes in S… are characterized by the fact that the set
of edges they intersect is exactly the set of edges with a given label A 2 V […. We
say the hyperplane is labeled by A.

PROPOSITION 2.15 ([12, Theorem 4.6])
If P 2…, andHP is the hyperplane in S… labeled by P , then the image of S… under
cHP

is isomorphic to S…$P .
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The standard collapse c" W S…! S; D S! is the map that collapses all hyper-
planes whose labels are in ….

2.6. Untwisted outer space †!
Recall that the untwisted subgroup U.A!/ # Out.A!/ is the subgroup generated
by !-Whitehead automorphisms, graph automorphisms, and inversions. By work of
Laurence [27] and Servatius [31], U.A!/ together with automorphisms v 7! vw for
v #t w (called twists) generate the full group Out.A!/. In this section, we recall the
main theorem of [12] and use it to define a contractible space †! on which U.A!/
acts properly. We first recall the space K! studied in [12].

Definition 2.16
A cube complex X is a !-complex if it is isomorphic to a blowup S… for some …. A
!-complex collapse c W X! S! is the composition of an isomorphism X Š S… with
the standard collapse S…! S! .

Example 2.17
If ! has no edges, then a !-complex is a connected graph with no univalent or bivalent
vertices and no separating edges, and a !-complex collapse contracts a maximal tree
to a point.

A marked !-complex is an equivalence class of pairs .X;g/, where
# X is a !-complex,
# g W X! S! is a homotopy equivalence, and
# .X 0; g0/ % .X;g/ if there is a cube complex isomorphism i W X 0 ! X with

g ı i ' g0.

A marking h W X! S! is untwisted if the composition of a homotopy inverse h$1

with some (and hence any) !-complex collapse induces an element of the untwisted
subgroup U.A!/.

If a hyperplane collapse cH W X 0!X is a homotopy equivalence, then we set

.X 0; h ı cH / > .X;h/:

This induces a partial order on !-complexes with untwisted markings. The spine K!
is the geometric realization of the resulting poset, that is, it is a simplicial complex,
where a k-simplex is a !-complex with an untwisted marking together with a chain
of k hyperplane collapses, each of which is a homotopy equivalence to another !-
complex with an untwisted marking.
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THEOREM 2.18 ([12, Theorems 4.17 and 6.24])
The spine K! is contractible, and U.A!/ acts properly and cocompactly on K! .

We now define the space †! by viewing the cubes of a !-complex X as metric
objects, each isometric to an orthogonal product of intervals of various lengths, that
is, an orthotope. The result is a locally CAT(0) complex X which we will call a
rectilinear !-complex. All edges dual to the same hyperplane in X have the same
length, called the width of the hyperplane. A point in †! is then a marked rectilinear
!-complex .X;h/, where h is untwisted and the cube complex isomorphism in the
definition of the equivalence relation must be an isometry on each orthotope. In the
case where ! has no edges, the spine K! is the same as the spine of (reduced) outer
space, as originally defined in [18], and †! is reduced outer space itself.

The spine K! embeds in †! as follows: the image of a vertex Œ.X;h/# of K!
is determined by the property that all edges of X have length 1=n, where n is the
number of hyperplanes in X . The image of each higher-dimensional simplex is the
linear span of its vertices.

PROPOSITION 2.19
K! is a deformation retract of †! .

Proof
†! contains the set P†! of marked metric !-complexes Œ.X;h/# for which the sum
of the hyperplane widths in X equals 1. Note that the image of our embedding of
K! into †! is contained in P†! . The map †! ! P†! that scales all edge lengths
simultaneously is a deformation retraction.

The subspace P†! decomposes into a union of open simplices, one for each
marked !-complex Œ.X;h/#, of dimension one less than the number of hyperplanes in
X . The points in this simplex are obtained by varying the widths of the hyperplanes
while keeping the sum equal to 1. For each such simplex, consider the barycentric
subdivision of its closure, and let KŒ.X;h/# be the subcomplex of this barycentric
subdivision spanned by the barycenters of faces that are actually contained in P†! .
It is easy to see that KŒ.X;h/# is equal to the image of K! under the embedding
described above, and is a deformation retract of †! .

COROLLARY 2.20
The space †! is contractible.



1048 BREGMAN, CHARNEY, and VOGTMANN

3. Combinatorial and metric structure of blowups
Throughout this section, we fix a compatible set … of !-Whitehead partitions. To
prove our main theorem we will have to understand the structure of the blowup S… in
some detail. We gather some facts about blowups here.

3.1. Basics
The following basic features of blowups S… are either part of Theorem 3.14 of [12]
or follow immediately from the definition of S….
(1) S… is a locally CAT(0) cube complex; that is, the path metric induced by

making each k-cube isometric to Œ0; 1#k is locally CAT(0).
(2) The subcomplex C… " S… consisting of cubes all of whose edge labels are in

… is CAT(0) and locally convex, and it contains all vertices of S….
(3) The standard collapse map c" maps all of C… to the single vertex in S! .
(4) The set of edges of S… with a given label A 2 V [… is the set of edges that

intersect a single hyperplane, which we will call HA. All hyperplanes in S…
are of this form.

(5) Each hyperplane HA inherits a cube complex structure from S… whose edges
are labeled by the elements of V [… that are adjacent toA, that is, by elements
in lk….A/.

(6) There is at most one edge with a given label at any vertex of S….
Another way to define the subcomplex C… is to observe that the set of sides

of the partitions in … form a pocset, that is, a partially ordered set with an order
reversing involution P 7! P such that pairs P , P are unrelated; this follows from
Lemma 2.9. Any pocset satisfying suitable finiteness conditions gives rise to a CAT(0)
cube complex (see, e.g., [30]), and C… is isomorphic to the cube complex associated
to the pocset of sides of ….

3.2. Adjacent labels
In this section, we show that there is a unique cube in S… for every maximal clique in
the graph !…, that is, any maximal set of pairwise adjacent elements of V [….

We begin with existence, for which the following definition is useful.

Definition 3.1
Let P 2…. For v 2 V [ V $1 n lk.P /, the v-side of P is the side containing v. For
Q 2… n ¹P º not adjacent to P , the Q-side of P is the side containing some side of
Q (there is a unique such side by Lemma 2.9).

Stated in terms of hyperplanes,HP splits the subspace C… into two components.
If v … lk.P /, then the v-side ofHP is the side containing the terminal vertex of some
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(hence every) edge labeled v. If Q and P are distinct and not adjacent, then HQ does
not intersect HP and the Q-side of HP is the side containing HQ.

PROPOSITION 3.2
Let … be a compatible set of k !-Whitehead partitions, and let AD ¹A1; : : : ;A`º be
the vertices of a maximal clique in !…. Then there is a cube in S… with edge labels
¹A1; : : : ;A`º.

Proof
Let A\ V D ¹v1; : : : vrº and A\…D ¹Q1; : : : ;Qsº, so
# …D ¹Q1; : : : ;Qs;P1; : : : ;Ptº with sC t D k, and
# AD ¹v1; : : : ; vr ;Q1; : : : ;Qsº with r C s D `.
For any choices of sides Q%i of Qi for i D 1; : : : ; s and exponents v%j D vj or v$1j for
j D 1; : : : ; r , we will find a region r which is a terminal region for each Qi and v%j .
These 2` regions (some of which may coincide, as we will see) form the vertices of
an `-dimensional cube in S… with edges labeled by the elements of A.

To define the region associated to ¹v%1 ; : : : ; v%r ;Q%1 ; : : : ;Q%s º, we will start with
the sidesQ%i . We then need to choose a side of each Pi . Since A is a maximal clique,
for each Pi there is some Aj not adjacent to Pi . If Aj is a vertex vj , let P %i be the
v%j -side of Pi , and if Aj is a !-Whitehead partition Qj , let P %i be the Qj -side of Pi .
To see that P %i does not depend on the choice of Aj , observe that if Pi is not adjacent
to either Aj or Ak , then the fact that wj 2 max.Aj / and wk 2 max.Ak/ are joined
by an edge in ! implies that all of ¹wj ;w$1j ;wk;w

$1
k º are on the same side of Pi , so

the Aj -side of Pi is the same as the Ak-side of Pi .
Now let r D ¹Q%1 ; : : : ;Q%s ;P %1 ; : : : ;P %t º. To see that this is a region, we must

show that any two elements either belong to adjacent partitions or intersect nontriv-
ially. Each pair Qi , Qj is adjacent. If Qj is not adjacent to Pi , then we have chosen
the Qj -side P %i of Pi . Since P %i contains an entire side of Qj , it intersects both sides
of Qj nontrivially. If Pi and Pj are not adjacent, letAk be an element of A that is not
adjacent to Pi . We argue by contradiction: suppose that P %i \P %j D;. If Ak is a ver-
tex vk , then v%

k
2 P %i , so v%

k
… P %j . Since v%

k
… lk.Pj / by Lemma 2.9, this contradicts

our choice of P %j . If Ak is a partition Qk andQ%k " P %i , then max.Qk/ 6" lk.Pj / and
neither side of Qk is contained in P %j , again contradicting our choice of P %j .

The region r is a terminal region for each v%i . If we use .v%i /
$1 instead of v%i ,

then we get another region, terminal for .v%i /
$1. These two regions may be the same

if vi and v$1i are on the same side of each Pj , in which case the edge labeled vi is a
loop. Switching sides of any Qi gives another region, with an edge labeled Qi joining
the two (this edge is never a loop). Thus we have the 1-skeleton of an `-dimensional
cube in S…, which is filled in since all of the edge labels are adjacent.
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COROLLARY 3.3
Two hyperplanes HA and HB intersect if and only if A and B are adjacent.

Proof
If A and B are adjacent, then it follows from Proposition 3.2 that there is a square
with sides labeled A and B , so the hyperplanes HA and HB intersect at the midpoint
of that square. Conversely, if HA and HB intersect, then there is a pair of edges dual
to these hyperplanes that bound a square, so A and B must be adjacent since by the
construction of S…, we only fill in squares when labels are adjacent.

Remark 3.4
Corollary 3.3 says that !… is the crossing graph for S… as defined in [30].

PROPOSITION 3.5
Any cubes c, c0 in S… with the same edge labels are parallel, that is, S… contains a
subcomplex isomorphic to c* Œ0; n# for some n 2 Z, with c D c*¹0º and c0 D c*¹nº.

Proof
If c and c0 share a vertex, then they must be equal, so we may assume that they are
disjoint. Recall that C… is CAT(0), hence connected, and contains every vertex of S….
Let p be a minimal-length edge path from c to c0 that is contained in C…. The CAT(0)
property implies that p crosses each hyperplane at most once. The first edge of p is
labeled by some partition P . Since p has minimal length, P is distinct from all of
the edge labels of c. Let rD ¹P %; : : :º be the initial vertex of p, where P % is a side
of P , and let r0 be the terminal vertex.

Suppose now that some edge label B of c is not adjacent to P . If B D ¹vº, then
P % contains v, so both r and r0 use this side. The first edge of the path p switches
sides of P , that is, crosses the hyperplane HP , so in order to reach r0 it must cross
HP again, contradicting the assumption that it is the shortest path. If B DQ, then the
side of Q that appears in r is neither contained in P % nor contains P % (since there
are edges labeled both P and Q at r). Since changing sides of Q is allowed at r0, it
follows that the side of P at r0 must also be equal to P %. As before, the initial edge of
the path p crosses HP , so in order to reach r0 it must cross HP again, contradicting
the assumption that it is shortest.

We conclude that B and P are adjacent for all edge labels B of c, so there is a
cube c * eB " S…. The side c00 of this cube opposite from c is closer to c0, and we
can continue to build a product neighborhood c * Œ0; n# until we reach c0.
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COROLLARY 3.6
For every maximal collection ¹A1; : : : ;Akº of pairwise adjacent labels, there is a
unique maximal cube in S… with those edge labels.

Proof
Existence is Proposition 3.2. Uniqueness follows from Proposition 3.5, since the exis-
tence of two distinct parallel cubes implies that ¹A1; : : : ;Akº is not maximal.

3.3. Characteristic cycles

Definition 3.7
Let v be a vertex of ! , and let ev be an edge of S… labeled by v. Choose a minimal-
length edge path p.ev/ in C… from the terminal vertex &.ev/ to the initial vertex
'.ev/. The loop (v D p.ev/[ ev is called a characteristic cycle for v.

Since C… is contractible, the standard collapse map takes (v to the loop in S!
representing v. By the construction of S…, a characteristic cycle for v has one edge
labeled v and one edge labeled P for each partition P 2 … that splits v. Such a
path crosses the same hyperplanes as a locally geodesic loop ˇv representing v (see
Figure 7). Since v is not adjacent to any other label on an edge crossed by (v , ev must
lie in ˇv . Similarly, any edge eA in (v for which v 2max.A/ must lie in ˇv .

3.3.1. Characteristic cycles and partitions
In this section, we give a more detailed description of characteristic cycles (v in terms
of partitions that split v. This depends on the following observation.

LEMMA 3.8
Suppose that P and Q are compatible and both split v. Let P and Q be the v-sides
of P and Q. If P and Q are not adjacent, then either P "Q or Q" P . If P and Q

are adjacent, then P 6"Q and Q 6" P .

Figure 7. (Color online) The local geodesic ˇv D ev[).ev/ and a characteristic cycle p.ev/[ev
containing ev .
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Figure 8. (Color online) Partitions P 2… with v 2max.P / are nested. Partitions Q 2… that do
not split v and are not adjacent to v have a side Q in the nest. (Q is the side that does not contain
v.)

Proof
P \Q contains v so is not empty, and P \Q contains v$1 so is not empty. Since P

and Q are compatible, either they are adjacent or P "Q or Q " P by Lemma 2.9.
If P and Q are adjacent, then P intersects lk.Q/, so P 6"Q, similarly Q 6" P .

Now fix a vertex v 2 ! , and for each P 2 … that is not adjacent to v, let P
denote the v-side of P , and let P denote the side that does not contain v (note that
v$1 may be in P or in P ). Let P1; : : : ;Pk be the partitions in … that have v as a
maximal element (i.e., are based at v). By Lemma 3.8, the v-sides Pi are nested; that
is, after possibly reordering we have P1 " + + + " Pk (see Figure 8). For notational
convenience, set P0 D ¹vº and P0 D ¹P0jP 0j lk˙.v/º, and let PkC1 D P 0 n ¹v$1º.
The differences dPi D PiC1 nPi for i D 1; : : : ; k are called the pieces of the nest.

If Q 2… is not adjacent to v and does not split v, then Lemma 2.9 implies that
some side of Q is contained in either Pi or P i for each i ; since Q does not split v,
this must be the side that does not contain v, which we have called Q. We conclude
that Q is contained in some piece dPi of the nest.

Let …v denote the set of partitions … that split v. Note that in addition to the
partitions Pi , …v may contain partitions that split v but do not have v as a maximal
element; such partitions may be adjacent to each other. A characteristic cycle (v has
one edge for each element of …v , so in particular one edge for each Pi . Let Si be the
consistent set of sides

8̂
<̂
ˆ̂:

Q if Q 2…v;Q, Pi ;
Q if Q 2…v;Q! Pi ;
Q if Q 2… n…v is not adjacent to v;

and let S i be the set obtained from Si by replacing Pi by P i . Since the Pi are
nested, changing sides of Pi does not change the fact that the relevant intersections
are nonempty, so S i is still consistent. Either set can be completed to a region by any
consistent choice of sides of the R 2… that are adjacent to v. One endpoint of the
edge in (v labeled Pi is a region that extends the set Si ; call this endpoint xi . The
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Figure 9. (Color online) A characteristic cycle for v has one edge ev and one edge for each
partition that splits v. The partitions based at v are nested. Partitions that split v but are not based
at v are indicated by dotted lines; these have max>f v. Partitions are adjacent if and only if they
cross.

other endpoint xi of this edge is obtained by switching Pi to P i ; this extends S i (see
Figure 9).

We can now describe an arbitrary characteristic cycle (v in terms of partitions
(refer to Figure 9). Start with any consistent choice S of sides of the R 2 … that
are adjacent to v, and let x0 be the region extending S that is given by choosing the
v-side of every partition that is not adjacent to v. Define a partition Q 2…v to be
innermost if its v-side Q does not contain the v-side of any other element of …v . By
Lemma 3.8, all innermost partitions in …v are adjacent. For the first edge of (v , we
may choose the edge labeled by any innermost Q 2…v . For the next edge, we may
choose any edge labeled by Q0 2…v that is innermost in…v nQ. The following edge
is labeled by any innermost element of…v n ¹Q;Q0º, and so on, and the loop is closed
by an edge labeled ev .

If no two partitions that split v are adjacent, the description of characteristic
cycles in terms of partitions is particularly simple, since then the v-sides of all ele-
ments of…v are nested so any characteristic cycle (v consists of an edge path dual to
the nest plus an edge ev connecting its endpoints. This characteristic cycle is a local
geodesic in S…. In particular, we record the following.

LEMMA 3.9
If v is twist-dominant, then any characteristic cycle (v for v is an edge path in S…
labeled by v and the partitions that split v. Furthermore, (v is a local geodesic in
S….
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Proof
If v is twist-dominant, then all partitions that split v have maxD ¹vº, so none of them
are adjacent.

3.3.2. Characteristic cycles and minsets
Since S… is locally CAT(0), its universal covereS… is CAT(0). We will label edges and
hyperplanes ineS… with the same label as their images in S…. The group A! acts on
eS… via deck transformations (preserving labels), using the identification of "1.S…/
with A! induced by the standard collapse map c" W S…! S! . The following lemma
uses standard CAT(0) methods to investigate the relation between characteristic cycles
and this action.

LEMMA 3.10
Let A 2…[ V be a label, and let v 2max.A/.
(1) The minset of v ineS… decomposes as a product ˛v * eHv , where ˛v is an axis

for v containing an edge Qev and eHv is the dual hyperplane.
(2) For each edge in S… labeled A, there is a unique edge ev such that eA and ev

are contained in a local geodesic ˇv , hence every characteristic cycle for v
containing ev contains eA, and vice versa.

(3) The carrier %.HA/ lies in the image of Min.v/, and the induced cubical struc-
tures on HA and Hv are isomorphic.

(4) If w is adjacent to A, then the carrier of HA contains a characteristic cycle
for w.

Proof
Consider the minset of v in the universal covereS…. By standard properties of CAT(0)
spaces, Min.v/ decomposes as an orthogonal product ˛v * Y , where Y is a convex
subspace ofeS… and ˛v is an axis for v. The image of ˛v under the projectioneS…!
S… is a local geodesic ˇv . By the comments after Definition 3.7 we may assume that
ˇv contains an edge ev , and thus that ˛v contains a lift Qev of ev . We conclude that eHv
must contain a copy of Y .

Conversely, we claim that every edge dual to eHv lies on an axis for v, so by
convexity this copy of Y contains eHv . Suppose that Qe0v is another edge dual to eHv ,
separated from Qev by a square whose other label is A 2 lk….v/. Let (v be a charac-
teristic cycle for v containing ev . Since every edge label B on (v splits v, we have
lk….B/ , lk….v/ 3 A, so S… contains an annulus (v * eA. The boundary of this
annulus is two characteristic cycles, one containing ev and one containing the image
e0v of Qe0v , so these two characteristic cycles are homotopic, and correspond to two dif-
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ferent axes for v, one containing Qev and one containing Qe0v . Since any two edges dual
to Hv can be connected by a sequence of squares, this proves (1).

As observed above, for any A 2… with v 2max.A/, the local geodesic ˇv con-
taining ev also contains a (unique) edge labeled eA. It follows that the axis through
Qev contains a lift of eA, hence the dual hyperplane eHA contains a subspace parallel to
eHv . Since every edge that is adjacent to A is also adjacent to v, these two hyperplanes
must, in fact, be isomorphic. Thus the carrier of eHA lies entirely in the minset of v
and every edge dual to eHA lies on an axis containing an ev edge. This proves (2) and
(3).

For (4), note that since w is adjacent to v, ev and ew span a cube in the carrier of
Hv . Let (w be a characteristic cycle containing ew . The label on every edge of this
cycle is also adjacent to v, so the entire characteristic cycle is contained in the carrier
of Hv .

COROLLARY 3.11
If an edgeee ofeS… is in Min.v/, then its image in S… is labeled either by v, by some
partition that splits v, or some label that is adjacent to v.

Proof
By Lemma 3.10(1), Min.v/Š ˛v * eHv , and we may assume that ˛v is a lift of the
local geodesic ˇv described in Section 3.3. An edge eA of S… can only be in ˇv if
AD v orA splits v. (Warning: splitting v does not guarantee that eA will be contained
in ˇv unless max.A/D v.) The hyperplane Hv is parallel to a subcomplex with all
labels adjacent to v.

3.4. Subcomplexes of S… associated to a generator
Fix a compatible set … of !-Whitehead partitions. We will use the graph !… defined
in Definition 2.12, with vertices V […, to describe certain subcomplexes of S… asso-
ciated to a generator v 2 V . We remark that !… can be used to encode the fold rela-
tion: A#f B if and only if lk….A/$ lk….B/. However, it does not encode the twist
relation; this will be explored further in Section 4.

Definition 3.12
Given a set of vertices ƒ of !…, the span of ƒ, denoted span.ƒ/, is the subcomplex
of S… consisting of those cubes with all edge labels in ƒ.

Example 3.13
We have span.…/DC….
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Now fix v 2 V , let ev be an edge labeled by v, and let Hv be the hyperplane in
S… dual to ev . The carrier %.Hv/ is a product

%.Hv/D ev *Klk.v/;

where Klk.v/ is the connected component of span.lk….v// that contains the terminal
vertex x of ev .

Since v 2 dlk….v/, some connected component of span.dlk….v// contains x.
Denote this component by Kdlk.v/. Since every vertex of lk….v/ is linked to every
vertex of dlk….v/, the product of these two subcomplexes is also a subcomplex of
S…:

Kv DKdlk.v/ *Klk.v/:

Example 3.14
If v is twist-dominant, then dlk.v/ D ¹vº, so dlk….v/ consists of v and partitions
based at v. These are precisely the labels in any characteristic cycle for v (see the
discussion at the end of Section 3.3.1), so the characteristic cycle (v containing x is
one component of span.dlk….v/) Thus,

Kv D (v *Klk.v/ Š (v *Hv;

and Kv is equal to the image in S… of the minset of v ineS….

If v is twist-minimal, then Kv can be considerably larger and more complicated
than the image of Min.v/. However, the following lemma holds for any v 2 V .

PROPOSITION 3.15
The subcomplex Klk.v/ contains at least one characteristic cycle for every u 2 lk.v/,
and Kdlk.v/ contains at least one characteristic cycle for every w 2 dlk.v/.

Proof
Let ev be an edge in S… labeled v, and let x be the terminal vertex of ev . Then Kv

contains %.Hv/, so the first statement follows from Lemma 3.10(4).
For the second statement, let w 2 dlk.v/, and recall that the labels on a charac-

teristic cycle (w consist of w and all partitions P 2… that split w. If P is based
at m and splits w, then lk.m/ , lk.w/ , lk.v/, so m 2 dlk.v/. This shows that all
characteristic cycles (w are contained in span.dlk….v/). It remains to check that the
component of span.dlk….v// containing x also contains a characteristic cycle for w.
For this it suffices to find an edge ew in the same component as x.

Let ew be an edge labeled w whose terminal vertex y has minimal distance in
C… to x. (Recall that C… contains all vertices and is CAT(0).) If y D x, then we are



OUTER SPACE FOR RAAGS 1057

done; otherwise connect y to x by a minimal-length edge path p in C…. We claim
that this edge path lies entirely in span.dlk.v//.

To see this, let P1; : : : ;Pk be the successive labels on the path p (all of these
labels are partitions). Since the path has minimal length, each Pi occurs only once.
The vertex y is a terminal region for w, x is a terminal region for y, and the two
regions differ by changing the sides of each Pi on the path, say, from Pi to P i .

If Pi is not in lk….w/, then it is not in lk….v/ either, so v and w must be in
different sides of Pi , specificallyw 2 Pi and v 2 P i . Since each Pi is a !-Whitehead
partition, this means v and w are in different components of ! n st.Pi / for all i . But
lk.v/" lk.w/, so this can only happen if Pi 2 dlk….v/. Thus we will be done if we
can show that no Pi is adjacent to w

Suppose to the contrary that some partition along the path is in lk….w/; let Pi
be the first such partition. We first claim that Pi is adjacent to Pi$1. If not, then
there is a unique pair of sides of Pi and Pi$1 with empty intersection. Since Pi$1 \
Pi , P i$1 \ Pi , and P i$1 \ P i all correspond to vertices of the path p, the empty
intersection must be Pi$1 \P i . Since Pi$1 is not in lk….w/, w 2 Pi$1, as observed
in the previous paragraph. But Lemma 2.9 implies that lk.Pi /, which contains w,
does not intersect Pi$1, giving a contradiction.

Since Pi is adjacent to Pi$1 we can reroute the path p to obtain a new path with
the same edge labels that crosses Pi before it crosses Pi$1. Repeating the argument,
we can arrange that Pi labels the first edge of the path, so this edge has an endpoint
at y. Filling in a square with edge labels w and Pi , we obtain an edge labeled w that
is closer to x, contradicting our original choice of ew .

Now let eKv "eS… be the connected component of the lift of Kv containing an
axis for v. This decomposes as a product eKv D eKdlk.v/ *eKlk.v/.

COROLLARY 3.16
eKv is preserved by the action of the special subgroup Adlk.v/ * Alk.v/, and eKdlk.v/

contains an axis for every element of the group Adlk.v/. If ˛v " eKdlk.v/ is the axis for
v, then ˛v *eKlk.v/ is the minset of v.

Proof
First note that the subcomplexes Kdlk.v/ and Klk.v/ are locally convex in S…. This
follows from the fact that a cube lies in one of these subcomplexes if and only if its
edges all lie in that subcomplex. By general properties of CAT(0) spaces, a locally
convex embedding of a subspace lifts to a globally convex embedding on universal
covers and induces an injective map on fundamental groups.
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It follows from Proposition 3.15 that under the standard collapse map, the image
of "1.Kdlk.v// in "1.S!/D A! is the subgroup Adlk.v/ and the image of "1.Klk.v//

is Alk.v/. Hence these subgroups preserve the lifts eKdlk.v/ and eKlk.v/. Since these
subspaces are convex ineS…, they contain axes for each element of the corresponding
subgroup.

The last statement follows by Lemma 3.10(1) since eKlk.v/ is parallel to and iso-
morphic to eHv .

3.5. Branch loci
In Section 7, we will be given a locally CAT(0) space X with fundamental group
A! and will need to construct an isomorphism of X with some blowup S…. We will
do this using the action of A! on the universal cover eX . In this section, we discuss
features of the action of A! oneS… that will help in this task.

Definition 3.17
A point x 2Min.v/"eS… is a branch point for v if the link of x in Min.v/ is strictly
smaller than the link of x ineS…. Denote the branch locus of v by br.v/.

(Recall that the link of a point x in a CAT(0) metric space X is defined to be
the boundary of a small ball centered at x. This is standard terminology; the reader
should not confuse this with the graphical links used elsewhere in this paper.)

If v is central, then Min.v/DeS… and hence br.v/D;. No !-Whitehead partition
can split a central v, so in every blowup a characteristic cycle for v consists of a single
edge which is a loop. For the rest of this section, we assume that v is not central, and
show that in this case the location of hyperplanes ineS… is determined by branch loci
of minsets.

PROPOSITION 3.18
Let HA be a hyperplane in S… with v 2max.A/, and let eHA be a lift of HA toeS….
If v is not central, then each component of the boundary of %. eHA/ contains a branch
point of Min.v/.

Proof
Let eA be an edge dual to HA. By Lemma 3.10(3), we know that eA is contained in
some characteristic cycle (v for v. Let eB be the edge following eA in (v , so that
either B D v or B is a partition that splits v.

If B is a partition based at w and w >f v, choose u 2 lk.B/ n lk.A/. Denote the
common endpoint of eA and eB by x, and let @x.A/ and @x.B/ be the components
of @.%.HA// and @.%.HB//, respectively, that contain x. Then @x.A/ŠHv is a sub-
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complex of @x.B/, but @x.B/ is strictly larger, since %.HB/ contains a square with
edge labels u and B , and that square is not in %.HA/. Thus there is a point x0 2 @x.A/
that is adjacent to some edge eC with C not adjacent to v. This means that no lift of
eC is contained in Min.v/Š ˛v * eHA Š ˛v * eHv ; that is, any lift Qx0 of x0 lying on
@.%. eHA// is a branch point for v.

If v 2max.B/, then we need to choose our characteristic cycle carefully and look
more closely at the vertex x. To this end, we recall the description of characteristic
cycles from Section 3.3.1. If P1; : : : ;Pk are the partitions in … that are based at v,
then the v-sides Pi of the Pi are nested and, for notational convenience we set P0 D
¹vº, P0 D ¹P0jP 0j lk˙.v/º, and PkC1 D P 0 n ¹v$1º, so (after possibly reordering)
we have

P0 " P1 " + + + " Pk " Pk " PkC1:

Since A is based at v, we have ADPi for some i D 0; : : : ; k and the vertex x corre-
sponds to a region that extends the consistent set S i given by

S i D

8̂
<̂
ˆ̂:

Q if Q splits v and Q" Pi ;
Q if Q splits v and Q$ Pi ;
Q if Q does not split v and is not adjacent to v;

where Q is the v-side of Q.
Since v 2max.B/, there is no Q in … whose v-side Q satisfies Pi !Q! PiC1,

so for any characteristic cycle the edge labeled ADPi is followed by an edge labeled
B DPiC1 (this situation is illustrated in Figure 10). We claim that for some charac-
teristic cycle (v there is an edge eC at this vertex whose label C is not adjacent
to v and does not split v, so by Lemma 3.11 no lift of this edge is in Min.v/. But
@. eHA/"Min.v/ does contain a lift of x, so that is a branch point.

Recall that if a partition Q is not adjacent to v and does not split v, then it has a
side Q sitting in some piece dPj D Pj n Pj$1 of the nest; call this the nesting side
of Q. We say Q is outermost if Q is not properly contained in any other such nesting

Figure 10. (Color online) If there is no Q with Pi !Q ! PiC1, then the remaining edges at the
vertex xi D xiC1 are either adjacent to v or correspond to those Q and u in dPi D Pi n Pi$1
that are outermost.
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side. We call a vertex u outermost if u is not adjacent to v and is not contained in any
nesting side.

Since v is not central and PiC1 ¤ Pi , the piece dPiC1 D PiC1 nPi must contain
at least one outermost side or vertex; let C be the corresponding label. If C is a
partition, then the condition that C is outermost guarantees that both sides of C are
consistent with S i . We claim that we can extend S i D SiC1 to a region that is an
endpoint of an edge eC ; that is, we can choose sides of all remaining Q that are
consistent with each other and with both sides of C .

The remaining Q are those that are adjacent to v. These do not split v and are
adjacent to every partition that does split v. Suppose that such a Q is not adjacent to
C . If C is an element of V [V $1, choose the side of Q that contains C ; the result is a
terminal region for C , that is, there is an edge labeled C at the corresponding vertex.

If C is a partition, let C% denote the nesting side. Both sides of Q intersect
lk.v/, so they cannot be contained in C%. It follows from Lemma 2.9 that some side
Q% must contain C%. Note that Q% intersects both sides of C , and also intersects
the previously chosen side of any partition not adjacent to Q, so the complete set
of chosen sides is a region. Since C is outermost, switching sides of C still gives a
region, and we have found our vertex x.

For a generator v, Lemma 3.10(1) gives a decomposition Min.v/ Š ˛v * eHv ,
where ˛v is an axis containing an edgeeev and eHv is the hyperplane dual toeev . Let

prv WMin.v/Š ˛v * eHv! ˛v

be the (nearest-point) projection map corresponding to this decomposition.
If S… is a blowup with the standard collapse marking, then an axis ˛v ineS… is

transverse to some lift eHA of a hyperplaneHA if and only if AD v or A is a partition
that splits v. In either case, we say that eHA splits v.

COROLLARY 3.19
If v is not central, then the image prv.br.v// of the branch set under projection to ˛v
is a set of discrete points and closed intervals. Each component of the complement
of this image crosses exactly one hyperplane, which lifts a hyperplane in S… labeled
either by v or by a partition P based at v.

Proof
First note that being a branch point is a closed condition and prv is a closed map,
so prv.br.v// is closed. By Corollary 3.16, the minset Min.v/ decomposes as ˛v *eKlk.v/ $ eKdlk.v/ * eKlk.v/, and by Lemma 3.10, we may assume that ˛v contains lifts
of all edges in S… labeled by some A with v 2max.A/.
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Any segment of ˛v lying in the interior of a cube C " eKdlk.v/ of dimension at
least 2 lies entirely in the branch set, since C is not contained in the minset. So the
only segments of ˛v which might not be in the image are contained in edges Qe of
eKdlk.v/. Let Qe be such an edge, and let eH be the hyperplane dual to Qe. The hyperplane
eH projects to a hyperplane HA in S… for some A 2 V [….

Since v splits A, either v 2 max.A/ or any w 2 max.A/ satisfies w >f v. If
v 2 max.A/, then %. eH/ Dee * eH lies entirely in Min.v/ and hence the interior of
%. eH/ does not contain any branch points. By Proposition 3.18, the two boundary
components of %. eH/ do contain branch points so the two endpoints of Qe do lie in
prv.br.v//.

If w 2max.A/ satisfies w >f v, then there exists u 2 lk.w/ with u … lk.v/. By
Proposition 3.15, %.HA/ contains a characteristic cycle for u. It follows that %. eH/
contains a square with edges labeled by A and u. This square does not lie in Min.v/
(since u is not in lk.v/). This implies that the closest edge in Min.v/ that is parallel to
the edge labeled A is also in a square with one edge outside of Min.v/, so this edge
is entirely contained in the branch locus. Since this edge is dual to eH , it projects to Qe,
so Qe is contained in prv.br.v//.

If v is twist-dominant, then every partition in …v has max D ¹vº, so every (v
is an edge path in S… and its lift to eS… is an edge path which is an axis ˛v for v.
By Proposition 3.18, every vertex of ˛v is the projection of a branch point and there
are no branch points in the interior of edges. We record these observations in the
following statement.

COROLLARY 3.20
If v is twist-dominant and not central, then any lift of a characteristic cycle toeS… is
an axis ˛v , and prv.br.v// is precisely the set of vertices of ˛v .

4. Hyperplanes in !-complexes
Let .X;h/ be a point of †! , that is, a rectilinear !-complex with an untwisted mark-
ing. If we choose an isomorphism X Š S… the hyperplanes of X acquire labels, and
we can use these labels to define what it means for a hyperplane to be twist-dominant
or twist-minimal. In this section, we show that this designation is independent of
the isomorphism and can be detected using the action of A! on eX induced by any
untwisted marking.

To this end, let C.X/ be the crossing graph of X , that is, the graph whose ver-
tices are the hyperplanes of X , and where two vertices are connected by an edge if
the corresponding hyperplanes intersect nontrivially. If we give X the structure of a
blowup, then C.X/Š !….
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We defined twist and fold orderings on partitions P by choosing an element
v 2max.P / and using the twist and fold orderings defined in terms of ! . The defining
graph ! occurs as a subgraph of !…, but the corresponding subgraph in C.X/ is not
well defined since it depends on a choice of isomorphism C.X/Š !…. We do know
that both orderings are well defined on fold-equivalence classes in ! , so it is natural to
try to define these orderings on fold-equivalence classes of C.X/, that is, equivalence
classes of vertices with the same link. This works well for the fold ordering, but must
be modified for the twist ordering, as we will see. In the end, our notions of twist-
dominant and twist-minimal will be defined using both C.X/ and the combinatorial
structure of X itself.

4.1. Isomorphisms of !-complexes
First, we define twist and fold orderings for hyperplanes in a !-complex X and show
that, for any isomorphism X Š S…, these orderings coincide with the orderings of
their labels, as previously defined. Note that the ordering of labels is well defined on
fold-equivalence classes, so we need the same to be true here.

Definition 4.1
Let H be a hyperplane in a !-complex X . The link lk.H/ of H is the link of H
in C.X/. In other words, lk.H/ is the set of hyperplanes K ¤ H that intersect H
nontrivially. The fold-equivalence class ŒŒH ## is

ŒŒH ##D
®
K j lk.K/D lk.H/

¯
:

We then define ŒŒH ###f ŒŒK## if lk.H/$ lk.K/.

By Corollary 3.3, hyperplanes HA ¤HB in S… intersect nontrivially if and only
if their labels A and B are adjacent, so this coincides with the notion previously
defined for A#f B .

Giving a combinatorial definition of the twist relation is more subtle, and requires
us to look beyond the structure of C.X/ to the combinatorial structure of X itself.

Definition 4.2
We call a hyperplane H cyclic if

[
H 02ŒŒH ##

%.H 0/ŠH *C;

where C is a graph homeomorphic to S1. Define ŒŒK## #t ŒŒH ## to mean that H is
cyclic and lk.K/[ ŒŒK##$ lk.H/[ ŒŒH ##.
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The second condition in the definition of ŒŒK###t ŒŒH ## is the analogue of st.v/$
st.w/ for the twist relation on ! . However, the second condition alone does not
capture the notion of twist-dominance. For instance, if ! is a 4-cycle with vertices
a, b, c, d , then in the Salvetti S! we have lk.Ha/ [ ŒŒHa## D ¹Ha;Hb;Hc;Hd º D
lk.Hb/[ ŒŒHb##, but neither a nor b is twist-dominant as generators.

Since not every fold-equivalence class ŒŒH ## is cyclic, we only have ŒŒK###t ŒŒH ##
when ŒŒH ## is cyclic. Nevertheless, it is transitive: if ŒŒK## #t ŒŒH ## and ŒŒH ## #t ŒŒL##,
then ŒŒL## must be cyclic so ŒŒK## #t ŒŒL##. Also note that the analogue of Lemma 2.1
still holds for fold-equivalence classes of hyperplanes: if ŒŒK##, ŒŒH ##, and ŒŒL## are
distinct, then ŒŒK###t ŒŒH ###f ŒŒL## is not possible.

Definition 4.3
A hyperplane H is twist-dominant if there is some hyperplane K ¤H with ŒŒK###t
ŒŒH ##; in particular, H must be cyclic. If H is not twist-dominant, then it is twist-
minimal.

If X D S! , then each hyperplane is labeled by a generator and the two notions
of twist-dominance coincide. Indeed, a hyperplane Hv of S! is cyclic if and only if v
is not fold-equivalent to another generator. Then if there exists w ¤ v with ŒŒHw ###t
ŒŒHv##D ¹Hvº, this means that w #t v, and conversely.

LEMMA 4.4
Let X be a !-complex, and choose an isomorphism X Š S…. For any hyperplane
HB " S…, ŒŒHB ## is twist-dominant if and only if there existsHA such that max.A/#t
max.B/.

Proof
First, suppose that ŒŒHB ## is twist-dominant. Then there exists HA such that ŒŒHA###t
ŒŒHB ##. As noted above, the fold-equivalence class of the hyperplane HA in S… con-
sists of all hyperplanes HA0 with max.A/%f max.A0/. Since ŒŒHB ## is cyclic, under
the collapse map c W S…! S! , ŒŒHB ## maps to a single hyperplane labeled by a gen-
erator v. Hence, the fold-equivalence class of v is just ¹vº, and all the hyperplanes in
ŒŒHB ## have v as the unique maximal element. Since ŒŒHA###t ŒŒHB ##, this means that
max.A/#t vDmax.B/.

Conversely, if there exists HA such that max.A/ #t max.B/, then any v 2
max.B/ is twist-dominant and ŒŒHA## [ lk.HA/ $ ŒŒHB ## [ lk.HB/. By Lemma 2.6,
max.B/ D ¹vº and the hyperplanes with max.H/ D ¹vº coincide with the hyper-
planes that split v, which are exactly those occurring along any characteristic cycle
(v for v. It follows from Example 3.14 that Kv Š (v *Hv , but on the other hand this
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implies that

Kv D
[

H2ŒŒHv##
%.H/:

This proves that ŒŒHv## D ŒŒHB ## is cyclic as well, and therefore ŒŒHB ## is twist-
dominant.

Since the definitions of cyclic hyperplane and the link of a hyperplane depend
only the combinatorial structure of X , the following is an immediate corollary.

COROLLARY 4.5
Let i W S…! S$ be an isomorphism of cube complexes. Then i preserves the twist
and fold ordering on edge labels.

4.2. Untwisted markings
In this section, we show that we can detect twist-minimal hyperplanes in a !-complex
X using only the action of A! that an untwisted marking h W X! S! induces on the
CAT(0) space eX .

We begin by recalling some basic facts about untwisted markings. Define
U 0.A!/ to be the subgroup of U.A!/ generated by inversions, folds, and partial
conjugations.

LEMMA 4.6
For any v 2 V , both Alk.v/ and Adlk.v/ are invariant up to conjugacy under the action
of U 0.A!/.

Proof
Let * $ ! be any subgraph. We claim that the special subgroup Alk.%/ is invariant
up to conjugacy under U 0.A!/, where lk.*/DTv2% lk.v/. The lemma will follow
by taking * D ¹vº and * D lk.v/, respectively. If lk.*/ D ;, then we set A; D
¹1º which is trivially invariant. Otherwise, assume that lk.*/¤ ;. We consider each
type of generator of U 0.A!/. Clearly, inversions preserve Alk.%/. If v 2 lk.*/ and
v <f w, then *$ lk.v/$ lk.w/, hence w 2 lk.*/ as well. It follows that Alk.%/ is
also invariant under the fold sending v to vw. Finally, consider a partial conjugation
by w 2 V . If * is not contained in st.w/, then there exists v 2 * n st.w/, hence
lk.*/ n st.w/ is contained in the same component of ! n st.w/ as v. Hence a partial
conjugation by w preserves Alk.%/ up to conjugacy. On the other hand, if *$ st.w/,
then either w 2 *, whence lk.*/ " st.w/, or w 2 lk.*/. Either way, any partial
conjugation by w preserves Alk.%/, and the claim is proved.
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The next lemma implies that after changing the collapse map, we can always
assume that the marking lies in U 0.A!/.

LEMMA 4.7
Let X be a !-complex. Every untwisted marking h W X ! S! is a !-collapse map c
followed by an element of U 0.A!/,

Proof
By definition, h is untwisted if there is an isomorphism i W X Š S… for some … so
that the composition h ı c$1 (where c D c" i and c$1 is a homotopy inverse for c)
induces an element ' 2 U.A!/ on "1.S!/ D A! . This condition is independent of
the choice of i . The subgroup U.A!/ is generated by inversions, partial conjugations,
elementary (right and left) folds, and graph automorphisms. Any product of these is
equal to a product with a single graph automorphism + as the initial element. The
automorphism + permutes V , sends a !-Whitehead partition P to +P , and induces
an isomorphism S… to S&…, so the composition of the initial !-collapse map c D c" i
with + is itself a !-collapse map, and the rest of the factors are inversions, partial
conjugations, and elementary folds.

Now let H be a hyperplane in a !-complex X , fix an untwisted marking h, and
let Nh W S! !X be a homotopy inverse for h, so that g 2 A! D "1.S!/ acts on eX by
the deck transformation Nh!.g/ 2 "1.X/. Define

splith.H/D
®
v 2 V j an axis for Nh!.v/ crosses a lift of H

¯
;

and let maxh.H/ denote the set of maximal elements in splith.H/.
A special case is when h D c is just a collapse map. In this setting, the set of

elements of maxc.H/ all belong to the same fold-equivalence class of ! . In the next
lemma, we will see that the elements of maxh.H/ also all belong to the same fold-
equivalence class and moreover, that this equivalence class is actually independent of
the marking h up to graph automorphisms.

LEMMA 4.8
Let X be a !-complex, let h W X ! S! be an untwisted marking, and let mh be any
element of maxh.H/.
(1) If v 2 splith.H/, then v #f mh.
(2) There is a !-collapse map c such that mc %f mh for any mc 2maxc.H/.
Thus the maximal elements in splith.H/ all lie in the fold-equivalence class of
maxc.H/.
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Proof
By Lemma 4.7, we can write

hD 'n ı + + + ı '1 ı c;

where c D c" i W X Š S…! S is a !-collapse map and each 'j induces an inversion,
partial conjugation, or elementary fold. Let Nh denote the homotopy inverse of h. By
Lemma 4.6, U 0.A!/ preserves the special subgroup Adlk.v/ up to conjugacy for every
v 2 V , and by Corollary 3.16, the subcomplex eXdlk.v/ D i$1.eKdlk.v// contains an axis
for every element of this subgroup. Thus, some translate of eXdlk.v/ contains an axis
for Nh!.v/. It follows that every hyperplane H that splits Nh!.v/ has a lift that is dual
to an edge in eXdlk.v/, or in other words, if v 2 splith.H/, then v #f mc . Thus (1) will
follow immediately from (2).

We will prove (2) by induction on n. By definition, if v 2 splith.H/, then the
image of an Nh!.v/-axis crossesH at least once. For the purpose of this proof, we will
need to keep track of more information about how many times it crossesH . Begin by
choosing an orientation for H , or equivalently, for a dual edge to H . (H is orientable
since X is a special cube complex.) If p is an edge path in X , then we define the net
crossing number of p with H to be

n.p;H/D # positive crossings of H ) # negative crossings of H:

Note that two paths that are homotopic rel endpoints have the same net crossing num-
ber with respect to any hyperplane. For a generator v 2 V , set nh.v;H/D n.pv;H/,
where pv is some (hence any) loop in X representing Nh!.v/. This is independent
of basepoint since changing basepoints conjugates pv by a path connecting the
two basepoints and hence leaves the net crossing number unchanged. In particular,
nh.vw;H/D nh.v;H/C nh.w;H/.

Note that if nh.v;H/¤ 0, then v necessarily lies in splith.H/, but the converse
need not be true. In addition to property (2), we will prove by induction that the
following property holds:

(3) For some v 2maxh.H/, nh.v;H/¤ 0.

For nD 0, hD c, so (2) is true trivially and for any v 2maxh.H/, a characteristic
cycle for v crosses H exactly once, so nh.v;H/D˙1.

Now set h0 D 'n$1 ı + + + ı '1 ı c, with homotopy inverse Nh0, and assume by
induction that (2) and (3) hold for h0. If 'n is an inversion v 7! v$1, then c ı Nh and
c ı Nh0 agree on every generator except v. Furthermore, Nh0!.v/ and Nh!.v/D Nh0!.v$1/D
Nh0!.v/$1 have the same axis in eX , so there is no change in which hyperplanes this axis
crosses hence no change in the splitting set. Only the sign of the net crossing numbers
with these hyperplanes change.
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If 'n is a partial conjugation, then c ı Nh!.v/ is conjugate to c ı Nh0!.v/ for every
generator v, so an axis for Nh!.v/ is just a translate of an axis for Nh0!.v/. Thus, the
former crosses some lift of H if and only if the latter crosses some lift of H , and
again there is no change is the splitting set or the net crossing numbers for H .

It remains to consider the case that 'n is a right fold v 7! vw$1 for some w !f v
(the case of left folds is symmetric). Again c ı Nh! and c ı Nh0! agree on every generator
except v, and c ı Nh!.v/D c ı Nh0!.vw/. So the only possible change is that after com-
posing with 'n, v may be added to or removed from splith0.H/ and the net crossing
of v with H may change.

Suppose that v is in splith.H/, but not in splith0.H/. By induction, we know
that mh0 %f mc , and as observed above, v #f mc . Thus, v #f mh0 , so adding v
to splith0.H/ does not change its maximal equivalence class and (2) and (3) remain
valid.

Next, suppose that v 2 splith0.H/. If splith0.H/ contains more than one maxi-
mal element with nonzero net crossing number, then removing v from splith0.H/ or
changing its net crossing number will again preserve properties (2) and (3).

Thus, we need only consider the case where v is the unique element of maxh0.H/
with nh0.v;H/¤ 0. Since nh0.vw;H/D nh0.v;H/C nh0.w;H/, either nh0.w;H/
or nh0.vw;H/must also be nonzero. In the former case,w lies in splith0.H/ and since
v #f w, this contradicts our assumption that v is the unique maximal element with
nonzero net crossing number. In the latter case, since nh.v;H/D nh0.vw;H/¤ 0,
we conclude that v is also in splith.H/ and its net crossing number remains nonzero,
so (2) and (3) still hold for h. This completes the induction.

Remark 4.9
Suppose that v is twist-dominant. Then there are no elements w¤ v with v #f w. It
follows that any element of U 0.A!/ takes v to a conjugate of itself or its inverse, so
the image in X of an axis for Nh!.v/ is the same for every marking h as in the lemma.
Moreover, any hyperplane H crossed by this axis has maxh.H/D ¹vº.

More generally, if we drop the assumption that h$1c 2 U 0.A!/, then we have
the following corollary.

COROLLARY 4.10
Let X be a !-complex, and let h;h0 W X ! S! be untwisted markings. Then
Œmaxh0.H/#D + Œmaxh.H/# for some graph automorphism + .

Proof
We have h0 D  h for some  2 U.A!/. Write  D ' ı + , where + is a graph
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automorphism and ' 2 U 0.A!/. Then max&h.H/D + maxh.H/, so by Lemma 4.8,
Œmaxh0.H/#D Œmax&h.H/#D + Œmaxh.H/#.

COROLLARY 4.11
Let H be a hyperplane in a !-complex X , and let h W X! S! be an untwisted mark-
ing. ThenH is twist-minimal (resp., twist-dominant) if and only if Œmaxh.H/# is twist-
minimal (resp., twist-dominant).

Proof
Choose an isomorphismX Š S…, and let hD c" . ThenH DHA for someA 2 V […
and Œmaxh.HA/#D Œmax.A/#.

Definition 4.12
Given an untwisted marking h W X ! S! and a generator v 2 V , we define Minh.v/
to be Min. Nh!.v//" eX . Similarly, we define the branch locus brh.v/ to be the set of
points in Minh.v/ whose link in eX strictly larger than the link in Minh.v/.

If we choose an identification of X with S…, then in terms of this definition
Min.v/DMinc! .v/ and br.v/D brc! .v/, where c" W S…! S! is the standard col-
lapse map. Using Lemma 4.8, we can identify when a hyperplane is contained in the
minset for a general untwisted marking.

PROPOSITION 4.13
Let h W X ! S! be an untwisted marking, let H be a hyperplane of X , and let v 2
splith.H/. Then v 2maxh.H/ if and only if there is a lift eH contained in Minh.v/,
and in this case, both components of @%. eH/ contain points in brh.v/.

Proof
It is easily seen that this property is preserved by graph automorphisms, so it suffices
to consider the case where hc$1 2 U 0.A!/ for some collapse map c. Fix an identi-
fication of X with S…, and let c D c" . Then by Lemma 4.8, for any hyperplane H
we have Œmaxh.H/#D Œmaxc.H/#. Consider the subspace eKv D eKdlk.v/ *eKlk.v/. By
Lemma 4.6, sinceU 0.A!/ preserves the subgroupsAdlk.v/ andAlk.v/ up to conjugacy,
taking a translate if necessary, we may assume that eKdlk.v/ contains an axis for Nh!.v/
(see Corollary 3.16). Call this axis ˛hv . Then eKv contains Minh.v/D ˛hv *eKlk.v/.

By assumption, the axis ˛hv crosses some lift eH of H . Let m 2 maxc.H/. If v
is not maximal in splith.H/, then v <f m. In this case, eH is isomorphic to eKlk.m/

which is strictly bigger than eKlk.v/, hence eH is not contained in Minh.v/.
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Conversely, if v is maximal, then v %f m and we can identify eH D eKlk.v/ DeKlk.m/. It follows that the entire carrier %. eH/ is contained in Minh.v/. In addition,
eKdlk.v/ also contains an axis ˛m for m with respect to the marking c and Minc.m/D
˛m*eKlk.v/. Sincem 2maxc.H/, this minset contains %. eH/ and by Proposition 3.18,
both components of @%. eH/ contain points in the branch locus of Minc.m/. Since
Minc.m/ and Minh.v/ are both metrically the product of a real line with eKlk.v/, any
point in @%. eH/ that is branch for one of these minsets is branch for the other. Thus
both components of @%. eH/ also contain points in brh.v/.

5. Parallelotope structures on blowups
In this section, we consider blowups S… as metric objects, where we now allow some
of the cubes in S… to be skewed in certain directions, so that edges spanning a “cube”
are no longer necessarily orthogonal. We call these skewed blowups.

An n-dimensional Euclidean parallelotope F is a metric space isometric to the
image of the unit cube Œ0; 1#n "Rn under some element of GL.n;R/. If e is an edge
of F , then the midplane He is the convex hull of the midpoints of the edges parallel
to e. A parallelotope F is an orthotope if any two edges at a vertex are orthogonal or,
equivalently, the dihedral angle between any two midplanes is a right angle.

5.1. Allowable parallelotope structures
In a blowup S… every edge e has a label, that is, e D eA, where A 2 V […. By
Corollary 3.3, there is a square in S… spanned by eA and eB if and only if A and B
are adjacent. We will say that A, B are twist-related if max.A/ #t max.B/ or vice
versa.

Definition 5.1
Let c be a maximal cube of S… with outgoing edges e1; : : : ; en at a vertex p 2 c. Let
Ai be the label of ei , choose vi 2max.Ai /, and let stC.vi /D ¹viº [ lkC.vi /. Given
dc a parallelotope metric on c, we realize dc via an embedding ) W c ,! Rn which
sends p to 0. Regarding ).ei / as vectors in Rn, set

Ki D the subspace of Rn spanned by ).ek/ with vk 2 stC.vi / and

Lij DKi \Kj :

The metric dc on c is allowable if whenever vi and vj are not twist-related, then

L?ij \Ki is orthogonal to L?ij \Kj :

Note that if vi , vj are not twist-related, then stC.vi / \ stC.vj / D lkC.vi / \
lkC.vj / so in this case, Lij is the subspace spanned by the ).ek/ with vk 2 lkC.vi /\
lkC.vj /.
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LEMMA 5.2
An allowable parallelotope metric is determined by edge lengths and the angles
between twist-related edges.

Proof
Any parallelotope metric is determined by edge lengths and the angles between edges,
so we must show that in an allowable metric, the angles between non-twist-related
edges are determined by those between twist-related edges.

Suppose that ei and ej have labels that are not twist-related, so Lij is the span
of edges ek with vk 2 lkC.vi /\ lkC.vj /. The proof is by induction on dim.Lij /. If
dim.Lij /D 0, then the angle between ei and ej must be "

2 . If dim.Lij / > 0, write
ei D e0i C `i , where `i is the orthogonal projection of ei onto Lij and e0i is the projec-
tion ontoL?ij \Ki . Similarly, write ej D e0jC`j . Then ei +ej D .e0iC`i / +.e0jC`j /D
`i + `j . Since `i and `j are linear combinations of the ek 2 Lij , this dot product is
determined by the dot products of these ek . The dot products ek + ek are the squares
of the lengths of the ek , which are given. If vk 2 lkC.vi / \ lkC.vj /, then lkC.vk/
is strictly contained in lkC.vi /, so for two edges ek ¤ el 2 Lij , the subspace Lkl
has dimension strictly smaller than dim.Lij /. Thus, by induction, the angle between
edges in Lij is determined by edge lengths and the angles between twist-related
edges, so the same holds for ei , ej .

Definition 5.3
An allowable parallelotope structure F on S… is an assignment of a parallelotope
metric to each cube c of S… such that
(1) the metric on each maximal cube is allowable,
(2) if c0 is a face of c, then the metric on c0 is the restriction of the metric on c,

and
(3) if max.A/ D ¹vº is twist-dominant, then for any B adjacent to A, the angle

between eA and eB is equal to the angle between ev and eB .

The parallelotope structure in which every k-cube is isometric to the Euclidean
cube Œ0; 1#k is clearly allowable; it will be called the standard structure and denoted
E . If all parallelotopes in F are orthotopes, then the structure F will be called recti-
linear. These too are clearly allowable.

If A and B are adjacent labels in …[ V , then there is at least one parallelogram
F 2 F with edges labeled eA and eB . If F is allowable, then condition (2) guarantees
that the angle between these edges is the same for any such F , and we will denote this
angle by ˛A;B . By Lemma 5.2, the entire structure F is determined by the lengths of
the edges eA and the angles ˛A;B for twist-related A, B .



OUTER SPACE FOR RAAGS 1071

Figure 11. (Color online) Rotating HA in the direction w 2 lkC.A/. Here B splits w.

An allowable parallelotope structure F induces a (path) metric dF on S…. Dif-
ferent parallelotope structures may induce the same metric on S…; for example, if
S… D S! is an n-torus consisting of a single parallelotope F with sides identified,
then changing F by any element of GL.n;Z/ results in the same metric dF .

Note that an edge path which was convex in the standard cube complex structure
.eS…; dE/ is no longer necessarily convex in the metric space .eS…; dF /. We define a
hyperplaneHA in .S…;F / to be the set of midplanes dual to edges with label A. This
is the usual notion of hyperplane if F D E , but for arbitrary F lifts of hyperplanes
are no longer necessarily convex in .eS…; dF /.

5.2. Rotating a hyperplane in S…

Definition 5.4
Suppose that .S…;F / is an allowable parallelotope structure. Let A 2…[V , let HA
be the hyperplane in S… labeledA, and let v 2max.A/ andw 2 lkC.v/. Then rotating
HA in the direction of w means changing the angle ˛A;w to ˛0A;w , so that for every B
that splitsw, the angle between the edges eA and eB is ˛0A;w . More generally, rotating
HA means rotating it in the direction of one or more w 2 lkC.v/. The length of the
edge eA remains unchanged under rotation (see Figure 11).

Rotating a hyperplane HA in an allowable parallelotope structure F gives rise
to a new parallelotope structure F 0 which still satisfies the first two conditions for
allowability. This is because the subspaces Ki in the definition of an allowable par-
allelotope are unchanged by the rotation. However, if A is twist-dominant, then to
achieve the third allowability condition, one needs to do comparable rotations to every
hyperplane HA0 with max.A0/Dmax.A/D ¹vº.
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Recall that we have a partial ordering on equivalence classes in V given by Œv##
Œw# if lk.v/ $ st.w/. Choose a total ordering - on V consistent with this partial
ordering. Given a compatible collection of partitions …, we can extend this to a total
order on …[ V satisfying Œmax.A/#< Œmax.B/#)A-B .

PROPOSITION 5.5
Every allowable parallelotope structure on S… can be obtained from an orthotope
structure on S… by a sequence of rotations.

Proof
Suppose that F is an allowable parallelotope structure on S…, and let ˛A;B denote the
angle between edges eA, eB for any adjacent pair A, B . Let F0 denote the rectilinear
structure with the same edge lengths as F . Using the total order -, we will rotate the
hyperplanes in F0 in descending order and show inductively that after rotating HA,
we get a parallelotope structure on S… satisfying the following.
(i) The metric on each parallelotope is allowable and agrees on common faces.
(ii) For all B;C .A such that max.B/#t max.C /, the angle between eB and eC

equals ˛B;C .
Say by induction that we have rotated all the hyperplanes HA0 with A - A0.

Rotating HA only changes the angles between eA and other edges. By induction,
condition (ii) is already satisfied whenever B;C / A. We now rotate HA so that
condition (ii) also holds when AD B , that is, when A- C and max.A/#t max.C /.
As observed above, rotating preserves allowability of individual parallelotopes, and
by definition it agrees on common faces, so condition (i) continues to hold.

At the end of this process, when we have rotated all the hyperplanes as needed,
we arrive at a parallelotope structure in which the angles between any two edges eA,
eB with max.A/ #t max.B/, agree with those in F . This implies that this structure
also satisfies the third condition for allowability. So by Lemma 5.2, it must in fact be
equal to F .

PROPOSITION 5.6
Let F be an allowable parallelotope structure on S…, and suppose that the induced
path metric dF is locally CAT(0). Suppose that F 0 is obtained from F by a hyper-
plane rotation. Then
(1) dF 0 is also locally CAT(0), and
(2) any twist-minimal hyperplane which is locally convex with respect to dF

remains locally convex with respect to dF 0 .
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Proof
The local geometry at a point p is determined by the geometry of its link. Thus, it
suffices to show that rotating a single hyperplane H does not change the isometry
type of links in S…. The carrier %.H/ either has two boundary components, each
isometric to H , or (if the dual edge is a loop in S…) these boundary components may
be identified to each other. In either case, we will denote (the image of) this boundary
by @%.H/ and the interior by %ı.H/D %.H/)@%.H/. Setting Y D S…)%ı.H/, we
have

S… D %.H/[@'.H/ Y:

Rotating H changes the parallelotope structure only on cubes meeting the interior of
%.H/, leaving those in @%.H/ and Y unchanged. Hence, it suffices to show that if x
is a vertex lying in @%.H/, then the rotation does not change the induced metric on
the link of x in %.H/ (though it may change the metric on individual simplices in that
link).

To see this, note that if H is dual to eA with v 2max.A/, then the carrier of H
decomposes as %.H/D eA *Klk.v/, and by Proposition 3.15, Klk.v/ contains a char-
acteristic cycle for every w 2 lk.v/. Consider the subspace KlkC.v/ "Klk.v/ spanned
by the characteristic cycles for w 2 lkC.v/. Elements of lkC.v/ commute and are
twist-dominant, so this subspace is a torus with a flat metric. Moreover, as elements
of lkC.v/ commute with every element of lk.v/ we have a further (combinatorial)
decomposition %.HA/ D eA * KlkC.v/ * Klk.v/nlkC.v/. The edge eA can only rotate
in the direction of KlkC.v/. Thus, viewing eA * KlkC.v/ geometrically as the prod-
uct of an interval and a torus, this rotation changes only the width of the interval. In
particular, the rotation does not change the local geometry of %.H/. This proves (1).

For (2), let L be any twist-minimal hyperplane of S…, and let p be a point of L.
Then as was just shown, the local metrics at p with respect to dF and dF 0 are the
same. Since L is twist-minimal, it is preserved setwise by rotation. Thus if L was
locally convex before rotation, it remains locally convex afterward.

COROLLARY 5.7
If F is an allowable parallelotope structure on S…, then the induced path metric dF
is locally CAT(0).

Proof
This follows from Propositions 5.6(1) and 5.5, since any orthotope structure is CAT(0)
by Gromov’s link condition.
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As noted above, subcomplexes which are locally convex in .S…;E/ may no
longer be convex in a general allowable parallelotope structure .S…;F /. The fol-
lowing lemma specifies two exceptions that will be important in the sequel.

LEMMA 5.8
Suppose that F is an allowable parallelotope structure on S….
# Let v 2 V be twist-dominant. Then any lift of a characteristic cycle for v in

S… is convex in .eS…; dF /.
# Let A 2 V [… be a label with v 2max.A/. If v is twist-minimal, then any lift

of the hyperplane HA is convex in .eS…; dF /.

Proof
If v is twist-dominant, then Definition 5.3(3) guarantees that consecutive edges in a
characteristic cycle for v have angle " in .S…; dF /. Since .S…; dF / is locally CAT(0),
the lift of the characteristic cycle toeS… is geodesic and convex. The second statement
follows from Propositions 5.5 and 5.6(2).

5.3. Straightening an allowable parallelotope structure
In this section, we show how to straighten an allowable parallelotope structure F on
S… to obtain an orthotope structure, while maintaining allowability throughout the
process.

Remark 5.9
It will be convenient to describe the straightening process in terms of what it does to
the edges of S…, rather than its dual hyperplanes. In particular, if an edge eA is dual
to a hyperplaneHA and m 2max.A/, then we say that m is a maximal element of eA.

We begin by straightening a single parallelotope F 2 F . The straightening pro-
cedure for F will depend only on the equivalence classes Œmax.A/# of the edges eA
in F . Therefore, it suffices to describe the straightening process in the case where all
edges are labeled ev for some v 2 V .

Fix a vertex x in F with all angles acute or right. Let E be the set of edges
emanating from x. We can view E as a set of n linearly independent vectors in the
positive orthant of Rn. Let - be a total ordering on V as described in Section 5.2. For
each edge ev , define subspaces

Kv D span of
®
ew 2E jw 2 stC.v/

¯
;

K&v D span of
®
ew 2E jw 2 stC.v/; v -w

¯
:
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For ev; ew 2E , set Lv;w DKv \Kw . Recall that F is allowable if whenever v,
w are not twist-related, Kv \L?v;w is orthogonal to Kw \L?v;w .

Now define a new basis ¹bvº for Rn as follows. For each v, let bv be the unit
normal vector to K&v in K&v ˚hevi. In the case where K&v is empty, bv is just the unit
vector in the direction of ev . With respect to this basis, we have

ev D rvbv C
X
w

rv;wbw

for some rv > 0, rv;w ! 0, where the sum is taken over all w with ew 2 K&v . In
particular, this set of vectors ¹bwº is also a basis for K&v .

LEMMA 5.10
F is allowable if and only if for any two edges ev; ew 2 E , bv is orthogonal to bw .
That is, the vectors ¹bvº span an orthotope.

Proof
Assume that F is allowable. Suppose that v and w are twist-related, and say that
v -w. In this case, K&w ˚hewi"K&v , so by definition, bw lies in K&v and hence it is
orthogonal to bv . (This is always true, even without assuming allowability.)

So now suppose that v and w are not twist-related. Then

Lv;w DKv \Kw DK&v \K&w

since any u 2 stC.v/\ stC.w/ must be strictly greater than either v or w with respect
to the ordering #t , and hence also with respect to -. Since bv 2 .K&v /? "L?v;w , and
bw 2 .K&w /? " L?v;w , the allowability condition implies that bv and bw are orthogo-
nal.

Conversely, assume that all of the b! vectors are orthogonal to each other. For v,
w not twist-related, a basis for Kv \L?v;w is given by the set of bu with v #t u and
w #t u, and similarly, a basis for Kw \ L?v;w is given by the set of bz with w #t z
and v #t z. These sets are disjoint, and any two such bu and bz are orthogonal, so
Kv \L?v;w is orthogonal to Kw \L?v;w as required.

Next we describe a process for straightening F . For t 2 Œ0; 1#, set

etv D st
!
rvbv C t

X
w

rv;wbw

"
;

where st 2 RC is chosen so that ketvk D kevk. Then e1v D ev and e0v D kevkbv . Let
F t be the parallelotope spanned by ¹etvº.
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LEMMA 5.11
If F is allowable, then F t is allowable for all t 2 Œ0; 1#, and F 0 is an orthotope.

Proof
At all times t , the subspaces K&v .F

t / remain unchanged, that is, K&v .F
t /DK&v .F /

for all t , and likewise for K&v .F
t /˚ hetvi. Hence the normal vectors bv remain fixed

throughout the process. By the previous lemma, F is allowable if and only if all of
the bv vectors are orthogonal, or equivalently, F 0 is an orthotope.

We now want to apply the straightening procedure simultaneously to all paral-
lelotopes in F . Suppose that two maximal parallelotopes F and F 0 share a face F0
in S…. If eA is an edge lying in F0, with v 2 max.A/, then for any w with v <t w,
F and F 0 must each contain an edge with maximal element w. Since w is twist-
dominant, the allowability condition implies that these edges both lie along an axis
for w, hence they are parallel. Since the straightening procedure on eA depends only
on these edges, it follows that the straightening in F and F 0 agree on this face. More-
over, the same argument applied to the edges with maximal element w shows that
these edges remain parallel throughout the straightening process. Thus, we obtain a
consistent straightening, F t , of the entire complex which remains allowable at all
times t . We call .S…;F t / the straightening path for .S…;F /.

6. The space of skewed !-complexes with untwisted markings
We are now ready to define a space T! of skewed !-complexes with untwisted mark-
ings, that serves as an intermediary between †! and the full outer space O! .

6.1. Skewed !-complexes
Let X be a !-complex, and let F be a parallelotope structure on X . Define F to be
allowable if there is some isomorphism S… Š X such that the pullback of F is an
allowable parallelotope structure on S….

LEMMA 6.1
Allowability of a parallelotope structure on X is independent of the choice of isomor-
phism S… ŠX .

Proof
By Corollary 4.5, the twist relation is independent of the isomorphism S… Š X .
Hence if X is isomorphic to both S… and S…0 , then conditions (1), (2), and (3) of
Definition 5.3 are satisfied by the pullback structure on S…, if and only if they are sat-
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isfied for the pullback structure on S…0 , showing that allowability is also independent
of the isomorphism.

Definition 6.2
A skewed !-complex is a !-complex X together with an allowable parallelotope
structure F . If all of the parallelotopes F 2 F are orthotopes, we will call .X;F / a
rectilinear !-complex, and if all parallelotopes are isometric to Œ0; 1#k , we will write
F D E and call .X;E/ a standard !-complex.

6.2. Definition of T!
We now add untwisted markings to skewed !-complexes to form a space T! .

Definition 6.3
A marked, skewed !-complex is a triple .X;F ; h/, where .X;F / is a skewed !-
complex and h W X ! S! is an untwisted homotopy equivalence; that is, for any
!-collapse map c W X ! S! , the composition c ı h$1 W S! ! S! induces an ele-
ment of U.A!/ (where h$1 is a homotopy inverse to h). Two marked, skewed !-
complexes .X;F ; h/ and .X 0;F 0; h0/ are equivalent if there is a combinatorial isom-
etry i W .X;F /! .X 0;F 0/ (i.e., a map which preserves both the combinatorial struc-
ture and the metric on each parallelotope) that commutes with the markings up to
homotopy, that is, h' h0 ı i .

The space T! is the space of equivalence classes of marked skewed !-complexes
with untwisted markings:

T! D
®
marked, skewed !-complexes .X;F ; h/ j h is untwisted

¯
=% :

We will denote the equivalence class of .X;F ; h/ by ŒX;F ; h#.
Given a !-complex X and untwisted marking h W X ! S! , let UX;h denote the

subset of T! obtained by equipping X with all possible allowable parallelotope struc-
tures, that is,

UX;h D
®
ŒX;F ; h# 2 T!

¯
:

We will call this a cell in T! . It comes equipped with a natural topology as a sub-
space of a Euclidean space determined by the parallelotopes in F and subject to the
allowability conditions in Definition 5.3. Metrically, collapsing a hyperplane in X
corresponds to letting the length of the dual edges go to zero. The closure of UX;h
thus consists of the cells UX 0;h0 such that there exists a hyperplane collapse map
c WX !X 0 with h homotopic to h0 ı c. The topology on T! is therefore determined
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as a complex of spaces comprised of the cells UX;h, where cells are identified by col-
lapse maps as just described. (For a more detailed description of complexes of spaces
and their properties, see [25, Chapter 4.G].)

6.3. Contractibility of T!
We will show that T! is contractible by finding a deformation retraction of T! onto
the subspace of rectilinear marked !-complexes; this is the space †! defined in Sec-
tion 2.6, which we know is contractible. In other words, we want to find a way to
straighten marked, skewed !-complexes in a way that maintains allowability and
extends to a continuous straightening of the whole of T! .

In order to straighten a skewed !-complex .X;F /, we choose an identification of
X with S… for some … and apply the straightening process described in Section 5.3.
We need to show that this is independent of the isomorphism X Š S…. We note that
the labeling on S… was used in the straightening process only to order the edges in
Kv . By Corollary 4.5, any combinatorial isomorphism i W S…! S…0 preserves the
twist ordering #t on edge labels, so in fact we need only be concerned about what it
does to the ordering - within each twist equivalence class.

To address this problem, we will need to choose preferred representatives for
points in T! . Let X be a !-complex, and let h W X ! S! be an untwisted marking.
By Lemma 4.7, there exists a blowup S… and an isomorphism of cube complexes
i W X ! S… such that c" ı i ı h$1 2 U 0.A!/. Suppose that j W X ! S$ is another
such isomorphism.

LEMMA 6.4
Let i W X! S… and j W X! S$ be as above. For any twist-dominant v, j ı i$1 takes
edges with maximal element v to edges with maximal element v (cf. Remark 5.9).

Proof
For i W X! S… and j W X! S$ as above, the composition c! ıj ı i$1 ıc$1" induces
an element of U 0.A!/. Since any element of U 0.A!/ takes every twist-dominant
generator v to a conjugate of itself, the map j ı i$1 W S… ! S$ takes an axis for
v in eS… (with respect to the standard metric) to an axis for v in eS$. Edges with
maximal element v lie on such an axis, thus they map to edges with the same maximal
element.

We can now define the deformation retraction Rt W T! ! †! as follows. Let
.X;F ; h/ represent a point in T! , and choose a cubical isomorphism i W X ! S… as
in Lemma 6.4. Using this isomorphism, we can identify parallelotope structures on
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S… with parallelotope structures on X . Thus the straightening path for .S…;F / gives
a path in T! defined by Rt ŒX;F ; h#D ŒX;F t ; h#.

LEMMA 6.5
The deformation retraction Rt W T!!†! is well defined and continuous.

Proof
The straightening path depends only on which edges in the parallelotope structure
are twist-dominant. If i W X! S… and j W X! S$ are two identifications of X with
blowups, then by Lemma 6.4, j ı i$1 takes twist-dominant edges to twist-dominant
edges, so for each t the straightening path induced by i is isometric to the straighten-
ing path induced by j .

It is clear from the definition of the straightening path that Rt is continuous on
each cell UX;h of T! . It suffices to show that Rt is also continuous on the closure of
each cell. The closure of UX;h consists of all the cells UX 0;h0 such that there exists
a collapse map c W X ! X 0 with h homotopic to h0 ı c. Since straightening paths
preserve edge lengths, a path ŒX;F t ; h# in UX;h will collapse to a path in UX 0;h0
when the appropriate edge lengths go to zero. Moreover, since the straightening paths
in every cell are defined using the same ordering - on V , this path will agree with Rt
on UX 0;h0 .

In light of Corollary 2.20, we conclude the following.

COROLLARY 6.6
The space T! is contractible.

7. Outer space O!

7.1. Definition of O! and the map ‚ W T! !O!
We now define a new space O! by forgetting the combinatorial structure on skewed
!-complexes and allowing arbitrary markings. Thus a point in O! is an equivalence
class of triples .Y; d; f / such that
# .Y; d/ is a locally CAT(0) metric space that is isometric to .S…; dF / for some

skewed blowup .S…;F /,
# f W Y ! S! is a homotopy equivalence, and
# .Y; d; f /% .Y 0; d 0; f 0/ if there is an isometry i W .Y; d/! .Y 0; d 0/ with f 0 ı

i ' f .
The full group Out.A!/ acts on the left on O! by changing the marking f .
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PROPOSITION 7.1
The action of Out.A!/ on O! has finite stabilizers.

Proof
The element of Out.A!/ induced by a homotopy equivalence g W S! ! S! fixes the
point ŒY; d; f # if and only if f $1 ıg ıf is homotopic to an isometry of .Y; d/. Thus,
the stabilizer of a point ŒY; d; f # can be identified with the group of isometries of Y
up to homotopy.

Since .S…;F / has no free faces, each .Y; d/ has the geodesic extension property.
It follows from [8, Lemma II.6.16] that the minset of the center ofA! is all of Y , so by
the flat torus theorem (Theorem II.7.1 there) Y splits as a product Y D Y0 * TZ.A" /,
where TZ.A" / is a torus of dimension equal to the rank of the center Z.A!/. More-
over, by [8, Theorem II.6.17], Isom.Y / is a topological group with finitely many
components, and the connected component of the identity is generated by translations
of TZ.A" /. As every such translation is homotopic to the identity, the group of isome-
tries of Y up to homotopy is a quotient of the group of path components of Isom.Y /,
hence finite as claimed.

In fact, as shown by Bregman in [7], the group of path components of Isom.Y /
injects into Out.A!/.

To finish the proof of Theorem 1.1 we need to show that O! is contractible. To
do this, we define a map ‚ W T! ! O! by forgetting the parallelotope structure on
X 2 T! and just viewing it as a CAT(0) metric space. The remainder of this section is
devoted to proving the following theorem.

THEOREM 7.2
The map ‚ W T! ! O! is a fibration with contractible fibers. Hence O! is con-
tractible.

Since the inclusion map†! ,! T! is a homotopy equivalence by Lemma 6.5, the
map

†! ,! T!
‚)!O!

that forgets the orthotope structure on X is also a homotopy equivalence. We will
show in Corollary 7.17 below that this map is an embedding.

COROLLARY 7.3
The restriction of ‚ to †! is a homotopy equivalence †! 'O! .
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The proof of Theorem 7.2 has two major components. The first is to show that
the map ‚ is surjective. This is by no means obvious since the markings in T! must
be untwisted, whereas the markings in O! are unrestricted. Finding a point in the
fiber over some .Y; d; f / 2O! means finding a skewed blowup structure .S…;F / on
Y such that f $1 followed by the standard collapse map is untwisted. To do this, we
first decompose Y into parallelotopes, then identify the !-Whitehead partitions in the
blowup structure, and finally calculate the composition c" ı f $1.

The second component of the proof is to show that the fibers are contractible. To
do this, we fix a point in the fiber and describe a process of “shearing” edges dual to
a hyperplane in this !-complex. We then prove that every point in the fiber can be
obtained by a series of “zero-sum shearings” of the initial point. This set of shearings
spans a linear subspace of a Euclidean space, hence is contractible.

7.2. Surjectivity of ‚
The first step in proving Theorem 7.2 is to show that the inverse image of an arbitrary
point in O! is nonempty.

PROPOSITION 7.4
‚ W T!!O! is U.A!/-equivariant and surjective.

Equivariance under the action of U.A!/ is clear from the definition of‚ whereas
surjectivity is not, since markings in O! can differ by any element of Out.A!/. The
key is to show that an appropriate change of skewed blowup structure on a point of
T! will have the effect of composing the collapse marking with a twist. The proof of
Proposition 7.4 will occupy the remainder of this subsection.

For skewed blowups, the end result of the retraction Rt defined in Section 6.3
followed by scaling the edge lengths linearly gives a continuous “straightening map”
sF W .S…;F /! .S…;E/ that sends each parallelotope to a unit cube. The standard
collapse map c" W S… ! S! induces a collapse map cF" D c" ı sF on .S…; dF /,
called a straighten-collapse map.

Definition 7.5
An automorphism $ 2 Out.A!/ is realized by an isometry i W .S…; dF /! .S$; dG /
if cG! ı i ı .cF" /$1 induces $ on "1.S!/DA! :

.S…; dF /
i

cF!

.S$; dG /

cG!

S!
(

S!
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Figure 12. (Color online) Parallelotope structures F , G on SP such that .SP ; dF / is isometric
to .SP ; dG / and cG! ı i ı .cF" /$1 induces a twist v 7! vw.

Note that we are not requiring i to be a combinatorial isometry, just an isometry.
The realization of a combinatorial isometry is always untwisted. In Figure 12, we
illustrate an isometry between two skewed blowups that realizes an elementary twist
v 7! vw; one should think of these blowups as giving two different parallelotope
decompositions of the same space, and the isometry as the identity. The following
lemma explains in general how to realize a twist v 7! vw in the case that v is twist-
minimal.

LEMMA 7.6
Let F be an allowable parallelotope structure on S…, and let & W v 7! vw be an
elementary twist. If v is twist-minimal, then & can be realized by an isometry i W
.S…; dF /! .S…; dG / for some allowable parallelotope structure G on S….

Proof
Let (w be a characteristic cycle for w. Note that w is twist dominant, so (w is a local
geodesic. The carrier %.Hv/ of the hyperplane Hv decomposes combinatorially as a
product

ev * (w *Z;

where Z is the subcomplex of S… spanned by edges that are adjacent to v and do not
split w. The orientation on ew induces an orientation on all edges of (w . We define
a new decomposition of ev * (w by replacing each edge ev by the geodesic from its
initial vertex to its terminal vertex which cuts diagonally across all the parallelograms
in ev * (v . In a lift of ev * (v to eS…, the new edge is a geodesic from the initial
point of eev to the terminal point of weev (this is what happened in Figure 12, where
(w consisted of a single edge ew ). Since the structure of Z is unchanged, the new
decomposition of ev * (w extends to a new parallelotope decomposition of %.Hv/
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which is combinatorially isomorphic to the old one. It does not change the metric on
any parallelotope outside %.Hv/, so it extends to a new parallelotope structure G on
Y D S…. Since v is twist-minimal, skewing a single edge of a characteristic cycle
is allowed, so this new parallelotope structure is allowable (see Definition 5.3). Note
that the identity on Y is an isometry .S…; dF /! .S…; dG / but is not a combinatorial
isometry .S…;F /! .S…;G /.

The new collapse map cG" gives a new action of "1.S!/D A! on eY . The only
generator whose action has changed is v, whose new axis is the axis that was formerly
the axis for vw.

Notice that in the proof of Lemma 7.6 we skewed a single edge of a characteristic
cycle for v. If v is twist-dominant, then we cannot use that trick to realize & W v 7! vw,
since a characteristic cycle for v must lift to a (straight!) axis for v ineS…. Instead, we
will have to construct a new blowup structure .S$;G / on Y to realize & . The idea is
to locate branch points and twist-minimal hyperplanes using our identification of Y
with S…, then show that these are metric invariants and use them to construct a new
skewed blowup structure .S$;G / on Y . To make this work, we first need to relate the
geometry of .Y; d/D .S…; dF / to the combinatorial structure of S…. The following
proposition is the key.

PROPOSITION 7.7
Let v be a twist-dominant generator of A! . The straightening map sF W .S…;F /!
.S…;E/ takes axes for v in .eS…; dF / to axes for v in .eS…; dE/ and the minset of v to
the minset of v, where the actions are given by the collapse maps cF" and c" D cE" ,
respectively. Moreover, sF maps branch points for v in .eS…; dF / to branch points for
v in .eS…; dE/. The same holds if we replace cE" and cF" by any untwisted markings h
on .S…;E/ and h0 D h ı sF on .S…;F /.

Proof
First assume that the markings are standard collapse maps. Since v is twist-dominant,
each characteristic cycle for v in both .S…;F / and .S…;E/ is a geodesic that is the
image of an axis by Lemma 5.8. The full minset Min.v/"eS… is the convex hull of the
lifts of these characteristic cycles, and since sF identifies these, it also takes the minset
for v in .eS…; dF / to the minset for v in .eS…; dE/. The last statement about branch
points follows from the fact that the straightening map induces a homeomorphism on
links.

For a more general untwisted marking h, factor h as + ı h0 where h0 ı c$1" 2
U 0.A!/ and + is a graph automorphism. Since U 0.A!/ preserves twist-dominant
generators up to conjugacy, the axes and minset of v with respect to h0 are just trans-
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Figure 13. (Color online) The projection map prFw for w twist-dominant.

lates of the axes and minset with respect to c" , so the argument above still applies.
For the graph automorphism, +.v/D w for some other twist-dominant generator w,
so applying the proposition to w gives the same result.

For the standard metric dE , Lemma 3.10(1) gives a decomposition of the minset
of a generator v with respect to the marking c" as Min.v/Š ˛v * eHv , and hence a
projection prv W Min.v/! ˛v . This projection can be viewed either as the nearest-
point (orthogonal) projection, or as collapsing hyperplanes whose labels are adja-
cent to v. If v is twist-dominant, then by the proposition above, the straightening
map takes axes of v in .eS…; dF / to axes of v in .eS…; dE/, and likewise minsets to
minsets. Thus, we can define an analogous projection in .eS…; dF / by “straightening-
projecting-unstraightening” (see Figure 13), that is,

prFv D s$1F ı prv ı sF :

While this is no longer a nearest-point projection, it is again obtained by collapsing
all hyperplanes whose labels are adjacent to v. That is, for any parallelotope in the
minset, prFv collapses every edge eA with max.A/¤ ¹vº to a point.

PROPOSITION 7.8
Let F be an allowable parallelotope structure on S…. Let v be twist-dominant,
and suppose that & W v 7! vw is an elementary twist. Then there is an isome-
try i W .S…; dF /! .S$; dG / that realizes & ı ' for some ' 2 U 0.A!/ satisfying
& ı ' D ' ı & .

Proof
Since v and w commute, there is a vertex x 2 S… which is a terminal vertex for edges
ev and ew . Let (v and (w be characteristic cycles for v andw containing ev and ew , Qx
a lift of x toeS… and Q(v , Q(w lifts starting at Qx of these characteristic cycles. Since both
v and w are twist-dominant, Q(v and Q(w are contained in axes ˛v and ˛w through Qx,
and the product of these axes is a subcomplex ofeS… isometric to E2, with stabilizer
the subgroup hv;wiŠ Z2 of A! . The parallelogram in eS… spanned by Qx, v Qx, w Qx,
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Figure 14. (Color online) Fundamental domain D for hv;wiŠ Z2 on ˛v * ˛w Š E2 "eS…. The
dots and dotted lines are the projections of all branch points for v and w onto D.

and vw Qx is a fundamental domain D for this action (see Figure 14). Define a map
p W .eS…; dF /! ˛v * ˛w by p D .sF /$1 ı p? ı sF , where p? is the nearest-point
projection in .eS…; dE/. We will be most interested in the restriction of p to Min.w/,
projecting Min.w/ onto ˛v * ˛w .

Claim
Let br.v/ be the set of branch points for v, and let br.w/ be the set of branch points for
w. Then p.br.v// consists of lines parallel to ˛w and isolated points, and p.br.w//
consists of isolated points. The isolated points are vertices of S….

Proof of claim
There is a branch point for w at a vertex x 2 (w *Hw " S… if and only if there is an
edge eA at x with ŒA;w#¤ 1. If x is a branch point for w and x 2 (v *Hv , then x
is also a branch point for v. If x is a branch point for v but not for w, then all edges
eA at x that are not adjacent to v must be adjacent to w. In this case, every point of
x * (w is a branch point for v.

Let x 2 S… be a terminal vertex for edges ev and ew as above, and let Qx be a lift
to Q(v * Q(w . If w is central, then br.w/ is empty. In this case, the characteristic cycle
for w consists of the single edge ew and the only vertices on Q(w are the w-translates
of Qx, but these are not branch points. The same is true for Q(v if v and w are both
central.

Let B D br.v/ [ br.w/. Note that the decomposition of Q(v * Q(w into parallel-
ograms is completely determined by p.B/ [ ¹ Qxº. This is because each edge of this
decomposition is on a lift of a characteristic cycle (w or (v , and each endpoint of this
edge corresponds to a branch point in some (parallel) axis for v or w or to a translate
of Qx.

We are now ready to replace the action of v by the action of &.v/D vw. Since
v #t w, the centralizer of v is equal to the centralizer of vw, so Min.v/DMin.vw/
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Figure 15. (Color online) Skewing D. The branch points for v and w are the same as the branch
points for vw and w.

and br.v/D br.vw/. Thus replacing v by vw does not change B or the projections
of branch points onto the plane ˛v * ˛w . Replacing the fundamental domain D of
˛v * ˛w by a new fundamental domain D0 with vertices Qx, vw Qx, vw2 Qx, and w Qx,
these projections determine a decomposition of D0 into parallelograms (see Figure
15). The decomposition of ˛0v D ˛vw , the axis for &.v/, is in one-to-one correspon-
dence with the decomposition of ˛v , since in both cases, the vertices are projections
of points in p.B/ parallel to an axis ˛w . But the decomposition of ˛w will change
since vertices are now projections of p.B/ parallel to the new axis ˛0v , instead of the
old axis ˛v . So for example, two points in p.B/ could project to the same point under
one of these projections and to distinct points under the other.

We claim that D0 together with its decomposition is part of a skewed !-complex
structure .S$;G / on .Y; d/. To prove this, we need to do two things. The first is
to complete the new parallelogram decomposition of ˛v * ˛w to a parallelotope
decomposition of all of Y . The second is to find a compatible set , of partitions cor-
responding to this decomposition, that is, a parallelotope structure G on S$ making
.S$; dG / isometric to .Y; d/D .S…; dF /.

Parallelotope decomposition. We have changed the decomposition of the axis
˛w into edges. As collateral damage, we have also changed the decomposition of
any characteristic cycle with a lift that intersects ˛w . However, the endpoints of the
intersection interval are images of branch points for w, so are still vertices in the new
decomposition; that is, this segment of the characteristic cycle is the only thing we
have changed. (In particular, if the intersection is a single point, then we have not
changed this characteristic cycle at all.)

If w commutes with u 2 max.A/ for some label A, then the decomposition of
every product subcomplex (w *(u of S… is affected by changing the decomposition
of ˛w . If u also commutes with v, then this is not a problem because then the new
decomposition of ˛v * ˛w extends to a decomposition of ˛v * ˛w * eA "eS….

If Œu;w#D 1 but Œu; v#¤ 1, then it may happen that some partition P that splits
v also splits u, so that (u * (w overlaps (v * (w in the band eP * (w . We have
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Figure 16. (Color online) Skewing eu back in Q(u * ˛w when e.P1/, e.P2/ are in (u.

changed the decomposition of this band. However, notice that u#f v so u cannot be
twist-dominant and moreover u #t w. Since u is twist-minimal, we can compensate
for what we have done by using the band eu *˛w " Q(u *˛w to skew the characteris-
tic cycle for u back to the original endpoint of Q(u (see Figure 16). We do not change
the angle with ˛w in any other band, so preserve the condition of allowability for the
new parallelotope structure.

Blowup structure. We need to find a set of partitions , corresponding to our new
parallelotope decomposition. In particular, we need to show that the new decompo-
sition of ˛w comes from a set of !-Whitehead partitions that split w. Recall from
Section 3.3 that the partitions ¹P1; : : : ;Pkº that split w are nested, that is, their
w-sides Pi satisfy P0 D ¹wº " P1 " P2 " + + + " Pk " PkC1 D P 0 n ¹w$1º, and
if R is any other partition in … that is not adjacent to w, then its non-w side R is
contained in some piece dPi D Pi nPi$1 of the nest.

Since v is twist-dominant, the partitions splitting v are also nested, say,
Q0 D ¹vº " Q1 " Q2 " + + + " Q` " Q`C1 D Q0 n ¹v$1º, and the pieces dQj D
Qj nQj$1 are unions of v-components of !˙. (Recall from Section 2.3 that a v-
component is a connected component of !˙ n lk˙.v/ n ¹v; v$1º and that each side of
a partition based at v is a union of v-components plus v or v$1.) Since st.v/$ st.w/,
these v-components are unions of w-components plus possibly some elements of
lk.w/. Thus the intersection of a set of v-components with a set of w-components is
a set of w-components. In particular, each intersection Iij D dPi \ dQj is a union
of w-components.

Each vertex rij of (v * (w is a region that contains the consistent set

¹P 1; : : :P i$1;Pi ; : : : ;Pk;Q1; : : : ;Qj$1;Qj ; : : : ;Q`º:

Partitions that are not adjacent to w also are not adjacent to v, so have sides Ri that
fit into both nests (the sides that do not contain v or w), and rij must also contain the
consistent set

Sij D ¹P 1; : : :P i$1;Pi ; : : : ;Pk ;Q1; : : : ;Qj$1;Qj ; : : : ;Q`;R1; : : : ;Rmº:



1088 BREGMAN, CHARNEY, and VOGTMANN

The remaining partitions in … are all adjacent to w.
If Iij D dPi \ dQj contains some outermost Rs or a vertex u outside all of the

Rs , then we can use this to extend Sij to a region incident to an edge labeled Rs or
u as we did in Section 3.5. This region is a branch point for w in some parallel copy
of D, and projects to rij .

On the other hand, suppose that Iij contains no Rs or outermost vertex u. Then
no extension of Sij produces a region incident to an edge labeled Rs or u. Since
every edge that branches off Min.w/ has such a label, no such region gives a branch
point for w, that is, rij is not in the image of br.w/.

Identifying .˛v * ˛w/ D .˛vw * ˛w/, we get a new fundamental domain D0

and a new map pr0w W D0 ! ˛w \ D0 which projects along vw-axes. Using pr0w ,
project those rij that are images of branch points for w to an ordered set of points
.x1; : : : ;xn/ on ˛w \D0.

Let I.xk/ be the union of the Iij such that pr0w.rij /D xk . Let P 01 D ¹wº[ I.x1/,
P 02 D P 01 [ I.x2/, and so on. Each P 0i is a side of a valid !-Whitehead partition P 0i
based at w, since each Iij is a union of w-components.

Let , be the collection of !-Whitehead partitions obtained from … by replacing
P1; : : :Pk by P 01; : : :P

0
n. To see that the , partitions are pairwise compatible, we

need only check that P 0i is compatible with Rj for all i , j . We know that the side
Rj lies in some Ist , and hence in some I.xk/. So by definition, Rj " P 0k nP 0k$1 and
it follows that Rj is compatible with P 0i for all i .

Marking change. Finally, we calculate the effect of replacing the structure
.S…;F / on Y , with its marking cF" , by the new structure .S$;G / and marking cG! .

LEMMA 7.9
Suppose that v is twist-dominant, and let & W v 7! vw be an elementary twist. The
composite map cG! ı .cF" /$1 W S! ! S! is of the form & ı ', where ' 2 U 0.A!/ and
& ı ' D ' ı & .

Proof
Let - D cG! ı .cF" /$1 W S! ! S! . The corner point ex of the fundamental domains
D and D0 described above is a terminal vertex of edgeseev andeew ineS$ as well as
in eS…. Let x be its image in S…, and for each u 2 V , let .u be an edge path which
goes from x to an eu edge in C…, across eu, and then back to x in C…. Note that
.u crosses a single eu edge and all other edges are labeled by partitions. We choose
.u to have minimal length among all such paths. .u represents the homotopy class
.cF" /

$1.u/ 2 "1.S…; x/.
Lift .u to a path e.u based at ex. The endpoint ey of e.u is then u +ex with respect

to the cF" -marking. Since .u was taken to be minimal,e.u is a combinatorial geodesic
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(i.e., it crosses each hyperplane ineS… at most once), and our choice of x means thatex
and ey are vertices in .eS$;G /. Any minimal-length edge pathe/u in .eS$;G / betweenex
and ey consists of edges that cross a hyperplane which separatesex and ey. To calculate
-.u/, it is enough to know the ,-labels of hyperplanes that are crossed by e/u. The
only hyperplanes and labels that change as we go from .S…;F / to .S$;G / are those
with maxDw. Thus,e/u crosses one hyperplane labeled u, and all other hyperplanes
are either labeled by partitions or by w.

It follows that -.u/D wnuuwmu for some nu;mu 2 Z. In particular, the twist-
component of - is a product of elementary twists by w. By construction, a cF" -axis
for v maps to a cG! -axis for vw, so we know that -.v/D vw. If u¤ v but u #t w,
then either u is twist-dominant, so the axis for u has not changed, or we have sheared
the eu edge so that a cF" -axis for u maps to a cG! -axis for u. Thus, -.u/D u. This
proves that the twist component & of - is just & W v 7! vw. Therefore, we can write
- D & ı ', where ' is a product of folds and partial conjugations by w. Thus,
' 2 U 0.A!/ and since & is a twist by w, & ı ' D ' ı & , as desired.

This completes the proof of Proposition 7.8.

We next make some observations about changing the order of elementary twists,
folds, and partial conjugations.

Definition 7.10
Let & W v 7! vw be an elementary twist. If v is twist-dominant, then we say that & is a
TD twist, and if v is twist-minimal, then we say that & is a TM twist.

LEMMA 7.11
Let & W v 7! vw be an elementary twist.
(1) Let ' be a partial conjugation or an elementary fold. Then either ' commutes

with & or &' D ˛'& , where ˛ is a partial conjugation, an elementary fold, or
an elementary TM twist by w that commutes with both ' and ˛.

(2) If & is a TD twist and t is a TM twist, then either t commutes with & or
& t D ˛t& , where ˛ is an elementary TM twist by w that commutes with both
& and t .

Proof
(1) First suppose that ' is conjugates a component C of ! n st.u/ by u. Since v and
w are connected by an edge in ! , ' commutes with & unless uD v, in which case '&
agrees with &' except that '& conjugates C by vw instead of v. Since st.v/" st.w/,
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C is a union of components Ci of ! n st.w/ plus some elements of st.w/, so we can
correct this by partially conjugating the Ci by w$1.

Next suppose that ' is a right fold )xy W x 7! xy or left fold 0xy W x 7! yx. It
cannot be that w D x since that would mean v #t w #f y. Therefore, & commutes
with ' unless vD y, in which case

'&˛D &';

where ˛ W x 7! xw if ' is a right fold, or ˛ W x 7! wx if ' is a left fold. Note that ˛
may be either a fold if Œx;w#¤ 1 or a twist if Œx;w#D 1. Since x #f y, this implies
that x cannot be twist-dominant, so if ˛ is a twist, then it is a TM twist. In either case,
since v commutes with w, ˛ commutes with both & and '.

(2) Let t W x 7! xy be a TM twist. Then x ¤ w since w is twist-dominant, so t
commutes with & unless vD y. If vD y, then x must commute with v and hence also
with w. In this case, & t D ˛t& where ˛ W x 7! xw, which is a TM twist commuting
with both & and t .

Recall that Out0.A!/ is the subgroup of Out.A!/ generated by folds, twists,
partial conjugations, and inversions. By checking the generators, it is not hard to see
that graph automorphisms normalize Out0.A!/, hence it is a normal subgroup.

COROLLARY 7.12
Let hTM i denote the subgroup of Out0.A!/ generated by TM twists, and let G be
the subgroup generated by U 0.A!/ and hTM i.
(1) Any element g 2 G can be factored as g D t1 ı $1 D $2 ı t2, where $i 2

U 0.A!/ and ti 2 hTM i.
(2) TD twists normalize G, hence any element of Out0.A!/ can be factored as

a product of an element of hTDi, an element of hTM i, and an element of
U 0.A!/ in any order. The U 0.A!/ and hTM i factors may depend on the
choice of order, but the hTDi factor remains unchanged.

Proof
First note that inversions normalize the subgroup of Out0.A!/ generated by folds,
twists, and partial conjugations. Thus any inversion can be moved past any twist.
For (1), it remains to consider the case where t1 D & is a single TM -twist and
$1 D '1 + + +'n is a product of folds and partial conjugations. Applying Lemma 7.11(1)
repeatedly gives

t1 ı $1 D &'1 + + +'n D .'1˛1 + + +'n˛n/&;

where each ˛i is either the identity, a partial conjugation, an elementary fold, or a TM
twist by the same element w. In particular, all of the ˛i ’s commute with each other.
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If all ˛i lie in U 0.A!/, then we are done, but if one or more ˛i is a twist, then we
must apply the lemma again to move these twists to the right. Since ˛i commutes with
the other ˛j ’s, only moving it past the 'j terms can introduce new factors and these,
too, will commute with each other and with the ˛i . Repeating this process, we can
move all of the newly introduced TM twists to the right to obtain a new factorization
&$1 D $2t2 as desired.

For (2), the fact that TD twists normalize G follows immediately from Lemma
7.11 since ˛ always lies in G. So for any h 2 Out0.A!/, we can write hD g1 ı t D
t ı g2, where t 2 hTDi and gi 2 G. By part (1), we can factor gi into an element
of U 0.A!/ and an element of hTDi in either order. By Lemma 7.11(2), we can also
switch the order of the TM and TD twists if desired.

We can now complete the proof that ‚ is surjective.

Proof of Proposition 7.4
By definition, a point in O! is a space .Y; d/ isometric to a skewed !-complex
.S…; dF /, together with a homotopy equivalence f W Y ! S! . For the purpose of this
proof, we will identify .Y; d/ with .S…; dF /. Then a point in the fiber‚$1.Y; d; f / is
given by a skewed !-complex .X;G /, an untwisted homotopy equivalence h W X !
S! , and an isometry i W .S…; dF /! .X;dG / such that h' f ı i . If we also choose a
combinatorial isometry of X with some blowup S$, then the picture is

S$ ŠX

cG!

i

h

S…

f

cF!

S! S! S!
(

where hı.cG! /$1 2 U.A!/. To prove the proposition, we must find such an .S$;G ; h/.
Let $ D f ı .cF" /$1. Since graph automorphisms normalize Out0.A!/, we can

write $ D $0 ı 1 , where $0 2Out0.A!/ and 1 is a graph automorphism. Then replac-
ing S… by S).…/ as in the proof of Lemma 4.7, we may assume that $ 2 Out0.A!/.
By composing cF" with an isometry of S! , we can change the collapse map as in the
proof of Lemma 4.7, thereby removing 1 . Without loss of generality, we therefore
assume that $ 2 Out0.A!/. By Corollary 7.12, we can factor $ as $ D / ı t1 ı t2,
where / 2 U 0.A!/, t1 is a product of TD twists, and t2 is a product of TM twists.
Elements of U 0.A!/ act on the left on both T! and O! and the action commutes with
‚, so the fiber over .S…; dF ; f / is isomorphic to the fiber over /$1.S…; dF ; f /D
.S…; dF ;/$1f /. Thus we may assume that $ D t1 ı t2. Moreover, by Lemma 7.6
we can realize t2 by a change of parallelotope structure on S… (which changes the
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collapse map, but not the metric on S…), so we may assume that t2 D id and write
$ D &1 ı &2 ı + + + ı &k , a product of an elementary TD twist.

By Proposition 7.8, we can find elements 'i 2 U 0.A!/ and a sequence of skewed
blowup structures on Y realizing the compositions &i ı 'i . Composing these gives

S$

cG!

S…

cF!

i
f

S! S!
*1'1'''*k'k

(

S!

By Corollary 7.12, we can rewrite

&1'1 + + + &k'k D t 0 ı ' ı .&1 + + + &k/D t 0 ı ' ı $;

where t 0 is a product of TM twists and ' 2 U 0.A!/. By changing the parallelotope
structure on S$, we may again arrange that t 0 D id, so the diagram above becomes

S$

cG!

S…

cF!

i
f

S! S!
'ı(

(

S!

Setting hD '$1 ı cG! D f ı i$1, we have h ı .cG! /$1 D '$1 2 U 0.A!/, so .S$;G ; h/
is the desired point in the fiber.

7.3. Structure of fibers

7.3.1. Finding twist-minimal hyperplanes
In this section, we show that the set of twist-minimal hyperplanes in a marked twisted
!-complex depends only on the underlying metric and the marking, that is, on the
projection to O! .

LEMMA 7.13
Let ŒX;F ; h# and ŒX 0;F 0; h0# be two points in the fiber over ŒY; d; f #. The images
in Y of twist-minimal hyperplanes in .X;F / and .X 0;F 0/ are the same (both set-
theoretically and pointwise) and their carriers have the same width.

Proof
Since .X;F ; h/ and .X 0;F 0; h0/ both project to .Y; d; f /, we can identify .X;dF /Š
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.Y; d/ Š .X 0; dF 0/, that is, we consider .X;F / and .X 0;F 0/ to be two different
skewed !-complex structures on the same underlying space Y . Using this identifi-
cation, we have hD f D h0, so f is untwisted in both of these structures.

Recall that in Section 4.2 we defined the sets splith.H/ and maxh.H/ for a hyper-
plane in a rectilinear !-complex with an untwisted marking h. The same definitions
can be used for a hyperplane H in a skewed !-complex .X;F / provided that H is
convex, that is, v 2 splith.H/ if an axis ˛v crosses some lift of H in .eX;F /, where
the action is given by the isomorphism h! W "1.X/ Š "1.S!/ D A! . In addition, if
sF is the straightening map and hF D hs$1F , then the induced map QsF on the uni-
versal cover is equivariant with respect to the markings determined by h and hF .
Thus if some lift of H separates x from vx in .X;F /, then the same holds after
straightening. In other words, splith.H/D splithF .sF .H//. Thus, by Corollary 4.11
and Lemma 5.8, a hyperplane H in .X;F / is twist-minimal if and only if any lift eH
is convex and Œmaxh.H/# is twist-minimal.

Assume that H in .X;F / is twist-minimal, and let v 2 maxh.H/. Then some
lift eH lies in Minh.v/ and we can decompose Minh.v/ as a (not necessarily orthog-
onal) product Minh.v/D ˛v * eH . We would like to apply Proposition 4.13, but that
proposition was proved only in the context of rectilinear !-structures, so we first
must straighten .X;F /. For twist-minimal elements, the straightening map sF need
not take axes to axes or minsets to minsets, but as observed above, it does take the
carrier of eH to the carrier of a hyperplane eH 0 D sF . eH/ that also has maximal ele-
ment v. Hence the minset of v in the straightened structure .X;E; hF / decomposes as
˛0v * eH 0, where ˛0v is an axis for v with respect to the marking hF . In particular, the
straightening map between carriers extends to a homeomorphism between these two
minsets. It follows that s$1F maps branch points in %. eH/ to branch points in %. eH 0/.
By Proposition 4.13, %. eH 0/ contains branch points on both components of its bound-
ary, so the same holds for %. eH/. The position of eH is determined by the projection
of these branch points on ˛v via the projection map prFv D s$1F ı prv ı sF . Moreover,
since eH is the convex hull of the Alk.v/-orbit of a point on ˛v , the projection map
is determined by the CAT(0) metric and the marking h, independent of the choice of
point on ˛v .

Since Minh.v/, the projection map to ˛v , and the branch locus of v depend only
on the CAT(0) metric and the marking, they are the same for .eX;F / and .eX 0;F 0/.

7.3.2. Shearing .S…;F /
Now let .Y; d; f / be an arbitrary point of O! . By Proposition 7.4, the fiber‚$1.Y; d;
f / is nonempty, so we may fix a point .S…;F ; h0/ in this fiber and use an isometry
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.Y; d/Š .S…; dF / to identify Y with S… and f with the untwisted marking h0. After
acting by the untwisted subgroup U.A!/, we may further assume that f D cF" .

If .X;G ; h/ is any other point in the same fiber, then there is an isometry
i W .X;dG /! .Y; d/ with f ı i ' h. Using this isometry to identify .X;dG / with
.Y; d/ and h with f , we can view .X;G / as a different decomposition of the same
underlying metric space Y into (unlabeled) parallelotopes. We say that .X;G / is a
!-complex structure on Y . To understand the topology of the fiber, we will compare
an arbitrary !-complex structure .X;G / with our given structure .S…;F /.

The action of A! on universal covers is given by f in both cases, so the axes,
minsets, and branch points are the same. However, while f is untwisted with respect
to both structures, it is a !-collapse map only for .S…;F / where it is in fact the
standard collapse map.

By Lemma 7.13, the set of twist-minimal hyperplanes and their carriers are the
same in both structures. Let H be a twist-minimal hyperplane, and let eH be a lift of
H to eS…. The carrier %. eH/ has two boundary components, @0 and @1. Let x0 be a
branch point in @0; then each of .eS…;F / and .eX;G / must have an edge dual to eH
with one endpoint at x0. In .S…;F / hyperplanes are labeled, so we have eH D eHA
for some A 2… [ V with max.A/ twist-minimal, and we label this edge eA. In the
skewed !-complex structure .X;G / the edge does not have a label, so we will just
call it eH .

By Lemma 5.8, eH is convex. The elements of lkC.A/ are twist-dominant and
commute with each other, so eH contains a subspace of the form eA * ECA , where
ECA is an affine space generated by axes of elements in lkC.A/. By definition of an
allowable parallelotope structure, the edge eA was obtained from an orthogonal edge
by rotating in the direction of ECA . The same applies to eH , since lkC.H/D lkC.A/.
Letting t .eA/ and t .eH / be the endpoints of eA and eH in @1, it follows that the
subspaces t .eA/* ECA and t .eH / * ECA agree. So the difference sA D t .eH /) t .eA/
is a vector in the vector space UCA spanned by the axes of lkC.A/. (See Figure 17.)

Finally, note that in defining sA, we began by choosing an isometry i W .X;dG /!
.Y; d/. While this isometry need not be unique, for any other such isometry j , we have

j$1 ı i D .j$1 ı f $1/ ı .f ı i/' h$1 ı hD id:

Recall that Y decomposes as an orthogonal product Y D Y0 * TZ.A" /, where TZ.A" /
is a torus of dimension equal to the rank of the center Z.A!/. It follows from the
work of Bregman [7] that the only isometries of Y that are homotopic to the identity
are translations of the central torus TZ.A" /. Such a translation has no effect on the
relative position of eH and eA, so sA is independent of the choice of i .

Definition 7.14
The vector sA D t .eH /) t .eA/ 2 UCA is the shear of eH relative to eA.
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Figure 17. (Color online) Shear of eH with respect to eA.

Definition 7.15
A shearing of .S…;F / is a choice of vector sA 2 UCA for every hyperplane HA,
subject to the condition that if max.A/ is twist-dominant, then sA D 0.

We now observe that two !-complex structures .X;G / and .X 0;G 0/ in the fiber
that define the same shearing are the same.

PROPOSITION 7.16
Two points ŒX;G ; h# and ŒX 0;G 0; h0# in the fiber over .S…; dF ; cF" /D .Y; d; f / are
the same if and only if they define the same shearings ¹sAº and ¹s0Aº of .S…;F /.

Proof
If ŒX;G ; h#D ŒX 0;G 0; h0#, then there is a combinatorial isometry i W .X;G /! .X 0;G 0/
with h0 ' h ı i (i.e., an isomorphism of cube complexes X ŠX 0 which restricts to an
isometry on each parallelotope), so the fact that corresponding edges have the same
shearing is clear.

For the converse, suppose that i W .X;dG /! .X 0; dG 0/ is an isometry of underly-
ing metric spaces such that h0 ' i ı h. Lift i to an equivariant isometry Qi W .eX;dG /!
.eX 0; dG 0/. By Lemma 7.13, the CAT(0) metric and the marking completely deter-
mine the twist-minimal hyperplanes, as well as the width of their carriers. Hence Qi
maps each twist-minimal hyperplane eH to a twist-minimal hyperplane Qi. eH/. The
assumption on shearings now implies that the image of an edge dual to eH is paral-
lel to any edge dual to Qi. eH/ in .eX 0;G 0/. To show that Qi is a combinatorial isometry,
we will show that it also maps twist-dominant hyperplanes in .eX;G / bijectively to
twist-dominant hyperplanes in .eX 0;G 0/.

Suppose that v is twist-dominant and does not lie in the center of A! . Then by
Propositions 4.13 and 7.7, the hyperplanes split by v are completely determined by
the projection maps prGv , prG

0
v . Thus, to show that i preserves these hyperplanes, it

suffices to show that these two projection maps agree. In both cases, the projection
map may be thought of as performing a hyperplane collapse along all hyperplanes
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eH $Min.v/ whose maximal equivalence class commutes with v, where the collapse
map takes the dual edges eH to a point. Since i takes twist-minimal hyperplanes to
twist-minimal hyperplanes preserving the shearing and length of their dual edges,
prGv and prG

0
v agree on twist-minimal hyperplanes eH $Min.v/. If the maximal ele-

ment w 2 lk.v/ is twist-dominant, then the dual edge to eH lies along an axis ˛w by
Lemma 5.8. The entire axis is collapsed to a point under either of these projections.
Since i takes axes of twist-dominant generators to axes of twist-dominant genera-
tors, prGv and prG

0
v also agree along twist-dominant eH $Min.v/. We conclude that

the two projection maps are the same and hence determine the same twist-dominant
hyperplanes.

When A! has nontrivial center, X and X 0 decompose as (nonorthogonal) prod-
ucts with a locally convex torus endowed with a flat metric. In each case, the parallelo-
tope structure on the torus consists of a single parallelotope with opposite faces iden-
tified. In particular, any edge in the 1-skeleton of this torus is the image of an axis of
some central element. As i is an isometry and h0 ' i ıh, the torus factors in X andX 0

agree as marked, metric tori. Thus we may write X DZ*T , X 0 DZ0*T , where Z,
Z0 are subcomplexes, and i maps every edge of the T -factor in X parallel to an edge
of the T -factor ofX 0. The above argument now shows that the combinatorial structure
on Z and Z0 must also agree, and that for every edge e in the 1-skeleton X , i.e/ dif-
fers by translation in T from an edge in the 1-skeleton of X 0. Since the 1-skeleton of
X is connected, i differs from a combinatorial isometry by some fixed translation in
T . Since any translation is isotopic to the identity, post-composing i with the inverse
of this translation gives a combinatorial isometry i 0 W .X;G /! .X 0;G 0/ which still
satisfies h0 ' h ı i 0.

COROLLARY 7.17
The composite map †! ,! T!

‚)! O! that forgets the cube complex structure on
ŒX;G ; h#, is an embedding.

Proof
Suppose that ŒX;G ; h#, ŒX 0;G 0; h0# are two rectilinear !-complexes in the fiber over
ŒY; d; h# 2O! . Then there is an isometry i W .X 0; dG 0/! .X;dG / such that h0 ' i ıh.
Since G , G 0 are rectilinear, no shearing of edges dual to twist-minimal hyperplanes
is allowed, so by Proposition 7.16, ŒX;G ; h# D ŒX 0;G 0; h0# in T! , and hence also in
†! .

7.3.3. Zero-sum shearings
We now want to show that given any shearing of .S…;F / satisfying a certain zero-
sum condition, there is a skewed !-complex structure .X;G / on Y with that shearing.
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Together with Proposition 7.16 this gives us a characterization of all points in the fiber,
which we can then use to prove that the fiber is contractible.

Let v be a twist-minimal vertex of ! . For any A "… [ V with max.A/ !f v,
we have lkC.A/$ lkC.v/[ dlk.v/, so the shearing vector sA 2 UCA decomposes as

sA D `vAC f vA ;

where the first factor lies in the subspace spanned by axes of lkC.A/\ lkC.v/ and the
second by the axes of lkC.A/\ dlk.v/. Note that if v 2max.A/, then f vA D 0.

Now let (v be a characteristic cycle for v in S…. LetHA1 ; : : : ;HAk be the hyper-
planes crossed by (v , and orient the dual edges to be consistent with the orientation
of ev . For all i , we have max.Ai /!f v, so sAi D `vAi C f

v
Ai

. Viewing all of the `vAi
as vectors in the subspace of UCA spanned by axes of lkC.v/, we can define `v to be
the sum

`v D
X
i

`vAi :

Definition 7.18
A shearing ¹sAº of .S…;F / is a zero-sum shearing if `v D 0 for all twist-minimal v.

PROPOSITION 7.19
If the images of ŒX;G ; h# and ŒS…; dF ; cF" # in O! are equal, then .X;G / differs from
.S…;F / by a zero-sum shearing.

Proof
If ŒX;G ; h# and ŒS…; dF ; cF" # have the same image in O! , then there is an isometry
i W .X;dG /! .S…; dG / such that h ' cF" ı i . Any such isometry lifts to an equiv-
ariant isometry on universal covers that takes minsets to minsets, axes to axes, and
twist-minimal hyperplanes to twist-minimal hyperplanes. Let u be twist-minimal, and
let (u $ S… be a characteristic cycle for u beginning at a vertex in the image of the
branch locus br.u/. Let /u be a minimal-length edge path in .X;G / homotopic to
i$1.(u/. Then /u and (u cross the same twist-minimal hyperplanes and lift to homo-
topic paths in eX ŠeS… with endpoints on some axis for u. Thus /u is a characteristic
cycle for u in .X;G /. Since only twist-minimal hyperplanes contribute to the total
shearing along /u, we conclude that `u D 0.

Conversely, we claim that any zero-sum shearing corresponds to a point in the
fiber.
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PROPOSITION 7.20
Let .Y; d; h/ be the image of .S…;F ; cF" / in O! . Any zero-sum shearing of .S…;F /
is realized by some skewed !-complex structure .X;G / on Y such that h is untwisted
with respect to this structure and hence .X;G ; h/ represents a point in the fiber over
.Y; d; h/.

Before proving this proposition we deduce the following important corollary,
which characterizes the fiber in terms of zero-sum shearings.

COROLLARY 7.21
‚.X;G ; h/D‚.S…;F ; cF" / if and only if .X;G / differs by a zero-sum shearing from
.S…;F / and h' cF" ı i for some isometry i WX! S….

Proof
If‚.X;G ; h/D‚.S…;F ; cF" /, then there exists an isometry i W .X;dG /! .S…; dF /
such that h' cF" ı i , and .X;G ; h/ differs by a zero-sum shearing from .S…;F ; cF" /
by Proposition 7.19. Conversely, by Proposition 7.20, if .X;G / differs by a zero-
sum shearing from .S…;F /, then .X;G / is a skewed !-complex with an isometry
i W .X;dG /! .S…; dF / such that cF" ı i is untwisted. Since h' cF" ı i , we conclude
that ‚.X;G ; h/D‚.S…;F ; cF" /.

The proof of Proposition 7.20 will occupy the rest of this subsection. As in the
proof of surjectivity, we need to find a new decomposition of Y into parallelotopes,
a corresponding skewed blowup structure .S$;G /, and then determine the change of
marking cG! ı .cF" /$1.

For each Ai appearing in the characteristic cycle for v, `vAi decomposes into a
sum of components lying along axes forw 2 lkC.v/. The zero-sum condition, `v D 0,
implies that the components of `vAi along the axis for each w also sum to zero. This
means that we can achieve any zero-sum shearing by ordering the twist-dominant
elements wi , then first performing all shears towards w1, then w2, and so on. At
each stage, we will verify that the resulting parallelotope structure is a skewed !-
complex with an untwisted marking. At the final stage, we arrive at a skewed !-
complex .X;G / that differs from .S…;F / by the original zero-sum shearing. This
will prove the proposition.

Parallelotope decomposition. Assume that we are shearing toward a single twist-
dominant element w. We will define the new parallelotope decomposition by deter-
mining the hyperplanes dual to the parallelotopes. The twist-minimal hyperplanes
in the structure .S…;F / will remain hyperplanes in the new decomposition, and we
will eventually identify these with the twist-minimal hyperplanes in a new skewed
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!-complex structure .X;G /. The twist-dominant hyperplanes in .X;G / with maxi-
mal element w will be defined using a projection of Min.w/ to an axes for w. The
remaining twist-dominant hyperplanes will remain unchanged.

Choose a basepoint x0 in Min.w/ which is the terminal vertex of an edge labeled
w and a branch point for w in the structure .eS…;F /. Let ˛w be the axis through
x0, viewed as a copy of the real line, based at x0. We already have one projection
prFw D s$1F prwsF from Min.w/ to ˛w defined using the skewed blowup structure
.S…;F / on Y . The image of the branch locus br.w/ under this projection is a set
of isolated points dividing ˛w into edges, and the inverse image of the midpoints
of these edges are the hyperplanes HA with max.A/ D w. The image of any edge
eA 2 Min.w/ with max.A/ ¤ w is a vertex of ˛w , while every axis for w is sent
isomorphically to ˛w .

Since w is twist-dominant the subspace Min.w/ is a subcomplex of .eS…;E/, and
therefore also of .eS…;F / by Proposition 7.7. We define a new projection map on
edges of this subcomplex as follows. Every (oriented) axis for w can be identified
with the real line R and this identification is unique up to translation. Thus, segments
of an axis can be viewed as vectors in R (up to translation). We first associate such
a vector rA to each oriented edge eA in Min.w/. If max.A/D w, then eA lies in an
axis for w and we let rA be the corresponding vector in R. If max.A/¤ w, then the
shearing of eA is given by a vector sA 2 UCA . Since we are only shearing toward w,
sA lies along an axis for w and we let rA D )sA. Note that if w … lkC.A/, then by
definition of an allowable shearing, rA D 0.

Now define the new projection map pr0w W Min.w/! ˛w as follows. For any
vertex y in Min.w/, choose a minimal-length edge path eA1 + + + eAk from x0 to y, and
set pr0w.y/D x0 C

P
rAi . Since the vectors rA depend only on the label A and the

orientation of eA, this is independent of the choice of path and two vertices connected
by an edge eA will project to points that differ by the vector rA. Extending this map
linearly on each parallelotope gives the desired projection.

We remark that pr 0w can also be viewed as the map which collapses every hyper-
plane eHA in Min.w/ that does not split w. The collapse is performed by identifying
the hyperplane carrier with the product e0A * eHA, where e0A is the sheared version of
eA (i.e., an interval parallel to eAC sA) and collapsing every copy of e0A to a point.

Now let v be any generator that commutes with w, and let (v be a characteristic
cycle for v in the structure .S…;F /. Then (v lifts to a path pD eA1 + + + eAk in Min.w/.
Since we are only allowing shearing in the direction of w, for each edge eAi in p, we
have rAi D sAi D `vAi , so the zero-sum shearing condition says that

P
rAi D 0, or in

other words, the two endpoints y and vy of p project to the same point under pr0w . It
follows that pr0w is equivariant under the action of Ast.w/.
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Next observe that if an edge eA in Min.w/ is contained in the branch locus br.w/,
then max.A/ must commute with some u … lk.w/. Thus w … lkC.A/ and hence pr0w
maps eA to a single point. It follows that pr0w takes each connected component of
the branch locus to a single point. We declare these projection points to be the new
vertices of ˛w ; note that x0 is one of these vertices. This subdivides ˛w into a new
set of edges. The inverse image under pr0w of these edges form the carriers of the new
hyperplanes that split w.

Now consider the hyperplane structure on eY consisting of the original hyper-
planes which do not split w, together with the new hyperplanes that split w. These
determine a new (equivariant) parallelotope structure .eX;G /: the maximal parallelo-
topes in .eX;G / are maximal intersections of carriers of these hyperplanes.

More explicitly, parallelotopes in .eS…;F / containing no edges eA with
max.A/ #t w, remain unchanged in .eX;G /. In particular, this is true for all par-
allelotopes not contained in Min.w/. The .eX;G /-structure on Min.w/ consists of
parallelotopes whose edges either lie in an axis for w and project under pr0w to a
single edge in ˛w , or are parallel to eA C sA in some %. eHA/ and project to a single
point in ˛w . By the equivariance of pr0w , this descends to a parallelotope structure on
the image of Min.w/ in S….

It remains to check that this new parallelotope structure is allowable in the sense
of Definition 5.3. To see this, note that an allowable metric on a single parallelotope
c, as defined in Definition 5.1, depends on the intersections of linear subspaces Ki
associated to edges ei emanating from a fixed vertex. In our current terminology,
if ei D eA, then Ki is the subspace spanned by eA together with UCA . Since this
subspace remains unchanged after shearing, the resulting metric on c is still allowable,
so condition (1) of the definition is satisfied. Condition (2), that if c0 is a face of c, then
the metric on c0 is the restriction of the metric on c, is obvious. For condition (3), note
that if max.A/D ¹vº is twist-dominant, then both eA and ev lie in the image ˛v of
an axis for v and neither of these edges are allowed to shear. Thus if B is adjacent to
A, then any change in angle between eB and eA or ev must result from a shearing of
the edge eB . This can only occur if B is twist-minimal, in which case HB is locally
convex and contains ˛v . It follows that any shearing of eB will change the angles
between eB and any edge in ˛v by the same amount.

Blowup structure. We have found a new decomposition .X;G / of Y into parallelo-
topes. The next thing to show is that .X;G / is a !-complex; that is, we need to find
a new set of partitions , such that .X;G /D .S$;G /. The only difference between…
and , will be the partitions that split our twist-dominant generator w.

Since w is twist-dominant, Min.w/ is a (convex) subcomplex of .eS…;F / by
Proposition 7.7. If x and y are vertices of Min.w/ which are branch points for w,
then there are edges eA adjacent to x and eB adjacent to y with ŒA;w# ¤ 1 and
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ŒB;w#¤ 1. Choose a lift of C… toeS…; we will abuse notation by calling this C… as
well. LetMw be the intersection of Min.w/ with C…. Since C… and Min.w/ are both
convex in the straightened version .eS…;E/, their intersection is connected. Since C…
contains all vertices of S…, every branch vertex in Min.w/ has a unique translate in
Mw DC… \Min.w/.

LEMMA 7.22
Suppose that eA and eB are edges branching off of Mw at vertices x and y, respec-
tively. If A is a partition, let A% denote the side of A that does not contain w, and if
A is a vertex v, let A% D v if ev terminates at x, and let A% D v$1 if x is the initial
vertex of ev; define B% similarly. If a 2 A% is maximal in A and b 2 B% is maximal
in B , and a, b lie in the same w-component of !˙, then x and y project to the same
point of ˛w under pr0w .

Proof
Since Mw is a connected subcomplex, we may connect x and y by a minimal-length
edge path eA1 ; : : : ; eAr lying in this intersection. We claim that max.Ai / #t w for
all i , so each eAi collapses to a point under pr0w . Thus pr0w maps the entire path to a
point, showing that pr0w.x/D pr0w.y/.

We argue by contradiction, so let ai 2 max.Ai /, and suppose that ai #t w for
some i . Since eAi " Min.w/, we have Œai ;w# D 1. If Œa; ai # D 1, then ai #t w
implies that Œa;w#D 1, so eA "Min.w/, contradicting our hypothesis. Thus we have
Œa; ai #¤ 1 for all i , and similarly Œb; ai #¤ 1.

The lift of the hyperplane HAi containing eAi separates Mw into two compo-
nents. Since ai does not commute with either a or b, the endpoints of edges labeled
eA and those labeled eB lie in different components (where orientation matters if A
or B is a generator). In terms of partitions, the sides of A and B that do not contain
ai sit in different sides of the partition Ai . Since ai 2 lk.w/ and A% does not contain
w it does not contain ai either, and similarly B% does not contain ai . Thus A% and
B% are in different sides of Ai . But each side of Ai is a union of ai -components plus
ai or a$1i , and, since ai #t w, each ai -component is a union of w-components plus
possibly some elements of lk.w/. Since a 2 A%, b 2 B% and neither is in lk.w/, this
contradicts the hypothesis that a and b are in the same w-component.

We now form the new partitions splittingw in the same way we did in Section 7.2.
To each branch point r 2 br.w/ \ C…, associate the union I.r/ of the sets A% for
edges eA incident to r but not in Min.w/. The new projection pr0w sends br.w/\Mw

to an ordered set of points .x1; : : : ;xn/ on ˛w \C…, and to each xi we associate the
union I.xi / of the I.r/ with pr0.r/D xi . Let P 01 D ¹wº [ I.x1/, P 02 D P 01 [ I.x2/,



1102 BREGMAN, CHARNEY, and VOGTMANN

and so on. By Lemma 7.22, each I.xi / is a union of w-components, so each P 0i is a
side of a valid !-Whitehead partition P 0i based at w.

Let , be the collection of !-Whitehead partitions obtained from … by replacing
P1; : : :Pk in… by P 01; : : :P

0
n. To see that the, partitions are pairwise compatible, we

need only check that each P 0i is compatible with those R 2… that are not adjacent to
w. The side R% is contained in some outermost Q% in some piece dPi . The partition
Q cannot be adjacent to w, so there is an edge eQ at a branch point r 2Mw , and
Q% " I.r/. Since I.r/" I.xi / for some i . it follows that R is compatible with P 0i .

Marking change. The blowup structure .X D S$;G / defined above comes with a
collapse map cG! W S$! S! . We now analyze the change in marking induced by the
difference between cG! and the original collapse map cF" from .S…;F /.

LEMMA 7.23
Suppose that .X D S$;G ; cG! / is a zero-sum shearing of .S…;F ; cF" / 2 T! which
differs only in the direction of a twist-dominant generator w. Then the composite map
cG! ı .cF" /$1 W S! ! S! is untwisted.

Proof
Let - D cG! ı .cF" /$1 W S! ! S! . Observe that the only hyperplanes which change
from S… to S$ are those with max D ¹wº. Following exactly the same argument
as in the proof of Lemma 7.9, for each v 2 V we have that -.v/ D wnvvwmv for
some nv;mv 2 Z. Thus, nontrivial twists can occur only for v #t w. If such a v is
twist-dominant, then the characteristic cycle for v is the same in both S… and S$,
so -.v/D v. If v is twist-minimal, then the fact that .S$;G / is a zero-sum shearing
implies that a characteristic cycle for v with respect to .S$;G / has the same endpoints
as a characteristic cycle for v with respect to .S…;F /, hence in this case -.v/D v as
well. Therefore, - is untwisted.

The proof of Lemma 7.23 shows that - acts trivially on vertices v #t w, and
one might be tempted to conclude that it shows that the action of - is entirely trivial.
However, if z #f v #t w, then a characteristic cycle for z may have an edge eA
that also lies in a characteristic cycle for v. In this case, a zero-sum shearing of the
characteristic cycle for v in the direction of w may result in - acting as a nontrivial
fold of w onto z.

Remark 7.24
As observed in the proof of Lemma 7.23, the only hyperplanes that change in a zero-
sum shearing are twist-dominant hyperplanes. In particular, the set of twist-minimal
hyperplanes which split a particular v does not vary among all zero-sum shearings.
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We now finish the proof of Proposition 7.20.

Proof of Proposition 7.20
Order the twist-dominant generators w1; : : : ;wn. We perform an arbitrary zero-sum
shearing as a sequence of single generator zero-sum shearings. By the discussion
above, we obtain a sequence of skewed blowups

.S…;F /D .S$0 ;G0/; .S$1 ;G1/; : : : ; .S$n ;Gn/D .S$;G /;

where for 1# i # n, .S$i ;Gi / is obtained from .S$i!1 ;Gi$1/ by a zero-sum shearing
in the direction of wi , and the change in marking -i is untwisted by Lemma 7.23.
The change in marking from .S…;F / to .S$;G / is then a composition of untwisted
automorphisms

cG! ı .cF" /$1 ' -n ı + + + ı-1;

hence untwisted as well.

7.4. Contractibility of O!

7.4.1. Contractibility of fibers
Let Hmin denote the set of twist-minimal hyperplanes in .S…;F ; cF" /. Since these
depend only on the metric dF by Lemma 7.13, the set Hmin is well defined over
the whole‚-fiber containing .S…;F ; cF" /. Likewise, the twist-dominant axes remain
the same throughout the fiber. The dual edge to H 2Hmin is allowed to shear in the
direction of lkC.H/, and as above, we regard a given shearing sH as a vector in the
vector space UCH . (Here to emphasize the independence from …, we use the notation
sH andUCH rather than specifying a labelA and writing sA andUCA .) We now describe
the fiber containing .S…;F ; cF" / as a linear subspace of

M
H2Hmin

UCH :

Let Vmin denote the set of twist-minimal vertices. For v 2 Vmin, the only edges
which contribute to the shearing of v are those dual to H 2Hmin which split v. By
Remark 7.24 and Corollary 7.21, the set of twist-minimal hyperplanes that split v does
not change within the fiber. If v 2 split.H/, H 2Hmin, then the contribution of sH to
lv is lvH , where lvH lies in the subspace of UCH corresponding to lkC.H/\ lkC.v/. If
v … split.H/, then define lvH 0 0. We then identify lvH with a vector in UCv since lvH
lies in the span of axes in lkC.H/\ lkC.v/. Thus, for each v 2 Vmin we can think of
`v as a linear map:
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lv W
M

H2Hmin

UCH ! UCv ;

˚sH 7)!
X

lvH :

Call the equations ¹lv D 0 j v 2 Vminº the structure equations for shearings of
.S…;F ; cF" /. We now easily deduce the contractibility of the fibers from Corol-
lary 7.21.

THEOREM 7.25
The fibers of the map ‚ W T!!O! are contractible.

Proof
The space of solutions to the structure equations is the intersection

T
v2Vmin

ker lv ,
which is a linear subspace of

L
H2Hmin

UCH and hence contractible. The preceding
discussion shows that this subspace is in one-to-one correspondence with the set
of zero-sum shearings of .S…;F ; cF" /. Thus, by Corollary 7.21, there is a bijec-
tion between the space of solutions and points in ‚$1.ŒS…; dF ; cF" #/. It is easy to
see that this correspondence is a homeomorphism. By Proposition 7.4, every fiber of
‚ is a U.A!/-translate of one containing some ŒS…;F ; cF" #, so every fiber is con-
tractible.

7.4.2. Contractibility of O!
We now finish the proof of Theorem 7.2. By Theorem 7.25, the fibers of ‚ are con-
tractible, but since they are not compact, ‚ is not a proper map. To conclude that O!
is contractible, we will show that ‚ is in fact a fibration.

Proof of Theorem 7.2
Since O! is paracompact (the equivariant Gromov–Hausdorff topology is metrizable),
it suffices to show that ‚ is a fibration when restricted to sufficiently small neighbor-
hoods U "O! .

We begin by showing that for any point y0 in O! , and any lift x0 2 T! of y0,
there exist a neighborhood U and a section s W U !‚$1.U / with s.y0/D x0. Say
x0 D ŒX0;F0; h0# and y0 D ŒY0; d0; h0#, so that .X0; dF0/ is isometric to .Y0; d0/. By
Proposition 7.4, it suffices to consider the case when h0 D c0 is a collapse map.

Consider the fiber over a point y D ŒY; d; c# in a small neighborhood U of y0.
To define s.y/, we must choose a !-complex structure .X;F / on .Y; d/. For any
such F , the twist-minimal hyperplanes with v as a maximal element are determined
by the projection of the branch locus br.v/ on an axis for v. If .Y; d; c/ is close to
.Y0; d0; c0/ in the equivariant Gromov–Hausdorff topology, then these branch loci
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must also be close, and hence likewise their projections on an axis for v. However,
these projections can change in three ways as we move from ŒY0; d0; c0# to ŒY; d; c#.
# The distance between a pair of projection points may expand or contract. This

will affect the width of the carrier of the hyperplane separating these projection
points.

# One projection point can split into multiple points. This will require introduc-
ing new twist-minimal hyperplanes.

# Two or more projection points may coalesce, causing the corresponding hyper-
planes to merge.

Shrinking U if necessary, we may avoid the coalescing of projection points and allow
only changes of the first two types. Moreover, for U sufficiently small, the new twist-
minimal hyperplanes will have carriers of width less than half that of the old twist-
minimal hyperplanes, and thus (by abuse of notation) we may consider the set of
twist-minimal hyperplanes in F0 to be a subset of those in F . Then the marking
c W X ! S! will correspond to collapsing the newly added hyperplanes, composed
with the straighten-collapse map corresponding to c0.

The collection of twist-minimal hyperplanes at ŒY; d; c# is completely determined
by the metric d . The axes of twist-dominant generators are determined by the marking
c. As seen in Proposition 7.16, once we have determined the twist-minimal hyper-
planes, the shearing of their dual edges together with the branch locus completely
determines F . Suppose that H is a new hyperplane, not coming from a hyperplane
in F0. We are free to choose the shearing on the dual edge by any vector in UCH .
Different choices will only affect the determination of twist-dominant hyperplanes.
Therefore, we choose the dual edge to be orthogonal to H , of length equal to the
width of %.H/. If H corresponds to a twist-minimal hyperplane in F0 which is col-
lapsed by c0, then we leave the shearing unchanged (i.e., the angle between the dual
edge and the axes of lkC.H/), but adjust the length of the dual edge to take account
of the change in the width of the hyperplane carrier. Finally, for twist-minimal hyper-
planes not collapsed by c0, namely, those labeled Hv , we adjust the shearing so that
the new characteristic cycle lifts to a path whose endpoints lie on an axis for v. This
determines a parallelotope structure F on .Y; d/ with the property that the shear-
ing along twist-minimal hyperplanes satisfies the zero-sum condition relative to any
skewed !-complex in the fiber over y. Hence by Corollary 7.21, ŒX;F ; c# also lies
in this fiber. Set s.y/D ŒX;F ; c#. Since the construction of F depends only on the
metric d and lift ŒY;F0; c0#, the map s is well defined and continuous.

Now let Z be any space. Suppose that ft W Z! U is a homotopy, and let Of0 W
Z!‚$1.U / be a lift of f0. We can lift ft to a homotopy gt D s ıft W Y !‚$1.U /,
but g0 need not agree with the given lift Of0. We can correct this by concatenating gt
with a homotopy ht from Of0 to g0 which projects at all times t to the map f0. To do
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this, use the fact that the fibers of‚ are convex subspaces of some Euclidean space, so
the straight-line homotopy in each fiber from Of0.y/ to g0.y/ gives such a homotopy
ht . Then, up to reparameterizing the interval, ht followed by gt is a lift of ft .

This shows that ‚ is a fibration. Since we have already proved that the fibers
are contractible (Theorem 7.25), we conclude that ‚ is a homotopy equivalence. By
Corollary 6.6, T! is contractible, so the same holds for O! .
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