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Abstract

Pitting corrosion is one of the major causes of failure in high-pressure oil and gas pipelines. Various inspection techniques
can be used to characterize the morphology of corrosion pits, which must be linked to the risk of failure to develop proper
maintenance strategies. While numerical techniques such as the finite element method can accurately predict this risk, the
labor and computational cost associated with these methods render their application unfeasible over hundreds of miles of a
pipeline. In this manuscript, we introduce a deep learning approach relying on the squeeze-and-excitation residual network
(SE-ResNet) to predict the strength and toughness of statistical volume elements (SVEs) of a corroded pipe. An automated
microstructure reconstruction and mesh generation framework is utilized to synthesize the training data for this model by
simulating the failure response of 10,000 SVEs subject to a tensile load (hoop stress). A Bayesian optimization approach
is utilized to determine the optimal combination of hyperparameters for the SE-ResNet model, followed by a k-fold cross-
validation of the model. We show that the trained SE-ResNet can accurately predict the failure response of corroded pipe
SVEs with a maximum error of < 1%. Moreover, a comparison between the proposed model with several other well-known

DL architectures shows that it yields superior accuracy and efficiency.

Keywords Deep learning - Pipe - Pitting corrosion - Squeeze-and-excitation residual network - Finite element method

1 Introduction

Steel pipes are widely used in underground networks for oil
and gas transportation. This exposes the pressurized pipes
to a corrosive environment, which leads to various types of
corrosion attacks and in particular the pitting corrosion [1].
Pitting corrosion is a localized form of corrosion that can
penetrate the mass of the metal with a limited diffusion of
ions [2]. Corrosion pits could cause a significant reduction
in the structural integrity of pressurized pipes and eventually
lead to the pipe leakage or fracture. The failure of buried
pipes for oil and gas transportation could have catastrophic
economic and environmental effects. Therefore, it is essential
to study the corrosion-assisted failure response of pipes and
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develop proper failure prediction tools to improve the safety
and facilitate their maintenance.

According to safety regulations, an internal inspection
must occasionally be conducted on oil/gas pipelines to iden-
tify the mass loss and defects due to phenomena such as
pitting corrosion. Various diagnostic techniques can be used
for inline inspection of a pipeline, which enables collect-
ing valuable data (over tens to hundreds of miles of lengths)
by recording its internal surface morphology [3]. Conven-
tional inline inspection instruments (pigs) are properly sized
spherical or cylindrical devices that are propelled through
the interior of a pipeline by adjusting the pressure and flow,
or by mechanically pushing the device through the pipeline
[4]. These conventional pigs are always designed for specific
pipelines instead of applying to different pipelines. However,
the pipeline might be “unpiggable” if the inspection instru-
ment cannot physically pass through due to conditions such
as changing pipeline diameter and flow limits [5]. To satisfy
integrity management rules, smart pigging has taken a more
dominant role in the past few years. Smart pigs are a collec-
tion of complex electronic components including computers
for receiving and storing data, sensors for detecting different

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-022-02238-y&domain=pdf

296

Computational Mechanics (2023) 71:295-310

irregularities, and power sources for operating these elec-
tronics. Magnetic flux leakage (MFL) and ultrasonics (UT)
are two major technologies used by smart pigs to obtain
information regarding the interior condition of pipelines [6].
MFL inspects pipelines by injecting magnetic flux into the
pipe walls to identify leaks, corrosion, and defects. Ultra-
sonic inspection directly estimates the pipe’s wall thickness
by employing ultrasonic waves to measure the time it takes
for an echo to back to the sensor [7].

The piping system is subjected to various mechanical
loads caused by internal pressure, weight, and temperature
changes during its service life. High stress concentrations
developed near corrosion pits could significantly accelerate
the failure and lead to pipe leaks and bursts. Determining
the strength of corroded pressurized pipes is closely related
to the failure response of plates impacted by pitting corro-
sion. A significant volume of research is focused on studying
the effect of corrosion pits on the failure response of metal-
lic structures, including pressurized pipes. For example, the
smallest cross-sectional area is proposed as a damage param-
eter to describe the reduction of ultimate strength for steel
plates subjected to pitting corrosion under axial tensile and
compressive loads [8]. The relationship between the ultimate
shear strength of a pitted plate and the degree of pitting corro-
sion intensity has been studied in [9]. An alternative method
for assessing the ultimate strength of plates under uniaxial
compression is to use the corroded volume loss as the mea-
surement of the pitting corrosion damage [10].

Several studies have used analytical techniques to predict
the failure response of metallic structures with corrosion pits.
For example, an analytical approach is introduced in [11] to
calculate the failure strength of corroded steel plates sub-
jected to quasi-static tensile loading. The failure of corroded
pipes is caused by the transition of pits to cracks, followed by
crack propagation. The pit-to-crack transition is commonly
modeled using two methods based on fracture mechanics
[12-15] or using a continuum damage model (CDM) [16—
18]. In fracture mechanics based approaches, once the stress
intensity factor around pits reaches the threshold of crack
growth, a crack nucleates from one pit [19]. The critical stress
intensity factor can be calculated according to the pit shape
and size [14].In CDM-based approaches, the pit is regarded
as a notch and the evolution of pits is assumed to follow
Faraday’s law [16,20].

A higher fidelity approach to quantify the effect of cor-
rosion pits on the mechanical integrity is to implement
numerical techniques such as the finite element method
(FEM) to approximate the failure response of the pipe [1,21-
23]. Several studies have shown the ability of FEM to
accurately predict the failure response of corroded pipes
when appropriate constitutive models are employed [24—
26]. FEM is especially beneficial for predicting the failure
behavior of pipelines with varying corrosion pit shapes/sizes.
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However, when implemented over a large set of data similar
to corroded pipe surface morphology images collected dur-
ing an inline inspection over hundreds of miles of a pipeline
length, this process would be exceedingly laborious and com-
putationally expensive. In other words, the time-consuming
process associated with converting imaging data into geo-
metrical models (e.g., CAD files), generating thousands of
FE meshes, and performing corresponding nonlinear failure
simulations makes it practically impossible to use FEM for
the assessment of the risk of failure in pipelines.

Given the prior success of deep learning (DL) algorithms
in applications involving computer-aided diagnosis and pre-
dictions [27-29], developing/training a DL. model to predict
the pipe failure response directly based on its surface images
could be a viable alternative. To enumerate a handful of works
in this field, we can mention the artificial neural network and
the multi-variable regression approach in [30,31] to predict
the ultimate strength of unstiffened plates with localized cor-
rosion. A 3D convolutional neural network (CNN) model
was implemented by Yang et al. [32] to predict the effec-
tive stiffness of high contrast elastic composites. Another 3D
CNN model was trained to predict the anisotropic effective
properties of particle reinforced composites in [33]. The plas-
tic behavior of composite representative volume elements
(RVEs) was successfully predicted using Recurrent Neural
Networks (RNNs) in [34]. Moreover, Physics Informed Neu-
ral Networks (PINNs) are introduced for predicting the linear
elastic and nonlinear elastoplastic of materials [35].

Developing an efficient and accurate DL model could be
a challenging and time-consuming task, which in addition
to selecting an appropriate algorithm, requires optimizing
the model parameters and hyperparameters [36]. The for-
mer group must be determined based on the training data set,
while the latter is tuned before the training process to achieve
the optimal model architecture and the best performance
[37,38]. While the manual tuning of hyperparameters is
widely used for most applications, itis an inefficient approach
for complex models with a large number of hyperparame-
ters and requires an in-depth knowledge of the DL model by
the user [39]. To overcome these challenges, several hyper-
parameter optimization techniques (HPO) are developed to
automate the tuning process [40—44]. Grid search (GS) is one
of the earliest techniques, where hyperparameters evolve into
an optimal combination after training the model and evaluat-
ing its performance [43]. However, the GS method could be
highly computationally demanding, especially for complex
model architectures trained over a massive set of data. An
alternative approach is a random search (RS) method, which
generates random samples with random parameters from a
given statistical distribution [45]. Bayesian optimization has
also been applied to hyperparameter tuning [46], which often
requires fewer iterations compared to the RS technique, as it
determines the optimal combination of hyperparameter val-
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ues since it selects parameter combinations in an informed up (Xp) and microscopic Uy (XM, Xm) components as
way.

In this manuscript, we present a DL model, trained using  y(xy, xpn) = uni(xp) + U (XM, Xm)- 1)

high fidelity FE simulation results, to predict the strength
and toughness of statistical volume elements (SVEs) of a
steel pipe subjected to pitting corrosion. Note that currently
this model is built for one type of steel (X100) typically used
in high-pressure pipes, and therefore only receives geometric
shapes (images) of different corroded pipe SVEs as the input.
An automated computational framework is employed to syn-
thesize more than 10,000 corroded metal SVEs with distinct
shapes, sizes, and a spatial arrangement of corrosion pits,
generate 3D conforming meshes, and perform high-fidelity
failure FE analyses (under a tensile load) to evaluate their
strength and toughness. Gray-scale images of corroded metal
SVEs, labeled with resulting strength/toughness values, were
then used to train a squeeze-and-excitation Residual Network
(SE-ResNet) to predict these values directly from the imag-
ing data. The Bayesian optimization approach is employed
to determine the optimal combination of hyperparameters
for this SE-ResNet model. After the k-fold cross-validation,
we show that this model can predict the failure strength and
toughness of corroded pipelines with high accuracy (maxi-
mum error: < 1%) and at a fraction of the computational and
labors costs associated with FE simulations (& 5 orders of
magnitude speedup).

The remainder of this manuscript is structured as follows.
In Sect.2, we present the governing equations and the con-
tinuum damage model used for approximating the failure
response of corroded steel pipe SVEs. The automated com-
putational framework used for the virtual reconstruction and
FE meshing of these SVEs, together with the image pro-
cessing based approach employed for building the training
data set, is presented in Sect. 3. The SE-ResNet model archi-
tecture, evaluation of its optimal hyperparameters, and the
k-fold validation of the model predictions are presented in
Sect. 4. Final concluding remarks are summarized in Sect. 5.

2 Problem formulation
2.1 Governing equations

As noted previously, the training data for the SE-ResNet
model used in this work are acquired through the high-fidelity
FE simulation of the failure response of steel pipe SVEs. Let
2 be the macroscopic domain of this pipe characterized in
the coordinate system xy1, while ® refers to the microscopic
domain of each SVE defined in the coordinate system X,.
The SVE boundaries are shown by I', which have a unit nor-
mal vector np,.

Using the first order asymptotic expansion, we can decom-
pose the displacement field u(xp, X) into its macroscopic

Similarly, the strain field can be broken down into macro-
scopic and microscopic components, i.e., &y and &p,
respectively. The linear elasticity governing equations at the
microscale (for each SVE) can be written as

VC:(em+ém) =0 in O, 2)

where C is the fourth-order elasticity tensor.

To calculate the macroscopic energy density ®y at a given
point in the macroscopic domain, one can implement the Hill-
Mandel micro-homogeneity principle [47] given by

1
inf ®pp(ey) = infinf —
up M Um

D(em + &m) dO. (3)
)
where @y, is the average energy density of the SVE cor-
responding to the macroscopic point. &y and Py, are
calculated as

1
Oy = —em: oM, d’m=§(€M+€m)10m, 4

2

where o and o, are macroscopic and microscopic stress
tensors, respectively. A homogenization approach can then
be utilized to evaluate the macroscopic stress tensor as

oM(Xm) = O m(Xm) dO. ©)

9] Jo

A similar concept is used in the strain averaging theorem to
relate the macroscopic strain tensor at a given point to the
average of microscopic strains in its corresponding SVE as

1
e(xm) = @/@)e(xm)d@ (6)

The governing equations above can be used to evaluate
the effective properties (e.g., strength and toughness) of the
pipe at a given point based on the FE approximation of the
mechanical response of the corresponding SVE. To achieve
this, we must also consider the elastoplastic behavior and
the development/propagation of cracks in the steel. In other
words, instead of using the elasticity tensor corresponding to
a linear elastic behavior in (2), we must implement an appro-
priate constitutive model to take into account the material
nonlinear behavior. To achieve this, we use a phenomeno-
logical continuum ductile damage [48] model, as described
next.
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2.2 Constitutive damage model

The plastic strain accumulated in each SVE under mechanical
loading would eventually lead to the development of micro-
cracks and micro-void coalescence. In the constitutive model
used here [48], the effect of damage at each point is modeled
as

D=1-—", (7

where 0 < D < 1 is a scalar damage parameter reflecting
the intensity of damage, while Ay and Ap are cross-section
areas of the undamaged and damaged surfaces, respectively.
Note that D = 0 and D = 1 denote the intact and fully
damaged states of the material at a given point, respectively.
In the context of FEM, D reflects the state of damage in each
element, meaning an element reaching the fully damaged
state (D = 1) has O stiffness, which will be deleted from the
mesh during the FE simulation.

The initial (intact state) modulus of elasticity, Eo, of the
material after the damage becomes

Ep = Eo(1 — D), ®)

where Ep is the effective modulus of the damaged material.

The strain energy release rate Y can then be expressed as [49]
2

Y= < 20 3(1-2 o)’ 9
=g pr 500w (2) |

. . 1/2 .
where o, is the hydrostatic stress and oeq = (%si iSi j) / is

the equivalent von Mises stress (s;;: deviatoric stress tensor).
The elastic strain rate tensor is given by

. e 1+U d— Vv dl
& = - = 1,
E 1-D E1-D

(10)

where o; is the trace of the stress tensor and I is the Kronecker
delta tensor. Under the isothermal assumption, the plastic
strain rate &P can be evaluated as
) oF
P =AW = A —L, (11)
ao

where A is the plastic multiplier and W is the direction of the
strain increment derived from the plastic potential F.

The yield surface is defined as

@) =q oy (ct). (12)

where &l is the equivalent plastic strain and oy (eky) is
the yield function determined based on an experimental
stress—strain curve. The damage initiates when 8é’q reaches
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a threshold value, sg , which is a function of the equivalent
plastic strain rate éfq and the stress triaxiality ». A state vari-
able Sj, is introduced to predict the initiation of damage when
Sin = 1, which is defined as

del .
Sn= [ S5 (n8). (13)
€o

After damage initiation, the damage parameter D mono-
tonically increases from O to 1, causing the degradation of
material stiffness. To avoid the ill-conditioning associated
with this phenomenon, any element for which D reaches 1
is deleted from the mesh. To reduce the mesh dependency
effects during the simulation, we use a non-local regulariza-
tion approach, where an effective plastic displacement u? is
used in approximating the damage initiation/evolution based
on the characteristic length factor L. The rate of u? is given
by [50]

0P = Lel. (14)

In this approach, it is assumed that the damage evolution
parameter exponentially varies with u” . The damage parame-
ters used in this work are calibrated based on the experimental
data reported in [51,52] (X100 steel properties are provided
in Table 1). More details regarding this damage model, its
FE implementation, and calibration procedure are presented
in [53-55].

3 Acquiring training data

To acquire the training data for the SE-ResNet model, we
implement an automated computational framework to (a)
synthesize more than 10,000 corroded pipe SVEs, (b) gen-
erate high-fidelity FE models, and (c) simulate the failure
response of each SVE under a tensile load to approximate its
strength and toughness. Each step of this process is described
in more detail next.

3.1 Virtual microstructure reconstruction

The shape, size, and spatial arrangement of corrosion pits
have a strong impact on local mechanical properties of the
pipe, which necessitates realistically incorporating them in
each SVE. As noted previously, ultrasonic inline inspection
techniques can readily capture gray-scale images of the pipe
surface, which can then be converted to 3D geometrical SVE
models. In the absence of such proprietary data for this study,
here we implement a virtual microstructure reconstruction
algorithm [56] to synthesize thousands of realistic corroded
pipe SVEs and acquire the training data. In this approach, a
library of corrosion pit morphologies (characterized in terms
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Table 1 Material properties of X100 steel used in this paper

Elastic modulus (GPa) Poisson ratio

Yield strength (MPa)

Tensile strength (MPa) Displacement at failure (mm)

210 0.3 710

990 0.1

of NURBS) are virtually packed in the SVE domain using
a set of hierarchical bounding box (BBox) to avoid overlaps
between inserted pits (see [56] for more details). Before start-
ing the packing process, all virtual pits in the shape library
are sorted in a descending order by size (volume). A pit is
then randomly selected from the shape library, rotated at an
arbitrary angle, and added to the SVE at a random location
provided that the BBox-based algorithm does not indicate an
overlap with previously added pits. Otherwise, a new random
location is selected and the packing process is recursively
continued until reaching the desired volume fraction. In this
work, we virtually reconstructed 10,000 SVEs with a pit vol-
ume fraction ranging from 0.1 to 4.0%, six of which are
illustrated in Fig. 1.

It is worth mentioning that although all the SVEs studied
in this work are virtually reconstructed, even in the presence
of actual surface morphology data (e.g., gray-scale images
collected via ultrasonic pigging), this approach might still
be required to supplement the training data. For example,
assume a case a scenario that along the pipe length we could
rarely see SVEs with a pit volume fraction of > 5%. While
such heavily corroded regions are detrimental to the struc-
tural integrity of the pipe, their scarcity may complicate
the training process, leading to a low accuracy in predict-
ing the strength/toughness of SVEs. A virtual microstructure
reconstruction approach can be implemented to enrich the
training data by synthesizing SVEs with statistically equiv-
alent microstructures in cases that the original data set lacks
the desired diversity.

3.2 CISAMR Mesh generation

To build the training data, i.e., the SVE microstructure labeled
with the corresponding strength/toughness, all 10,000 vir-
tually reconstructed SVEs must be transformed into high-
fidelity FE models to simulate their failure response. Such
massive mesh generation effort requires utter automation of
the modeling process, which in this work is accomplished
using the Conforming to Interface Structured Adaptive Mesh
Refinement (CISAMR) [57,58] technique. CISAMR is a
non-iterative meshing algorithm that transforms a struc-
tured tetrahedral mesh overlaid with the domain geometry
into a conforming mesh assuring that resulting element
aspect ratios do not exceed 5. This mesh transforming pro-
cess involves four major steps, namely the h-refinement
and r-adaptivity of background elements near material
interfaces, face-swapping of distorted elements, and sub-

tetrahedralization to build the final conforming mesh. See
[58] for more details regarding the CISAMR algorithm and
implementation for modeling 3D problems.

To select an appropriate mesh size that ensures the fail-
ure response of SVEs is not mesh-dependent, we performed a
mesh convergence study, which is reported in Table 2 for one
SVE. According to this study, a 100 x 100 x 10 background
mesh with one level of i-adaptive refinement along corrosion
pit surfaces was adopted to generate FE models of corroded
SVEs using CISAMR to perform the simulations needed for
training the DL model. Figure 2 illustrates the resulting con-
forming mesh for one of these SVEs, which is composed
of 6.2 x 107 elements. As shown in the inset of this fig-
ure, CISAMR yields high-quality conforming elements with
proper aspect ratios (maximum of 3.9) and a negligible geo-
metric discretization error.

3.3 FE failure simulations

After generating FE models of all 10,000 SVEs, an explicit
solver is employed to simulate their failure response subject
to a tensile load and approximate their strength/toughness
using the governing equations described in Sect. 2. To build
the training data, we must then evaluate the strength and
toughness of each SVE. The failure toughness (7') is defined
as the energy of mechanical deformation per unit volume
before fracture, which is calculated by integrating the stress—
strain curve as

Ef
T:[ o de. (15)
0

where ¢ 7 is the failure strain. The simulated damage patterns
in three of these SVEs at the initial stages of damage nucle-
ation and after failure are illustrated in Fig.3. As expected,
the corrosion pits play a crucial role in the initiation of dam-
age in each SVE, and depending on their shape/size, some
of these pits are detrimental to the formation of major cracks
leading to failure (pipe rupture). Figure 4 shows the resulting
homogenized stress—strain response of 1000 (10%) of SVEs,
indicating a large variation in their strength (maximum sus-
tained stress before failure) and toughness (the area under
each curve). Figure 5a better shows distributions of failure
strength and toughness approximated using high-fidelity FE
simulations, with the former varying from 878.8 to 990.1
MPa and the latter from 62.7 to 238.4 MJ/mm?>. Note that,
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Fig. 1 Six virtually constructed SVEs of the corroded pipe with various shapes, sizes, spatial arrangements, and volume fractions of corrosion pits

Table2 Predicted values of an SVE strength for 5 different FE models generated using CISAMR on different background meshes

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5
Background mesh 40 x 40 x 4 60 x 60 x 6 80 x 80 x 8 100 x 100 x 10 150 x 150 x 15
Number of elements 5.2 x 10* 1.55 x 10° 3.21 x 10° 6.23 x 10° 1.86 x 10°
Strength (MPa) 929.6 9184 915.7 915.2 915.2

] ! 2

Fig.2 Conforming mesh generated using CISAMR for one of the virtually reconstructed SVEs of the steel pipe

for example, the failure strength of the SVE with pit volume
fraction 4% reduces by 11.4% compared to an intact SVE.

4 DL model architecture and training

In this section, we describe how the FE simulation results
are used to train a DL model (SE-ResNet) to directly predict
the strength and toughness of each SVE from a gray-scale
image of the corroded metal surface. The Bayesian opti-
mization approach is implemented to determine optimal

@ Springer

hyper-parameters of this SE-ResNet model, followed by a
k-fold cross-validation to examine its performance on new
data (SVESs not seen during the training process).

4.1 Building the training data set

As noted previously, simulated strength and toughness of
10,000 corroded pipe SVEs are utilized for training the SE-
ResNet model. While each SVE (and the corresponding FE
model) has a 3D geometry, input images to this DL model can
be characterized as 2D grayscale images of the corroded SVE
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surface. The grayscale intensity (ranging from 0 to 255) in
these images represents the pit depth, with 0 being the intact
surface of the SVE. To generate these images, the depth / of
each point on the corroded surface (xy plane) is transformed
to a scalar value 0 < p < 255 as

o[- 3)

where H is the SVE thickness. Figure 6 shows two corroded
SVEs and their corresponding grayscale images generated
using this approach. Note that the images generated after this
transformation preserve all geometric features of corrosion
pits in the 3D model.

It is well known that increasing the size/diversity of train-
ing data often leads to a better predictive capability of the
DL model. In most cases, the variance and bias also show a
similar decrease when using a larger training dataset [59]. In

(16)

this work, increasing the size of the training set requires per-
forming more high-fidelity FE simulations, which could be a
computational task. Note that the number of simulations car-
ried out to build the training data (10,000) has already been
determined after a few attempts at training the DL model
using smaller data sets, followed by increasing the number
(performing more simulations) to achieve acceptable accu-
racy. However, a simple data augmentation strategy can be
used to artificially increase the size of training data by 4
times at practically no computational cost. Unlike traditional
classification models, which are invariant to the translation,
viewpoint, and size of input images, the failure response of
corroded SVEs is highly dependent on the spatial arrange-
ment of pits. However, under a tensile load in the x-direction,
the SVE strength and toughness remain intact if it is flipped
along x or y axis, as well as being rotated by 180°, as shown
in Fig.7. Through this simple data augmentation strategy,

@ Springer



0
878.7 889.1 899.4 909.8 920.2 930.5 940.9 951.3 961.7 972.0 982.4

302 Computational Mechanics (2023) 71:295-310

0.35

0.32

0.3 A

0.25
5 02
2
015

0.1

0.05 1 0.047

2.0e.3 5.8e-3 2010
(a) (b)

Strength (MPa)

(a)

Ratio
o
no

L

0.1 A
0.046

6.7e-4 603

62.7 80.3 979 1154 133.1 150.6 168.1 185.7 203.3 220.8 238.4
Toughness (MJ/mm?®)

(b)

Fig.5 Columnar distributions of a failure strength and b toughness of
all SVEs under a tensile load approximated via high-fidelity FE simu-
lations
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Fig.6 Transformation of 3D corroded SVE microstructures into to 2D
grayscale images, which serve as input images to the SE-ResNet
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(c) (d)

Fig. 7 Data augmentation: a original gray-scale image of an SVE; b
mirrored along vertical axis; ¢ mirrored along horizontal axis; d rotated
by 180°

we have increased the size of labeled data used for train-
ing/validation of the SE-ResNet model to 40,000.

4.2 Proposed deep learning architecture

The SE-Net architecture was first introduced in [60] for
image classification, which can significantly improve the per-
formance of traditional CNNs with only a small increase
in the computational cost. The squeeze-and-excitation (SE)
block used in this model adaptively recalibrates channel-wise
feature responses by explicitly modeling the channel interde-
pendence. A transformation Py can be implemented to build
the SE block by mapping an input X € RH>WXC 16 an
output U € R¥*W*C_ The transformation Py is considered
as a convolutional operator composed of a set of filter kernels

V = [v1, v2, ..., v4]. The output U = [uy, uy, ..., u,] can be
written as

n
un:vn*X:ZVn*x, (17

s=1

where v, is the nth parameter filter acting on the correlated
channel of X, and * is the convolution operator. Since the
output U is generated by summarizing the results of all chan-
nels, the relationship between these channels is implicitly
and locally captured by the filters. In order to increase the
sensitivity of the neural network to informative features used
in the transformation, the learning of convolutional features
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is enhanced by SE blocks to access global information and
recalibrate parameters of the filter.

In the SE block, a global average pooling layer is
employed to squeeze global information into one channel,
which reduces the entire feature map to a single value by
averaging all pixels in the feature map. The output z € R¢
is produced by shrinking input U spatial dimensions, which
can be calculated as:

1
2=Pew) = ——— 3 i =173 j=1"uG, j). (18)

After embedding the global information in the local channel
descriptor through the squeeze operation, another opera-
tion is applied to capture channel-wise dependencies. This
operation must satisfy two criteria: (i) learning nonlinear
interactions between channels; and (ii) multiple channels can
be activated. To limit the complexity and generalization of
the model, a simple gating mechanism is added in the SE
block using two fully connected (FC) layers and two activa-
tion functions, namely the sigmoid and rectified linear unit
(ReLU) activation functions. Thus, the SE block can be inter-
preted as:

s =0 (W256(W;z)), (19)

where W1 and W, are weight matrices of two FC layers.
Also, § and o are the ReL.U and sigmoid activation functions,
respectively.

In standard SE-Net architectures such as VGGNet [61],
the SE block is inserted after each convolution layer. Here,
we integrate the SE block with a residual neural network
(ResNet) architecture [62], where the non-identity branch of
the residual block is assumed to be the SE block transforma-
tion. Figure 8 schematically shows the SE-ResNet block used
in the current study. In this model, the regular residual module
is realized by a forward neural network with shortcut con-
nections to perform identity mapping and directly transport
outputs of the previous layer to the new layer. By applying
this identity mapping, networks with a large number of layers
can be easily trained, i.e., without introducing a significant
training error and at a reasonable computational cost. A SE
block composed of one global averaging layer, two FC layers,
and two activation layers is added to the residual network.
In this block, the global average pooling layer squeezes the
global information with dimension H x W x C into one chan-
nel (I x 1 x C), then two hidden layers reduce the output
by a reduction factor r leading to C/r neurons. The output
is projected back to the same dimensional space as the input.
Finally, the output of the SE-ResNet block is the sum of its
inputs after applying average pooling to the output of the SE
block.

More details regarding the SE-ResNet architecture used to
predict the failure response of corroded pipe SVEs are illus-
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Fig.8 Schematic representation of a SE-ResNet block

trated in Fig. 9. The model transforms 200 x 200 x 1 grayscale
images of the corroded SVE surface to a lower-dimensional
vector of 1 x 1 x 2 corresponding to the strength and tough-
ness of the SVE in each channel. As shown in Fig.9, a 2D
convolutional layer is added to the model, followed by 6 SE-
ResNet blocks, one dropout layer, one global average pooling
layer, one activation layer, and 3 dense layers. The architec-
ture of the first SE-ResNet block (number of filters/layers,
output image size, etc.) is given in Table 3. Note that each
convolutional block is composed of one convolutional layer
followed by one batch normal layer and one ReLU activation
layer in this SE-ResNet architecture.It is worth mentioning
that other SE-ResNet blocks have similar architectures as the
first block. Also, the rectified Adam is used as the optimizer
for updating the model parameters. Compared to traditional
optimizers such as Adam and SGD, the rectified Adam can
achieve high accuracy using fewer epochs. The SE-ResNet
model used here was developed in Python 3.8 and imple-
mented in Keras [63], which is a high-level DL toolkit serving
as a wrapper for TensorFlow [64].

4.3 Training and optimizing hyperparameters

The 40,000 data points generated after augmentations (SVE
grayscale image labeled with strength/toughness values)
were randomly split into 3 sets, where 30,000 samples were
used for training the SE-ResNet model, 5000 samples for
validation, and the remaining 5000 samples as the test set.
For both training and testing data, the model’s performance
was measured using the mean squared error (MSE), the nor-
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Fig.9 Overall architecture of the SE-ResNet network used in the present study

Table 3 Architecture of the first

SE-ResNet block Layer name Number of filters Filter size Output size
Input image - - 200 x 200 x 1
Convolutional block 1 32 7T x7 200 x 200 x 32
Convolutional block 2 32 3x3 100 x 100 x 32
Convolutional block 3 64 3x3 100 x 100 x 64
Global pool layer - 2x2 -

Dropout 1 - 0.2 -

Dense layer 1 16 - 16

Dense layer 2 64 - 64

Dropout 1 - 0.2 -

Reshape 64 - 1x1x64
Multiply - - 100 x 100 x 64
Average pool layer - 2x2 -

Add

100 x 100 x 64

malized mean absolute error (NMAE), and the normalized
maximum error (NMAX). To reduce the maximum error,
MSE is chosen as the loss function in this SE-ResNet model.
The MSE of the entire model (E%)) is the sum of MSE’s asso-
ciated with the strength (EY) and the toughness (E}) of each
SVE, which is calculated as [64].

~ |2
B - £ ),(20)

1 o 2
=grE =2 (|s- 5[ +
i=1

where N is the number of samples in the selected set, and
S; and S; are true strength and the SE-ResNet prediction of

@ Springer

strength for the ith sample, respectively. Also, E; and Ei
denote the true toughness and predicted toughness of the
ith sample, respectively. NMAE indicates the average error
between projected values and ground truth values (evaluated
via FE simulations) for a given batch of data. The NMAE of
the entire model (E¢)) can be written as

S; —S; E~—E~
En=E{+Ef == Z( =g ’),(21)

where E{ and Ef are the MAE of the failure strength and
the toughness, respectively.
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Table4 The hyperparameter

H
optimization (HPO) of the yperparameter

Initial range Optimal value (after HPO)

SE-ResNet model Number of SE blocks

Number of convolutional blocks in one SE block

Number of dense layers in one SE block

Dropout rate
Training data batch size

Batch normalization decay

(3, 8] 6
12, 5] 3
(1, 4] 2
[0.0, 0.4] 0.24
16, 32, 64 32
[0.9, 0.99] 0.9

Table 5 k-fold cross-validation of the SE-ResNet model for predicting SVEs strength and toughness values

Model id NMAE: training data NMAX: training data

NMAE: test data NMAX: test data

Strength (%) Toughness (%) Strength (%) Toughness (%) Strength (%) Toughness (%) Strength (%) Toughness (%)
1 0.078 0.139 0.271 0.482 0.114 0.203 0.392 0.701
2 0.083 0.148 0.315 0.554 0.123 0.212 0.371 0.663
3 0.084 0.150 0.331 0.561 0.132 0.236 0.363 0.649
4 0.091 0.163 0.343 0.573 0.125 0.223 0.404 0.722
5 0.071 0.127 0.242 0.414 0.112 0.201 0.358 0.641

Determining the optimal architecture and hyperparame-
ters of the SE-ResNet model used in the current study is
critical to its predictive capability. Therefore, we examined
different depths and numbers of filters in each convolution
layer of this model to investigate their impact on the accuracy
and the cost of training. Due to the large number of hyper-
parameters used in this model, the Bayesian optimization
approach (BO) was implemented to determine the optimal
combination of hyperparameters, as reported in Fig.9. BO
is a sequential method for optimizing parameters of any
black-box function f(x) [65] by creating a surrogate proba-
bility model f (x) that maps hyperparameters to a likelihood
of a score on the objective function P(y|x) based on prior
prediction values (prior belief). Next, new combinations of
hyperparameters x,, are generated and the combination that
has the best performance on the surrogate model is selected
by f (x). The selected hyperparameters are applied to the true
objective function to evaluate the accuracy of this black-box
function, after which the surrogate model is updated with
new results. These steps are recursively repeated until the
stopping criterion is reached.

For DL applications, the three most widely used tech-
niques for building the surrogate probability function are the
Gaussian Process [46], Random Forest regressor [44], and
Tree-structured Parzen Estimator [43]. The Gaussian Process
method generates surrogate probability functions by specify-
ing random prior distributions following Gaussian distribu-
tion. Random Forest regressor builds the surrogate function
by combining multiple regression trees and randomly gener-
ating feature sampling from the dataset for each tree. Instead
of defining a predictive distribution, Tree-structured Parzen
Estimator (TPE) is a sequential model-based optimization

(SMBO) approach. Based on prior measurements, SMBO
builds a model to approximate the performance of hyper-
parameters, and then picks new hyperparameters to test on
this model. In this work, TPE is utilized to build the surro-
gate probability function due to its faster convergence rate
compared to the other two methods. The performance of a
DL model is represented by the black-box function f(x),
which is usually highly non-convex. Although the perfor-
mance of f(x) can be measured at any point X, evaluating
f (x) requires running the entire training cycle and therefore
could be computationally expensive. In this work, the HPO
process required more than 80 training cycles. Considering
the computational cost associated with tuning hyperparam-
eters, we limited the number of hyperparameters to six and
set certain ranges for them. The initial ranges and optimized
values of these hyperparameters are given in Table 4.

4.4 SE-ResNet Performance

After optimizing the SE-ResNet architecture using HPO, a
k-fold cross-validation test was conducted to determine the
accuracy of the model on new data not seen during the train-
ing process. As the first step, the entire data set (40,000
samples) was randomly shuffled and divided into k groups.
One group was then taken as the test data, while the other
k — 1 groups were considered as training/validation data sets.
The model with optimized hyperparameters was trained with
the new training data set. This process was repeated until all
k — 1 groups were used as test data. In this work, & is set as 5,
meaning the training model is trained and tested on 5 differ-
ent data sets. Each data set is composed of 28,000 samples
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Fig. 10 The testing curve of the Se-ResNet model

as the training set, 4000 samples as the validation set, and
8000 samples as the test set.

The result of this cross-validation study is presented in
Table 5, showing NMAE values of strength ranging from
0.112% to 0.132% and its NMAX values varying between
0.35 and 0.40% in the test data. The NMAE of tough-
ness varies between 0.201 and 0.236%, while the toughness
NMAE falls in the range of 0.641% to 0.722% for the test
data. This study clearly shows an excellent performance of
the SE-ResNet model for predicting the strength and tough-
ness of corroded pipe SVEs. To have a better perception of the
SE-ResNet performance, Fig. 11 compares predicted values
of strength and toughness using Model 1 versus FE simu-
lation results for 100 randomly selected SVEs from the test
set. The testing curve of the SE-ResNet model is illustrated
in Fig. 10, indicating the total NMAE value reduces from 3.0
to 0.4% after 50 epochs, while the reduction rate becomes
much lower after 100 epochs and becomes close to 0 after
200 epochs.

In addition to reducing the labor cost associated with the
FE modeling process (mesh generation), the key advantage
of the SE-ResNet model is the ability to reduce the time
associated with predicting SVEs strength and toughness by
several orders of magnitude without the loss of accuracy.
A comparison between these run times and corresponding
accuracies for one SVE is provided in Table 6, where one
P100 NVIDIA GPU with 16GB memory is used for SE-
ResNet predictions versus an Intel Xeon 8268s with 24 cores
for parallel FE simulations. Here, the SE-ResNet model per-
formance is compared with two different FE models, one
with a fine mesh composed of > 1 million elements and
the second with a coarse mesh composed of 0.1 million ele-
ments. Note that the simulation results from FE models with
a similar refinement level as the fine mesh are used for train-
ing the SE-ResNet model. As expected, Table 6 shows the
significantly lower computational cost of predicting SVEs
strength/toughness using SE-ResNet (0.07 s) compared to
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the FE model with a fine mesh (1551 s) with a negligible
error. Also, although the simulation time (353 s) of the FE
model relying on the coarse mesh is still significantly higher
than that of SE-ResNet, the former leads to a notable drop in
accuracy. It is worth mentioning that the run times reported
for FE simulations does not include the time spent on the
mesh generation phase.

Figure 11 provides a comparison between strength and
toughness of SVEs with corrosion pits obtained from FE sim-
ulations vs. predictions made by the SE-ResNet model. Note
that the x-axis denotes the SVE number ranging from 1 to 50,
while the y-axis shows the predicted strength or toughness
value. The performance of the DL model for the training and
test data are illustrated in Fig. 11a, b, respectively. Note that
the normalized maximum error for the strength prediction
on the training data is less than 0.3%, whereas it is less than
0.4% on the test data. Similarly, the normalized maximum
error for predicting the toughness on the training data is less
than 0.5%, whereas it is less than 0.7% on the test data.

4.5 Comparison with other DL models

The SE-ResNet model used for predicting the failure response
of corroded pipe SVEs was selected after carefully examin-
ing the performance of several other DL algorithms in this
work. Here, it is worthwhile to compare the performance
of 5 DL models trained to predict the strength and stiff-
ness of these SVEs, namely VGG-16, Inception, ResNet,
DenseNet, and SE-ResNet. VGG-16 is a CNN architecture
composed of convolution layers of 3x3 filters with a stride
1 and maxpool layers of 2x2 filters with a stride 2 [61]. The
VGG16 model tested in this work has 16 layers and 45 mil-
lion parameters. Instead of stacking convolution layers very
deep, the Inception network introduces one inception module
composed of multiple sizes of filters followed by a max-
pool layer and concatenate layer [66]. We used the Inception
V3 network with 4 branches in one Inception block to pre-
dict strength and stiffness values. The ResNet model uses
heavy batch normalization and skip connections to trans-
form the information from initial layers to deeper layers
[62]. This forward transformation alleviates the vanishing-
gradient problem, which is especially helpful when the CNN
model has a deep architecture. In this work, we studied
the performance of the ResNet-50 architecture, which has
50 layers and 32 million parameters. Densely Connected
Convolutional Networks (DenseNet) concatenates the out-
put feature maps of the layer with the next layer rather than
using their summation. The DenseNet model tested in this
work has three 5-layer dense blocks and 14 million parame-
ters. Itis worth noting that hyper-parameters of all DL models
tested here were optimized using the BO method.

Table 7 provides a comparison between the accuracy
(NMAE and NMAX), complexity (number of parameters),
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and c, d test data

Table 6 Comparison between

. . . FE: fine mesh FE: coarse mesh SE-ResNet
run times of FE simulations
(fine and coarse meshes) and Failure strength (MPa) 9152 926.5 917.1
SE-ResNet model for predicting 3
the strength and toughness of Toughness (MJ/mm”~) 141.4 143.2 142.0
SVEs Time (s) 1,551 353 0.07

and the computational cost associated with training each
DL model. Note that the NMAEs associated with VGG-16,
Inception V3, ResNet-50, and DenseNet are 310%, 266%,
36.6%, and 96.4% higher than that of the SE-ResNet model.
More importantly, a similar comparison with respect to
NMAX values shows the errors are 358%, 293%, 39.1%,
and 111% higher, respectively. Also, while the SE-ResNet
model yields the best accuracy, it has the least number of
training parameters, resulting in the lowest training time, as
reported in Table 7.

Note that the CNN-based architectures studied in this
work are tested only for one type of material (X100 steel) with
corrosion pits. To predict the failure response of corroded
SVEs made of different materials, the deep learning model

must be trained with new data corresponding to different
material properties. The model itself must also be modified
to receive material properties as part of input parameters via
a new branch after the convolutional/pooling layers applied
to the SVE image.

5 Conclusion

A deep learning model relying on the SE-ResNet architec-
ture was presented for predicting the strength and toughness
of steel pipes under the pitting corrosion attack directly
directly from grayscale images of the corroded metal sur-
face. An automatic computational framework, relying on
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Table7 Comparison between the performance of the SE-ResNet model and other DL frameworks for predicting the strength and toughness of corroded pipe SVEs

NMAX: test data
Strength (%)

NMAE: test data
Strength (%)

Training time for 200 epochs (s)

Number of parameters

Model

Toughness (%)

Toughness (%)

2.92
2.51
0.89
1.34
0.64

1.64
1.41
0.50
0.76
0.36

0.82
0.73
0.27
0.39
0.20

0.46
0.41
0.15
0.22

0.11

76,000
61,200
52,800
51,000
43,000

4.5 % 107

VGG-16

3.6 x 107

Inception

3.2 x 107

ResNet-50

1.4 x 107

DenseNet

9.2 x 100

SE-ResNet

virtual microstructure reconstruction played a pivotal role
in acquiring the training data for the model by synthesiz-
ing and simulating the failure response of 10,000 3D SVEs.
After data augmentation, 40,000 labeled data (corroded sur-
faces labeled with FE approximation of strength/toughness)
were used for training/validating the SE-ResNet model. We
implemented a Bayesian optimization approach to determine
the model hyperparameters and optimized its microstructure,
followed by a k-fold cross-validation study to ensure the
model yields an acceptable performance. We showed that
the SE-ResNet model can accurately predict corroded SVEs
failure response (< 1% error) while providing orders of mag-
nitude speedup compared to high-fidelity FE simulations.
We also compared the performance of SE-ResNet model
to 4 other widely used CNN-based models, i.e., VGG-16,
Inception V3, ResNet-50 and DenseNet, showing the supe-
rior accuracy and lower training cost of this model for this
problem.
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