
Cluster Amplitudes and Their Interplay with
Self-Consistency in Density Functional Methods

Greta Jacobson,[a,b] Juan M. Marmolejo-Tejada,[a] Martín A. Mosquera,*[a]

Density functional theory (DFT) provides convenient elec-
tronic structure methods for the study of molecular sys-
tems and materials. Regular Kohn-Sham DFT calculations
rely on unitary transformations to determine the ground-
state electronic density, ground state energy, and related
properties. However, for dissociation of molecular systems
into open-shell fragments, due to the self-interaction error
present in a large number of density functional approxima-
tions, the self-consistent procedure based on the this type
of transformation gives rise to the well-known charge de-
localization problem. To avoid this issue, we showed pre-
viously that the cluster operator of coupled-cluster theory
can be utilized within the context of DFT to solve in an
alternative and approximate fashion the ground-state self-
consistent problem. This work further examines the appli-
cation of the singles cluster operator to molecular ground
state calculations. Two approximations are derived and ex-
plored: i), A linearized scheme of the quadratic equation
used to determine the cluster amplitudes, and, ii), the ef-
fect of carrying the calculations in a non-self-consistent field
fashion. These approaches are found to be capable of im-
proving the energy and density of the system and are quite
stable in either case. The theoretical framework discussed
in this work could be used to describe, with an added flex-
ibility, quantum systems that display challenging features
and require expanded theoretical methods.

Introduction
Electronic structure methods predict a very large number
of measurable quantities that are used to understand, char-
acterize, and optimize chemical compounds and materials.
Quantum mechanics is the foundation upon which algo-
rithms are designed and applied to compute electronic and
structural properties. From a fundamental standpoint, quan-
tum mechanics states that with a complete knowledge of the
wave function of the system one can thus be able to deter-
mine all the information about the system of interest. For
computational efficiency, however, density functional the-
ory (DFT) serves as an alternative to pursue such goal. In
DFT one the primary objectives is the calculation of the
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electronic density of the system, as opposed to the full wave
function of all the electrons. Although it is common to
separate both, wave-function theory (WFT) and DFT, as
separate fields, it can be argued that both are intrinsically
connected, especially from the algorithmic point of view.

DFT methods have been formulated on the basis of phys-
ical understanding of model systems and small molecules. A
notable example is the electron gas, which in many ways has
led to functional components that to date still remain an
important part of a very large number of density functional
approximations (DFAs). These functionals are available for
different energy “pieces” such as the kinetic, exchange, cor-
relation, and van der Waals energies. The kinetic energy is
known to be the most challenging energy to be expressed
explicitly as a density-functional. For this reason, Kohn-
Sham (KS) DFT [1] is the most common theory within DFT
that is utilized for practical calculations and to derive con-
cepts. [2,3] As KS-DFT uses single-electron orbitals to de-
termine a kinetic energy. As is well known, even though
KS-DFT practical calculations perform well for determining
properties such as molecular geometries, and optoelectronic
properties of a very large number of compound types, it
is difficult for transition-metal systems [4], bond-breaking [5],
and charge-transfer excitations [6], among others, where er-
roneous charge delocalization [7–10] is a main manifestation
of these adverse effects.

Extended DFAs that are free of incorrect charge delocal-
ization should eliminate the main cause for such adverse ef-
fect, the self-interaction error [11–14]. Additionally, improved
methodologies must also come with relatively low computa-
tional costs. Motivated by these considerations, and fueled
by advances in machine learning and the premise of new
generation of computing technologies (classical and quan-
tum), theoretical methods are being advanced by the sci-
entific community, with the goal of extending the appli-
cability of DFT methods [15–17]. These extensions include
the development of force fields, which are creating oppor-
tunities for detailed studies of systems at the mesoscopic
scale [18]. For example, artificial neural network (ANN) al-
gorithms have been used to generate density functional ap-
proximations [19,20], and have been able to eliminate charge
delocalization errors. On the other hand, ANNs also have
led to both transferable and specific force fields. This also
includes ANNs being used extensively in materials discov-
ery and properties prediction [21–23]. Machine-learned in-
teractomic potentials, which are tailored for a particular
system of interest demonstrate quite appealing theoretical
prospects for modeling mesoscale phenomena [24–30].

From a foundational perspective, the elimination of charge
delocalization still remains a long sought goal, where theo-
retical tools are still the subject of continued developments.
This problem not only manifests in DFT development, but
also in WFT research. For example, it is known that there
are dynamically correlated post-Hartree-Fock methods that
can also cause issues with size-consistency, whereas the well-

1



known exponential ansatz of WFT, in conjunction with spin-
symmetry breaking, offers a theoretically sound route to
restore size-consistency (which implies size-extensivity as
well). We showed previously that this exponential operator,
which in turn is determined by what is known as the “cluster
operator” [31–40], can also prevent undesired charge delocal-
ization in DFT calculations [41]. The cluster operator in the
ground-state case is limited in our calculations to single-
electron transitions, as it displays a high degree of accuracy
at this level of excitation. The cluster amplitudes that are
used to construct the exponential operator are derived as the
solution of a quadratic equation, which is solved in an itera-
tive fashion. Our proposed method, denoted as “eXp” (due
to its relying on the exponential operator), predicted with
physical consistency the binding energy curves of classical
systems such as di-hydrogen, lithium hydride, and hydro-
gen fluoride, but we also show other cases where the eXp
method functions as an alternative to the standard unitary
method of KS-DFAs, and we suggested they are also com-
patible with the double-hybrid functional approach [42–44].
These previous findings motivate the present work, where
we further explore the eXp method under its linearized ver-
sion, which simplifies in a very accurate way the determi-
nation of the cluster amplitudes and the exponential opera-
tor. We also examine non-self-consistent field calculations,
where the single-particle Hamiltonian is determined by the
Hartree-Fock density, which is used to estimate directly the
cluster operator and its conjugate, the “lambda” operator.
In this study we find that the linearized eXp method per-
forms quite well with excellent agreement with respect to
the full quadratic scheme in both cases, the self-consistent
and the non-self-consistent ones. The eXp technique is ap-
plied to a couple of known cases of severe charge delocaliza-
tion (or strong self-interaction), with the goal of eliminating
it: The positively charged neon dimer, Ne+2 , and lithium-
fluoride, LiF. In addition, our methods are applied to a set
of molecules at their minimum-energy geometries, where we
show that the linearized eXp method performs quite simi-
larly as the quadratic version in self-consistent-field (SCF)
and non-self-consistent-field (NSCF) calculations. However,
the NSCF computations, as expected, are less accurate that
the SCF ones, but can be considered for calculations where
computational acceleration is needed. The simulations con-
sidered in this work are based on a single-particle Hamil-
tonian, but they are also applicable to Hamiltonians that
include two-body interactions, such as those used in double-
hybrid approaches.

Theory
Determining ground-state properties in KS-DFT begins with
the calculation of the KS Slater determinant |Φ⟩ and sub-
sequently the electronic energy. The wave function |Φ⟩ is
computed through the minimization of an auxiliary single-
particle energy, which depends on the single-particle Hamilo-
nian, or KS Fock operator. We denote this density-dependent
operator as f̂ . The energy function that is minimized in KS-
DFT to obtain the orbitals is then ⟨Φ|f̂ |Φ⟩, and it leads to
the standard KS equations where the single particle orbitals
are constructed through diagonalization of the KS Fock ma-
trix. The object f̂ is the sum of the kinetic, electron-nucleus,
exchange-correlation (XC), and Hartree contributions.

As an alternative to the standard procedure mentioned
above, we stationarize the single-particle energy with re-

spect to cluster operators, where the reference is a Hartree-
Fock (HF) wave function, which we denote as Ψ0. This
wavefunction, as expected, is constructed with occupied or-
bitals in the HF molecular orbital basis set. This is a rele-
vant detail, as our calculations rely entirely on such molecu-
lar basis set. The HF wavefunction can either be a restricted
or unrestricted reference. We introduce an auxiliary right-
handed wave function of the form |ΥR⟩ = exp(+t̂)|Ψ0⟩, and
the left conjugate ket ⟨ΥL| = ⟨Ψ0|(1 + Λ̂) exp(−t̂), where t̂
and Λ̂ are the cluster operators. The function to stationar-
ize is ⟨ΥL|f̂ |ΥR⟩, so it leads to the auxiliary single-particle
energy as:

Es = stat.
t̂,Λ̂
⟨Ψ0|(1 + Λ̂)f̄ |Ψ0⟩ (1)

where the symbol f̄ denotes the transformed operator
exp(−t̂)f̂ exp(+t̂). We use this notation for other oper-
ators too; so if Ω̂ is some arbitrary operator, then Ω̄ =
exp(−t̂)Ω̂ exp(+t̂). The cluster operators that we are inter-
ested in have the form t̂ =

∑︁
ai t

a
i â

† î, and Λ̂ =
∑︁

ai Λ
a
i î

†
â.

The indices i and a denote occupied and virtual spin-
orbitals, respectively. By stationarizing with respect to t̂
and Λ̂ it is then implied that one must find, what we regard
as vectors computationally, {tai } and {Λa

i }. This demands
that the derivatives of the function ⟨Ψ0|(1 + Λ̂)f̄ |Ψ0⟩ with
respect to all the elements Λa

i and tai are all zero.
We denote fpq as the matrix element, ⟨χp|f̂ |χq⟩, where

χp is a Hartree-Fock spin-orbital; this implies that fpq can
be non-zero for p ̸= q. We then have that the t-amplitudes
derive from the equation:

0 = fai +
∑︂
b

tbifab −
∑︂
j

taj fji −
∑︂
jb

fjbt
b
i t

a
j (2)

And the Λ-amplitudes are obtained from the linear system
MΛ = −f , where

Mck,ai = Rck,ai −
∑︂
j

taj fjc −
∑︂
b

tbifkbδac (3)

and
Rck,ai = fcaδik − fkiδca (4)

The symbol f represents the Fock matrix as a vector, (f)ai =
fai. We denote the process of determining t through Eq. 2
as the quadratic eXp scheme, or “Q-eXp”. It, Q-eXp, can be
solved using the quasi-Newton method where an estimate to
tai is updated according to the equation:

tai ← tai −
La

i

faa − fii
(5)

Where La
i refers to the right-hand side of Equation 2.

By neglecting quadratic terms in Eq. 2, we obtain the
approximation:

Rt = −f (6)

We refer to this scheme as “L-eXp”. This approximation
requires the solution to a linear system of equations, so
it avoids the need for iterations to find t. On the other
hand, this linear matrix equation can be further reduced
to the simple, approximated, analytical expression: tai =
−fai/(faa − fii), which we used before as a first estimate
to start a the iterative cycle in Q-eXp. The naive compu-
tational scaling of the Q- and L-eXp methods is N4; but
due to their sparsity it is possible to reduce such scaling
through screening, iterative schemes, and/or other related
techniques. In this work we explore the L-eXp and Q-eXp
methods in NSCF and SCF procedures. So NSCF L-eXp,
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for instance, refers to the use of the linearized eXp method,
Eq. 6, where the amplitudes are computed only one time,
and the XC and Hartree potentials are evaluated at the
Hartree-Fock densities; the same applies to NSCF Q-eXp.

Obtain Hartree-Fock wavefunction

(restricted or unrestricted)

Compute cluster amplitudes Determine electronic density 

and DFT Hamiltonian

Energy difference < threshold? SCF calculation?

No

Yes

Calculate/report properties

No

(NSCF)

Yes

(SCF)

L- or Q-eXp

Figure 1. Flow chart summarizing steps carried out in an single-
point calculation based on an eXp method (linear or quadratic). The
cluster amplitudes are determined with respect to the Hartree-Fock
reference and molecular basis.

Given the solution to the above problems the energy is
calculated as:

E = ⟨Ψ0|(1 + Λ̂)e−t̂ĥ0e
+t̂|Ψ0⟩+ EHxc[ρ] (7)

where ĥ0 is the core Hamiltonian (kinetic plus electron-
nuclei attraction energy operators), and ρ(r) = ⟨(1 +
Λ̂)ρ̄(r)⟩. The term EHxc refers to the sum of the Hartree and
XC energies, where the XC energy is approximated with a
DFA. The steps followed to calculate the ground-state en-
ergy, and related properties are summarized in Figure 1. As
usual, in the SCF cycle the electronic density is updated un-
til the energy variation between iterations is below a certain
threshold. In the NSCF approach the cluster amplitudes
are only determined one time, with the Fock operator being
based on the (U)HF electronic density, or density matrix if
the XC functional is hybridized.

An important quantity in our calculation is the funda-
mental energy gap of the system, as our iterations depend on
differences of the type faa−fii, at moderately long distances
a few of these can be close to zero, which cause instabilities.
To eliminate them, we use a regularization scheme in which
the Fock operator is modified by the t cluster amplitudes,
so the new operator is f̂α = f̂ + αt̂, where the regulariza-
tion number α > 0, and the problem is solved with respect
to such single-particle Hamiltonian, otherwise the method-
ology remains the same. In Ref. [41] we show details of this
regularization procedure. For the quadratic method Q-eXp,
in Eq. (5) the difference faa−fii is replaced by faa−fii+α
and the term La

i by La
i +αtai . For the linearized eXp method,

we just add the constant α to all the diagonal elements of the
matrix R. Around minimum-energy, or equilibrium, geome-
tries we do not find a need to use such regularization scheme,
but there are other cases where this is necessary. Regular-
ization is a benign procedure that eliminates instabilities

and is used in standard coupled-cluster [45–48], perturbative
theories [49,50], multireference methods [51], and related the-
ories such as pseudo-potentials and machine-learning.

Computational Details
The calculations presented in this work were run using a se-
ries of python scripts based on the PyQuante suite [52]. The
local spin-density approximation (LSDA) is used in pure
and hybridized forms. Two hybrids of interest are consid-
ered, the “half-and-half” one, consisting of 50 % HF ex-
change, 50 % LSDA exchange, and 100 % LSDA correlation
energies, we refer to this functional as LSDA-H. The second
hybridized functional is denoted as “LSDA-75”, consisting
of 75 % HF exchange, 25 % LSDA exchange, and 100 %
correlation energies. All our bond-dissociation calculations
were performed with the 6-31++G** basis set. The con-
vergence threshold for the (unrestricted) HF calculations is
10−8 au, and for the t-amplitudes in the Q-eXp case 10−6.
Tighter thresholds are possible, but were not needed in our
simulations. The SG-2 grid is used to represent the XC po-
tential and energy-density and to compute the XC energy.
Reference calculations were performed with the Q-Chem
computational chemistry software [53] for the standard KS
calculations with the LSDA-H and -75 functionals, which
are built using its user-defined density-functional interface.
Reference unrestricted coupled cluster singles and doubles
(UCCSD) were also carried out with Q-Chem. For Table 1
shown in next section, the minimum-energy geometries de-
rive from MP2 calculations using aug-cc-pVQZ calculations
that were performed with the NWChem program [54].

Results and Discussion
We begin our discussion with the Ne+2 system. At dissoci-
ation of this diatomic molecule, the unrestricted Hartree-
Fock (UHF) spin-symmetry process yields one atom as be-
ing neutral and the other one with positive charge. How-
ever, with a density functional such as the purely density-
dependent XC LSDA, the energy levels of the atoms display
an undesired behavior from the point of view of spin sym-
metry breaking: The lowest unoccupied p spin-level of the
cation lies below that of the occupied p-shell of the neutral
atom by about 18 eV, so the SCF algorithm will bias the
ground-state minimization toward a charge-transfer configu-
ration (where an electron is shared between the two atoms),
delocalizing the positive charge and unphysically lowering
the energy, as the Ne − Ne+ (neutral-cation) configuration
energy configuration has a higher energy. The eXp method
we propose can eliminate this problem in a pure LSDA
calculation, but it requires strong regularization for mod-
erately long distances between atoms. As mentioned be-
fore, which is well-known in the literature, the cause for
charge delocalization is the self-interaction error. There-
fore, it is possible to add HF exchange until the standard
KS method performs appropriately at dissociation. This
happens, for example, when the amount of HF exchange
is 75 %, as shown in Figure 2.a, where our linearized eXp
method reaches a size-consistent result, as well as the stan-
dard spin-symmetry-broken KS-LSDA-75 method. At this
hybridization strength, however, the binding energy is un-
derestimated with respect to UCCSD, which is more reli-
able in this case. But the L-eXp SCF result follows closely

3



-1.5

-1.0

-0.5

0.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

D
E

 (
e
V

)

R (Angs.)

KS-LSDA-75
L-eXp

UCCSD

-1.2

-0.8

-0.4

0.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

D
E

 (
e
V

)

R (Angs.)

L-eXp-NSCF
L-eXp
Q-eXp

(a) Ne2+ binding energy curve.

(b) NSCF vs SCF methods.

Figure 2. Performance of standard and eXp methods for the binding
energy curve of Ne+2 , where R denotes the internuclear distance: a),
Comparison between a standard hybridized KS-LSDA calculation,
self-consistent linearized eXp, and UCCSD. This curve shows that
the linearized eXp calculation closely follows that of the standard
KS-LSDA hybrid. b), Comparison between linearized and quadratic
self-consistent eXp computations and a linearized non-self consistent
simulation (all with α = 0.1 au). The NSCF calculation works well
at equilibrium, repulsion, and dissociation, with some relatively small
differences otherwise.

the standard KS-LSDA-75. Even at this level of hybridiza-
tion, nevertheless, there are differences in energy level that
are close to zero, when this occurs there are instabilities
in the cluster amplitudes. For this reason, our calcula-
tion, L-eXp, includes a regularization number of 0.1 au. In
previous work [41] we showed these eliminate iterative di-
vergences while maintaining physical consistency with the
parent methods used for comparison. As highlighted pre-
viously, an eXp calculation can proceed in a self-consistent
fashion or not. In Figure 2.b we show that the linear and
quadratic eXp SCF approaches yield very similar results,
whereas the linearized eXp method shows some deviations,
but it remains physically meaningful with respect to the
SCF calculations.

In our spin-symmetry breaking approach, at dissociation
the left and right atomic systems are decoupled, so even
if the energetics are unfavorable for the neutral configura-
tion, a cluster amplitude where charge transfer takes place
is not possible. For this reason, the charge delocalization
is eliminated in the ground-state calculation. An example
of such scenario is the functional we refer to as “LSDA-H”

(50 % HF exchange, 50 % LSDA exchange, and 100 % cor-
relation). Figure 3.a shows that the standard KS-LSDA-H
technique yields a binding energy that is quite low at dis-
sociation, due to the fractional-spin errors in the LSDA-H
functional. The self-consistent linearized eXp method cor-
rects this binding energy curve and ensures that the binding
energy meets physical expectation, where it must tend to
zero, as in the UHF and UCCSD results. As opposed to the
LSDA-75 functional, LSDA-H in combination with L-eXp
overestimates the binding energy around the equilibrium
distance, hence a HF exchange weight between 50 and 75 %
could give a better result for this matter, or a self-interaction
corrected functional such as a Perdew-Zunger GGA. Fur-
ther evidence of recovering size-consistency is provided in
Figure 3.b, where the charge of UHF, L-eXp, and UCCSD
tend to the expected symmetry broken result: one neutral
Ne atom, and one Ne cation. The KS-LSDA-H result is
unable to break the spin symmetry, resulting in the under-
estimation of the binding energy at long interatomic dis-
tances. This molecular system, Ne+2 is challenging because
it displays both charge and spin entanglement, quantum
effects not encoded by conventional density functional ap-
proximations (for other difficult systems, see Ref. [55]). Be-
cause of this, the conventional approximations, even though
give the right charges, predict erroneous energies and den-
sities (although the charges are correct). Spin-symmetry is
consistent with a collapse of the wavefunction at long dis-
tances, hence better energetics, and can serve as a starting
basis for a re-symmetrization (not explored in this work)
consistent with charge and spin entanglement. Despite the
mentioned benefit of spin-symmetry breaking, in a LSDA-H
LR TDDFT (linear response time-dependent DFT) proce-
dure, the state of negative excitation energy associated to
the spurious charge-transfer excitation would return. This is
because of the inherent existence of such state which would
manifest in the LR-TDDFT eigenvalue problem. But for
higher amounts of HF exchange this effect can be elimi-
nated, as discussed next for the LiF system.

We now discuss to the dissociation curve of lithium flu-
oride, which despite its relative simplicity as a diatomic
molecule, it has been an important system in theoretical
chemistry development; there are fluoride systems that are
challenging in DFT method development [55]. The unregu-
larized eXp-based self-consistent method can be unstable at
moderately long distances between atoms, not a full disso-
ciation. To understand an underlying reason for this behav-
ior, separate (non-hybrid) LSDA calculations of the fluorine
and lithium atoms show that the lowest unoccupied orbital
of the F atom, with energy -10.3 eV, lies energetically be-
low the highest occupied spin orbital of the Li atom, which
has an orbital energy of -3.2 eV. Therefore, in case the elec-
tronic interaction is weak, the cluster operator during the
SCF steps will attempt to transfer an electron from lithium
to fluorine (similarly as in the Ne+2 case), as it is favorable
for the sake of minimizing the energy. This in turn causes an
eventual divergence because the system tries to force itself
to be mostly dominated by a charge-transfer state. Such
charge-transfer state of low energy is eliminated by setting
the amount of HF exchange as 75 %, and by employing
the linear or quadratic eXp method. However, at some in-
termediate distances between equilibrium and dissociation
it requires α = 0.2 due to a few energy level differences
(faa − fii) being too close to zero. We employed a simi-
lar value for the hydrogen fluoride in past work, where we
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(a) Ne2+ binding energy curve.

(b) Charge of Ne atoms.
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Figure 3. Binding energy of Ne+2 and its atomic charges computed
with different methods: a), Energies determined by linearized eXp
method (LSDA-H functional), KS LSDA-H, UCCSD, and UHF. b),
Atomic charges of each atom as determined by each method used
in a).

showed, again, that the results remain physically consistent.
Even though not tested in this work because of its unavail-
ability, in our opinion a very appealing improvement in this
direction would be the inclusion of purely density-based self-
interaction corrections.

To obtain a dissociation curve for LiF our method relies
on the UHF reference. At quite long distances, as expected,
the wavefunctions localized correctly. However, examina-
tion of the fully converged UHF solution of LiF reveals a
sudden jump in the value of the ⟨S2⟩ operator. The ground-
state spin-square S2 value is thus non-analytic at a single
point. In standard hybrid KS-LDA calculations this also
introduces a non-differentiable point (or non-unique force
value) in the dissociation curve, as shown in Figure 4.a. In
contrast, however, in an eXp simulation such jump causes
a similar unphysical step in the binding energy curve be-
cause the spin-decomposed exchange energy is sensitive to
sudden changes in the spin-densities, and the solution to
the DFT problem is pursued in a post-HF fashion; in other
words, if the spin-density suddenly changes so could the
exchange energies. This issue may be resolved if S2 is ei-
ther forced to change smoothly, or is maintain fixed. To
achieve this, we perform a fully converged UHF calcula-
tion at a relatively long distance, 8 Å, for example. The

(a) LiF binding energy curve.

(b) Theoretical procedure.
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Figure 4. a), Binding energy curves of lithium fluoride computed
with the linearized NSCF eXp method vs unrestricted standard KS
LSDA-75, including the first excited state for both methods; “EE1”
stands for the first excited state. a) Steps followed to compute
ground- and excited-state energies.

potential energy curve is then scanned by reducing step-by-
step the internuclear distance R, where the UHF is updated
only one time, Figure 4.b. Such procedure enables us to
keep the S2 value of the system nearly constant. This gives
a symmetry-broken reference wave function in which each
atom remains nearly neutral. Around the equilibrium dis-
tance of the system such reference wavefunction does not
correspond to the HF wavefunction of the system. We
therefore let the algorithm update the t amplitudes, but
in the linear-response TDDFT step, we include a contribu-
tion from the symmetry-broken reference of the system; such
change only requires a minor modification to the algorithms.
Hence, the LR TDDFT solutions produce both the ground
and excited states of the system. In our algorithm then, the
LR TDDFT eigenvalues are given with respect to the refer-
ence. An auxiliary wave function in our methodology is of
the form |ΨI⟩ = (XI

0 +
∑︁

ai X
I
aiâ

† î)et̂|Ψ0⟩, where Ψ0 is in
this case a NSCF UHF wavefunction, and XI = (XI

0 , {XI
ai})

is the so-called excitation vector corresponding to state I,
which can either be the ground or an excited state. The
energies {ΩI} and vectors XI with respect to the reference
are found solving a LR-TDDFT eigenvalue problem of the
form AXI = ΩIX

I , where A is the Jacobian matrix in the
excitation basis.

We find that the standard, symmetry broken (unre-
stricted), KS-LSDA-75 SCF result for LiF is size-consistent
for the ground-state. However, there are two other issues
that are present in this simulation: First, at dissociation, the
charge-transfer configuration is not the first excited state, as
expected, but instead a local excitation of the fluorine atom.
Second, the unrestricted SCF LSDA-75 calculation also fea-
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tures a jump in the value of the squared spin operator, to
which the excitation energies are sensitive too. Hence, even
if the local fluorine excitation were ignored, a sudden jump
remains. In Figure 4 we also show the NSCF L-eXp result
(however, the other methods, NSCF L-eXp, SCF Q-eXp, or
NSCF Q-eXp yield very similar dissociation energies due to
the need for regularization). The L-eXp ground and first-
excited state values are qualitatively correct. There is a
point of near-degeneracy between the ground and excited
states, and the charge transfer excitation is dominant at
long distances. The value of this excitation also agrees with
FCI calculations, as well as the fact that the gap between the
ground and first excited state is quite small around the an-
ticrossing point. However, the ground-state binding energy
at equilibrium is underestimated, as well as the internuclear
distance at the anticrossing point. Nonetheless, these fea-
tures could be fixed, we believe, by an improved density
functional approximation, specially suited for this type of
physical situation.
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Figure 5. Convergence of the linearized and quadratic eXp meth-
ods for the the minimum-energy geometry of carbon monoxide and
fluoromethane.

We now discuss the interplay between the different ways
to perform calculations: The Q- and L-eXp methods with
and without self-consistency. It is important to remark that
even though a calculation based on cluster operators can
be non-self-consistent, the full (self-consistent) Hartree-Fock
orbitals are employed as the starting basis in this present
analysis (summarized by Table 1). As an example, we
choose the carbon monoxide and fluoromethane molecules
at the minimum ground-state-energy configuration and con-
sider the convergent behavior of L- and Q-eXp. Figure 5
shows that only few steps are required to converge the eXp
wavefunctions for an energy threshold of 10−6 au. For CO,
L- and Q-eXp behave nearly identically, where a quite small
difference is observed for fluoromethane. Our method does
not require too many steps because a Hartree-Fock calcu-
lation was performed prior to the SCF eXp simulation. In
the molecular set considered, as shown in Table 1, the self-
consistent L- and Q-eXp techniques perform quite similarly.
Some differences are noticeable, however, when the cluster
amplitudes are determined non-self-consistently, especially
for CO and CH3F. These two molecules require the most
SCF steps, which correlates well with the differences seen
in the NSCF calculations. If regularization were applied,
we would expect fewer SCF steps, but not necessarily more
agreement with the unregularized NSCF calculations, un-
less these are regularized as well. For this set of molecules
the NSCF step in general improves the properties of inter-
est. This may suggest then that the NSCF procedures can
be of use for practical electronic structure calculations, par-
ticularly in cases where computational savings are needed.

An eXp NSCF calculation may also be performed with reg-
ularization, if required. The issue of instabilities in cluster
amplitudes is not inherent to our method only, but it is
common in CC theory in general, when energy differences
are very small, for example in semi-metallic systems. But
with some form of regularization it can be eliminated.

Conclusion
As an alternative to the standard approach to solve the
Kohn-Sham DFT electronic structure problem, we inves-
tigated approximated solutions by means of singles-based
cluster operators and amplitudes. These solutions could
serve as a basis for the development of algorithms free of
the delocalization error, with a broader view of electronic
excitations, and capable of delivering size consistency in
general (whether the auxiliary Hamiltonian of the system
is single- or multi-particle in principle). We found several
potential approaches for the use of this operator in the cal-
culation of alternative single-particle wavefunctions, thus
offering flexible pathways for practical calculations. The
linear approach seems to be quite convenient due its rel-
ative accuracy and computational cost. Even though the
cluster operator in DFT can be of use in numerical pro-
cedures, its applicability to systems that are inherently of
multireference character (from a WFT point of view) is an
unexplored subject, but clearly encouraging. In this direc-
tion, the theoretical procedures presented here may serve
for the formulation of electronic structure models that ei-
ther couple with automated approaches, or with techniques
that rely on localization/symmetry-breaking of orbitals in
order to describe challenging quantum systems. As it is
well-known, different systems need different degrees of self-
interaction corrections. For this reason, connections with
quantum embedding [56] could be beneficial to improve ac-
curacy by assigning different exchange mixtures to different
subsystems in a large molecular system. This, in conjunc-
tion with eXp calculations, could be of interest for density
functional calculations with expanded capabilities.
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Table 1. Norm of dipole vectors and absolute value of ground-state energies computed with non-regularized L-eXp and Q-eXp, in NSCF
and SCF ways, and using the (non-hybrid) LSDA XC functional, for a set of molecules at their equilibrium geometries. Values in atomic
units.

Q-eXp SCF L-eXp SCF Q-eXp Non-SCF L-eXp Non-SCF

Molecule Dipole Total Energy Dipole Total Energy Dipole Total Energy Dipole Total Energy

H2O 0.887 75.868168 0.887 75.868168 0.882 75.868080 0.882 75.868078
CO 0.079 112.416288 0.080 112.416288 0.496 112.398708 0.505 112.39811

CH3OH 0.750 114.787583 0.749 114.787583 0.709 114.783330 0.708 114.783279
CH3F 0.772 138.717566 0.772 138.717566 0.649 138.708433 0.647 138.708284
HCN 1.190 92.610848 1.190 92.610848 1.017 92.607709 1.014 92.607646
H3O

+ 0.677 76.137484 0.677 76.137484 0.680 76.137398 0.680 76.137398
OH− 0.731 75.249223 0.731 75.249223 0.689 75.243512 0.689 75.243331
LiH 2.211 7.911541 2.211 7.911541 2.107 7.910796 2.105 7.910774

LiH2
+ 1.231 8.284455 1.230 8.284455 1.221 8.284399 1.221 8.284399
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Entry for the Table of Contents

LiF→Li + F

Size consistency

DFT

Density functional methods can
be expanded to eliminate un-
wanted charge delocalization ef-
fects. This is made possi-
ble by combining concepts from
coupled-cluster theory and the-
ory of self-consistent field.
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