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Abstract

Understanding the impact of the most e↵ective policies or treatments on a response variable
of interest is desirable in many empirical works in economics, statistics and other disciplines.
Due to the widespread winner’s curse phenomenon, conventional statistical inference assuming
that the top policies are chosen independent of the random sample may lead to overly optimistic
evaluations of the best policies. In recent years, given the increased availability of large datasets,
such an issue can be further complicated when researchers include many covariates to estimate
the policy or treatment e↵ects in an attempt to control for potential confounders. In this
manuscript, to simultaneously address the above-mentioned issues, we propose a resampling-
based procedure that not only lifts the winner’s curse in evaluating the best policies observed in
a random sample, but also is robust to the presence of many covariates. The proposed inference
procedure yields accurate point estimates and valid frequentist confidence intervals that achieve
the exact nominal level as the sample size goes to infinity for multiple best policy e↵ect sizes.
We illustrate the finite-sample performance of our approach through Monte Carlo experiments
and two empirical studies, evaluating the most e↵ective policies in charitable giving and the
most beneficial group of workers in the National Supported Work program.
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1 Introduction

1.1 Motivation and our contribution

Many empirical work requires an understanding of the impact of the most e↵ective policies or

treatments on a relevant response variable of interest. For instance, in randomized (factorial) ex-

periments with multiple treatments, researchers may be interested in the most e↵ective policies

(combinations). In online platforms, decision makers may be interested in the top five adver-

tising strategies. In financial portfolio management, managers might want to learn about the

best-performing strategies among many alternatives. In practice, after di↵erent policy e↵ect sizes

are estimated from a random sample, researchers may naturally look into those policies with the

largest e↵ect sizes. Accurately measuring the performance of top policies allows policy makers to

deliver better-informed decisions for forecasting the e↵ects of future policy implementations.

Nevertheless, given the well-recognized “winner’s curse” phenomenon, there can be considerable

uncertainties concerning if the top policies with large estimated e↵ect sizes are indeed e↵ective

in the population (see Section 1.2 for a literature review). In fact, due to the winner’s curse

phenomenon, literature documents that the estimated e↵ect sizes of the best-performing policies

without additional adjustments tend to be overly optimistic, rendering under-covered confidence

intervals [40, 6]. In this manuscript, we refer to the optimistic bias introduced by the winner’s curse

phenomenon as the winner’s curse bias. To mitigate this bias issue, we focus on the problem of

constructing accurate point estimates and valid confidence intervals for the true e↵ect sizes of the

(observed) best policies. By the best policies, we refer to a user-supplied number of policies that

have the largest (estimated) e↵ects among a set of candidate policies (see Section 2.1 for a concrete

problem setup), as we would expect that in practice researchers might want to focus on a few top

policies of interest.

Other than the winner’s curse phenomenon discussed above, an additional consideration gains

prominence in the evaluation of the most e↵ective policies. Since policy (or intervention) variables

are often not exogenous, researchers may adopt observational methods to estimate their e↵ects.

In recent years, given the increased availability of large datasets with rich covariate information,

one commonly adopted approach in empirical works is to assume that the policy variables are

exogenous after controlling for a su�ciently large set of factors or covariates. Such a consideration
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demandingly requires empirical researchers to estimate the policy e↵ects in the presence of many

covariates.

To simultaneously address the above-mentioned issues, in this article, we propose a procedure

that not only is robust to the presence of many covariates, but also provides accurate point estimates

and valid frequentist confidence intervals for multiple best policy e↵ect sizes. By many covariates,

we allow the number of covariates qn to diverge with the sample size n as long as lim supnÑ8 qn{n †
1. Note that this does not rule out the cases where qn is fixed or qn “ opnq. In other words, our

inferential method remains valid when the dimension of the covariates qn is fixed or qn “ opnq.
Our proposed confidence intervals are built upon resampling methods, and we demonstrate that

they achieve exact nominal coverage as the sample size goes to infinity under fairly moderate

assumptions. Our empirical evidence shows that conventional estimates ignoring the winner’s

curse issue are substantially upward biased, while our corrections reduce the winner’s curse bias

and increase coverage. As far as we know, valid statistical inferential tools on multiple best policies

that lift the winner’s curse while incorporating possibly many covariates have been lacking, and

the contribution of our work is to bridge this gap and help policy makers deliver well-informed

decisions in practice.

We illustrate our method with two empirical applications. In the first case study, we use the

charitable giving data from [37] to evaluate the best pricing policies that motivate donors to give.

Our results suggest that simple methods without adjusting for the winner’s curse bias could be

potentially overly optimistic in identifying the most e↵ective polices. After accounting for the

winner’s curse bias, we do not find su�cient evidence to support that the second best pricing

policy–asking the donor to give 25% more than his/her highest historical donation–is e↵ective,

implying that asking for a more “expensive” donation may not encourage donors to give. We

nevertheless note that given our calibration only marginally reduces the e↵ect size of the second

best policy, the above conclusion might not warrant a di↵erent economic interpretation. In the

second case study, we evaluate the e↵ectiveness of the national supported work (NSW) program

in di↵erent groups of workers. The NSW program is a job training program designed to prepare

disadvantaged workers for employment, and it has been investigated in various studies [18, 39]. We

apply the proposed approach to evaluate the performance of the NSW program on the most-a↵ected

subgroups of workers observed in the dataset. Our study results potentially suggest that married

3



black workers might benefit from the NSW program with an average increase of $4,410 for their

annual income.

1.2 Connection to the existing literature

One fundamental trend that drives the motivation of the methodology developed in this manuscript

is the increasing availability of massive datasets and the associated increasing dimensionality. Such

a trend brings scientists opportunities to deliver better-informed policies but, at the same time,

presents challenges in developing econometric and statistical tools; see [27], [8], [24], [11] for exam-

ple. A recent book [26] provides a thorough discussion of analytical methods that aim to address

such challenges. Specifically, the increasing data availability brings challenges and also opportuni-

ties to better understand various policies whose e↵ects can be inferred from data. Along this line,

our manuscript aims at providing understating for policies that are estimated and selected to be

the most e↵ective from a pool of policies.

The winner’s curse phenomenon and its related issues have been widely recognized in economics,

statistics, and data science at large. Seminal works by [29, 28] point out that spurious discoveries

can easily arise when target parameters are selected through data mining and statistical machine

learning algorithms. Recent work by [6] considers performing conditional and unconditional infer-

ence on observed best policy and [5] extends the work to more general ranking problems, which is

still di↵erent from our goal in conducting unconditional inference on multiple top policies. More-

over, while the conditional approaches in [6] and [5] produce optimal confidence intervals for the

observed policy e↵ects, their point estimates and confidence intervals can be conservative when

they are applied unconditionally. [19] considers a method to handle the winner’s curse bias with

Tweedie’s formula concerning the empirical Bayes theory. [40] consider a plug-in correction of the

winner’s curse bias and propose to construct confidence interval based on bootstrapping in the

context of A/B testing, but the proposed method lacks theoretical justifications. In clinical tri-

als for evaluating the largest observed treatment e↵ect in multiple subpopulations, [32] propose a

bootstrap-based confidence interval that achieves the exact nominal level as the sample size goes

to infinity, though generalizing their method to make inference on several top policies might not be

straightforward, especially in the presence of many covariates.

Our manuscript builds upon the literature on linear regression models with many or high dimen-

4



sional covariates; see [34], [43], [42], [2], [21], [10], [9], [36] and the reference therein. In particular,

[43] has established the asymptotic normality results for any contrasts of the ordinary least squares

(OLS) coe�cient vector estimator, when the dimension of the covariates divided by the sample size

vanishes asymptotically. More recently, [11] have shown that a small subset of the OLS estimators

for the regression coe�cients are asymptotically normal without restricting the dimension of the

covariates to be a vanishing fraction of the sample size. Moreover, [11] have proposed a robust co-

variance matrix estimator for the subset of the the OLS estimator under fairly general conditions.

[36] has proposed an alternative covariance matrix estimator that can deal with designs with even

large number of covariates under additional assumptions (Assumption 4 in the current manuscript).

Making inference on the best-performing policies is related to the literature on constructing

confidence intervals for extrema parameters with bootstrap; see [4], [23], [51], [14], [16] and the

reference therein. Given the asymptotic distributions of extrema parameter estimators are often not

normal, bootstrap-based methods can face serious di�culties when used to replicate the distribution

of extrema of parameter estimators [43, 44]. While subsampling could overcome this issue faced

by the classical bootstrap, it can exhibit very poor finite-sample performance because of the noise

introduced by the vanishing subsample size. Di↵erent from our goal in constructing confidence

intervals that achieve the exact nominal level, Hall and Miller [33] and [14] propose to construct

conservative bootstrap confidence intervals for extrema of parameters. In our current problem

setup with many covariates, the problem becomes even more acute as [22] show through a mix

of simulation and theoretical analyses that the bootstrap is fraught with problems in moderate

high dimensions. In the context of meta-analyses, [16] propose an approach to make inference

on ordered fixed study-specific parameters when di↵erent parameters are estimated independently

from multiple studies.

Our method also contributes to the rapidly growing literature on program evaluations; see

[30], [8], [38], [7], [1], [13], [25], [47] among many others. Under our asymptotic regime where

the number of covariates qn grows with the sample size n, the Neyman orthogonalization based

approaches often need to work with models with sparse regression coe�cients [8]. Rather than

imposing such a sparsity assumption, our approach estimates the policy e↵ects with regression

adjustments without requiring the regression coe�cients to be sparse. Because our approach only

requires a consistent covariance matrix estimation for di↵erent policy e↵ect estimators, we expect
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that the proposed framework on evaluating the best policies can be generalized when di↵erent

policy e↵ects are estimated with other o↵-shelf methods and we relegate such extensions for future

work.

Notation. We work with triangular array data t!i,n : i “ 1, . . . , n;n “ 1, 2, . . .u where for each n,

t!i,n : i “ 1, . . . , nu is defined on the probability space p⌦,S, Pnq. All parameters that characterize

the distribution of t!i,n : i “ 1, . . . , nu are implicitly indexed by Pn and thus by n. We write vectors

and matrices in bold font, and use regular font for univariate variables and constants.

2 Model setup and methodology

2.1 Problem setup and a revisit to the winner’s curse phenomenon

Suppose we have a random sample tpyi,n,x1
i,n,w

1
i,nq1uni“1, we pose the problem in the framework of

a linear regression model under heteroscedasticity

yi,n “ x1
i,n� ` w1

i,n�n ` ui,n, i “ 1, . . . , n, (1)

where yi,n is the outcome variable, xi,n P Rd are the treatment or policy variables of interest,

wi,n P Rqn contains the confounding factors, ui,n is an unobserved error term, and the coe�cient

vector � “ p�1, . . . ,�dq1 contains the treatment e↵ect of xi,n on the outcome yi,n. We allow the

linear model (1) to hold approximately by allowing Erui,n|txi,nuni“1, twi,nuni“1s ‰ 0. We are also

in a scenario where wi,n is high-dimensional, in the sense that qn can be a vanishing fraction of

the sample size n as long as lim supnÑ8 qn{n † 1. To simplify notations, we drop subscript n in

univariate random variables in the rest of the manuscript. That is, for example, we denote �j,n as

�j .

We write the ordered values of �1, . . . ,�d as �p1q • . . . • �pdq. We adopt the ordinary least-

squares (OLS) estimator p� (see Remark 2 for other possible estimates) to estimate � and write the

order statistics of p� as p�p1q • . . . • p�pdq. Because researchers in practice might hope to focus on a

few top policies, given that d0 is a user-supplied positive integer, our goal is to construct accurate

point estimates and valid confidence intervals for two sets of quantities:

(1) the best policy e↵ect sizes in the population: �p1q, . . . ,�pd0q,

6



(2) the observed best policy e↵ect sizes: �pj , where
pj “ ∞d

k“1 k ¨ 1pp�k “ p�pjqq, for j “ 1, . . . , d0.

The first set of quantities characterizes the e↵ects of the top d0 policies in the population and

are thus fixed parameters. The second set of quantities describes the true e↵ect sizes of the best

performing policies observed in the random sample, and these quantities are thus “data-dependent

parameters.” Both sets of quantities can be of interest in di↵erent empirical applications [17, 15, 45],

and our proposed procedure can be used to deliver valid statistical inference on both quantities

(Theorem 1 and Corollary 1).

Remark 1 (Ties in the estimated policy e↵ects) The second set of parameters is well defined

if the observed policies do not have exact ties in the sense that p�p1q ° . . . ° p�pdq. When the policies

e↵ect estimators solve to the interior points of the feasible parameter space, it is likely that no

exact ties appear in the random sample. On the other hand, there can exist scenarios where, for

example, d0 is set as 2 but there are multiple policy e↵ect sizes that tie at rank 2. In this case, one

may choose instead a data-dependent pd0 “ maxtk : p�pkq ° p�p2q ´ C1 ¨ n´0.25u. This new random

d0 will asymptotically be able to incorporate all the e↵ect sizes that actually are equal to the true

e↵ect size associated with p�p2q. In this way, the limiting value of pd0 will not necessarily be 2, but

can be a larger number than 2 to incorporate “very close” e↵ect sizes with the rank-2 e↵ect size.

We also provide some related discussions in Remark 4.

Remark 2 (Other possible estimators of �) In the presence of many covariates when qn is

potentially large (lim supnÑ8 qn{n Ñ 1 in our asymptotic regime) without assuming the coe�cient

�n to be sparse, we adopt the OLS estimator to estimate �, because the OLS estimator has been

thoroughly studied in the existing literature and enjoys favorable theoretical guarantees. In high

dimensions when qn " n, other estimators of � that incorporate model selection procedures can

be adopted as well. Our procedure can produce valid statistical inference as long as the covariance

matrix of p� can be consistently estimated. For example, under the sparsity assumption on �n

documented in the literature [26], we may adopt the covariance matrix estimator from the de-

sparsified Lasso procedure [31, 52].

To fully realize the challenges on delivering valid statistical inference on these two sets of

parameters in our current problem setup, we revisit the winner’s curse phenomenon. When first
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discussed in common-value auctions, the winner’s curse refers to the bidding behavior where bidders

systematically overbid, resulting in an expected loss [12]. In our context of policy evaluations, the

winner’s curse refers to the issue that the observed best policies have the tendency to over-estimate

the best policies in the population. We would thus often expect that neither Erp�pjq ´ �pjqs nor

Erp�pjq ´�pjs is close to zero, and the resulting confidence interval may fail to reach the nominal level.

Such an issue becomes even more acute as we have many covariates wi,n entering the inferential

process.

We next illustrate the winner’s curse issue through Example 1 with a simple simulation study,

where we observe substantial winner’s curse bias and under-covered confidence intervals for the top

polices. In particular, Figure 1(b) demonstrates that coverage probabilities are worsened when a

larger number of covariates are incorporated for estimating �. It is worth pointing out that when

d “ 3, p�p2q is the median policy e↵ect. Thus, the estimation bias is around 0, and the true standard

deviation is much smaller than the estimated standard deviation, resulting in a confidence interval

with close to 100% coverage. When d increases, the coverage probability gradually drops due to a

larger estimation bias and inaccurately estimated standard deviation.

Example 1 (A simulation study demonstrating the winner’s curse phenomenon with

many covariates) We generate 1000 Monte Carlo samples following the setup in Model (1). We

generate xi,n „ N p0,⌃q with ⌃jk “ 0.5|j´k| for j, k “ 1, . . . , d, wi,n “ 1p rwi,n • �´1p0.98qq with

rwi,n „ N p0, Iqnq, where Iqn is a qn-dimensional identity matrix. We consider the case where no

policy is e↵ective (so that � “ 0, �p1 “ �p2 “ 0) and �j “ 1{j, for j “ 1, . . . , qn. We report the

asymptotic bias of the conventional estimator (i.e.,
?
n ¨ Erp�pjq ´ �pjqs) as well as the coverage

probability of confidence intervals constructed based on normal approximation with the Eicker-

White [20, 50] covariance matrix estimator defined in Eq (6).

2.2 Methodology

Our method starts with the ordinary least-squares (OLS) estimator of �, that is

p� “
´ nÿ

i“1

pvi,npv1
i,n

¯´1´ nÿ

i“1

pvi,nyi,n
¯
,
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(a) Winner’s curse bias (qn “ 141) (b) Coverage probability

Figure 1: Demonstration of the winner’s curse phenomenon following the simulation setup in
Example 1. The maximum Monte Carlo standard error for the asymptotic bias is 0.88. Panel
(a) captures the asymptotic winner’s curse bias when qn “ 141; Panel (b) captures the coverage
probability when qn P t141, 631u and the nominal level is 0.95.

where pvi,n “ ∞n
j“1pMnqi,jxj,n, and pMnqi,j fi 1pi “ jq´w1

i,n

´∞n
k“1wk,nw1

k,n

¯´1
wj,n. As we focus

on the case when qn can be a non-vanishing fraction of n, n Ñ 8, we adopt the robust covariance

matrix estimator proposed in [36]. We try to follow the author’s notation as closely as possible:

p⌦KJ

n fi p�´1
n

p⌃KJ

n
p�´1
n ,

where

p�n “ 1

n

nÿ

i“1

pvi,npv1
i,n,

p⌃KJ

n fi 1

n

nÿ

i“1

pvi,npv1
i,nyi,núi,n,

where úi,n “ pui,n

pMnqi,i , pui,n “ ∞n
j“1pMnqi,jpyj,n ´ x1

j,n
p�q, for i “ 1, . . . , n. Such an estimator is

well-defined as long as minipMnqi,i ° 0. If minipMnqi,i “ 0, it means that the auxiliary regression

produces a perfect prediction. So the observation does not carry information on � and can be

ignored.

As shown in Example 1, the estimated top policy e↵ect sizes with p�p1q, . . . , p�pd0q are often

biased upward for our target parameters due to the winner’s curse phenomenon. Inspired by the
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procedure proposed by [16]1 for meta-analyses, we generate replicates of p� from a multivariate

normal distribution

p�˚ ˇ̌
tpyi,n,x1

i,n,w
1
i,nq1uni“1 „ N p p�, p⌦KJ

n {nq, where p�˚ “ pp�˚
1 , . . . ,

p�˚
d q1

, (2)

and we denote the ordered values of the vector p�˚ as p�˚
p1q • . . . • p�˚

pdq. Note that the above

description of p�˚ di↵ers from some previous work on bootstrapping insofar we have suppressed the

role of “multiplier variables,” and we have defined p�˚ as a sample from N p p�, p⌦KJ

n {nq. Di↵erent

from [16] that requires di↵erent estimators to be estimated from independent studies with non-

overlapping random samples, our approach relaxes such an requirement and allows p�1, . . . , p�d to be

correlated.

Next, given properly chosen bL and bR so that bL ´ bR “ Opn´�q with � P p0, 12q (see Supple-

mentary Materials Section C.1 for their data-adaptive choices, and robustness to di↵erent choices

of tuning parameters in Supplementary Materials, Section C.2), we estimate a “near tie” set that

captures policies that have similar e↵ect sizes to the j-th largest policy:

pHpjq “
 
k : p�˚

pjq ´ bL § p�˚
k § p�˚

pjq ` bR, k “ 1, . . . , d
(
.

We then record the averages of p�˚
1 , . . . ,

p�˚
d and of p�1, . . . , p�d in the estimated tie set pHpjq as

r�˚
pjq “

∞
kP pHpjq

p�˚
k

| pHpjq|
, and r�pjq “

∞
kP pHpjq

p�k

| pHpjq|
, (3)

where | pHpjq| denotes the cardinality of the set pHpjq.

Finally, we apply the above resampling procedure to construct point estimates and confidence

intervals for �pjq as well as �pj (as defined in Section 2.1 and in Eq (5)), j “ 1, . . . , d0. Specifically,

for confidence interval construction, we generate B independent samples of r�˚
pjq as in Eq (3), and

then define pqpjqp↵{2q to be the empirical ↵{2-quantile of the B • 1 samples (and similarly for

1Note that there is a typo in [16] for the definition of the near tie set. Although the near tie Hpjq in their

manuscript was originally defined as Hpjq “  
k : |�k ´ �pjq| “ Opn´ 1

2 q, k “ 1, . . . , d
(
, their proof goes through when

the near tie set is defined with Hpjq “  
k : |�k ´ �pjq| “ opn´ 1

2 q, k “ 1, . . . , d
(
.
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pqpjqp1 ´ ↵{2q), leading to a level-↵ confidence interval for �pjq with

“
pqpjqp↵{2q, pqpjqp1 ´ ↵{2q

‰
, j “ 1, . . . , d0.

Corollary 1 demonstrates that the above confidence interval also serves as an asymptotically exact

level-↵ prediction interval for �pj . For point estimates, we may either use r�pjq or the averaged

resampled statistics r�˚
pjq to estimate �pjq and �pj .

3 Theoretical investigation

3.1 Notations and assumptions

Before discussing the theoretical results in detail, we revisit and introduce some notations and

assumptions adopted in the manuscript. We denote the sample tpyi,n,x1
i,n,w

1
i,nq1uni“1 as tzi,nuni“1.

Recall ui,n is the random error in the considered linear model (1), we define

"i,n “ ui,n ´ Erui,n|twi,nuni“1, txi,nuni“1s, vi,n “ xi,n ´ Erxi,n|twi,nuni“1s, i “ 1, . . . , n. (4)

Let ei,n “ Erui,n|twi,nuni“1, txi,nuni“1s, we further denote

�
2
i,n “ Er"2i,n|twi,nuni“1, txi,nuni“1s, rvi,n “

nÿ

j“1

pMnqi,jvj,n,

⇢
1
n “

∞n
i“1 E

“
e
2
i,n

‰

n
, ⇢

2
n “

∞n
i“1 E

”
E

`
ei,n|twi,nuni“1

˘2ı

n
,

Qi,n “ E
”
xi,n ´

` nÿ

j“1

Erwj,nw
1
j,ns

˘´1
nÿ

j“1

Erwj,nx
1
j,ns

ˇ̌
ˇtwi,nuni“1

ı
,

rQi,n “
nÿ

j“1

pMnqi,jQi,n.

For a policy j, we define the near tie set in the population as:

Hpjq “
 
k : |�k ´ �pjq| “ opn´ 1

2 q, k “ 1, . . . , d
(
.
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Next, let pej denote a d-dimensional (sparse) vector with

pej “ ppej,1, . . . , pej,dq, pejk “ 1pk P pHpjqq
| pHpjq|

, k “ 1, . . . , d.

We will use the notation Pp¨|tzi,nuni“1q to refer to the probability that is conditional on the random

variables tzi,nuni“1.

We make following assumptions throughout this section. Note that Assumptions 1-4 listed

below largely follow the assumptions in [11] and [36], we list these assumptions along with their

interpretations to present a full picture for our readers.

Assumption 1 (Sampling) The errors "i,n are uncorrelated across i conditional on txi,nuni“1 and

twi,nuni“1. Let tN1, . . . , NGnu represents a partition of t1, . . . , nu with max
1§g§Gn

|Ng| “ Op1q such that

tp"i,n,vi,nq, i P Ngu (defined in (4)) are independent across g conditional on twi,nuni“1.

Assumption 1 generalizes the classical independent and identically distributed (i.i.d.) setting

to allow for repeated measurements or group structures in the observed data. For example, As-

sumption 1 allows the observed data to form clusters of finite sample sizes, and within-cluster

dependency is allowed as long as the observations between clusters are independent.

Assumption 2 (Design) The dimension of the covariates wi,n satisfies that lim supnÑ8 qn{n † 1.

The minimum eigenvalue of the matrix
∞n

i“1wi,nw1
i,n is bounded away from 0 with probability

approaching one, that is

lim
nÑ8P

´
�min

` nÿ

i“1

wi,nw
1
i,n

˘
° 0

¯
“ 1.

Lastly,

max
1§i§n

!
Er"4i,n|twi,nuni“1, txi,nuni“1s, 1

�2
i,n

,

Erv4
i,n|twi,nuni“1s, 1{�min

`
∞n

i“1 E
“
rvi,nrv1

i,n|twi,nuni“1

‰

n

˘)
“ Opp1q.

Assumption 2 contains three conditions. The first condition allows the dimension of the covari-

ates wi,n to grow at the sample rate as the sample size n. The second condition requires the matrix
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∞n
i“1wi,nw1

i,n to be full rank, which is necessary otherwise the OLS estimator would not be able

to calculate the matrix Mn. Furthermore, as noted in [11], such an assumption can be imposed

by dropping any covariates in wi,n that are collinear. The third condition contains conventional

moment conditions for the covariates and heteroscedasticity.

Assumption 3 (Linear model approximation)
∞n

i“1 Er||Qi,n||2s{n “ Op1q, ⇢1n ` np⇢1n ´ ⇢
2
nq `

⇢
1
n ¨ ∞n

i“1 Er||Qi,n||2s “ op1q, and max
1§i§n

||pvi,n||{?
n “ opp1q, n⇢1n “ Op1q.

Assumption 3 mainly characterizes the di↵erence between the mean squares of the conditional

errors ⇢
1
n and the projection ⇢

2
n into the covariate space twi,nu’s. The characterization of this

di↵erence involves
∞n

i“1 Er||Qi,n||2s where Qi,n describes the deviation of xi,n from its population

linear projection. Residuals of this linear projection, represented by pvi,n’s, are assumed to satisfy

a negligibility condition after a maximization over all i’s. This negligibility condition regularizes

the distributional connection between xi,n’s and wi,n’s. We note that if the mean squares of xi,n’s

are bounded and that an exogeneity condition ei,n “ 0 holds for all i and n, then the linear model

approximation assumption naturally holds. Otherwise, if the exogeneity condition does not hold,

Assumption 3 requires a small-bias condition n⇢
1
n “ Op1q.

Assumption 4 (Variance estimation) limnÑ8 Ppmini
`
Mn

˘
i,i

° 0q “ 1,

P
´
min
i

`
Mn

˘
i,i

° 0
¯

“ Opp1q,
∞n

i“1 || rQi,n||4
n

“ Opp1q,

and maxi ||µi,n||{?
n “ opp1q with µi,n “ E

“
yi,n|txi,nuni“1, twi,nuni“1

‰
.

Assumption 4 has two major parts. The first part regularizes the diagonal elements pMn

˘
i,i
’s,

essentially requiring the smallest diagonal element to be consistently bounded away from zero when

n tends to infinity. Even though it is di�cult to provide broadly general primitives to validate

this assumption, Assumption 2 of [11], Assumption 4 of [36], and the discussions therein provide

su�cient conditions for this assumption to hold. The second part regularizes µi,n’s and rQi,n’s in

order to control the variance of yi,n’s and the variance of Epvi,n|twi,nuni“1q’s.

Assumption 5 (Policy e↵ect sizes) For � P p0, 12q, the asymptotic distance between the e↵ects
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of policy k R Hpjq and j P Hpjq diverges as n Ñ 8:

n
� ¨ min

kRHpjq

ˇ̌
�pjq ´ �k

ˇ̌
Ñ 8, as n Ñ 8, j “ 1, . . . , d.

Assumption 5 requires that any policies outside the near tie set Hpjq have e↵ect sizes su�ciently

di↵erent from the ones in Hpjq. In fixed dimensions when qn does not grow with n, the underlying

policy e↵ect sizes �1, . . . ,�d are constant with respect to the sample size n. The near tie set reduces

to a “precise” tie set Hpjq “
 
k : �k “ �pjq, k “ 1, . . . , d

(
, suggesting that minkRHpjq

ˇ̌
�pjq ´ �k

ˇ̌
is a

positive constant bounded away from zero. In such a case, Assumption 5 is automatically satisfied.

3.2 Properties of the proposed estimator

For the proposed estimator, we show that the following theorem holds:

Theorem 1 Under Assumptions 1-5, for any t P R, for the resampled statistics, the following holds

lim
nÑ8P

˜?
n

`r�˚
pjq ´ r�pjq

˘

ppe1
j

p⌦KJ
n pejq

1
2

§ t

ˇ̌
ˇtpyi,n,x1

i,n,w
1
i,nq1uni“1

¸
“ �ptq.

For the original statistics, it holds that

lim
nÑ8P

˜?
n

`r�pjq ´ �pjq
˘

ppe1
j

p⌦KJ
n pejq

1
2

§ t

¸
“ �ptq.

Furthermore, we have that limnÑ8 P
´
P

`r�˚
pjq § �pjq|tzi,nuni“1

˘
§ s

¯
“ s.

Theorem 1 confirms that our proposed confidence interval for �pjq achieves exact 1´↵ coverage

probability as the sample size goes to infinity when B is su�ciently large, which distinguishes the

proposed inference procedure from simultaneous methods. Furthermore, Theorem 1 says that r�pjq

is a root-n consistent estimator of �pjq, in the sense that @" ° 0, there exists M ° 0 such that

P
`
|?npr�pjq ´ �pjqq| ° M

˘
§ ", for n • 1.

As for the observed best policies, recall that we denote the observed j-th largest policy as

pj “
dÿ

k“1

k ¨ 1pp�k “ p�pjqq. (5)
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The following corollary suggests that the proposed confidence interval for �pjq can also serve as an

exact prediction interval for �pj . Therefore, the proposed procedure in Section 2.2 can also be used

to make inference on the observed top policies in a random sample:

Corollary 1 Under Assumptions 1-5, we have that limnÑ8 P
´
P

`r�˚
pjq § �pj |tzi,nuni“1

˘
§ s

¯
“ s.

Furthermore, r�pjq is a “root-n consistent” estimator of the data-dependent parameter �pj in the

sense that @" ° 0, there exists M ° 0 such that P
`
|?npr�pjq ´ �pjq| ° M

˘
§ ", for n • 1.

Remark 3 (Regression models with fixed e↵ects) The proposed resampling-based approach

can be used to calibrate multiple best policies when fixed e↵ects are introduced in linear regression

models (see [48] for comprehensive discussion). This suggests that our approach not only applies

to independently sampled data, but also remains valid when there are repeated-measurements

present in the data. These may include short panel data, and datasets in which, for example, two

individuals have sampled from each household. To conserve space in the main manuscript, we have

leave the detailed discussion in the Supplementary Materials (Section D).

Remark 4 (Data dependent choice of d0) In addition to a deterministic choice of d0, another

practically relevant scenario is a data dependent choice of d0. An example of such a data dependent

choice is pd0 “ maxtk : p�pkq ° Cu, where C is a user-specified threshold for the e↵ect size. A

relatively complicated situation is that C coincides with some of the policy sizes in �1,�2, ¨ ¨ ¨ ,�d.
In this situation, it is possible that no matter how large n is, pd0 does not converge to a deterministic

value but instead to a non-degenerate random variable. For the purpose of separation, we may

adjust pd0 “ maxtk : p�pkq ° Cu to be pd1
0 “ maxtk : p�pkq ° C ` C1 ¨ n´0.25u, where C1 is a constant

that does not depend on n. The choice of ´0.25 is tunable and may be of independent interest. By

this new choice of pd1
0, the policy e↵ects that exactly equal C will be eliminated almost surely when

n tends to infinity. This elimination exactly matches the target to select all the policy sizes that

are larger than C. In the limit of n tending to infinity, maxtk : p�pkq ° C `C1 ¨n´0.25u will converge

almost surely to a set that contains all e↵ect sizes larger than C. Therefore, the large-sample theory

results for a pre-specified deterministic integer would still hold by plugging in pd1
0.
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4 Simulation studies

4.1 Simulation design

We generate i.i.d. Monte Carlo samples of tpyi,n,x1
i,n,w

1
i,nquni“1 from the model

yi,n “ x1
i,n� ` w1

i,n�n ` "i,n, i “ 1, . . . , n.

We consider various data generating processes (DGP) for di↵erent choices of the policy variable

xi,n, the covariates wi,n and the random noise "i,n. The first DGP follows a similar setup taking

from [36] and [11], where we generate many (sparse) dummy variables entering the estimation of

�. We generate xi,n „ N p0,⌃q with ⌃jk “ 0.5|j´k| for j, k “ 1, . . . , d, wi,n “ 1p rwi,n • �´1p0.98qq
with rwi,n „ N p0, Iqnq and Iqn is a qn-dimensional identity matrix, and "i,n „ N p0, 1q. The

second DGP considers a case with dummy policy random variables and normal covariates, where

we generate xi,n “ 1prxi,n ° 0q with rxi,n „ N p0,⌃q, wi,n „ N p0, Iqnq and "i,n „ N p0, 1q. In the

Supplementary Materials, we have further included DGPs with more realistic error terms beyond

normal distribution, including error terms with asymmetric and bimodal distributions. For most of

the DGPs, we investigate both homoscedastic as well as heteroscedastic models. See Supplementary

Materials Section C for detailed description and simulation results.

As for the coe�cients, we consider three DGPs that vary in � and �n. The first DGP considers

the case in which no policy is e↵ective (meaning that � “ 0), and the coe�cient �j “ 1{j, for
j “ 1, . . . , qn. We refer to this case as the “homogeneity” case since �j ’s take the same value

zero. The second and the third DGPs consider cases where policy e↵ects are generated from

�j “ �´1
` j
d`1

˘
for j “ 1, . . . , d, and the coe�cients are either �n “ 0 or �j “ 1{j, for j “ 1, . . . , qn.

We refer to this case as the “heterogeneity(1)” case and “heterogeneity(2)” case, respectively, since

di↵erent policies have heterogeneous e↵ects.

We set the sample size n P t700, 2000u to mimic the sample size in our case studies, the number

of policies d P t5, 10u, and the dimension of the covariates qn from qn P t1, 141, 281, 421, 561, 631u.
All statistics reported below are computed based on over 1,000 Monte Carlo replications. To avoid

redundancy, we present the results for n “ 700 and d “ 5 in the main manuscript, and rests are

provided in the Supplementary Materials (Section C).
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To demonstrate the robustness of the adopted covariance matrix estimator, we compare our pro-

posal with three alternative covariance matrix estimators. The first one we compare with is the co-

variance matrix estimator proposed by [11]: p⌦HCK

n “ p�´1
n

p⌃HCK

n
p�´1
n , where p⌃HCK

n fi 1
n

∞n
i“1

∞n
j“1 

HCK

ij,npvi,npv1
i,npu2j,n,

puj,n “ ∞n
k“1pMnqj,kpyk,n ´ x1

k,n
p�q, and


HCK

n “

¨

˚̊
˚̊
˝

M
2
11,n ¨ ¨ ¨ M

2
1n,n

...
. . .

...

M
2
n1,n ¨ ¨ ¨ M

2
nn,n

˛

‹‹‹‹‚

´1

“ pMn d Mnq´1
,

with d denoting the Hadamard product. The estimator p⌃HCK

n is well-defined whenever pMn dMnq
is invertible. We use the acronym “HCK” to denote this estimator in the following parts. The

second one we compare with is the classical Eicker-White covariance matrix estimator [20, 50] of

the form:

p⌦EW

n “ p�´1
n

p⌃EW

n
p�´1
n , (6)

where p⌃EW

n fi 1
n

∞n
i“1 pvi,npv1

i,npu2i,n and pui,n “ ∞n
j“1pMnqi,jpyj,n ´x1

j,n
p�q. We use the acronym “EW”

to denote this estimator in our simulation results section. Huber-Eicker-White standard error is

also known as the HC0 standard error, where HC stands for “heteroskedasticity robust.” The last

covariance matrix estimator we adopted is a variant of the HC0 estimator:

p⌦HC3

n “ p�´1
n

p⌃HC3

n
p�´1
n , where p⌃HC3

n fi 1

n

nÿ

i“1

pvi,npv1
i,n

pu2i,n
pMnq2i,j

. (7)

The above estimator upward reweights regression residuals, and we use the acronym “HC3” to

denote this estimator in our simulation results section.

4.2 Simulation results

We summarize our main takeaways from the simulation results presented in Table 1-3, where we

have compared our proposed approach (“Proposed + KJ”) in Section 2.2 with four other methods.

“Proposed + EW”, “Proposed + HC3”, and “Proposed + HCK” refer to methods adjusting for the

winner’s curse bias but use p⌦EW

n , p⌦HC3

n , and p⌦HCK

n , respectively, to estimate the covariance matrix
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of �. “No adjustment+KJ” refers to the approach with no adjustment for the winner’s curse bias

and adopts the robust covariance matrix estimator proposed by [36] to make inference on the best

policies. We present the coverage probabilities and
?
n-scaled biases for the top two policies in the

population, i.e., �p1q and �p2q. As the simulation results are rather similar for the observed top two

policies in the random sample, i.e., �p1, �p2, we present these results in the Supplementary Materials

(Section C.4).

Our simulation results confirm our theoretical results presented in Theorem 1. When no policy

is e↵ective, our proposed method not only successfully suppresses the winner’s curse bias for the

top two policies but also attains near nominal coverage (Table 2). Similar pattern can also be

observed when top policies are e↵ective (i.e., �j ’s are heterogeneous, and Table 1 in particular). In

nearly all designs and for a range of considered values of qn, our proposal yields close to nominal

confidence interval, though some under coverage is observed for large values of qn. The method with

no adjustment is obviously biased upward due to the winner’s curse phenomenon, thus it provides

under-covered confidence intervals and point estimates with rather large biases. In all considered

cases, both the EW-based method and the HC3-based method tend to lose coverage when qn • 141,

and the HCK-based method tends to produce under-covered confidence interval whenever qn • 561.

In moderately high dimensions so that qn{n is approximately one half, the proposed method with

the HCK variance estimator has comparable performances with our approach.

5 Case studies

5.1 Case study I: Charitable giving

In the past half century, charitable giving by individuals in the United States has grown and it has

contributed to more than two percent of the annual GDP since 1998 [41]. Charitable giving is often

driven by altruism, while as suggested by many field experiments, improper policies adopted by

the demand side–fundraisers–may impair the supply side’s (individual donors) motivation of giving

[3]. Therefore, to e↵ectively attract resources from individual donors, fundraisers need to properly

design donation incentives. One of the donation incentives is matching grant which means that a

matching donor pledges to match any donation from other donors with certain ratio and up to some

threshold. As the price elasticity of matching donation may di↵er from other donation incentives,
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Table 1: Simulation results (d “ 5, heterogeneity,�p1q)

�j “ �´1
` j
d`1

˘
, �n “ 0, j = 1,. . . , d

xi,n „ N p0,⌃q, wi,n “ 1p rwi,n • �´1p0.98qq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.97(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.97(0.01)?
nBias -0.04(0.06) -0.03(0.04) -0.03(0.04) -0.04(0.05) 0.05(0.06)

qn “ 141 Cover 0.96(0.01) 0.96(0.01) 0.94(0.01) 0.95(0.01) 0.95(0.01)?
nBias -0.04(0.05) -0.04(0.04) -0.04(0.04) 0.06(0.06) 0.06(0.07)

qn “ 281 Cover 0.96(0.01) 0.95(0.01) 0.82(0.02) 0.80(0.01) 0.94(0.01)?
nBias -0.05(0.06) -0.06(0.05) -0.06(0.03) -0.10(0.07) -0.08(0.08)

qn “ 421 Cover 0.95(0.02) 0.94(0.01) 0.79(0.01) 0.76(0.01) 0.78(0.01)?
nBias -0.05(0.05) -0.06(0.05) -0.07(0.05) -0.12(0.09) 0.11(0.09)

qn “ 561 Cover 0.95(0.01) 0.92(0.01) 0.65(0.02) 0.63(0.01) 0.68(0.01)?
nBias -0.07(0.07) -0.09(0.07) -0.17(0.10) -0.20(0.12) 0.15(0.13)

qn “ 631˚ Cover 0.93(0.01) 0.91(0.01) 0.51(0.02) 0.48(0.01) 0.55(0.01)?
nBias -0.17(0.08) -0.19(0.10) -0.28(0.11) -0.35(0.22) -0.26(0.13)

xi,n “ 1prxi,n ° 0q, wi,n „ N p0, Iq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed + EW No adjustment+KJ

qn “ 1 Cover 0.97(0.01) 0.97(0.01) 0.95(0.01) 0.96(0.01) 0.97(0.01)?
nBias -0.02(0.07) -0.02(0.04) -0.01(0.03) -0.07(0.11) -0.05(0.09)

qn “ 141 Cover 0.96(0.01) 0.95(0.01) 0.94(0.01) 0.94(0.01) 0.96(0.01)?
nBias -0.02(0.03) -0.02(0.02) -0.03(0.02) 0.11(0.12) -0.06(0.12)

qn “ 281 Cover 0.95(0.01) 0.94(0.01) 0.87(0.01) 0.85(0.01) 0.95(0.01)?
nBias -0.03(0.04) -0.03(0.03) -0.04(0.02) 0.14(0.12) -0.08(0.13)

qn “ 421 Cover 0.95(0.01) 0.94(0.01) 0.78(0.01) 0.76(0.01) 0.75(0.01)?
nBias -0.03(0.03) -0.05(0.04) -0.08(0.05) -0.19(0.17) 0.19(0.14)

qn “ 561 Cover 0.95(0.01) 0.92(0.01) 0.63(0.02) 0.61(0.01) 0.63(0.01)?
nBias -0.04(0.04) -0.08(0.06) -0.19(0.10) -0.30(0.26) -0.24(0.22)

qn “ 631 Cover 0.94(0.01) 0.91(0.01) 0.49(0.02) 0.45(0.01) 0.68(0.01)?
nBias -0.06(0.07) -0.11(0.09) -0.23(0.13) -0.42(0.20) 0.39(0.29)

Note: “Cover” is the empirical coverage of the 95% confidence interval for �p1q and “
?
nBias ” captures the root-n

scaled Monte Carlo bias for estimating �p1q. “ * ” indicates that p⌦KJ

n is not positive semi-definite in some Monte
Carlo samples.

we hope to carefully investigate di↵erent pricing policies in a matching donation and study if the

observed top two performing policies are indeed e↵ective.

We work with the charitable giving data in [37]. [37] conduct a field experiment that explores

the price elasticity in a matching donation. The field experiment involves 50, 083 previous donors to

a political charity. Individuals are randomly assigned to two groups: treatment (n “ 33, 396) and

control (n “ 16, 687). In the control group, individuals receive a standard letter with no matching

details. In the treatment group, each potential donor receives a letter with three strategies: (1)

match ratio, (2) match size, and (3) ask amount. Within each strategy, individuals are randomly

assigned to a sub-policy detailed below.

For the match ratio strategy, there are three sub-policies: (1) 1:1 (the matching donor con-

tributes the same amount as the individual donor), (2) 2:1 (the matching donor contributes twice
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Table 2: Simulation results (d “ 5, homogeneity,�p1q)

� “ 0, �j “ 1{j
xi,n „ N p0,⌃q, wi,n “ 1p rwi,n • �´1p0.98qq

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.97(0.01) 0.96(0.01) 0.96(0.01) 0.93(0.02) 0.90(0.01)?
nBias 0.02(0.03) 0.02(0.03) 0.03(0.03) 0.03(0.03) 1.64(0.04)

qn “ 141 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.89(0.02) 0.88(0.01)?
nBias 0.03(0.04) 0.04(0.04) 0.03(0.04) 0.12(0.04) 1.78(0.04)

qn “ 281 Cover 0.96(0.01) 0.94(0.01) 0.90(0.02) 0.85(0.01) 0.83(0.01)?
nBias 0.03(0.04) 0.04(0.04) 0.05(0.04) 0.22(0.03) 2.03(0.05)

qn “ 421 Cover 0.95(0.01) 0.93(0.01) 0.82(0.02) 0.79(0.01) 0.74(0.02)?
nBias 0.05(0.05) 0.18(0.05) 0.24(0.06) 0.36(0.03) 2.63(0.06)

qn “ 561 Cover 0.95(0.01) 0.93(0.01) 0.67(0.02) 0.73(0.01) 0.63(0.02)?
nBias 0.08(0.09) 0.51(0.05) 0.74(0.06) 0.44(0.04) 3.74(0.09)

qn “ 631˚ Cover 0.93(0.01) 0.89(0.01) 0.53(0.02) 0.50(0.01) 0.45(0.02)?
nBias 0.18(0.09) 1.21(0.09) 1.84(0.11) 2.42(0.06) 5.10(0.12)

xi,n “ 1prxi,n ° 0q, wi,n „ N p0, Iq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.94(0.01) 0.90(0.01)?
nBias 0.03(0.04) 0.04(0.05) 0.05(0.05) 0.07(0.07) 2.75(0.06)

qn “ 141 Cover 0.96(0.01) 0.96(0.01) 0.93(0.01) 0.90(0.01) 0.83(0.01)?
nBias 0.05(0.05) 0.05(0.06) 0.17(0.07) 0.31(0.07) 3.29(0.08)

qn “ 281 Cover 0.95(0.01) 0.95(0.01) 0.90(0.01) 0.88(0.01) 0.75(0.02)?
nBias 0.07(0.08) 0.07(0.07) 0.31(0.08) 0.54(0.05) 3.59(0.08)

qn “ 421 Cover 0.95(0.01) 0.95(0.01) 0.85(0.01) 0.86(0.01) 0.65(0.02)?
nBias 0.04(0.04) 0.10(0.11) 0.73(0.13) 0.64(0.06) 4.58(0.11)

qn “ 561 Cover 0.93(0.01) 0.90(0.02) 0.59(0.02) 0.61(0.01) 0.53(0.02)?
nBias 0.13(0.07) 0.19(0.13) 2.00(0.13) 1.73(0.08) 5.90(0.13)

qn “ 631 Cover 0.90(0.01) 0.78(0.02) 0.38(0.02) 0.30(0.01) 0.33(0.02)?
nBias 0.50(0.12) 2.47(0.16) 5.16(0.19) 7.68(0.18) 6.51(0.19)

Note: “Cover” is the empirical coverage of the 95% confidence interval for �p1q and “
?
nBias ” captures the root-n

scaled Monte Carlo bias for estimating �p1q. “ * ” indicates that p⌦KJ

n is not positive semi-definite in some Monte
Carlo samples.

as many as the individual donor), (3) 3:1 (the matching donor contributes three times as many

as the individual donor). For the match size strategy, there are four sub-policies with di↵erent

pledge amounts: (1) $25,000, (2) $50,000, (3) $100,000, and (4) unstated amount. For the ask

amount strategy, individual donors are asked to give same amount, 25% more or 50% more than

their largest past donation.

In our study, we focus on the treatment “ask amount” with three pricing policies, and we study

the subpopulation (n “ 7, 938) of unmarried males living in red counties or red states. Red county

(state) refers to a county (state) in which residents predominantly vote for the Republican Party.

The outcome of interest is the donation amount. We have adjusted qn “ 1, 049 covariates including

the donors’ demographic information (26 variables), census information (27 variables), and their

two-way interaction terms. Our results are summarized in Table 4.

20



Table 3: Simulation results (d “ 5, heterogeneity,�p2q)

�j “ �´1
` j
d`1

˘
, �n “ 0

xi,n „ N p0,⌃q, wi,n “ 1p rwi,n • �´1p0.98qq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.97(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01)?
nBias 0.02(0.06) 0.02(0.06) 0.01(0.06) -0.05(0.07) -0.04(0.07)

qn “ 141 Cover 0.97(0.01) 0.96(0.01) 0.93(0.01) 0.94(0.01) 0.94(0.01)?
nBias -0.02(0.04) -0.02(0.04) -0.04(0.03) -0.06(0.06) -0.07(0.08)

qn “ 281 Cover 0.95(0.01) 0.94(0.01) 0.88(0.02) 0.89(0.01) 0.85(0.01)?
nBias -0.03(0.04) -0.03(0.03) -0.07(0.03) -0.11(0.10) 0.19(0.11)

qn “ 421 Cover 0.95(0.01) 0.94(0.02) 0.81(0.02) 0.80(0.01) 0.77(0.01)?
nBias -0.03(0.03) -0.03(0.04) -0.10(0.06) -0.15(0.12) -0.23(0.15)

qn “ 561 Cover 0.95(0.01) 0.94(0.02) 0.67(0.02) 0.65(0.01) 0.63(0.01)?
nBias 0.03(0.03) 0.05(0.06) 0.12(0.08) -0.17(0.13) -0.26(0.18)

qn “ 631˚ Cover 0.94(0.01) 0.93(0.01) 0.56(0.02) 0.53(0.01) 0.50(0.01)?
nBias -0.07(0.07) -0.18(0.06) -0.23(0.08) -0.26(0.17) 0.47(0.22)

xi,n “ 1prxi,n ° 0q, wi,n „ N p0, Iq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.98(0.01) 0.98(0.01) 0.98(0.01) 0.96(0.01) 0.98(0.01)?
nBias -0.08(0.12) -0.09(0.12) -0.10(0.13) 0.09(0.12) -0.07(0.10)

qn “ 141 Cover 0.97(0.01) 0.97(0.01) 0.95(0.01) 0.95(0.01) 0.97(0.01)?
nBias -0.09(0.12) -0.10(0.13) -0.12(0.13) 0.09(0.13) -0.08(0.10)

qn “ 281 Cover 0.97(0.01) 0.97(0.01) 0.90(0.01) 0.87(0.01) 0.96(0.01)?
nBias -0.11(0.14) -0.10(0.14) -0.15(0.14) -0.18(0.14) -0.10(0.11)

qn “ 421 Cover 0.96(0.01) 0.95(0.02) 0.80(0.02) 0.75(0.01) 0.94(0.01)?
nBias 0.14(0.16) -0.16(0.18) -0.20(0.18) -0.22(0.17) -0.15(0.15)

qn “ 561 Cover 0.96(0.01) 0.94(0.02) 0.63(0.02) 0.60(0.01) 0.92(0.01)?
nBias 0.14(0.18) 0.20(0.23) -0.24(0.22) -0.30(0.23) 0.19(0.20)

qn “ 631 Cover 0.94(0.01) 0.93(0.02) 0.58(0.02) 0.55(0.01) 0.52(0.01)?
nBias 0.15(0.20) 0.24(0.26) 0.28(0.25) -0.35(0.13) 0.56(0.24)

Note: “Cover” is the empirical coverage of the 95% confidence interval for �p2q and “
?
nBias ” captures the root-n

scaled Monte Carlo bias for estimating �p2q. “ * ” indicates that p⌦KJ

n is not positive semi-definite in some Monte
Carlo samples.

Method Policies(Ask amount) Est (95% CI) p-value

Uncalibrated Same 0.67 (0.09, 1.25) 0.023*

25% more 0.66 (0.01, 1.31) 0.046*

50% more 0.33 (-0.21, 0.86) 0.235

Calibrated Same 0.63 (0.10, 1.20) 0.025*

25% more 0.56(-0.01, 1.07) 0.052

Table 4: Estimated treatment e↵ects (Est), 95% confidence intervals (95% CI), and two-sided p-values for
the three “ask amount” policies. “Uncalibrated” refers to the study results obtained without any adjustment,
and the confidence intervals are constructed based on normal approximation with the estimated covariance
matrix p⌦KJ

n . “Calibrated” refers to our proposed methodology. The computational time is 741 seconds on a
Lenovo NeXtScale nx360m5 node (24 cores per node) equipped with Intel Xeon Haswell processor.

Results in Table 4 suggest that, without any calibration, asking the donor either to give the

same amount or to give 25% more than their highest past donation seems to be the best policies
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that significantly increase the donation amount. Specifically, our results from running a simple

linear regression model suggest that asking the individual donor to give the same amount of their

largest past donation appears to be the most e↵ective pricing policy, and it on average raises $0.67

(95% CI = (0.09, 1.25), p-value = 0.023) per donor. Asking the individual donor to give 25% more

than their largest past donation is the second most e↵ective policy, with an increased donation by

$0.66 (95% CI = (0.01, 1.31), p-value = 0.046) per donor.

Because we pick the most e↵ective policies from a random sample, these estimates are potentially

subject to the winner’s curse bias. We thus apply the proposed method to carefully examine these

seemly e↵ective policies. After calibrating for the winner’s curse bias, we confirm that the asking

for the same amount policy remains as the most e↵ective policy, though with a slightly smaller

estimated e↵ect size (Est = $0.63, 95% CI = (0.10, 1.20), p-value = 0.025). This result is moderately

aligned with the analysis in [37], whose results suggest that donors from red states or red counties

are more willing to contribute, partially because the collaborating charity is politically oriented.

However, for the e↵ect of the second best policy–asking to donate 25% more than past donation–is

shifted downward, and it no longer has significant impact in promoting the donation amount (Est

= $0.56, 95% CI = (-0.01, 1.07), p-value = 0.052). This result might be partially explained by

the observation that donors are more motivated by a lower “price” of donation [49]. In sum, our

analyses suggest that the best pricing policy of charitable giving for unmarried males living in the

Republican Party dominated voting regions could be asking for the same amount as their highest

previous donation, and asking for more donations may not incentivize the donors to give. Though

given the obtained p-value before and after calibration for the second best policy is rather close to

the 5 percent threshold, we note that such a conclusion should also be viewed with caution.

5.2 Case study II: National supported work (NSW) program

In this case study, we revisit a dataset from the National Supported Work (NSW) program. The

NSW program is a labor training program implemented in 1970’s that provides work experience

to disadvantaged workers. Our proposed method can also be used to evaluate if the job training

program is indeed beneficial for certain groups of workers. To do so, the structural component

xi,n in the model (1) would include variables representing the interactions between the treatment

variable (the job training program) and di↵erent subgroup indicator variables of interest.
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We use the field experiment dataset adopted in [18] (n “ 455), in which 185 workers are in the

treatment group and 260 workers are in the control group. This dataset consists of a treatment

indicator variable, an outcome variable measured by the participant post-treatment earnings in

1978, and eight baseline variables ( including age, years of education, an indicator for high school

degree, indicators for Black and Hispanic, marital status, and pre-treatment earnings in 1974 and

1975). We further add three sets of additional covariates following the setup in [30]: (1) 1(1974

earnings =0) and 1(1975 earnings =0); (2) all first-order interactions; (3) all polynomials up to the

2nd-order. The final dataset includes 51 covariates. We aim to investigate the e↵ectiveness of the

NSW program in four groups of workers: (1) married Black workers, (2) unmarried Black workers,

(3) married Non-Black workers, and (4) unmarried Non-Black workers. The summarized results

are shown in Table 5.

Method Subgroups Est (95% CI) ($103) p-value

Uncalibrated Black, married 4.35 (0.89, 7.81) 0.014*

Black, unmarried 1.10(-0.55, 2.75) 0.190

Non-Black, married 1.33(-6.63, 9.29) 0.743

Non-Black, unmarried 1.40(-2.61, 5.40) 0.494

Calibrated Black, married 4.41(1.74, 8.50) 0.009*

Table 5: Estimated treatment e↵ects (Est), 95% confidence intervals (CI), in units $103/year, and two-sided
p-values for the four subgroups in the NSW study (n “ 445, qn “ 51). “Uncalibrated” refers to the study
results obtained without any adjustment, and the confidence intervals are constructed based on normal
approximation with the estimated covariance matrix p⌦KJ

n . “Calibrated” refers to our proposed methodology.
The computational time is 122 seconds on a Lenovo NeXtScale nx360m5 node (24 cores per node) equipped
with Intel Xeon Haswell processor.

Table 5 demonstrates that without adjusting for the winner’s curse bias, married Black workers

(estimated treatment e↵ect = 4.35, 95% CI = (0.89, 7.81), p-value = 0.014, in units $103) seem to

benefit from the program the most. After accounting for the winner’s curse bias issue, our approach

potentially confirms that the treatment e↵ect of the NSW program for the married Black workers

is still significant, and the calibrated treatment e↵ect remains roughly the same ( Est= 4.41, 95%

CI = (1.74, 8.50), p-value = 0.009, in units $103/year).

The dataset collected from the NSW program has been frequently analyzed in the past decade,

and our results are largely in-line with current understandings gathered in past studies. For exam-
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ple, although not focusing on the same groups of workers, [35] suggest that married and unemployed

Black workers with some college education have increased their post-treatment earnings for about

38%. [18] show that the job training program yields positive treatment e↵ect on the overall Black

participants. In this case study, our approach may help to confirm the seemly e↵ective subgroup

observed in a random sample while providing a statistically justified estimate accounting for the

winner’s curse bias.

6 Concluding remarks

In this article, we have introduced an approach to evaluate multiple best policies based on resam-

pling in the context of a linear model with many covariates. While our approach is numerically

reliable and theoretically grounded, it is worthwhile to generalize our framework so that the pol-

icy e↵ects can be estimated with other o↵-shelf methods that are, for example, robust to the

high-dimensional confounders or to the presence of interference and noncompliance. Our current

theoretical analysis suggests that our proposed approach can be readily extended as long as the

covariance matrix between di↵erent policies can be consistently estimated. It is thus desirable for

us to provide a general framework to broaden future applications for other disciplines in general.
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A Theorem 1

A.1 Review of notations and assumptions

We denote the sample tpyi,n,x1
i,n,w

1
i,nq1uni“1 as tzi,nuni“1. Recall ui,n is the random error in the

considered linear model:

yi,n “ x1
i,n� ` w1

i,n�n ` ui,n, i “ 1, . . . , n, (A.1)

we define

"i,n “ ui,n ´ Erui,n|twi,nuni“1, txi,nuni“1s, vi,n “ xi,n ´ Erxi,n|twi,nuni“1s, i “ 1, . . . , n. (A.2)

Let ei,n “ Erui,n|twi,nuni“1, txi,nuni“1s, we further denote

pui “
nÿ

j“1

pMnqi,jpyj,n ´ x1
j,n

p�q, pvi,n “
nÿ

i“1

pMnqi,jxj,n,

pMnqi,j “ 1pi “ jq ´ w1
i,n

´ nÿ

k“1

wk,nw
1
k,n

¯´1
wj,n,

�
2
i,n “ Er"2i,n|twi,nuni“1, txi,nuni“1s, rvi,n “

nÿ

j“1

pMnqi,jvj,n,

⇢
1
n “

∞n
i“1 E

“
e
2
i,n

‰

n
, ⇢

2
n “

∞n
i“1 E

”
E

`
ei,n|twi,nuni“1

˘2ı

n
,

Qi,n “ E
”
xi,n ´

` nÿ

j“1

Erwj,nw
1
j,ns

˘´1
nÿ

j“1

Erwj,nx
1
j,ns

ˇ̌
ˇtwi,nuni“1

ı
.

We will use the notation Pp¨|tzi,nuni“1q to refer to the probability that is conditional on the random

variables tzi,nuni“1.

For a policy j, recall our definition of the near tie set:

Hpjq “
 
k : |�k ´ �pjq| “ opn´ 1

2 q, k “ 1, . . . , d
(
.

2



This suggests that @k P Hpjq, there exist a sequence �n Ñ 0 as n Ñ 0, such that

�k “ �pjq ` n
´ 1

2 ¨ �n, @k P Hpjq.

Next, let pej denote a d-dimensional (sparse) vector based on the estimated tie set pHpjq with

pej “ ppej,1, . . . , pej,dq, pejk “ 1pk P pHpjqq
| pHpjq|

, k “ 1, . . . , d,

and define a d´dimensional sparse index vector based on the true near-tie set Hpjq as

ej “ pej,1, . . . , ej,dq, ejk “ 1pk P Hpjqq
|Hpjq|

, k “ 1, . . . , d. (A.3)

We make following assumptions throughout this section:

Assumption 6 (Sampling) The errors "i,n are uncorrelated across i conditional on txi,nuni“1 and

twi,nuni“1. Let tN1, . . . , NGnu represents a partition of t1, . . . , nu with max
1§g§Gn

|Ng| “ Op1q such that

tp"i,n,vi,nq, i P Ngu (defined in (A.2)) are independent across g conditional on twi,nuni“1.

Assumption 7 (Design) The dimension of the covariates wi,n satisfies that lim supnÑ8 qn{n † 1.

The minimum eigenvalue of of the matrix
∞n

i“1wi,nw1
i,n is bounded away from 0 with probability

approaching one, that is

lim
nÑ8P

´
�min

` nÿ

i“1

wi,nw
1
i,n

˘
° 0

˘¯
“ 1.

Lastly,

max
1§i§n

!
Er"4i,n|twi,nuni“1, txi,nuni“1s, 1

�2
i,n

,

Erv4
i,n|twi,nuni“1s, 1{�min

`
∞n

i“1 E
“
rvi,nrv1

i,n|twi,nuni“1

‰

n

˘)
“ Opp1q.

Assumption 8 (Linear model approximation)
∞n

i“1 Er||Qi,n||2s{n “ Op1q, ⇢1n ` np⇢1n ´ ⇢
2
nq `

⇢
2
n ¨ ∞n

i“1 Er||Qi,n||2s “ op1q, and max
1§i§n

||pvi,n||{?
n “ opp1q, n⇢1n “ Op1q.
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Assumption 9 (Variance estimation) limnÑ8 Ppmini
`
Mn

˘
i,i

° 0q “ 1,

P
´
min
i

`
Mn

˘
i,i

° 0
¯

“ Opp1q,
∞n

i“1 || rQi,n||4
n

“ Opp1q,

and maxi ||µi,n||{?
n “ opp1q with µi,n “ E

“
yi,n|txi,nuni“1, twi,nuni“1

‰
.

Assumption 10 (Policy e↵ect sizes) For � P p0, 12q, the asymptotic distance between the e↵ects

of policy k and j diverges as n Ñ 8:

n
� ¨ min

kRHpjq

ˇ̌
�pjq ´ �k

ˇ̌
Ñ 8, as n Ñ 8, j “ 1, . . . , d.

A.2 Proof of Theorem 1

In this section, we show the following theorem holds:

Theorem 2 Under Assumptions 6-10, for any t P R, for the resampled statistics, the following

holds precisely

P
˜?

n
`r�˚

pjq ´ r�pjq
˘

ppe1
j

p⌦KJ
n pejq

1
2

§ t

ˇ̌
ˇtpyi,n,x1

i,n,w
1
i,nq1uni“1

¸
“ �ptq.

For the original statistics, it holds that

lim
nÑ8P

˜?
n

`r�pjq ´ �pjq
˘

ppe1
j

p⌦KJ
n pejq

1
2

§ t

¸
“ �ptq.

In addition, we show that

lim
nÑ8P

´
P

`r�˚
pjq § �pjq|tzi,nuni“1

˘
§ s

¯
“ s.

Proof. Our proof of Theorem 1 entails the following steps:

Step 1. Under Assumptions 6-8, [36] has shown the following holds

p p⌦KJ

n q´ 1
2
?
np p� ´ �q ; Np0, Idq,

4



where Id is a d-dimensional identity matrix. Therefore, following the definition of ej in Eq

(A.3), we have

pe1
j

p⌦KJ

n ejq´ 1
2 ¨ ?

n
`
∞

kPHpjq
p�k

|Hpjq|
´

∞
kPHpjq �k

|Hpjq|
˘
; N p0, 1q. (A.4)

Step 2. Because of Lemma 1, we have

lim
nÑ8Pp pHpjq ‰ Hpjqq “ 0.

Combing this with (A.4), we have

�ptq “ lim
nÑ8P

´
pe1

j
p⌃KJ

n ejq´ 1
2 ¨ ?

n
`
∞

kPHpjq
p�k

|Hpjq|
´

∞
kPHpjq �k

|Hpjq|
˘

§ t

¯

“ lim
nÑ8

«
P

´
pe1

j
p⌃KJ

n ejq´ 1
2 ¨ ?

n
`
∞

kPHpjq
p�k

|Hpjq|
´

∞
kPHpjq �k

|Hpjq|
˘

§ t

ˇ̌
ˇ pHpjq “ Hpjq

¯
Pp pHpjq “ Hpjqq ` oPp1q

�

“ lim
nÑ8P

´
pe1

j
p⌃KJ

n ejq´ 1
2 ¨ ?

n
`
∞

kPHpjq
p�k

|Hpjq|
´

∞
kPHpjq �k

|Hpjq|
˘

§ t

ˇ̌
ˇ pHpjq “ Hpjq

¯
,

in which oPp1q is lower bounded by zero and upper bounded by Pp pHpjq ‰ Hpjqq, which tends

to zero when n tends to infinity. We use this same oPp1q notion throughout this proof. Now

we have

lim
nÑ8P

´
ppe1

j
p⌃KJ

n pejq´ 1
2 ¨ ?

n
`
∞

kP pHpjq
p�k

| pHpjq|
´

∞
kP pHpjq

�k

| pHpjq|
˘

§ t

ˇ̌
ˇ pHpjq “ Hpjq

¯
“ �ptq.

Next, we have

lim
nÑ8P

´
ppe1

j
p⌃KJ

n pejq´ 1
2 ¨ ?

n
`
∞

kP pHpjq
p�k

| pHpjq|
´

∞
kP pHpjq

�k

| pHpjq|
˘

§ t

¯

“ lim
nÑ8

«
P

´
ppe1

j
p⌃KJ

n pejq´ 1
2 ¨ ?

n
`
∞

kP pHpjq
p�k

| pHpjq|
´

∞
kP pHpjq

�k

| pHpjq|
˘

§ t

ˇ̌
ˇ pHpjq “ Hpjq

¯¯
Pp pHpjq “ Hpjqq ` oPp1q

�

“ lim
nÑ8P

´
ppe1

j
p⌃KJ

n pejq´ 1
2 ¨ ?

n
`
∞

kP pHpjq
p�k

| pHpjq|
´

∞
kP pHpjq

�k

| pHpjq|
˘

§ t

ˇ̌
ˇ pHpjq “ Hpjq

¯

“�ptq

5



The following holds precisely following the definition of the resampling procedure:

P
´

pe1
j
p⌃KJ

n ejq´ 1
2 ¨ ?

n
`
∞

kPHpjq
p�˚
k

|Hpjq|
´

∞
kPHpjq

p�k
|Hpjq|

˘
§ t

ˇ̌
tzi,nuni“1

¯
“ �ptq. (A.5)

We now show that

lim
nÑ8P

´
ppe1

j
p⌃KJ

n pejq´ 1
2 ¨ ?

n
`
∞

kP pHpjq
p�˚
k

| pHpjq|
´

∞
kP pHpjq

p�k

| pHpjq|
˘

§ t
ˇ̌
tzi,nuni“1

¯

“ lim
nÑ8

«
P

´
ppe1

j
p⌃KJ

n pejq´ 1
2 ¨ ?

n
`
∞

kP pHpjq
p�˚
k

| pHpjq|
´

∞
kP pHpjq

p�k

| pHpjq|
˘

§ t
ˇ̌
tzi,nuni“1,

pHpjq “ Hpjq
¯
Pp pHpjq “ Hpjqq ` oPp1q

�

“ lim
nÑ8

«
P

´
pe1

j
p⌃KJ

n ejq´ 1
2 ¨ ?

n
`
∞

kPHpjq
p�˚
k

|Hpjq|
´

∞
kPHpjq

p�k
|Hpjq|

˘
§ t

ˇ̌
tzi,nuni“1,

pHpjq “ Hpjq
¯
Pp pHpjq “ Hpjqq ` oPp1q

�

“ lim
nÑ8P

´
pe1

j
p⌃KJ

n ejq´ 1
2 ¨ ?

n
`
∞

kPHpjq
p�˚
k

|Hpjq|
´

∞
kPHpjq

p�k
|Hpjq|

˘
§ t

ˇ̌
tzi,nuni“1

¯

“�ptq.

Recall our definition in the main manuscript

r�˚
pjq “

∞
kP pHpjq

p�˚
k

| pHpjq|
, and r�pjq “

∞
kP pHpjq

p�k

| pHpjq|
, (A.6)

we thus have reached the conclusion presented in the theorem:

lim
nÑ8P

´
ppe1

j
p⌃KJ

n pejq´ 1
2 ¨ ?

n
`r�˚

pjq ´ r�pjq
˘

§ t
ˇ̌
tzi,nuni“1

¯
“ �ptq.

Step 3. Lastly, to prove the bootstrap consistency, we show that

lim
nÑ8P

´
P

`r�˚
pjq § �pjq|tzi,nuni“1

˘
§ s

¯
“ s.

6



Note that

lim
nÑ8P

`r�˚
pjq § �pjq|tzi,nuni“1

˘

“ lim
nÑ8P

´
pe1

j
p⌦KJ

n ejq´ 1
2 ¨ ?

n
`
∞

kPHpjq
p�˚
k

|Hpjq|
´

∞
kPHpjq

p�k
|Hpjq|

˘

§pe1
j

p⌦KJ

n ejq´ 1
2 ¨ ?

n
`
∞

kPHpjq �k

|Hpjq|
´

∞
kPHpjq

p�k
|Hpjq|

˘ˇ̌
tzi,nuni“1

¯

“ lim
nÑ8�ppe1

j
p⌦KJ

n ejq´ 1
2 ¨ ?

n
`
∞

kPHpjq �k

|Hpjq|
´

∞
kPHpjq

p�k
|Hpjq|

˘
q.

Therefore, by the bounded convergence theorem, we have

lim
nÑ8P

´
P

`r�˚
pjq § �pjq|tzi,nuni“1

˘
§ s

¯

“ Pp lim
nÑ8�ppe1

j
p⌦KJ

n ejq´ 1
2 ¨ ?

n
`
∞

kPHpjq �k

|Hpjq|
´

∞
kPHpjq

p�k
|Hpjq|

˘
q § sq

“ Pp lim
nÑ8pe1

j
p⌦KJ

n ejq´ 1
2 ¨ ?

n
`
∞

kPHpjq �k

|Hpjq|
´

∞
kPHpjq

p�k
|Hpjq|

˘
§ �´1psqq

“ PpNp0, 1q § �´1psqq

“ s.

⌅

B Lemmas and corollary

B.1 Lemma 1

Lemma 1 Suppose wk,pjq “ 1pk P pHpjqq, for j, k “ 1, . . . , d, under Assumptions 6-10, we have the

following argument holds @" ° 0,

lim
nÑ8P

`
|wk,pjq ´ 1pk P Hpjqq| ° "

˘
“ 0.

Proof. We start with reviewing and introducing some notations to pave the way for a clear proof.

Recall that r�˚
pjq is the j-th largest e↵ect size for the resampled statistics p�p1q, . . . , p�pdq, suppose r�˚

pjq

7



is resampled statistics from the normal distribution centered at p�qj , that is

r�˚
pjq

ˇ̌
tzi,nuni“1 „ N pp�qj , pp⌃KJ

n qqjqjq, qj “
dÿ

k“1

k ¨ 1pp�˚
k “ r�˚

pjqq,

where pp⌃KJ

n qqjqj is the qjth component in the diagonal of the matrix p⌃KJ

n .

Recall we define the near tie Hpjq set as

Hpjq “
 
k : |�k ´ �pjq| “ opn´ 1

2 q, k “ 1, . . . , d
(
.

We further define two sets of policies that have e↵ect sizes lower/larger than the policies in the set

Hpjq:

H
L
pjq “

 
k : �k † min

mPHpjq
t�mu k “ 1, . . . , d

(
, H

U
pjq “

 
k : �k ° max

mPHpjq
t�mu k “ 1, . . . , d

(
.

As for the estimated near tie set, we have for any j P pHpjq that

´bL § p�˚
k ´ r�˚

pjq § bR, with |bR ´ bL| “ Opn´�q,

where � P p0, 0.5q. Thus, there exists a positive constant C such that

|p�˚
k ´ r�˚

pjq|
n´�

† C, @j P pHpjq.

Our proof is composed of the following three steps:

Step 1. We first show that the policy with the jth largest policy e↵ect size in the resampled

statistics falls into the set Hpjq with high probability, that is

lim
nÑ8P

´
qj P Hpjq

¯
“ 1. (B.1)

Because p�˚
qj P rminjPHpjq

p�˚
j ,maxjPHpjq

p�˚
j s by definition, coupled with the fact that

!
max
kPHL

pjq

p�˚
k † min

jPHpjq
p�˚
j § max

jPHpjq
p�˚
j † min

kPHU
pjq

p�˚
k

)
Ä

´
qj P Hpjq

¯
,

8



it is su�ce to show

lim
nÑ8P

˜
max
kPHL

pjq

p�˚
k † min

jPHpjq
p�˚
j § max

jPHpjq
p�˚
j † min

kPHU
pjq

p�˚
k

¸
“ 1.

Under Assumption 10, by Lemma 2, for any k P H
L
pjq and m P Hpjq, we have

lim
nÑ8P

´
p�˚
k † p�˚

m

¯
“ 1.

Similarly, for any k P H
U
pjq and m P Hpjq, we have

lim
nÑ8P

´
p�˚
m † p�˚

k

¯
“ 1.

Step 2. We then show, for k R Hpjq

lim
nÑ8P

`
wk,pjq ° ", k R Hpjq

˘
“ 0.

For any " ° 0 and k R Hpjq, we have the following holds

P
`
wk,pjq ° "

˘
“ P

`
1pk P pHpjqq ° "

˘

“ P
`
1pk P pHpjqq ° "|k P pHpjq

˘
¨ P

`
k P pHpjq

˘

` P
`
1pk P pHpjqq ° "|k R pHpjq

˘
¨ P

`
k R pHpjq

˘

§ P
`
k P pHpjq

˘

Def“ P
´ |p�˚

k ´ p�˚
pjq|

n´�
† C

¯

“ P
´ |p�˚

k ´ p�˚
qj |

n´�
† C

¯

“ P
´

|p�˚
k ´ p�˚

qj | † n
´� ¨ C

¯

“ P
´

|pp�˚
k ´ �kq ´ pp�˚

qj ´ �qjq ` p�k ´ �qjq| † n
´� ¨ C

¯

§ P
´
n
�|�k ´ �qj | ´ n

�|p�˚
k ´ �k| ´ n

�|p�˚
qj ´ �qj | † C

¯

“ P
´
n
�|p�˚

k ´ �k| ` n
�|p�˚

qj ´ �qj | ° n
�|�k ´ �qj | ` C

¯

9



By definition, for k R Hpjq

P
`
n
�|�k ´ �qj | † C

˘
§ P

`
n
�|�k ´ �qj | † C,qj P Hpjq

˘
` P

`qj R Hpjq
˘

§ max
jPHj

P
`
n
�|�k ´ �j | † C, j P Hpjq

˘
` P

`qj R Hpjq
˘
.

Under Assumption 10, Lemma 2 and the conclusion in Eq (B.1) in Step 1 suggest that by

letting n Ñ 8 on both side, we have the above probability converges to zero. Based on above

derivation, we have shown that limnÑ8 P
`
wk,pjq ° ", k R Hpjq

˘
“ 0, for k R Hpjq.

Step 3. We are left to prove that for all k P Hpjq, the following holds @" ° 0:

lim
nÑ8P

`
|wk,pjq ´ 1| ° "

˘
“ 0.

Following similar arguments, for a positive constant C, we have for k, j P Hpjq the following

statement holds

P
`
|wk,pjq ´ 1| ° "

˘
“ P

`
|1pk P pHpjqq ´ 1| ° "

˘

“ P
`
|1pk P pHpjqq ´ 1| ° "|k P pHpjq

˘
¨ P

`
k P pHpjq

˘

` P
`
|1pk P pHpjqq ´ 1| ° "|k R pHpjq

˘
¨ P

`
k R pHpjq

˘

§ P
`
k R pHpjq

˘

Def“ P
´ |p�˚

k ´ p�˚
pjq|

n´�
• C

¯

“ P
´ |p�˚

k ´ p�˚
qj |

n´�
• C

¯

“ P
´

|pp�˚
k ´ �kq ´ pp�˚

qj ´ �qjq ` p�k ´ �qjq| • n
´� ¨ C

¯

§ P
´

|p�˚
k ´ �k| ` |p�˚

qj ´ �qj | ` |�k ´ �qj | • n
´� ¨ C

¯

§ P
´
n

1
2 |p�˚

k ´ �k| ` n
1
2 |p�˚

qj ´ �qj | ` n
1
2 |�k ´ �qj | • n

1
2´� ¨ C

¯
.
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By definition of the near-tie set, for k P Hpjq, we have

P
`
n

1
2 |�k ´ �qj | † C

˘
§ P

`
n
�|�k ´ �qj | † C,qj P Hpjq

˘
` P

`qj R Hpjq
˘

§ max
jPHj

P
`
n
�|�k ´ �j | † C, j P Hpjq

˘
` P

`qj R Hpjq
˘
.

Again, under Assumption 10, Lemma 2 and the conclusion in Eq (B.1) we have derived in

Step 1, by letting n Ñ 8 on both side, we have the above probability converges to 1.

⌅

B.2 Lemma 2

Lemma 2 Under Assumption 10, we show that for all k P t1, . . . , du, any positive constant C and

� P p0, 12q, the following statement holds

lim
nÑ8P

`
|p�˚

k ´ �k| • n
´� ¨ C

˘
“ 0.

Proof. Note that

?
npp�˚

k ´ �kq “ ?
npp�k ´ �kq ` N

`
0, p p⌦KJ

n qk,k
˘
. (B.2)

Because
?
npp�k ´�kq converges in distribution to a finite-value random variable and p⌦KJ

n converges

in probability to a finite-value matrix when n tends to infinity [36], for any given " ° 0, there exists

an M , such that

Pp?
n|p�˚

k ´ �k| ° Mq † ". (B.3)

Then, for any n such that

n °
`M
C

˘ 1
1
2 ´�

we have that

P
`
|p�˚

k ´ �k| • n
´� ¨ C

˘
† "

11



and therefore

lim sup
nÑ8

P
`
|p�˚

k ´ �k| • n
´� ¨ C

˘
† ".

Note that the above inequality holds for arbitrary " ° 0. Therefore, we have

lim sup
nÑ8

P
`
|p�˚

k ´ �k| • n
´� ¨ C

˘
“ 0,

completing the proof. ⌅

Lemma 3 Denote the selected policy as

pj “
dÿ

k“1

k ¨ 1pp�k “ p�pjqq,

we show that

lim
nÑ8P

`pj P Hpjq
˘

“ 1.

Proof. This is a direct result from Step 1 and Step 2 in the proof for Theorem 1. ⌅

B.3 Corollary 1

Corollary 2 Under Assumptions 6-10, we have that limnÑ8 P
´
P

`r�˚
pjq § �pj |tzi,nuni“1

˘
§ s

¯
“ s.

Proof. Because of the consistency in Lemma 3, we have

lim
nÑ8Pp�pj “ �pjqq “ 1.

Therefore,

lim
nÑ8 |P

`r�˚
pjq § �pjq|tzi,nuni“1

˘
´ P

`r�˚
pjq § �pjq|tzi,nuni“1

˘
| § lim

nÑ8Pp�pjq ‰ p�pjq|tzi,nuni“1q “ 0.

The result then follows by applying Step 3 in the Proof of Theorem 1. ⌅
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C Additional simulation and empirical results

C.1 Practical implementation

In this section, we discuss the choice of tuning parameters (including B, �, bL and bR) of the proposed

method in Section 2.2. For the number of repetitions for our resampling procedure, we recommend

using B “ 2, 000 as a good balance between computational load and statistical inference accuracy.

For the tuning pair pbR, bLq, from our theoretical analysis, we need to ensure that the distance

between bR and bL is of the order n
� with � P p0, 0.5q to guarantee the statistical validity of our

proposed procedure. To achieve this goal, for the policy �pjq, we adopt the tuning pair of the form

b
j
L

“ n
´� ¨ s�pj ¨ cj

L
, b

j
R

“ n
´� ¨ s�pj ¨ cj

R
,

where spj is the pjth element in the diagonal of the estimated covariance matrix p⌦KJ

n , cj
L
and c

j
R
are

positive constants.

The constants c
j
L
and c

j
R
can significantly impact the performance of the proposed approach

in finite samples. In the extreme cases, on the one hand, if both c
j
L
and c

j
R
are overly large, the

estimated near tie set might include more policies than necessary and our approach is only valid

if all true policy e↵ects are closely ties. On the other hand, if cj
L
and c

j
R
are both closer to zero,

our approach reduces to a standard parametric bootstrap approach, which is problematic in the

presence of tied policy e↵ects. To present a robust algorithm in finite samples, we thus adopt the

following “double-bootstrap” method as discussed in [16] (note that double-bootstrapped statistics

are labelled with double-star superscripts):

1. For j “ 1, ..., d, set �˚
j “ � ¨

∞d
j“1

p�j

d ` p1 ´ �q ¨ p�j , where

� “ min
!
1,

∞d
j“1 spj

n
∞d

j“1pp�j ´ p̄�q2
ˆ n

0.05
)
.

2. For every candidate pair pcL, cRq such that cL P CL and cR P CR, do

(a) For t – 1 to T , do

i. Generate p�˚ “ pp�˚
1 , ...,

p�˚
d q from N p�˚

, p⌦KJ

n {nq, where �˚ “ p�˚
1 , . . . ,�

˚
d q1, and de-

13



note the ordered values in �˚ as �˚
p1q • . . . • �

˚
pdq.

ii. For r – 1 to R, do

A. Generate double bootstrap statistics p�˚˚ fi pp�˚˚
1 , ..., p�˚˚

d q1 from N p p�˚
, p⌦KJ

n {nq,
and denote the ordered values of p�˚˚ as p�˚˚

p1q • ... • p�˚˚
pdq.

B. Record w
˚˚
k,pjq “ 1t´cL ¨ n´� ¨ s�pj § pp�˚˚

k ´ �
˚˚
pjqq § cR ¨ n´� ¨ s�pju and r�˚˚

pjq “
∞d

k“1w
˚˚
k,pjq p�˚˚

j {∞d
k“1w

˚˚
k,pjq, for j “ 1, . . . , d.

iii. Calculate Bj,tpcL, cRq “ 1
R

∞R
r“1 1

`r�˚˚,r
pjq § �

˚,r
pjq

˘
, for j “ 1, . . . , d.

3. Record the loss function

LjpcL, cRq “ 1

T

Tÿ

t“1

´
Bj,ptqpcL, cRq ´ t

T ` 1

¯2
, (C.1)

where Bj,ptqpcL, cRq is the t-th smallest statistics in Bj,1pcL, cRq, . . . , Bj,T pcL, cRq.

4. Choose the pair pcj
L
, c

j
R
q for inferring �pjq and �pj that minimizes LjpcL, cRq, that is

pcj
L
, c

j
R
q “ min

pcL,cRqPC
LjpcL, cRq, j “ 1, . . . , d0.

Note that we only use the above procedure to choose the tuning parameters c
j
L
and c

j
R
, meaning

that we do not use the resampled statistics in Step 1 to carry out inference on �pjq. In Step 1, �

is adopted to stabilize the performance of the tuning parameter selection in finite samples, and �

only takes a close-to-zero value whenever limited variation is found between policy e↵ect estimates.

Following Theorem 1, we know that P
`r�˚

pjq § �pjq|tzi,nuni“1

˘
roughly follows Unifp0, 1q when

the sample size n is large. Given a desirable tuning pair pcL, cRq, we would thus expect that

Bj,p1qpcL, cRq, ..., Bj,pT qpcL, cRq share a similar distribution with the ordered statistics of i.i.d. Unifp0, 1q
random variables. The loss function defined in Eq (C.1) measures the average of squared di↵er-

ences between Bj,ptqpcL, cRq and the expected value of the order statistics of the Unifp0, 1q random

variables. Given the rational above, we would expect that the optimal tuning pair pcj
L
, c

j
R
q minimize

such a loss.

We further comment on several implementation details. Our numerical results suggest using

R “ 200 and T “ 40 can provide reasonable choice of the tuning parameters in finite samples.
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In addition, when the loss function LjpcL, cRq do not fluctuate substantially over all considered

pairs pcL, cRq. In this case, let � denote the 97.5th percentile of LU “ 1
T

∞T
t“1pUpbq ´ t

T`1q2 and

Up1q, ..., UpT q are ordered observations from Unifp0, 1q distribution, we choose pc̄jL, c̄jRq which is the

mean of all plausible pairs such that LjpcL, cRq † �. Lastly, as for the candidate region of cL and cR,

we first consider selecting cL from 0 to
2p p�p1q´ p�pjqqn�

s�pj
and cR from 0 to

2p p�pjq´ p�pdqqn�

spj�
. Then based on

the values of LjpcL, cRq for di↵erent tuning pairs, we may choose to expand or shrink the candidate

region to make our algorithm more e�cient.

C.2 Robustness to di↵erent tuning choice

We summarizing our simulation results with di↵erent choices of the tuning parameter � P t0.05, 0.15, 0.25u,
R P t200, 500u and T P t40, 100, 200u. To avoid redundancy, we showcase the results with � “ 0 and

�j “ �´1
` j
d`1

˘
, j “ 1, . . . , d while qn takes value 141 or 561. We report the coverage probabilities

and asymptotic biases for estimating the top two policies (i.e., d0 “ 2) �p1q and �p2q. Supplementary

Materials Table C.1 summarizes the simulation results with di↵erent choice of � and fixed R “ 200

and T “ 40. There, we observe that the performance of our method is overall robust to the choice

of di↵erent � in a variety of settings. Though when qn is large and no policy is e↵ective, smaller �

likely leads to under-covered confidence intervals. Supplementary Materials Table C.2 summarizes

the simulation results under R P t200, 500u and T P t40, 100, 200u, while fixing � “ 0.25. Our

results demonstrate that when R or T increases, the coverage probabilities are slightly increased

and biases are marginally reduced. Overall, we observe that the proposed method is not very sen-

sitive to the choice of various tuning parameters �, T , and R. To guide readers for the selection of

tuning parameters to reach an optimal accuracy and computational e�ciency trade-o↵, we further

provide the computational time under various choices of T and R in the Supplementary Materials

Table C.3. In practice, to reduce computational cost while maintaining valid statistical inference,

we adopt the following tuning set in the rest of the numerical studies: R “ 200, T “ 100, and

� “ 0.25.

C.3 Computational time with di↵erent tuning parameters

In this section, we summarize computational time with respect to various choices of R, T , and n to

make the computational costs transparent for readers. Here, we fix � at 0.25 and select 20 candidate
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Table C.1: Coverage probability and asymptotic bias with di↵erent choices of �

No policy is e↵ective, �p1q “ �p2q “ 0
qn “ 141 qn “ 561

�=0.05 �=0.15 �=0.25 � “ 0.05 �=0.15 �=0.25
�p1q Cover 0.97(0.00) 0.95(0.01) 0.96(0.01) 0.93(0.01) 0.92(0.01) 0.96(0.01)?

nBias 0.01(0.02) 0.03(0.04) -0.02(0.02) 0.03(0.01) 0.03(0.01) -0.01(0.01)

�p2q Cover 0.98(0.00) 0.94(0.01) 0.97(0.01) 0.93 (0.01) 0.93(0.01) 0.96(0.01)?
nBias 0.00(0.01) 0.02(0.01) 0.01(0.01) 0.03(0.01) 0.02(0.01) 0.01(0.01)

Top two policies are e↵ective, �p1q “ 0.97,�p2q “ 0.43
qn “ 141 qn “ 561

�=0.05 �=0.15 �=0.25 � “ 0.05 �=0.15 �=0.25
�p1q Cover 0.94(0.01) 0.98(0.00) 0.95(0.01) 0.93(0.01) 0.95(0.01) 0.94(0.01)?

nBias 0.05(0.05) -0.03(0.04) -0.04(0.05) -0.07(0.06) -0.06(0.07) -0.07(0.07)

�p2q Cover 0.94(0.01) 0.97(0.01) 0.95(0.01) 0.95(0.01) 0.96(0.01) 0.95(0.01)?
nBias 0.08(0.08) 0.05(0.06) 0.06(0.06) 0.08(0.08) 0.07(0.08) 0.08(0.09)

Note: We fix R “ 200 and T “ 40. “Cover” is the empirical coverage of the 95% confidence interval for �pjq and “?
nBias ” captures the root-n scaled Monte Carlo bias for estimating �pjq. Monte Carlo standard errors are provided

in the parenthesis.

tuning parameters. Table C.3 demonstrates that the computational costs are largely determined

by T and R. When both T and R reach 500, running our method once takes approximately one

hour. For simulation study with multiple iterations, we recommend setting R “ 200 and T § 200

to achieve a reasonable trade-o↵ between accuracy and computational e�ciency.

C.4 Simulation results: �pj

The simulation results presented in Table C.4 and C.5 help us confirm our theoretical analyses in

Corollary 1, and we observe similar trends compared to the results in the main manuscript.

C.5 Simulation results: d “ 10

This section provides an additional set of simulation results when d “ 10, which is larger than

the setting (d “ 5) adopted in the main manuscript. We investigate the performance of the five

methods for estimating �p2q, �p5q, and �p10q. Table C.6 - C.9 demonstrate that without adjustment,

the coverage probabilities for �p5q fall below 80% when qn • 281, while our proposed method reaches

nominal level coverage regardless the ranking of �j . “Proposed + EW”, “Proposed + HCK”, and

“Proposed + HC3” show similar trends compared to those when d “ 5.
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Table C.2: Coverage probability and asymptotic bias with di↵erent choices of T and R

No policy is e↵ective, �p1q “ �p2q “ 0
qn “ 141 qn “ 561

T “ 40 T “ 100 T “ 200 T “ 40 T “ 100 T “ 200
�p1q R “ 200 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.02) 0.96(0.02)?

nBias -0.02(0.02) 0.03(0.06) 0.02(0.06) -0.01(0.01) -0.01(0.12) 0.01(0.12)

R “ 500 Cover 0.96(0.01) 0.95(0.01) 0.96(0.01) 0.97(0.01) 0.96(0.01) 0.96(0.01)?
nBias 0.01(0.02) -0.02(0.04) 0.01(0.02) 0.01(0.01) 0.01(0.01) 0.01(0.01)

�p2q R “ 200 Cover 0.96(0.01) 0.96(0.01) 0.97(0.01) 0.96(0.01) 0.96(0.01) 0.97(0.01)?
nBias 0.01(0.01) -0.01(0.01) 0.01(0.01) 0.01(0.01) 0.01(0.01) -0.01(0.01)

R “ 500 Cover 0.95(0.01) 0.95(0.01) 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.96(0.01)?
nBias 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.00(0.01)

Top two policies are e↵ective, �p1q “ 0.97,�p2q “ 0.43
qn “ 141 qn “ 561

T “ 40 T “ 100 T “ 200 T “ 40 T “ 100 T “ 200
�p1q R “ 200 Cover 0.95(0.01) 0.95(0.01) 0.96(0.01) 0.94(0.01) 0.95(0.01) 0.95(0.01)?

nBias -0.04(0.05) 0.02(0.08) 0.02(0.08) -0.07(0.07) 0.07(0.16) 0.06(0.18)

R “ 500 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.94(0.01) 0.95(0.01) 0.95(0.01)?
nBias 0.02(0.04) 0.01(0.04) 0.01(0.05) 0.05(0.07) 0.05(0.07) 0.04(0.07)

�p2q R “ 200 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.96(0.01)?
nBias 0.06(0.06) 0.05(0.06) 0.05(0.06) 0.08(0.09) 0.07(0.08) 0.07(0.09)

R “ 500 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.96(0.01) 0.96(0.01)?
nBias 0.06(0.08) 0.05(0.06) 0.05(0.06) 0.07(0.08) 0.07(0.08) 0.06(0.09)

Note: We fix � “ 0.25. “Cover” is the empirical coverage of the 95% confidence interval for �pjq and “
?
nBias ”

captures the root-n scaled Monte Carlo bias for estimating �pjq. Monte Carlo standard errors are provided in the
parenthesis.

Computational time with respect to various n, qn, T , and R

qn “ 141 (s ˆ 103) qn “ 561 (s ˆ 103)
T “ 40 T “ 200 T “ 500 T “ 40 T “ 200 T “ 500

n “ 500 R “ 200 0.10 0.48 1.27 0.11 0.48 1.35
R “ 500 0.23 1.20 3.31 0.24 1.38 3.50

n “ 2000 R “ 200 0.10 0.50 1.29 0.12 0.51 1.40
R “ 500 0.26 1.23 3.44 0.27 1.39 3.98

n “ 5000 R “ 200 0.11 0.52 1.32 0.14 0.55 1.51
R “ 500 0.27 1.25 3.50 0.30 1.40 4.05

Table C.3: The unit: 1,000 seconds. We fix � “ 0.25 and set 20 candidate tuning pairs for pcL, cRq. The simulations
are performed on a Lenovo NeXtScale nx360m5 node (24 cores per node) equipped with Intel Xeon Haswell processor.
The core frequency is 2.3 Ghz and supports 16 floating-point operations per clock period.

C.6 Simulation results: realistic error terms

In this section, we consider two DGPs of generating more practical errors beyond simple i.i.d.

Gaussian noises. For the first DGP, we generate covariates from xi,n „ N p0,⌃q and wi,n „
N p0, Iqnq, and then generate random noise from (1) an asymmetric distribution with the density
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Table C.4: Simulation results (d “ 5, heterogeneity,�p1)

�j “ �´1
` j
d`1

˘
, �n “ 0, j “ 1, . . . , d

xi,n „ N p0,⌃q, wi,n “ 1p rwi,n • �´1p0.98qq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.96(0.01) 0.95(0.01)?
nBias 0.04(0.06) 0.04(0.05) 0.04(0.05) -0.04(0.05) 0.04(0.06)

qn “ 141 Cover 0.95(0.01) 0.95(0.01) 0.93(0.01) 0.95(0.01) 0.95(0.01)?
nBias 0.07(0.07) 0.06(0.07) 0.07(0.06) 0.06(0.06) 0.05(0.07)

qn “ 281 Cover 0.94(0.01) 0.95(0.01) 0.84(0.01) 0.82(0.01) 0.94(0.01)?
nBias -0.09(0.08) -0.07(0.07) -0.10(0.08) -0.11(0.07) -0.07(0.08)

qn “ 421 Cover 0.94(0.01) 0.91(0.01) 0.76(0.02) 0.75(0.01) 0.93(0.01)?
nBias -0.09(0.10) -0.10(0.09) -0.15(0.09) -0.16(0.09) -0.10(0.09)

qn “ 561 Cover 0.94(0.01) 0.90(0.01) 0.67(0.02) 0.65(0.01) 0.78(0.01)?
nBias -0.15(0.14) -0.12(0.10) -0.17(0.23) -0.25(0.12) 0.15(0.11)

qn “ 631˚ Cover 0.92(0.01) 0.89(0.02) 0.45(0.02) 0.42(0.01) 0.68(0.01)?
nBias -0.19(0.18) -0.22(0.13) -0.35(0.29) -0.54(0.22) 0.28(0.18)

xi,n “ 1prxi,n ° 0q, wi,n „ N p0, Iq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.97(0.01) 0.97(0.01) 0.95(0.01) 0.95(0.01) 0.96(0.01)?
nBias -0.05(0.10) -0.06(0.09) -0.06(0.10) -0.10(0.11) -0.04(0.09)

qn “ 141 Cover 0.97(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01) 0.95(0.01)?
nBias -0.06(0.11) -0.08(0.12) -0.07(0.11) 0.13(0.12) 0.09(0.12)

qn “ 281 Cover 0.96(0.01) 0.94(0.01) 0.86(0.02) 0.85(0.01) 0.95(0.01)?
nBias -0.09(0.13) -0.10(0.13) -0.10(0.13) -0.15(0.12) -0.09(0.13)

qn “ 421 Cover 0.94(0.01) 0.93(0.01) 0.75(0.02) 0.72(0.01) 0.93(0.01)?
nBias 0.11(0.17) -0.12(0.13) 0.18(0.17) -0.20(0.17) 0.14(0.14)

qn “ 561 Cover 0.94(0.01) 0.90(0.01) 0.51(0.02) 0.48(0.01) 0.92(0.01)?
nBias -0.15(0.22) -0.21(0.20) -0.25(0.23) -0.46(0.26) -0.21(0.20)

qn “ 631 Cover 0.91(0.01) 0.90(0.01) 0.48(0.02) 0.45(0.01) 0.80(0.01)?
nBias -0.21(0.20) -0.23(0.22) 0.41(0.30) -0.53(0.20) 0.35(0.22)

Note: “Cover” is the empirical coverage of the 95% confidence interval for �p1 and “
?
nBias ” captures the root-n

scaled Monte Carlo bias for estimating �p1. “ * ” indicates that p⌦KJ

n is not positive semi-definite in some Monte Carlo
samples.

function 0.5�p"|´0.5, 0.25q ` 0.5�p"|0.5, 1q; (2) a bimodal distribution with the density function

0.5�p"|´1.5, 0.25q`0.5�p"|1.5, 1q, where �p"|µ,�2q denotes the density function of a normal random

variable with mean µ and variance �
2. The simulation results are summarized in Supplementary

Materials Table C.11. We further study this setting with a larger sample size, n “ 2, 000. This

sample size is closer to the sample size adopted in our case study I. The simulation results under

n “ 2, 000 are summarized in Supplementary Materials Table C.13. We also consider the design

with both � ‰ 0 and � ‰ 0. The simulation results are summarized in Supplementary Materials

Table C.10–C.13.

For the second DGP, we consider heteroscedastic errors following the setup in [11] with: xi,n „
N p0,⌃q,wi,n “ 1p rwi,n • �´1p0.98qq with rwi,n „ N p0, Iqnq, and "i,n „ N p0, 1q with Vr"i,n|xi,n,wi,ns “
c"p1 ` ptpx1,i,nq ` l1wi,nq2{4q and Vrxk,i,n|wi,ns “ cxkp1 ` pl1wi,nq2{4q, where xk,i,n denotes the kth
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Table C.5: Simulation results (d “ 5, heterogeneity,�p2)

�j “ �´1
` j
d`1

˘
, �n “ 0, j “ 1, . . . , d

xi,n „ N p0,⌃q, wi,n “ 1p rwi,n • �´1p0.98qq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.96(0.01) 0.97(0.01) 0.97(0.01) 0.96(0.01) 0.97(0.01)?
nBias -0.04(0.06) -0.03(0.06) -0.03(0.06) -0.04(0.07) -0.04(0.06)

qn “ 141 Cover 0.96(0.01) 0.96(0.02) 0.88(0.02) 0.90(0.01) 0.94(0.01)?
nBias -0.05(0.08) -0.05(0.08) -0.10(0.08) -0.09(0.06) -0.07(0.07)

qn “ 281 Cover 0.95(0.01) 0.94(0.02) 0.86(0.02) 0.84(0.01) 0.91(0.02)?
nBias 0.07(0.09) 0.07(0.09) 0.13(0.08) -0.15(0.10) 0.12(0.10)

qn “ 421 Cover 0.94(0.01) 0.93(0.02) 0.77(0.02) 0.72(0.02) 0.71(0.02)?
nBias -0.10(0.13) -0.12(0.13) -0.15(0.11) -0.17(0.13) -0.19(0.17)

qn “ 561 Cover 0.94(0.01) 0.92(0.02) 0.65(0.02) 0.60(0.01) 0.69(0.02)?
nBias -0.16(0.17) -0.18(0.16) -0.18(0.15) 0.20(0.13) 0.35(0.22)

qn “ 631˚ Cover 0.93(0.01) 0.92(0.02) 0.44(0.02) 0.42(0.01) 0.50(0.02)?
nBias -0.18(0.17) -0.23(0.21) -0.45(0.19) -0.49(0.17) 0.48(0.30)

xi,n “ 1prxi,n ° 0q, wi,n „ N p0, Iq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.96(0.01) 0.98(0.01) 0.96(0.01) 0.96(0.01) 0.97(0.01)?
nBias -0.08(0.13) -0.07(0.13) -0.10(0.12) 0.09(0.12) -0.10(0.10)

qn “ 141 Cover 0.96(0.01) 0.96(0.01) 0.94(0.01) 0.95(0.01) 0.95(0.01)?
nBias 0.09(0.14) 0.10(0.14) 0.13(0.14) 0.12(0.13) 0.10(0.14)

qn “ 281 Cover 0.95(0.01) 0.95(0.01) 0.92(0.01) 0.90(0.01) 0.95(0.01)?
nBias -0.11(0.16) -0.11(0.15) 0.17(0.15) 0.19(0.14) 0.13(0.17)

qn “ 421 Cover 0.95(0.01) 0.92(0.02) 0.82(0.02) 0.78(0.01) 0.94(0.01)?
nBias 0.18(0.20) -0.20(0.20) -0.25(0.20) -0.32(0.17) -0.20(0.20)

qn “ 561 Cover 0.94(0.01) 0.92(0.02) 0.67(0.02) 0.64(0.01) 0.73(0.01)?
nBias -0.26(0.24) 0.22(0.24) -0.41(0.23) -0.48(0.23) 0.27(0.25)

qn “ 631 Cover 0.92(0.01) 0.87(0.02) 0.52(0.02) 0.48(0.01) 0.50(0.01)?
nBias 0.30(0.27) 0.41(0.29) 0.50(0.28) -0.65(0.13) 0.55(0.28)

Note: “Cover” is the empirical coverage of the 95% confidence interval for �p2 and “
?
nBias ” captures the root-n

scaled Monte Carlo bias for estimating �p2. “ * ” indicates that p⌦KJ

n is not positive semi-definite in some Monte Carlo
samples.

component of the vector xi,n. The constants c" and cxk are chosen so that Vr"i,ns “ Vrxk,i,ns “ 1

and tpaq “ a1p´1 § a § 1q ` sgnpaqp1 ´ 1p´1 § a § 1qq. l is the conformable vector of ones. The

simulation results are summarized in Supplementary Materials Table C.10.

Table C.10 shows that, under the second DGP, our proposed method has slightly compromised

performance, but still reaches nominal level coverage when qn § 421. Table C.11 and C.12 demon-

strate that the performance of our method is robust even when both � ‰ 0 and � ‰ 0, and qn § 561.

Table C.13 suggests that when sample size increases, our proposed method has smaller bias and

improved coverage probabilities when qn “ 631. The other considered methods show similar trends

to the settings under homoscedastic errors.
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Table C.6: Simulation results (d “ 10, heterogeneity,�p2q)

�j “ �´1
` j
d`1

˘
, �n “ 0, j = 1, . . . , d

xi,n „ N p0,⌃q, wi,n “ 1p rwi,n • �´1p0.98qq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.97(0.01) 0.94(0.01)?
nBias -0.05(0.07) -0.04(0.07) -0.05(0.06) -0.06(0.07) 0.06(0.06)

qn “ 141 Cover 0.96(0.01) 0.95(0.01) 0.96(0.01) 0.96(0.01) 0.94(0.01)?
nBias -0.06(0.07) -0.07(0.07) 0.07(0.08) -0.07(0.07) -0.06(0.06)

qn “ 281 Cover 0.95(0.01) 0.95(0.01) 0.92(0.01) 0.89(0.01) 0.92(0.01)?
nBias -0.07(0.09) -0.08(0.09) 0.15(0.10) -0.18(0.08) 0.20(0.08)

qn “ 421 Cover 0.96(0.01) 0.94(0.01) 0.88(0.01) 0.80(0.02) 0.90(0.01)?
nBias -0.08(0.11) -0.10(0.11) 0.20(0.11) -0.25(0.10) -0.25(0.09)

qn “ 561 Cover 0.95(0.01) 0.94(0.01) 0.75(0.01) 0.67(0.02) 0.89(0.01)?
nBias 0.14(0.15) 0.15(0.15) -0.27(0.16) -0.31(0.13) -0.28(0.12)

qn “ 631˚ Cover 0.93(0.01) 0.91(0.01) 0.65(0.01) 0.57(0.02) 0.88(0.01)?
nBias 0.22(0.20) 0.27(0.19) -0.33(0.20) 0.35(0.17) 0.38(0.16)

xi,n “ 1prxi,n ° 0q, wi,n „ N p0, Iq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.97(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.95(0.01)?
nBias -0.05(0.11) -0.07(0.11) 0.06(0.12) -0.08(0.11) -0.09(0.09)

qn “ 141 Cover 0.96(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01) 0.94(0.01)?
nBias 0.07(0.12) 0.10(0.13) 0.13(0.13) 0.15(0.13) 0.10(0.11)

qn “ 281 Cover 0.95(0.01) 0.95(0.01) 0.91(0.01) 0.88(0.01) 0.93(0.01)?
nBias 0.14(0.15) 0.16(0.16) 0.20(0.13) -0.28(0.15) -0.29(0.13)

qn “ 421 Cover 0.94(0.01) 0.93 (0.01) 0.85(0.01) 0.76(0.01) 0.92(0.01)?
nBias 0.20(0.19) 0.22(0.18) 0.25(0.17) 0.37(0.18) 0.32(0.16)

qn “ 561 Cover 0.93(0.01) 0.93(0.01) 0.77(0.01) 0.67(0.02) 0.90(0.01)?
nBias 0.22(0.23) 0.25(0.23) -0.30(0.19) 0.41(0.22) 0.44(0.19)

qn “ 631 Cover 0.90(0.01) 0.88(0.01) 0.67(0.01) 0.60(0.02) 0.88(0.01)?
nBias 0.31(0.25) 0.45(0.26) -0.48(0.13) 0.55(0.25) 0.61(0.23)

Note: “Cover” is the empirical coverage of the 95% confidence interval for �p2q and “
?
nBias ” captures the root-n

scaled Monte Carlo bias for estimating �p2q. “
˚” indicates that p⌦KJ

n is not positive semi-definite in some Monte Carlo
samples.

C.7 Additional analysis for case study I

In this section, we revisit case study I with a much smaller model that only includes the main

e↵ects. The results are summarized in Table C.14. Table C.14 shows that, overall, the results

under a smaller model do not change substantively. But “asking 25% more” no longer has a

significant impact on donation amount even without calibration.

D Extension to regression models with fixed e↵ects

As stated in the main manuscript, our approach extends to linear panel data models with fixed

e↵ects. We shall briefly discuss this connection below. Because it is a common practice to include

the subscript t to denote time in panel data analyses, to avoid using triple subscript, we drop
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Table C.7: Simulation results (d “ 10, homogeneity,�p5q)

� “ 0, �j “ 1{j, j “ 1, . . . , qn

xi,n „ N p0,⌃q, wi,n “ 1p rwi,n • �´1p0.98qq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.93(0.01) 0.92(0.01)?
nBias 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.04(0.02)

qn “ 141 Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.93(0.01) 0.82(0.01)?
nBias -0.01(0.01) -0.01(0.01) 0.02(0.02) 0.02(0.01) -0.17(0.02)

qn “ 281 Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.92(0.01) 0.80(0.01)?
nBias 0.02(0.02) 0.02(0.02) 0.02(0.02) 0.05(0.02) -0.18(0.02)

qn “ 421 Cover 0.93(0.02) 0.93(0.02) 0.93(0.01) 0.80(0.02) 0.78(0.01)?
nBias -0.02(0.02) -0.02(0.02) 0.05(0.04) 0.17(0.03) 0.21(0.03)

qn “ 561 Cover 0.93(0.02) 0.92(0.02) 0.93(0.01) 0.75(0.02) 0.76(0.01)?
nBias 0.02(0.02) -0.03(0.02) 0.05(0.04) 0.32(0.04) -0.28(0.04)

qn “ 631˚ Cover 0.91(0.02) 0.90(0.01) 0.90(0.01) 0.73(0.02) 0.75(0.01)?
nBias -0.12(0.05) -0.30(0.05) 0.14(0.09) 0.36(0.06) -0.34(0.05)

xi,n “ 1prxi,n ° 0q, wi,n „ N p0, Iq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed + EW No adjustment+KJ

qn “ 1 Cover 0.95(0.01) 0.95(0.02) 0.94(0.01) 0.93(0.02) 0.91(0.01)?
nBias 0.01(0.01) 0.01(0.01) -0.02(0.02) 0.01(0.01) 0.06(0.03)

qn “ 141 Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.93(0.01) 0.81(0.01)?
nBias -0.01(0.01) -0.01(0.01) -0.02(0.02) 0.01(0.00) 0.19(0.03)

qn “ 281 Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.92(0.01) 0.78(0.01)?
nBias 0.02(0.02) 0.02(0.02) -0.02(0.03) 0.06(0.02) -0.21(0.04)

qn “ 421 Cover 0.93(0.01) 0.93 (0.01) 0.92(0.02) 0.80(0.01) 0.75(0.01)?
nBias -0.01(0.00) -0.01(0.00) -0.04(0.03) 0.17(0.03) 0.37(0.05)

qn “ 561 Cover 0.93(0.01) 0.93(0.01) 0.92(0.01) 0.75(0.02) 0.70(0.01)?
nBias 0.03(0.02) 0.03(0.02) -0.08(0.06) 0.18(0.04) -0.48(0.05)

qn “ 631 Cover 0.92(0.01) 0.92(0.01) 0.91(0.01) 0.75(0.02) 0.66(0.01)?
nBias -0.12(0.05) -0.30(0.05) -0.32(0.11) 0.36(0.06) -0.65(0.09)

Note: “Cover” is the empirical coverage of the 95% confidence interval for �p2q and “
?
nBias ” captures the root-n

scaled Monte Carlo bias for estimating �p2q. “
˚” indicates that p⌦KJ

n is not positive semi-definite in some Monte Carlo
samples.

subscript n in all considered random variables in the discussion below.

Suppose we have access to one panel data with cross-sectional observations denoted by i P N “
t1, . . . , Nu and time periods t P T “ t1, . . . , T u. Consider the following fixed e↵ects panel data

model

yit “ �1xit ` ci ` edit ` uit, i “ 1, . . . , N, t “ 1, . . . , T,

where ci is an unobserved e↵ect that varies across sections but is assumed to be constant over time,

yit P R is the observed outcome, xit P Rdˆ1 contains the policy variables of interest, and error

terms uit’s are uncorrelated conditional on xit and dit. edit is an unobserved e↵ect indexed by an

observed indexing variable dit P t1, . . . , Gu, and is assumed to be constant across all observations

that share the same value of dit. When edit “ 0, this model reduces to the one-way fixed e↵ects
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Table C.8: Simulation results (d “ 10, heterogeneity,�p5q)

�j “ �´1
` j
d`1

˘
, �n “ 0, j = 1, . . . , d

xi,n „ N p0,⌃q, wi,n “ 1p rwi,n • �´1p0.98qq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.96(0.01) 0.95(0.01) 0.92(0.02) 0.96(0.01) 0.94(0.01)?
nBias 0.06(0.07) 0.07(0.07) -0.12(0.09) 0.07(0.07) 0.06(0.06)

qn “ 141 Cover 0.95(0.01) 0.95(0.01) 0.92(0.01) 0.92(0.01) 0.94(0.01)?
nBias 0.08(0.08) 0.08(0.08) -0.12(0.08) 0.12(0.08) -0.07(0.07)

qn “ 281 Cover 0.95(0.01) 0.95(0.01) 0.91(0.01) 0.91(0.01) 0.93(0.01)?
nBias 0.08(0.08) 0.08(0.08) -0.13(0.09) 0.12(0.08) 0.10(0.07)

qn “ 421 Cover 0.95(0.01) 0.95(0.01) 0.84(0.02) 0.82(0.02) 0.93(0.01)?
nBias 0.10(0.11) 0.11(0.11) -0.13(0.07) 0.14(0.11) -0.12(0.09)

qn “ 561 Cover 0.94(0.01) 0.94(0.01) 0.80(0.01) 0.79(0.02) 0.92(0.01)?
nBias 0.12(0.13) 0.13(0.13) -0.18(0.06) 0.20(0.12) -0.15(0.10)

qn “ 631˚ Cover 0.93(0.01) 0.92(0.01) 0.78(0.01) 0.76(0.01) 0.90(0.01)?
nBias 0.16(0.14) 0.18(0.14) -0.28(0.26) 0.24(0.13) 0.18(0.12)

xi,n “ 1prxi,n ° 0q, wi,n „ N p0, Iq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.96(0.01) 0.96(0.01)?
nBias 0.05(0.11) 0.06(0.11) -0.08(0.11) 0.08(0.11) -0.06(0.09)

qn “ 141 Cover 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01)?
nBias 0.06(0.11) 0.08(0.11) -0.11(0.12) 0.10(0.11) 0.09(0.10)

qn “ 281 Cover 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01) 0.95(0.01)?
nBias 0.12(0.13) 0.12(0.13) 0.10(0.10) 0.14(0.12) -0.10(0.11)

qn “ 421 Cover 0.95(0.01) 0.95(0.01) 0.91(0.01) 0.90(0.01) 0.95(0.01)?
nBias 0.11(0.14) 0.15(0.15) -0.20(0.08) 0.25(0.14) -0.12(0.12)

qn “ 561 Cover 0.94(0.01) 0.94(0.01) 0.85(0.01) 0.83(0.02) 0.94(0.01)?
nBias -0.15(0.18) -0.16(0.17) -0.26(0.20) 0.28(0.18) -0.15(0.15)

qn “ 631 Cover 0.93(0.01) 0.92(0.01) 0.75(0.01) 0.72(0.02) 0.93(0.01)?
nBias 0.25(0.20) 0.30(0.19) -0.70(0.34) 0.68(0.20) 0.28(0.18)

Note: “Cover” is the empirical coverage of the 95% confidence interval for �p2q and “
?
nBias ” captures the root-n

scaled Monte Carlo bias for estimating �p2q. “
˚” indicates that p⌦KJ

n is not positive semi-definite in some Monte Carlo
samples.

model studied in [46], otherwise the above model coincides with the one studied in [48].

To concretely introduce the connection of the above model and our model setup, consider the

case when edit ‰ 0, we stack the data over cross-sectional observations and time periods. Define

y “py11, . . . , y1T , y21, . . . , y2T , . . . , yN1, . . . , yNT q1 P RNTˆ1
,

x “px11, . . . ,x1T ,x21, . . . ,x2T , . . . ,xN1, . . . ,xNT q1 P RNTˆd
,

w “
´
g1,g2

¯
P RNTˆpN`Gq

,

g1 “
`
1pi“jq

˘jPN
pi,tqPNˆT

, g2 “
`
1pdit“dq

˘dPt1,...,Gu
pi,tqPNˆT

,

�n “pc1, . . . , cN , e1, . . . , eGq1 P RpN`Gqˆ1
,

u “pu11, . . . , u1T , u21, . . . , u2T , . . . , uN1, . . . , uNT q1 P RNTˆ1
.
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Table C.9: Simulation results (d “ 10, heterogeneity,�p10q)

�j “ �´1
` j
d`1

˘
, �n “ 0, j = 1, . . . , d

xi,n „ N p0,⌃q, wi,n “ 1p rwi,n • �´1p0.98qq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.94(0.01) 0.95(0.01) 0.94(0.01) 0.94(0.01) 0.94(0.01)?
nBias 0.06(0.07) 0.03(0.06) 0.06(0.06) 0.07(0.07) -0.04(0.05)

qn “ 141 Cover 0.93(0.02) 0.93(0.02) 0.92(0.02) 0.92(0.02) 0.94(0.01)?
nBias 0.06(0.06) 0.06(0.06) 0.08(0.07) 0.08(0.06) 0.06(0.06)

qn “ 281 Cover 0.94(0.01) 0.94(0.01) 0.90(0.01) 0.89(0.01) 0.94(0.01)?
nBias 0.07(0.08) 0.08(0.08) 0.11(0.08) 0.10(0.07) 0.07(0.07)

qn “ 421 Cover 0.94(0.01) 0.94(0.01) 0.84(0.01) 0.82(0.02) 0.93(0.01)?
nBias 0.08(0.09) 0.09(0.09) 0.16(0.10) 0.17(0.09) -0.11(0.08)

qn “ 561 Cover 0.93(0.01) 0.91(0.01) 0.68(0.02) 0.61(0.02) 0.91(0.01)?
nBias 0.16(0.14) 0.18(0.14) 0.20(0.10) 0.24(0.13) 0.15(0.12)

qn “ 631˚ Cover 0.92(0.01) 0.90(0.01) 0.53(0.02) 0.50(0.02) 0.82(0.01)?
nBias 0.20(0.18) 0.23(0.18) -0.50(0.12) 0.55(0.18) -0.30(0.17)

xi,n “ 1prxi,n ° 0q, wi,n „ N p0, Iq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.96(0.01) 0.96(0.01)?
nBias 0.08(0.11) 0.08(0.11) 0.11(0.12) 0.09(0.11) -0.08(0.09)

qn “ 141 Cover 0.94(0.01) 0.94(0.01) 0.93(0.01) 0.92(0.01) 0.94(0.01)?
nBias 0.10(0.12) 0.11(0.12) 0.14(0.13) 0.15(0.12) 0.11(0.11)

qn “ 281 Cover 0.94(0.01) 0.94(0.01) 0.88(0.01) 0.84(0.01) 0.94(0.01)?
nBias 0.11(0.15) 0.12(0.15) 0.16(0.14) 0.19(0.15) 0.12(0.13)

qn “ 421 Cover 0.94(0.01) 0.94(0.01) 0.85(0.01) 0.82(0.01) 0.94(0.01)?
nBias 0.14(0.16) 0.16(0.16) 0.20(0.16) 0.25(0.16) 0.15(0.15)

qn “ 561 Cover 0.93(0.02) 0.93(0.01) 0.65(0.01) 0.62(0.02) 0.92(0.01)?
nBias 0.19(0.20) 0.23(0.21) -0.24(0.15) 0.30(0.21) -0.24(0.20)

qn “ 631 Cover 0.94(0.01) 0.92(0.01) 0.57(0.01) 0.50(0.02) 0.91(0.01)?
nBias 0.26(0.29) 0.30(0.28) -0.85(0.23) 0.88(0.31) -0.33(0.29)

Note: “Cover” is the empirical coverage of the 95% confidence interval for �p10q and “
?
nBias ” captures the root-n

scaled Monte Carlo bias for estimating �p10q. “
˚” indicates that p⌦KJ

n is not positive semi-definite in some Monte Carlo
samples.

With the above notations, the fixed e↵ects panel data model can be written as the following

y “ x� ` w�n ` u. (D.1)

This indicates that our approach also goes through in linear panel data models, as long as we can

construct an estimator of � that converges to a Gaussian distribution with its covariance matrix

being consistently estimated.

[36] has shown that the covariance matrix estimator p⌦KJ

n remains consistent in one-way fixed

e↵ect panel data regression models when edit “ 0. This suggests that our approach can be naturally

extended to make inference on multiple best policies in one-way fixed e↵ect models. In addition,

[11] have shown that the covariance matrix estimator p⌦HCK

n is consistent in both one-way and two-

way fixed e↵ect panel data regression models. Since our resampling based approach only requires
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Table C.10: Simulation results (d “ 5, heteroscedasticity, heterogeneity,�p1q)

�j “ �´1
` j
d`1

˘
, xi,n „ N p0,⌃q, wi,n “ 1p rwi,n • �´1p0.98qq, j = 1, . . . , d

�n “ 0

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.95(0.01)?
nBias 0.06(0.07) 0.07(0.07) 0.07(0.07) 0.07(0.07) 0.07(0.07)

qn “ 141 Cover 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.88(0.02) 0.94(0.01)?
nBias -0.12(0.12) -0.12(0.12) -0.12(0.12) -0.16(0.07) -0.12(0.12)

qn “ 281 Cover 0.95(0.01) 0.93(0.02) 0.92(0.01) 0.79(0.01) 0.94(0.01)?
nBias -0.11(0.13) -0.13(0.13) -0.33(0.13) -0.35(0.12) -0.12(0.12)

qn “ 421 Cover 0.94(0.01) 0.93(0.01) 0.89(0.01) 0.73(0.02) 0.93(0.01)?
nBias -0.14(0.15) -0.18(0.15) -0.44(0.15) -0.52(0.15) -0.19(0.15)

qn “ 561 Cover 0.93(0.01) 0.91(0.01) 0.82(0.02) 0.66(0.02) 0.91(0.01)?
nBias -0.22(0.19) -0.32(0.19) -0.67(0.18) -0.71(0.19) -0.33(0.18)

qn “ 631˚ Cover 0.92(0.01) 0.90(0.01) 0.76(0.02) 0.56(0.02) 0.90(0.01)?
nBias -0.34(0.24) -0.50(0.26) -0.73(0.30) -0.80(0.24) -0.46(0.24)

�k “ 1{k, k “ 1, . . . , qn

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01)?
nBias 0.08(0.09) 0.08(0.09) 0.09(0.09) 0.09(0.09) 0.09(0.09)

qn “ 141 Cover 0.95(0.01) 0.94(0.01) 0.92(0.01) 0.87(0.01) 0.94(0.01)?
nBias 0.12(0.16) 0.14(0.16) 0.17(0.14) 0.36(0.14) 0.14(0.14)

qn “ 281 Cover 0.94(0.01) 0.94(0.01) 0.88(0.01) 0.82(0.01) 0.93(0.01)?
nBias -0.13(0.14) 0.14(0.14) -0.33(0.11) -0.45(0.13) 0.15(0.12)

qn “ 421 Cover 0.93(0.01) 0.92(0.01) 0.80(0.01) 0.73(0.01) 0.92(0.01)?
nBias -0.21(0.18) -0.24(0.18) -0.40(0.11) -0.56(0.11) -0.24(0.13)

qn “ 561˚ Cover 0.92(0.01) 0.91(0.01) 0.67(0.01) 0.53(0.02) 0.91(0.01)?
nBias -0.28(0.22) -0.35(0.21) -0.47(0.17) -0.51(0.19) -0.37(0.20)

qn “ 631˚ Cover 0.91(0.01) 0.89(0.01) 0.59(0.01) 0.51(0.02) 0.88(0.01)?
nBias -0.29(0.25) -0.33(0.26) -0.55(0.21) -0.61(0.18) -0.42 (0.22)

Note: “Cover” is the empirical coverage of the 95% confidence interval for �p1q and “
?
nBias ” captures the root-

n scaled Monte Carlo bias for estimating �p1q. In this heteroscedastic design, rwi,n „ N p0, Iqnq, "i,n „ N p0, 1q,
Vr"i,n|xi,n,wi,ns “ c"p1 ` ptpx1,i,nq ` l1wi,nq2{4q, and Vrxk,i,n|wi,ns “ cxk p1 ` pl1wi,nq2{4q, where xk,i,n denotes
the kth component of the vector xi,n. The constants c" and cxk are chosen so that Vr"i,ns “ Vrxk,i,ns “ 1 and

tpaq “ a1p´1 § a § 1q ` sgnpaqp1 ´ 1p´1 § a § 1qq. l is the conformable vector of ones. “˚” indicates that p⌦KJ

n is
not positive semi-definite in some Monte Carlo samples.

a consistent covariance matrix estimator to calibrate multiple best policy e↵ects, this suggests that

in two-way fixed e↵ect models, what our approach can be adopted when using p⌦HCK

n to estimate

the covariance matrix of p�. Lastly, we note that our Assumption 1 in the main manuscript requires

error terms to be conditionally uncorrelated within each observation i. This condition does rule

out dynamic models as those discussed in [48].
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Table C.11: Simulation results (d “ 5, heteroscedasticity, heterogeneity,�p1q)

�j “ �´1
` j
d`1

˘
, j “ 1, . . . , d, �k “ 1{k, k “ 1, . . . , qn

xi,n „ Np0,⌃q, wi,n „ Np0, Iqnq, "i „ fp"q “ 0.5�p"| ´ 0.5, 0.25q ` 0.5�p"|0.5, 1q
Proposed+KJ Proposed+HCK Proposed + HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.94(0.01)?
nBias -0.02(0.05) -0.02(0.05) -0.02(0.05) -0.02(0.05) 0.05(0.05)

qn “ 141 Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.92(0.01) 0.94(0.01)?
nBias -0.05(0.06) -0.05(0.06) -0.05(0.06) -0.07(0.06) 0.06(0.06)

qn “ 281 Cover 0.94(0.01) 0.94(0.01) 0.93(0.01) 0.89(0.02) 0.94(0.01)?
nBias 0.06(0.06) 0.06(0.06) -0.10(0.07) 0.14(0.06) 0.07(0.07)

qn “ 421 Cover 0.94(0.01) 0.93(0.01) 0.92(0.01) 0.73(0.02) 0.92(0.01)?
nBias -0.09(0.09) -0.12(0.09) -0.14(0.09) 0.17(0.09) -0.10(0.08)

qn “ 561˚ Cover 0.93(0.02) 0.92(0.01) 0.92(0.01) 0.58(0.02) 0.92(0.01)?
nBias -0.12(0.13) -0.15(0.13) -0.15(0.12) -0.20(0.13) 0.14(0.12)

qn “ 631˚ Cover 0.94(0.01) 0.91(0.01) 0.90(0.01) 0.44(0.02) 0.91(0.01)?
nBias 0.17(0.17) 0.18(0.16) 0.17(0.13) 0.25(0.17) 0.19(0.17)

xi,n „ Np0,⌃q, wi,n „ Np0, Iqnq, "i „ fp"q “ 0.5�p"| ´ 1.5, 0.25q ` 0.5�p"|1.5, 1q
Proposed+KJ Proposed+HCK Proposed + HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.96(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01)?
nBias -0.07(0.10) -0.08(0.10) -0.09(0.10) -0.08(0.10) -0.08(0.09)

qn “ 141 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.93(0.01) 0.94(0.01)?
nBias -0.10(0.12) -0.10(0.12) -0.12(0.12) -0.13(0.12) 0.12(0.10)

qn “ 281 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.92(0.01) 0.94(0.01)?
nBias -0.11(0.12) -0.11(0.12) -0.12(0.12) -0.14(0.12) -0.13(0.13)

qn “ 421 Cover 0.94(0.01) 0.94(0.01) 0.92(0.02) 0.78(0.02) 0.93(0.01)?
nBias -0.14(0.15) -0.14(0.15) -0.16(0.15) -0.20(0.15) -0.17(0.16)

qn “ 561˚ Cover 0.94(0.01) 0.92(0.01) 0.91(0.01) 0.64(0.02) 0.92(0.01)?
nBias -0.20(0.21) -0.23(0.21) -0.26(0.24) 0.42(0.22) -0.24(0.19)

qn “ 631˚ Cover 0.93(0.01) 0.92(0.01) 0.90(0.01) 0.47(0.02) 0.87(0.01)?
nBias -0.29(0.28) -0.31(0.28) -0.33(0.17) 0.85(0.29) 0.41(0.29)

Note: “Cover” is the empirical coverage of the 95% confidence interval for �p1q and “
?
nBias ” captures the root-n

scaled Monte Carlo bias for estimating �p1q. “
˚” indicates that p⌦KJ

n is not positive semi-definite in some Monte Carlo
samples.
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Table C.12: Simulation results (d “ 5, heterogeneity,�p1q)

�j “ �´1
` j
d`1

˘
, j “ 1, . . . , d, �k “ 1{k, k “ 1, . . . , qn

xi,n „ N p0,⌃q, wi,n “ 1p rwi,n • �´1p0.98qq
Proposed+KJ Proposed+HCK Proposed + HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.95(0.01) 0.96(0.01) 0.98(0.01) 0.96(0.01) 0.96(0.01)?
nBias 0.05(0.05) 0.05(0.05) 0.04(0.05) 0.05(0.05) 0.05(0.06)

qn “ 141 Cover 0.94(0.01) 0.93(0.01) 0.95(0.01) 0.91(0.01) 0.94(0.01)?
nBias -0.06(0.06) -0.10(0.06) -0.06(0.06) -0.12(0.06) 0.06(0.06)

qn “ 281 Cover 0.94(0.01) 0.93(0.01) 0.94(0.01) 0.88(0.02) 0.94(0.01)?
nBias 0.07(0.07) 0.10(0.07) 0.07(0.07) 0.13(0.07) 0.07(0.08)

qn “ 421 Cover 0.94(0.01) 0.93(0.01) 0.94(0.01) 0.78(0.02) 0.91(0.01)?
nBias 0.09(0.09) 0.12(0.09) 0.09(0.09) 0.14(0.09) 0.10(0.09)

qn “ 561˚ Cover 0.93(0.02) 0.89(0.01) 0.92(0.01) 0.59(0.02) 0.90(0.01)?
nBias -0.10(0.13) -0.15(0.13) 0.13(0.12) -0.19(0.13) 0.14(0.12)

qn “ 631˚ Cover 0.93(0.01) 0.92(0.01) 0.92(0.01) 0.43(0.02) 0.82(0.01)?
nBias 0.19(0.17) 0.17(0.16) 0.16(0.13) -0.30(0.18) 0.21(0.16)

xi,n “ 1prxi,n ° 0q, wi,n „ N p0, Iq
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.96(0.01) 0.95(0.01) 0.95(0.01) 0.96(0.01) 0.95(0.01)?
nBias 0.08(0.09) 0.09(0.09) 0.09(0.09) 0.08(0.09) -0.09(0.09)

qn “ 141 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01)?
nBias -0.10(0.11) -0.10(0.11) -0.11(0.11) -0.11(0.11) 0.11(0.11)

qn “ 281 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.92(0.01) 0.95(0.01)?
nBias 0.11(0.12) 0.11(0.12) 0.12(0.11) 0.14(0.12) 0.12(0.12)

qn “ 421 Cover 0.94(0.01) 0.94(0.01) 0.93(0.02) 0.73(0.02) 0.94(0.01)?
nBias -0.14(0.15) -0.14(0.15) -0.14(0.14) -0.22(0.15) -0.15(0.15)

qn “ 561 Cover 0.94(0.01) 0.93(0.01) 0.92(0.01) 0.61(0.02) 0.93(0.01)?
nBias 0.19(0.19) 0.21(0.19) 0.20(0.16) 0.44(0.20) -0.20(0.19)

qn “ 631˚ Cover 0.94(0.01) 0.93(0.01) 0.90(0.01) 0.50(0.02) 0.91(0.01)?
nBias 0.24(0.26) 0.30(0.28) 0.35(0.21) 0.72(0.28) 0.32(0.28)

Note: “Cover” is the empirical coverage of the 95% confidence interval for �p1q and “
?
nBias ” captures the root-n

scaled Monte Carlo bias for estimating �p1q. “
˚” indicates that p⌦KJ

n is not positive semi-definite in some Monte Carlo
samples.

26



Table C.13: Simulation results (d “ 5, heteroscedasticity, heterogeneity,�p1q, n “ 2000)

�j “ �´1
` j
d`1

˘
, xi,n „ N p0,⌃q, wi,n “ 1p rwi,n • �´1p0.98qq, j = 1,. . . , d

�n “ 0

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01)?
nBias 0.02(0.03) 0.03(0.03) 0.03(0.03) 0.03(0.03) 0.03(0.03)

qn “ 141 Cover 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.91(0.02) 0.94(0.01)?
nBias -0.04(0.04) -0.04(0.04) -0.04(0.04) -0.06(0.04) -0.04(0.04)

qn “ 281 Cover 0.94(0.01) 0.94(0.01) 0.93(0.01) 0.88(0.01) 0.93(0.01)?
nBias 0.04(0.05) 0.05(0.05) 0.07(0.05) -0.12(0.05) 0.07(0.05)

qn “ 421 Cover 0.94(0.01) 0.94(0.01) 0.91(0.01) 0.85(0.01) 0.93(0.01)?
nBias -0.05(0.05) -0.05(0.05) -0.09(0.05) -0.15(0.05) -0.07(0.05)

qn “ 561 Cover 0.94(0.01) 0.93(0.01) 0.91(0.01) 0.82(0.01) 0.91(0.01)?
nBias -0.05(0.05) -0.06(0.05) -0.10(0.05) -0.18(0.05) -0.11(0.05)

qn “ 631˚ Cover 0.93(0.01) 0.91(0.01) 0.90(0.01) 0.78(0.01) 0.90(0.01)?
nBias -0.07(0.05) -0.09(0.05) -0.12(0.05) -0.22(0.05) -0.14(0.05)

�k “ 1{k, k “ 1, . . . , qn

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn “ 1 Cover 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01)?
nBias 0.04(0.05) 0.05(0.05) 0.05(0.05) 0.05(0.05) 0.05(0.05)

qn “ 141 Cover 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01) 0.94(0.01)?
nBias 0.07(0.08) 0.08(0.08) 0.08(0.08) 0.11(0.08) 0.08(0.08)

qn “ 281 Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.92(0.01) 0.94(0.01)?
nBias 0.08(0.08) 0.10(0.08) 0.13(0.08) 0.14(0.08) 0.08(0.08)

qn “ 421 Cover 0.94(0.01) 0.93(0.01) 0.92(0.01) 0.88(0.01) 0.92(0.01)?
nBias 0.08(0.08) 0.12(0.08) 0.14(0.08) 0.18(0.08) 0.15(0.08)

qn “ 561˚ Cover 0.94(0.01) 0.91(0.01) 0.90(0.01) 0.83(0.02) 0.90(0.01)?
nBias 0.09(0.08) 0.15(0.08) 0.17(0.07) 0.23(0.08) 0.18(0.08)

qn “ 631˚ Cover 0.92(0.01) 0.90(0.01) 0.86(0.01) 0.76(0.01) 0.85(0.01)?
nBias 0.12(0.08) 0.17(0.08) 0.20(0.05) 0.28(0.08) 0.23(0.08)

Note: “Cover” is the empirical coverage of the 95% confidence interval for �p1q and “
?
nBias ” captures the root-

n scaled Monte Carlo bias for estimating �p1q. In this heteroscedastic design, rwi,n „ N p0, Iqnq, "i,n „ N p0, 1q,
Vr"i,n|xi,n,wi,ns “ c"p1 ` ptpx1,i,nq ` l1wi,nq2{4q, and Vrxk,i,n|wi,ns “ cxk p1 ` pl1wi,nq2{4q, where xk,i,n denotes
the kth component of the vector xi,n. The constants c" and cxk are chosen so that Vr"i,ns “ Vrxk,i,ns “ 1 and

tpaq “ a1p´1 § a § 1q ` sgnpaqp1 ´ 1p´1 § a § 1qq. l is the conformable vector of ones. “˚” indicates that p⌦KJ

n is
not positive semi-definite in some Monte Carlo samples.

Method Policies(Ask amount) Est (95% CI) p-value

Uncalibrated Same 0.70(0.10, 1.29) 0.023*

25% more 0.67(-0.04, 1.37) 0.065

50% more 0.38(-0.21, 0.96) 0.205

Calibrated Same 0.66(0.07, 1.24) 0.026*

Table C.14: Uncalibrated and calibrated results under a smaller model with main e↵ects only
(n “ 7, 938, p “ 53). Estimated treatment e↵ects (Est), 95% confidence intervals (95% CI), and
two-sided p-values for the three “ask amount” policies. “Uncalibrated” refers to the study results
obtained without any adjustment, and the confidence intervals are constructed based on normal
approximation with the estimated covariance matrix p⌦KJ

n . “Calibrated” refers to our proposed
methodology. The computational time is 533 seconds on a Lenovo NeXtScale nx360m5 node (24
cores per node) equipped with Intel Xeon Haswell processor.
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