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Abstract

The aim of this note is to present the recent results in [7], concerning the existence of “imploding

singularities” for the 3D isentropic compressible Euler and Navier-Stokes equations. Our work builds

upon the pioneering work of Merle, Raphaël, Rodnianski and Szeftel [46, 47, 45] and proves the existence

of self-similar profiles for all adiabatic exponents γ ¡ 1 in the case of Euler; as well as proving asymptotic

self-similar blow-up for γ � 7
5

in the case of Navier-Stokes. Importantly, for the Navier-Stokes equation,

the solution is constructed to have density bounded away from zero and constant at infinity, the first

example of blow-up in such a setting. For simplicity, we will focus our exposition on the compressible

Euler equations.

1 Introduction

The compressible Euler equations describe the conservation of mass, momentum, and energy in a fluid, and

are important in many fields, including aerodynamics and astrophysics. In this review, we present recent

developments regarding the existence of smooth imploding solutions for the compressible Euler equations.

The full compressible Euler equations take the form

Btpρ uq � divpρub u� p Idq� 0

Btρ� divpρuq� 0

BtE � divppp� Equq� 0

where u is the velocity, ρ is the density, p is the pressure, and E is the energy. The equations describe the

conservation of momentum, mass, and energy in a fluid, respectively. The pressure is given by the ideal gas

law

p � pγ � 1qpE � 1

2
ρ |u|2q � 1

γ
ργeS ,

for the adiabatic exponent γ ¡ 1. The sound speed is given by c �
b

γp
ρ .
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1.1 Shock waves

Before discussing implosion in detail, let us first describe the classical problem of shock waves, which can

be seen as a prototypical singularity in the context of Euler’s equations. A shock wave occurs when the

speed of a disturbance exceeds the local speed of sound. A fundamental problem in the the mathematical

theory of compressible fluids is to provide a complete description of shock formation and development. In

particular, one is interested in a complete description of the evolution of a smooth solution up until the point

of singularity, and the shock, a co-dimension 1 space-time hypersurface, that proceeds the initial singularity.

The earliest rigorous result regarding shock wave formation traces back to the work of Lax [39] in the

1D setting. Generalizations and improvements of Lax’s result were obtained by John [36] and Liu [41], for

the 1D Euler equations. See the book of Dafermos [23] for a more extensive bibliography of 1D results.

Sideris [52] proved the existence of finite time singularities in 2D and 3D. The result of Sideris proves

that a singularity occurs; however, it is not ascertained what form such a singularity takes. Christodoulou

[18] and Christodoulou-Miao [21] demonstrated the formation of shocks for 3D isentropic, irrotational fluids

in the relativistic and non-relativistic settings respectively. Luk and Speck built on this work to handle the

case of shock formation for 2D isentropic fluids with non-trivial vorticity [42]. The first author, together

with Shkoller, and Vicol, employing a different approach, resolved the shock formation problem in the most

general setting of full 3D compressible Euler [11, 12] (cf. [43]). The work [11, 12], together with the prior

work [10] of the same authors were the first to isolate the self-similar profile of the initial singularity that

precedes the development of shock waves. In particular, the works demonstrated that the asymptotic self-

similar profile of the singularity is described by self-similar solutions to the Burgers’ equation. More recently,

Abbrescia and Speck [1] and Shkoller and Vicol [51] have studied the problem of maximal development of

shock waves.

With regards to shock development in one spatial dimension, global unique weak solutions satisfying the

Rankine-Hugoniot conditions have been established (see [31, 25, 5, 6]), but these methods neither provide

a precise description of the shock front nor detect weak discontinuities: characteristic surfaces conjectured

by Landau and Lifshitz [38]. In multiple dimensions, Majda [44] studied the short-time evolution of the

shock front starting from discontinuous initial data, which is smooth on either side of the shock front. This

framework does not cover the shock development problem, where one must evolve from Hölder continuous

pre-shock data and weak discontinuities may form. For the one-dimensional p-system (which models 1D

isentropic Euler), Lebaud [40] was the first to prove shock formation and development in her thesis work (cf.

[16, 37]). In the case of the non-isentropic 3� 3 Euler equations in spherical symmetry, shock formation and

development were first established by Yin [58]. Independently, Christodoulou and Lisibach [20] demonstrated

shock development for the barotropic Euler equations in spherical symmetry. The use of the isentropic

model or the assumption of irrotational flow in higher dimensions has been referred to as restricted shock

development because it cannot produce weak solutions to the Euler equations. Christodoulou [19] has

also established restricted shock development for the irrotational and isentropic Euler equations in three

dimensions outside of symmetry.

In [9], the first author, Drivas, Shkoller and Vicol consider the shock development problem for 2D

compressible Euler under azimuthal symmetry (see [8] for a recent review article). The work provides
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the first full description of shock development; in particular, in addition to describing the shock front, [9]

gives the first detailed description of the weak discontinuities of Landau and Lifshitz [38] (see Figure 1).

Figure 1: The image represents the density restricted to the annular region r P r1, 2s. The first image is of the initial data,

the second is the preshock, and the third is of the developed shock. The red, green and blue curves represent the shock curve,

weak rarefaction wave and weak contact discontinuity respectively.

1.2 Implosion

While shock waves are a common and potentially the only stable form of singularity for the Euler equations,

other types of singularities can arise from smooth initial data. It is a fundamentally interesting problem to

classify these forms of singularities, both from a mathematics and physics perspective.

Guderley’s classical work [34] (cf. [17, 53]) constructed the first examples of non-smooth imploding so-

lutions. Very recently, Merle, Raphaël, Rodnianski, and Szeftel rigorously proved the existence of smooth

radially symmetric imploding solutions to the isentropic compressible Euler equations [46]:

Btpρuq � divpρub uq �∇ppρq � 0 ,

Btρ� divpρuq � 0 ,
(1.1)

where here ppρq � 1
γ ρ

γ for γ ¡ 1. Specifically, for almost every γ ¡ 1, they showed the existence of a

countably infinite sequence of self-similar solutions to (1.1). These solutions exhibit blow-up of both the

velocity and density at the origin. The condition on γ is related to the non-vanishing of an analytic function.

The case γ � 5{3, which describes monatomic gases, is specifically ruled out.

The form of the singularity discovered in [46] is fundamentally new. The authors also used these solutions

to prove finite-time blow-up for the defocusing, supercritical, nonlinear Schrödinger equation [45], solving a

significant open problem in the field. Additionally, the solutions were used as a basis to construct asymp-

totically self-similar solutions to the three-dimensional isentropic compressible Navier-Stokes equations with

density-independent viscosity [47], given by

Btpρuq � divpρub uq �∇ppρq � µ1∆u� pµ1 � µ2q∇divu � 0 ,

Btρ� divpρuq � 0 ,
(1.2)
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where pµ1, µ2q are the Lamé viscosity coefficients, with µ1 ¡ 0 and 2µ1 � µ2 ¡ 0. Prior to this result,

Xin [57] showed the existence of blow-up solutions for initial data with compact density, and Rozanova [50]

demonstrated the existence of blow-up solutions for rapidly (polinomially) decaying density. Unlike [47],

neither [57] nor [50] provide a description of the singularity that occurs. The result [47] further weakens the

decay required on the density leading to singularity formation. To rule out the role of vacuum at spatial

infinity in the singularity formation, one however would prefer such solutions to be constructed from initial

data that has non-vanishing, constant density at infinity. See also the recent numerical work by Biasi [4].

The papers [46] and [47] left open two fundamental questions:

1. Do imploding solutions for the Euler equations exist for any value of γ greater than 1?

2. Is it possible to create imploding solutions to the Navier-Stokes equation with an initial density that

is constant at infinity?

In [7], we resolved both of these questions. We showed that for all γ ¡ 1 there exist self-similar imploding

solutions. For the case of diatomic gases, γ � 7
5 , we showed there exists an infinite sequence of self-similar

imploding solutions. The paper [7] also provides simplified proofs of linear stability and non-linear stability,

leading to the proof of asymptotically self-similar imploding solutions to the Navier-Stokes equations for

γ � 7
5 . The initial data for such solutions are chosen to have constant non-zero density at infinity – the first

example of such initial data leading to blow-up for the Navier-Stokes equations. The focus of this article will

be on the former result.

2 Reduction to an autonomous ODE

Let us rewrite (1.1) in radial form:

Btu� uBRu� 1

γρ
BRργ � 0 and Btρ� 1

R2
BRpR2ρuq � 0 , (2.1)

where for matters of simplicity, we restricted the problem to three dimensions. Letting α � γ�1
2 , we define

the rescaled sound speed: σ � 1
αρ

α. Then, we make the following self-similar anzatz

upR, tq � r�1 R
T�tUplogp R

pT�tq
1
r
qq and σpR, tq � α�

1
2 r�1 R

T�tSplogp R

pT�tq
1
r
qq ,

where here r is a self-similar scaling parameter to be determined. Defining the self-similar variable ξ �
logp R

pT�tq
1
r
q, then (2.1) reduces to an autonomous system of the form

dU
dξ � NU pU,Sq

DpU,Sq , and dS
dξ � NSpU,Sq

DpU,Sq . (2.2)

For, γ � 7
5 and r � 1.079404, the phase portrait is shown in Figure 2, where D, NU , and NS are represented

by red, green, and black curves, respectively. The point labeled Ps is a special type of singular point for the

dynamic system described in equation (2.2). There are two smooth integral curves that pass through Ps,

one tangent to the direction ν� and the other tangent to ν�. The curve that is tangent to ν� corresponds

to the Guderley solution, while the curve tangent to ν� corresponds to the solution found in [46]. To create
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Figure 2: Imploding solutions in pU, Sq variables. Note that a singular coordinate change has been made in order to compactify

the pU, Sq coordinates.

a globally defined self-similar solution, we need to find an integral curve that connects the points P0 and

P8 through Ps. It is not possible to do this using a continuous integral curve with the Guderley solution.

However, by introducing a shock discontinuity, we can jump from one point in the phase portrait to another

and create a globally defined self-similar solution. In [46], by means of choosing distinguished values of the

self-similar scaling parameter r, the authors overcame the challenge that the smooth integral curve tangent

to ν� generally does not connect P0 to P8, but rather intersects the sonic line D � 0 at a point other than

Ps, resulting in a solution that is not globally defined.

Motivated by the works [10, 11, 12], it is helpful to rewrite the system in terms of its Riemann invariants

w � u� σ and z � u� σ (2.3)

so that

u � w � z

2
and σ � w � z

2
.

One can now diagonalize (2.1) in terms of w and z, in order to rewrite (2.1) as a nonlinear transport equation

Btw � 1

2
pw � z � αpw � zqqBRw � α

2R
pw2 � z2q � 0

Btz � 1

2
pw � z � αpw � zqqBRz � α

2R
pw2 � z2q � 0 .

(2.4)

Employing the self-similar ansatz

wpR, tq � 1

r
� R

T � t
W pξq and zpR, tq � 1

r
� R

T � t
Zpξq (2.5)
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Figure 3: Imploding solutions in pW,Zq variables. Note that a singular coordinate change has been made in order to compactify

the pW,Zq coordinates.

where we recall ξ � logp R

pT�tq
1
r
q, then we obtain

pr � 1

2
pp1� 2αqW � p1 � αqZqqW � p1� 1

2
pW � Z � αpW � ZqqqBξW � α

2
Z2 � 0

pr � 1

2
pp1� αqW � p1 � 2αqZqqZ � p1� 1

2
pW � Z � αpW � ZqqqBξZ � α

2
W 2 � 0

(2.6)

Rearranging, we obtain the autonomous system

BξW � �pr � 1
2 pp1� 2αqW � p1� αqZqqW � α

2Z
2

1� 1
2 pW � Z � αpW � Zqq � NW

DW
,

BξZ � �pr � 1
2 pp1� αqW � p1� 2αqZqqZ � α

2W
2

1� 1
2 pW � Z � αpW � Zqq � NZ

DZ
.

(2.7)

In Figure 3, the phase portrait for the region where the density is positive (W � Z ¡ 0) is shown. The

red, purple, and green lines represent DZ � 0, DW � 0, and NZ � 0, respectively. One key difference

between this system and (2.2) is that the denominator DW does not vanish at the point Ps, which simplifies

the analysis in the area around Ps. The variables pW,Zq provide a geometric understanding of the imploding

solution in terms of the trajectories of the W and Z waves. Ps is an unstable fixed point for the trajectories

of Z-waves and divides space into an interior region (the backward acoustic cone emanating from the singular

point) and an exterior region. Z-waves in the exterior region cannot enter the interior region, while Z-waves

in the interior region cross the origin to become W -waves, then cross Ps and travel to the exterior region.

Since the system in (2.7) is autonomous, we can choose the location ξ � 0 to be where the solution crosses

Ps.

The key steps to constructing a smooth integral curve from P0 to P8 are:
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1. Apply a careful local analysis of the behavior of the smooth solution tangent to ν�. In particular, show

that the solutions wiggle in a certain manner with a continuous change in the self-similar parameter r.

2. Demonstrate that such a wiggling phenomenon combined with barrier arguments and continuity leads

to a smooth solution connecting P0 and P8.

3 Local analysis of Ps

To better understand Ps, we can recast the system using the variable ξ ÞÑ ψ, where Bψ � DWDZBξ. For

simplicity, let us focus on the case where γ � 5
3 . We obtain the ODE:

BψW � � 1

18
p3�W�2Zqp6rW�5W 2�2WZ�Z2q and BψZ � 1

18
p3�2W�ZqpW 2�2p3r�W qZ�5Z2q ,

(3.1)

for which Ps is a stable stationary point. Let 0   λ�   λ� be the eigenvalues of the resulting system of the

Jacobian matrix at Ps. We let k denote the ratio of the two eigenvalues:

k � λ�
λ�

� r � 2�?
2r � 2

r � 2�?
2r � 2

. (3.2)

The directions ν� and ν� defined earlier (the directions of the two smooth integral curves passing through Ps)

are also the eigenvectors of the Jacobian of (3.1) that correspond to the eigenvalues λ� and λ� respectively.

We will focus on the smooth solutions of (2.7) that have tangents parallel to ν�. These two directions are

shown in Figure 3.

In the range 1   r   r�p� 3�?3 for γ � 5
3 ), k is a monotonically increasing function of r that approaches

infinity as r approaches r�. The smooth solution passing through point Ps can be expressed as a Taylor

series around ξ � 0 in the form pW pξq, Zpξqq � °8
n�0

ξn

n! pWn, Znq. The Taylor coefficients of D�pW,Zq and

N�pW,Zq are denoted by D�,n and N�,n, respectively. For n ¥ 2, the following equations hold:

DW,0Wn � NW,n�1 �
n�2̧

j�0

�
n� 1

j



DW,n�1�jWj�1,

ZnDZ,1pn� kq � �
n�2̧

j�1

�
n

j



DZ,n�jZj�1 � pNZ,n � pBZNZpP2qqZnq � Z1 p�DZ,n � ZnBZDZpP2qq .

(3.3)

By choosing pW1, Z1q to align with ν�, these equations can be used to iteratively solve for a power series that

describes the smooth solution tangent to ν� at Ps in a small neighborhood of Ps. Note that the right-hand

side of the second equation does not depend on Zn.

For any positive integer j, we define rj such that j � kprjq. It can be observed the expression for Zn in

(3.3) becomes singular as kprq approaches n and changes sign at kprq � n. This causes the integral curve of

the smooth solution to exhibit a wiggling effect, which allows us to show1 that for γ ¡ 1 and n � 3:

1. For r P prn, rn�1q, the solution to the left of Ps approaches P8 as ξ goes to infinity.

2. For r � rn � ε, the solution to the right of Ps intersects the line DW � 0.

1We believe this is true for all γ ¡ 1 and every odd n.
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Figure 4: In the first plot, we show W0 (blue), Z0 (orange), W1 (green), Z1 (red) and W2 magenta. In the second plot,

we show Z2 (blue), W3 (orange), Z3 (green) and W4 (red). In the last plot, we show Z4. The singularities happen at

r � r2 � 11 � 3
?

11 � 1.05013, r � r3 � 6 � 2
?

6 � 1.10102 and r � r4 � 1
9
p43 � 5

?
43q � 1.13476.

3. For r � rn�1 � ε, the solution to the right of Ps intersects the line DZ � 0.

If we can demonstrate points 2 and 3, then using a simple shooting argument, we can conclude that there

exists an r within the range prn, rn�1q such that the solution curve connects Ps to P0. Additionally, point 1

implies that the solution curve also connects Ps to P8.

We have plotted the coefficients tWi, Ziu4
i�0 for r P p1, r�q in Figure 4. Note that at r � rn the singularity

of Zn will propagate to every Wi, Zi for i ¡ n since they depend on Zn via the recurrence (3.3).

4 Barrier arguments

For the sake of simplicity, let us concentrate on how to show items 1, 2 and 3 for the case γ � 5
3 and k P p3, 4q,

which corresponds to r P pr3, r4q.
The idea to prove item 1 is to construct two different barriers bounding the behavior of the solution. We

will have one global barrier which we denote by bflptq and a local one, which we denote by bnlptq. They are

given by

bnlptq �
�

3̧

i�0

Wi

i!
ti,

3̧

i�0

Zi
i!
ti

�
,

BflpW,Zq �
�
W0 �B1W1t� B2

2
t2, Z0 �B1Z1t� B3

2
t2


,
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where the coefficients B2, B3 are chosen so that bflp1q � Po and the coefficient B1 is chosen so that the

barrier matches one further order with the ODE at Po. The point Po is defined as the intersection of

NW � NZ � 0 on the W ¡ Z half-plane. One can see both barriers in Figure 5.

The global barrier will connect the point Ps with Po in such a way that all trajectories of the ODE

traverse Bfl upwards. Once we show that the smooth solution stays above bflptq it is easy to conclude it has

to converge to P0, however, bflptq will not be well-adapted to the geometry of the phase portrait at Ps, and

this means that the smooth solution will not start above bflptq. In order to solve that, we use the local barrier

bnlptq which matches the smooth solution up to third order, and thus is well-adapted to the geometry of the

phase portrait at Ps. In particular, the smooth solution will start above bnlptq and trajectories will traverse

bnlptq upwards for a short period of time t P r0, tvs. Thus, if we show that bnlptq and Bfl intersect at some

time t P p0, tvq, we will be done, since the concatenation of the two barriers will correctly bound the behavior

of the solution. This is done via a computer-assisted proof which involves a careful desingularization as

k Ñ 3�.

We now describe how to prove items 2 and 3. Let us consider n P t3, 4u and define the local barrier

bnr
n ptq �

�
ņ

i�0

Wi

i!
p�tqi,

ņ

i�0

Zi
i!
p�tqi � p�1qnβ|Zn|

pn� 1q! p�tqn�1

�
, for 0 ¤ t ¤ β|k � n| 1

n�1 (4.1)

which matches until n-th order with the smooth solution at Ps. We then define

P nr
n ptq � pBψW pbnr

n ptqq, BψZpbnr
n ptqqq ^ bnr 1

n ptq,

so that the sign of P nr
n ptq informs us if the solutions of the ODE are traversing bnr

n ptq in the upwards direction

(negative sign) or in the downwards direction (positive sign). A careful computation of P nr
n ptq yields

P nr
n ptq � |NW,0DZ,1|β

pn� 1q! |Zn|p�tqn�1 � |BzDZpPsqNW,0|
n!pn� 1q! Z2

np�tq2n�1 � orÑrn

�
β|Zn|tn�1 � Z2

nt
2n�1

�
(4.2)

For item 2, we set n � 3. Comparing the pn� 1q-th Taylor coefficients of (4.1) and the smooth solution,

one can see that bnr
3 ptq will be above the smooth solution near Ps provided β is chosen sufficiently large.

Moreover, from (4.2), the barrier bnr
3 ptq will bound the trajectory of the smooth solution up to t ¤ cβ|k�n|.

We construct another barrier Bfr given in implicit form by the nullset of:

BfrpW,Zq � pW �W0 � 1

2
Z � 1

2
Z0qpW � Z � F0q � F1pW � Z �W0 � Z0q.

The values of F0 and F1 are chosen so that Bfr matches the subleading order terms of its Taylor expansion

with the smooth solution both at P0 and Ps. Concretely, F0 � �2pr� 1q and F1 � pW0 �Z0 �F0qZ1{2�W1

W1�Z1
.

We can define P fr
3 ptq in the same way as we defined P nr

3 ptq and we show with a computer-assisted proof

that P fr
3 ptq ¡ 0. That is, solutions always traverse BfrpW,Zq � 0 downwards. We have plotted bnr

3 ptq and

BfrpW,Zq � 0 in Figure 5.

Finally, we want to show that the concatenation of bnr
3 ptq and Bfr

3 yields a barrier that bounds adequately

the global behavior of the smooth solution. To that end, it suffices to show that both barriers intersect at

some time ti P p0, cβpk � 3qq, so that bnr
3 ptq remains valid up to ti. The choice of F0, F1 guarantees that

the Taylor expansions at Ps of bnr
3 ptq and Bfr first differ at their second order coefficients. Comparing their
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Figure 5: Two plots at different scales of the vector field pWψ , Zψq for r � 1.13 P pr3, r4q. In the center we have Ps, which

is the intersection of DZ � 0 (red line) and NZ � 0 (black curve). We also show DW � 0 (in pink) and NW � 0 (in purple).

In green, we have the global barriers bflptq (to the left of Ps) and BfrpW,Zq � 0 (to the right of Ps). At the smallest scale, we

also show in orange the local barriers bnlptq (to the left of Ps) and bnr
3 ptq (to the right of Ps). For bnr

3 ptq we took β � 500. We

have also indicated the points of intersection of the local barriers and the global barriers.

Taylor series one can conclude that both barriers intersect at some ti À |k � 3|, so ti ¤ cβpk � 3q taking β

sufficiently large.

With respect to item 3, we set n � 4 and use the local barrier (4.1). Taking β sufficiently large, bnr
4 ptq

will be below the smooth solution for t sufficiently small. Moreover, in this case, both terms from (4.2) are

negative, giving that solutions to the ODE cross bnr
4 ptq upwards for every 0 ¤ t ¤ βp4 � kq1{3. Therefore,

if we show that bnr
4 ptq intersects DZ � 0 for some t   βp4 � kq1{3 we will be done. In that interval, we can

compute

DZpbnr
4 ptqq �

W1 � 2Z1

3
t� Z4

36
t4 � okÑ4�pp4� kq2{3q,

where the two main terms are both of order p4 � kq1{3. Checking that the two main terms have different

signs, we deduce that bnr
4 ptq intersects DZ � 0 at some t ¤ βp4� kq1{3, provided that β is chosen sufficiently

large. We have a plot of this situation in Figure 6.

5 Computer-assisted proofs

The representation of real numbers using a finite number of zeros and ones has the advantage of allowing

finite calculations and a practical framework. However, this method also has the disadvantage of being

limited to a finite (although large) amount of numbers and the potential for inaccuracies when performing

mathematical operations. As an alternative, we will use upper and lower bounds for all relevant quantities,

and propagate these bounds by rounding up or down as necessary to account for errors introduced by the

computer during the calculation process.
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Figure 6: A plot of the vector field pWψ , Zψq for r � 1.1347 P pr3, r4q (moreover 1.1347 � r4). In the center we have Ps,

which is the intersection of DZ � 0 (red line) and NZ � 0 (black curve). We also show bnr
4 ptq in orange, for β � 500.

We can now construct an arithmetic by the theoretic-set definition

rxs � rys � tx � y| x P rxs, y P rysu,

for any operation � P t�,�,�, {u. These are defined by the following equations:

rxs � rys � r∇px� yq,∆px� yqs, rxs � rys � r∇px� yq,∆px� yqs,
rxs � rys � r∇pmintxy, xy, xy, xyuq,∆pmaxtxy, xy, xy, xyuqs,

rxs{rys � rxs �
�

1

y
,

1

y

�
, whenever 0 R rys,

where ∇ and ∆ are respectively the round-down and round-up operators.

The main feature of the arithmetic is that if x P rxs, y P rys, then necessarily x � y P rxs � rys for

any operator �. This property is fundamental in order to ensure that the true result is always contained

in the interval we get from the computer. This process is completely rigorous and independent of the

architecture or the software of the computer. We can also define functions of intervals fprxsq. For example,

if fprxsq � rxs � rxs � rxs, then fpr�1, 2sq � r�1, 2s � r�1, 2s � r�1, 2s � r�2, 4s � r�1, 2s � r�3, 6s.
Early computer-assisted proofs were constrained to finite dimensional problems [27, 54]; however, recent

advances in computational power have enabled the methods to be adapted to infinite dimensional problems

(PDE). In the context of fluid mechanics we highlight the following equations: De Gregorio [14], SQG [13],

Whitham [26], Muskat [33, 22], Kuramoto-Shivasinsky [3, 28, 30, 29, 59, 60], Navier-Stokes [56, 2], Burgers-

Hilbert [24] or the Hou-Luo model [15]. We also refer the reader to the books [48, 55] and to the survey [32]

and the book [49] for a more specific treatment of computer-assisted proofs in PDE.

In the paper [7], interval arithmetic is used to check the validity (positivity conditions) of the barriers

and to compute a few thousands of coefficients of the Taylor expansion at Ps (the latter is only used for

the case γ � 7
5 ). We performed the rigorous computations using the Arb library [35] and specifically its C
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implementation. The positivity checks involve using a branch and bound algorithm to evaluate the open

conditions mentioned in the paper. We start by enclosing the condition within a box in a parameter space

(which is at most 2-dimensional). If the enclosure provides a definite sign, we accept or reject it based on

whether the sign matches the desired result. If the enclosure does not provide a sign, we split the box in half

along one of the dimensions and repeat the process. This procedure continues until the maximum length in

any dimension of the box reaches a tolerance of 10�10, at which point the program will fail. In our case, this

tolerance was never reached.
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