
1.  Introduction
Resonant scattering of energetic electrons from Earth's radiation belts by electromagnetic whistler-mode waves is 
the main driver of energetic electron precipitation from the outer radiation belt to the atmosphere (e.g., W. Li & 
Hudson, 2019; Millan & Thorne, 2007; Thorne et al., 2021). Statistical analyses of observed wave characteristics 
(e.g., O. V. Agapitov et al., 2013; W. Li, Thorne, Bortnik, Shprits, et al., 2011; Meredith et al., 2012), coupled 
with global numerical simulations of resonant scattering, can provide estimates of long-term electron losses due 
to precipitation (e.g., Hsieh et al., 2022; Mourenas et al., 2014; Ma et al., 2018, 2020; Orlova et al., 2016, and 
references therein). Conversely, case studies using equatorial spacecraft observations of wave and plasma char-
acteristics specific for each event can describe well the dynamics of resonant electron fluxes, which are often 
localized (e.g., O. V. Agapitov et al., 2015; Capannolo et al., 2019; Foster et al., 2014; Gan et al., 2020). Neither 
statistical nor equatorial spacecraft case studies can separate the temporal and spatial (mesoscale, ∼RE at the 
equator) variations of precipitation. However, multi-spacecraft measurements at low altitudes or correlative stud-
ies using low-altitude and equatorial measurements can be used to infer such scales. These two approaches were 
employed to study the most intense but highly transient and localized precipitation events, microbursts (Douma 
et al., 2017; O’Brien et al., 2004), by Shumko et al. (2018) and (e.g., Breneman et al., 2015; Mozer et al., 2018; 
Shumko et al., 2021), respectively. Mesoscale precipitation events, with temporal and spatial scales comparable 
to those of equatorial chorus waves (O. V. Agapitov et  al.,  2017; O. Agapitov, Mourenas, Artemyev, Mozer, 
Hospodarsky et al., 2018), have yet to be investigated with similar methods.

A classical example of dynamic precipitation is the pulsating aurora (Belon et al., 1969; Coroniti & Kennel, 1970; 
Johnstone,  1978; McEwen et  al.,  1981), which is associated with ∼10  keV electron precipitation as a result 
of quasi-periodic whistler-mode (chorus) wave scattering (Kasahara et al., 2018; Nishimura et al., 2010). The 
quasi-periodicity of these wave emissions may be caused by usltra-low-frequency (ULF) waves modulating 
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plasma and energetic electron fluxes around the equator (Bryant et al., 1971; Coroniti & Kennel, 1970; Jaynes, 
Lessard, et al., 2015; W. Li, Bortnik, et al., 2011; W. Li, Thorne, Bortnik, Nishimura, & Angelopoulos, 2011; 
L. Li et al., 2022; Motoba et al., 2013; Watt et al., 2011). Recent optical and low-altitude measurements showed 
that ≲10  keV precipitation forming the pulsating aurora may be accompanied by precipitation of relativistic 
electrons (Miyoshi et al., 2020; Shumko et al., 2021), which makes such a quasi-periodic precipitation pattern 
particularly important in the context of energetic electron losses and altering of atmosphere properties (Miyoshi 
et  al.,  2021). Incoherent scatter radar and ionospheric total electron content also show that ULF-modulated 
precipitation can significantly alter ionospheric conductance, potentially affecting the dynamics of a range of 
magnetosphere-ionosphere current systems and ULF waves (e.g., Buchert et al., 1999; Pilipenko, Belakhovsky, 
Kozlovsky, et  al.,  2014; Pilipenko, Belakhovsky, Murr, et  al.,  2014; Wang et  al.,  2020). Using ground-based 
ULF and equatorial whistler wave observations to characterize precipitation can at most confirm the temporal 
periodicity of its equatorial source, but cannot resolve the spatial periodicity of the precipitation nor the spatial 
periodicity of its equatorial sources. The most promising way to reveal both the temporal and spatial scales of 
electron precipitation patterns is to combine low-altitude, near-equatorial, and ground-based measurements.

In this study we analyze three events of quasi-periodic electron precipitation driven by near-equatorial electron scat-
tering due to whistler-mode waves modulated by compressional ULF waves. We combine ground-based magneto-
meter (GMAG) measurements of ULF waves, low-altitude Electron Losses and Fields Investigation (ELFIN)-A 
and -B (Angelopoulos et al., 2020) measurements of >50 keV electron precipitation, and near-equatorial Time 
History of Events and Macroscale Interactions during Substorms (THEMIS; Angelopoulos, 2008) measurements 
of whistler-mode and ULF waves. Ground-based measurements localize the L-shell and magnetic local time 
(MLT) sector of ULF waves during the entire interval. Multi-spacecraft THEMIS measurements provide us 
with estimates of ULF wavelength (spatial scale), which serve as a good proxy for the spatial periodicity scale 
of whistler-mode wave modulation. Low-altitude ELFIN measurements of quasi-periodic electron precipitation 
show a spatial periodicity similar to the estimated ULF wavelength. Finally, the combination of near-equatorial 
measurements of whistler-mode wave characteristics and background plasma properties provides typical reso-
nant energies of precipitating electrons, which agree well with the precipitating energy spectra in ELFIN 
measurements. In summary, these three selected events confirm that compressional ULF waves can modulate 
whistler-mode waves and result in spatially quasi-periodic precipitation of energetic electrons over a large L-shell 
and MLT domain.

The paper is organized as follows: in Section 2 we describe available data sets and methods of data analysis; in 
Section 3 we describe three events with combined ground-based, THEMIS, and ELFIN measurements; and in 
Section 4 we discuss our results and their possible application in radiation belt modeling.

2.  Spacecraft Instruments and Data Set
Investigation of electron precipitation requires pitch-angle and energy resolved electron distributions within the 
loss cone, which is almost impossible near the equator due to the small loss cone size there (see, e.g., Kasahara 
et al., 2018). However, the much larger loss cone size at low altitudes allows polar-orbiting ionospheric space-
craft to measure trapped and precipitating (those within the loss cone) electron fluxes. In this study, we employ 
energetic (>50 keV) electron precipitation measurements by the low-altitude (∼450 km) twin ELFIN CubeSats 
(ELFIN-A and ELFIN-B), which provide electron pitch-angle distributions between 50 keV and 6 MeV, with 
energy resolution <40%, angular resolution of ∼22.5° and temporal resolution of 2.8s (spin period) (Angelopoulos 
et al., 2020). We use the ratio of jloss (pitch-angle-averaged flux within the loss cone) to jtrap (pitch-angle-averaged 
flux outside the loss cone) to study enhancements of precipitation driven by near-equatorial scattering of ener-
getic electrons by whistler waves (see detailed analysis of ELFIN measurements of whistler-driven precipitation 
events in Artemyev et al. (2021), Mourenas et al. (2022), Tsai et al. (2022), and Zhang, Artemyev, et al. (2022)).

ELFIN measurements of jloss/jtrap are supplemented by ULF wave observations from the THEMIS GMAG 
network (Russell et al., 2008; FYKN, BRW), U.S. Geological Survey's Geomagnetism Program magnetometer 
network (CMO, SHU), AUTUMNX magnetometer network (PUVR), and University of Iceland magnetometer 
(LRV). The main advantage of ground-based observations is the absence of spatio-temporal ambiguity inherent 
in spacecraft measurements. ELFIN flux ratio jloss/jtrap measurements and ground-based ULF observations will be 
compared with equatorial THEMIS (Angelopoulos et al., 2008) measurements of ULF and very low frequency 
(whistler-mode frequency range) fields. The THEMIS fluxgate magnetometer (FGM; Auster et  al.,  2008) 
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provides magnetic field with a 1/128, 1/4 or 3 s (spin period) sample rate 
(depending on availability and choice of data product), whereas the THEMIS 
search-coil magnetometer (SCM; Le Contel et al., 2008) provides <8 kHz 
waveform measurements that are further converted to on-board processed, 
Fast-mode Fast Fourier series, “FFF”, spectra data over 32 or 64 frequency 
bands (Cully et al., 2008).

3.  Analysis of Selected Events
We select three quasi-periodic precipitation events at ELFIN, which are in 
good conjunction with THEMIS, providing equatorial measurements of ULF 
and whistler waves, and with ground-based magnetometers providing meas-
urements of ULF waves. We show detailed analysis of the first event, and 
then reinforce the conclusions using the two other events.

3.1.  Event #1

The first event happened on 17 June 2021. Figure 1 shows the projections of 
THEMIS (three spacecraft, TH-A, TH-D, and TH-E) orbits from 03:30 UT to 

06:00 UT, and the projection of ELFIN-A orbits from 05:32:30 UT to 05:33:30 UT. We also include two ground 
stations (PUVR and LRV) located near the ELFIN-A (EL-A) and THEMIS footpoints.

Figures 2a–2c show the wavelet analysis of the ULF magnetic field component observed by THEMIS-E and two 
ground stations: the parallel (compressional) component is shown for THEMIS observations, and the East-West 
component (corresponding to poloidal oscillations in space) for the ground stations. The ground stations and 
THEMIS-E observed compressional ULF waves with similar frequency ranges, indicating that the same ULF 
waves existed over a large MLT (22-03) and L−shell ∈ [6, 9] domain (L shells here are calculated using the 
T89 model (Tsyganenko,  1989). During this event, THEMIS-E was in fast survey mode (when FFF data is 
available) and SCM measured quasi-periodic whistler wave bursts from 03:30 UT to 04:30 UT at L ∼ 6–9 (see 
Panel (d)). Within the same L-shell range, THEMIS-A and -D also observed similar whistler wave bursts (not 
shown here), consistent with expectation from the ground stations that the periodic whistler emission extended 
over a wide MLT range in space. Panel (e) shows the THEMIS-E whistler wave spectrum (in color) and the 
line-plot (black trace) of the field-aligned magnetic field component variation (δBz = δB‖) of ULF waves between 
∼9–12 mHz. ULF waves in this frequency range are visible in THEMIS-E, consistent with the wave-power in the 
ground-based station measurements (see Panels (a–c)). Figure S1 in Supporting Information S1 further shows 
that ULF waves indeed form a local maximum in the frequency range consistent with the whistler-mode wave 
modulation frequency, that is, despite that the ULF wave spectrum is much broader, the part that modulates 
the whistler-mode waves remains clearly distinguishable from its entire spectrum. There is a reasonably good 
correlation of whistler wave bursts and local δB‖ minima (see expanded view of Panel (e) in Panel (g)). These 
observations are consistent with a scenario of a ULF-wave modulated thermal electron anisotropy, resulting in 
the observed quasi-periodic generation of whistler waves (as previously reported by W. Li, Bortnik, et al., 2011; 
L. Li et al., 2022; Xia et al., 2020; Zhang et al., 2019). Note the adiabatic effect of ULF waves (i.e., betatron 
heating/cooling) on electron distributions would reduce the electron anisotropy around the local plasma density 
enhancements (magnetic field minima), and thus will not generate strong whistler-mode waves (see discussion 
in Watt et al., 2011). However, compressional ULF waves may transport the transversely anisotropic electron 
population trapped within local magnetic field minima (density maxima), and such trapped population will be 
a primary source of whistler-mode wave generation (see discussion in Zhang et al., 2019). Although we mostly 
rely on the latter scenario in our explanation of ULF-modulated whistler-mode waves and electron precipitations, 
alternative or supplementary scenarios (e.g., W. Li, Bortnik, et al., 2011; W. Li, Thorne, Bortnik, Nishimura, & 
Angelopoulos, 2011; Rae et al., 2018; Watt et al., 2011) of ULF-modulated precipitations should also work for 
explanation of quasi-periodic precipitation observed by ELFIN.

Figure 1.  Projection of Electron Losses and Fields Investigation (ELFIN)-A 
orbits and Time History of Events and Macroscale Interactions during 
Substorms orbits to the ground, and the location of two ground stations on 17 
June 2021, from 03:30 UT to 06:00 UT. The red trace along ELFIN-A orbit 
shows the sub-interval (05:32:30 UT to 05:33:30 UT) analyzed in Figure 3. 
The dots mark the start time of each orbit.
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To determine the typical energies of electrons precipitated by the observed 
quasi-periodic whistler waves, we calculate the mean wave frequency 〈f〉, and 
the frequency width Δf, using the following equations:

⟨�⟩ =
∫ ���∕2
��ℎ

�2
�(� )���

∫ ���∕2
��ℎ

�2
�(� )��

�

Δ� =
⎛

⎜

⎜

⎝

∫ ���∕2
��ℎ

�2
�(� )

(

� 2 − ⟨�⟩2
)

��

∫ ���∕2
��ℎ

�2
�(� )��

⎞

⎟

⎟

⎠

1∕2

�

where 𝐴𝐴 𝐴𝐴
2

𝑤𝑤 is the wave intensity at a specific frequency, flh is the lower hybrid 
frequency, and fce is the electron cyclotron frequency. Figure 2d shows that 
the mean wave frequency 〈f〉 (depicted by the red crosses), is between 200 
and 800 Hz (0.2–0.4 fce) and decreases with increasing L-shell. We calcu-
late the cyclotron resonance energy of electrons for field-aligned whistler 
waves at the estimated mean frequency, 〈f〉, and at the minimum frequency, 
fmin = 〈f〉 − Δf, using the equation (Kennel & Petschek, 1966):
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where B is the magnetic field strength, estimated using the T89 
(Tsyganenko,  1989) model scaled at the equatorial field intensity from 
THEMIS-E measurements, and ne is the electron density from THEMIS-E 
equatorial measurements assumed to be constant along magnetic field lines. 
As the resonance energy increases with latitude, it is important to constrain 
waves to a reasonable latitudinal extent: |λ| ∼ 30° is used here as derived from 
the empirical whistler wave model (see O. V. Agapitov, Mourenas, Artemyev, 
Mozer, Bonnell et al., 2018; Meredith et al., 2001; Meredith et al., 2003) at 
the MLT sector of our observations. The resultant resonance energies are in 
the range of ∼50–300 keV, showing that the observed whistlers can provide 
scattering and lead to precipitation of electrons in this energy range. It is 
worth noting that for the observed fpe/fce ∼ 6–12, typical electromagnetic ion 
cyclotron (EMIC) waves can only lead to the loss of >1 MeV electrons (e.g., 
Kersten et al., 2014), and therefore precipitation of 100 s of keV electrons 
should be mostly attributed to scattering by whistler waves. We anticipate 
that the quasi-periodic whistler waves, modulated by ULF waves, will lead to 
quasi-periodic energetic electron precipitation.

To test this hypothesis, we examine ELFIN-A observations of precipitat-
ing electron fluxes jloss, trapped electron fluxes jtrap, and their ratio jloss/jtrap 
(Figure 3). At the same L-shell and MLT sector where THEMIS observed 
ULF-modulated whistler waves, ELFIN-A indeed captured quasi-periodic 
precipitation of ∼50–200  keV electrons with average peaks of jloss/
jtrap  ≥  0.3, indicative of fast scattering caused by whistler waves. Such a 

precipitating-to-trapped flux ratio corresponds to the near-loss-cone pitch-angle diffusion rate Dαα ∼ 10 −4 s −1 
(W. Li et al., 2013; Mourenas et al., 2021). For the L-shell range and fpe/fce ratio from Figure 2 such diffusion rate 
corresponds to whistler-mode wave amplitudes at ∈ [50, 150]pT (see, e.g., Figures 14 and 21 in Ni et al., 2016). 
The whistler wave amplitudes measured by THEMIS during this interval agree well with this range (see more 
examples of comparison of ELFIN precipitation rates and equatorial whistler-mode wave intensity measurements 
in Tsai et al., 2022; Mourenas et al., 2022). Note that moving along a low-altitude orbit, ELFIN crosses the entire 
L-shell range of precipitation within a couple of minutes, and thus the periodicity at ELFIN observations repre-
sents a spatial periodicity of the scattering process at and near the equator.

Figure 2.  Observations of ultra-low-frequency (ULF) and whistler waves. 
Wavelet power spectra of the East-West component magnetic field at two 
ground stations (Panels a and b) and of the parallel magnetic field component 
at TH-E (Panels c and d, covering the ULF and very low frequency (VLF) 
range respectively). Panels (a–c) also demarcate, in white rectangles, 
the ULF band and time range of enhanced magnetic field fluctuations of 
interest. Panel (d) denotes peak whistler wave power in red crosses at 1 min 
cadence. Over-plotted in solid and dashed lines are fce and 0.5fce. Panels (e 
and f) show the same overview of the VLF waves at TH-E, containing the 
same information as Panel (d), except only showing intensities greater than 
10 −7 nT 2/Hz. Overplotted on them are the band-pass filtered waveforms of 
δB‖ of ∼10 mHz ULF waves, and fpe/fce, respectively. Panel (g) is a zoomed-in 
view, in time, of Panel (e).
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It is evident that these periodic jloss/jtrap peaks contribute to most of the precip-
itating flux observed by ELFIN at L = 6–9. This indicates that such peri-
odic precipitation can play a major role in energetic electron losses during 
intervals with ULF-modulated whistler bursts. The highest energy channel 
showing the periodic jloss/jtrap peaks is around 200 keV (Figure 3), located in 
Figures 3b and 3c between the upper (black crosses) and mean (white crosses) 
resonance energies corresponding to 〈f〉 and fmin, respectively. Thus, ELFIN 
measurements confirm that quasi-periodic whistler wave bursts observed by 
THEMIS are indeed responsible for quasi-periodic electron precipitation.

However, the periodicity seen by THEMIS is temporal, whereas the perio-
dicity seen by ELFIN is spatial. ULF waves observed by THEMIS extend 
over a large L-shell and MLT sector (as revealed by ground-based obser-
vations), and thus ELFIN likely measures precipitation from spatially peri-
odic whistler bursts with the periodicity comparable to ULF wavelengths. 
To confirm this, we compare the spatial scale of periodic precipitation peaks 
(δL) and our estimate of ULF wavelengths δλ. ELFIN moves along its orbit 
at a nearly constant geomagnetic longitude. Therefore, when mapped to the 
equator, ELFIN's trajectory, and the measured quasi-periodic precipitation, 
correspond approximately to a radial sampling of the equatorial magneto-
sphere. The spatial periodicity (δL) of the precipitation can be estimated 
by calculating the spatial separations between the peaks of jloss/jtrap. For 
three observed jloss/jtrap peaks, the average spatial scale is 0.85  ±  0.28RE 
(Figure  3e, where ELFIN time-series of precipitation were converted to 
L-shell profiles of precipitation using the T89 model). If the precipitation 
is driven by ULF-modulated whistler waves, then this δL should be compa-
rable to the ULF wavelength δλ in the radial direction (or, more precisely, 
the ULF field δB‖ periodicity in the radial direction). The wavelength in the 
radial direction can be calculated by using cross-correlation analysis on the 
ULF fields measured from two THEMIS spacecraft at similar MLT (mostly 
separated in the radial direction) to obtain the phase difference for the ULF 
wave. If the two spacecraft are radially separated by a distance r, and δB‖ 
(at a particular frequency f) at the two spacecraft has a phase difference δϕ, 
then the wavelength can be estimated as λ/2π = r/δϕ. The phase difference 
between two spacecraft can be calculated using δϕ  =  2πδt/T, where δt is 
the lag time as inferred from the peak cross-correlation between the ULF 
wave field measured at the two spacecraft and T is the period of the wave. 
We use THEMIS-A and THEMIS-E measurements separated mostly along 
the radial direction over distances comparable with the expected ULF wave-
length. We examined the phase difference of 9–12 mHz ULF waves between 
THEMIS-A and THEMIS-E (the radial distance is 0.21RE); Figure 3f shows 
that the cross-correlation peaks at a lag time of δt ∼ 26.5  s (the compari-
son of observed ULF waveforms is shown in Supporting Information S1). 
The corresponding wavelength is δλ  ∼  0.78RE, which is very close to the 
δL ≈ 0.85 ± 0.28RE derived above from ELFIN measurements. These spatial 
dimensions are consistent with past studies of ULF-induced precipitation 
(e.g., Baddeley et al., 2017), and provide further support for the idea that the 
periodic precipitation is driven by ULF-modulated periodic whistler waves.

3.2.  Event #2

The second conjunction event occurred on 13 May 2021. Figure 4 shows the orbit projections of THEMIS-A, -D, 
and -E in the northern hemisphere from 17:00 UT to 19:00 UT, and the ELFIN-B orbit projection from 17:12 UT 
to 17:15 UT. Two ground stations (BRW and FYKN) were located near the ELFIN-B and THEMIS footpoints 
at the time. The ground stations and three THEMIS spacecraft observed ULF waves over a similar frequency 

Figure 3.  Electron Losses and Fields Investigation-observed trapped electron 
flux jtrap (a), precipitating flux jloss (b), and the ratio jloss/jtrap (c and d, in 
spectral- and line-plot format respectively). Black and white crosses in Panels 
(b and c) show the upper and mean resonance energy of the observed whistler 
waves (see text for details). (e) The average jloss/jtrap of the first four energy 
channels. (f) Cross-correlation between the ultra-low-frequency wave field 
from Time History of Events and Macroscale Interactions during Substorms-A 
(THEMIS-A) and THEMIS-E as a function of lag time.
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range (Figures  5a–5c). We are mostly interested in ULF waves  from 3 to 
5  mHz (depicted by the rectangle in Figure  5c), because THEMIS-E 
observed quasi-periodic whistler wave bursts (from 17:00 UT to 19:00 UT, 
see Figure 5d) modulated at a frequency ∼4 mHz; see Figure 5e for the corre-
lation of the peaks of whistler wave intensity and δB‖ of compressional ULF 
wave component band-pass filtered at 3 − 5 mHz (see Figure S1 in Support-
ing Information  S1 for comparisons of the ULF spectrum and spectrum 
of the whistler-mode wave intensity). The whistler waves' mean frequency 
increases from 150 to 700 Hz (0.1–0.2 fce) as THEMIS-E moves to lower 
L-shells. Such whistler waves can resonate with ∼50–1,000 keV electrons 
for the observed fpe/fce ∼ 6–20 (see Figure 5f). Note that for such a low fpe/fce, 
we can ignore the contribution of EMIC waves to the scattering of ≲1 MeV 
electrons (Summers et al., 2007).

Around 17:13 UT, ELFIN-B traversed the same L-shell and MLT region 
where THEMIS captured quasi-periodic whistler waves. ELFIN-B observed 
strong bursts of electron precipitation with the precipitating to trapped flux 
ratio reaching (or even slightly exceeding) one for 10–100  s of keV elec-
trons (see Figures 5h–5i). The periodic peaks of jloss/jtrap are observed up to 
∼500–600 keV. As in the previous event studied, this energy range is consist-
ent with the resonance energies of electrons for the observed whistler waves 
(with an assumption of wave propagation up to ∼30° of magnetic latitude; 
the typical latitudinal spread of whistler waves at this MLT sector, see O. 
V. Agapitov, Mourenas, Artemyev, Mozer, Bonnell et  al.,  2018; Meredith 

et al., 2001; Meredith et al., 2003). Within the quasi-periodic precipitation, ELFIN also observed spin-resolution 
bursts with jloss/jtrap ≥ 1 up to 600 keV, around the mean resonance energies estimated for THEMIS measurements 
of whistler waves and background plasma. These are likely very short, microburst-like precipitation lasting less 
than one spin of ELFIN (see detailed analysis of such microbursts observed by ELFIN in Zhang, Angelopoulos, 
et al. (2022)). Miyoshi et al. (2020) and Shumko et al. (2021) previously reported that relativistic microbursts may 
be embedded into quasi-periodic precipitation of low-energy (<50 keV) electrons. Our observations of strong 
precipitation at the minimum detectable energy (≈50 keV), are suggestive that precipitation extends to <50 keV 
and support the idea that <50 and >500 keV losses can occur simultaneously. Furthermore they indicate that such 
broad energy precipitation can occur during ULF-driven, quasi-periodic precipitation.

Figure 5k marks the local precipitation maxima (peaks) in the plot of jloss/jtrap as a function of L. Only peaks 
with jloss/jtrap > 0.3 have been considered. The spatial periodicity of these peaks is δL = 0.5 ± 0.17RE. The phase 
difference of 3–5 mHz ULF waves between THEMIS-A and THEMIS-E using the method described for Event 
#1 (see Figure S2b in Supporting Information S1) results in an inferred equatorial ULF wavelength of 0.62RE, 
approximately in the radial direction, which is close to the δL derived from ELFIN measurements.

3.3.  Event #3

The third event occurred on 22 October 2021. Figure 6 shows the orbit projections of THEMIS from 10:00 UT 
to 12:00 UT and the ELFIN-A orbit projection from 11:48 UT to 11:51 UT. THEMIS-E observed quasi-periodic 
whistler waves modulated by 10–20 mHz compressional ULF waves during 10:20 UT to 10:50 UT (Figure 7c). For 
this event, THEMIS and ELFIN footpoints in the north hemisphere are located near MLT = 23. No ground-based 
stations are available in the same MLT, however, ground-based stations (SHU and CMO) at MLT = 0 − 1 detected 
the same, 10–20 mHz frequency ULF wave Figures 7a and 7b), therefore the ULF waves covered a large MLT, 
L-shell domain. ELFIN-A observed quasi-periodic electron precipitation within L ∈ [5.5, 7.5] (corresponding 
to whistler wave bursts observed by THEMIS) with δL = 0.33 ± 0.045 (δL is the average spatial scale between 
the precipitation peaks shown in Figure 7k). The precipitating to trapped flux ratio of 10–100 s of keV electrons 
exhibits peaks at around 0.1–0.3. The highest energy channel showing the periodic peaks, ∼300 keV, is between 
the upper and mean resonance energies estimated for THEMIS measurements of whistler waves using the local 
plasma density (assumed to be the same as at the equator). The wavelength of the 10–20 mHz ULF waves (esti-
mated by comparing THEMIS-A and THEMIS-E ULF measurements) is δλ ∼ 0.27RE (the ULF fields are shown 

Figure 4.  Projection of Electron Losses and Fields Investigation (ELFIN)-B 
and Time History of Events and Macroscale Interactions during Substorms 
orbits to the ground, and the location of two ground stations on 13 May 2021, 
from 17:00 UT to 19:00 UT. The red trace along ELFIN-B's orbit shows the 
sub-interval (17:12:30 UT to 17:14:40 UT) analyzed in Figure 5. The dots 
mark the start time of each orbit.
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in Figure S2c in Supporting Information S1), consistent with the spatial periodicity of electron precipitation. Both 
Events #2 and #3 support the hypothesis that the ULF-modulated periodic whistler waves lead to the observed 
periodic precipitation.

4.  Discussion and Conclusions
Compressional ULF waves are known to modulate equatorial electron populations causing whistler-mode wave 
generation (W. Li, Thorne, Bortnik, Nishimura, & Angelopoulos, 2011; Watt et al., 2011; Xia et al., 2016, 2020; 
Zhang et al., 2019), resulting quasi-periodic electron precipitation (Kasahara et al., 2018; Nishimura et al., 2010). 
Such precipitation is not only modulated by ULF waves but actually generated by such waves: the ULF waves 
can drive marginally unstable plasmas of the inner magnetosphere to whistler-mode instability which can cause 
subsequent electron precipitation (Xia et al., 2016; Zhang et al., 2019). The subject ULF waves are typically 
generated at the magnetopause by solar wind transients and propagate toward the inner magnetosphere (e.g., O. 
V. Agapitov et al., 2009; Hartinger et al., 2013, 2014; Hwang & Sibeck, 2016). Both the ULF waves (Di Matteo 
et al., 2022; Elsden et al., 2022; Klimushkin et al., 2019; Wright & Elsden, 2020) and the correlated whistler-mode 
waves (Zhang et al., 2020) have been observed to extend over a large L-shell and MLT range. However, the effi-

Figure 5.  Observations of ultra-low-frequency (ULF) and whistler waves. East-West component magnetic field at two ground stations (Panels a and b) and of the 
parallel magnetic field component at TH-E (Panels c and d, covering the ULF and very low frequency (VLF) range respectively). Panels (a–c) also demarcate, in 
white rectangles, the ULF band and time range of enhanced magnetic field fluctuations of interest. Panel (d) denotes peak whistler wave power in red crosses at 1 min 
cadence. Over-plotted in solid, dashed, and dashed-dotted lines are fce, 0.5fce, and flh, respectively. Panels (e and f) show the same overview of the VLF waves at TH-E, 
containing the same information as Panel (d), except only showing intensities greater than 10 −7 nT 2/Hz. Overploted on them are the band-pass filtered waveforms of δB‖ 
of ∼4 mHz ULF waves, and fpe/fce, respectively. The vertical red line indicates the time of Electron Losses and Fields Investigation (ELFIN)-B pass. Panels (g–i) show 
ELFIN observations of trapped electron flux jtrap, precipitating flux jloss, and the ratio jloss/jtrap, respectively. Black and red crosses show the upper and mean resonance 
energy of whistler waves. Panel (j) is the same information as Panel (i) except only for the four lowest energies, with the ratios depicted as line-plots. Panel (k) is the 
average jloss/jtrap of the first four energy channels.
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Figure 6.  Projection of Electron Losses and Fields Investigation (ELFIN)-A orbits and Time History of Events and 
Macroscale Interactions during Substorms orbits to the ground, and the location of two ground stations on 22 October 2021, 
from 10:20 UT to 10:50 UT. The red trace along the ELFIN-A orbit projection shows the sub-interval (11:48:50 UT to 
11:49:40 UT) analyzed in Figure 7. The symbols mark the start time of each orbit.

ELFIN-A
TH-A
TH-D
TH-E
Ground station CMO
Ground station SHU

0 MLT

22 MLT

2 MLT

Figure 7.  Ultra-low-frequency wavelet spectra at two ground stations and Time History of Events and Macroscale Interactions during Substorms-E (THEMIS-E), 
spectra of whistler waves at THEMIS-E, and electron precipitation observed at Electron Losses and Fields Investigation-A, in the same format as Figure 5.
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ciency of electron precipitation by such ULF-driven whistler-mode waves (e.g., the precipitating electron energy 
range, flux magnitude and net contribution to the ionospheric energy input) cannot be reliably determined from 
equatorial spacecraft measurements alone. In this study we use low-altitude observations of such precipitation in 
conjunction with ground based and equatorial measurements of the ULF and whistler waves to show that during 
three events:

•	 �Electron precipitation exhibits spatial periodicity (in L-shell) with a scale comparable to that of equato-
rial ULF wavelengths. ULF waves and the associated whistler-mode wave driven precipitation extend over 
L-shells from the plasmasphere to the magnetopause (in agreement with Sandhu et al. (2021), Wright and 
Elsden  (2020), and Zhang et al.  (2020)). ULF waves cause spatially and temporally periodic modulations 
of whistler-mode waves, and lead to the subsequent periodic scattering of energetic electrons across a wide 
L-shell region. Such modulated scattering and precipitation are expected over the entire MLT region where 
compressional ULF waves are sufficiently intense to modulate whistlers.

•	 �The energy of the precipitating electrons can range from below the low energy limit of the ELFIN instrument 
(50 keV) to upwards of 100 keV, to as high as ∼1 MeV. The upward limit is consistent with the estimated 
maximum resonance energy of the observed whistler-mode waves, for the observed equatorial plasma condi-
tions, and empirical constraints on the wave distribution along magnetic field lines (see O. V. Agapitov, 
Mourenas, Artemyev, Mozer, Bonnell et al., 2018). This energy range of precipitation covers the entire radi-
ation belt “seed” electron population, and extends upwards into the low-energy portion of radiation belt elec-
trons (Boyd et al., 2018; Jaynes, Baker, et al., 2015; Turner et al., 2021).

•	 �The observed quasi-periodic precipitation of ∼500  keV-1 MeV electrons which is squarely attributed to 
quasi-periodic whistler-mode waves, can only be the result of resonance at middle to high magnetic latitudes 
(where the local fpe/fce can be sufficiently low). For the waves to propagate to such high latitudes (along the 
field line) without becoming oblique and Landau-damped by the thermal electrons, it must be that they are 
ducted (see discussion in Artemyev et al., 2021) by plasma density gradients (e.g., Chen et al., 2021; Hanzelka 
& Santolík, 2019; Streltsov & Bengtson, 2020). The ducts themselves must be also be set up by the compres-
sional character of the ULF waves, since the observed relativistic electron precipitation exhibits the spatial 
structure of the ULF waves.

These results confirm the important role of ULF waves in precipitating not only auroral (<10 keV) electrons 
(Kasahara et al., 2018; Nishimura et al., 2010), but also energetic (∼100 keV) and even relativistic (>500 keV) 
electrons. Therefore, whistler-mode waves generated by ULF-modulated thermal electron anisotropy can contrib-
ute significantly to radiation belt dynamics. The generation of whistler-mode waves by ULF-wave modulation 
of the plasma sheet electrons is very different from the classical mechanism of whistler-mode wave genera-
tion by electron injections during substorms (e.g., Fu et al., 2014; Tao et al., 2011; Thorne et al., 2010). Thus, 
the electron precipitation discussed herein does not necessary coincide with geomagnetic activity associated 
with substorms (identified using auroral electrojet indices AE and AL). Such a mechanism of energetic electron 
precipitation during instantaneously low AE intervals can still significantly deplete the remnant radiation belts 
that may have been built up by prior activity. Yet, this mechanism may be underestimated or completely absent in 
models of inner magnetosphere dynamics and magnetosphere-ionosphere coupling. While ULF waves can also 
be generated by substorm-time injections (e.g., Liu et al., 2017; Runov et al., 2014), magnetopause buffeting by 
solar wind pressure variations and by ion foreshock transients (e.g., Hartinger et al., 2013; Hartinger et al., 2014; 
Hwang & Sibeck, 2016) is thought to result in the largest amplitude ULF waves (e.g., Di Matteo et al., 2022). 
Examination of a wider variety of events using the methods presented herein can determine how the spatial scale 
of ULF-modulated precipitation varies according to the ULF wave driver. Future parameterization of ULF-driven 
whistler-mode waves and inclusion of this wave population in radiation belt models can improve our understand-
ing of solar wind transients as a driver of electron precipitation, through ULF wave generation at the dayside 
magnetopause and subsequent whistler wave generation as ULF waves propagate inward as well as toward the 
flanks.

Data Availability Statement
ELFIN data is available at https://data.elfin.ucla.edu/. THEMIS data is available at http://themis.ssl.berkeley.edu. 
Data was retrieved and analyzed using SPEDAS V4.1, see Angelopoulos et al. (2019).
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