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Abstract

For any right-angled Artin group Ar, we construct a finite-dimensional space Or on
which the group Out(Ar) of outer automorphisms of Ar acts with finite point stabi-
lizers. We prove that Or is contractible, so that the quotient is a rational classifying
space for Out(Ar). The space Or blends features of the symmetric space of lattices
in R™ with those of outer space for the free group F,,. Points in Ot are locally CAT(0)
metric spaces that are homeomorphic (but not isometric) to certain locally CAT(0)
cube complexes, marked by an isomorphism of their fundamental group with Ar.
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1. Introduction

A lattice A in a semisimple Lie group G acts discretely on the symmetric space G/ K,
and a very well-developed theory shows that the algebraic structure of A is intimately
connected to the geometric structure of G/ K. The study of surface mapping class
groups by Thurston, Harvey, and Harer among others borrowed ideas from this clas-
sical subject, using Teichmiiller space as a substitute for the symmetric space, and this
point of view proved to be extremely fruitful. An analogue of symmetric spaces and
Teichmiiller spaces called Culler—Vogtmann’s outer space was later produced for the
purpose of studying the group of outer automorphisms of a free group (see [18]). The
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study of this group, space, and action has frequently been guided by Thurston’s ideas,
but there are some respects in which Out(F;) more closely resembles a lattice than
a mapping class group. For example, mapping class groups are automatic (see [29]),
while for n > 3, Out(F,) (see [9]) and GL(n,Z) (see [23]) are not.

In this article, we study outer automorphism groups of right-angled Artin groups,
a class which includes both Out(F},) and the most basic lattice, GL(n, Z) = Out(Z").
Recall that a right-angled Artin group (RAAG) is defined by a presentation with a
finite set of generators together with relations specifying that some of the generators
commute. A convenient way of expressing this is to draw a graph I" with one vertex
for every generator and one edge connecting each pair of commuting generators; the
resulting RAAG is denoted Ar. In recent years, RAAGs and their automorphism
groups have played a prominent role in geometric group theory and low-dimensional
topology. RAAGsS are linear groups and they arise naturally as subgroups of many
other groups such as mapping class groups, Coxeter groups, and more general Artin
groups (see, e.g., [15], [16], [19], [26]). Conversely, while all subgroups of free (or
free abelian) groups are themselves free (or free abelian), a surprisingly diverse array
of groups can be realized as subgroups of RAAGs, including surface groups and many
3-manifold groups (see [2], [24], [32]). The fact that the fundamental group of every
closed hyperbolic 3-manifold virtually embeds in a RAAG was central to Agol’s proof
of the virtual Haken conjecture in [1], the final step in Thurston’s program to classify
3-manifolds. The diversity of subgroups has also made RAAGs a fertile source of
counterexamples for a variety of conjectures (see [3], [17]).

To date, outer automorphism groups of RAAGs have primarily been studied from
an algebraic point of view (see, e.g., [13], [14], [20], [22]). As the case of mapping
class groups and Out(F},) clearly demonstrates, geometric approaches to studying
such groups can be very effective. In this work, we focus on constructing an ana-
logue of outer space for RAAGs that will allow us to apply similar methods to the
study of Out(Ar). Some initial steps in this direction appear in previous papers. In
[11], Charney and Vogtmann, together with Crisp, constructed a candidate outer space
for 2-dimensional RAAGs (those for which I" contains no triangles), but there is no
apparent way to generalize this to higher dimensions. Then in [12], together with
Stambaugh, they constructed a contractible space Kt with a proper action of a cer-
tain subgroup of Out(Ar). This subgroup, denoted U(Ar ), is made up of “untwisted”
outer automorphisms of Ar that behave more like automorphisms of free groups. In
particular, it excludes transvections between commuting pairs of generators. Here, we
use the space KT as a starting point to build an outer space for the full outer automor-
phism group.

Outer space for free groups, CV;,, can be described as a space of marked metric
graphs with fundamental group F;,, where the marking specifies an isomorphism of
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71 with Fy,. Similarly, the symmetric space Q, = SO(n)\ SL(n, R) can be described
as the space of marked flat tori with fundamental group Z", where the marking gives
an isomorphism of sy with Z". Thus the basic objects in Q, (tori) are all homeo-
morphic but have different flat metrics, while the basic objects in C V,, (graphs) have
different homeomorphism types as well as different metrics. These different homeo-
morphism types, however, all have a common quotient, an n-petaled rose, obtained
by collapsing any maximal tree. For a general RAAG, there is a canonical construc-
tion of a CAT(0) cube complex Sy with fundamental group Ar, known as the Salvetti
complex, which has a k-torus for each k-clique in I'. In the new outer space, this
complex plays the role of the n-petaled rose. The basic objects in our outer space
Or are locally CAT(0) metric spaces (Y, d) containing contractible subspaces (anal-
ogous to maximal trees) that can be collapsed to produce a quotient homeomorphic
to Sr. Each (Y, d) is made up of a collection of (intersecting) flat tori marked by the
free abelian groups generated by cliques in I". A point in Or consists of one of these
metric spaces (Y, d) marked by an isomorphism of 71 (Y) with Ar.

More precisely, the spaces Y are homeomorphic (but not isometric) to nonposi-
tively curved cube complexes called I'-complexes, which were previously introduced
in [12]. Marked I'-complexes form a partially ordered set whose geometric realization
is the simplicial complex Kr mentioned above. In K, I'-complexes are viewed as
combinatorial objects, not as metric objects, and the markings are of restricted type,
allowing only an action of the subgroup U(Ar). In the current paper, I'-complexes
are endowed with locally CAT(0) metrics that make the interior of each “cube” iso-
metric to a Euclidean parallelotope. We call this a skewed I'-complex. The objects
(Y,d) in Or are isometric to skewed I'-complexes. The markings are arbitrary, and
objects are equivalent if they are isometric by a map that commutes with the marking,
up to free homotopy. As in the special cases of GL(n,Z) acting on Q, and Out(F;)
acting on CV,,, Out(Ar) acts on Or by changing the marking. Our main theorem
states the following.

THEOREM 1.1
For any right-angled Artin group Ar, the space Or is finite-dimensional, con-
tractible, and the action of the group Out(Ar) has finite point stabilizers.

We now give a brief outline of the proof. The proof begins with the space Kt
which, as noted above, was shown in [12] to be contractible. The passage from Kt to
Or involves several intermediate steps. First, we embed KT into a new space Xr by
endowing I'-complexes with metrics making “cubes” into orthotopes, that is, orthog-
onal products of intervals of various lengths; these are called rectilinear I'-complexes.
In the case of a free group, this corresponds to embedding the spine of outer space
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into the full outer space CV,. As in the case of Kr, the action on Xt is restricted
to the subgroup U(Ar). This is a result of allowing only certain types of markings,
called untwisted markings. It is easy to show that K is a deformation retract of X,
so that X is contractible.

Next, we allow the orthotopes in a I'-complex to skew so that they become paral-
lelotopes. This is done in a controlled manner, resulting in an allowable parallelotope
structure which is still locally CAT(0). The collection of skewed I'-complexes with
untwisted markings is denoted 7. We show that there is a deformation retraction of
JT onto Xr defined by straightening the parallelotopes, so JT is also contractible.

The action on Jr is still restricted to the subgroup U(Ar). To get a space on
which all of Out(Ar) acts we must allow for transvections between commuting ele-
ments; these are called twists. To see how this is done, consider the case of a marked
metric torus 7". One can think of a change of marking as either a change in the
isomorphism 71 (7T") — Z", or as a change in the shape of the parallelotope whose
quotient is 7". To reconcile these viewpoints in the case of a skewed I"-complex, we
put an equivalence relation on the points in J7. Namely, two skewed I'-complexes
with specified markings are equivalent if they are isometric by a map that takes one
marking to the other (up to homotopy), where this map need not preserve the combi-
natorial structure. Then up to equivalence, we can accomplish twists by adjusting the
skewing of appropriate tori in the I"-complex.

The points in the new outer space Or are equivalence classes of points in I,
thus there is a natural surjection 7 — Or. The proof of Theorem 1.1 consists in
showing that this map is a fibration with contractible fibers. The key problem is
understanding to what extent the combinatorial structure on a marked skewed I'-
complex is determined by its metric. For this, we divide the hyperplanes into two
classes, twist-minimal and twist-dominant, and show that the twist-minimal hyper-
planes are completely determined by the metric. The twist-dominant hyperplanes on
the other hand, depend on the shapes of the parallelotopes and can vary within a fiber.
To show contractibility, we encode the allowable skewings by a vector in a Euclidean
space and prove that the set of points in a fiber corresponds to a convex subspace of
this Euclidean space.

Theorem 1.1 is a first step toward a more geometric study of Out(Ar). It leads to
many natural questions, a few of which we now discuss briefly.

The dimension of Or can be computed (with some effort) by looking at the
graph I'. As is the case for symmetric spaces and Teichmiiller spaces, the action
of Out(Ar) on Or is not cocompact, and this dimension is quite a bit larger than the
virtual cohomological dimension (VCD) of Out(Ar). An algebraic algorithm for com-
puting this VCD has been established by Day, Sale, and Wade [21]. For both GL(n, Z)
and Out(F},), there is an equivariant deformation retract (a “spine”) of dimension



OUTER SPACE FOR RAAGS 1037

equal to the VCD, and it would be interesting to find an analogous spine for Or. The
construction of such a spine might be fairly subtle, as it was shown in [28] that the
dimension of Kr, though often equal to the VvCD of U(Ar), is sometimes strictly
larger. As an aside, we remark that no natural spine has yet been constructed for the
action of the mapping class group of a closed surface on Teichmiiller space.

Much of the work on Out(F;) and GL(n,Z) (as well as surface mapping class
groups) depends on understanding the structure of the associated space at or near
infinity, for example, by adding a “boundary” that compactifies either the space or
its quotient, and studying the action on this boundary. Thurston compactified Teich-
miiller space by embedding it into the space of projective length functions for the
fundamental group of the surface, outer space can be compactified by embedding
it into the space of projective length functions on F;,, and the symmetric space @
embeds into the space of projective length functions on Z". Vijayan [33] initiated a
study of length functions on Ar, which was further developed by Beyrer and Fiora-
vanti [5], who used length functions to compactify the “untwisted” outer space Kt
of [12]. A different way of understanding the structure at infinity is by “bordifying”
the space, which compactifies not the space but rather the quotient. There are bordi-
fications of Q, (defined in much more generality by Borel and Serre [6]) and CV},
(defined by Bestvina and Feighn [4]). These were used to prove that the respective
groups are virtual duality groups in the sense of Bieri and Eckmann. Is there an anal-
ogous bordification of Or? The question is subtle, as Briick and Wade [10] showed
that Out(Ar) is not always a virtual duality group.

A space is a classifying space for proper G-actions if fixed point sets of finite
subgroups are contractible. Such a space is called an E G-space. These are useful,
for example, for studying centralizers of finite-order elements. In addition, we recall
that the Baum—Connes conjecture relates the topological K-theory of the reduced C *-
algebra of G to an appropriate equivariant homology theory evaluated at £G. Both
0O, and CV}, are classifying spaces for proper actions, so it is natural to ask whether
Or is likewise for Out(Ar).

Finally, both symmetric spaces and outer space for free groups can be equipped
with useful metrics (though the most intensively studied metric structure on outer
space is an asymmetric metric). A geometric approach often gives a simpler, more
natural explanation for algebraic features of the group. Is there a good metric on Or?
How do geodesics in this metric behave?

The paper is organized as follows. In Section 2, we establish basic terminology,
recall the construction of the space Kr, and embed it into a space Xr. In Section 3,
we establish some basic properties of I'-complexes which will be needed later on. In
Section 4, we introduce the notion of twist-dominant and twist-minimal hyperplanes
and investigate the extent to which these notions depend on the choice of I'-structure



1038 BREGMAN, CHARNEY, and VOGTMANN

and the marking. In Section 5, we define an allowable parallelotope structure on a
I'-complex and show that the resulting path metric is locally CAT(0). In Section 6,
we prove that the space JT of skewed I'-complexes deformation retracts to X, hence
is contractible. Finally, in Section 7, we define our outer space Or and show that the
natural map JT — Or is a fibration with contractible fibers.

2. Preliminaries

We fix a finite simplicial graph I" = (V, E)) throughout the paper, and denote by Ar
the associated right-angled Artin group. In this section we give a brief account of the
contents of [12]. We refer the reader to [12] for further details.

2.1. Graph terminology
For v € V, the link, 1k(v), is the full subgraph of I" spanned by vertices adjacent to
v, and the star, st(v), is the full subgraph spanned by lk(v) and v. If W C V, then
k(W) =, ew lk(w) and st(W) is the full subgraph spanned by k(W)U W.
Define v < w to mean lk(v) C st(w). This can happen in one of two ways: either
lk(v) € lk(w), in which case we write v < w, or st(v) C st(w), in which case we
write v <; w. These are mutually exclusive unless v = w.
The following elementary lemma puts a restriction on the star- and link-orderings.

LEMMA 2.1
Ifu <y v <r w, then either v=u or v =w.

Proof

Suppose that u # v. Since u € lk(v) and lk(v) < lk(w), u € lk(w). Since st(u) C
st(v), this implies that w € lk(v). Hence v <; w, which is impossible unless v =
w. O

If v <« wand w <, v, then we say that v and w are equivalent and write w ~ v,
where * = f,¢t or @. The notation v <, w is justified by the fact that the induced
relation on equivalence classes [v] is a partial ordering. It will often be important to
be more specific, so if lk(v) = lk(w), then we say that v and w are fold-equivalent,
and if st(v) = st(w), then we say v and w are twist-equivalent.

For each v € V, we divide the elements of V>, = {u | u > v} into two groups;
namely,

. kt(w)={u|u>vandueclk(@))={uecV |u>;v,u#v},
. dik(v) ={u|u>vandu ¢lk(v)} ={ueV |u>yrv}.
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Figure 1. Ik(v) = {u1,uz,u3}, kT (v) = {u3}, dik(v) = {v, wy, ws).

(See Figure 1 for an example.) Observe that dlk(v) is equal to the “double link”
Ik(Ik(v)), that is, every vertex in dlk(v) commutes with every vertex in lk(v). Also
observe that if u,u’ >, v, then u is connected to u’, so {v} U1k™ (v) is a clique.

The following distinction will be critical when we define the points in our new
outer space.

Definition 2.2
A vertex v € ' is twist-dominant if there is some u # v with v >; u, and is twist-
minimal otherwise.

Note that elements of k™ (v) are all twist-dominant, while elements of dlk(v)
may be either twist-dominant or twist-minimal.

2.2. Salvetti complexes
For a simplicial graph I', the Salvetti complex Sr is a cube complex with one k-cube
for each k-clique in T'; in particular, it has a single O-cube (for the empty clique)
and a 1-cube for each vertex (=1-clique) of I'. The 2-skeleton of Sr is the standard
presentation complex for Ar, so 71(Sr) = Ar. The addition of higher-dimensional
cubes guarantees that St satisfies Gromov’s link condition; that is, all links are flag.
Therefore, if all cubes of Sp are identified with standard Euclidean cubes [0, l]k s
then the induced path metric on St is nonpositively curved (locally CAT(0)) and its
universal cover g]“ is CAT(0). In Figure 2, we show a simple example of a graph I
and its Salvetti complex. In this example, the Salvetti is made of two tori glued along
a circle labeled b plus a loop labeled d at the basepoint. In the right-hand picture we
have cut open the tori.

Throughout this paper, we will assume familiarity with the language of locally
CAT(0) and CAT(0) cube complexes, including hyperplanes, minsets, and so on, as
can be found, for example, in [8].
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b
c c
b
= d
a a
b

Figure 2. (Color online) A graph I" and its Salvetti St.

2.3. TI'-Whitehead partitions

2.3.1. Definition and examples

Let VUV~ be the generators of Ar and their inverses, and let m be a vertex of I'. A
I'-Whitehead partition P based at m is a partition of V U V=1 into three parts P,
P~ (called the sides of &) and Ik(5), where

. Ik(#) consists of all generators that commute with m, and their inverses;

. the sides of & form a thick partition of V U V =1\ Ik($) (recall that a partition
is thick if it has at least two elements on each side);

. m and m~! are in different sides of P;

. if v # w are in the same component of T"\ st(m), then v, v™!, w and w=! are

all in the same side of &.
A more succinct way to define a I'-Whitehead partition J” based at m is by forming a
graph I'* with one vertex for each element of ¥V U VV~! and an edge between distinct
vertices x and y whenever x and y commute but are not inverses. If we let k* (m)
be the link of m in I'F and let €(m) ={m,m',Cy,...,Cx} be the components of
'+ \ 1k (m), then

. 1k() consists of vertices in Ik (), and
. the sides of & form a thick partition of € (m) that separates m from m~!.
The components Cy,...,Cy are called m-components. Thus m together with any

proper subset of m-components gives one side of a valid I'-Whitehead partition based
at m.

A I'-Whitehead partition & based at m determines an automorphism ¢ (&, m) of
Ar called a I'-Whitehead automorphism. Examples of I'-Whitehead automorphisms
include partial conjugations and elementary folds (for details see [12]). Different
bases for J give different automorphisms, but the partition & itself does not depend
on the choice of base, and we will often not specify a base. Note that a I'-Whitehead
partition is completely determined by giving one of its sides.
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Example 2.3

The following are three examples of I'-Whitehead partitions for the graph I" depicted
in Figure 2:

. P = (PT|PTII(P)) = ({b.d}{b~".d }{a.a .7,

. Q@=(071071k(@) = ({la.d} {a~".d " c.c T H{b, b)),

. R=(RT|RT|Ik(R)) = ({a.c.d} {a= . d 71 cTH{b.b71H).

Here P is based at b, @ is based at a, and R can be based at either a or c.

2.3.2. Properties

Definition 2.4
If v and v™! are in different sides of &, then we say that & splits v. Define split($)
to be the set of vertices of I" that are split by &, and

max(P) = {v € V| v is a maximal element in split(!P)},

where maximality is with respect to the relation “<” defined above. For a vertex
v € V, it is convenient to also define max(v) = {v}.

LEMMA 2.5
If P is based at m and &P splits v, then v < 5 m.

Proof

Since & splits v, v is not in the link of m. Suppose that w is in the link of v. Since
& splits v, v and w are not in the same component of I — st(m2), so w must be in the
link of m. This shows that v < 5 m. O

It follows that the elements of max(J) are precisely the bases of J, and they are
all fold-equivalent.

LEMMA 2.6
If P splits a twist-dominant vertex v, then max(P) = {v}.

Proof
Letm € max (). By Lemma 2.5, v < ¢ m. Since v is twist-dominant, thereisa w # v
with v >; w. But then v = m by Lemma 2.1. O

We extend our orderings on vertices of I' to I'-Whitehead partitions by declaring
P <4 @ for x = f ort if for some (and therefore any) v € max(#) and w € max(@)
we have v <, w.
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2.3.3. Adjacency, compatibility, consistency

Definition 2.7

Let # and @ be I'-Whitehead partitions. We say that & and @ are adjacent if
max(P) C 1k(@). A vertex v is adjacent to P if v € Ik(P), and v and w are adjacent
if they are adjacentin T".

Since all elements of max(#) have the same link, max(#) C 1k(Q) if and only
if max(@Q) C 1k(%), that is, the definition is symmetric.

Warning. In [12], we said “# and @ commute” instead of “P and @ are adjacent.”
There are two reasons for changing the terminology here. First, two partitions based
at the same vertex v do not “commute” in the sense of [12] even though the generator
v certainly commutes with itself; this caused confusion for several readers. The sec-
ond reason is that the definition of “commute” written in [12] is not actually the one
used in the proofs of the lemmas: we mistakenly added a condition in the definition
requiring that the twist-equivalence classes of max () and max(Q) be different. The
proofs of all lemmas in that paper about commuting partitions are correct, however,
if one replaces “commuting” by the definition of “adjacent” given above.

Definition 2.8

Let # and @ be distinct I'-Whitehead partitions.

(1) P and @ are compatible if either & and @ are adjacent or they have sides P>
and Q* with P* N QX = 0.

(2)  Sides P* of & and Q> of @ are consistent if either # and @ are adjacent or
P*XNO*#40.

If # and @ are compatible but are not adjacent, then exactly three of the four
possible choices of pairs of sides are consistent, by Lemma 3.6 of [12]. (If they are
adjacent, then any choice of sides is consistent.)

Define an involution P> > PX that switches sides of &, that is, P+ =P and
P-=P7,

LEMMA 2.9
If P and @ are compatible but not adjacent and P* N Q> = @, then P*NIk(Q) =@
so P* C Q%; similarly, 0* C P*.

Proof
This is Lemma 3.4 of [12]. It is illustrated in Figure 3. O
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O

Figure 3. (Color online) Nonadjacent partitions & and @ have disjoint sides P and 0 that are
also disjoint from lIk(#) U 1k(@) (see Lemma 2.9).

2.4. Blowups

In this section, we fix a collection I1 = {Py,...,Px} of pairwise-compatible I'-
Whitehead partitions and construct a locally CAT(0) cube complex S™ with funda-
mental group Ar, whose edges are labeled either by a partition in IT or by a vertex
of I'.

Definition 2.10
A choice of sides for a set of I'-Whitehead partitions is consistent if each pair is
consistent. A consistent choice of sides P, for all &; € I is a region.

LEMMA 2.11
Any consistent choice of sides for a subset of 11 can be extended to a region.

Proof
This is Lemma 3.9 in [12]. It follows easily by induction on k, the number of parti-
tions. O

Regions will form the vertices of our cube complex. To describe the higher-
dimensional cubes, it is convenient to define a graph I'ry that realizes our notion of
“adjacency” for partitions in IT.

Definition 2.12

Let IT be a collection of pairwise-compatible I"'-Whitehead partitions. Then I'fy is the

(simplicial) graph with

. one vertex for each element of V' U IT, and

. an edge between A and B whenever A and B are adjacent according to Defi-
nition 2.7, that is, max(A4) C 1k(B).

The link of a vertex A € I'r; will be denoted 1k (A), the star by strj(A4), and the

double link by dlky(A).
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Everyv e VUV lisin Pl.+, P or 1k(P;) for each i. If v ¢ Ik($;), define the
v-side of P; to be the side containing v. Then the set of v-sides for those #; that
are not adjacent to v form a consistent set and can be extended to a region. Any such
region is called a terminal region for v.

Definition 2.13

The blowup S™ is a cube complex with one vertex for each region r = {P}*, ..., Py

The edges of S™ are constructed as follows.

. If two regions differ only by changing the side of J;, then we connect them
by an (unoriented) edge labeled ;.

. If r is a terminal region for v, then the region r*? obtained by switching sides
of all & that split v is a terminal region for v—!, and we connect the two by
an oriented edge labeled v that goes from r*? to r.

Higher-dimensional cubes are attached whenever a set of edges forms the 1-skeleton

of a cube whose labels span a clique in I'fy.

From the definition, we immediately see the following.

. There is an edge labeled v terminating at the vertex r = {P*,..., P} if and
only if for each i, either v € P or v € Ik(&;). If no &; splits v, then an edge
labeled v in S is a loop at r-.

. There is an edge labeled &; with one endpoint at r = {P[*,..., P} if and
only if for each i # j, either & and #; are adjacent or some side of P;
is contained in P/*. In particular, if #; and &; are not adjacent, then both
PN P and P ; M P are nonempty. An edge labeled & is never a loop.

In Figures 4-6, we show three blowups of Sr for the graph I' shown in Fig-
ure 2. As before, edges with the same label in the right-hand diagram are identified.

In Figures 4 and 5, the blowups are two tori identified along a circle, with an extra

edge attached. In Figure 6, the blowup is two tori identified along a cylinder, with an

b
c ¢
. . . - b d
R Q ¥ Q >
a p @

Figure 4. (Color online) The blowup S9 for @ = (a, d¥{a= 1, d7 1 c,c b, b~ 1Y).
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b P

 GRETD d
. C C/ C
(’71 071 d71 b71 Q b/Ql rP/ Q
a ba P a

Figure 5. (Color online) The blowup ST for IT = (P, @}, £ = ({b.d}|{b~ L, d "} {a,a™L,
-1
c,c” ).

b P

o (e

b/ 7)/

. . . = R R/ R
gl gt p! b P d

a / a

b/ fp/

Figure 6. (Color online) The blowup ST for IT = {P, R}, R = ({a.c.d}{a",d~ !, ¢~ 1}
{b,671)).

extra edge attached. The structure of blowups will be explored in much more detail in
Section 3.

2.5. Collapsing hyperplanes

Definition 2.14

Let H be a hyperplane in a cube complex X . The closure of the set of cubes that inter-
sect H is called the hyperplane carrier k (H ), and the hyperplane collapse associated
to H is the map cy on X that collapses k(H) to H.

Recall from [12] that hyperplanes in S™ are characterized by the fact that the set
of edges they intersect is exactly the set of edges with a given label A € V U I1. We
say the hyperplane is labeled by A.

PROPOSITION 2.15 ([12, Theorem 4.6])
If P € 11, and Hgp is the hyperplane in S labeled by P, then the image of ST under

P . —P
CH IS isomorphic to Si-2.



1046 BREGMAN, CHARNEY, and VOGTMANN

The standard collapse ¢, : ST — S? = Sr is the map that collapses all hyper-
planes whose labels are in II.

2.6. Untwisted outer space X1

Recall that the untwisted subgroup U(Ar) < Out(Ar) is the subgroup generated
by I'-Whitehead automorphisms, graph automorphisms, and inversions. By work of
Laurence [27] and Servatius [31], U(Ar) together with automorphisms v + vw for
v <; w (called twists) generate the full group Out(Ar). In this section, we recall the
main theorem of [12] and use it to define a contractible space X1 on which U(Ar)
acts properly. We first recall the space Kt studied in [12].

Definition 2.16

A cube complex X is a I'-complex if it is isomorphic to a blowup S™ for some I1. A
I'-complex collapse c: X — Sr is the composition of an isomorphism X = ST with
the standard collapse S™ — Sr.

Example 2.17

If T has no edges, then a I"-complex is a connected graph with no univalent or bivalent
vertices and no separating edges, and a I'-complex collapse contracts a maximal tree
to a point.

A marked T'-complex is an equivalence class of pairs (X, g), where

. X is a I'-complex,

. g: X — St is a homotopy equivalence, and

. (X', g’) ~ (X, g) if there is a cube complex isomorphism i : X’ — X with
goi~g.

A marking h: X — Sr is untwisted if the composition of a homotopy inverse 1 ~!
with some (and hence any) I'-complex collapse induces an element of the untwisted
subgroup U(Ar).

If a hyperplane collapse ¢ : X’ — X is a homotopy equivalence, then we set

(X", hocy)> (X, h).

This induces a partial order on I'-complexes with untwisted markings. The spine Kt
is the geometric realization of the resulting poset, that is, it is a simplicial complex,
where a k-simplex is a I'-complex with an untwisted marking together with a chain
of k hyperplane collapses, each of which is a homotopy equivalence to another I'-
complex with an untwisted marking.
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THEOREM 2.18 ([12, Theorems 4.17 and 6.24])
The spine Kr is contractible, and U(Ar) acts properly and cocompactly on Kr.

We now define the space X by viewing the cubes of a I'-complex X as metric
objects, each isometric to an orthogonal product of intervals of various lengths, that
is, an orthotope. The result is a locally CAT(0) complex X which we will call a
rectilinear I'-complex. All edges dual to the same hyperplane in X have the same
length, called the width of the hyperplane. A point in ¥t is then a marked rectilinear
I'-complex (X, /), where h is untwisted and the cube complex isomorphism in the
definition of the equivalence relation must be an isometry on each orthotope. In the
case where I" has no edges, the spine KT is the same as the spine of (reduced) outer
space, as originally defined in [18], and Xt is reduced outer space itself.

The spine Kr embeds in X1 as follows: the image of a vertex [(X, /)] of Kp
is determined by the property that all edges of X have length 1/n, where n is the
number of hyperplanes in X. The image of each higher-dimensional simplex is the
linear span of its vertices.

PROPOSITION 2.19
Kt is a deformation retract of Xr.

Proof

3 contains the set P X1 of marked metric I'-complexes [(X, /)] for which the sum
of the hyperplane widths in X equals 1. Note that the image of our embedding of
Kt into X is contained in P Xr. The map ¥ — P Xt that scales all edge lengths
simultaneously is a deformation retraction.

The subspace P Xr decomposes into a union of open simplices, one for each
marked I'-complex [(X, /)], of dimension one less than the number of hyperplanes in
X . The points in this simplex are obtained by varying the widths of the hyperplanes
while keeping the sum equal to 1. For each such simplex, consider the barycentric
subdivision of its closure, and let K[(X,h)] be the subcomplex of this barycentric
subdivision spanned by the barycenters of faces that are actually contained in P Xr.
It is easy to see that K[(X,h)] is equal to the image of Kt under the embedding
described above, and is a deformation retract of Xr. O

COROLLARY 2.20
The space Xt is contractible.
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3. Combinatorial and metric structure of blowups

Throughout this section, we fix a compatible set IT of I'-Whitehead partitions. To
prove our main theorem we will have to understand the structure of the blowup S™ in
some detail. We gather some facts about blowups here.

3.1. Basics

The following basic features of blowups S™ are either part of Theorem 3.14 of [12]

or follow immediately from the definition of S™.

(1) S™ is a locally CAT(0) cube complex; that is, the path metric induced by
making each k-cube isometric to [0, 1] is locally CAT(0).

(2)  The subcomplex CT  S™ consisting of cubes all of whose edge labels are in
IT is CAT(0) and locally convex, and it contains all vertices of STI.

(3)  The standard collapse map c, maps all of CII to the single vertex in Sr.

(4)  The set of edges of S'! with a given label A € VV U IT is the set of edges that
intersect a single hyperplane, which we will call H4. All hyperplanes in ST
are of this form.

5) Each hyperplane H 4 inherits a cube complex structure from S™ whose edges
are labeled by the elements of V' U IT that are adjacent to A, that is, by elements
in Ik (A).

(6) There is at most one edge with a given label at any vertex of ST,

Another way to define the subcomplex C™ is to observe that the set of sides
of the partitions in IT form a pocset, that is, a partially ordered set with an order
reversing involution P +— P such that pairs P, P are unrelated; this follows from
Lemma 2.9. Any pocset satisfying suitable finiteness conditions gives rise to a CAT(0)
cube complex (see, e.g., [30]), and C! is isomorphic to the cube complex associated
to the pocset of sides of IT.

3.2. Adjacent labels
In this section, we show that there is a unique cube in S™ for every maximal clique in
the graph I'ry, that is, any maximal set of pairwise adjacent elements of V' U IT.

We begin with existence, for which the following definition is useful.

Definition 3.1

Let P € I1. For v € V U V™1 \ 1k(P), the v-side of P is the side containing v. For
@ € I1\ {#} not adjacent to P, the @-side of P is the side containing some side of
@ (there is a unique such side by Lemma 2.9).

Stated in terms of hyperplanes, H splits the subspace CI into two components.
If v ¢ 1k(&), then the v-side of Hyp is the side containing the terminal vertex of some



OUTER SPACE FOR RAAGS 1049

(hence every) edge labeled v. If @ and & are distinct and not adjacent, then Hg does
not intersect Hp and the @-side of Hg is the side containing Hg.

PROPOSITION 3.2

Let T1 be a compatible set of k T'-Whitehead partitions, and let A = {Aq, ..., Ag} be
the vertices of a maximal clique in T'r. Then there is a cube in ST with edge labels
{A1,..., Ag}.

Proof

Let ANV ={vq,...v,}and ANTT ={@y,...,Qs}, so

. M={@,,...,Qs,%,...,P} withs +t =k, and

. A={vy,...,v,,@q,...,Qs} withr +5 ={£.

For any choices of sides Q[ of @; fori =1,...,s and exponents v;( =v; or v;l for
j=1,...,r, we will find a region r which is a terminal region for each @; and vf
These 2¢ regions (some of which may coincide, as we will see) form the vertices of
an {-dimensional cube in S™ with edges labeled by the elements of .

To define the region associated to {v{,..., v, OF,..., O}, we will start with
the sides Q. We then need to choose a side of each ;. Since A is a maximal clique,
for each J; there is some A; not adjacent to 5. If A; is a vertex v;, let P, be the
vy -side of P, and if 4; is a I'-Whitehead partition @, let P;* be the @ j-side of ;.
To see that P;* does not depend on the choice of A, observe that if & is not adjacent
to either A; or A, then the fact that w; € max(A4;) and wg € max(Ay) are joined
by an edge in I" implies that all of {w;, w;l, W, w,:l} are on the same side of &;, so
the A ;-side of J; is the same as the Ag-side of 5;.

Now let r = {QF,..., O, P, ..., P}. To see that this is a region, we must
show that any two elements either belong to adjacent partitions or intersect nontriv-
ially. Each pair @;, @; is adjacent. If @; is not adjacent to J;, then we have chosen
the @ ;-side P of #;. Since P;* contains an entire side of @, it intersects both sides
of @ nontrivially. If #; and &; are not adjacent, let Ax be an element of # that is not
adjacent to ;. We argue by contradiction: suppose that P N P jX = 0. If Ay is a ver-
tex vg, then v,f € PX,so0 v;; ¢ P‘]-X. Since v,f ¢ 1k(P;) by Lemma 2.9, this contradicts
our choice of P . If A is a partition @k and O C P;", then max(Qx) ¢ 1k(%;) and
neither side of @ is contained in p X, again contradicting our choice of P jx.

The region r is a terminal region for each v*. If we use (v)~! instead of v)%,
then we get another region, terminal for (vix)_l. These two regions may be the same
if v; and v;” I are on the same side of each &#;, in which case the edge labeled v; is a
loop. Switching sides of any @; gives another region, with an edge labeled @; joining
the two (this edge is never a loop). Thus we have the 1-skeleton of an £-dimensional
cube in S, which is filled in since all of the edge labels are adjacent. O
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COROLLARY 3.3
Two hyperplanes H 4 and Hp intersect if and only if A and B are adjacent.

Proof

If A and B are adjacent, then it follows from Proposition 3.2 that there is a square
with sides labeled A and B, so the hyperplanes H4 and Hp intersect at the midpoint
of that square. Conversely, if H4 and H p intersect, then there is a pair of edges dual
to these hyperplanes that bound a square, so A and B must be adjacent since by the
construction of S, we only fill in squares when labels are adjacent. O

Remark 3.4
Corollary 3.3 says that I'ry is the crossing graph for S™ as defined in [30].

PROPOSITION 3.5
Any cubes ¢, ¢’ in S™ with the same edge labels are parallel, that is, S T contains a
subcomplex isomorphic to ¢ X [0, n] for some n € Z, with ¢ = ¢ x{0} and ¢’ = ¢ x{n}.

Proof
If ¢ and ¢’ share a vertex, then they must be equal, so we may assume that they are
disjoint. Recall that CI is CAT(0), hence connected, and contains every vertex of ST,
Let p be a minimal-length edge path from ¢ to ¢’ that is contained in CI1. The CAT(0)
property implies that p crosses each hyperplane at most once. The first edge of p is
labeled by some partition #. Since p has minimal length, & is distinct from all of
the edge labels of ¢. Let r = { P, ...} be the initial vertex of p, where P* is a side
of P, and let r’ be the terminal vertex.

Suppose now that some edge label B of ¢ is not adjacent to . If B = {v}, then
P> contains v, so both r and r’ use this side. The first edge of the path p switches
sides of &, that is, crosses the hyperplane Hgp, so in order to reach r’ it must cross
H » again, contradicting the assumption that it is the shortest path. If B = @, then the
side of @ that appears in r is neither contained in P> nor contains P> (since there
are edges labeled both £ and @ at r). Since changing sides of @ is allowed at r/, it
follows that the side of & at r’ must also be equal to P*. As before, the initial edge of
the path p crosses Hgp, so in order to reach r’ it must cross Hp again, contradicting
the assumption that it is shortest.

We conclude that B and & are adjacent for all edge labels B of ¢, so there is a
cube ¢ x eg C S™. The side ¢” of this cube opposite from c is closer to ¢/, and we
can continue to build a product neighborhood ¢ x [0, n] until we reach ¢’. O
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COROLLARY 3.6
For every maximal collection {Aq,..., Ay} of pairwise adjacent labels, there is a
unique maximal cube in ST with those edge labels.

Proof
Existence is Proposition 3.2. Uniqueness follows from Proposition 3.5, since the exis-
tence of two distinct parallel cubes implies that {Ay, ..., Ag} is not maximal. O

3.3. Characteristic cycles

Definition 3.7

Let v be a vertex of T, and let e, be an edge of S™ labeled by v. Choose a minimal-
length edge path p(e,) in C™ from the terminal vertex t(e,) to the initial vertex
t(ey). The loop yy = pl(ey) U ey is called a characteristic cycle for v.

Since C™ is contractible, the standard collapse map takes y, to the loop in Sr
representing v. By the construction of ST, a characteristic cycle for v has one edge
labeled v and one edge labeled & for each partition & € II that splits v. Such a
path crosses the same hyperplanes as a locally geodesic loop B, representing v (see
Figure 7). Since v is not adjacent to any other label on an edge crossed by y,, e, must
lie in B,. Similarly, any edge e 4 in y, for which v € max(A4) must lie in B,.

3.3.1. Characteristic cycles and partitions
In this section, we give a more detailed description of characteristic cycles y, in terms
of partitions that split v. This depends on the following observation.

LEMMA 3.8

Suppose that P and @ are compatible and both split v. Let P and Q be the v-sides
of P and Q. If P and @ are not adjacent, then either P C Q or Q C P. If P and @
are adjacent, then P ¢ Q and Q ¢ P.

€y

t(ev)

7(ev) plev)

CH

Figure 7. (Color online) The local geodesic Sy, = ey U p(ey) and a characteristic cycle p(ey) Uey
containing ey .
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P Pt
Q

Figure 8. (Color online) Partitions & € IT with v € max(J) are nested. Partitions @ € IT that do
not split v and are not adjacent to v have a side Q in the nest. (O is the side that does not contain

v.)

P, .

Proof

P N Q contains v so is not empty, and P N Q contains v~! so is not empty. Since P
and @ are compatible, either they are adjacent or P C Q or Q C P by Lemma 2.9.
If & and @ are adjacent, then P intersects Ik(Q),so P ¢ Q, similarly Q ¢ P. [

1

Now fix a vertex v € I', and for each J° € II that is not adjacent to v, let P
denote the v-side of P, and let P denote the side that does not contain v (note that
v1 may be in P or in F). Let #1,..., Pk be the partitions in IT that have v as a
maximal element (i.e., are based at v). By Lemma 3.8, the v-sides P; are nested; that
is, after possibly reordering we have Py C --- C Pi (see Figure 8). For notational
convenience, set Py = {v} and Py = {Po|Po|lIkT(v)}, and let Priq = Po \ {v'}.
The differences dP; = P;+1 \ P; fori = 1,...,k are called the pieces of the nest.

If @ € II is not adjacent to v and does not split v, then Lemma 2.9 implies that
some side of @ is contained in either P; or P; for each i; since @ does not split v,
this must be the side that does not contain v, which we have called Q. We conclude
that Q is contained in some piece dP; of the nest.

Let IT, denote the set of partitions IT that split v. Note that in addition to the
partitions #;, IT, may contain partitions that split v but do not have v as a maximal
element; such partitions may be adjacent to each other. A characteristic cycle y, has
one edge for each element of IT,, so in particular one edge for each ;. Let §; be the
consistent set of sides

Q0 iif@ell,, Q2P
Q0 ifQel, QS P,
Q if@ eIl \II, is not adjacent to v,

and let 8; be the set obtained from §; by replacing P; by P;. Since the P; are
nested, changing sides of J; does not change the fact that the relevant intersections
are nonempty, so §; is still consistent. Either set can be completed to a region by any
consistent choice of sides of the R € II that are adjacent to v. One endpoint of the
edge in y, labeled &; is a region that extends the set &;; call this endpoint x;. The
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Figure 9. (Color online) A characteristic cycle for v has one edge e, and one edge for each
partition that splits v. The partitions based at v are nested. Partitions that split v but are not based
at v are indicated by dotted lines; these have max > ¢ v. Partitions are adjacent if and only if they
Cross.

other endpoint X; of this edge is obtained by switching P; to P;; this extends §; (see
Figure 9).

We can now describe an arbitrary characteristic cycle y, in terms of partitions
(refer to Figure 9). Start with any consistent choice § of sides of the &R € IT that
are adjacent to v, and let xo be the region extending & that is given by choosing the
v-side of every partition that is not adjacent to v. Define a partition @ € IT, to be
innermost if its v-side Q does not contain the v-side of any other element of I1,. By
Lemma 3.8, all innermost partitions in I1, are adjacent. For the first edge of y,, we
may choose the edge labeled by any innermost @ € IT,. For the next edge, we may
choose any edge labeled by @' € IT, that is innermost in IT, \ @. The following edge
is labeled by any innermost element of IT,, \ {@, @'}, and so on, and the loop is closed
by an edge labeled e, .

If no two partitions that split v are adjacent, the description of characteristic
cycles in terms of partitions is particularly simple, since then the v-sides of all ele-
ments of I1, are nested so any characteristic cycle y, consists of an edge path dual to
the nest plus an edge e, connecting its endpoints. This characteristic cycle is a local
geodesic in ST, In particular, we record the following.

LEMMA 3.9
If v is twist-dominant, then any characteristic cycle x, for v is an edge path in S
labeled by v and the partitions that split v. Furthermore, yy is a local geodesic in

sH,
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Proof
If v is twist-dominant, then all partitions that split v have max = {v}, so none of them
are adjacent. O

3.3.2. Characteristic cycles and minsets

Since S™ is locally CAT(0), its universal cover ST s CAT(0). We will label edges and
hyperplanes in S™ with the same label as their i images in S™. The group Ar acts on
ST via deck transformations (preserving labels), using the identification of 71 (S™)
with At induced by the standard collapse map c, : ST — Sr. The following lemma
uses standard CAT(0) methods to investigate the relation between characteristic cycles
and this action.

LEMMA 3.10

Let A€ I1 UV be alabel, and let v € max(A).

(D The minset of v in sH decomposes as a product o, X ﬁv, where o, is an axis
for v containing an edge ¢, and ﬁv is the dual hyperplane.

2) For each edge in S labeled A, there is a unique edge e, such that e 4 and e,
are contained in a local geodesic B, hence every characteristic cycle for v
containing e, contains e 4, and vice versa.

3) The carrier k(H 4) lies in the image of Min(v), and the induced cubical struc-
tures on H 4 and H, are isomorphic.

“4) If w is adjacent to A, then the carrier of H4 contains a characteristic cycle
for w.

Proof

Consider the minset of v in the universal cover S'. By standard properties of CAT(0)
spaces, Min(v) decomposes as an orthogonal product o, x Y, where Y is a convex
subspace of S™ and oy 1s an axis for v. The image of «, under the projection (SN
S™ is a local geodesic f,. By the comments after Definition 3.7 we may assume that
By contains an edge e,, and thus that «,, contains a lift e, of e,. We conclude that ﬁv
must contain a copy of Y.

Conversely, we claim that every edge dual to H, lies on an axis for v, so by
convexity this copy of Y contains H,. Suppose that €], is another edge dual to H,,
separated from &, by a square whose other label is A € Ikry(v). Let x, be a charac-
teristic cycle for v containing e,. Since every edge label B on y, splits v, we have
ki (B) 2 Ik (v) 3 A, so S contains an annulus y, x e4. The boundary of this
annulus is two characteristic cycles, one containing e, and one containing the image
e, of €/, so these two characteristic cycles are homotopic, and correspond to two dif-
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ferent axes for v, one containing €, and one containing &,,. Since any two edges dual
to H, can be connected by a sequence of squares, this proves (1).

As observed above, for any A € I1 with v € max(A), the local geodesic 8, con-
taining e, also contains a (unique) edge labeled e 4. It follows that the axis through
¢, contains a lift of e 4, hence the dual hyperplane H 4 contains a subspace parallel to
H,. Since every edge that is adjacent to A is also adjacent to v, these two hyperplanes
must, in fact, be isomorphic. Thus the carrier of H 4 lies entirely in the minset of v
and every edge dual to H 4 lies on an axis containing an e,, edge. This proves (2) and
(3).

For (4), note that since w is adjacent to v, e, and ey, span a cube in the carrier of
H,. Let y,, be a characteristic cycle containing e,,. The label on every edge of this
cycle is also adjacent to v, so the entire characteristic cycle is contained in the carrier
of H,. O

COROLLARY 3.11
If an edge @ of ST is in Min(v), then its image in SU is labeled either by v, by some
partition that splits v, or some label that is adjacent to v.

Proof

By Lemma 3.10(1), Min(v) = o, X ﬁv, and we may assume that o, is a lift of the
local geodesic S, described in Section 3.3. An edge e4 of S can only be in B, if
A = v or A splits v. (Warning: splitting v does not guarantee that e 4 will be contained
in B, unless max(A4) = v.) The hyperplane H, is parallel to a subcomplex with all
labels adjacent to v. O

3.4. Subcomplexes of ST associated to a generator

Fix a compatible set IT of ['-Whitehead partitions. We will use the graph I'ry defined
in Definition 2.12, with vertices V' U I1, to describe certain subcomplexes of S™ asso-
ciated to a generator v € V. We remark that I'y can be used to encode the fold rela-
tion: A <y B if and only if Ikrj(4) € lkr(B). However, it does not encode the twist
relation; this will be explored further in Section 4.

Definition 3.12
Given a set of vertices A of I'ry, the span of A, denoted span(A), is the subcomplex
of S™ consisting of those cubes with all edge labels in A.

Example 3.13
We have span(IT) = C™.
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Now fix v € V, let e, be an edge labeled by v, and let H, be the hyperplane in
S™ dual to e,. The carrier « (H,) is a product

k(Hy) = ey X Klk(v),

where Kj(y) is the connected component of span(lkr (v)) that contains the terminal
vertex x of e,.

Since v € dlkp(v), some connected component of span(dlky(v)) contains x.
Denote this component by Kgy (). Since every vertex of lkp(v) is linked to every

vertex of dlkyr(v), the product of these two subcomplexes is also a subcomplex of
SH:

Ky = Kaik) X Kik)-

Example 3.14

If v is twist-dominant, then dlk(v) = {v}, so dlkp(v) consists of v and partitions
based at v. These are precisely the labels in any characteristic cycle for v (see the
discussion at the end of Section 3.3.1), so the characteristic cycle y, containing x is
one component of span(dlkry(v)) Thus,

Ky = v X K]k(v) > yu X Hy,

and KK, is equal to the image in S™ of the minset of v in S,

If v is twist-minimal, then K, can be considerably larger and more complicated
than the image of Min(v). However, the following lemma holds for any v € V.

PROPOSITION 3.15
The subcomplex Ky ) contains at least one characteristic cycle for every u € Ik(v),
and Ky vy contains at least one characteristic cycle for every w € dlk(v).

Proof
Let e, be an edge in S labeled v, and let x be the terminal vertex of e,. Then K,
contains k (Hy), so the first statement follows from Lemma 3.10(4).

For the second statement, let w € dlk(v), and recall that the labels on a charac-
teristic cycle y,, consist of w and all partitions & € II that split w. If & is based
at m and splits w, then lk(m) 2 lk(w) 2 lk(v), so m € dlk(v). This shows that all
characteristic cycles yy, are contained in span(dlky (v)). It remains to check that the
component of span(dlkr(v)) containing x also contains a characteristic cycle for w.
For this it suffices to find an edge e,, in the same component as x.

Let ey, be an edge labeled w whose terminal vertex y has minimal distance in
C™ to x. (Recall that CI contains all vertices and is CAT(0).) If y = x, then we are
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done; otherwise connect y to x by a minimal-length edge path p in CT. We claim
that this edge path lies entirely in span(dlk(v)).

To see this, let $Pq,..., P, be the successive labels on the path p (all of these
labels are partitions). Since the path has minimal length, each &; occurs only once.
The vertex y is a terminal region for w, x is a terminal region for y, and the two
regions differ by changing the sides of each &; on the path, say, from P; to P;.

If #; is not in lkrp(w), then it is not in lkn (v) either, so v and w must be in
different sides of %, specifically w € P; and v € P;. Since each & is a I'-Whitehead
partition, this means v and w are in different components of I" \ st(J ) for all i. But
Ik(v) C lIk(w), so this can only happen if $#; € dlky(v). Thus we will be done if we
can show that no &; is adjacent to w

Suppose to the contrary that some partition along the path is in Ik (w); let &
be the first such partition. We first claim that #; is adjacent to &;_;. If not, then
there is a unique pair of sides of J#; and $;_; with empty intersection. Since P;_; N
P, Pi_yNP;,and P;_y N P; all correspond to vertices of the path p, the empty
intersection must be P;_; N P;. Since $;_; is not in 1k (w), w € P;_1, as observed
in the previous paragraph. But Lemma 2.9 implies that 1k(#;), which contains w,
does not intersect P;_j, giving a contradiction.

Since &; is adjacent to J;_; we can reroute the path p to obtain a new path with
the same edge labels that crosses J; before it crosses &;_;. Repeating the argument,
we can arrange that &; labels the ﬁrst edge of the path, so this edge has an endpoint
at y. Filling in a square with edge labels w and ;, we obtain an edge labeled w that
is closer to x, contradicting our original choice of ey, . O

Now let KU c S™ be the connected component of the lift of K, containing an
axis for v. This decomposes as a product Ky = Ky X Ki(p).

COROLLARY 3.16

KU is preserved by the action of the special subgroup Agy(y) X Alk(v), and Kd]k(v)
contains an axis for every element of the group Aax()- If &y C Kdlk(v) is the axis for
v, then o, X Klk(v) is the minset of v.

Proof

First note that the subcomplexes Kgy(y) and Ky (,) are locally convex in S™. This
follows from the fact that a cube lies in one of these subcomplexes if and only if its
edges all lie in that subcomplex. By general properties of CAT(0) spaces, a locally
convex embedding of a subspace lifts to a globally convex embedding on universal
covers and induces an injective map on fundamental groups.
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It follows from Proposition 3.15 that under the standard collapse map, the image
of 71 (Kai(v)) in 71 (Sr) = Ar is the subgroup Ag(y) and the image of 1 (Kj))
is Aj(y). Hence these subgroups preserve the lifts Kd]k(v) and Klk(v). Since these
subspaces are convex in s, they contain axes for each element of the corresponding
subgroup.

The last statement follows by Lemma 3.10(1) since Klk(v) is parallel to and iso-
morphic to H,. O

3.5. Branch loci

In Section 7, we will be given a locally CAT(0) space X with fundamental group
Ar and will need to construct an isomorphism of X with some blowup S™. We will
do this using the action of Ar on the universal cover X. In this section, we discuss
features of the action of Ap on ST that will help in this task.

Definition 3.17
A point x € Min(v) C ST is a branch point for v if the link of x in Min(v) is strictly
smaller than the link of x in S™. Denote the branch locus of v by br(v).

(Recall that the link of a point x in a CAT(0) metric space X is defined to be
the boundary of a small ball centered at x. This is standard terminology; the reader
should not confuse this with the graphical links used elsewhere in this paper.)

If v is central, then Min(v) = S™ and hence br(v) = @. No I'~-Whitehead partition
can split a central v, so in every blowup a characteristic cycle for v consists of a single
edge which is a loop. For the rest of this section, we assume that v is not central, and
show that in this case the location of hyperplanes in S™ is determined by branch loci
of minsets.

PROPOSITION 3.18

Let H4 be a hyperplane in S™ with v € max(A), and let Hy be a lift of Hy to St
If v is not central, then each component of the boundary of K(ﬁ A) contains a branch
point of Min(v).

Proof
Let e4 be an edge dual to H4. By Lemma 3.10(3), we know that e4 is contained in
some characteristic cycle y, for v. Let ep be the edge following e4 in x,, so that
either B = v or B is a partition that splits v.

If B is a partition based at w and w > v, choose u € Ik(B) \ 1k(A4). Denote the
common endpoint of e4 and ep by x, and let d,(A) and d,(B) be the components
of d(k(H 4)) and d(k(Hp)), respectively, that contain x. Then 9, (A4) = H, is a sub-
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complex of d,(B), but d,(B) is strictly larger, since «(Hp) contains a square with
edge labels u and B, and that square is not in k (H 4). Thus there is a point x” € 9, (A4)
that is adjacent to some edge ec with C not adjacent to v. This means that no lift of
ec is contained in Min(v) = o, x H4 = o, x Hy; that is, any lift X’ of x’ lying on
8(K(ﬁA)) is a branch point for v.

If v € max(B), then we need to choose our characteristic cycle carefully and look
more closely at the vertex x. To this end, we recall the description of characteristic
cycles from Section 3.3.1. If #y,..., Pk are the partitions in 1 that are based at v,
then the v-sides P; of the J; are nested and, for notational convenience we set Py =
{v}, Po = {Po|Po| k¥ (v)}, and Pii1 = Py \ {v™'}, so (after possibly reordering)
we have

PoC P C--C Py CPr C Prys.

Since A is based at v, we have A = &; for some i = 0, ...,k and the vertex x corre-
sponds to a region that extends the consistent set §; given by

Q if@splitsvand Q 2 P;,
8, =410 if@splitsvand Q C P;,

Q if @ does not split v and is not adjacent to v,

where Q is the v-side of @.

Since v € max(B), there is no @ in IT whose v-side Q satisfies P; g (0] g Piiq,
so for any characteristic cycle the edge labeled A = J; is followed by an edge labeled
B = P; 4 (this situation is illustrated in Figure 10). We claim that for some charac-
teristic cycle y, there is an edge ec at this vertex whose label C is not adjacent
to v and does not split v, so by Lemma 3.11 no lift of this edge is in Min(v). But
8(17 4) C Min(v) does contain a lift of x, so that is a branch point.

Recall that if a partition @ is not adjacent to v and does not split v, then it has a
side Q sitting in some piece dP; = P; \ Pj_; of the nest; call this the nesting side
of @. We say @ is outermost if Q is not properly contained in any other such nesting

Py

Figure 10. (Color online) If there is no @ with P; ; 0 ; Py, tlEn the remaining edges at the
vertex X; = x;4 are either adjacent to v or correspond to those Q and u in dP; = P; \ P;_;
that are outermost.
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side. We call a vertex u outermost if u is not adjacent to v and is not contained in any
nesting side.

Since v is not central and P; 41 # P;, the piece dP;+1 = P;j+1 \ P; must contain
at least one outermost side or vertex; let C be the corresponding label. If C is a
partition, then the condition that C is outermost guarantees that both sides of C are
consistent with §;. We claim that we can extend §; = 8i4+1 to a region that is an
endpoint of an edge ec; that is, we can choose sides of all remaining @ that are
consistent with each other and with both sides of C.

The remaining @ are those that are adjacent to v. These do not split v and are
adjacent to every partition that does split v. Suppose that such a @ is not adjacent to
C.If C is an element of V U V™1, choose the side of @ that contains C; the result is a
terminal region for C, that is, there is an edge labeled C at the corresponding vertex.

If C is a partition, let C* denote the nesting side. Both sides of @ intersect
Ik(v), so they cannot be contained in C*. It follows from Lemma 2.9 that some side
O must contain C*. Note that O intersects both sides of C, and also intersects
the previously chosen side of any partition not adjacent to @, so the complete set
of chosen sides is a region. Since C is outermost, switching sides of C still gives a
region, and we have found our vertex x. O

For a generator v, Lemma 3.10(1) gives a decomposition Min(v) = o, X ﬁv,
where «, is an axis containing an edge ¢, and H, is the hyperplane dual to¢,. Let

pr, : Min(v) = o, % ﬁv — 0y

be the (nearest-point) projection map corresponding to this decomposition.

If S™ is a blowup with the standard collapse marking, then an axis o, in ST is
transverse to some lift H4 of a hyperplane H 4 if and only if A = v or A is a partition
that splits v. In either case, we say that Hy splits v.

COROLLARY 3.19

If v is not central, then the image pr, (br(v)) of the branch set under projection to o,
is a set of discrete points and closed intervals. Each component of the complement
of this image crosses exactly one hyperplane, which lifts a hyperplane in S™! labeled
either by v or by a partition P based at v.

Proof

First note that being a branch point is a closed condition and pry, is a closed map,
so pr, (br(v)) is closed. By Corollary 3.16, the minset Min(v) decomposes as &, X
Klk(v) - Kdlk(,,) X Klk(v), and by Lemma 3.10, we may assume that o, contains lifts
of all edges in S™ labeled by some A with v € max(A4).
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Any segment of o, lying in the interior of a cube C C Kd]k(v) of dimension at
least 2 lies entirely in the branch set, since C is not contained in the minset. So the
only segments of «, which might not be in the image are contained in edges é of
]Kdlk(v) Let e be such an edge, and let H be the hyperplane dual to e. The hyperplane
H projects to a hyperplane H 4 in S™ for some A € V U II.

Since v splits A, either v € max(A) or any w € max(A) satisfies w > v. If
v € max(A4), then K(ﬁ ) ="¢'x H lies entirely in Min(v) and hence the interior of
K(ﬁ ) does not contain any branch points. By Proposition 3.18, the two boundary
components of K(ﬁ ) do contain branch points so the two endpoints of € do lie in
pr, (br(v)).

If w € max(A) satisfies w > ¢ v, then there exists u € Ik(w) with u ¢ lk(v). By
Proposition 3.15, k(H4) contains a characteristic cycle for u. It follows that i(H)
contains a square with edges labeled by A and u. This square does not lie in Min(v)
(since u is not in 1k(v)). This implies that the closest edge in Min(v) that is parallel to
the edge labeled A is also in a square with one edge outside of Min(v), so this edge
is entirely contained in the branch locus. Since this edge is dual to H, it projects to e,
so ¢ is contained in pr, (br(v)). O

If v is twist-dominant, then every partition in IT, has max = {v}, so every y,
is an edge path in S and its lift to ST is an edge path which is an axis «, for v.
By Proposition 3.18, every vertex of o, is the projection of a branch point and there
are no branch points in the interior of edges. We record these observations in the
following statement.

COROLLARY 3.20
If v is twist-dominant and not central, then any lift of a characteristic cycle to Sl is
an axis o, and pr, (br(v)) is precisely the set of vertices of ay.

4. Hyperplanes in I'-complexes

Let (X, h) be a point of X, that is, a rectilinear I"-complex with an untwisted mark-
ing. If we choose an isomorphism X 2 S™ the hyperplanes of X acquire labels, and
we can use these labels to define what it means for a hyperplane to be twist-dominant
or twist-minimal. In this section, we show that this designation is independent of
the isomorphism and can be detected using the action of Ar on X induced by any
untwisted marking.

To this end, let €(X) be the crossing graph of X, that is, the graph whose ver-
tices are the hyperplanes of X, and where two vertices are connected by an edge if
the corresponding hyperplanes intersect nontrivially. If we give X the structure of a
blowup, then €(X) = I'y.
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We defined twist and fold orderings on partitions J by choosing an element
v € max(J) and using the twist and fold orderings defined in terms of I". The defining
graph I" occurs as a subgraph of I'fy, but the corresponding subgraph in € (X) is not
well defined since it depends on a choice of isomorphism €(X) = I'r;. We do know
that both orderings are well defined on fold-equivalence classes in I', so it is natural to
try to define these orderings on fold-equivalence classes of € (X), that is, equivalence
classes of vertices with the same link. This works well for the fold ordering, but must
be modified for the twist ordering, as we will see. In the end, our notions of twist-
dominant and twist-minimal will be defined using both € (X) and the combinatorial
structure of X itself.

4.1. Isomorphisms of I'-complexes

First, we define twist and fold orderings for hyperplanes in a I'-complex X and show
that, for any isomorphism X 2 ST, these orderings coincide with the orderings of
their labels, as previously defined. Note that the ordering of labels is well defined on
fold-equivalence classes, so we need the same to be true here.

Definition 4.1

Let H be a hyperplane in a I'-complex X. The link Ik(H) of H is the link of H
in €(X). In other words, 1k(H) is the set of hyperplanes K # H that intersect H
nontrivially. The fold-equivalence class [H] is

[H] = {K |Ik(K) =1k(H)}.

We then define [H] <7 [K] if Ik(H) € 1k(K).

By Corollary 3.3, hyperplanes H4 # Hp in S intersect nontrivially if and only
if their labels A and B are adjacent, so this coincides with the notion previously
defined for A <y B.

Giving a combinatorial definition of the twist relation is more subtle, and requires
us to look beyond the structure of €(X) to the combinatorial structure of X itself.

Definition 4.2
We call a hyperplane H cyclic if

| «@)=HxC
H’e[[H]

where C is a graph homeomorphic to S'. Define [K] <, [H] to mean that H is
cyclic and Ik(K) U [K]| C1Ik(H) U [H].
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The second condition in the definition of [K] <, [H] is the analogue of st(v) C
st(w) for the twist relation on I'. However, the second condition alone does not
capture the notion of twist-dominance. For instance, if I" is a 4-cycle with vertices
a, b, ¢, d, then in the Salvetti Sy we have 1k(H,) U[H,] = {H,, Hyp, H., Hy} =
Ik(Hp) U [Hp], but neither a nor b is twist-dominant as generators.

Since not every fold-equivalence class [H] is cyclic, we only have [K] <; [H]
when [H] is cyclic. Nevertheless, it is transitive: if [K] <; [H] and [H] <; [L],
then [L] must be cyclic so [K] <; [L]. Also note that the analogue of Lemma 2.1
still holds for fold-equivalence classes of hyperplanes: if [K], [H]., and [L] are
distinct, then [K] <; [H] < [L] is not possible.

Definition 4.3

A hyperplane H is twist-dominant if there is some hyperplane K # H with [K] <;
[H]; in particular, H must be cyclic. If H is not twist-dominant, then it is twist-
minimal.

If X = Sr, then each hyperplane is labeled by a generator and the two notions
of twist-dominance coincide. Indeed, a hyperplane H, of Sr is cyclic if and only if v
is not fold-equivalent to another generator. Then if there exists w # v with [Hy ] <;
[H,] = {Hy}, this means that w <; v, and conversely.

LEMMA 4.4

Let X be a T-complex, and choose an isomorphism X = S For any hyperplane
Hp C S, [Hp] is twist-dominant if and only if there exists H 4 such that max(A) <,
max(B).

Proof

First, suppose that [ Hp] is twist-dominant. Then there exists H 4 such that [H 4] <;
[Hz]. As noted above, the fold-equivalence class of the hyperplane H 4 in S™ con-
sists of all hyperplanes H 4 with max(A4) ~ y max(A’). Since [Hpg] is cyclic, under
the collapse map ¢ : ST — Sr, [Hp] maps to a single hyperplane labeled by a gen-
erator v. Hence, the fold-equivalence class of v is just {v}, and all the hyperplanes in
[Hpg] have v as the unique maximal element. Since [H 4] <; [Hg], this means that
max(4) <; v = max(B).

Conversely, if there exists H4 such that max(A4) <, max(B), then any v €
max(B) is twist-dominant and [H4]] U lk(Hy4) € [Hp] U lk(Hp). By Lemma 2.6,
max(B) = {v} and the hyperplanes with max(H) = {v} coincide with the hyper-
planes that split v, which are exactly those occurring along any characteristic cycle
xv for v. It follows from Example 3.14 that K, =~ y, x H,, but on the other hand this
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implies that

Ky= | «(H).

He[Hy]

This proves that [Hy]| = [Hp] is cyclic as well, and therefore [Hp] is twist-
dominant. O

Since the definitions of cyclic hyperplane and the link of a hyperplane depend
only the combinatorial structure of X, the following is an immediate corollary.

COROLLARY 4.5
Let i : ST — S be an isomorphism of cube complexes. Then i preserves the twist
and fold ordering on edge labels.

4.2. Untwisted markings
In this section, we show that we can detect twist-minimal hyperplanes in a I'-complex
X using only the action of Ar that an untwisted marking #: X — Sr induces on the
CAT(0) space X.

We begin by recalling some basic facts about untwisted markings. Define
U°(Ar) to be the subgroup of U(Ar) generated by inversions, folds, and partial
conjugations.

LEMMA 4.6

Forany v € V, both A and Aq(v) are invariant up to conjugacy under the action
of U°(Ar).

Proof

Let A CT' be any subgraph. We claim that the special subgroup Aj(a) is invariant
up to conjugacy under U®(Ar), where Ik(A) = (), e Ik(v). The lemma will follow
by taking A = {v} and A = lk(v), respectively. If Ik(A) = @, then we set Ay =
{1} which is trivially invariant. Otherwise, assume that 1k(A) # @. We consider each
type of generator of U%(Ar). Clearly, inversions preserve Ayay- If v € 1k(A) and
v <y w, then A Clk(v) C lk(w), hence w € 1k(A) as well. It follows that Aya) is
also invariant under the fold sending v to vw. Finally, consider a partial conjugation
by w € V. If A is not contained in st(w), then there exists v € A \ st(w), hence
Ik(A) \ st(w) is contained in the same component of I" \ st(w) as v. Hence a partial
conjugation by w preserves Ajx(a) up to conjugacy. On the other hand, if A C st(w),
then either w € A, whence 1k(A) C st(w), or w € Ik(A). Either way, any partial
conjugation by w preserves Aj(a), and the claim is proved. O
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The next lemma implies that after changing the collapse map, we can always
assume that the marking lies in U%(Ar).

LEMMA 4.7
Let X be a T'-complex. Every untwisted marking h: X — Sr is a I'-collapse map ¢

followed by an element of U°(Ar),

Proof

By definition, / is untwisted if there is an isomorphism i : X = S™ for some IT so
that the composition /4 o ¢! (where ¢ = ¢,i and ¢~! is a homotopy inverse for c)
induces an element ¢ € U(Ar) on 71(Sr) = Ar. This condition is independent of
the choice of i. The subgroup U(Ar) is generated by inversions, partial conjugations,
elementary (right and left) folds, and graph automorphisms. Any product of these is
equal to a product with a single graph automorphism o as the initial element. The
automorphism o permutes V', sends a ['-Whitehead partition J# to o #, and induces
an isomorphism S™ to ST, so the composition of the initial I'-collapse map ¢ = ¢ i
with o is itself a I'-collapse map, and the rest of the factors are inversions, partial
conjugations, and elementary folds. O

Now let H be a hyperplane in a I'-complex X, fix an untwisted marking %, and
let i: Sr — X be a homotopy inverse for &, so that g € Ar = 71(Sr) acts on X by
the deck transformation /4 (g) € 71 (X). Define

split, (H) = {v € V | an axis for h4(v) crosses a lift of H},

and let maxy (H ) denote the set of maximal elements in split;, (H).

A special case is when & = c¢ is just a collapse map. In this setting, the set of
elements of max.(H) all belong to the same fold-equivalence class of I'". In the next
lemma, we will see that the elements of maxy(H) also all belong to the same fold-
equivalence class and moreover, that this equivalence class is actually independent of
the marking / up to graph automorphisms.

LEMMA 4.8

Let X be a T'-complex, let h: X — St be an untwisted marking, and let my, be any
element of maxy (H).

(1)  Ifvesplity(H), then v < ¢ my,.

) There is a T'-collapse map ¢ such that m. ~ 5 my, for any m. € max.(H).
Thus the maximal elements in split,(H) all lie in the fold-equivalence class of
max.(H).
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Proof
By Lemma 4.7, we can write

h:(pno...oggloc’

where ¢ = czi: X = S — Sis a I'-collapse map and each ¢ ;7 induces an inversion,
partial conjugation, or elementary fold. Let h denote the homotopy inverse of A. By
Lemma 4.6, U%(Ar) preserves the special subgroup Adlk(v) up to conjugacy for every
v € V, and by Corollary 3.16, the subcomplex Xdlk(v) =i (Kdlk(v)) contains an axis
for every element of this subgroup. Thus, some translate of Xdlk(v) contains an axis
for /1, (v). It follows that every hyperplane H that splits /1, (v) has a lift that is dual
to an edge in )?:ﬂk(v), or in other words, if v € split, (H ), then v < ¢ m.. Thus (1) will
follow immediately from (2).

We will prove (2) by induction on n. By definition, if v € split, (H), then the
image of an h4 (v)-axis crosses H at least once. For the purpose of this proof, we will
need to keep track of more information about how many times it crosses H . Begin by
choosing an orientation for H, or equivalently, for a dual edge to H. (H is orientable
since X is a special cube complex.) If p is an edge path in X, then we define the net
crossing number of p with H to be

n(p, H) = # positive crossings of H — # negative crossings of H .

Note that two paths that are homotopic rel endpoints have the same net crossing num-
ber with respect to any hyperplane. For a generator v € V', set ny (v, H) = n(py, H),
where p, is some (hence any) loop in X representing ﬁ*(v). This is independent
of basepoint since changing basepoints conjugates p, by a path connecting the
two basepoints and hence leaves the net crossing number unchanged. In particular,
np(vw, H)y=np(v,H) + np(w, H).

Note that if n (v, H) # 0, then v necessarily lies in split;, (H ), but the converse
need not be true. In addition to property (2), we will prove by induction that the
following property holds:

(3) For some v € maxy (H), np(v, H) # 0.

Forn =0, h = ¢, so (2) is true trivially and for any v € maxy (H ), a characteristic
cycle for v crosses H exactly once, so ny(v, H) = £1.

Now set &/ = @,_1 0 --- 0 @1 o ¢, with homotopy inverse 4’, and assume by
induction that (2) and (3) hold for 4’. If ¢, is an inversion v > v™!, then ¢ o h and
¢ o i’ agree on every generator except v. Furthermore, h’ (v) and h,(v) = /;’ W H=
h’ (v)~! have the same axis in X, so there is no change in which hyperplanes this axis
crosses hence no change in the splitting set. Only the sign of the net crossing numbers
with these hyperplanes change.
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If @, is a partial conjugation, then ¢ o h4(v) is conjugate to ¢ o ﬁ; (v) for every
generator v, so an axis for /1,(v) is just a translate of an axis for ﬁ’* (v). Thus, the
former crosses some lift of H if and only if the latter crosses some lift of H, and
again there is no change is the splitting set or the net crossing numbers for H .

It remains to consider the case that ¢,, is a right fold v > vw ™! for some w > FU
(the case of left folds is symmetric). Again ¢ o i, and ¢ o i, agree on every generator
except v, and ¢ o he()=co ﬁ; (vw). So the only possible change is that after com-
posing with ¢,, v may be added to or removed from split,,(H ) and the net crossing
of v with H may change.

Suppose that v is in split, (H), but not in split,,(H). By induction, we know
that mp ~ r m., and as observed above, v <y m.. Thus, v <7 my/, so adding v
to split,, (H) does not change its maximal equivalence class and (2) and (3) remain
valid.

Next, suppose that v € split,, (H). If split;,,(H) contains more than one maxi-
mal element with nonzero net crossing number, then removing v from split;, (H) or
changing its net crossing number will again preserve properties (2) and (3).

Thus, we need only consider the case where v is the unique element of maxy/ (H)
with ny/ (v, H) # 0. Since ny (vw, H) = np (v, H) + np (w, H), either np (w, H)
or ny (vw, H) must also be nonzero. In the former case, w lies in split,, (H ) and since
v <y w, this contradicts our assumption that v is the unique maximal element with
nonzero net crossing number. In the latter case, since ny(v, H) = np (vw, H) # 0,
we conclude that v is also in split;, (H) and its net crossing number remains nonzero,
so (2) and (3) still hold for /. This completes the induction. O

Remark 4.9

Suppose that v is twist-dominant. Then there are no elements w # v with v < w. It
follows that any element of U%(Ar) takes v to a conjugate of itself or its inverse, so
the image in X of an axis for /1 (v) is the same for every marking / as in the lemma.
Moreover, any hyperplane H crossed by this axis has maxy (H) = {v}.

More generally, if we drop the assumption that h~'c € U%(Ar), then we have
the following corollary.

COROLLARY 4.10
Let X be a T-complex, and let h,h': X — Sr be untwisted markings. Then
[maxy (H)] = o[maxy (H )] for some graph automorphism o.

Proof
We have h' = yh for some € U(Ar). Write ¢ = ¢ o g, where ¢ is a graph
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automorphism and ¢ € U°(Ar). Then maxyj,(H) = o maxy(H ), so by Lemma 4.8,
[maxy, (H)] = [maxqp, (H)] = o[max,(H)]. O

COROLLARY 4.11

Let H be a hyperplane in a I'-complex X, and let h: X — St be an untwisted mark-
ing. Then H is twist-minimal (resp., twist-dominant) if and only if [maxy (H )] is twist-
minimal (resp., twist-dominant).

Proof

Choose an isomorphism X 2 S and let 4 = ¢,. Then H = H 4 forsome A € V UTI
and [maxy (H 4)] = [max(4)]. O
Definition 4.12

Given an untwisted marking #: X — Sr and a generator v € V', we define Miny, (v)
to be Min(%4(v)) C X. Similarly, we define the branch locus bry (v) to be the set of
points in Miny, (v) whose link in X strictly larger than the link in Miny, (v).

If we choose an identification of X with S, then in terms of this definition
Min(v) = Min,_ (v) and br(v) = br_ (v), where ¢y : S™ — Sr is the standard col-
lapse map. Using Lemma 4.8, we can identify when a hyperplane is contained in the
minset for a general untwisted marking.

PROPOSITION 4.13

Let h: X — Sr be an untwisted marking, let H be a hyperplane of X, and let v €
split, (H). Then v € maxy (H) if and only if there is a lift H contained in Miny, (v),
and in this case, both components of 8K(ﬁ ) contain points in bry (v).

Proof
It is easily seen that this property is preserved by graph automorphisms, so it suffices
to consider the case where hc™! € U%(Ar) for some collapse map c. Fix an identi-
fication of X with S™, and let ¢ = ¢,. Then by Lemma 4.8, for any hyperplane H
we have [maxy (H )] = [max.(H)]. Consider the subspace KU = szlk(v) X Klk(v). By
Lemma 4.6, since U°(Ar) preserves the subgroups Adlk(v) and Aji(y) up to conjugacy,
taking a translate if necessary, we may assume that Kd]k(v) contains an ax1s for /s (v)
(see Corollary 3.16). Call this axis a . Then ]K contains Miny, (v) = (x X ]Klk(v)

By assumption, the axis ozh crosses some lift H of H. Letm € maxc(H) Ifv
is not maximal in Spllth(H) then v < m. In this case, H is isomorphic to Klk(m)
which is strictly bigger than Klk(v), hence H is not contained in Miny, (v).
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Conversely, if v is maximal, then v ~ ¢ m and we can identify H= Klk(v) =
Klk(m) It follows that the entire carrier K(ﬁ ) is contained in Miny (v). In addition,
Kdlk(v) also contains an axis o, for m with respect to the marklng ¢ and Min;(m) =
Om X Klk(v) Since m € max (H), this minset contains K(H ) and by Proposition 3.18,
both components of BK(H ) contain points in the branch locus of Min,(m). Since
Min, (m) and Miny (v) are both metrically the product of a real line with Klk(v), any
point in dk(H) that is branch for one of these minsets is branch for the other. Thus
both components of dk(H) also contain points in bry (v). O

5. Parallelotope structures on blowups

In this section, we consider blowups S™ as metric objects, where we now allow some
of the cubes in S™ to be skewed in certain directions, so that edges spanning a “cube”
are no longer necessarily orthogonal. We call these skewed blowups.

An n-dimensional Euclidean parallelotope F is a metric space isometric to the
image of the unit cube [0, 1]* C R” under some element of GL(n, R). If e is an edge
of F, then the midplane H, is the convex hull of the midpoints of the edges parallel
to e. A parallelotope F' is an orthotope if any two edges at a vertex are orthogonal or,
equivalently, the dihedral angle between any two midplanes is a right angle.

5.1. Allowable parallelotope structures

In a blowup S™ every edge e has a label, that is, e = e4, where A € V U TI. By
Corollary 3.3, there is a square in S™ spanned by e4 and ep if and only if A and B
are adjacent. We will say that A, B are twist-related if max(A) <; max(B) or vice
versa.

Definition 5.1

Let ¢ be a maximal cube of S™ with outgoing edges e;,...,e, at a vertex p € c. Let
A; be the label of ¢;, choose v; € max(4;), and let st*(v;) = {v;} U1k (v;). Given
d. a parallelotope metric on ¢, we realize d. via an embedding p: ¢ — R” which
sends p to 0. Regarding p(e;) as vectors in R”, set

K; = the subspace of R” spanned by p(ex) with vg € st™ (v;) and
Lijij=KnNK;.
The metric d. on ¢ is allowable if whenever v; and v j are not twist-related, then
LlJ]‘ N K; is orthogonal to LIJ]‘- NK;.
Note that if v;, v; are not twist-related, then st*(v;) N st™(v;) = Ikt (v;) N

1k (v;) soin this case, L;; is the subspace spanned by the p(ex) with vg € Ikt (v;) N
Ik* (Uj).
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LEMMA 5.2
An allowable parallelotope metric is determined by edge lengths and the angles
between twist-related edges.

Proof

Any parallelotope metric is determined by edge lengths and the angles between edges,
so we must show that in an allowable metric, the angles between non-twist-related
edges are determined by those between twist-related edges.

Suppose that e; and e; have labels that are not twist-related, so L;; is the span
of edges ex with vg € Ik (v;) N1kT (v;). The proof is by induction on dim(L;;). If
dim(L;j) = 0, then the angle between e; and e; must be 7. If dim(L;;) > 0, write
e; = e} +{;, where {; is the orthogonal projection of e; onto L;; and e] is the projec-
tion onto Lz N K;. Similarly, write e; = ¢/, +£;. Then e; -e; = (¢ +£;)-(¢/; +£;) =
£; - £;. Since ¢; and £; are linear combinations of the ex € L;;, this dot product is
determined by the dot products of these ex. The dot products ey - e; are the squares
of the lengths of the e, which are given. If vx € Ik (v;) N 1k* (v;), then Ik (vg)
is strictly contained in k™ (v;), so for two edges ex # e; € L;;, the subspace Ly
has dimension strictly smaller than dim(L;;). Thus, by induction, the angle between
edges in L;; is determined by edge lengths and the angles between twist-related
edges, so the same holds for e;, e;. O

Definition 5.3

An allowable parallelotope structure ¥ on S is an assignment of a parallelotope

metric to each cube ¢ of S such that

(D) the metric on each maximal cube is allowable,

2) if ¢/ is a face of ¢, then the metric on ¢ is the restriction of the metric on c,
and

(3)  if max(A) = {v} is twist-dominant, then for any B adjacent to A, the angle
between e4 and ep is equal to the angle between e, and ep.

The parallelotope structure in which every k-cube is isometric to the Euclidean
cube [0, 1]k is clearly allowable; it will be called the standard structure and denoted
&. If all parallelotopes in ¥ are orthotopes, then the structure ¥ will be called recti-
linear. These too are clearly allowable.

If A and B are adjacent labels in T U V/, then there is at least one parallelogram
F € ¥ with edges labeled e 4 and ep. If ¥ is allowable, then condition (2) guarantees
that the angle between these edges is the same for any such F, and we will denote this
angle by a4, p. By Lemma 5.2, the entire structure ¥ is determined by the lengths of
the edges e4 and the angles a4, p for twist-related A4, B.
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Figure 11. (Color online) Rotating H 4 in the direction w € 1k (A4). Here B splits w.

An allowable parallelotope structure ¥ induces a (path) metric d¢ on S™. Dif-
ferent parallelotope structures may induce the same metric on S™; for example, if
S™ = Sr is an n-torus consisting of a single parallelotope F with sides identified,
then changing F by any element of GL(n, Z) results in the same metric d#.

Note that an edge path which was convex in the standard cube complex structure
(§H, dg) is no longer necessarily convex in the metric space (§H, d#). We define a
hyperplane H 4 in (ST, ¥) to be the set of midplanes dual to edges with label A. This
is the usual notion of hyperplane if ¥ = &, but for arbitrary ¥ lifts of hyperplanes
are no longer necessarily convex in (gn, dg).

5.2. Rotating a hyperplane in ST

Definition 5.4

Suppose that (S, ) is an allowable parallelotope structure. Let A € ITTU V, let Hy
be the hyperplane in S labeled 4, and let v € max(A4) and w € Ikt (v). Then rotating
H 4 in the direction of w means changing the angle o4, to a;l’w, so that for every B
that splits w, the angle between the edges e 4 and ep is 0‘:4,w . More generally, rotating
H 4 means rotating it in the direction of one or more w € Ik (v). The length of the
edge e 4 remains unchanged under rotation (see Figure 11).

Rotating a hyperplane H,4 in an allowable parallelotope structure & gives rise
to a new parallelotope structure F’ which still satisfies the first two conditions for
allowability. This is because the subspaces K; in the definition of an allowable par-
allelotope are unchanged by the rotation. However, if A is twist-dominant, then to
achieve the third allowability condition, one needs to do comparable rotations to every
hyperplane H 4 with max(A4’) = max(4) = {v}.
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Recall that we have a partial ordering on equivalence classes in V' given by [v] <
[w] if 1k(v) C st(w). Choose a total ordering < on V' consistent with this partial
ordering. Given a compatible collection of partitions IT, we can extend this to a total
order on IT U V satisfying [max(A4)] < [max(B)] = 4 < B.

PROPOSITION 5.5
Every allowable parallelotope structure on ST can be obtained from an orthotope
structure on S by a sequence of rotations.

Proof

Suppose that ¥ is an allowable parallelotope structure on S™, and let a4, p denote the
angle between edges e 4, ep for any adjacent pair A, B. Let ¢ denote the rectilinear
structure with the same edge lengths as ¥ . Using the total order <, we will rotate the
hyperplanes in ¥y in descending order and show inductively that after rotating H 4,
we get a parallelotope structure on S™ satisfying the following.

(1) The metric on each parallelotope is allowable and agrees on common faces.
(ii) For all B, C > A such that max(B) <; max(C), the angle between ep and ec
equals ap c.

Say by induction that we have rotated all the hyperplanes H4s with A < A'.
Rotating H4 only changes the angles between e4 and other edges. By induction,
condition (ii) is already satisfied whenever B,C > A. We now rotate H,4 so that
condition (ii) also holds when A = B, that is, when A < C and max(4) <, max(C).
As observed above, rotating preserves allowability of individual parallelotopes, and
by definition it agrees on common faces, so condition (i) continues to hold.

At the end of this process, when we have rotated all the hyperplanes as needed,
we arrive at a parallelotope structure in which the angles between any two edges e 4,
ep with max(A4) <; max(B), agree with those in ¥ . This implies that this structure
also satisfies the third condition for allowability. So by Lemma 5.2, it must in fact be
equal to ¥ . O

PROPOSITION 5.6

Let ¥ be an allowable parallelotope structure on S™', and suppose that the induced

path metric dg is locally CAT(0). Suppose that ¥' is obtained from ¥ by a hyper-

plane rotation. Then

€)) dg is also locally CAT(0), and

2) any twist-minimal hyperplane which is locally convex with respect to dg
remains locally convex with respect to dg.
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Proof

The local geometry at a point p is determined by the geometry of its link. Thus, it
suffices to show that rotating a single hyperplane H does not change the isometry
type of links in S™. The carrier x (H) either has two boundary components, each
isometric to H, or (if the dual edge is a loop in S™) these boundary components may
be identified to each other. In either case, we will denote (the image of) this boundary
by 0k (H ) and the interior by k°(H) =k (H) — dx (H). Setting Y = ST —«°(H), we
have

S™ =k (H) Upery Y-

Rotating H changes the parallelotope structure only on cubes meeting the interior of
k(H), leaving those in dx (H) and Y unchanged. Hence, it suffices to show that if x
is a vertex lying in dx (H), then the rotation does not change the induced metric on
the link of x in « (H) (though it may change the metric on individual simplices in that
link).

To see this, note that if H is dual to e4 with v € max(A), then the carrier of H
decomposes as k (H) = e4 X Ky (), and by Proposition 3.15, Ky,) contains a char-
acteristic cycle for every w € lk(v). Consider the subspace K+ (,,) C Ki(y) spanned
by the characteristic cycles for w € Ikt (v). Elements of 1k*(v) commute and are
twist-dominant, so this subspace is a torus with a flat metric. Moreover, as elements
of Ik*(v) commute with every element of 1k(v) we have a further (combinatorial)
decomposition k(H4) = e4 X Ky+ ) X K\t ) The edge e4 can only rotate
in the direction of K+ ). Thus, viewing e4 X K+, geometrically as the prod-
uct of an interval and a torus, this rotation changes only the width of the interval. In
particular, the rotation does not change the local geometry of « (H ). This proves (1).

For (2), let L be any twist-minimal hyperplane of S™, and let p be a point of L.
Then as was just shown, the local metrics at p with respect to d# and dg are the
same. Since L is twist-minimal, it is preserved setwise by rotation. Thus if L was
locally convex before rotation, it remains locally convex afterward. O

COROLLARY 5.7
If F is an allowable parallelotope structure on S, then the induced path metric dg
is locally CAT(0).

Proof
This follows from Propositions 5.6(1) and 5.5, since any orthotope structure is CAT(0)
by Gromov’s link condition. O
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As noted above, subcomplexes which are locally convex in (S™,&) may no
longer be convex in a general allowable parallelotope structure (S™, ). The fol-
lowing lemma specifies two exceptions that will be important in the sequel.

LEMMA 5.8

Suppose that ¥ is an allowable parallelotope structure on S,

. Let v € V be twist-dominant. Then any lift of a characteristic cycle for v in
S is convex in (“S'H, ds).

. Let A € V UTI be a label with v € max(A). If v is twist-minimal, then any lift
of the hyperplane H 4 is convex in (§H, ds).

Proof

If v is twist-dominant, then Definition 5.3(3) guarantees that consecutive edges in a
characteristic cycle for v have angle 7 in (SU, d#). Since (ST, d#) is locally CAT(0),
the lift of the characteristic cycle to ST s geodesic and convex. The second statement
follows from Propositions 5.5 and 5.6(2). U

5.3. Straightening an allowable parallelotope structure

In this section, we show how to straighten an allowable parallelotope structure ¥ on
S™ to obtain an orthotope structure, while maintaining allowability throughout the
process.

Remark 5.9

It will be convenient to describe the straightening process in terms of what it does to
the edges of ST, rather than its dual hyperplanes. In particular, if an edge e 4 is dual
to a hyperplane H 4 and m € max(A), then we say that m is a maximal element of e 4.

We begin by straightening a single parallelotope F € ¥ . The straightening pro-
cedure for F' will depend only on the equivalence classes [max(A)] of the edges e4
in F. Therefore, it suffices to describe the straightening process in the case where all
edges are labeled e, for some v € V.

Fix a vertex x in F with all angles acute or right. Let E be the set of edges
emanating from x. We can view E as a set of n linearly independent vectors in the
positive orthant of R”. Let < be a total ordering on V' as described in Section 5.2. For
each edge e,, define subspaces

K, = span of {ey, € E |w €stt(v)},

K =spanof {ey, € E |w € st™ (v),v < w}.
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For ey, ey € E, set Ly, = Ky N Ky,. Recall that F' is allowable if whenever v,
w are not twist-related, K, N Ltw is orthogonal to Ky, N Lf;,w.

Now define a new basis {b,} for R" as follows. For each v, let b, be the unit
normal vector to K* in K @ (e, ). In the case where K is empty, b, is just the unit
vector in the direction of e,. With respect to this basis, we have

ey =ryby + er,wbw
w

for some ry > 0, 1y, > 0, where the sum is taken over all w with e, € K;. In
particular, this set of vectors {b,, } is also a basis for K.

LEMMA 5.10
F is allowable if and only if for any two edges ey, ey, € E, by is orthogonal to by,.
That is, the vectors {by} span an orthotope.

Proof
Assume that F is allowable. Suppose that v and w are twist-related, and say that
v < w. In this case, K @ (ey,) C K., so by definition, b, lies in K* and hence it is
orthogonal to b,. (This is always true, even without assuming allowability.)

So now suppose that v and w are not twist-related. Then

Lyw=K,NKy=K,;NK,

since any u € st™(v) N st* (w) must be strictly greater than either v or w with respect
to the ordering <;, and hence also with respect to <. Since b, € (K;)J' C Lf;’w, and
by € (KJ)* C Lf;’w, the allowability condition implies that b, and b,, are orthogo-
nal.

Conversely, assume that all of the b, vectors are orthogonal to each other. For v,
w not twist-related, a basis for K, N L,J;’w is given by the set of b, with v <; u and
w ﬁ, u, and similarly, a basis for K,, N L,J):w is given by the set of b, with w <; z
and v %; z. These sets are disjoint, and any two such b, and b, are orthogonal, so
Ky N Ltw is orthogonal to K, N Lv{w as required. |

Next we describe a process for straightening F. For ¢ € [0, 1], set

el =5, (rvbv +t er,wbw),
w

where s; € R™ is chosen so that |le! || = |ley]|. Then el = e, and €2 = |le,||b,. Let
F' be the parallelotope spanned by {e’}.
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LEMMA 5.11
If F is allowable, then F' is allowable for all t € [0,1], and F° is an orthotope.

Proof

At all times 7, the subspaces K (F") remain unchanged, that is, K; (F') = K (F)
for all 7, and likewise for K (F") & (e!). Hence the normal vectors b, remain fixed
throughout the process. By the previous lemma, F is allowable if and only if all of
the b, vectors are orthogonal, or equivalently, F'° is an orthotope. O

We now want to apply the straightening procedure simultaneously to all paral-
lelotopes in ¥ . Suppose that two maximal parallelotopes F and F’ share a face Fy
in S™. If e4 is an edge lying in Fy, with v € max(A), then for any w with v <; w,
F and F’ must each contain an edge with maximal element w. Since w is twist-
dominant, the allowability condition implies that these edges both lie along an axis
for w, hence they are parallel. Since the straightening procedure on e4 depends only
on these edges, it follows that the straightening in F and F’ agree on this face. More-
over, the same argument applied to the edges with maximal element w shows that
these edges remain parallel throughout the straightening process. Thus, we obtain a
consistent straightening, ¥, of the entire complex which remains allowable at all
times ¢. We call (S, #7) the straightening path for (S, ¥).

6. The space of skewed I"'-complexes with untwisted markings
We are now ready to define a space JT of skewed I"-complexes with untwisted mark-
ings, that serves as an intermediary between X and the full outer space Or.

6.1. Skewed I"-complexes

Let X be a I'-complex, and let ¥ be a parallelotope structure on X . Define ¥ to be
allowable if there is some isomorphism S™ 2 X such that the pullback of ¥ is an
allowable parallelotope structure on S™.

LEMMA 6.1
Allowability of a parallelotope structure on X is independent of the choice of isomor-
phism ST >~ X.

Proof

By Corollary 4.5, the twist relation is independent of the isomorphism S 2~ X.
Hence if X is isomorphic to both S™ and S™', then conditions (1), (2), and (3) of
Definition 5.3 are satisfied by the pullback structure on S™, if and only if they are sat-
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isfied for the pullback structure on s, showing that allowability is also independent
of the isomorphism. O

Definition 6.2

A skewed T'-complex is a I'-complex X together with an allowable parallelotope
structure ¥ . If all of the parallelotopes F' € ¥ are orthotopes, we will call (X, %) a
rectilinear T'-complex, and if all parallelotopes are isometric to [0, l]k, we will write
F = & and call (X, &) a standard T"-complex.

6.2. Definition of Tt
We now add untwisted markings to skewed I"-complexes to form a space Jt.

Definition 6.3

A marked, skewed I'-complex is a triple (X, ¥, k), where (X, ¥) is a skewed I'-
complex and &: X — Sr is an untwisted homotopy equivalence; that is, for any
I'-collapse map ¢ : X — Sr, the composition ¢ o A~! : Sp — Sr induces an ele-
ment of U(Ar) (where h~! is a homotopy inverse to /). Two marked, skewed T'-
complexes (X, %, h) and (X', F',h') are equivalent if there is a combinatorial isom-
etry i : (X, %) — (X', ") (i.e., a map which preserves both the combinatorial struc-
ture and the metric on each parallelotope) that commutes with the markings up to
homotopy, that is, h >~ h' o .

The space JT is the space of equivalence classes of marked skewed I'"-complexes
with untwisted markings:

Ir = {marked, skewed I"'-complexes (X, F,h) | h is untwisted} /~.

We will denote the equivalence class of (X, ¥, h) by [X, ¥, h].

Given a I'-complex X and untwisted marking & : X — Sr, let Uy j denote the
subset of JT obtained by equipping X with all possible allowable parallelotope struc-
tures, that is,

UX,h = {[X,?,h] S Tr}.

We will call this a cell in Jr. It comes equipped with a natural topology as a sub-
space of a Euclidean space determined by the parallelotopes in  and subject to the
allowability conditions in Definition 5.3. Metrically, collapsing a hyperplane in X
corresponds to letting the length of the dual edges go to zero. The closure of Uy j
thus consists of the cells Uy ;s such that there exists a hyperplane collapse map
¢ : X — X' with h homotopic to &’ o ¢. The topology on Jt is therefore determined
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as a complex of spaces comprised of the cells Uy j, where cells are identified by col-
lapse maps as just described. (For a more detailed description of complexes of spaces
and their properties, see [25, Chapter 4.G].)

6.3. Contractibility of T1

We will show that JT is contractible by finding a deformation retraction of JT onto
the subspace of rectilinear marked I"-complexes; this is the space X1 defined in Sec-
tion 2.6, which we know is contractible. In other words, we want to find a way to
straighten marked, skewed I'-complexes in a way that maintains allowability and
extends to a continuous straightening of the whole of Jr.

In order to straighten a skewed I'-complex (X, ), we choose an identification of
X with S for some IT and apply the straightening process described in Section 5.3.
We need to show that this is independent of the isomorphism X 2 S™. We note that
the labeling on S™ was used in the straightening process only to order the edges in
K,. By Corollary 4.5, any combinatorial isomorphism i : ST — st preserves the
twist ordering <; on edge labels, so in fact we need only be concerned about what it
does to the ordering < within each twist equivalence class.

To address this problem, we will need to choose preferred representatives for
points in Jr. Let X be a I"-complex, and let #: X — Sr be an untwisted marking.
By Lemma 4.7, there exists a blowup S™ and an isomorphism of cube complexes
i+ X — S™ such that ¢; oi o h~' € U°(Ar). Suppose that j : X — S% is another
such isomorphism.

LEMMA 6.4
Leti: X — ST and j: X — S9 be as above. For any twist-dominant v, j oi ™" takes
edges with maximal element v to edges with maximal element v (cf. Remark 5.9).

Proof

Fori: X —SMand j: X — S® as above, the composition ¢, 0 j 0i ! oc; ! induces
an element of U%(Ar). Since any element of U 0(Ar) takes every twist-dominant
generator v to a conjugate of itself, the map j oi~': ST — S% takes an axis for
v in ST (with respect to the standard metric) to an axis for v in se. Edges with
maximal element v lie on such an axis, thus they map to edges with the same maximal
element. O

We can now define the deformation retraction R; : I — X as follows. Let
(X, ¥, h) represent a point in 71, and choose a cubical isomorphism i : X — ST as
in Lemma 6.4. Using this isomorphism, we can identify parallelotope structures on
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S™ with parallelotope structures on X . Thus the straightening path for (S, ¥) gives
apath in I defined by R;[X, ¥, h] = [X, F*, h].

LEMMA 6.5
The deformation retraction R, : 7t — Xr is well defined and continuous.

Proof

The straightening path depends only on which edges in the parallelotope structure
are twist-dominant. If i : X — S and j : X — S% are two identifications of X with
blowups, then by Lemma 6.4, j oi~! takes twist-dominant edges to twist-dominant
edges, so for each ¢ the straightening path induced by i is isometric to the straighten-
ing path induced by ;.

It is clear from the definition of the straightening path that R; is continuous on
each cell Uy j of Jr. It suffices to show that R; is also continuous on the closure of
each cell. The closure of Uy ; consists of all the cells Uy’ 5 such that there exists
a collapse map ¢ : X — X’ with & homotopic to A’ o ¢. Since straightening paths
preserve edge lengths, a path [X, ¥, 4] in Uy will collapse to a path in Uy’ s/
when the appropriate edge lengths go to zero. Moreover, since the straightening paths
in every cell are defined using the same ordering < on V/, this path will agree with R;
on UX’,h’- O

In light of Corollary 2.20, we conclude the following.

COROLLARY 6.6
The space Tt is contractible.

7. Outer space Or

7.1. Definition of Ot and the map ®: It — Or

We now define a new space Or by forgetting the combinatorial structure on skewed
I'-complexes and allowing arbitrary markings. Thus a point in O is an equivalence
class of triples (Y, d, f) such that

. (Y,d) is a locally CAT(0) metric space that is isometric to (S™, d#) for some
skewed blowup (SH, F),

. f: Y — Sr is a homotopy equivalence, and

. Y.d, f)~ (Y',d’, f) if there is an isometry i : (Y,d) — (Y',d’) with f’ o
i~ f.

The full group Out(Ar) acts on the left on Or by changing the marking f.
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PROPOSITION 7.1
The action of Out(Ar) on Or has finite stabilizers.

Proof
The element of Out(Ar) induced by a homotopy equivalence g : Sp — St fixes the
point [Y,d, f]if and only if f~! o go f is homotopic to an isometry of (Y, d). Thus,
the stabilizer of a point [Y,d, f] can be identified with the group of isometries of ¥
up to homotopy.

Since (S™, #) has no free faces, each (Y, d) has the geodesic extension property.
It follows from [8, Lemma I1.6.16] that the minset of the center of Ay is all of Y, so by
the flat torus theorem (Theorem I1.7.1 there) Y splits as a product ¥ = Yo X Tz(4r),
where T4y is a torus of dimension equal to the rank of the center Z(Ar). More-
over, by [8, Theorem IL.6.17], Isom(Y) is a topological group with finitely many
components, and the connected component of the identity is generated by translations
of Tz(ar). As every such translation is homotopic to the identity, the group of isome-
tries of Y up to homotopy is a quotient of the group of path components of Isom(Y),
hence finite as claimed. U

In fact, as shown by Bregman in [7], the group of path components of Isom(Y")
injects into Out(Ar).

To finish the proof of Theorem 1.1 we need to show that Or is contractible. To
do this, we define a map ®: It — Or by forgetting the parallelotope structure on
X € Jr and just viewing it as a CAT(0) metric space. The remainder of this section is
devoted to proving the following theorem.

THEOREM 7.2
The map ©: It — Or is a fibration with contractible fibers. Hence Ot is con-
tractible.

Since the inclusion map X1 < Jt is a homotopy equivalence by Lemma 6.5, the
map

€]
Yr—Jir—0Or

that forgets the orthotope structure on X is also a homotopy equivalence. We will
show in Corollary 7.17 below that this map is an embedding.

COROLLARY 7.3
The restriction of ® to Xr is a homotopy equivalence Xt ~ Or.
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The proof of Theorem 7.2 has two major components. The first is to show that
the map © is surjective. This is by no means obvious since the markings in I must
be untwisted, whereas the markings in Or are unrestricted. Finding a point in the
fiber over some (Y, d, f) € Or means finding a skewed blowup structure (S, %) on
Y such that ! followed by the standard collapse map is untwisted. To do this, we
first decompose Y into parallelotopes, then identify the I'~-Whitehead partitions in the
blowup structure, and finally calculate the composition ¢, o f 1.

The second component of the proof is to show that the fibers are contractible. To
do this, we fix a point in the fiber and describe a process of “shearing” edges dual to
a hyperplane in this I'-complex. We then prove that every point in the fiber can be
obtained by a series of “zero-sum shearings” of the initial point. This set of shearings
spans a linear subspace of a Euclidean space, hence is contractible.

7.2. Surjectivity of ®
The first step in proving Theorem 7.2 is to show that the inverse image of an arbitrary
point in Or is nonempty.

PROPOSITION 7.4
®: It — Or is U(Ar)-equivariant and surjective.

Equivariance under the action of U(Ar) is clear from the definition of ® whereas
surjectivity is not, since markings in Or can differ by any element of Out(Ar). The
key is to show that an appropriate change of skewed blowup structure on a point of
JT will have the effect of composing the collapse marking with a twist. The proof of
Proposition 7.4 will occupy the remainder of this subsection.

For skewed blowups, the end result of the retraction R; defined in Section 6.3
followed by scaling the edge lengths linearly gives a continuous “straightening map”
sg: (S, F) — (S™, &) that sends each parallelotope to a unit cube. The standard
collapse map ¢, : S — Sr induces a collapse map cf = cy osg on (ST, dg),
called a straighten-collapse map.

Definition 7.5

An automorphism ¢ € Out(Ar) is realized by an isometry i : (S, dz) — (S®,dg)
if ¢Z oio(cf)~! induces ¢ on 7 (Sr) = Ar:

ST dg) —— (S,dg)
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Figure 12. (Color online) Parallelotope structures ¥, § on S? such that (S, d ) is isometric
to (Sj),dg) and cg oio (c,jf)_1 induces a twist v — vw.

Note that we are not requiring i to be a combinatorial isometry, just an isometry.
The realization of a combinatorial isometry is always untwisted. In Figure 12, we
illustrate an isometry between two skewed blowups that realizes an elementary twist
v — vw; one should think of these blowups as giving two different parallelotope
decompositions of the same space, and the isometry as the identity. The following
lemma explains in general how to realize a twist v — vw in the case that v is twist-
minimal.

LEMMA 7.6

Let ¥ be an allowable parallelotope structure on ST, and let t: v — vw be an
elementary twist. If v is twist-minimal, then © can be realized by an isometry i :
(ST, dz) — (S, dg) for some allowable parallelotope structure § on S™L.

Proof

Let y, be a characteristic cycle for w. Note that w is twist dominant, so y,, is a local
geodesic. The carrier k (H,) of the hyperplane H, decomposes combinatorially as a
product

ey X Yw X Z,

where Z is the subcomplex of S spanned by edges that are adjacent to v and do not
split w. The orientation on e,, induces an orientation on all edges of y,,. We define
a new decomposition of e, X y,, by replacing each edge e, by the geodesic from its
initial vertex to its terminal vertex which cuts diagonally across all the parallelograms
in e, X yy. In a lift of e, X y, to gn, the new edge is a geodesic from the initial
point of ¢, to the terminal point of we, (this is what happened in Figure 12, where
Xw consisted of a single edge e,,). Since the structure of Z is unchanged, the new
decomposition of e, X y,, extends to a new parallelotope decomposition of «(H,)
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which is combinatorially isomorphic to the old one. It does not change the metric on
any parallelotope outside « (H,), so it extends to a new parallelotope structure § on
Y = S™. Since v is twist-minimal, skewing a single edge of a characteristic cycle
is allowed, so this new parallelotope structure is allowable (see Definition 5.3). Note
that the identity on Y is an isometry (S™, d#) — (S™, dg) but is not a combinatorial
isometry (ST, ) — (ST, ﬁ)

The new collapse map c? gives a new action of 71(Sr) = Ar on Y. The only
generator whose action has changed is v, whose new axis is the axis that was formerly
the axis for vw. U

Notice that in the proof of Lemma 7.6 we skewed a single edge of a characteristic
cycle for v. If v is twist-dominant, then we cannot use that trick to realize 7: v > vw,
since a characteristic cycle for v must lift to a (straight!) axis for v in S™. Instead, we
will have to construct a new blowup structure (S, §) on Y to realize r. The idea is
to locate branch points and twist-minimal hyperplanes using our identification of Y
with S, then show that these are metric invariants and use them to construct a new
skewed blowup structure (S Q, %) on Y. To make this work, we first need to relate the
geometry of (Y,d) = (SU,d#) to the combinatorial structure of S™. The following
proposition is the key.

PROPOSITION 7.7

Let v be a twist-dominant generator of Ar. The straightening map s : (S, ) —
(S™, &) takes axes for v in (SH dg) to axes for v in (SH dg) and the minset of v to
the minset of v, where the actions are given by the collapse maps c and ¢y = c8

respectively. Moreover, s maps branch points for v in (SH, dg) to branch points for
v in (fgl'l’ dg). The same holds if we replace Cf and cf by any untwisted markings h

on (S, 8)and W' = hosp on (ST, ).

Proof
First assume that the markings are standard collapse maps. Since v is twist-dominant,
each characteristic cycle for v in both (ST, %) and (S™, &) is a geodesic that is the
image of an axis by Lemma 5.8. The full minset Min(v) C ST is the convex hull of the
lifts of these characteristic cycles, and since s# identifies these, it also takes the minset
for v in (gn, d#) to the minset for v in (§H, dg). The last statement about branch
points follows from the fact that the straightening map induces a homeomorphism on
links.

For a more general untwisted marking /4, factor & as o o hy where hg o ¢ le
U°(Ar) and o is a graph automorphism. Since U%(Ar) preserves twist-dominant
generators up to conjugacy, the axes and minset of v with respect to 4 are just trans-
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Figure 13. (Color online) The projection map pr;, for w twist-dominant.

lates of the axes and minset with respect to c,, so the argument above still applies.
For the graph automorphism, o (v) = w for some other twist-dominant generator w,
so applying the proposition to w gives the same result. U

For the standard metric dg, Lemma 3.10(1) gives a decomposition of the minset
of a generator v with respect to the marking ¢, as Min(v) = o, x ﬁv, and hence a
projection pr, : Min(v) — «,. This projection can be viewed either as the nearest-
point (orthogonal) projection, or as collapsing hyperplanes whose labels are adja-
cent to v. If v is twist-dominant, then by the proposition above, the straightening
map takes axes of v in (§H, dg) to axes of v in (§H, dg), and likewise minsets to
minsets. Thus, we can define an analogous projection in (fg’r[, d¢) by “straightening-
projecting-unstraightening” (see Figure 13), that is,

pry =s§' opr, o5y

While this is no longer a nearest-point projection, it is again obtained by collapsing
all hyperplanes whose labels are adjacent to v. That is, for any parallelotope in the
minset, prf collapses every edge e 4 with max(A4) # {v} to a point.

PROPOSITION 7.8

Let F be an allowable parallelotope structure on S™. Let v be twist-dominant,
and suppose that t: v — vw is an elementary twist. Then there is an isome-
try i+ (ST, dg) — (S%,dg) that realizes T o ¢ for some ¢ € U°(Ar) satisfying
Top=¢or.

Proof

Since v and w commute, there is a vertex x € S which is a terminal vertex for edges
ey and ey, . Let y, and y,, be characteristic cycles for v and w containing e, and e, X
alift of x to S™ and Xv» Xw lifts starting at X of these characteristic cycles. Since both
v and w are twist-dominant, y, and y,, are contained in axes &, and oy, through X,
and the product of these axes is a subcomplex of S™ isometric to E2, with stabilizer
the subgroup (v, w) = Z? of Ar. The parallelogram in st spanned by X, vX, wX,
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Figure 14. (Color online) Fundamental domain D for (v, w) 2 Z2 on oy X oy == E? c ST, The
dots and dotted lines are the projections of all branch points for v and w onto D.

and vwx is a fundamental domain D for this action (see Figure 14). Define a map
p: (ST, dz) — ay X oy by p = (s7)"' o pt o5, where p is the nearest-point
projection in (gn, dg). We will be most interested in the restriction of p to Min(w),
projecting Min(w) onto oy X ty,.

Claim

Let br(v) be the set of branch points for v, and let br(w) be the set of branch points for
w. Then p(br(v)) consists of lines parallel to «y, and isolated points, and p(br(w))
consists of isolated points. The isolated points are vertices of S'I.

Proof of claim

There is a branch point for w at a vertex x € y,, x Hy, C S™ if and only if there is an
edge ey at x with [A, w] # 1. If x is a branch point for w and x € y, x Hy, then x
is also a branch point for v. If x is a branch point for v but not for w, then all edges
e4 at x that are not adjacent to v must be adjacent to w. In this case, every point of
X X )y 18 a branch point for v. O

Let x € S™ be a terminal vertex for edges e, and ey, as above, and let X be a lift
to Jv X Jw. If w is central, then br(w) is empty. In this case, the characteristic cycle
for w consists of the single edge e,, and the only vertices on j,, are the w-translates
of X, but these are not branch points. The same is true for jy, if v and w are both
central.

Let B = br(v) U br(w). Note that the decomposition of ), X ) into parallel-
ograms is completely determined by p(B) U {X}. This is because each edge of this
decomposition is on a lift of a characteristic cycle y, or yy, and each endpoint of this
edge corresponds to a branch point in some (parallel) axis for v or w or to a translate
of Xx.

We are now ready to replace the action of v by the action of 7(v) = vw. Since
v <; w, the centralizer of v is equal to the centralizer of vw, so Min(v) = Min(vw)
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Figure 15. (Color online) Skewing D. The branch points for v and w are the same as the branch
points for vw and w.

and br(v) = br(vw). Thus replacing v by vw does not change B or the projections
of branch points onto the plane o, X oy,. Replacing the fundamental domain D of
Qy X oy by a new fundamental domain D’ with vertices X, vwX, vw?%, and wx,
these projections determine a decomposition of D’ into parallelograms (see Figure
15). The decomposition of «, = oy, the axis for t(v), is in one-to-one correspon-
dence with the decomposition of ¢, since in both cases, the vertices are projections
of points in p(B) parallel to an axis «y,. But the decomposition of a,, will change
since vertices are now projections of p(B) parallel to the new axis «;, instead of the
old axis «4,. So for example, two points in p(B) could project to the same point under
one of these projections and to distinct points under the other.

We claim that D’ together with its decomposition is part of a skewed I"-complex
structure (S®,§) on (Y.d). To prove this, we need to do two things. The first is
to complete the new parallelogram decomposition of o, X oy, to a parallelotope
decomposition of all of Y. The second is to find a compatible set €2 of partitions cor-
responding to this decomposition, that is, a parallelotope structure € on S making
(S9, dg) isometric to (Y, d) = (ST, dg).

Farallelotope decomposition. We have changed the decomposition of the axis
oy, into edges. As collateral damage, we have also changed the decomposition of
any characteristic cycle with a lift that intersects o,,. However, the endpoints of the
intersection interval are images of branch points for w, so are still vertices in the new
decomposition; that is, this segment of the characteristic cycle is the only thing we
have changed. (In particular, if the intersection is a single point, then we have not
changed this characteristic cycle at all.)

If w commutes with ¥ € max(A4) for some label A, then the decomposition of
every product subcomplex y,, X x,, of S is affected by changing the decomposition
of oy,. If u also commutes with v, then this is not a problem because then the new
decomposition of o, X oy, extends to a decomposition of oy X ayy X e4 C so.

If [u,w] =1 but [u, v] # 1, then it may happen that some partition & that splits
v also splits u, so that y, X yy overlaps y, X yy in the band ep X yy,. We have
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Figure 16. (Color online) Skewing e, back in jy X oy when e(P1), e(P2) are in yy.

changed the decomposition of this band. However, notice that u < s v so u cannot be
twist-dominant and moreover ¥ <; w. Since u is twist-minimal, we can compensate
for what we have done by using the band e,, X oty C iy X @y to skew the characteris-
tic cycle for u back to the original endpoint of j, (see Figure 16). We do not change
the angle with «y, in any other band, so preserve the condition of allowability for the
new parallelotope structure.

Blowup structure. We need to find a set of partitions 2 corresponding to our new
parallelotope decomposition. In particular, we need to show that the new decompo-
sition of o, comes from a set of I'-Whitehead partitions that split w. Recall from
Section 3.3 that the partitions {#y,...,Px} that split w are nested, that is, their
w-sides P; satisfy Py = {w} C Py C P, C - C Py C Pry1 = Py \ {w™!}, and
if R is any other partition in IT that is not adjacent to w, then its non-w side R is
contained in some piece dP; = P; \ P;_; of the nest.

Since v is twist-dominant, the partitions splitting v are also nested, say,
Qo={v}CQ1CQrC-CQrC Q1 =0,\{v"}, and the pieces dQ; =
Q; \ O;_1 are unions of v-components of I'*. (Recall from Section 2.3 that a v-
component is a connected component of I'+ \ Ik (v) \ {v, v™!} and that each side of
a partition based at v is a union of v-components plus v or v—1.) Since st(v) C st(w),
these v-components are unions of w-components plus possibly some elements of
Ik(w). Thus the intersection of a set of v-components with a set of w-components is
a set of w-components. In particular, each intersection I;; = dP; N dQ; is a union
of w-components.

Each vertex rj; of xy, X yy is a region that contains the consistent set

{F],...Fi_l,Pi,...,Pk,al,...,gj_l,Qj,...,Qe}.

Partitions that are not adjacent to w also are not adjacent to v, so have sides R; that
fit into both nests (the sides that do not contain v or w), and r;; must also contain the
consistent set

8ij={P1...Pi 1. Pi.....Pt.0.....0;_1.0j.....0¢.Ri.....Rp}.
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The remaining partitions in IT are all adjacent to w.

If I;; =dP; N dQ; contains some outermost R, or a vertex u outside all of the
R, then we can use this to extend §; j to a region incident to an edge labeled R, or
u as we did in Section 3.5. This region is a branch point for w in some parallel copy
of D, and projects to r;;.

On the other hand, suppose that /;; contains no R; or outermost vertex u. Then
no extension of &;; produces a region incident to an edge labeled R, or u. Since
every edge that branches off Min(w) has such a label, no such region gives a branch
point for w, that is, r;; is not in the image of br(w).

Identifying (oy X aty) = (ctyw X 04yy), We get a new fundamental domain D’
and a new map pr,,: D" — oy, N D’ which projects along vw-axes. Using pr),,
project those r;; that are images of branch points for w to an ordered set of points
(%1,...,27) on oy, N D,

Let I(xx) be the union of the /;; such that pr), (rjj) = k. Let P{ = {w} U I (%),
P; = P{ U (%), and so on. Each P/ is a side of a valid I'-Whitehead partition J/
based at w, since each [;; is a union of w-components.

Let Q2 be the collection of I'-Whitehead partitions obtained from IT by replacing
Pi.... P, by P|,...P,. To see that the Q partitions are pairwise compatible, we
need only check that "” is compatible with R; for all 7, j. We know that the side
R lies in some [, and hence in some 7 (%g). So by definition, R C P\ P/_, and
it follows that R ; is compatible with #/ for all i.

Marking change. Finally, we calculate the effect of replacing the structure
(S™, ) on Y, with its marking C , by the new structure (S, ¢) and marking C

LEMMA 7.9
Suppose that v is twist-dominant, and let T: v — vw be an elementary twist. The
composite map c¢Z o (¢F)™' : Sp — Sr is of the form t o ¢, where ¢ € U%(Ar) and

Top=gort.

Proof
Let u = c o(c Sr — Sr. The corner point X of the fundamental domains
D and D’ described above is a terminal vertex of edges ¢, and ¢y, in S as well as
in S™. Let x be its image in S™, and for each u € V, let £, be an edge path which
goes from x to an e, edge in CH, across ey, and then back to x in CH, Note that
&, crosses a single e, edge and all other edges are labeled by partitions. We choose
&, to have minimal length among all such paths. &, represents the homotopy class
') e m (ST, x).

Lift g,, to a path Su based at X. The endpoint 3 of “g’u is then u - X with respect
to the c -marking. Since &, was taken to be minimal, Su is a combinatorial geodesic

?7)1
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(i.e., it crosses each hyperplane in S™ at most once), and our choice of x means that X’
and 7 are vertices in (S2, §). Any minimal-length edge path 7, in (S2, €) between X
and y consists of edges that cross a hyperplane which separates X and y. To calculate
u(u), it is enough to know the Q-labels of hyperplanes that are crossed by 7. The
only hyperplanes and labels that change as we go from (S, %) to (S, §) are those
with max = w. Thus, 7, crosses one hyperplane labeled u, and all other hyperplanes
are either labeled by partitions or by w.

It follows that p(u) = w™*uw™« for some n,,m, € Z. In particular, the twist-
¥

7.
axis for vw, so we know that p(v) = vw. If u # v but u <; w,

component of w is a product of elementary twists by w. By construction, a ¢}, -axis

for v maps to a ¢2 -
then either u is twist-dominant, so the axis for u has not changed, or we have sheared
g

g
proves that the twist component T of w is just 7: v — vw. Therefore, we can write
U = 1 o @, where ¢ is a product of folds and partial conjugations by w. Thus,

@ € U%(Ar) and since t is a twist by w, T 0 ¢ = ¢ o 7, as desired. |

the e, edge so that a cf—axis for v maps to a ¢ -axis for u. Thus, u(u) = u. This

This completes the proof of Proposition 7.8. U

We next make some observations about changing the order of elementary twists,
folds, and partial conjugations.

Definition 7.10
Let t: v +— vw be an elementary twist. If v is twist-dominant, then we say that 7 is a
TD twist, and if v is twist-minimal, then we say that t is a TM twist.

LEMMA 7.11

Let T: v vw be an elementary twist.

(1) Let ¢ be a partial conjugation or an elementary fold. Then either ¢ commutes
with T or T = apt, where « is a partial conjugation, an elementary fold, or
an elementary TM twist by w that commutes with both ¢ and o.

2) If tisa TD twist and t is a TM twist, then either t commutes with Tt or
Tt = att, where o is an elementary TM twist by w that commutes with both
Tandt.

Proof

(1) First suppose that ¢ is conjugates a component C of I" \ st(x) by u. Since v and
w are connected by an edge in I', ¢ commutes with t unless u = v, in which case ¢t
agrees with T except that ¢t conjugates C by vw instead of v. Since st(v) C st(w),
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C is a union of components C; of T" \ st(w) plus some elements of st(w), so we can
correct this by partially conjugating the C; by w™!.

Next suppose that ¢ is a right fold py,: x — xy or left fold A5, : x — yx. It
cannot be that w = x since that would mean v <, w <y y. Therefore, T commutes
with ¢ unless v = y, in which case

pTa =T1@,

where o : x — xw if ¢ is a right fold, or « : x = wx if @ is a left fold. Note that «
may be either a fold if [x, w] # 1 or a twist if [x,w] = 1. Since x < y, this implies
that x cannot be twist-dominant, so if « is a twist, then it is a TM twist. In either case,
since v commutes with w, @ commutes with both t and ¢.

(2) Let t: x — xy be a TM twist. Then x # w since w is twist-dominant, so ¢
commutes with t unless v = y. If v = y, then x must commute with v and hence also
with w. In this case, 7¢ = aft where « : x — xw, which is a TM twist commuting
with both 7 and 7. O

Recall that Out’(Ar) is the subgroup of Out(Ar) generated by folds, twists,
partial conjugations, and inversions. By checking the generators, it is not hard to see
that graph automorphisms normalize Out®(Ar), hence it is a normal subgroup.

COROLLARY 7.12

Let (TM) denote the subgroup of Out®(Ar) generated by TM twists, and let G be

the subgroup generated by U°(Ar) and (TM).

(1)  Any element g € G can be factored as g = t1 o ¢p1 = ¢, o t, where ¢; €
U%Ar) and t; € (TM).

2) TD twists normalize G, hence any element of Out®(Ar) can be factored as
a product of an element of (TD), an element of (TM), and an element of
U°(Ar) in any order. The U°(Ar) and (TM) factors may depend on the
choice of order, but the (T D) factor remains unchanged.

Proof

First note that inversions normalize the subgroup of Out®(Ar) generated by folds,
twists, and partial conjugations. Thus any inversion can be moved past any twist.
For (1), it remains to consider the case where 11 = t is a single TM -twist and
@1 = @1 - @y, is a product of folds and partial conjugations. Applying Lemma 7.11(1)
repeatedly gives

Hopr=TQ1@p = (P101 "+ PpOp)T,

where each o; is either the identity, a partial conjugation, an elementary fold, or a TM
twist by the same element w. In particular, all of the «;’s commute with each other.
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If all o; lie in U O(Ar), then we are done, but if one or more «; is a twist, then we
must apply the lemma again to move these twists to the right. Since o; commutes with
the other «;’s, only moving it past the ¢; terms can introduce new factors and these,
too, will commute with each other and with the «;. Repeating this process, we can
move all of the newly introduced TM twists to the right to obtain a new factorization
T = Pat; as desired.

For (2), the fact that TD twists normalize G follows immediately from Lemma
7.11 since « always lies in G. So for any / € Out’(Ar), we can write h = gy o t =
t o gy, where t € (TD) and g; € G. By part (1), we can factor g; into an element
of U%(Ar) and an element of (TD) in either order. By Lemma 7.11(2), we can also
switch the order of the TM and TD twists if desired. O

We can now complete the proof that ® is surjective.

Proof of Proposition 7.4

By definition, a point in Or is a space (Y,d) isometric to a skewed I'-complex
(S™, d#), together with a homotopy equivalence f : ¥ — Sr. For the purpose of this
proof, we will identify (Y, d) with (S™, d). Then a point in the fiber ®~1(Y,d, f) is
given by a skewed I'-complex (X, §), an untwisted homotopy equivalence &: X —
Sr, and an isometry i : (S™,ds) — (X, dg) such that h ~ f oi.If we also choose a
combinatorial isometry of X with some blowup S, then the picture is

S~ x . St

ENNUON

St Sr =— Sr
¢

where ho (cg)_l € U(Ar). To prove the proposition, we must find such an (S, €, ).

Let¢p = fo (cf )~1. Since graph automorphisms normalize Out®(Ar), we can
write ¢ = ¢’ o y, where ¢’ € Out®(Ar) and y is a graph automorphism. Then replac-
ing ST by S*M a5 in the proof of Lemma 4.7, we may assume that ¢ € Out’(Ar).
By composing cf with an isometry of Sy, we can change the collapse map as in the
proof of Lemma 4.7, thereby removing y. Without loss of generality, we therefore
assume that ¢ € Out’(Ar). By Corollary 7.12, we can factor ¢ as ¢ = ot ot,
where n € U®(Ar), t; is a product of TD twists, and #, is a product of TM twists.
Elements of U°(Ar) act on the left on both 71 and O and the action commutes with
®, so the fiber over (S™,dg, f) is isomorphic to the fiber over n~ (ST, dg, f) =
(S™,dg,n"! f). Thus we may assume that ¢ = ; o t,. Moreover, by Lemma 7.6
we can realize t, by a change of parallelotope structure on S (which changes the
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collapse map, but not the metric on S™), so we may assume that 7, = id and write
¢ =1107150-- 0T, a product of an elementary TD twist.

By Proposition 7.8, we can find elements ¢; € U°(Ar) and a sequence of skewed
blowup structures on Y realizing the compositions 7; o ;. Composing these gives

s¢ - s

TIQ1 Tk Pk
By Corollary 7.12, we can rewrite
! /
@1 Tk =t ogo(ty k) =1 0pog,

where ¢/ is a product of TM twists and ¢ € U°(Ar). By changing the parallelotope
structure on S, we may again arrange that ¢’ = id, so the diagram above becomes

s¢ « sHi

i f
g e

Sr Sr Sr

Settingh = ¢l oc? = foi~!, wehave ho(cf)™' =9~ € U%Ar),so0 (S%,9,h)
is the desired point in the fiber. O

7.3. Structure of fibers

7.3.1. Finding twist-minimal hyperplanes

In this section, we show that the set of twist-minimal hyperplanes in a marked twisted
I'-complex depends only on the underlying metric and the marking, that is, on the
projection to Or.

LEMMA 7.13

Let [X, % ,h] and [X',F', k'] be two points in the fiber over [Y,d, f]. The images
in' Y of twist-minimal hyperplanes in (X, %) and (X', ¥"’) are the same (both set-
theoretically and pointwise) and their carriers have the same width.

Proof
Since (X, ¥, h) and (X', ¥, 1) both project to (Y, d, 1), we can identify (X, dz) =
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(Y,d) = (X’,dg), that is, we consider (X,¥) and (X’, ) to be two different
skewed I'-complex structures on the same underlying space Y. Using this identifi-
cation, we have h = f = /', so f is untwisted in both of these structures.

Recall that in Section 4.2 we defined the sets split;, (H ) and maxy (H ) for a hyper-
plane in a rectilinear I'-complex with an untwisted marking /. The same definitions
can be used for a hyperplane H in a skewed I"-complex (X, ) provided that H is
convex, that is, v € split, (H) if an axis o, crosses some lift of H in ()7, F), where
the action is given by the isomorphism /4 : 71 (X) = 71(Sr) = Ar. In addition, if
s is the straightening map and hg = hs}l, then the induced map S# on the uni-
versal cover is equivariant with respect to the markings determined by % and h#.
Thus if some lift of H separates x from vx in (X, ¥), then the same holds after
straightening. In other words, split, (H) = splity,_(ss (H)). Thus, by Corollary 4.11
and Lemma 5.8, a hyperplane H in (X, ') is twist-minimal if and only if any lift H
is convex and [maxy (H )] is twist-minimal.

Assume that H in (X, ¥) is twist-minimal, and let v € maxy(H). Then some
lift H lies in Miny, (v) and we can decompose Miny (v) as a (not necessarily orthog-
onal) product Miny (v) = oy X H. We would like to apply Proposition 4.13, but that
proposition was proved only in the context of rectilinear I'-structures, so we first
must straighten (X, ). For twist-minimal elements, the straightening map s# need
not take axes to axes or minsets to minsets, but as observed above, it does take the
carrier of H to the carrier of a hyperplane H' =s 7 (ﬁ ) that also has maximal ele-
ment v. Hence the minset of v in the straightened structure (X, &, h#) decomposes as
o, X H', where o, is an axis for v with respect to the marking /g . In particular, the
straightening map between carriers extends to a homeomorphism between these two
minsets. It follows that s? maps branch points in K(ﬁ ) to branch points in /c(ﬁ .
By Proposition 4.13, K(H ") contains branch pomts on both components of its bound-
ary, so the same holds for K(H ). The position of H is determmed by the projection
of these branch points on «,, via the projection map prv =5 ? opr, o sg. Moreover,
since H is the convex hull of the Ajx(v)-orbit of a point on a,, the projection map
is determined by the CAT(0) metric and the marking %, independent of the choice of
point on «,,.

Since Miny, (v), the projection map to o, and the branch locus of v depend only
on the CAT(0) metric and the marking, they are the same for ()7 ,¥) and (Y LF.

O

7.3.2. Shearing (SU, F)
Now let (Y, d, f) be an arbitrary point of Or. By Proposition 7.4, the fiber @1 (Y, d,
f) is nonempty, so we may fix a point (S, ¥, ko) in this fiber and use an isometry
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(Y,d) = (S",dg) toidentify Y with S™ and f with the untwisted marking /. After
acting by the untwisted subgroup U(Ar), we may further assume that f = cf .

If (X,86,h) is any other point in the same fiber, then there is an isometry
i:(X,dg) — (Y,d) with f oi ~ h. Using this isometry to identify (X, dg) with
(Y,d) and h with f, we can view (X, §) as a different decomposition of the same
underlying metric space Y into (unlabeled) parallelotopes. We say that (X,§) is a
I'-complex structure on Y . To understand the topology of the fiber, we will compare
an arbitrary I'-complex structure (X, §) with our given structure (S™, %).

The action of Ar on universal covers is given by f in both cases, so the axes,
minsets, and branch points are the same. However, while f is untwisted with respect
to both structures, it is a I'-collapse map only for (S, ) where it is in fact the
standard collapse map.

By Lemma 7.13, the set of twist-minimal hyperplanes and their carriers are the
same in both structures. Let H be a twist-minimal hyperplane, and let H be a lift of
H to ST The carrier K(ﬁ ) has two boundary components, do and d;. Let xo be a
branch point in dg; then each of (gn, F) and ()? ,9) must have an edge dual to H
with one endpoint at xg. In (ST, ¥) hyperplanes are labeled, so we have H=Hj,
for some A € IT U V' with max(A) twist-minimal, and we label this edge e 4. In the
skewed I'-complex structure (X, §) the edge does not have a label, so we will just
callitegy.

By Lemma 5.8, H is convex. The elements of 1k* (A) are twist-dominant and
commute with each other, so H contains a subspace of the form ey X Ej, where
EX is an affine space generated by axes of elements in 1kt (A4). By definition of an
allowable parallelotope structure, the edge e 4 was obtained from an orthogonal edge
by rotating in the direction of Ej. The same applies to e, since kT (H) = 1kt (A).
Letting #(e4) and t(ey) be the endpoints of e4 and ey in d;, it follows that the
subspaces t(e4) x ]Ej and t(eg) X ]Ej agree. So the difference s4 = t(eg) —t(e4)
is a vector in the vector space U: spanned by the axes of 1k*(4). (See Figure 17.)

Finally, note that in defining s 4, we began by choosing an isometry i : (X,dg) —
(Y, d). While this isometry need not be unique, for any other such isometry j, we have

jloi=(G o f Yo(foi)~htoh=id.

Recall that ¥ decomposes as an orthogonal product ¥ = Yo X Tz(4r), Where Tz )
is a torus of dimension equal to the rank of the center Z(Ar). It follows from the
work of Bregman [7] that the only isometries of Y that are homotopic to the identity
are translations of the central torus T%4). Such a translation has no effect on the
relative position of e and ey4, so s4 is independent of the choice of i.

Definition 7.14
The vector s4 =t(eg) —t(ey) € U: is the shear of ey relative to ey4.
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Figure 17. (Color online) Shear of e 7 with respect to e 4.

Definition 7.15
A shearing of (ST, ¥) is a choice of vector s4 € Uj for every hyperplane H 4,
subject to the condition that if max(A) is twist-dominant, then 54 = 0.

We now observe that two I'-complex structures (X, §) and (X, §’) in the fiber
that define the same shearing are the same.

PROPOSITION 7.16
Two points [X,§,h] and [X',§',h'] in the fiber over (SN, dz,c¥) = (Y,d, f) are
the same if and only if they define the same shearings {s 4} and {s',} of (ST, 7).

Proof

If[X,9,h] = [X', &', 1], then there is a combinatorial isometry i : (X, §) — (X', ")
with 4’ >~ hoi (i.e., an isomorphism of cube complexes X = X’ which restricts to an
isometry on each parallelotope), so the fact that corresponding edges have the same
shearing is clear.

For the converse, suppose thati : (X,dg) — (X', dg/) is an isometry of underly-
ing metric spaces such that 4’ ~ i o h. Lift i to an equivariant isometry i : (X, dg) —
(X', dg). By Lemma 7.13, the CAT(0) metric and the marking completely deter-
mine the twist-minimal hyperplanes, as well as the width of their carriers. Hence [
maps each twist-minimal hyperplane H to a twist-minimal hyperplane z(H ). The
assumption on shearings now implies that the image of an edge dual to H is paral-
lel to any edge dual to 7(17 ) in ()7 ’.€"). To show that { is a combinatorial isometry,
we will show that it also maps twist-dominant hyperplanes in ()7 ,'§) bijectively to
twist-dominant hyperplanes in (X', €’).

Suppose that v is twist-dominant and does not lie in the center of Ar. Then by
Propositions 4.13 and 7.7, the hyperplanes split by v are completely determined by
the projection maps prf, prf/. Thus, to show that i preserves these hyperplanes, it
suffices to show that these two projection maps agree. In both cases, the projection
map may be thought of as performing a hyperplane collapse along all hyperplanes
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Hc Min(v) whose maximal equivalence class commutes with v, where the collapse
map takes the dual edges ey to a point. Since i takes twist-minimal hyperplanes to
twist-minimal hyperplanes preserving the shearing and length of their dual edges,
prf and prf, agree on twist-minimal hyperplanes Hc Min(v). If the maximal ele-
ment w € lk(v) is twist-dominant, then the dual edge to H lies along an axis oy, by
Lemma 5.8. The entire axis is collapsed to a point under either of these projections.
Since i takes axes of twist-dominant generators to axes of twist-dominant genera-
tors, prf and prf/ also agree along twist-dominant Hc Min(v). We conclude that
the two projection maps are the same and hence determine the same twist-dominant
hyperplanes.

When Ar has nontrivial center, X and X’ decompose as (nonorthogonal) prod-
ucts with a locally convex torus endowed with a flat metric. In each case, the parallelo-
tope structure on the torus consists of a single parallelotope with opposite faces iden-
tified. In particular, any edge in the 1-skeleton of this torus is the image of an axis of
some central element. As i is an isometry and A’ >~ i o h, the torus factors in X and X’
agree as marked, metric tori. Thus we may write X = Z x T, X' = Z'x T, where Z,
Z' are subcomplexes, and i maps every edge of the T-factor in X parallel to an edge
of the T -factor of X'. The above argument now shows that the combinatorial structure
on Z and Z’ must also agree, and that for every edge e in the 1-skeleton X, i(e) dif-
fers by translation in 7' from an edge in the 1-skeleton of X’. Since the 1-skeleton of
X is connected, i differs from a combinatorial isometry by some fixed translation in
T. Since any translation is isotopic to the identity, post-composing i with the inverse
of this translation gives a combinatorial isometry i’: (X,9§) — (X', §’) which still
satisfies i’ >~ hoi’. O

COROLLARY 7.17 6
The composite map Xt — Jr — Or that forgets the cube complex structure on
[X,9,h], is an embedding.

Proof

Suppose that [X, 9, k], [X', &', '] are two rectilinear I"-complexes in the fiber over
[Y,d,h] € Or. Then there is an isometry i : (X', dg’) — (X,dg) such that i’ ~i oh.
Since §, €' are rectilinear, no shearing of edges dual to twist-minimal hyperplanes
is allowed, so by Proposition 7.16, [X,&,h] = [X’,§’,h'] in T1, and hence also in
2r. Ul

7.3.3. Zero-sum shearings
We now want to show that given any shearing of (S, ¥) satisfying a certain zero-
sum condition, there is a skewed I'-complex structure (X, §) on Y with that shearing.
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Together with Proposition 7.16 this gives us a characterization of all points in the fiber,
which we can then use to prove that the fiber is contractible.

Let v be a twist-minimal vertex of I". For any A C IT U V' with max(4) > ¢ v,
we have 1k*(A4) C k™ (v) U dlk(v), so the shearing vector s4 € U: decomposes as

sa=LY+ fi.

where the first factor lies in the subspace spanned by axes of k™ (4) N1k™ (v) and the
second by the axes of 1kt (4) N dlk(v). Note that if v € max(4), then fi=0.

Now let x, be a characteristic cycle for v in S Let H Ay .-, Hy, be the hyper-
planes crossed by x, and orient the dual edges to be consistent with the orientation
of e,. For all i, we have max(4;) > v, so 54, = Z”Ai + fffi. Viewing all of the Z”Ai
as vectors in the subspace of U: spanned by axes of Ik (v), we can define £, to be
the sum

by= 4.
i

Definition 7.18
A shearing {s4} of (ST, ¥) is a zero-sum shearing if £,, = 0 for all twist-minimal v.

PROPOSITION 7.19
If the images of [X, €, h] and [SU, d;z:,c | in Or are equal, then (X,§) differs from
(S, %) by a zero-sum shearing.

Proof
If [X,§,h] and [S", d#,cY | have the same image in Or, then there is an isometry
i: (X,dg) — (SU,dg) such that h ~ ¢ oi. Any such isometry lifts to an equiv-
ariant isometry on universal covers that takes minsets to minsets, axes to axes, and
twist-minimal hyperplanes to twist-minimal hyperplanes. Let u be twist-minimal, and
let y,, € S™ be a characteristic cycle for u beginning at a vertex in the image of the
branch locus br(u). Let 7, be a minimal-length edge path in (X,¥§) homotopic to
i~'()u). Then M and y, cross the same twist-minimal hyperplanes and lift to homo-
topic paths in X =S™ with endpoints on some axis for u. Thus 7, is a characteristic
cycle for u in (X, ). Since only twist-minimal hyperplanes contribute to the total
shearing along 7,,, we conclude that £,, = 0. ([

Conversely, we claim that any zero-sum shearing corresponds to a point in the
fiber.



1098 BREGMAN, CHARNEY, and VOGTMANN

PROPOSITION 7.20

Let (Y, d, h) be the image of (ST, ¥, cf) in Or. Any zero-sum shearing of (SU, %)
is realized by some skewed T"-complex structure (X, §) on Y such that h is untwisted
with respect to this structure and hence (X, 8, h) represents a point in the fiber over

(Y.d,h).

Before proving this proposition we deduce the following important corollary,
which characterizes the fiber in terms of zero-sum shearings.

COROLLARY 7.21
O(X,9,h) =01, 7, cf) if and only if (X, §) differs by a zero-sum shearing from
(S™, ) and h ~ c]f oi for some isometry i : X — ST,

Proof

IfO(X,6,h) =061, 7, cf), then there exists an isometry i : (X,dg) — (S, dg)
such that s ~ cf; oi,and (X, &, h) differs by a zero-sum shearing from (SU, 7, cf)
by Proposition 7.19. Conversely, by Proposition 7.20, if (X,¥) differs by a zero-
sum shearing from (S, %), then (X, ) is a skewed I'-complex with an isometry
i:(X,dg)— (S",dg) such that cf o is untwisted. Since i ~ ¢¥ o, we conclude

T

that O(X, 9,h) = O™, F,c¥). O

The proof of Proposition 7.20 will occupy the rest of this subsection. As in the
proof of surjectivity, we need to find a new decomposition of Y into parallelotopes,
a corresponding skewed blowup structure (S%,§), and then determine the change of
marking ¢Z o (¢f)~1.

For each A; appearing in the characteristic cycle for v, ﬁ”Ai decomposes into a
sum of components lying along axes for w € Ik (v). The zero-sum condition, £, = 0,
implies that the components of Efjli along the axis for each w also sum to zero. This
means that we can achieve any zero-sum shearing by ordering the twist-dominant
elements w;, then first performing all shears towards w;, then w,, and so on. At
each stage, we will verify that the resulting parallelotope structure is a skewed I'-
complex with an untwisted marking. At the final stage, we arrive at a skewed I'-
complex (X, ) that differs from (S, ) by the original zero-sum shearing. This
will prove the proposition.

Parallelotope decomposition. Assume that we are shearing toward a single twist-
dominant element w. We will define the new parallelotope decomposition by deter-
mining the hyperplanes dual to the parallelotopes. The twist-minimal hyperplanes
in the structure (S™, ) will remain hyperplanes in the new decomposition, and we
will eventually identify these with the twist-minimal hyperplanes in a new skewed
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I'-complex structure (X, §). The twist-dominant hyperplanes in (X, %) with maxi-
mal element w will be defined using a projection of Min(w) to an axes for w. The
remaining twist-dominant hyperplanes will remain unchanged.

Choose a basepoint xo in Min(w) which is the terminal vertex of an edge labeled
w and a branch point for w in the structure (’gn’ F). Let oy, be the axis through
X0, viewed as a copy of the real line, based at xo. We already have one projection
pri = sZ#'pry, sy from Min(w) to o, defined using the skewed blowup structure
(S™, F) on Y. The image of the branch locus br(w) under this projection is a set
of isolated points dividing o, into edges, and the inverse image of the midpoints
of these edges are the hyperplanes H4 with max(A4) = w. The image of any edge
e4 € Min(w) with max(A) # w is a vertex of oy, while every axis for w is sent
isomorphically to o, .

Since w is twist-dominant the subspace Min(w) is a subcomplex of (“S’n, &), and
therefore also of (gn, F') by Proposition 7.7. We define a new projection map on
edges of this subcomplex as follows. Every (oriented) axis for w can be identified
with the real line R and this identification is unique up to translation. Thus, segments
of an axis can be viewed as vectors in R (up to translation). We first associate such
a vector r4 to each oriented edge e4 in Min(w). If max(A) = w, then e4 lies in an
axis for w and we let r4 be the corresponding vector in R. If max(A4) # w, then the
shearing of e 4 is given by a vector s4 € U}. Since we are only shearing toward w,
s4 lies along an axis for w and we let r4 = —s 4. Note that if w ¢ k™ (A), then by
definition of an allowable shearing, r4 = 0.

Now define the new projection map pr,, : Min(w) — o, as follows. For any
vertex y in Min(w), choose a minimal-length edge path e4, ---e4, from x¢ to y, and
set pry, () = xo + D _r4;. Since the vectors r4 depend only on the label A and the
orientation of e 4, this is independent of the choice of path and two vertices connected
by an edge e4 will project to points that differ by the vector r4. Extending this map
linearly on each parallelotope gives the desired projection.

We remark that pr;, can also be viewed as the map which collapses every hyper-
plane Hy in Min(w) that does not split w. The collapse is performed by identifying
the hyperplane carrier with the product e/, x H 4, where e/, is the sheared version of
ey (i.e., an interval parallel to e 4 + s 4) and collapsing every copy of €/, to a point.

Now let v be any generator that commutes with w, and let y, be a characteristic
cycle for v in the structure (S, ). Then y, lifts to a path p = eyq, -+ eq, in Min(w).
Since we are only allowing shearing in the direction of w, for each edge ey4;, in p, we
have rq, =54, = E’jli, so the zero-sum shearing condition says that ) r4, = 0, or in
other words, the two endpoints y and vy of p project to the same point under pr},. It
follows that pr;, is equivariant under the action of Agy).
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Next observe that if an edge e 4 in Min(w) is contained in the branch locus br(w),
then max(A) must commute with some u ¢ lk(w). Thus w ¢ k™ (A4) and hence pr,
maps e4 to a single point. It follows that pr,, takes each connected component of
the branch locus to a single point. We declare these projection points to be the new
vertices of o, ; note that xg is one of these vertices. This subdivides «,, into a new
set of edges. The inverse image under pr}, of these edges form the carriers of the new
hyperplanes that split w.

Now consider the hyperplane structure on Y consisting of the original hyper-
planes which do not split w, together with the new hyperplanes that split w. These
determine a new (equivariant) parallelotope structure ()7 ,'9): the maximal parallelo-
topes in (j(v ,'§) are maximal intersections of carriers of these hyperplanes.

More explicitly, parallelotopes in (ST, ) containing no edges e4 with
max(A4) <; w, remain unchanged in ()? ,9). In particular, this is true for all par-
allelotopes not contained in Min(w). The ()? , §)-structure on Min(w) consists of
parallelotopes whose edges either lie in an axis for w and project under pr, to a
single edge in oy, or are parallel to e4 + s4 in some K(ﬁ 4) and project to a single
point in ay,. By the equivariance of pr},, this descends to a parallelotope structure on
the image of Min(w) in S'I.

It remains to check that this new parallelotope structure is allowable in the sense
of Definition 5.3. To see this, note that an allowable metric on a single parallelotope
¢, as defined in Definition 5.1, depends on the intersections of linear subspaces K;
associated to edges e; emanating from a fixed vertex. In our current terminology,
if e; = e4, then K; is the subspace spanned by e4 together with UI. Since this
subspace remains unchanged after shearing, the resulting metric on c is still allowable,
so condition (1) of the definition is satisfied. Condition (2), that if ¢’ is a face of ¢, then
the metric on ¢’ is the restriction of the metric on ¢, is obvious. For condition (3), note
that if max(A) = {v} is twist-dominant, then both e4 and e, lie in the image o, of
an axis for v and neither of these edges are allowed to shear. Thus if B is adjacent to
A, then any change in angle between ep and e4 or e, must result from a shearing of
the edge ep. This can only occur if B is twist-minimal, in which case Hp is locally
convex and contains o,. It follows that any shearing of ep will change the angles
between ep and any edge in o, by the same amount.

Blowup structure. We have found a new decomposition (X, %) of Y into parallelo-
topes. The next thing to show is that (X, §) is a I'-complex; that is, we need to find
a new set of partitions €2 such that (X, ) = (S, §). The only difference between IT
and 2 will be the partitions that split our twist-dominant generator w.

Since w is twist-dominant, Min(w) is a (convex) subcomplex of (’§H,5f7 ) by
Proposition 7.7. If x and y are vertices of Min(w) which are branch points for w,
then there are edges e4 adjacent to x and ep adjacent to y with [A, w] # 1 and
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[B,w] # 1. Choose a lift of C™ to ST we will abuse notation by calling this C'T as
well. Let M,, be the intersection of Min(w) with C™L. Since C™ and Min(w) are both
convex in the straightened version (§H, &), their intersection is connected. Since cH
contains all vertices of S™I, every branch vertex in Min(w) has a unique translate in
M, = C™" N Min(w).

LEMMA 7.22

Suppose that e 4 and ep are edges branching off of My, at vertices x and y, respec-
tively. If A is a partition, let A* denote the side of A that does not contain w, and if
A is a vertex v, let A* = v if e, terminates at x, and let A* = v~ if x is the initial
vertex of ey, define B> similarly. If a € A* is maximal in A and b € B> is maximal
in B, and a, b lie in the same w-component of T'%, then x and y project to the same
point of ay, under pr,.

Proof
Since My, is a connected subcomplex, we may connect x and y by a minimal-length
edge path ey4,,...,e4, lying in this intersection. We claim that max(4;) £, w for

all 7, so each ey, collapses to a point under prj,. Thus pr;, maps the entire path to a
point, showing that pr;, (x) = pr}, (»).

We argue by contradiction, so let a; € max(A4;), and suppose that a; <; w for
some i. Since e4, C Min(w), we have [a;,w] = 1. If [a,a;] = 1, then a; <; w
implies that [a, w] = 1, so e4 C Min(w), contradicting our hypothesis. Thus we have
[a,a;] # 1 forall i, and similarly [b,a;] # 1.

The lift of the hyperplane H 4, containing e4, separates M,, into two compo-
nents. Since a; does not commute with either a or b, the endpoints of edges labeled
e4 and those labeled ep lie in different components (where orientation matters if A
or B is a generator). In terms of partitions, the sides of A and B that do not contain
a; sit in different sides of the partition A;. Since a; € Ik(w) and A* does not contain
w it does not contain «q; either, and similarly B* does not contain a;. Thus A* and
B* are in different sides of A;. But each side of A; is a union of a;-components plus
a; ora; ! and, since a; <; w, each a;-component is a union of w-components plus
possibly some elements of 1k(w). Since a € A*, b € B> and neither is in lk(w), this
contradicts the hypothesis that @ and b are in the same w-component. O

We now form the new partitions splitting w in the same way we did in Section 7.2.
To each branch point r € br(w) N C™, associate the union I(r) of the sets A for
edges e4 incident to r but not in Min(w). The new projection pr}, sends br(w) N My,
to an ordered set of points (%1, ...,%,) on ay, N C™M, and to each %; we associate the
union /(%;) of the I(r) with pr'(r) = x;. Let P{ = {w} U I(x1), Py = P{ U I(%2),
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and so on. By Lemma 7.22, each I(%;) is a union of w-components, so each P/ is a
side of a valid I"-Whitehead partition &/ based at w.

Let Q2 be the collection of I'-Whitehead partitions obtained from IT by replacing
Pi,...Prin Il by Py,... P, . To see that the Q partitions are pairwise compatible, we
need only check that each J/ is compatible with those R € II that are not adjacent to
w. The side R* is contained in some outermost Q> in some piece d P;. The partition
@ cannot be adjacent to w, so there is an edge eg at a branch point rr € M,,, and
Q> C I(r). Since I(r) C I(%;) for some i. it follows that R is compatible with P/.

Marking change. The blowup structure (X = S, §) defined above comes with a
collapse map ¢Z : S — Sr. We now analyze the change in marking induced by the
difference between cZ and the original collapse map ¢ from (ST, ¥).

LEMMA 7.23

Suppose that (X = S, 8, cf) is a zero-sum shearing of (SU, ¥, cf) € Jr which
differs only in the direction of a twist-dominant generator w. Then the composite map
cg o (cF)1:Sr — Sr is untwisted.

Proof

Let u = cﬁ o (cf )~1:Sr — Sr. Observe that the only hyperplanes which change
from S™ to S¥ are those with max = {w}. Following exactly the same argument
as in the proof of Lemma 7.9, for each v € V' we have that u(v) = w"vvw™ for
some ny,m, € Z. Thus, nontrivial twists can occur only for v <; w. If such a v is
twist-dominant, then the characteristic cycle for v is the same in both S™ and SQ,
so ;u(v) = v. If v is twist-minimal, then the fact that (S, §) is a zero-sum shearing
implies that a characteristic cycle for v with respect to (S%, §) has the same endpoints
as a characteristic cycle for v with respect to (S, %), hence in this case p(v) = v as
well. Therefore, x is untwisted. O

The proof of Lemma 7.23 shows that u acts trivially on vertices v <; w, and
one might be tempted to conclude that it shows that the action of u is entirely trivial.
However, if z <7 v <, w, then a characteristic cycle for z may have an edge e4
that also lies in a characteristic cycle for v. In this case, a zero-sum shearing of the
characteristic cycle for v in the direction of w may result in p acting as a nontrivial
fold of w onto z.

Remark 7.24

As observed in the proof of Lemma 7.23, the only hyperplanes that change in a zero-
sum shearing are twist-dominant hyperplanes. In particular, the set of twist-minimal
hyperplanes which split a particular v does not vary among all zero-sum shearings.
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We now finish the proof of Proposition 7.20.

Proof of Proposition 7.20

Order the twist-dominant generators wy, ..., w,. We perform an arbitrary zero-sum
shearing as a sequence of single generator zero-sum shearings. By the discussion
above, we obtain a sequence of skewed blowups

S, 7) = (S0, %), (591, 6),.... (5%, 8,) = (S®.9),

where for 1 <i <n, (S%,%;) is obtained from (S%i—1,8;_;) by a zero-sum shearing
in the direction of w;, and the change in marking u; is untwisted by Lemma 7.23.
The change in marking from (S, ) to (S, §) is then a composition of untwisted
automorphisms

—1
cho(e) = ppo-opy,

hence untwisted as well. O

7.4. Contractibility of Or

7.4.1. Contractibility of fibers

Let Hyin denote the set of twist-minimal hyperplanes in (S, #,¢J). Since these
depend only on the metric d¢ by Lemma 7.13, the set Hy, is well defined over
the whole ®-fiber containing (SH, ¥, cf: ). Likewise, the twist-dominant axes remain
the same throughout the fiber. The dual edge to H € J, is allowed to shear in the
direction of 1kt (H), and as above, we regard a given shearing sy as a vector in the
vector space U ;Ir . (Here to emphasize the independence from IT, we use the notation
sy and U ;Ir rather than specifying a label A and writing s 4 and Uj .) We now describe
the fiber containing (SH, ¥, cf ) as a linear subspace of

P uvi.

Hee}fmin

Let Vinin denote the set of twist-minimal vertices. For v € Vj,, the only edges
which contribute to the shearing of v are those dual to H € H,;, which split v. By
Remark 7.24 and Corollary 7.21, the set of twist-minimal hyperplanes that split v does
not change within the fiber. If v € split(H), H € H,, then the contribution of sg to
ly is I}y, where [}, lies in the subspace of U ;{r corresponding to Ik™ (H) N1k™ (v). If
v ¢ split(H ), then define /¥, = 0. We then identify /¥ with a vector in U,! since 1},
lies in the span of axes in 1kt (H) N1k (v). Thus, for each v € Vi, we can think of
£, as a linear map:
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ly: @ Uug - U,
Hef}’emin

EBsHb—>Zl}ZI.

Call the equations {l, = 0 | v € Viuin} the structure equations for shearings of
(ST, 7 ,cf ). We now easily deduce the contractibility of the fibers from Corol-
lary 7.21.

THEOREM 7.25
The fibers of the map © : T — Or are contractible.

Proof

The space of solutions to the structure equations is the intersection (), cy. = kerly,
which is a linear subspace of @ gz U If} and hence contractible. The preceding
discussion shows that this subspace is in one-to-one correspondence with the set
of zero-sum shearings of (SH,.S‘7 ,cf ). Thus, by Corollary 7.21, there is a bijec-
tion between the space of solutions and points in @~ !([S™, dz,cF]). It is easy to
see that this correspondence is a homeomorphism. By Proposition 7.4, every fiber of
® is a U(Ar)-translate of one containing some [S™, ¢, so every fiber is con-
tractible. O

7.4.2. Contractibility of Or

We now finish the proof of Theorem 7.2. By Theorem 7.25, the fibers of ® are con-
tractible, but since they are not compact, ® is not a proper map. To conclude that O
is contractible, we will show that ® is in fact a fibration.

Proof of Theorem 7.2

Since Or is paracompact (the equivariant Gromov—Hausdorff topology is metrizable),
it suffices to show that © is a fibration when restricted to sufficiently small neighbor-
hoods U C Or.

We begin by showing that for any point yo in O, and any lift xo € 1 of yg,
there exist a neighborhood U and a section s : U — ©~1(U) with s(yq) = xo. Say
xo = [Xo, Fo, ho] and yo = [Yo, do, ho], so that (Xo, d#,) is isometric to (Yo, do). By
Proposition 7.4, it suffices to consider the case when iy = ¢y is a collapse map.

Consider the fiber over a point y = [Y,d, ¢] in a small neighborhood U of yj.
To define s(y), we must choose a I'-complex structure (X, ¥) on (Y,d). For any
such ¥, the twist-minimal hyperplanes with v as a maximal element are determined
by the projection of the branch locus br(v) on an axis for v. If (¥,d,¢) is close to
(Yo,do, co) in the equivariant Gromov-Hausdorff topology, then these branch loci
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must also be close, and hence likewise their projections on an axis for v. However,
these projections can change in three ways as we move from [Yy, do, co] to [Y, d, c].

. The distance between a pair of projection points may expand or contract. This
will affect the width of the carrier of the hyperplane separating these projection
points.

. One projection point can split into multiple points. This will require introduc-

ing new twist-minimal hyperplanes.
. Two or more projection points may coalesce, causing the corresponding hyper-
planes to merge.
Shrinking U if necessary, we may avoid the coalescing of projection points and allow
only changes of the first two types. Moreover, for U sufficiently small, the new twist-
minimal hyperplanes will have carriers of width less than half that of the old twist-
minimal hyperplanes, and thus (by abuse of notation) we may consider the set of
twist-minimal hyperplanes in F¢ to be a subset of those in ¥. Then the marking
¢ : X — Sr will correspond to collapsing the newly added hyperplanes, composed
with the straighten-collapse map corresponding to cg.

The collection of twist-minimal hyperplanes at [Y, d, ¢] is completely determined
by the metric d . The axes of twist-dominant generators are determined by the marking
c. As seen in Proposition 7.16, once we have determined the twist-minimal hyper-
planes, the shearing of their dual edges together with the branch locus completely
determines ¥ . Suppose that H is a new hyperplane, not coming from a hyperplane
in Fy. We are free to choose the shearing on the dual edge by any vector in U ;;
Different choices will only affect the determination of twist-dominant hyperplanes.
Therefore, we choose the dual edge to be orthogonal to H, of length equal to the
width of k (H). If H corresponds to a twist-minimal hyperplane in ¥, which is col-
lapsed by cp, then we leave the shearing unchanged (i.e., the angle between the dual
edge and the axes of 1k (H)), but adjust the length of the dual edge to take account
of the change in the width of the hyperplane carrier. Finally, for twist-minimal hyper-
planes not collapsed by cg, namely, those labeled H,, we adjust the shearing so that
the new characteristic cycle lifts to a path whose endpoints lie on an axis for v. This
determines a parallelotope structure ¥ on (Y, d) with the property that the shear-
ing along twist-minimal hyperplanes satisfies the zero-sum condition relative to any
skewed I'-complex in the fiber over y. Hence by Corollary 7.21, [X, ¥, c] also lies
in this fiber. Set s(y) = [X, F, c]. Since the construction of ¥ depends only on the
metric d and lift [Y, Fy, co], the map s is well defined and continuous.

Now let Z be any space. Suppose that f; : Z — U is a homotopy, and let fo :
Z — ©~1(U) be alift of fy. We can lift f; to ahomotopy g; =so f; : Y — O~ 1(U),
but g¢ need not agree with the given lift fo. We can correct this by concatenating g;
with a homotopy /4, from fo to go which projects at all times ¢ to the map fy. To do
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this, use the fact that the fibers of ® are convex subspaces of some Euclidean space, so
the straight-line homotopy in each fiber from fo( y) to go(y) gives such a homotopy
hy. Then, up to reparameterizing the interval, i; followed by g; is a lift of f;.

This shows that ® is a fibration. Since we have already proved that the fibers
are contractible (Theorem 7.25), we conclude that ® is a homotopy equivalence. By
Corollary 6.6, I is contractible, so the same holds for Or. O
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