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A B S T R A C T   

Previous moderate- and high-temperature geothermal resource assessments of the western United States utilized 
data-driven methods and expert decisions to estimate resource favorability. Although expert decisions can add 
confidence to the modeling process by ensuring reasonable models are employed, expert decisions also introduce 
human and, thereby, model bias. This bias can present a source of error that reduces the predictive performance 
of the models and confidence in the resulting resource estimates. 

Our study aims to develop robust data-driven methods with the goals of reducing bias and improving pre-
dictive ability. We present and compare nine favorability maps for geothermal resources in the western United 
States using data from the U.S. Geological Survey’s 2008 geothermal resource assessment. Two favorability maps 
are created using the expert decision-dependent methods from the 2008 assessment (i.e., weight-of-evidence and 
logistic regression). With the same data, we then create six different favorability maps using logistic regression 
(without underlying expert decisions), XGBoost, and support-vector machines paired with two training strate-
gies. The training strategies are customized to address the inherent challenges of applying machine learning to 
the geothermal training data, which have no negative examples and severe class imbalance. We also create 
another favorability map using an artificial neural network. 

We demonstrate that modern machine learning approaches can improve upon systems built with expert de-
cisions. We also find that XGBoost, a non-linear algorithm, produces greater agreement with the 2008 results 
than linear logistic regression without expert decisions, because the expert decisions in the 2008 assessment 
rendered the otherwise linear approaches non-linear despite the fact that the 2008 assessment used only linear 
methods. The F1 scores for all approaches appear low (F1 score < 0.10), do not improve with increasing model 
complexity, and, therefore, indicate the fundamental limitations of the input features (i.e., training data). Until 
improved feature data are incorporated into the assessment process, simple non-linear algorithms (e.g., XGBoost) 
perform equally well or better than more complex methods (e.g., artificial neural networks) and remain easier to 
interpret.   

1. Introduction 

The U.S. Geological Survey (USGS) has produced periodic national 
geothermal resource assessments (White and Williams, 1975; Muffler, 
1979; Reed, 1983; Williams and DeAngelo, 2008; Williams et al., 2008; 
Williams et al., 2009). The most recent moderate- to high-temperature 
conventional geothermal energy assessment of naturally occurring hy-
drothermal systems was completed in 2008 (Williams and DeAngelo, 

2008; Williams et al., 2008; Williams et al., 2009). This assessment 
produced 28 models to identify locations of high geothermal favorability 
(i.e., the likelihood of conditions favoring the presence of a geothermal 
system) in the western United States (examples shown in Fig. 1) using 
two modeling methods (i.e., weight-of-evidence and logistic regression). 
The 2008 geothermal resource assessment varied combinations of nine 
geological input feature sets (see Williams and DeAngelo [2008] for 
complete reference information). These nine feature sets were divided 
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into five input feature types, and each model used no more than one 
feature set from each type:  

• Heat flow 
• Heat flow interpolated from unpublished data compiled for Wil-

liams et al. (2007)  
• Heat flow interpolated from Blackwell and Richards (2004)  

• Mapped Quaternary faulting  
• Distance to nearest Quaternary fault from the USGS Quaternary 

fault and fold database (Machette et al., 2003)  
• Mapped Quaternary magmatic activity (i.e., intrusives, flows, and 

vents), inert and extant, from Donnelly-Nolan (1988), MacLeod et al. 
(1995), Walker et al. (2006), and Hildreth (2007)  
• Distance to nearest felsic magmatic activity  
• Distance to nearest mafic magmatic activity  
• Distance to nearest magmatic activity irrespective of composition  

• Summarized seismic activity data from the Advanced National 
Seismic System Comprehensive (ANSS) Earthquake Catalog (2022)  
• Earthquake density within 4 km  
• Log of the sum of seismic moments of earthquakes within 10 km  

• Stress  
• Maximum horizontal stress interpolated from Reinecker et al. 

(2005) 

Although the assessment models of Williams and colleagues used 
data-driven fitting methods to assign measured correlations between 
input features and geothermal sites, data selection and pre-processing 
occurred at several stages of the analyses based upon expert judgment. 
For example, all of the feature sets of otherwise continuous data were 
binned, thereby requiring expert decisions to be made for parameters 
like bin sizes, number of bins, and threshold values. While these expert 
decisions potentially add value by incorporating patterns supported by 
professional judgement, they impose binning methods onto a problem 
that does not require binning and, therefore, may reduce the predictive 
skill of the models. Hence, expert decisions may introduce a potential 
source of human bias and model bias. The mixture of data- and expert- 
driven decision making is not unique to USGS assessments of geothermal 
resources, but is also found in many modern assessments including 
geothermal play fairway analysis in the U.S. (e.g., Aleutian Arc [Hinz 
et al., 2015], the Cascades [Shevenell et al., 2015], the Great Basin 

[Faulds et al., 2017], Hawaii [Ito et al., 2017; Lautze et al., 2017; Lautze 
et al., 2020], the Modoc Plateau [Siler et al., 2017], the Snake River 
Plain [Nielson et al., 2015; Shervais et al., 2020; Shervais et al., 2021], 
across parts of Washington State [Forson et al., 2017]) and outside the 
U.S. (e.g., Argentina [Lindsey et al., 2021], Brazil [Lacasse et al., 2022], 
China [Meng et al., 2021], Egypt [Abuzied et al., 2020], Taiwan [Meng 
et al., 2021]). 

Machine learning presents an opportunity to remove the expert de-

cisions used in the 2008 geothermal resource assessment by instead 
relying on data-driven decisions (see generally Musumeci et al., 2019). 

The use of machine learning to perform these tasks reduces the potential 
for human bias and error and allows the researcher to focus on other 
topics (see generally Boutaba et al., 2018). Mordensky et al. (2022) 
completed the initial steps to adapt machine learning approaches for use 
with data for geothermal assessments; however, the integration of ma-
chine learning into a geothermal resource assessment raises the question 
about the reliability of the predictions from the machine learning ap-
proaches compared to those dependent upon expert decisions. 

Herein, we detail machine learning approaches to predict favor-
ability for conventional hydrothermal resources in the western United 
States with equal or improved performance compared to the 2008 USGS 
geothermal resource assessment using the same data from the assess-
ment. We emphasize that this study primarily serves as a means of in-
quiry into the capabilities of machine learning for performing resource 
assessments, including geothermal play fairway analysis. Consequently, 
this work is not a comprehensive or complete geothermal resource 
assessment in itself. In pursuit of developing a better understanding of 
the relationship between geologic data and resource predictions, seven 
different machine learning approaches are employed: logistic regression 
(without expert binning), eXtreme Gradient Boosting (commonly 
referred to as XGBoost), and support-vector machines (SVMs), each 
using two training strategies, and one multilayer perceptron artificial 
neural network (ANN) using one training strategy. 

1.1. Machine Learning Algorithms 

Machine learning algorithms provide a data-driven means to 
generate models that can predict conditions favorable for the presence 
or absence of geothermal systems capable of producing electricity. 
Machine learning algorithms operate by learning directly from data in 
order to create optimal decision functions, more commonly called 
models in geoscience. Implicit to the name, data-driven decisions are 
choices algorithmically determined to optimize model performance by 
maximizing performance metrics like accuracy (Eq. 1), precision (Eq. 2), 
recall (Eq. 3), and F1 score (Eq. 4), which rely upon knowing the number 
of true positives (i.e., positive training sites predicted as positive), false 
positives (i.e., negative training sites predicted as positive), true nega-
tives (i.e., negative training sites predicted as negative), and false neg-
atives (i.e., positive training sites predicted as negative).   

Precision = True Positives
True Positives + False Positives (2)  

Recall = True Positives
True Positives + False Negatives (3)  

Performance metric optimization is primarily achieved through the 
selection of an algorithm’s internal variables that balance the tradeoff 

F1 Score = 2 Precision × Recall
Precision + Recall =

True Positives
True Positives + 1

2 (False Positives + False Negatives)
(4)   

Accuracy = True Positives + True Negatives
True Positives + True Negatives + False Positives + False Negatives (1)   
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between underfitting and overfitting. The adjustable internal variables 
are called hyperparameters, and the selection of hyperparameter values 
that optimize the chosen performance metric is called hyperparameter 
optimization. Hyperparameter optimization is completed by experi-
mentally finding the combination of hyperparameter values that corre-
spond to a best performing model (e.g., a model with the greatest 
predictive skill or lowest error; see generally Burkov, 2019a). 

Hyperparameter optimization helps algorithms handle the unique 
qualities of datasets. One such quality is the relative frequency of the 
occurrence of each classification label (e.g., positive or negative; pres-
ence or absence of a geothermal system). Most machine learning algo-
rithms perform best when there are approximately equal numbers of 
each type of data (see generally Fernández et al., 2018). Substantial 

deviation from a similar occurrence of labels is termed class imbalance 
and impairs the ability of data-driven algorithms to learn from the data 
(see generally Branco et al., 2015). Class imbalance can range from 
slight (e.g., 1:10) to severe (e.g., 1:> 100; see generally Krawczyk, 
2016). There are several means to address modest class imbalance. 
Three of the most common are oversampling, undersampling, and 
penalization (see generally Fernández et al., 2018). Oversampling du-
plicates existing data of the minority class (i.e., the class with the less 
frequent occurrence) and increases the risk of overfitting the data 
because the new data are derived from the smaller, pre-existing dataset. 
Undersampling removes data of the majority class (i.e., the class with the 
more frequent occurrence). Undersampling presents the risk of 
removing valuable data in the larger class. Penalization (e.g., class 

Fig. 1. Geothermal favorability maps of the averaged probability of 
occurrence predicted from 12 different models (as presented in 
Williams et al. [2009]) for the western United States using the: a) 
weight-of-evidence; and b) logistic regression methods from Wil-
liams and DeAngelo (2008). The 12 individual models used for 
averaging are differentiated by their unique input feature combina-
tions. For comparison purposes in this manuscript, favorability is 
plotted using the normal score transform of the native output from 
each model.   
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weighting) weights label types to place greater emphasis on predicting 
minority class labels over majority class labels during training. Other 
options to address class imbalance include using different performance 
metrics (e.g., accuracy versus F1 score) and algorithms (see generally 
Branco et al., 2015). 

1.2. Challenges Using the Data from the 2008 Geothermal Resource 
Assessment 

Two fundamental challenges exist when applying modern machine 
learning approaches to geothermal data: (1) although many geothermal 
systems are known (i.e., labeled as positive), the remainder of the 
landscape is unlabeled; and (2) geothermal systems are sparse and thus 
they present severe class imbalance. 

The first challenge for a modern, data-driven geothermal resource 
analysis regards understanding how to account for unlabeled cells. The 
2008 USGS geothermal resource assessment gridded the western United 
States into 725,442 2-km-by-2-km cells (see Williams and DeAngelo, 
2008; see Williams et al., 2008), of which 278 contained known con-
ventional hydrothermal systems (Fig. 1). If a cell contained a known 
geothermal system, the cell was given a positive label. One geothermal 
system could not span two cells. The remaining cells were assumed to be 
negative for the 2008 assessment. However, the cells labeled as negative 
are more correctly identified as unlabeled, since some of these cells may 
contain geothermal systems. Classic machine learning algorithms and 
performance metrics are structured to work with positive-negative data 
and not with positive-unlabeled data. 

The second challenge for geothermal resource analysis with machine 
learning is the severe class imbalance. Only 278 of the 725,442 cells 
were labeled as positive, resulting in severe class imbalance (i.e., a <
1:2,600 positive:unlabeled ratio). If it were assumed that only 10% of 
geothermal systems have been identified, and that adding these undis-
covered systems to the analysis results in 2,780 positive cells, the class 
imbalance would still be severe (<1:260). The problem with severe class 
imbalance can be illustrated by considering a simple model that predicts 
every cell as negative (assuming most unlabeled cells are negative) has 
an accuracy (Eq. 1) of > 99%, even though that model predicts that no 
geothermal systems exist. In other words, this highly accurate model 
provides no insight into where geothermal systems exist. 

2. Methods 

With consideration for the challenges detailed in Section 1.2, we seek 
to develop an approach for the minimally biased modeling of 
geothermal resource favorability. Although additional data have been 
collected since the 2008 assessment, we choose to use the data of Wil-
liams and DeAngelo (2008) to allow for a direct comparison between the 
past assessment methods and the machine learning approaches devel-
oped herein. In the remainder of this section, we describe the data sets 
selected as features, briefly detail the selected machine learning algo-
rithms, and define the two training strategies for addressing the 
positive-unlabeled labels and severe class imbalance of the data. Then, 
we describe why the F1 score is selected as the performance metric, 
discuss the normal score transformation needed to evaluate and 
compare model predictions, and outline the measures of feature 
importance used in this study. 

2.1. Feature Selection 

We select only one feature from any type (Section 1 lists possible 
features) because Williams and DeAngelo (2008) only selected one 
feature of any type in their modeling. Selecting only one feature of each 
type also serves to reduce correlation between the selected feature sets. 
Under these criteria, the features for distance to faults and stress were 
self-selected because they were the only features of their respective 
types. For heat flow and seismic activity, we chose the features for which 

we had the clearest understanding of their development. Respectively, 
we select the heat flow map of Williams et al. (2007) and density of 
epicenters for seismic events ≥ M3 within a 4-km radius. For distance to 
magmatic activity, we select the most general feature of the type, dis-
tance to all Quaternary magmatic activity regardless of composition. 
These five datasets are georeferenced and published in the data release 
that accompanies this manuscript (Mordensky and DeAngelo, 2023). As 
is common practice in data-driven methods, we standardize the data (i. 
e., from each data point, subtract the sample mean and divide by the 
sample standard deviation) prior to the application of each machine 
learning algorithm (see generally Burkov, 2019a). 

We note that none of the 28 models produced in the 2008 geothermal 
resource assessment used more than four features for any one model, 
whereas we select five features by including every feature type; there-
fore, we reproduce the methods from the 2008 assessment to create five- 
feature models for weight-of-evidence and expert decision-dependent 
logistic regression to provide a direct comparison between the strate-
gies from 2008 and the new data-driven machine learning strategies. 

2.2. The Algorithms Considered 

Here, we describe the four machine learning algorithms to be used (i. 
e., logistic regression, XGBoost, SVMs, and an ANN) for comparison with 
the methods from the 2008 USGS geothermal resource assessment. We 
choose these four data-driven, machine learning algorithms for several 
reasons. We select logistic regression because Williams and DeAngelo 
(2008) also used this algorithm, albeit with expert decisions (e.g., 
binning the data), thereby providing insight into how this machine 
learning algorithm can change its output when biased by expert de-
cisions. Additionally, selecting logistic regression provides a linear al-
gorithm for comparison with weight-of-evidence, the other linear 
method from the 2008 geothermal resource assessment. We also select 
three general-purpose classifiers (i.e., XGBoost, SVMs, and ANNs; see 
generally Fernández-Delgado et al., 2014; Chollet, 2021). We choose 
these three non-linear machine learning algorithms because, when 
compared to each other, they rely on fundamentally different frame-
works to produce decisions and thereby provide a contrast between 
common non-linear algorithms representing a range of complexity. 
Hence, selecting four machine learning algorithms for the current 
analysis expands our perspective on the behavior of machine learning 
when used with the geothermal data. More details and reference infor-
mation are provided for each algorithm in the subsequent four 
subsections. 

2.2.1. Logistic Regression 
With its initial introduction in Berkson (1944) and subsequent de-

velopments in the years that followed (e.g., Berkson, 1951), logistic 
regression remains one of the older and simpler algorithms in machine 
learning. At its core, logistic regression fits the input feature set(s) lin-
early to the logit of Probability, which is then transformed to Probability 
with the logit function as summarized in Eq. 5 (Fig. 2): 

Probability = e(β0+β1x1+β2x2+…+βnxn)

1 + e(β0+β1x1+β2x2+…+βnxn)
(5)  

in which the coefficients, β0, β1, β2, …, βn, are empirically fit, and x1, x2, 
…, xn are the input features (see Berkson (1944) for complete details). 
Consequently, the computational requirements of logistic regression 
scale linearly with additional training data. 

A decision threshold (often probability = 0.5) defines classification 
predictions (e.g., 1 or 0, Yes or No, Geothermally Favorable or Not 
Geothermally Favorable) above and below that decision threshold (see 
generally Fernández et al., 2018). Herein, we use the common 0.5 de-
cision threshold with logistic regression and optimize the F1 score using 
two hyperparameters, the inverse regularization strength and the class 
weight. The inverse regularization strength hyperparameter inversely 
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correlates with the propensity of the algorithm to overfit without reg-
ularization. The lower the optimal inverse regularization strength 
hyperparameter, the greater the degree of regularization used to prevent 
overfitting. The class weight hyperparameter is a means to correct for 
class imbalance. The greater the optimal class weight, the greater the 
emphasis the model imparts on correctly identifying positive labels over 
non-positive labels. Misclassification of the majority class occurs more 
frequently as the minority class receives greater class weighting (an 
example of which is provided in Fig. 2). We leave the other parameters 
of logistic regression at the default values found in the Python’s 
Scikit-Learn module, as they pertain to the specifics of the optimization 
routine and have only a modest impact on performance (Pedregosa 
et al., 2011; Kuhn and Johnson, 2013). 

2.2.2. XGBoost 
XGBoost, first introduced in Chen and Guestrin (2016) uses a process 

called boosting, that creates a series of decision trees, which are 

aggregated to produce a single model (Fig. 3). That is, XGBoost produces 
a series of simple decision trees (i.e., estimators) with each subsequent 
tree based upon the residuals of the preceding tree. Each subsequent 
estimator is evaluated and improved from the previous estimator. The 
amount of information communicated from a previous estimator to a 
new estimator is called the learning rate. The number of estimators used 
in the final classifier is determined when additional estimators begin to 
overfit the training data. Similarly, the depth of the estimators (i.e., the 
number of branch levels in the trees) is also optimized so as to not overfit 
the training data. The final node (i.e., the node at the end of a terminal 
branch) in every estimator has an associated probability value. A sam-
ple’s prediction value is determined from the sum of the probability 
values across all of the estimators (see summation of probability values 
from each estimator in Fig. 3). The computational requirements of 
XGBoost grow at greater than a linear rate (i.e., greater than that of 
logistic regression) but less than a quadratic rate (i.e., less than that of 
SVMs) with each additional sample in the training data. 

Fig. 2. Conceptual framework for logistic regression (schematic shows 
only two features for illustrative purposes, but the concept easily ex-
tends to n features through Eq. 5). The dashed blue line represents a 
0.5 probability threshold (a common choice in the machine learning 
community). The solid, blue circles are examples of a positive label. 
The hollow, black circles are examples of a negative label, so the 
hollow circle above the threshold would be a false positive. Solid ar-
rows indicate the classification prediction dictated by the chosen 
threshold. Probability values range between 0 and 1, and a normal 
score transform of these values is used in this manuscript for plots of 
favorability (see Section 2.5).   

Fig. 3. Conceptual framework for XGBoost. This figure depicts three of n estimators (i.e., trees) in an XGBoost classifier. For each cell in a map, a probability value is 
computed for each estimator, given by its own path (e.g., solid grey arrows) from the root node (purple circle) through the branch nodes (green triangle or blue 
square), each with a condition dependent upon a feature value, differing between branches and estimators. Ultimately, a cell arrives at an end node (red circle). Each 
end node has an assigned probability (e.g., p1, p2,…, pn) for a particular class of predictions (i.e., positive sites in this study) found during fitting. The final classi-
fication at each map location is predicted by the summation of the probability values across all of the estimators (e.g., dashed black arrows). The final probability 
values are normal score transformed to produce favorability maps for comparison between approaches (see Section 2.5). 
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We optimize four hyperparameters for XGBoost: the class weight, 
learning rate, number of estimators, and maximum depth of estimators. 
Class weight in XGBoost differs in exact implementation compared with 
logistic regression, but this hyperparameter serves much the same pur-
pose: a greater class weight places greater emphasis on accurately pre-
dicting positive labels as positives than non-positive labels as negatives. 
The other parameters are used to maximize prediction performance 
while also avoiding overfitting (Chen and Guestrin, 2016). We leave the 
other parameters of XGBoost at the default values found in Python’s 
XGBoost module as they pertain to the specifics of the optimization 
routine and have only a modest impact on performance (Chen and 
Guestrin, 2016). 

2.2.3. Support-Vector Machines (SVMs) 
SVMs provide a more modern machine learning algorithm and an 

increase in complexity with respect to logistic regression (Cortes and 
Vapnik, 1995). SVMs classify predictions by finding a hyperplane in an 
n-dimensional space with n defined by the number of input features (in 
our case, five input features define a five-dimensional space). The hy-
perplane serves as a decision boundary (i.e., a maximum margin clas-
sifier) that maximizes the n-dimensional distance between data with 
different predictions (Fig. 4 shows a linear 2-dimensional example). 
Although finding a hyperplane is a linear process, non-linearities are 
accommodated through the so-called kernel trick (Shalev-Shwartz and 
Ben-David, 2014b), which uses a non-linear transform to map the data to 
a new space where a linear decision boundary is found. Given their 
framework, SVMs do not provide a probability like logistic regression, 
but instead directly provide a classification prediction and the distance 
from that observation (i.e., data point) to the decision boundary. SVMs 

work well for smaller datasets (i.e., thousands of samples or less), 
because the computational requirements grow quadratically with each 
additional sample in the training data (Chapelle, 2007); hence, SVMs are 
less efficient for large datasets. 

We utilize an SVM with the radial basis function (RBF) kernel. Like 
with logistic regression, with SVMs, we optimize the inverse regulari-
zation strength and class weight. We also add the kernel parameter 
gamma as a third hyperparameter to optimize. Although not imple-
mented identically between the algorithms, the influence of inverse 
regularization strength and class weight on the behavior of SVMs is 
similar to that of logistic regression (Section 2.2.1). The kernel param-
eter gamma controls how the kernel trick is applied; hence, gamma 
controls the non-linear complexity of the decision boundary hyperplane. 
The higher the gamma, the more complex the decision boundary, and, 
therefore, a greater likelihood of overfitting. We leave the other pa-
rameters of SVMs at the default values found in the Python’s Scikit- 
Learn module, as they either do not apply to the specific form of SVM 
used (e.g., apply only to other kernel choices) or have minimal impact on 
performance (Pedregosa et al., 2011; Kuhn and Johnson, 2013). 

2.2.4. Multilayer Perceptron Artificial Neural Network 
ANNs operate by passing feature data through a series of activation 

functions in nodes of varying interconnectivity to transform the input 
feature data into a prediction (i.e., data can be combined and recom-
bined multiple times in several layers). That is, an ANN is a function 
containing several layers with each layer containing nodes (Fig. 5). The 
initial layer (i.e., the input layer) has one node for each feature. The 
output layer commonly has only one or two nodes but can consist of 
additional nodes depending on how many types of predictions (e.g., 
number of classes) are being made with a model. With the data from the 
2008 geothermal resource assessment, only one node in the output layer 
is used for probability. There are an Nh number of hidden layers between 
the input and output layers with Nh being a hyperparameter. Each 
hidden layer contains Mh nodes with Mh also serving as a hyper-
parameter. Each node contains an activation function in which the input 
feature value is transformed and passed forward to the nodes of the next 
layer (see generally Burkov, 2019b). 

In addition to the Nh number of hidden layers and the Mh number of 
nodes in a hidden layer, we optimize four other hyperparameters in the 
ANN: class weight, learning rate, epochs, and batch size. Class weight in 
an ANN differs in exact implementation compared with logistic regres-
sion, XGBoost, and SVMs, but this hyperparameter serves much the same 
purpose: a greater class weight places greater emphasis on accurately 

Fig. 4. Conceptual framework of an SVM showing a simple two-feature (x1 and 
x2) example, which mathematically generalizes to higher dimensions using 
hyperplanes. The solid, blue circles are examples of one label. The hollow, black 
circles are examples of another label. The decision boundary (i.e., the maximum 
margin classifier), which maximizes the distances to the nearest examples (i.e., 
data points or support vectors) of differently classified predictions, is a solid 
black line. Distance from the decision boundary indicates the confidence 
associated with a prediction. Note that this example SVM misclassifies one 
hollow, black sample as that of the solid blue sample. Distance between the 
dashed black lines is the maximum margin. We normal score transform the 
distance and direction between each example (i.e., each cell) in the n-dimen-
sional space and decision boundary (positive distance on the positive side of the 
boundary, and negative distance on the negative side) to produce favorability 
maps for comparison between approaches (see Section 2.5). 

Fig. 5. Conceptual Framework for an ANN with five input features requiring 
five nodes at the input layer (blue), three hidden layers (black), and one node at 
the output layer (red). The final probability values are normal score trans-
formed to produce favorability maps for comparison between approaches (see 
Section 2.5). 
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predicting positive labels (i.e., known geothermal systems) than non- 
positive labels (i.e., unknown resource classification). Batch size refers 
to the number of examples used to fit the ANN at any one time during 
fitting. Epochs refer to the number of propagations of a batch through 
the ANN during fitting. The learning rate is the rate at which the model 
fits to new training data (see generally Geron, 2017). The output layer 
uses a sigmoidal activation function to transform the values of the final 
hidden layer into a probability value ranging from zero to one with a 

threshold probability of 0.5 to separate positive and negative pre-
dictions. We set other parameters of the ANN to their commonly 
accepted default values (i.e., a rectified linear unit [i.e., ReLU] serves as 
the activation function for the input and hidden layers; binary 

cross-entropy serves as the loss function with an accuracy metric; Adam 
serves as the optimizer; early stopping is employed if the model fails to 
improve after 100 epochs; see generally Chollet (2015)). Whereas lo-
gistic regression, SVMs, and XGBoost are forms of shallow learning, an 
ANN is a form of deep learning for which depth refers to the additional 
interconnected hidden layers in the model. The computational re-
quirements for an ANN are dependent upon the depth and node count of 
the ANN. 

2.3. Addressing the Class-Imbalance and Unlabeled Examples 

Because geothermal systems are sparse, most unlabeled locations are 
negative. In an effort to address the severe class imbalance and positive- 
unlabeled classifications in this dataset, we experiment with two 
undersampling training strategies that treat the non-positive class as 
negative during the training and then as unlabeled during testing and 
performance evaluation. These two training strategies are: 1) the single 
strategy, in which algorithms are fit with all the available training data, 
and; 2) the ensemble strategy, in which the majority class (i.e., that of the 
unlabeled cells) is subdivided into four datasets for training and the sub- 
models fit from those data subsets are averaged into one model. We 
forego modeling with the ensemble training strategy with the ANN 
because of the anticipated limited expected gain at substantial compu-
tational cost (see Section 4.1.2). 

In order to properly undersample, both strategies require an estimate 
of how many identified and undiscovered geothermal systems exist in 
the study area so that the undersampling adheres to the expected un-
derlying natural distribution. To estimate the number of undiscovered 
systems, we use the estimate of undiscovered power potential from 
Williams et al. (2008). Mean power generation of the identified systems 
is estimated using Eq. 6 below. Assuming the same average will hold true 
for undiscovered systems, the number of undiscovered systems can be 
computed from the estimated undiscovered power potential by Eq. 7. 
Williams et al. (2008) estimated the mean power potential from iden-
tified geothermal resources as 9,057 MWe, but also provided a range of 
estimates with a 95% probability that these have at least 3,675 MWe to a 

5% probability that these have at least 16,457 MWe. Similarly, Williams 
et al. (2008) estimated the mean power potential from undiscovered 
geothermal resources as 30,033 MWe and provided a range of estimates 
with a 95% probability that these undiscovered resources have at least 7, 
797 MWe to a 5% probability that they have at least 73,286 MWe. The 
total number of geothermal systems is then found by summing the 
number of identified systems and the number of undiscovered systems 
(Eq. 8). 

Number of Undiscovered Systems= Total Undiscovered Power Potential
Average Power Generation of a System

(7) 

Considering the power production estimates at 95% and 5% proba-
bility in Williams et al. (2008), we estimate a range of 760 – 1,314 
conventional geothermal systems exist in the western United States. 
Herein, we use the mean estimate of 1,040 systems to estimate a natural 
class imbalance of 1:700 to compare algorithms and training strategies; 
however, in addition to the mean estimated class imbalance, we also 
train models for logistic regression and XGBoost using both training 
strategies with the estimated natural class imbalance derived from the 
95% and 5% probability estimates in Williams et al. (2008) (i.e., eval-
uated the class imbalances 1:955 and 1:550, respectively). Evaluating 
the range of class imbalance estimates allows us to gauge how model 
performance responds to changes in this estimate of positive-negative 
natural class imbalance, the results of which are presented in Appen-
dix C. 

Each machine learning algorithm employs a train-test split, in which 
80% of the data are used for training and 20% are used for testing, to 
evaluate the performance of the training model (Fig. 6). This split is 
random (i.e., the training and testing data are randomly sampled from 
the data), and to prevent an unfortunate split that results in a poor 
model, this procedure is repeated 120 times using the USGS super-
computers referred to as YETI, DENALI, and TALLGRASS (Falgout and 
Gordon, 2021; Falgout et al., 2021a; Falgout et al., 2021b). The optimal 
hyperparameters are then averaged to train the final resulting model 
from a single train-test split and predict geothermal favorability for all 
available data. 

Within each iteration of the 120 train-test splits, the training data are 
further split into smaller partitions (i.e., folds) for custom stratified k- 
fold cross validation. In k-fold cross validation, one of the folds is set 
aside and the remaining folds are used to train a model, and the per-
formance of that model is then evaluated with the initial fold that was 
set aside (see generally Burkov, 2019a). This process is repeated k times 
until every fold has evaluated the model fit by the other folds. Then, the 
performance of all the folds is averaged. The stratified in stratified k-fold 
cross validation means that the positive labels are evenly distributed 
amongst the folds. In this study, we use five folds as is common in ma-
chine learning practice to avoid overfitting and underfitting a model (see 

Average Power Generation of a System = Power Generation of Identified Systems
Number of Identified Systems (6)   

Total Number of Geothermal Systems = Identified Systems + Undiscovered Systems (8)   
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generally Burkov, 2019a). 
In both training strategies, the testing data and the data in the fold 

used during validation are randomly undersampled from the class 
imbalance of the data set (known positive samples to unlabeled samples 
is < 1:2,600) to the estimated natural class imbalance (1:700). The two 
training strategies differ in how the data in the remaining folds (i.e., the 
folds not set aside for validation) are used for training a model. With the 
single strategy, the samples in the majority class in the remaining folds 
are used to train a single model. With the ensemble strategy, the data 
from the majority class (i.e., the unlabeled cells) from the remaining 
folds are randomly distributed into smaller subsets. Each subset has 
approximately the expected natural class imbalance with each subset 
receiving all the known positives from the training folds; therefore, the 
number of subsets created is found by Eq. 9. 

Hence, with the data in this study, the ensemble strategy creates four 
subsets of data per fold. A model is then fit to each of these subsets and 
the final predictor is the average of these models, resulting in an 
ensemble predictor. 

To evaluate model performance, a final model is trained using all 
training data. At this point, the algorithms using the single training 
strategy produce a single model, whereas the algorithms using the 

ensemble training strategy again partition the training data into subsets 
to achieve the natural class imbalance before training separate sub- 
models, which are then averaged into one model to predict 
geothermal favorability. 

2.4. Performance Metric Selection 

Bekker and Davis (2020) recommend the F1 score as the most 
appropriate performance metric to use for binary positive-unlabeled 
classifications like that found in the geothermal data used in this 
study. Additionally, the F1 score accommodates for class imbalance 
better than other performance metrics (e.g., accuracy; Guo et al., 2008). 
Hence, we select the F1 score (Eq. 4) as the performance metric for 
hyperparameter optimization and model evaluation. 

2.5. Comparing Model Results 

The F1 score penalizes false positives and false negatives; hence, the 
F1 score obtains a maximum value of 1 when all positive locations are 
identified as positive and all unlabeled locations are identified as 
negative. Ideally, lower F1 scores reflect a model with poorer perfor-
mance. However, we note that with positive-unlabeled data, we cannot 

Fig. 6. Training strategies to address class imbalance. During k-fold cross validation and the final training of a model, one of two training strategies (i.e., single or 
ensemble) is pursued. The single strategy fits a single model with the remaining four fifths of the folds. The ensemble strategy splits the unlabeled data within the 
remaining four fifths of the folds to create four subsets of the data so that each subset approximately has the estimated 1:700 positive:negative natural class imbalance 
for a 2-km-by-2-km grid of the western United States. A sub-model is then fit to each of these subsets of data and the sub-models are evaluated in aggregate. Solid 
circles identify steps in the pipeline. Dash circles identify groups of data. 

Number of subsets of data created in the ensemble strategy = Class Imbalance of Dataset
Natural Class Imbalance (9)   
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be certain that an unlabeled location is not a true positive (i.e., a true 
positive at an unlabeled location contributes to F1 as a false positive), 
biasing the F1 score. Other performance metrics (e.g., accuracy, preci-
sion, recall) have been found to be even less adequate for positive- 
unlabeled data (Bekker and Davis, 2020). 

In addition to the obscurity of F1 scores imparted by the positive- 
unlabeled data, F1 scores were not used for construction of the 2008 
geothermal resource assessment models. Instead, the 2008 assessment 
predicted relative geothermal favorability for every cell relative to other 
cells in the 2-km-by-2-km grid without providing a decision threshold 
for classification. Because F1 scores are not available for the 2008 
models, we require a different means to compare all nine models. 

Another impediment for comparing the nine approaches is presented 
by their different units of prediction. Specifically, the expert decision- 
dependent logistic regression and weight-of-evidence methods predict 
relative probability on a custom scale (i.e., the posterior probability over 
the prior probability so that the predicted value represents the number 
of times greater than simple random chance that a geothermal system is 
likely to be present), while the logistic regression without expert de-
cisions, XGBoost, and the ANN algorithms predict probability values on 
a different (i.e., zero-to-one) scale, and SVMs do not supply a probability 
value but instead produce a distance to a decision boundary as a mea-
sure of relative certainty for every prediction. 

In order to surmount the challenges in comparing these different 
model approaches, we propose new mechanisms of comparing the pre-
dictions for the different approaches presented in this study. First, the 
predictions of an approach are normal score transformed (see generally 
Pyrcz and Deutsch, 2018) so that the different types of model predictions 
are converted to a common scale since the units from the predictions vary 
between the different approaches. In particular, the normal score trans-
form provides a quantile-to-quantile transform to a standard normal 
distribution with a mean of zero and a variance of one. We define these 
normal score transformed predictions as comparative favorability (i.e., a 
relative measure of the predicted presence of geologic conditions believed 
to be associated with the presence of a geothermal system). This quantile- 
to-quantile transform allows easy comparison of where methods agree on 
most and least favorable locations using cross-plots and allows favor-
ability maps to be plotted in the same color range for ease of comparison. 
Because all predicted points are normal scored, plotting the histogram of 
unlabeled and positive samples allows an examination of how different 
the known positives are from the larger set of unlabeled data, which have 
a distribution that is nearly normal with mean zero and variance one. 

2.6. Measures of Feature Importance 

For every modeling approach, we evaluate the relative importance of 
each input feature in making predictions (i.e., heat flow, seismic event 
density, distance to magmatic activity, distance to a fault, and maximum 
horizontal stress). Unfortunately, being different mathematical con-
structs, every machine learning approach has a different way of esti-
mating feature importance. However, we are still able to compare the 
relative measures of feature importance using model-gnostic (i.e., 
approach-specific) and model-agnostic (i.e., not approach-specific) 
measures of feature importance (Table 1). When possible, we apply 
several measures of feature importance to explore the variability 

between measures and develop a more general understanding of feature 
importance than any single measure would offer. To allow comparison 
between the different measures, each measure is min-max normalized to 
a zero-to-one scale. 

2.6.1. Feature Importance with Weight-Of-Evidence 
Feature importance for the 2008 weight-of-evidence method can be 

gauged using information value (IV). Information value provides a 
relative measure for features by measuring the contribution of features’ 
bins and their associated weights with consideration for their associa-
tion with events (e.g., the presence of a geothermal system) or non- 
events (e.g., the absence of a geothermal system) as provided in Eq. 10 
(see generally Zdravevski et al., 2011): 

Information Value of a Feature =
∑h

i=1
(WoEi (PoE−PoNE)) (10)  

in which WoE is a weight of a bin for a given feature, PoE is the percent of 
events associated with that bin, PoNE is the percent of non-events 
associated with that bin, where h is the total number of bins for a 
given feature. 

2.6.2. Feature Importance with Logistic Regression 
Machine learning logistic regression relies upon feature coefficients 

(see Eq. 5) which provide a means to assess feature importance from the 
absolute values of the coefficients when training and predicting from 
standardized data (Berkson, 1944, 1951). The logistic regression 
method from the 2008 assessment (i.e., the logistic regression method 
that used binned values) does not permit a direct comparison between 
the features’ coefficients (see Eq. 5) because these features were cate-
gorically separated into bins that do not contain standardized data; 
however, it can be shown that comparing the standard deviation of the 
bin coefficients for each feature is an analogous measure of feature 
importance (Appendix A), allowing an evaluation of feature importance 
from the 2008 logistic regression analysis. 

2.6.3. Feature Importance with XGBoost 
XGBoost hosts several unique model-gnostic measures of feature 

importance; these are weight, cover, gain, and F score (not to be 
confused with the F1 score). Weight refers to the number of instances 
that feature was used to split the data. Cover refers to the number of 
observations affected by a split with that feature. Gain refers to how 
much each feature contributes toward better predictions for a model 
with consideration for all the splits using that feature. F score considers 
both the number of splits and the number of correctly classified samples 
resulting from those splits with that feature (Chen and Guestrin, 2016). 

2.6.4. Feature Importance with Model-Agnostic Measures 
Model-agnostic measures can be applied to nearly any existing ma-

chine learning model. We use three model-agnostic measures in this 
study (i.e., sensitivity analysis using an F1 score, sensitivity analysis 
using the area under the receiver operating characteristic curve (i.e., the 
ROCAUC), and SHapely Additive exPlanation (i.e., SHAP) values). 

Sensitivity analysis (also termed permutation importance) provides a 
model-agnostic measure of feature importance by shuffling the values of 

Table 1 
Measures of feature importance by approach. Model-agnostic measures are bolded font. Model-gnostic measures are in normal font. Abbreviations: SHAP: SHapely 
Additive explanation, ROCAUC: Receiver Operating Characteristic/Area Under the Curve.  

Weight-of-Evidence Logistic Regression XGBoost Support-Vector Machines Artificial Neural Network 

Information Value F1 Score Sensitivity F1 Score Sensitivity F1 Score Sensitivity F1 Score Sensitivity  
ROCAUC Sensitivity ROCAUC Sensitivity ROCAUC Sensitivity ROCAUC Sensitivity  
SHAP SHAP SHAP SHAP  
Coefficients F Score     

Weight     
Cover    
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a single feature while the other features remain unshuffled, using the 
model to make new predictions, and then comparing these new pre-
dictions with the predictions from the originally unshuffled data. By 
sequentially completing this process through all the features, sensitivity 
analysis is able to gauge the magnitude of the contribution of each 
feature toward a prediction. Sensitivity analysis compares the pre-
dictions from the shuffled data and the unshuffled data using the same 
performance metrics used to evaluate data-driven models (e.g., accu-
racy, precision, recall, F1 score; see generally Pedregosa et al., 2011). 

When inspecting sensitivity, we use the F1 score and the ROCAUC to 
provide two measures of sensitivity. The receiver operating curve (i.e., 
the ‘ROC’ of ROCAUC) plots the tradeoff between the true positive rate 
(Eq. 11) and the false positive rate (Eq. 12) over changing classification 
thresholds (see generally Murphy, 2012). The ROCAUC is the area 
bounded by the receiver operating curve and a false positive rate of 0. 

True Positive Rate = True Positives
True Positives + False Negatives (11) 

Fig. 7. Histograms of the normal score transformed features. Red represents the distribution of examples with positive labels. Blue represents the distribution of 
unlabeled examples. Purple appears when the distributions for the two classes overlap. 
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False Positive Rate = False Positives
False Positives + True Negatives (12) 

SHAP values provide another model-agnostic measure of feature 
importance. SHAP values operate similarly to sensitivity analysis at a 
conceptual level but with some fundamental differences. The SHAP 
function varies values for every possible combination of feature sets, 
whereas sensitivity analysis sequentially shuffles only one feature at a 
time. Also, SHAP measures the differences between predictions and does 
not rely on a specific performance metric. More specifically, every 
sample for every feature with consideration for every combination of 
feature sets is assigned a SHAP value that is the difference between the 
original and permutated predictions, and the sample SHAP values are 
then averaged by feature to provide the average feature SHAP values 
(Lundberg and Lee, 2017). 

3. Results 

In this section, the input feature data are briefly described, model 
performance is presented, favorability predictions are provided, and 
feature importance is given. The input feature and model prediction data 
are also available in the accompanying data release (Mordensky and 
DeAngelo, 2023). 

3.1. Exploratory Data Analysis 

We focus the exploratory data analysis on the differences in the 
distributions of feature values between the positive and unlabeled cells. 
A normal score transformed distribution for each is shown as histograms 
in Fig. 7 and the zero-to-one, min-max normalized distributions are 
provided in Appendix B (Fig. B1). The normal score transformation is a 
quantile-to-quantile transform designed to transform data to resemble a 
standard normal distribution (e.g., unlabeled data distribution for heat 
flow in Fig. 7), but the abundance of zero values (i.e., there are a large 
number of minimum values = 0) in the pre-transformed features for 
distance to nearest fault, distance to nearest magmatic activity, seismic 
event density, and maximum horizontal stress result in an otherwise 
abnormally high occurrence of lowest values in the normal score 
transformed spaces for these features. Differences between the distri-
butions of positive and unlabeled data are strongest where peaks in the 
distribution are distinct. When different, it can be inferred that the 
corresponding data type has value for separating positives from 

unlabeled data when used as a predictor. By this measure, heat flow has 
the greatest difference between positive and unlabeled cells with dis-
tance to the nearest fault and distance to the nearest magmatic activity 
having the second and third, respectively, greatest differences between 
unlabeled and positive cells in normal score transformed space. With 
seismic event density and maximum horizontal stress, zero is the most 
common pre-transformed feature value. 

Table 2 
Machine learning model performance. Median F1 score values are in bolded font. 95th-percentile values are provided in italicized, bolded font. Mean optimal 
hyperparameter values are in normal font. One standard deviation for optimal hyperparameter values is provided in italicized font. Abbreviations: F1: F1 Score, Inverse 
Reg. St.: Inverse Regularization Strength, LR: Logistic Regression, ANN: Single Artificial Neural Network, 95th – 95th percentile value, SD: Standard Deviation.  

Strategy & Algorithm F1 Class Weight Inverse Reg. Str.     

Single Logistic Regression 0.036 258 3     
Single LR 95th / SD 0.076 47 11     
Ensemble Logistic Regression 0.036 112 0.0013     
Ensemble LR 95th / SD 0.064 22 0.0091             

Strategy & Algorithm F1 Class Weight Learning Rate n of Estimators Max Depth   

Single XGBoost 0.023 206 0.22 61 3   
Single XGBoost 95th / SD 0.056 21 0.14 19 1   
Ensemble XGBoost 0.025 59 0.32 5 4   
Ensemble XGBoost 95th / SD 0.045 15 0.32 2 2           

Strategy & Algorithm F1 Class Weight Inverse Reg. Str. Gamma    

Single SVM 0.016 575 2 0.032    
Single SVM 95th / SD 0.038 97 - 0.042    
Ensemble SVM 0.011 156 10 0.010    
Ensemble SVM 95th / SD 0.035 50 - 0.023            

Algorithm F1 Class Weight Learning Rate Hidden Layers Node Count Epoch Batch Size 

Single ANN 0.0177 285 0.00086 2 35 300 256 
Single ANN 95th / SD 0.0559 77 0.00247 0.50 8 - -  

Fig. 8. Box-and-whisker plots of F1 scores for test data for each machine 
learning approach from the 120 train-test splits. The single strategy approaches 
are in red, and the ensemble strategies are in blue. Boxes extend from the first 
quartile (Q1) to the third quartile (Q3) with a notch and line at the median. The 
whiskers extend 1.5 times the inter-quartile range (i.e., 1.5 × [Q3 – Q1] while 
F1 score > 0). Flier points are individual points with values beyond the whis-
kers. Abbreviations: LR: Single Logistic Regression, enLR: Ensemble Logistic 
Regression, XGB: Single XGBoost, enXGB: Ensemble XGBoost, SVM: Single 
Support-Vector Machine, enSVM: Ensemble Support-Vector Machine, ANN: 
Single Artificial Neural Network. 
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3.2. Optimal Hyperparameter Values and Model Performance 

Optimal hyperparameter values for the machine learning approaches 
are provided in Table 2, and the performance of the corresponding 
models across the 120 train-test splits have considerable overlap (Fig. 8) 
with generally decreasing performance as the complexity of the strategy- 
algorithm approaches increases, with the exception that the single ANN 
performs similarly to logistic regression. Although the median F1 scores 
of the seven machine learning models are similarly low (< 0.04), two 
important distinctions can be made. First, the simplest algorithm (i.e., 
logistic regression) has the highest median F1 score compared to that of 
other algorithms when either strategy is considered. Second, the SVMs 
and the single ANN have a first-quartile (i.e., 25th-percentile) F1 score of 
zero; hence, these models are more likely to misclassify known positives 

than any of the other machine learning approaches. Lastly, we note that 
varying the expected positive-negative class imbalance from 1:700 to 
1:550 and 1:955, respectively corresponding with the 5% and 95% po-
tential resource estimates from Williams et al. (2008), did not substan-
tially change model performance (Figs. C1, C2 in Appendix C), 
indicating the models resulting from both training strategies are rela-
tively robust to the different estimates of potential resources in Williams 
et al. (2008). 

3.3. Model Predictions 

The geothermal favorability maps constructed using the methods 
from the 2008 geothermal resource assessment (Fig. 9) and the machine 
learning algorithms (i.e., logistic regression [Fig. 10], XGBoost [Fig. 11], 

Fig. 9. Geothermal favorability maps of the western United States using the five features selected for training machine learning models in this study and the methods 
in Williams and DeAngelo (2008): a) weight-of-evidence and b) logistic regression with underlying expert decisions. Favorability is the normal score transform of the 
predicted probability of occurrence. 
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Fig. 10. Favorability maps for modern, machine learning (i.e., without underlying expert decisions) a) single logistic regression and b) ensemble logistic regression. 
Favorability is the normal score transform of probability. 
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Fig. 11. Favorability maps for a) single XGBoost and b) ensemble XGBoost. Favorability is the normal score transform of probability.  
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Fig. 12. Favorability maps for a) single SVM and b) ensemble SVM. Favorability is the normal score transform of the n-dimensional distance of a cell to the decision 
boundary in the space defined by the kernel trick. Distance is positive on the positive side of the boundary and negative on the negative side of the boundary. 
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SVMs [Fig. 12], the ANN [Fig. 13]; Table C1) generally show a broad 
agreement in terms of geospatial patterns of regional geothermal 
favorability, particularly for areas of high geothermal favorability (e.g., 
as seen by predictions in the Yellowstone, Geysers, and Great Basin re-
gions) with the greatest disagreement between models corresponding to 
predictions of low geothermal favorability (e.g., eastern Montana, the 
Central Valley of California, northwest Washington). 

3.4. Feature Importance 

The relative ranking of different measures of feature importance is 
mostly consistent across the different approaches. Fig. 14, which sum-
marizes feature importance as the median value from the 120 train-test 
splits (distributions for each measure shown in Appendix D), depicts the 
general distribution of importance across the different approaches. In 
general, heat flow and distance to faults are, respectively, the most and 
second most important features (e.g., 2008 logistic regression, 2008 
weight-of-evidence, ensemble logistic regression, single and ensemble 
XGBoost). Reciprocally, the feature importance of seismic event density 
and stress are, respectively, the second least and least important features 
(e.g., 2008 weight-of-evidence, ensemble XGBoost). Across these 
different approaches and measures of feature importance, there is one 
notable exception from these generally observed tendencies; the 
ensemble SVM ranks seismic event density as the most important feature 
(Fig. 14, D6) with F1 score sensitivity analysis and SHAP values. 

4. Discussion 

In this section, we demonstrate that the machine learning algorithms 
can produce geothermal favorability maps that are generally consistent 
with those from the 2008 geothermal resource assessment (Williams and 
DeAngelo, 2008) but do not have the bias implicit to the expert decisions 
from that assessment (Figs. 9 versus Figs. 10, 11, 12, 13). However, 

despite this broad agreement, there are distinctions between the results 
of the different approaches. These distinctions are a product of the 
differing frameworks between the approaches and their resulting vari-
ation in complexity. 

4.1. Model Performance 

From the perspective of the F1 score, the machine learning ap-
proaches appear to perform poorly (F1 score < 0.10). The poor perfor-
mance can be attributed to two considerations: 1) the quality of the data 
and 2) the suitability of the F1 for positive-unlabeled data. 

The data used in this machine learning study can be considered to 
have limited quality from the perspective of how representative the data 
are to true geological conditions. For example, the geospatial data 
aggregated by Williams and DeAngelo (2008) informed regions of the 
western United States with varying density, and for heat flow and stress, 
a radial basis function interpolation populated the cells between known 
values (i.e., maps of properties varied smoothly between measurement 
locations). Anomalously high heat flow values (> 120 mW/m2) were set 
to equal 120 mW/m2 to reduce the effect of the convective wells and 
sampling bias. Today, modern geostatistical approaches offer more 
robust methods to account for sampling bias (e.g., declustering; see 
Lindsey et al., 2022). It is also worth consideration that geological 
conditions do not vary smoothly between measurement locations. 
Instead, geologic features, like faults, unconformities, and paleotopog-
raphy, are expected to result in abrupt changes, reducing the accuracy of 
interpolated values with respect to true conditions. 

The F1 score may be considered the most appropriate performance 
metric for positive-unlabeled data, but as implemented here, the F1 
score is still not ideally suited to the role; the F1 score penalizes positive 
predictions at unlabeled cells as false positives while these cells may 
indeed be positive. Bekker and Davis (2020) cover several novel per-
formance metrics adapted to positive-unlabeled data (e.g., Lee and Liu, 

Fig. 13. Favorability map for the single ANN. Favorability is the normal score transform of probability.  
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2003), but these novel metrics are not simultaneously designed to also 
handle the severe class imbalance of geothermal data. An ideal perfor-
mance metric for positive-unlabeled data with severe class imbalance 
might reward the prediction of true positives and a limited number of 
positive predictions from the unlabeled cells (i.e., most unlabeled cells 
are negative, but not all are) while penalizing the predictions of false 
negatives and too many positive predictions from unlabeled cells (i.e., 
most unlabeled cells are negative). To that end, we identify the need for 
a new performance metric intended to accommodate positive-unlabeled 
data and severe class imbalance for use in machine learning applications 
involving the exploration of geothermal systems and other natural 
resources. 

4.1.1. Relative Model Performance 
Since the methods from the 2008 geothermal resource assessment 

did not explicitly predict where geothermal systems are favorable, no 
traditional performance metric can be used to compare the methods 
from the 2008 assessment to the seven machine learning approaches 
presented here. Therefore, we present an alternative means to compare 
model performance; however, we emphasize that the manner of this 
comparison is not a new performance metric unto itself but only a means 
to evaluate the performance of the nine different approaches when used 
with the same data. 

To compare the models, we perform a normal score transform on the 
predictions from each approach. After the transformation, the unlabeled 

Fig. 14. Median normalized feature importance values from the 120 train-test splits using the different strategy-algorithm approaches. Abbreviations: WoE ’08 
(yellow): Weight-of-Evidence from the 2008 geothermal resource assessment, LR ’08 (green): Logistic Regression from the 2008 geothermal resource assessment, LR 
(red): Single Logistic Regression, enLR (black): Ensemble Logistic Regression, XGB (purple): Single XGBoost, enXGB (brown): Ensemble XGBoost, SVM (orange): 
Single Support-Vector Machine, enSVM (dark blue): Ensemble Support-Vector Machine, ANN (light blue): Single Artificial Neural Network, ROCAUC: Area Under the 
Receiver Operating Characteristic Curve, SHAP: SHapely Additive explanation. 
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cells have nearly a standard normal distribution (Fig. 15). Assuming the 
models have predictive skill, the positive-labeled cells should have a 
distribution of predictions with a mean greater than that of the unla-
beled cells; hence, higher normal score transformed predictions for the 
positive cells result in a greater distinction between the positive-labeled 
and unlabeled cells and better model performance. 

Applying the transformation to the predictions reveals that several of 

the approaches perform similarly (e.g., weight-of-evidence, expert 
decision-dependent logistic regression, single logistic regression, 
ensemble logistic regression, single SVMs, ensemble SVMs, and the 
ANN; Fig. 15). Meanwhile, single XGBoost produces the greatest 
distinction between known positive and unlabeled samples (Table 3), 
and ensemble XGBoost predicts the second greatest distinction between 
known positive and unlabeled samples. Hence, the comparison of the 
normal score transformed predictions suggests that the simplest non- 
linear algorithm had the best performance from the different ap-
proaches considered, and the other approaches performed similarly to 
one another despite their varying complexity. The superlative perfor-
mance of XGBoost with both training strategies suggests that the 
inherent shape of a decision boundary from XGBoost (i.e., a step 
function-like boundary due to the decision-tree structure of XGBoost) is 
more like the true decision boundary for a perfect predictor than the 
decision boundaries from the other approaches in this study. 

4.1.2. Model Complexity Does Not Improve Performance 
The general agreement of predictions from the different approaches 

(Figs. 9, 10, 11, 12, 13, 16) is consistent with the agreement of the 
relative feature importance in the models (Fig. 14) with heat flow and 
distance to faults as the most important features and maximum hori-
zontal stress and seismic event density as the least important features. 

We note that measures that produce feature importance values 
where ranges do not strongly overlap (e.g., ROCAUC sensitivity in Figs. 
D1, D2, D3, D4, D5, D6; F score for XGBoost in Figs. D3, D4 in Appendix 

Fig. 15. Comparing normal score transformed predictions between the different approaches using a) probability density functions of normal score transformed 
predictions and b) cumulative distribution functions of normal score transformed predictions. The shaded blue provides predictions for the unlabeled cells. The lines 
depict the relative distribution of predictions of positive labels from different approaches. Abbreviations: WoE ’08 (yellow): Weight-of-Evidence from the 2008 
geothermal resource assessment, LR ’08 (green): Logistic Regression from the 2008 geothermal resource assessment, LR (red): Single Logistic Regression, enLR 
(black): Ensemble Logistic Regression, XGB (purple): Single XGBoost, enXGB (brown): Ensemble XGBoost, SVM (orange): Single Support-Vector Machine, enSVM 
(dark blue): Ensemble Support-Vector Machine, ANN (light blue): Single Artificial Neural Network. 

Table 3 
Mean, median, peak values, and variance of normal score transformed pre-
dictions as depicted in Fig. 15. Abbreviations: WoE ’08: Weight-of-Evidence 
from the 2008 geothermal resource assessment, LR ’08: Logistic Regression 
from the 2008 geothermal resource assessment, LR: Single Logistic Regression, 
enLR: Ensemble Logistic Regression, XGB: Single XGBoost, enXGB: Ensemble 
XGBoost, SVM: Single Support-Vector Machine, enSVM: Ensemble Support- 
Vector Machine, ANN: Single Artificial Neural Network.  

Predictions Mean Median Peak Variance 

Unlabeled 0.00 -0.01 0.06 1.00 
WoE ’08 Positives 1.31 1.29 1.42 0.84 
LR ’08 Positives 1.33 1.32 1.36 0.80 
LR Positives 1.32 1.25 1.19 0.75 
enLR Positives 1.30 1.22 1.12 0.71 
XGB Positives 1.88 1.86 1.81 0.72 
enXGB Positives 1.61 1.56 1.45 0.88 
SVM Positives 1.24 1.27 1.42 0.82 
enSVM Positives 1.21 1.24 1.37 0.94 
ANN Positives 1.30 1.25 1.28 0.72  
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D) provide more confidence in relative feature importance than those 
with overlapping ranges (e.g., F1 sensitivity analysis). Where present, 
the overlap presents ambiguity with respect to the reliability of the 
analyses. This overlap and consequential ambiguity are not likely a 
result of the measures themselves, but of two qualities in the data from 
the 2008 geothermal resource assessment. The first, as already sug-
gested by the low F1 scores (Fig. 8; Table 2), is that the features do not 
sufficiently reflect geological conditions at a fine enough scale showing 
properties that change rapidly over short distances. The second pertains 
to the limited number of cells labeled as known positives (i.e., 278) 
across the several geologically diverse regions of the western United 
States. Feature importance likely varies between these different 

geological regions (e.g., the Great Basin, the Cascades, the Rocky 
Mountains), especially if there are different types of geothermal systems 
in each region (e.g., deep circulation within thin crust versus magmatic 
heat source). The regional geologic variability coupled with the high 
likelihood of regionally skewed distributions of known positives in the 
train-test splits accentuate the variance in the measures of feature 
importance. 

Neither of the two above potential explanations can account for the 
anomalous relative ranking of feature importance by the ensemble SVM 
(Fig. 14, D6). Close inspection of the SVM favorability plots (Fig. 12) 
finds seismically active locales display lower favorability than seismi-
cally inactive areas, suggesting that SVMs predict seismicity to inversely 

Fig. 16. Cross-plots of predicted normal score transformed favorability at every location for the different approaches (i.e., favorability predictions from Figs. 9, 10, 
11, 12, 13). The number in each plot is the root mean square error (sum of square differences at all cells), so low values indicate better cell-by-cell agreement in the 
favorability maps. The main diagonal shows the histogram of data on each map, which should be a normal distribution of mean = 0 and variance = 1. Because the 
histograms are a quantile-to-quantile transform, the spikes are a high count of the same value as a result of binning, which also produces regular gaps in favorability 
values in the cross-plots. Abbreviations: WoE ’08: Weight-of-Evidence from the 2008 geothermal resource assessment, LR ’08: Logistic Regression from the 2008 
geothermal resource assessment, LR: Single Logistic Regression, enLR: Ensemble Logistic Regression, XGB: Single XGBoost, enXGB: Ensemble XGBoost, SVM: Single 
Support-Vector Machine, enSVM: Ensemble Support-Vector Machine, ANN: Single Artificial Neural Network. 
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correspond to geothermal favorability. This relationship is not observed 
at a nearly similar magnitude with the other approaches (Fig. 14), which 
generally rank relative feature importance as consistent with the degree 
of difference between the positive and unlabeled cells in the feature data 
(Fig. 7). 

The unusual magnitude of the negative relationship of seismicity in 
the ensemble SVM may be a result of the intrinsic complexity of the 
algorithm itself. When using the radial basis function kernel, the fewer 
training data in the ensemble approach coupled with the high 
complexity of the SVM may be insufficient to properly train a well- 
performing model. That is, although all the machine learning ap-
proaches explored in this study are subject to the bias-variance tradeoff, 
the potential of SVMs to learn a highly complex boundary imparts low 
bias (i.e., approximation error). As a result, SVMs require more positive 
samples to achieve a low estimation error (Shalev-Shwartz and Ben-D-
avid, 2014a). When using the data from the 2008 geothermal resource 
assessment, too few known positives result in some SVM models that 
seem prone to finding a non-linear transform that accentuates seis-
micity, giving a very different model than is supported by the other 
machine learning models. Alternatively, the SVM predictor may be 
highly sensitive to selecting appropriate support vectors from the data 
set. This task is especially challenging given the class imbalance of the 
data used in this study. Similarly, the substantial overlap of feature 
importance in the F1 and ROCAUC sensitivity analyses of the single ANN 
(Fig. D7) suggest that this deep learning algorithm was also detrimen-
tally affected by its complexity when faced by the simplicity of the 
feature data. Hence, the highly complex machine learning models may 
not be as appropriate for data like that from the 2008 geothermal 
resource assessment as the less complex algorithms. With consideration 
for these results and the substantial implicit computational burden, we 
decided to forego completing 120 train-test splits of the ensemble ANN; 
however, given that the single and ensemble strategies performed 
similarly for logistic regression, XGBoost, and SVMs, we do not antici-
pate vastly different predictive skill between a single and an ensemble 
ANN. 

Likewise, we again note that single XGBoost, the simplest non-linear 
approach, produced the best performing model evaluated from the 
perspective of discriminating known positive locations from the back-
ground unlabeled locations (Fig. 15), and ensemble XGBoost did not 
perform as well. XGBoost likely distinguishes itself from the simpler 
logistic regression algorithm because XGBoost can learn the ranges of 
heat flow, fault distance, magmatic distance, seismicity, and stress 
associated with geothermal systems, whereas logistic regression, a linear 
algorithm, can only identify smoothly varying linear relations. There-
fore, choosing the most appropriate approach to predict geothermal 
systems requires weighing the complexity of the approach with the data 
available to train and test a model. 

4.3. Comparing Predictions 

Comparing predictions on a cell-by-cell basis between models 
(Fig. 16) shows that the expert decisions in the 2008 geothermal 
resource assessment had as much influence on the models produced as 
the algorithm selected. 

4.3.1. Influence of Expert Decisions in a Cell-by-Cell Comparison 
In a cell-by-cell comparison of normal score transformed predictions 

(Fig. 16), the machine learning models generally agree with each other 
more than the models from the 2008 geothermal resource assessment 
(Fig. 16). Predictions from the 2008 logistic regression method have the 
greatest disagreement with all other models (i.e., largest RMSE), and 
weight-of-evidence has the second largest disagreement with all other 
models, while the 2008 logistic regression and weight-of-evidence 
models do not agree comparatively well with each other (RMSE =
1.29). The higher RMSE between the expert decision-dependent and 
machine learning models is likely a result of the biases imparted by the 

expert decisions. Assuming that more models in agreement implies those 
models are more likely correct, the 2008 Logistic Regression is likely the 
least reliable estimator of geothermal favorability. 

The dichotomy between the expert decision-dependent and the ma-
chine learning approaches is most apparent when examining the three 
approaches for logistic regression. The single logistic regression and 
ensemble logistic regression have the greatest similarity in predictive 
behavior when comparing any combination of the approaches investi-
gated in this study (RMSE = 0.22), indicating an insensitivity to the 
train-test split strategies, whereas the greatest disagreement between 
pairings with single or ensemble logistic regression and another 
approach are found with the 2008 geothermal resource assessment. That 
is, the biases of the expert decisions are explicit when comparing the 
different forms of logistic regression and demonstrate that the biggest 
differences between predictions of geothermal favorability are not a 
result of which strategy or shallow machine learning algorithm is used, 
but are, instead, an eventual product of the overall philosophy pursued. 

4.3.2. Expert Decisions Imposed Non-Linearity in the 2008 Geothermal 
Resource Assessment 

The machine learning logistic regression favorability maps have a 
smooth geospatial distribution of favorability (Fig. 10) relative to the 
favorability maps from the more expert decision-dependent approaches 
(i.e., weight-of-evidence and expert decision-dependent logistic regres-
sion; Fig. 9) and two of the non-linear data-driven approaches (i.e., 
XGBoost [Fig. 11] and SVMs [Fig. 12]). The differences in the continuity 
of predictions are also apparent in cross-plots, in which non-linear ap-
proaches display distinct binning of predicted values (e.g., weight-of- 
evidence, expert decision-dependent logistic regression, single 
XGBoost, and ensemble XGBoost in Fig. 16). The smooth distribution in 
the machine learning logistic regression is a result of the linear fit of 
continuously valued input features, which contrasts with the weight-of- 
evidence and expert decision-dependent logistic regression methods, in 
which input features have binned values. 

The apparent similarity in granularity between the results from the 
expert decision-dependent methods, which use linear models, and two 
of the non-linear models in this study (i.e., XGBoost and SVMs) indicates 
that one effect of selecting expert-informed bins and thresholds is the 
inherent creation of non-linear features through the expert-driven con-
version of the continuous values to categorical bins. While this effect 
was recognized in the work of Williams and DeAngelo (2008), we again 
find that, like in Section 4.3.1, expert decision can have as much influ-
ence on the favorability models of geothermal resource assessments as 
the approaches selected to create those models. 

4.3.3. Effect of Algorithm Complexity on Granularity 
It would generally be expected that the ensemble models, being 

composed of an average of sub-models, would appear smoother (i.e., 
have less granularity) than their equivalents from the single training 
strategy. The natively continuous predictions from logistic regression 
make this determination between the two training strategies practically 
impossible (Fig. 10). With XGBoost and SVMs, the single variants of 
these approaches produce similar granularity as the ensemble ap-
proaches when predicting higher favorability (Figs. 11, 12, 16); this 
behavior is a product of each sub-model in the ensemble training 
strategy receiving the same examples of known positives. Curiously, the 
ensemble SVM produces greater granularity than single SVM when 
predicting low geothermal favorability (Fig. 12), indicating the sub- 
models of ensemble SVM do not express substantial variability despite 
being trained from different subsets of negative training data. 

The low granularity of the ANN (Fig. 13) more closely resembles the 
smoothly varying favorability predictions produced from the machine 
learning logistic regression (Fig. 10) and has the lowest RMSE with 
machine learning logistic regression (RMSE < 0.31) than with the other 
approaches (Fig. 16). The relative similarity between the ANN and 
machine learning logistic regression, compared to the ANN and the 
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other approaches, is likely due to the ANN balancing the complexity 
resulting from its two hidden layers and 35 nodes per layer (Table 2) and 
its effort to avoid overfitting (i.e., if a simple linear model is sufficient, or 
only small non-linearities are required, then the ANN will favor a 
“nearly” linear model). ANNs have been documented to behave simi-
larly to logistic regression when the ANNs remained simple (e.g., by 
using fewer layers; see Spackman, 1992; Vach et al., 1996). As a result of 
its design with a sigmodal activation function in its single-node output 
layer (see Fig. 2 for a sigmoidal function; see Fig. 5 for the operational 
significance of the single-node output layer), the ANN produces 
near-continuous predictions (Fig. 13) and, while these continuous pre-
dictions could express greater geospatial granularity reflecting the 
complexity of the algorithm (e.g., Ayer et al., 2010), the effects of 
averting overfitting result in a favorability map more like those of ma-
chine learning logistic regression than any other approach (Figs. 10, 13, 
16). 

4.3.4. A Proposed Modification to RMSE for Future Work 
As previously stated, models differ greatly in areas that are consid-

ered to have low favorability. Therefore, RMSE values are commonly 
heavily influenced by differing low geothermal favorability predictions. 
This behavior may partly be the result of only using positive and unla-
beled data for training, thereby teaching the models a relatively com-
mon predilection for identifying positive locations; however, the 
absence of a geothermal system may result from a range of prohibitive 
physical conditions (e.g., heat flow may be too low or there may be 
insufficient permeability), and each of the machine learning strategies 
may emphasize different conditions of failure, resulting in different map 
patterns of low favorability. 

If the goal is to find which approaches agree strongly on high- 
favorability sites, the RMSE of entire models may not be the best mea-
sure. In fact, qualitatively, ensemble logistic regression and single 
XGBoost appear to differ from the other shallow learning approaches the 
most substantially when predicting high geothermal favorability but still 
have a low RMSE value when comparing the models to each other (i.e., 
RMSE = 0.45; Fig. 16). Similarly, the ensemble XGB and the ANN appear 
to share good agreement at high favorability, but have a relatively high 
RMSE value (i.e., RMSE = 0.57; Fig. 16); hence, the normal score RMSE 
of data where both predictors produce a normal score of geothermal 
favorability > 0 (i.e., both models agree that data points are within the 
highest 50% of data) might be a better measure of agreement between 
predictors for the purposes of identifying favorable locations. 

4.4. Interpreting Hyperparameter Values 

The differences of hyperparameter values between the single and 
ensemble strategies reflect the structural differences of the strategies. 
Foremost, class weights in the models from the ensemble strategy are 
generally a fraction of the class weights for models from the single 
strategy (Table 2). This observation is expected given the lower class 
imbalance in the ensemble strategy than in the single strategy. However, 
we also note that single logistic regression, single XGBoost, single SVM, 
and single ANN have positive class weights significantly less than what 
would be expected by the positive:negative natural class imbalance (i.e., 
1:700) as estimated using the results from Williams et al. (2008). The 
difference between optimized class weights and the estimated natural 
class imbalance suggests that the estimated number of naturally occur-
ring geothermal systems may be too low. While we use the mean power 
production as modeled by Williams et al. (2008) to estimate the number 
of naturally occurring geothermal systems in the western United States 
(i.e., 1:700), the class weighting for single logistic regression (i.e., 258), 
XGBoost (i.e., 206), SVM (i.e., 575), and ANN (i.e., 285) may suggest that 
the true number of naturally occurring geothermal systems is greater 
than our estimate of 1,040 (Table 2). 

The 1:700 positive:negative class imbalance estimate derived from 
Williams et al. (2008) is a starting point; thereafter, the hyperparameter 
optimization process tunes class weights, which reflect the class 
imbalance the algorithms identify as the models are optimized. Using 
the estimated power potential of geothermal resources in the western 
United States at 5% probability from Williams et al. (2008), we would 
anticipate a positive:negative class imbalance of 1:550 (see Eqs. 6–8), 
which approximately resembles the optimal class weighting found for 
the single SVM (i.e., 575). Hence, the optimal class weight for the single 
SVM suggests that the real geothermal power potential in the western 
United States may be more than twice the mean estimated value of 
Williams et al. (2008), and perhaps closer to the 5% confidence value of 
73,286 MWe; however, we caution that the low F1 scores suggest that 
strong inferences from class weight on the natural class imbalance may 
be imprudent based on the findings herein. Nonetheless, if we follow this 
line of reasoning, we also note that the class weighting of the single ANN 
(i.e., 285), single logistic regression (i.e., 258) and single XGBoost (i.e., 
206), again suggests that the number of naturally occurring geothermal 
systems in the western United States may exceed the mean probability 
estimate derived from Williams et al. (2008). As better performing 
models are developed for predicting the favorability of geothermal re-
sources (e.g., as the future models produce higher F1 scores), perhaps the 
number of expected geothermal systems can be more accurately 
constrained. 

5. Opportunities to Enhance Geothermal Resource Assessments 

The approaches discussed above provide a means to understand past 
assessments and provide confidence that robust assessments can be 
developed that rely more fully upon the data-driven decisions with 
fewer choices by experts. Yet, in addition to positive-unlabeled data and 
class imbalance, several challenges remain. The USGS geothermal 
resource assessment team is currently working towards answering the 
following questions for the next generation of geothermal resource 
assessments:  

• Is the F1 score is an adequate metric for positive-unlabeled data? The 
F1 score penalizes positive predictions of unlabeled cells (i.e., what 
would be termed false positives with positive-negative data; see Eq. 
4), but these cells may indeed be positive. Instead, geological re-
sources and phenomena need a new performance metric for their 
unique characteristics.  

• Is a decision threshold of 0.5 appropriate for machine learning with 
geothermal data? Preliminary testing of this assumption (i.e., devi-
ation from a 0.5 threshold) did not find improvement at other de-
cision thresholds, but a full examination is beyond the scope of this 
paper and a more exhaustive analysis could provide insight.  

• How could the distributions of normal score transformed predictions 
between known positives and unlabeled examples be used for 
hyperparameter optimization? What other methods could address 
the positive-unlabeled aspect of the data? Bekker and Davis (2020) 
suggest several methods for training with positive-unlabeled data, 
like using semi-supervised approaches with consistency regulariza-
tion to separate positive and negative classes.  

• How can we develop workflows that are not reliant upon gridding a 
region of study? While there is value in understanding the 
geothermal favorability of km-sized cells, it may be more useful to 
understand geothermal favorability directly under foot (or any other 
arbitrary geographic location). To do so, we would need to break 
grids to < 100 m in dimension, which would require presently un-
attainable processing power for regions the size of the western 
United States or the abandonment of grids in some workflows 
entirely. This degree of geospatial precision would also be dependent 
upon engineering more informative features. 
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• How can features be better engineered to predict geothermal favor-
ability? Our results suggest that the 2008 data were insufficient to 
predict the occurrence of geothermal systems well. In addition to 
collecting refined data, new features might be engineered that better 
represent geological conditions as they relate to geothermal 
favorability.  

• Should other forms of processing for feature data be used? In this 
study, the feature sets are standardized, but would a different 
transformation be more appropriate to target the specific conditions 
that permit geothermal systems or reduce the effect of outliers in the 
feature data (e.g., a quantile-to-quantile transform that removes or 
emphasizes outliers)?  

• Is it best to call all known geothermal systems positive, or are there 
distinct systems that should all have separate labels (e.g., magmatic 
systems, deep-circulation systems)? Hitherto, we have been discus-
sing geothermal exploration in pursuit of all conventional 
geothermal systems. Should we expect shallow, magmatically driven 
geothermal systems to share the same qualities as deep-circulation, 
fault-driven systems? If not, the geothermal data would benefit 
from more than one type of positive label. Are there distinctions 
between “big” or “small” geothermal systems? That is, do “big” 
systems occur where conditions are more favorable?  

• How will the algorithms need to be applied differently to identify 
conditions favorable to engineered geothermal systems (i.e., EGSs) or 
blind geothermal systems? How do we approach the data-driven 
exploration of direct-use geothermal energy? 

6. Conclusion 

In this study, we demonstrate that, when using the same data, 
modern machine learning approaches can perform as least as well as, if 
not better than the methods used in the 2008 U.S. Geological Survey 
geothermal resource assessment, which relied upon expert decisions, to 
predict geothermal favorability in the western United States. The models 
produced by the machine learning approaches perform similarly with 
ubiquitously low F1 scores (i.e., F1 scores < 0.10), emphasizing the need 
for improving input feature data and handling intrinsic problems with 
labeled geothermal data (e.g., positive-unlabeled data, severe class 
imbalance). The expert decision-dependent and machine learning ap-
proaches show general agreement, demonstrating that the machine 
learning algorithms present a means to produce and even improve the 
geothermal favorability maps from the 2008 geothermal resource 
assessment while minimizing the biases of expert decisions. By using 
several measures of feature importance across the nine approaches, we 
find that heat flow and distance to a fault are the two features of pre-
dominant importance when producing models to predict geothermal 
favorability from the five input features used. We posit that highly 
complex algorithms do not perform as well or as consistently with the 
data from the 2008 geothermal resource assessment as simpler algo-
rithms, and postulate that the differences in performance are a product 
of the bias-variance tradeoff and/or the inherent shape of the decision 
boundary native to the algorithms considered. Finally, we demonstrate 
how the expert decisions from the 2008 geothermal resource assessment 
(i.e., binning) of the input feature sets effectively rendered the otherwise 
linear methods used therein (i.e., weight-of-evidence and logistic 
regression) to become non-linear and that the greatest variability be-
tween the predictions from the different models is a result of their degree 
of dependence on expert decisions. 
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