Smooth self-similar imploding profiles to 3D compressible Euler
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Abstract

The aim of this note is to present the recent results in [7], concerning the existence of “imploding
singularities” for the 3D isentropic compressible Euler and Navier-Stokes equations. Our work builds
upon the pioneering work of Merle, Raphagl, Rodnianski and Szeftel [46, 47, 45] and proves the existence
of self-similar profiles for all adiabatic exponents v > 1 in the case of Euler; as well as proving asymptotic
self-similar blow-up for v = % in the case of Navier-Stokes. Importantly, for the Navier-Stokes equation,
the solution is constructed to have density bounded away from zero and constant at infinity, the first
example of blow-up in such a setting. For simplicity, we will focus our exposition on the compressible

Euler equations.

1 Introduction

The compressible Euler equations describe the conservation of mass, momentum, and energy in a fluid, and
are important in many fields, including aerodynamics and astrophysics. In this review, we present recent
developments regarding the existence of smooth imploding solutions for the compressible Euler equations.

The full compressible Euler equations take the form

Oi(p u) +divipuu+p Id)=0
Orp + div(pu) =0
OB+ div((p + E)u)=0
where u is the velocity, p is the density, p is the pressure, and F is the energy. The equations describe the

conservation of momentum, mass, and energy in a fluid, respectively. The pressure is given by the ideal gas

law ) )
p=0-1(E- 5P |U|2) = ;/ﬂesa

for the adiabatic exponent v > 1. The sound speed is given by ¢ = , /lpp.
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1.1 Shock waves

Before discussing implosion in detail, let us first describe the classical problem of shock waves, which can
be seen as a prototypical singularity in the context of Euler’s equations. A shock wave occurs when the
speed of a disturbance exceeds the local speed of sound. A fundamental problem in the the mathematical
theory of compressible fluids is to provide a complete description of shock formation and development. In
particular, one is interested in a complete description of the evolution of a smooth solution up until the point
of singularity, and the shock, a co-dimension 1 space-time hypersurface, that proceeds the initial singularity.

The earliest rigorous result regarding shock wave formation traces back to the work of Lax [39] in the
1D setting. Generalizations and improvements of Lax’s result were obtained by John [36] and Liu [41], for
the 1D Euler equations. See the book of Dafermos [23] for a more extensive bibliography of 1D results.

Sideris [52] proved the existence of finite time singularities in 2D and 3D. The result of Sideris proves
that a singularity occurs; however, it is not ascertained what form such a singularity takes. Christodoulou
[18] and Christodoulou-Miao [21] demonstrated the formation of shocks for 3D isentropic, irrotational fluids
in the relativistic and non-relativistic settings respectively. Luk and Speck built on this work to handle the
case of shock formation for 2D isentropic fluids with non-trivial vorticity [42]. The first author, together
with Shkoller, and Vicol, employing a different approach, resolved the shock formation problem in the most
general setting of full 3D compressible Euler [11, 12] (cf. [43]). The work [11, 12], together with the prior
work [10] of the same authors were the first to isolate the self-similar profile of the initial singularity that
precedes the development of shock waves. In particular, the works demonstrated that the asymptotic self-
similar profile of the singularity is described by self-similar solutions to the Burgers’ equation. More recently,
Abbrescia and Speck [1] and Shkoller and Vicol [51] have studied the problem of maximal development of
shock waves.

With regards to shock development in one spatial dimension, global unique weak solutions satisfying the
Rankine-Hugoniot conditions have been established (see [31, 25, 5, 6]), but these methods neither provide
a precise description of the shock front nor detect weak discontinuities: characteristic surfaces conjectured
by Landau and Lifshitz [38]. In multiple dimensions, Majda [44] studied the short-time evolution of the
shock front starting from discontinuous initial data, which is smooth on either side of the shock front. This
framework does not cover the shock development problem, where one must evolve from Hoélder continuous
pre-shock data and weak discontinuities may form. For the one-dimensional p-system (which models 1D
isentropic Euler), Lebaud [40] was the first to prove shock formation and development in her thesis work (cf.
[16, 37]). In the case of the non-isentropic 3 x 3 Euler equations in spherical symmetry, shock formation and
development were first established by Yin [58]. Independently, Christodoulou and Lisibach [20] demonstrated
shock development for the barotropic Euler equations in spherical symmetry. The use of the isentropic
model or the assumption of irrotational flow in higher dimensions has been referred to as restricted shock
development because it cannot produce weak solutions to the Euler equations. Christodoulou [19] has
also established restricted shock development for the irrotational and isentropic Euler equations in three
dimensions outside of symmetry.

In [9], the first author, Drivas, Shkoller and Vicol consider the shock development problem for 2D

compressible Euler under azimuthal symmetry (see [8] for a recent review article). The work provides



the first full description of shock development; in particular, in addition to describing the shock front, [9]

gives the first detailed description of the weak discontinuities of Landau and Lifshitz [38] (see Figure 1).

Figure 1: The image represents the density restricted to the annular region r € [1,2]. The first image is of the initial data,
the second is the preshock, and the third is of the developed shock. The red, green and blue curves represent the shock curve,

weak rarefaction wave and weak contact discontinuity respectively.

1.2 Implosion

While shock waves are a common and potentially the only stable form of singularity for the Euler equations,
other types of singularities can arise from smooth initial data. It is a fundamentally interesting problem to
classify these forms of singularities, both from a mathematics and physics perspective.

Guderley’s classical work [34] (cf. [17, 53]) constructed the first examples of non-smooth imploding so-
lutions. Very recently, Merle, Raphaél, Rodnianski, and Szeftel rigorously proved the existence of smooth

radially symmetric imploding solutions to the isentropic compressible Euler equations [46]:

O¢(pu) +div(pu ® u) + Vp(p) =0,

(1.1)
Orp + div(pu) =0,

where here p(p) = % p? for v > 1. Specifically, for almost every v > 1, they showed the existence of a
countably infinite sequence of self-similar solutions to (1.1). These solutions exhibit blow-up of both the
velocity and density at the origin. The condition on = is related to the non-vanishing of an analytic function.
The case v = 5/3, which describes monatomic gases, is specifically ruled out.

The form of the singularity discovered in [46] is fundamentally new. The authors also used these solutions
to prove finite-time blow-up for the defocusing, supercritical, nonlinear Schrédinger equation [45], solving a
significant open problem in the field. Additionally, the solutions were used as a basis to construct asymp-
totically self-similar solutions to the three-dimensional isentropic compressible Navier-Stokes equations with
density-independent viscosity [47], given by

Or(pu) + div(pu @ u) + Vp(p) — p1Au — (g1 + p2)Vdive =0,

(1.2)
Orp + div(pu) =0,



where (p1,p2) are the Lamé viscosity coefficients, with p; > 0 and 2uq + pe2 > 0. Prior to this result,
Xin [57] showed the existence of blow-up solutions for initial data with compact density, and Rozanova [50]
demonstrated the existence of blow-up solutions for rapidly (polinomially) decaying density. Unlike [47],
neither [57] nor [50] provide a description of the singularity that occurs. The result [47] further weakens the
decay required on the density leading to singularity formation. To rule out the role of vacuum at spatial
infinity in the singularity formation, one however would prefer such solutions to be constructed from initial
data that has non-vanishing, constant density at infinity. See also the recent numerical work by Biasi [4].

The papers [46] and [47] left open two fundamental questions:
1. Do imploding solutions for the Euler equations exist for any value of v greater than 17

2. Is it possible to create imploding solutions to the Navier-Stokes equation with an initial density that

is constant at infinity?

In [7], we resolved both of these questions. We showed that for all v > 1 there exist self-similar imploding
7

solutions. For the case of diatomic gases, v = ¢, we showed there exists an infinite sequence of self-similar
imploding solutions. The paper [7] also provides simplified proofs of linear stability and non-linear stability,
leading to the proof of asymptotically self-similar imploding solutions to the Navier-Stokes equations for
vy = % The initial data for such solutions are chosen to have constant non-zero density at infinity — the first
example of such initial data leading to blow-up for the Navier-Stokes equations. The focus of this article will

be on the former result.

2 Reduction to an autonomous ODE

Let us rewrite (1.1) in radial form:

1 1
Otu + ulru + %63[{’ =0 and O+ ﬁaR(Rqu) =0, (2.1)

where for matters of simplicity, we restricted the problem to three dimensions. Letting o = 7771, we define

the rescaled sound speed: o = épa. Then, we make the following self-similar anzatz

1
_ -1 R R _ ~5.-1_R R
u(R,t) =r —TitU(log((T_t)% )) and o(R,t)=a 2r —TftS(log((T_t)% ),

where here r is a self-similar scaling parameter to be determined. Defining the self-similar variable & =

1 R
o8 (T—t)*

), then (2.1) reduces to an autonomous system of the form

dU _ Nu(U,S)

ds Ns(U,S)

9% = by d F = Prsy (2.2)

For, v = % and r = 1.079404, the phase portrait is shown in Figure 2, where D, Ny, and Ng are represented
by red, green, and black curves, respectively. The point labeled P; is a special type of singular point for the
dynamic system described in equation (2.2). There are two smooth integral curves that pass through P,
one tangent to the direction v_ and the other tangent to v.. The curve that is tangent to v, corresponds

to the Guderley solution, while the curve tangent to v_ corresponds to the solution found in [46]. To create



Figure 2: Imploding solutions in (U, S) variables. Note that a singular coordinate change has been made in order to compactify
the (U, S) coordinates.

a globally defined self-similar solution, we need to find an integral curve that connects the points Py and
P, through P,. It is not possible to do this using a continuous integral curve with the Guderley solution.
However, by introducing a shock discontinuity, we can jump from one point in the phase portrait to another
and create a globally defined self-similar solution. In [46], by means of choosing distinguished values of the
self-similar scaling parameter r, the authors overcame the challenge that the smooth integral curve tangent
to v_ generally does not connect Py to P, but rather intersects the sonic line D = 0 at a point other than
P, resulting in a solution that is not globally defined.

Motivated by the works [10, 11, 12], it is helpful to rewrite the system in terms of its Riemann invariants

w=u+0c and z=u—o (2.3)
so that
w+z d w—z
u = and o=
2 2

One can now diagonalize (2.1) in terms of w and z, in order to rewrite (2.1) as a nonlinear transport equation

orw + 1(u} +z+a(w —2))0pw + i(w2 -3 =0
2 25 (2.4)
L _ _ A N N

Oz + 2(w + 2z —a(w—z2))0rz 57 (w*—2")=0.

Employing the self-similar ansatz

w(R,t) = % . iVV(£) and 2(R,t) =
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Figure 3: Imploding solutions in (W, Z) variables. Note that a singular coordinate change has been made in order to compactify
the (W, Z) coordinates.

R
(T—1)

where we recall £ = log( ), then we obtain

1
T

(r+ %((1 +20)W+(1—-)Z))W+(1+ %(W +Z+a(W —2)))0:W — %ZQ =0

(2.6)
1 1
(r+5((1 =)W + (1 +20)2)Z + (L4 5(W + Z — a(W - 2)))3cZ — ng -0
Rearranging, we obtain the autonomous system

oW = —(r+3((1+20)W+ (1 —a)Z2))W + 922 _ Nw

L+ 5(W+Z+o(W-2)) Dy’ o)

aZ:—(r—i—%((1—04)W+(1+2a)Z))Z+%W2:&. '

¢ 1+ IW+2Z—a(W - 2)) Dy

In Figure 3, the phase portrait for the region where the density is positive (W — Z > 0) is shown. The
red, purple, and green lines represent Dy = 0, Dy = 0, and Nz = 0, respectively. One key difference
between this system and (2.2) is that the denominator Dy, does not vanish at the point Py, which simplifies
the analysis in the area around Ps. The variables (W, Z) provide a geometric understanding of the imploding
solution in terms of the trajectories of the W and Z waves. P is an unstable fixed point for the trajectories
of Z-waves and divides space into an interior region (the backward acoustic cone emanating from the singular
point) and an exterior region. Z-waves in the exterior region cannot enter the interior region, while Z-waves
in the interior region cross the origin to become W-waves, then cross Ps and travel to the exterior region.
Since the system in (2.7) is autonomous, we can choose the location £ = 0 to be where the solution crosses
P.

The key steps to constructing a smooth integral curve from Py to P, are:



1. Apply a careful local analysis of the behavior of the smooth solution tangent to v_. In particular, show

that the solutions wiggle in a certain manner with a continuous change in the self-similar parameter r.

2. Demonstrate that such a wiggling phenomenon combined with barrier arguments and continuity leads

to a smooth solution connecting Py and Ps..

3 Local analysis of P

To better understand Ps, we can recast the system using the variable £ — 1, where dy, = DwDz0:. For
simplicity, let us focus on the case where 7 = % We obtain the ODE:

1 1
OpW = —1—8(3+W+2Z)(6rW+5W2+2WZ—Z2) and 07 = 1—8(3+2W+Z)(W2—2(3r+W)Z—5Z2),
(3.1)
for which P is a stable stationary point. Let 0 < A_ < A4 be the eigenvalues of the resulting system of the

Jacobian matrix at P;. We let k£ denote the ratio of the two eigenvalues:

k_)\;_T—Q—\/QT—2 (3.2)
_)\+_r—2+\/2r—2' ’

The directions v_ and v, defined earlier (the directions of the two smooth integral curves passing through Ps)
are also the eigenvectors of the Jacobian of (3.1) that correspond to the eigenvalues A_ and A respectively.
We will focus on the smooth solutions of (2.7) that have tangents parallel to v_. These two directions are
shown in Figure 3.

In the range 1 < r < r*(= 3—+/3 for vy = %), k is a monotonically increasing function of r that approaches
infinity as r approaches r*. The smooth solution passing through point P; can be expressed as a Taylor
series around & = 0 in the form (W (€), Z(€)) = 37, £+ (W,, Z,). The Taylor coefficients of D (W, Z) and

n=0 n!

No(W, Z) are denoted by D, and N ,, respectively. For n > 2, the following equations hold:

n—2

n—1
Dw,oWn = Nwpo1— ) ( ; )Dwn Wi,
L0 (3.3)
Zn DZl n_ Z ( )DZn J j+1 +(NZn_(aZNZ(P2))Zn) + 7 (—Dz,n +ZnazDz(P2)).

By choosing (W71, Z1) to align with v_, these equations can be used to iteratively solve for a power series that
describes the smooth solution tangent to v_ at P, in a small neighborhood of P;. Note that the right-hand
side of the second equation does not depend on Z,.

For any positive integer j, we define r; such that j = k(r;). It can be observed the expression for Z, in
(3.3) becomes singular as k(r) approaches n and changes sign at k(r) = n. This causes the integral curve of

the smooth solution to exhibit a wiggling effect, which allows us to show! that for v > 1 and n = 3:
1. For r € (7, 7n+1), the solution to the left of Py approaches P, as £ goes to infinity.

2. For r =1, + ¢, the solution to the right of P; intersects the line Dy, = 0.

1We believe this is true for all 4 > 1 and every odd n.
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Figure 4: In the first plot, we show Wy (blue), Zo (orange), Wi (green), Z; (red) and W2 magenta. In the second plot,
we show Za (blue), W3 (orange), Zs (green) and Wy (red). In the last plot, we show Z4. The singularities happen at
r=7ry=11—-3v11~1.05013, 7 = r3 = 6 — 24/6 ~ 1.10102 and r = r4 = %(43 — 54/43) & 1.13476.

3. For r = r, 11 — &, the solution to the right of P intersects the line Dz = 0.

If we can demonstrate points 2 and 3, then using a simple shooting argument, we can conclude that there
exists an r within the range (r,,7,+1) such that the solution curve connects Ps to Py. Additionally, point 1
implies that the solution curve also connects Ps to Py..

We have plotted the coefficients {W;, Z;}i_, for r € (1,7*) in Figure 4. Note that at r ~ r,, the singularity
of Z,, will propagate to every W;, Z; for i > n since they depend on Z,, via the recurrence (3.3).

4 Barrier arguments

For the sake of simplicity, let us concentrate on how to show items 1, 2 and 3 for the case v = % and k € (3,4),
which corresponds to r € (r3,ry).
The idea to prove item 1 is to construct two different barriers bounding the behavior of the solution. We

will have one global barrier which we denote by b(#) and a local one, which we denote by b"'(¢). They are

ro- (555

B B
BY W, Z) = (WO + ByWit + 72152, Zo + B1 71t + 23752> ,

given by



where the coefficients Bs, B3 are chosen so that bﬂ(l) = P. and the coefficient B; is chosen so that the
barrier matches one further order with the ODE at P~. The point P~ is defined as the intersection of
Nw = Nz =0 on the W > Z half-plane. One can see both barriers in Figure 5.

The global barrier will connect the point Ps; with P~ in such a way that all trajectories of the ODE
traverse B upwards. Once we show that the smooth solution stays above bfl(¢) it is easy to conclude it has
to converge to Py, however, b (t) will not be well-adapted to the geometry of the phase portrait at Py, and
this means that the smooth solution will not start above b(¢). In order to solve that, we use the local barrier
b (¢) which matches the smooth solution up to third order, and thus is well-adapted to the geometry of the
phase portrait at Ps. In particular, the smooth solution will start above b"!(¢) and trajectories will traverse
b (t) upwards for a short period of time t € [0,%,]. Thus, if we show that b"(t) and B" intersect at some
time ¢ € (0,1, ), we will be done, since the concatenation of the two barriers will correctly bound the behavior
of the solution. This is done via a computer-assisted proof which involves a careful desingularization as
k— 3%,

We now describe how to prove items 2 and 3. Let us consider n € {3,4} and define the local barrier

b (e) = (Z I (e W(—O"“) o Rr0<t<BEonlTT (@)
i=0 i=0 '

which matches until n-th order with the smooth solution at P;. We then define
Py (t) = (0 W (R (1)), 0y Z (b () A b7 (1),

so that the sign of P2*(t) informs us if the solutions of the ODE are traversing b2 (¢) in the upwards direction

(negative sign) or in the downwards direction (positive sign). A careful computation of P (t) yields

_ INwoDza|8
(n+1)!

|62DZ(PS)NW,O|

B () nl(n —1)!

|Z, | (=) + ZE=t)*" "+ 0,y (BIZa|t" T + 22627 (4.2)

For item 2, we set n = 3. Comparing the (n + 1)-th Taylor coefficients of (4.1) and the smooth solution,
one can see that b5"(¢) will be above the smooth solution near Py provided f is chosen sufficiently large.
Moreover, from (4.2), the barrier 5" (¢) will bound the trajectory of the smooth solution up to ¢t < ¢8|k — n|.
We construct another barrier B given in implicit form by the nullset of:

1 1
BY(W,Z) = (W — Wy — 52+ 5ZO)(W+Z—FO) — (W +Z - Wy — Zy).

The values of Fy and F} are chosen so that B matches the subleading order terms of its Taylor expansion
with the smooth solution both at Py and Ps. Concretely, Fo = —2(r — 1) and Fy; = (Wy + Zp — FO)%.
We can define P{F(t) in the same way as we defined Py*(t) and we show with a computer-assisted proof
that Pi*(t) > 0. That is, solutions always traverse B(W,Z) = 0 downwards. We have plotted b} (¢) and
B (W, Z) = 0 in Figure 5.

Finally, we want to show that the concatenation of b5*(¢) and BL yields a barrier that bounds adequately
the global behavior of the smooth solution. To that end, it suffices to show that both barriers intersect at
some time t; € (0,c8(k — 3)), so that b3'(¢) remains valid up to ¢;. The choice of Fy, F} guarantees that

the Taylor expansions at P, of b5*(¢) and B first differ at their second order coefficients. Comparing their
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Figure 5: Two plots at different scales of the vector field (Wy,, Zy) for r = 1.13 € (r3,74). In the center we have Ps, which
is the intersection of Dz = 0 (red line) and Nz = 0 (black curve). We also show Dy = 0 (in pink) and Ny = 0 (in purple).
In green, we have the global barriers b (¢) (to the left of Ps) and B (W, Z) = 0 (to the right of Ps). At the smallest scale, we
also show in orange the local barriers b*!(t) (to the left of Ps) and b5*(t) (to the right of Ps). For b§*(t) we took 8 = 500. We

have also indicated the points of intersection of the local barriers and the global barriers.

Taylor series one can conclude that both barriers intersect at some t; < |k — 3|, so t; < ¢8(k — 3) taking 8
sufficiently large.

With respect to item 3, we set n = 4 and use the local barrier (4.1). Taking § sufficiently large, b5*(¢)
will be below the smooth solution for ¢ sufficiently small. Moreover, in this case, both terms from (4.2) are
negative, giving that solutions to the ODE cross b}*(t) upwards for every 0 < t < 3(4 — k)3, Therefore,
if we show that b} (t) intersects Dy = 0 for some t < 3(4 — k)'/% we will be done. In that interval, we can
compute
- Dt o (4= B,
where the two main terms are both of order (4 — k)'/3. Checking that the two main terms have different
signs, we deduce that b} (¢) intersects Dz = 0 at some ¢t < (4 — k)3, provided that f is chosen sufficiently

large. We have a plot of this situation in Figure 6.

Dz (b3 (1))

5 Computer-assisted proofs

The representation of real numbers using a finite number of zeros and ones has the advantage of allowing
finite calculations and a practical framework. However, this method also has the disadvantage of being
limited to a finite (although large) amount of numbers and the potential for inaccuracies when performing
mathematical operations. As an alternative, we will use upper and lower bounds for all relevant quantities,
and propagate these bounds by rounding up or down as necessary to account for errors introduced by the

computer during the calculation process.
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Figure 6: A plot of the vector field (W, Zy) for » = 1.1347 € (r3,74) (moreover 1.1347 ~ r4). In the center we have Pk,
which is the intersection of Dz = 0 (red line) and Nz = 0 (black curve). We also show b}"(t) in orange, for 8 = 500.

We can now construct an arithmetic by the theoretic-set definition

[2]* [y] = {zxy| zelz],yelyl},

for any operation * € {+, —, x, /}. These are defined by the following equations:

[z] +[y] = [V(z +y), A@+Y)], [2z]-[y] =[V(z-7),AF -y,
[] x [y] = [V (min{zy, 2y, Ty, Ty}), A(max{zy, 27, Ty, Ty})],

o}1] = (o] % |5 | whenever 0. [,

where V and A are respectively the round-down and round-up operators.

The main feature of the arithmetic is that if x € [z],y € [y], then necessarily x * y € [z] » [y] for
any operator . This property is fundamental in order to ensure that the true result is always contained
in the interval we get from the computer. This process is completely rigorous and independent of the
architecture or the software of the computer. We can also define functions of intervals f([z]). For example,
if f([z]) = [z] x [z] + [=], then f([-1,2]) = [-1,2] x [-1,2] + [-1,2] = [-2,4] + [-1,2] = [-3,6].

Early computer-assisted proofs were constrained to finite dimensional problems [27, 54]; however, recent
advances in computational power have enabled the methods to be adapted to infinite dimensional problems
(PDE). In the context of fluid mechanics we highlight the following equations: De Gregorio [14], SQG [13],
Whitham [26], Muskat [33, 22], Kuramoto-Shivasinsky [3, 28, 30, 29, 59, 60], Navier-Stokes [56, 2], Burgers-
Hilbert [24] or the Hou-Luo model [15]. We also refer the reader to the books [48, 55] and to the survey [32]
and the book [49] for a more specific treatment of computer-assisted proofs in PDE.

In the paper [7], interval arithmetic is used to check the validity (positivity conditions) of the barriers
and to compute a few thousands of coefficients of the Taylor expansion at P, (the latter is only used for

the case v = I). We performed the rigorous computations using the Arb library [35] and specifically its C
5
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implementation. The positivity checks involve using a branch and bound algorithm to evaluate the open
conditions mentioned in the paper. We start by enclosing the condition within a box in a parameter space
(which is at most 2-dimensional). If the enclosure provides a definite sign, we accept or reject it based on
whether the sign matches the desired result. If the enclosure does not provide a sign, we split the box in half
along one of the dimensions and repeat the process. This procedure continues until the maximum length in
any dimension of the box reaches a tolerance of 10719, at which point the program will fail. In our case, this

tolerance was never reached.
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