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Abstract

Understanding the impact of the most effective policies or treatments on a response variable
of interest is desirable in many empirical works in economics, statistics and other disciplines.
Due to the widespread winner’s curse phenomenon, conventional statistical inference assuming
that the top policies are chosen independent of the random sample may lead to overly optimistic
evaluations of the best policies. In recent years, given the increased availability of large datasets,
such an issue can be further complicated when researchers include many covariates to estimate
the policy or treatment effects in an attempt to control for potential confounders. In this
manuscript, to simultaneously address the above-mentioned issues, we propose a resampling-
based procedure that not only lifts the winner’s curse in evaluating the best policies observed in
a random sample, but also is robust to the presence of many covariates. The proposed inference
procedure yields accurate point estimates and valid frequentist confidence intervals that achieve
the exact nominal level as the sample size goes to infinity for multiple best policy effect sizes.
We illustrate the finite-sample performance of our approach through Monte Carlo experiments
and two empirical studies, evaluating the most effective policies in charitable giving and the
most beneficial group of workers in the National Supported Work program.

JEL codes: C12; C13
Keywords: Winner’s curse; High dimensional data; Linear regression; Order statistics.

*Division of Biostatistics, University of California, Berkeley.

fCo-first authors in alphabetical order

iDepartment of Statistics, University of Michigan

$Department of Industrial Engineering and Operations Research, University of California, Berkeley
ICorrespondence: jingshenwang@berkeley.edu



1 Introduction

1.1 Motivation and our contribution

Many empirical work requires an understanding of the impact of the most effective policies or
treatments on a relevant response variable of interest. For instance, in randomized (factorial) ex-
periments with multiple treatments, researchers may be interested in the most effective policies
(combinations). In online platforms, decision makers may be interested in the top five adver-
tising strategies. In financial portfolio management, managers might want to learn about the
best-performing strategies among many alternatives. In practice, after different policy effect sizes
are estimated from a random sample, researchers may naturally look into those policies with the
largest effect sizes. Accurately measuring the performance of top policies allows policy makers to
deliver better-informed decisions for forecasting the effects of future policy implementations.

Nevertheless, given the well-recognized “winner’s curse” phenomenon, there can be considerable
uncertainties concerning if the top policies with large estimated effect sizes are indeed effective
in the population (see Section 1.2 for a literature review). In fact, due to the winner’s curse
phenomenon, literature documents that the estimated effect sizes of the best-performing policies
without additional adjustments tend to be overly optimistic, rendering under-covered confidence
intervals [40, 6]. In this manuscript, we refer to the optimistic bias introduced by the winner’s curse
phenomenon as the winner’s curse bias. To mitigate this bias issue, we focus on the problem of
constructing accurate point estimates and valid confidence intervals for the true effect sizes of the
(observed) best policies. By the best policies, we refer to a user-supplied number of policies that
have the largest (estimated) effects among a set of candidate policies (see Section 2.1 for a concrete
problem setup), as we would expect that in practice researchers might want to focus on a few top
policies of interest.

Other than the winner’s curse phenomenon discussed above, an additional consideration gains
prominence in the evaluation of the most effective policies. Since policy (or intervention) variables
are often not exogenous, researchers may adopt observational methods to estimate their effects.
In recent years, given the increased availability of large datasets with rich covariate information,
one commonly adopted approach in empirical works is to assume that the policy variables are

exogenous after controlling for a sufficiently large set of factors or covariates. Such a consideration



demandingly requires empirical researchers to estimate the policy effects in the presence of many
covariates.

To simultaneously address the above-mentioned issues, in this article, we propose a procedure
that not only is robust to the presence of many covariates, but also provides accurate point estimates
and valid frequentist confidence intervals for multiple best policy effect sizes. By many covariates,
we allow the number of covariates ¢, to diverge with the sample size n as long as limsup,,_,,, ¢n/n <
1. Note that this does not rule out the cases where ¢, is fixed or ¢, = o(n). In other words, our
inferential method remains valid when the dimension of the covariates ¢, is fixed or ¢, = o(n).
Our proposed confidence intervals are built upon resampling methods, and we demonstrate that
they achieve exact nominal coverage as the sample size goes to infinity under fairly moderate
assumptions. Our empirical evidence shows that conventional estimates ignoring the winner’s
curse issue are substantially upward biased, while our corrections reduce the winner’s curse bias
and increase coverage. As far as we know, valid statistical inferential tools on multiple best policies
that lift the winner’s curse while incorporating possibly many covariates have been lacking, and
the contribution of our work is to bridge this gap and help policy makers deliver well-informed
decisions in practice.

We illustrate our method with two empirical applications. In the first case study, we use the
charitable giving data from [37] to evaluate the best pricing policies that motivate donors to give.
Our results suggest that simple methods without adjusting for the winner’s curse bias could be
potentially overly optimistic in identifying the most effective polices. After accounting for the
winner’s curse bias, we do not find sufficient evidence to support that the second best pricing
policy—asking the donor to give 25% more than his/her highest historical donation—is effective,
implying that asking for a more “expensive” donation may not encourage donors to give. We
nevertheless note that given our calibration only marginally reduces the effect size of the second
best policy, the above conclusion might not warrant a different economic interpretation. In the
second case study, we evaluate the effectiveness of the national supported work (NSW) program
in different groups of workers. The NSW program is a job training program designed to prepare
disadvantaged workers for employment, and it has been investigated in various studies [18, 39]. We
apply the proposed approach to evaluate the performance of the NSW program on the most-affected

subgroups of workers observed in the dataset. Our study results potentially suggest that married



black workers might benefit from the NSW program with an average increase of $4,410 for their

annual income.

1.2 Connection to the existing literature

One fundamental trend that drives the motivation of the methodology developed in this manuscript
is the increasing availability of massive datasets and the associated increasing dimensionality. Such
a trend brings scientists opportunities to deliver better-informed policies but, at the same time,
presents challenges in developing econometric and statistical tools; see [27], [8], [24], [11] for exam-
ple. A recent book [26] provides a thorough discussion of analytical methods that aim to address
such challenges. Specifically, the increasing data availability brings challenges and also opportuni-
ties to better understand various policies whose effects can be inferred from data. Along this line,
our manuscript aims at providing understating for policies that are estimated and selected to be
the most effective from a pool of policies.

The winner’s curse phenomenon and its related issues have been widely recognized in economics,
statistics, and data science at large. Seminal works by [29, 28] point out that spurious discoveries
can easily arise when target parameters are selected through data mining and statistical machine
learning algorithms. Recent work by [6] considers performing conditional and unconditional infer-
ence on observed best policy and [5] extends the work to more general ranking problems, which is
still different from our goal in conducting unconditional inference on multiple top policies. More-
over, while the conditional approaches in [6] and [5] produce optimal confidence intervals for the
observed policy effects, their point estimates and confidence intervals can be conservative when
they are applied unconditionally. [19] considers a method to handle the winner’s curse bias with
Tweedie’s formula concerning the empirical Bayes theory. [40] consider a plug-in correction of the
winner’s curse bias and propose to construct confidence interval based on bootstrapping in the
context of A/B testing, but the proposed method lacks theoretical justifications. In clinical tri-
als for evaluating the largest observed treatment effect in multiple subpopulations, [32] propose a
bootstrap-based confidence interval that achieves the exact nominal level as the sample size goes
to infinity, though generalizing their method to make inference on several top policies might not be
straightforward, especially in the presence of many covariates.

Our manuscript builds upon the literature on linear regression models with many or high dimen-



sional covariates; see [34], [43], [42], [2], [21], [10], [9], [36] and the reference therein. In particular,
[43] has established the asymptotic normality results for any contrasts of the ordinary least squares
(OLS) coefficient vector estimator, when the dimension of the covariates divided by the sample size
vanishes asymptotically. More recently, [11] have shown that a small subset of the OLS estimators
for the regression coeflicients are asymptotically normal without restricting the dimension of the
covariates to be a vanishing fraction of the sample size. Moreover, [11] have proposed a robust co-
variance matrix estimator for the subset of the the OLS estimator under fairly general conditions.
[36] has proposed an alternative covariance matrix estimator that can deal with designs with even
large number of covariates under additional assumptions (Assumption 4 in the current manuscript).

Making inference on the best-performing policies is related to the literature on constructing
confidence intervals for extrema parameters with bootstrap; see [4], [23], [51], [14], [16] and the
reference therein. Given the asymptotic distributions of extrema parameter estimators are often not
normal, bootstrap-based methods can face serious difficulties when used to replicate the distribution
of extrema of parameter estimators [43, 44]. While subsampling could overcome this issue faced
by the classical bootstrap, it can exhibit very poor finite-sample performance because of the noise
introduced by the vanishing subsample size. Different from our goal in constructing confidence
intervals that achieve the exact nominal level, Hall and Miller [33] and [14] propose to construct
conservative bootstrap confidence intervals for extrema of parameters. In our current problem
setup with many covariates, the problem becomes even more acute as [22] show through a mix
of simulation and theoretical analyses that the bootstrap is fraught with problems in moderate
high dimensions. In the context of meta-analyses, [16] propose an approach to make inference
on ordered fixed study-specific parameters when different parameters are estimated independently
from multiple studies.

Our method also contributes to the rapidly growing literature on program evaluations; see
[30], [8], [38], [7], [1], [13], [25], [47] among many others. Under our asymptotic regime where
the number of covariates ¢, grows with the sample size n, the Neyman orthogonalization based
approaches often need to work with models with sparse regression coefficients [8]. Rather than
imposing such a sparsity assumption, our approach estimates the policy effects with regression
adjustments without requiring the regression coefficients to be sparse. Because our approach only

requires a consistent covariance matrix estimation for different policy effect estimators, we expect



that the proposed framework on evaluating the best policies can be generalized when different
policy effects are estimated with other off-shelf methods and we relegate such extensions for future
work.

Notation. We work with triangular array data {w;, :7=1,...,n;n = 1,2,...} where for each n,
{win:i=1,...,n} is defined on the probability space (2, S, P,). All parameters that characterize
the distribution of {w; , : i = 1,...,n} are implicitly indexed by P, and thus by n. We write vectors

and matrices in bold font, and use regular font for univariate variables and constants.

2 Model setup and methodology

2.1 Problem setup and a revisit to the winner’s curse phenomenon

Suppose we have a random sample {(y; n,x;,,w} )’} ;, we pose the problem in the framework of

a linear regression model under heteroscedasticity
Yim = m;nﬁ + w;n'yn +Uip, t=1,...,n, (1)

where y; ,, is the outcome variable, x;, € RY are the treatment or policy variables of interest,
w; , € R? contains the confounding factors, u;, is an unobserved error term, and the coefficient
vector B = (B1,...,B4) contains the treatment effect of x;,, on the outcome y;,. We allow the
linear model (1) to hold approximately by allowing E[uw;,[{®in} 1, {win}i_i] # 0. We are also
in a scenario where w; , is high-dimensional, in the sense that g, can be a vanishing fraction of
the sample size n as long as limsup,,_,, g,/n < 1. To simplify notations, we drop subscript n in
univariate random variables in the rest of the manuscript. That is, for example, we denote v, ,, as
-

We write the ordered values of fB1,...,084 as By = ... = B(g). We adopt the ordinary least-
squares (OLS) estimator B (see Remark 2 for other possible estimates) to estimate 3 and write the
order statistics of ,@ as B(l) == B(d). Because researchers in practice might hope to focus on a
few top policies, given that dy is a user-supplied positive integer, our goal is to construct accurate

point estimates and valid confidence intervals for two sets of quantities:

(1) the best policy effect sizes in the population: B(1ys - -+ Bldo)s



(2) the observed best policy effect sizes: 63, where 3 = ZZ:1 k- ]I(Bk = B(j)), for j=1,...,do.

The first set of quantities characterizes the effects of the top dy policies in the population and
are thus fixed parameters. The second set of quantities describes the true effect sizes of the best
performing policies observed in the random sample, and these quantities are thus “data-dependent
parameters.” Both sets of quantities can be of interest in different empirical applications [17, 15, 45],
and our proposed procedure can be used to deliver valid statistical inference on both quantities

(Theorem 1 and Corollary 1).

Remark 1 (Ties in the estimated policy effects) The second set of parameters is well defined
if the observed policies do not have exact ties in the sense that 3(1) > ... > B(d). When the policies
effect estimators solve to the interior points of the feasible parameter space, it is likely that no
exact ties appear in the random sample. On the other hand, there can exist scenarios where, for
example, dy is set as 2 but there are multiple policy effect sizes that tie at rank 2. In this case, one
may choose instead a data-dependent c?o = max{k : B(k) > 3(2) — C1 -n~ %25}, This new random
do will asymptotically be able to incorporate all the effect sizes that actually are equal to the true
effect size associated with B(Q). In this way, the limiting value of C/i\() will not necessarily be 2, but
can be a larger number than 2 to incorporate “very close” effect sizes with the rank-2 effect size.

We also provide some related discussions in Remark 4.

Remark 2 (Other possible estimators of 3) In the presence of many covariates when ¢, is
potentially large (lim sup,,_,,, ¢,/n — 1 in our asymptotic regime) without assuming the coefficient
v to be sparse, we adopt the OLS estimator to estimate 3, because the OLS estimator has been
thoroughly studied in the existing literature and enjoys favorable theoretical guarantees. In high
dimensions when g, » n, other estimators of 3 that incorporate model selection procedures can
be adopted as well. Our procedure can produce valid statistical inference as long as the covariance
matrix of B can be consistently estimated. For example, under the sparsity assumption on -,
documented in the literature [26], we may adopt the covariance matrix estimator from the de-

sparsified Lasso procedure [31, 52].

To fully realize the challenges on delivering valid statistical inference on these two sets of

parameters in our current problem setup, we revisit the winner’s curse phenomenon. When first



discussed in common-value auctions, the winner’s curse refers to the bidding behavior where bidders
systematically overbid, resulting in an expected loss [12]. In our context of policy evaluations, the
winner’s curse refers to the issue that the observed best policies have the tendency to over-estimate
the best policies in the population. We would thus often expect that neither E[B(j) — B(j] nor
E[B(j) — ﬁ;] is close to zero, and the resulting confidence interval may fail to reach the nominal level.
Such an issue becomes even more acute as we have many covariates w; , entering the inferential
process.

We next illustrate the winner’s curse issue through Example 1 with a simple simulation study,
where we observe substantial winner’s curse bias and under-covered confidence intervals for the top
polices. In particular, Figure 1(b) demonstrates that coverage probabilities are worsened when a
larger number of covariates are incorporated for estimating 3. It is worth pointing out that when
d =3, 3(2) is the median policy effect. Thus, the estimation bias is around 0, and the true standard
deviation is much smaller than the estimated standard deviation, resulting in a confidence interval
with close to 100% coverage. When d increases, the coverage probability gradually drops due to a

larger estimation bias and inaccurately estimated standard deviation.

Example 1 (A simulation study demonstrating the winner’s curse phenomenon with
many covariates) We generate 1000 Monte Carlo samples following the setup in Model (1). We
generate x;, ~ N'(0,%) with Xz = 0.507H for j,k = 1,...,d, wi, = 1(W;, = ®71(0.98)) with
w;n, ~ N(0,1,,), where I, is a g,-dimensional identity matrix. We consider the case where no
policy is effective (so that 8 = 0, 53 = 85 = 0) and v; = 1/4, for j = 1,...,¢,. We report the
asymptotic bias of the conventional estimator (i.e., y/n - E[B(j) — B)l) as well as the coverage
probability of confidence intervals constructed based on normal approximation with the Eicker-

White [20, 50] covariance matrix estimator defined in Eq (6).

2.2 Methodology

Our method starts with the ordinary least-squares (OLS) estimator of 3, that is
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Figure 1: Demonstration of the winner’s curse phenomenon following the simulation setup in
Example 1. The maximum Monte Carlo standard error for the asymptotic bias is 0.88. Panel
(a) captures the asymptotic winner’s curse bias when ¢, = 141; Panel (b) captures the coverage
probability when ¢, € {141,631} and the nominal level is 0.95.
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where v; ,, = Zj:I(Mn)wm],n, and (M,,); ; = 1(i = j) wi7n<zk:1 'wk’n'wkm) wj . As we focus
on the case when ¢, can be a non-vanishing fraction of n, n — o0, we adopt the robust covariance

matrix estimator proposed in [36]. We try to follow the author’s notation as closely as possible:
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n
1 SKT o
E VinU zn’ n — 'U'L nvz nYi, nli oy
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where ;, = o Uin = ijl(Mn)Z,](yjyn :cjm,[i), for ¢ = 1,...,n. Such an estimator is

well-defined as long as min;(M,,);; > 0. If min;(M,,);; = 0, it means that the auxiliary regression
produces a perfect prediction. So the observation does not carry information on 3 and can be
ignored.

As shown in Example 1, the estimated top policy effect sizes with 3(1)7 e ’B(do) are often

biased upward for our target parameters due to the winner’s curse phenomenon. Inspired by the



procedure proposed by [16]! for meta-analyses, we generate replicates of B from a multivariate

normal distribution
B i, T}y ! ) Yy ~ N(B, Q57 /), where B* = (Bf,..., 5], (2)

and we denote the ordered values of the vector é* as szl) > ... = szd). Note that the above
description of ,@* differs from some previous work on bootstrapping insofar we have suppressed the
role of “multiplier variables,” and we have defined B* as a sample from N (3, ﬁﬁJ/n) Different
from [16] that requires different estimators to be estimated from independent studies with non-
overlapping random samples, our approach relaxes such an requirement and allows Bl, ey B\d to be
correlated.

Next, given properly chosen by, and by so that by — bz = O(n™°%) with § € (0, %) (see Supple-
mentary Materials Section C.1 for their data-adaptive choices, and robustness to different choices

of tuning parameters in Supplementary Materials, Section C.2), we estimate a “near tie” set that

captures policies that have similar effect sizes to the j-th largest policy:
We then record the averages of Bf, ey Bc’l“ and of Bl, ey Bd in the estimated tie set 7-7(]-) as

N S BE N Seq . B
52}) — M, and ﬁ(j) — %, (3)
H )l 1)l

where ]7—7(]-)\ denotes the cardinality of the set ﬁ(j).

Finally, we apply the above resampling procedure to construct point estimates and confidence
intervals for ;) as well as 53 (as defined in Section 2.1 and in Eq (5)), j = 1,...,dp. Specifically,
for confidence interval construction, we generate B independent samples of EZ“]) as in Eq (3), and

then define g(;)(a/2) to be the empirical a/2-quantile of the B > 1 samples (and similarly for

!Note that there is a typo in [16] for the definition of the near tie set. Although the near tie H;y in their
manuscript was originally defined as H;) = {k HBe — Byl = O(n*%)7 k=1,..., d}, their proof goes through when
the near tie set is defined with #H;) = {k 2Bk — Byl = o(nié), k=1,... ,d}.
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q(j)(1 — a/2)), leading to a level-a confidence interval for ;) with

4y (2/2), 41— a/2)], j=1,....do.

Corollary 1 demonstrates that the above confidence interval also serves as an asymptotically exact

level-a prediction interval for ﬂ;. For point estimates, we may either use B(j

j) or the averaged

resampled statistics EE"]) to estimate §(;) and 63.

3 Theoretical investigation

3.1 Notations and assumptions

Before discussing the theoretical results in detail, we revisit and introduce some notations and

assumptions adopted in the manuscript. We denote the sample {(yin,;,,, w;,)'}io; as {zin}i ;-

Recall u;,, is the random error in the considered linear model (1), we define

Eim = Uin — Bluin[{wintii {zinkie],  vin = @in — Elzin[{win}ig], i=1,...,n. (4

)

Let e;n = Elu;n|[{win}l 1, {xin}l ], we further denote

n
0tn = Bleln {win}iy A@in}imal, Bin = D5 (Mn)ijvin,
j=1

SB[, S BB’

Pp="—""""4 P
nn7n n )

n

n
-1
Qin = E[@in — (3 Blwyw),]) ™ ) Blw;na), ] [{winliy |,
.

7j=1

n
Qin = ), (Mpn)i;jQin-
j=1
For a policy j, we define the near tie set in the population as:

Hi) = {k: 1Bk — Bl = 0(71_%), k= 1,...,d}.

11



Next, let €; denote a d-dimensional (sparse) vector with

. . . . 1(keH )
6j=(€j71,...,6j7d), ejszi(]), k=1,...,d.
[#5)]
We will use the notation P(:|{z; ,}I" ;) to refer to the probability that is conditional on the random
variables {z; ,}1" ;.
We make following assumptions throughout this section. Note that Assumptions 1-4 listed

below largely follow the assumptions in [11] and [36], we list these assumptions along with their

interpretations to present a full picture for our readers.

Assumption 1 (Sampling) The errors ;,, are uncorrelated across i conditional on {x; ,}7 | and
{w; . Let {N1,...,Ng,} represents a partition of {1,...,n} with  fnax |Ng| = O(1) such that
<gsGn

{(€in,Vin),i € Ny} (defined in (4)) are independent across g conditional on {w; n}" ;.

Assumption 1 generalizes the classical independent and identically distributed (i.i.d.) setting
to allow for repeated measurements or group structures in the observed data. For example, As-
sumption 1 allows the observed data to form clusters of finite sample sizes, and within-cluster

dependency is allowed as long as the observations between clusters are independent.

Assumption 2 (Design) The dimension of the covariates w; ,, satisfies that limsup,, ., gn/n < 1.
The minimum eigenvalue of the matriz Y, wivnwgm is bounded away from 0 with probability

approaching one, that is

tim P (in ()] winwl,,) > 0) = 1.
i=1

n—0o0

Lastly,

o {Blet i}y, (@il o

Z?:l E[ﬁmﬁgnszn}?:l] ) }

n

E[U;’{n’{wi,n}?:l]a 1/)‘min( = Op(1).

Assumption 2 contains three conditions. The first condition allows the dimension of the covari-

ates w; , to grow at the sample rate as the sample size n. The second condition requires the matrix

12



Z?:l wi7nwg7n to be full rank, which is necessary otherwise the OLS estimator would not be able
to calculate the matrix M,,. Furthermore, as noted in [11], such an assumption can be imposed
by dropping any covariates in w; , that are collinear. The third condition contains conventional

moment conditions for the covariates and heteroscedasticity.

Assumption 3 (Linear model approximation) >, E[||Q:.|[*]/n = O(1), pk +n(pl — p2) +

Pi - 2ier Ell|Qinl ] = 0(1), and max |[8;n]|/v/n = 0p(1), np, = O(1).

Assumption 3 mainly characterizes the difference between the mean squares of the conditional
errors pl and the projection p2 into the covariate space {w;,}’s. The characterization of this
difference involves > " ; E[]|Qin||*] where Q;,, describes the deviation of @;,, from its population
linear projection. Residuals of this linear projection, represented by v;,’s, are assumed to satisfy
a negligibility condition after a maximization over all i’s. This negligibility condition regularizes
the distributional connection between «; ,’s and w; ,’s. We note that if the mean squares of x; ,,’s
are bounded and that an exogeneity condition e;, = 0 holds for all i and n, then the linear model
approximation assumption naturally holds. Otherwise, if the exogeneity condition does not hold,

Assumption 3 requires a small-bias condition npl = O(1).

Assumption 4 (Variance estimation) lim,_,, P(min; (Mn)“ >0)=1,

Sl

P(m_in (M), > 0) — 0,(1), -

()

Op(1),

and max; || p||/v/n = 0p(1) with pin = Ely;n[{®in}? 1, {win}l].

)
8,
0

Assumption 4 has two major parts. The first part regularizes the diagonal elements (Mn)
essentially requiring the smallest diagonal element to be consistently bounded away from zero when
n tends to infinity. Even though it is difficult to provide broadly general primitives to validate
this assumption, Assumption 2 of [11], Assumption 4 of [36], and the discussions therein provide

sufficient conditions for this assumption to hold. The second part regularizes p;,’s and Qi,n’s in

order to control the variance of y; ,’s and the variance of E(v; ,,|[{w;n}7;)’s.

Assumption 5 (Policy effect sizes) For ¢ € (0, %), the asymptotic distance between the effects

13



of policy k ¢ H;) and j € Hj diverges as n — o0:

n® . min |ﬂ(j)fﬁk|aoo, asn—o0, j=1,...,d.

kEH ;)

Assumption 5 requires that any policies outside the near tie set H ;) have effect sizes sufficiently
different from the ones in H ;). In fixed dimensions when ¢,, does not grow with n, the underlying
policy effect sizes B, ..., Bq are constant with respect to the sample size n. The near tie set reduces
to a “precise” tie set Hj) = {k 2Bk =By, k=1,... ,d}, suggesting that MiNggp, ;) ’B(j) — ﬁk‘ isa

positive constant bounded away from zero. In such a case, Assumption 5 is automatically satisfied.

3.2 Properties of the proposed estimator

For the proposed estimator, we show that the following theorem holds:

Theorem 1 Under Assumptions 1-5, for anyt € R, for the resampled statistics, the following holds

- (\/5(52}) - B5)

~ A PN §
(e 827e;)2

n—0o0

< t‘{(yi,na w;,n’ w;7n)/ ?:1) = (I)(t)

For the original statistics, it holds that

lim P (ﬁ(g(j) ~ M) < t> = B(t).

n—00 (€,Qi7e;)2

Furthermore, we have that lim,,_,« IP(IP’(BE'}) < B(j)|{zi7n}?:1) < s) = s.

Theorem 1 confirms that our proposed confidence interval for §(;) achieves exact 1 —a coverage
probability as the sample size goes to infinity when B is sufficiently large, which distinguishes the
proposed inference procedure from simultaneous methods. Furthermore, Theorem 1 says that E(j)
is a root-n consistent estimator of 3y, in the sense that Ve > 0, there exists M > 0 such that
P(|v/n(By) — Byl > M) <e, for n > 1.

As for the observed best policies, recall that we denote the observed j-th largest policy as

d
J= > k1B = By (5)
k=1

14



The following corollary suggests that the proposed confidence interval for ;) can also serve as an
exact prediction interval for 63. Therefore, the proposed procedure in Section 2.2 can also be used

to make inference on the observed top policies in a random sample:

Corollary 1 Under Assumptions 1-5, we have that limnHOOIP’OP’(BE“j) < ﬁ;|{zi7n}?:1) < s) = s.
Furthermore, B(j) is a “root-n consistent” estimator of the data-dependent parameter 63 in the

sense that Ve > 0, there exists M > 0 such that P(|\/ﬁ(5(]~) - B5)| > M) <e, forn=>1.

Remark 3 (Regression models with fixed effects) The proposed resampling-based approach
can be used to calibrate multiple best policies when fixed effects are introduced in linear regression
models (see [48] for comprehensive discussion). This suggests that our approach not only applies
to independently sampled data, but also remains valid when there are repeated-measurements
present in the data. These may include short panel data, and datasets in which, for example, two
individuals have sampled from each household. To conserve space in the main manuscript, we have

leave the detailed discussion in the Supplementary Materials (Section D).

Remark 4 (Data dependent choice of dy) In addition to a deterministic choice of dy, another
practically relevant scenario is a data dependent choice of dyg. An example of such a data dependent
choice is dy = max{k : B(k) > ('}, where C is a user-specified threshold for the effect size. A
relatively complicated situation is that C' coincides with some of the policy sizes in 51, 82, , B4.
In this situation, it is possible that no matter how large n is, c?o does not converge to a deterministic
value but instead to a non-degenerate random variable. For the purpose of separation, we may
adjust dy = max{k : B(k) > C} to be dl) = max{k : ﬁ(k) > C + Cy -n~ %2}, where (] is a constant
that does not depend on n. The choice of —0.25 is tunable and may be of independent interest. By
this new choice of (%, the policy effects that exactly equal C' will be eliminated almost surely when
n tends to infinity. This elimination exactly matches the target to select all the policy sizes that
are larger than C. In the limit of n tending to infinity, max{k : B(k) > C + C1-n7%2%} will converge
almost surely to a set that contains all effect sizes larger than C. Therefore, the large-sample theory

results for a pre-specified deterministic integer would still hold by plugging in c%
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4 Simulation studies

4.1 Simulation design

/

We generate i.i.d. Monte Carlo samples of {(y;n,;,, w; ,)}i—; from the model

/ ! .
Yin =i B+ Wi Y0 + iy, i=1,...,n.

We consider various data generating processes (DGP) for different choices of the policy variable
Z;n, the covariates w; , and the random noise €; ,,. The first DGP follows a similar setup taking
from [36] and [11], where we generate many (sparse) dummy variables entering the estimation of
B. We generate x;, ~ N'(0,%) with X5, = 0.5V for j, k= 1,...,d, wi,, = 1(W;, = ®~1(0.98))
with w;,, ~ N(0,1,,) and I, is a g,-dimensional identity matrix, and &;, ~ N(0,1). The
second DGP considers a case with dummy policy random variables and normal covariates, where
we generate x;, = 1(&;, > 0) with &;, ~ N(0,%), w;,, ~ N(0,1,,) and &;,, ~ N(0,1). In the
Supplementary Materials, we have further included DGPs with more realistic error terms beyond
normal distribution, including error terms with asymmetric and bimodal distributions. For most of
the DGPs, we investigate both homoscedastic as well as heteroscedastic models. See Supplementary
Materials Section C for detailed description and simulation results.

As for the coefficients, we consider three DGPs that vary in 3 and -,,. The first DGP considers
the case in which no policy is effective (meaning that 8 = 0), and the coefficient v; = 1/j, for
Jj =1,...,q,. We refer to this case as the “homogeneity” case since [;’s take the same value
zero. The second and the third DGPs consider cases where policy effects are generated from

Bj = Q_l(ﬁ) for j = 1,...,d, and the coefficients are either v, = 0 or v; = 1/4, for j = 1,...,¢y.

” 7

We refer to this case as the “heterogeneity(1)” case and “heterogeneity(2)” case, respectively, since
different policies have heterogeneous effects.

We set the sample size n € {700, 2000} to mimic the sample size in our case studies, the number
of policies d € {5,10}, and the dimension of the covariates g, from g, € {1,141,281,421,561,631}.
All statistics reported below are computed based on over 1,000 Monte Carlo replications. To avoid
redundancy, we present the results for n = 700 and d = 5 in the main manuscript, and rests are

provided in the Supplementary Materials (Section C).
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To demonstrate the robustness of the adopted covariance matrix estimator, we compare our pro-

posal with three alternative covariance matrix estimators. The first one we compare with is the co-

variance matrix estimator proposed by [11]: QK = T' 1SHCKT 1 where BHCK = 1 570 21 Ky Vin

Ujn = 21 (M) jk(Ykn — @), ,B8), and

-1

2 2
Mll,n e Mln,n
HCK . . . -1
Kp & = : .. : = (M, M,) ",
2 2
Mnl,n T Mnn,n

with @ denoting the Hadamard product. The estimator S1°¥ is well-defined whenever (M,, ® M,,)
is invertible. We use the acronym “HCK” to denote this estimator in the following parts. The
second one we compare with is the classical Eicker-White covariance matrix estimator [20, 50] of

the form:

~ A~

Q" =T,'20T, (6)

n

~

where SEV = IS Bin®; U5, and Uiy = D51 (M)i j(yjn — 2,,8). We use the acronym “EW”
to denote this estimator in our simulation results section. Huber-Eicker-White standard error is
also known as the HCO standard error, where HC stands for “heteroskedasticity robust.” The last

covariance matrix estimator we adopted is a variant of the HCO estimator:

1 a;

OHC3 _ Pp—1HC3Pp—1 SVHC3 o ~ oy 1,1

Qi =T, 'S, ", where 35°° = — )" 8, 8], —. (7)
i (M)

The above estimator upward reweights regression residuals, and we use the acronym “HC3” to

denote this estimator in our simulation results section.

4.2 Simulation results

We summarize our main takeaways from the simulation results presented in Table 1-3, where we
have compared our proposed approach (“Proposed + KJ”) in Section 2.2 with four other methods.
“Proposed + EW”, “Proposed + HC3”, and “Proposed + HCK” refer to methods adjusting for the

winner’s curse bias but use QE", QI3 and QE°K respectively, to estimate the covariance matrix

17

/
2

A

2
Wins



of B. “No adjustment+KJ” refers to the approach with no adjustment for the winner’s curse bias
and adopts the robust covariance matrix estimator proposed by [36] to make inference on the best
policies. We present the coverage probabilities and /n-scaled biases for the top two policies in the
population, i.e., 81y and f(2). As the simulation results are rather similar for the observed top two
policies in the random sample, i.e., 83, 35, we present these results in the Supplementary Materials
(Section C.4).

Our simulation results confirm our theoretical results presented in Theorem 1. When no policy
is effective, our proposed method not only successfully suppresses the winner’s curse bias for the
top two policies but also attains near nominal coverage (Table 2). Similar pattern can also be
observed when top policies are effective (i.e., 3;’s are heterogeneous, and Table 1 in particular). In
nearly all designs and for a range of considered values of ¢,, our proposal yields close to nominal
confidence interval, though some under coverage is observed for large values of ¢,. The method with
no adjustment is obviously biased upward due to the winner’s curse phenomenon, thus it provides
under-covered confidence intervals and point estimates with rather large biases. In all considered
cases, both the EW-based method and the HC3-based method tend to lose coverage when ¢, > 141,
and the HCK-based method tends to produce under-covered confidence interval whenever ¢, > 561.
In moderately high dimensions so that ¢, /n is approximately one half, the proposed method with

the HCK variance estimator has comparable performances with our approach.

5 Case studies

5.1 Case study I: Charitable giving

In the past half century, charitable giving by individuals in the United States has grown and it has
contributed to more than two percent of the annual GDP since 1998 [41]. Charitable giving is often
driven by altruism, while as suggested by many field experiments, improper policies adopted by
the demand side—fundraisers—may impair the supply side’s (individual donors) motivation of giving
[3]. Therefore, to effectively attract resources from individual donors, fundraisers need to properly
design donation incentives. One of the donation incentives is matching grant which means that a
matching donor pledges to match any donation from other donors with certain ratio and up to some

threshold. As the price elasticity of matching donation may differ from other donation incentives,
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Table 1: Simulation results (d = 5, heterogeneity, 31))

ﬂ]:q)il(djﬁ)v Yo=0, j=1...,d
Ljn ~ N(o- E), Wip = ]l("-T]i,n = @71(098))
Proposed+KJ Proposed+HCK Proposed+HC3  Proposed+EW  No adjustment+KJ

gn=1  Cover _ 0.97(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.97(0.01)
VnBias  -0.04(0.06) -0.03(0.04) -0.03(0.04) -0.04(0.05) 0.05(0.06)
gn =141  Cover  0.96(0.01) 0.96(0.01) 0.94(0.01) 0.95(0.01) 0.95(0.01)
VnBias  -0.04(0.05) -0.04(0.04) -0.04(0.04) 0.06(0.06) 0.06(0.07)
gn =281  Cover  0.96(0.01) 0.95(0.01) 0.82(0.02) 0.80(0.01) 0.94(0.01)
VnBias  -0.05(0.06) -0.06(0.05) -0.06(0.03) -0.10(0.07) -0.08(0.08)
gn =421  Cover  0.95(0.02) 0.94(0.01) 0.79(0.01) 0.76(0.01) 0.78(0.01)
VnBias  -0.05(0.05) -0.06(0.05) -0.07(0.05) -0.12(0.09) 0.11(0.09)
gn =561  Cover  0.95(0.01) 0.92(0.01) 0.65(0.02) 0.63(0.01) 0.68(0.01)
VnBias  -0.07(0.07) -0.09(0.07) -0.17(0.10) -0.20(0.12) 0.15(0.13)

qn = over A . . . .51(0. . . .55(0.

631* C 0.93(0.01 0.91(0.01 0.51(0.02 0.48(0.01 0.55(0.01

VnBias  -0.17(0.08) -0.19(0.10) -0.28(0.11) -0.35(0.22) -0.26(0.13)

Zjn = ]l(ii,n > U)w Win ~ N(Ovl)
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed + EW  No adjustment+KJ

gn=1  Cover — 097(0.01) 0.97(0.01) 0.95(0.01) 0.96(0.01) 0.97(0.01)
VmBias  -0.02(0.07) -0.02(0.04) -0.01(0.03) -0.07(0.11) -0.05(0.09)

gn =141  Cover  0.96(0.01) 0.95(0.01) 0.94(0.01) 0.94(0.01) 0.96(0.01)
VnBias  -0.02(0.03) -0.02(0.02) -0.03(0.02) 0.11(0.12) -0.06(0.12)

gn =281  Cover  0.95(0.01) 0.94(0.01) 0.87(0.01) 0.85(0.01) 0.95(0.01)
VnBias  -0.03(0.04) -0.03(0.03) -0.04(0.02) 0.14(0.12) -0.08(0.13)

gn =421  Cover  0.95(0.01) 0.94(0.01) 0.78(0.01) 0.76(0.01) 0.75(0.01)
VnBias  -0.03(0.03) -0.05(0.04) -0.08(0.05) -0.19(0.17) 0.19(0.14)

gn =561  Cover  0.95(0.01) 0.92(0.01) 0.63(0.02) 0.61(0.01) 0.63(0.01)
VnBias  -0.04(0.04) -0.08(0.06) -0.19(0.10) -0.30(0.26) -0.24(0.22)

Gn =631  Cover  0.94(0.01) 0.91(0.01) 0.49(0.02) 0.45(0.01) 0.68(0.01)
VnBias  -0.06(0.07) -0.11(0.09) -0.23(0.13) -0.42(0.20) 0.39(0.29)

i

Note: “Cover” is the empirical coverage of the 95% confidence interval for 81y and “ y/nBias ” captures the root-n

scaled Monte Carlo bias for estimating S). “ * ” indicates that Q% is not positive semi-definite in some Monte
Carlo samples.

we hope to carefully investigate different pricing policies in a matching donation and study if the
observed top two performing policies are indeed effective.

We work with the charitable giving data in [37]. [37] conduct a field experiment that explores
the price elasticity in a matching donation. The field experiment involves 50, 083 previous donors to
a political charity. Individuals are randomly assigned to two groups: treatment (n = 33,396) and
control (n = 16,687). In the control group, individuals receive a standard letter with no matching
details. In the treatment group, each potential donor receives a letter with three strategies: (1)
match ratio, (2) match size, and (3) ask amount. Within each strategy, individuals are randomly
assigned to a sub-policy detailed below.

For the match ratio strategy, there are three sub-policies: (1) 1:1 (the matching donor con-

tributes the same amount as the individual donor), (2) 2:1 (the matching donor contributes twice

19



Table 2: Simulation results (d = 5, homogeneity, 3(,))

B=0, v=1/j
Tin ~N(0,%), win=1(W;, > 2 (0.98))
Proposed+KJ  Proposed+HCK  Proposed+HC3 Proposed+EW No adjustment-+KJ

=1 Cover _ 0.97(0.01) 0.96(0.01) 0.96(0.01) 0.93(0.02) 0.90(0.01)
VnBias  0.02(0.03) 0.02(0.03) 0.03(0.03) 0.03(0.03) 1.64(0.04)

gn =141  Cover  0.96(0.01) 0.96(0.01) 0.96(0.01) 0.89(0.02) 0.88(0.01)
VnBias  0.03(0.04) 0.04(0.04) 0.03(0.04) 0.12(0.04) 1.78(0.04)

gn =281  Cover  0.96(0.01) 0.94(0.01) 0.90(0.02) 0.85(0.01) 0.83(0.01)
VnBias  0.03(0.04) 0.04(0.04) 0.05(0.04) 0.22(0.03) 2.03(0.05)

gn =421  Cover  0.95(0.01) 0.93(0.01) 0.82(0.02) 0.79(0.01) 0.74(0.02)
V/nBias  0.05(0.05) 0.18(0.05) 0.24(0.06) 0.36(0.03) 2.63(0.06)

an =561  Cover  0.95(0.01) 0.93(0.01) 0.67(0.02) 0.73(0.01) 0.63(0.02)
V/nBias  0.08(0.09) 0.51(0.05) 0.74(0.06) 0.44(0.04) 3.74(0.09)

qn =631  Cover  0.93(0.01) 0.89(0.01) 0.53(0.02) 0.50(0.01) o 40(0 02)
VnBias  0.18(0.09) 1.21(0.09) 1.84(0.11) 2.42(0.06) 10(0.12)

Tin = Il(%,j_ﬁ > 0), Wip ~ N(O, ])
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

gn=1  Cover _ 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.94(0.01) 0.90(0.01)
VnBias  0.03(0.04) 0.04(0.05) 0.05(0.05) 0.07(0.07) 2.75(0.06)

gn =141  Cover  0.96(0.01) 0.96(0.01) 0.93(0.01) 0.90(0.01) 0.83(0.01)
VnBias  0.05(0.05) 0.05(0.06) 0.17(0.07) 0.31(0.07) 3.29(0.08)

gn =281  Cover  0.95(0.01) 0.95(0.01) 0.90(0.01) 0.88(0.01) 0.75(0.02)
VnBias  0.07(0.08) 0.07(0.07) 0.31(0.08) 0.54(0.05) 3.59(0.08)

an =421  Cover  0.95(0.01) 0.95(0.01) 0.85(0.01) 0.86(0.01) 0.65(0.02)
VnBias  0.04(0.04) 0.10(0.11) 0.73(0.13) 0.64(0.06) 4.58(0.11)

gn =561  Cover  0.93(0.01) 0.90(0.02) 0.59(0.02) 0.61(0.01) 0.53(0.02)
VnBias  0.13(0.07) 0.19(0.13) 2.00(0.13) 1.73(0.08) 5.90(0.13)

Gn =631  Cover  0.90(0.01) 0.78(0.02) 0.38(0.02) 0.30(0.01) 0.33(0.02)
VnBias  0.50(0.12) 2.47(0.16) 5.16(0.19) 7.68(0.18) 6.51(0.19)

”

Note: “Cover” is the empirical coverage of the 95% confidence interval for 81y and “ 4/nBias ” captures the root-n

scaled Monte Carlo bias for estimating S(1). “ * 7 indicates that Q%7 is not positive semi-definite in some Monte
Carlo samples.

as many as the individual donor), (3) 3:1 (the matching donor contributes three times as many
as the individual donor). For the match size strategy, there are four sub-policies with different
pledge amounts: (1) $25,000, (2) $50,000, (3) $100,000, and (4) unstated amount. For the ask
amount strategy, individual donors are asked to give same amount, 25% more or 50% more than
their largest past donation.

In our study, we focus on the treatment “ask amount” with three pricing policies, and we study
the subpopulation (n = 7,938) of unmarried males living in red counties or red states. Red county
(state) refers to a county (state) in which residents predominantly vote for the Republican Party.
The outcome of interest is the donation amount. We have adjusted ¢, = 1,049 covariates including
the donors’ demographic information (26 variables), census information (27 variables), and their

two-way interaction terms. Our results are summarized in Table 4.
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Table 3: Simulation results (d = 5, heterogeneity, 53())

Bj =" (d+1) Tn=0
zin ~N(0,%), w;, =1, > 2" 1(0.98))
Proposed+KJ  Proposed+HCK  Proposed+HC3 Proposed+EW No adjustment-+KJ

=1 Cover _ 0.97(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01)
V/nBias  0.02(0.06) 0.02(0.06) 0.01(0.06) -0.05(0.07) -0.04(0.07)
gn =141  Cover  0.97(0.01) 0.96(0.01) 0.93(0.01) 0.94(0.01) 0.94(0.01)
V/nBias  -0.02(0.04) -0.02(0.04) -0.04(0.03) -0.06(0.06) -0.07(0.08)
qn =281  Cover  0.95(0.01) 0.94(0.01) 0.88(0.02) 0.89(0.01) 0.85(0.01)
V/nBias  -0.03(0.04) -0.03(0.03) -0.07(0.03) -0.11(0.10) 0.19(0.11)
gn =421  Cover  0.95(0.01) 0.94(0.02) 0.81(0.02) 0.80(0.01) 0.77(0.01)
V/nBias  -0.03(0.03) -0.03(0.04) -0.10(0.06) -0.15(0.12) -0.23(0.15)
gn =561  Cover  0.95(0.01) 0.94(0.02) 0.67(0.02) 0.65(0.01) 0.63(0.01)
VnBias  0.03(0.03) 0.05(0.06) 0.12(0.08) -0.17(0.13) -0.26(0. 18
qn =631  Cover  0.94(0.01) 0.93(0.01) 0.56(0.02) 0.53(0.01) 0.50(0.01)
V/nBias  -0.07(0.07) -0.18(0.06) -0.23(0.08) -0.26(0.17) 0.47(0.22)

Tin = Il(%,j7,, > 0), Wip ~ ./\/(07 ])
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW  No adjustment+KJ

=1 Cover ~ 0.98(0.01) 0.98(0.01) 0.98(0.01) 0.96(0.01) 0.98(0.01)
VnBias  -0.08(0.12) -0.09(0.12) -0.10(0.13) 0.09(0.12) -0.07(0.10)

gn =141  Cover  0.97(0.01) 0.97(0.01) 0.95(0.01) 0.95(0.01) 0.97(0.01)
VnBias  -0.09(0.12) -0.10(0.13) -0.12(0.13) 0.09(0.13) -0.08(0.10)

gn =281  Cover  0.97(0.01) 0.97(0.01) 0.90(0.01) 0.87(0.01) 0.96(0.01)
VnBias  -0.11(0.14) -0.10(0.14) -0.15(0.14) -0.18(0.14) -0.10(0.11)

an =421  Cover  0.96(0.01) 0.95(0.02) 0.80(0.02) 0.75(0.01) 0.94(0.01)
VnBias  0.14(0.16) -0.16(0.18) -0.20(0.18) -0.22(0.17) -0.15(0.15)

Gn =561  Cover  0.96(0.01) 0.94(0.02) 0.63(0.02) 0.60(0.01) 0.92(0.01)
VnBias  0.14(0.18) 0.20(0.23) -0.24(0.22) -0.30(0.23) 0.19(0.20)

gn =631  Cover  0.94(0.01) 0.93(0.02) 0.58(0.02) 0.55(0.01) 0.52(0.01)
VnBias  0.15(0.20) 0.24(0.26) 0.28(0.25) -0.35(0.13) 0.56(0.24)

”

Note: “Cover” is the empirical coverage of the 95% confidence interval for B2y and “ 4/nBias ” captures the root-n
scaled Monte Carlo bias for estimating B2). “ * ” indicates that £} is not positive semi-definite in some Monte

Carlo samples.

Method Policies(Ask amount)  Est (95% CI)  p-value

Uncalibrated Same 0.67 (0.09, 1.25)  0.023*
25% more 0.66 (0.01, 1.31)  0.046*

50% more 0.33 (-0.21, 0.86)  0.235

Calibrated Same 0.63 (0.10, 1.20)  0.025*
25% more 0.56(-0.01, 1.07)  0.052

Table 4: Estimated treatment effects (Est), 95% confidence intervals (95% CI), and two-sided p-values for
the three “ask amount” policies. “Uncalibrated” refers to the study results obtained without any adjustment,
and the confidence intervals are constructed based on normal approximation with the estimated covariance
matrix 57, “Calibrated” refers to our proposed methodology. The computational time is 741 seconds on a
Lenovo NeXtScale nx360m5 node (24 cores per node) equipped with Intel Xeon Haswell processor.

Results in Table 4 suggest that, without any calibration, asking the donor either to give the

same amount or to give 25% more than their highest past donation seems to be the best policies
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that significantly increase the donation amount. Specifically, our results from running a simple
linear regression model suggest that asking the individual donor to give the same amount of their
largest past donation appears to be the most effective pricing policy, and it on average raises $0.67
(95% CI = (0.09, 1.25), p-value = 0.023) per donor. Asking the individual donor to give 25% more
than their largest past donation is the second most effective policy, with an increased donation by
$0.66 (95% CI = (0.01, 1.31), p-value = 0.046) per donor.

Because we pick the most effective policies from a random sample, these estimates are potentially
subject to the winner’s curse bias. We thus apply the proposed method to carefully examine these
seemly effective policies. After calibrating for the winner’s curse bias, we confirm that the asking
for the same amount policy remains as the most effective policy, though with a slightly smaller
estimated effect size (Est = $0.63, 95% CI = (0.10, 1.20), p-value = 0.025). This result is moderately
aligned with the analysis in [37], whose results suggest that donors from red states or red counties
are more willing to contribute, partially because the collaborating charity is politically oriented.
However, for the effect of the second best policy—asking to donate 25% more than past donation-is
shifted downward, and it no longer has significant impact in promoting the donation amount (Est
= $0.56, 95% CI = (-0.01, 1.07), p-value = 0.052). This result might be partially explained by
the observation that donors are more motivated by a lower “price” of donation [49]. In sum, our
analyses suggest that the best pricing policy of charitable giving for unmarried males living in the
Republican Party dominated voting regions could be asking for the same amount as their highest
previous donation, and asking for more donations may not incentivize the donors to give. Though
given the obtained p-value before and after calibration for the second best policy is rather close to

the 5 percent threshold, we note that such a conclusion should also be viewed with caution.

5.2 Case study II: National supported work (NSW) program

In this case study, we revisit a dataset from the National Supported Work (NSW) program. The
NSW program is a labor training program implemented in 1970’s that provides work experience
to disadvantaged workers. Our proposed method can also be used to evaluate if the job training
program is indeed beneficial for certain groups of workers. To do so, the structural component
x; n in the model (1) would include variables representing the interactions between the treatment

variable (the job training program) and different subgroup indicator variables of interest.
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We use the field experiment dataset adopted in [18] (n = 455), in which 185 workers are in the
treatment group and 260 workers are in the control group. This dataset consists of a treatment
indicator variable, an outcome variable measured by the participant post-treatment earnings in
1978, and eight baseline variables ( including age, years of education, an indicator for high school
degree, indicators for Black and Hispanic, marital status, and pre-treatment earnings in 1974 and
1975). We further add three sets of additional covariates following the setup in [30]: (1) 1(1974
earnings =0) and 1(1975 earnings =0); (2) all first-order interactions; (3) all polynomials up to the
2nd-order. The final dataset includes 51 covariates. We aim to investigate the effectiveness of the
NSW program in four groups of workers: (1) married Black workers, (2) unmarried Black workers,
(3) married Non-Black workers, and (4) unmarried Non-Black workers. The summarized results

are shown in Table 5.

Method Subgroups Est (95% CI) ($103) p-value

Uncalibrated Black, married 4.35 (0.89, 7.81) 0.014*
Black, unmarried 1.10(-0.55, 2.75) 0.190

Non-Black, married 1.33(-6.63, 9.29) 0.743

Non-Black, unmarried 1.40(-2.61, 5.40) 0.494

Calibrated Black, married 4.41(1.74, 8.50) 0.009*

Table 5: Estimated treatment effects (Est), 95% confidence intervals (CI), in units $103 /year, and two-sided
p-values for the four subgroups in the NSW study (n = 445, ¢, = 51). “Uncalibrated” refers to the study
results obtained without any adjustment, and the confidence intervals are constructed based on normal
approximation with the estimated covariance matrix QF7. “Calibrated” refers to our proposed methodology.
The computational time is 122 seconds on a Lenovo NeXtScale nx360m5 node (24 cores per node) equipped
with Intel Xeon Haswell processor.

Table 5 demonstrates that without adjusting for the winner’s curse bias, married Black workers
(estimated treatment effect = 4.35, 95% CI = (0.89, 7.81), p-value = 0.014, in units $10%) seem to
benefit from the program the most. After accounting for the winner’s curse bias issue, our approach
potentially confirms that the treatment effect of the NSW program for the married Black workers
is still significant, and the calibrated treatment effect remains roughly the same ( Est= 4.41, 95%
CI = (1.74, 8.50), p-value = 0.009, in units $10°/year).

The dataset collected from the NSW program has been frequently analyzed in the past decade,

and our results are largely in-line with current understandings gathered in past studies. For exam-
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ple, although not focusing on the same groups of workers, [35] suggest that married and unemployed
Black workers with some college education have increased their post-treatment earnings for about
38%. [18] show that the job training program yields positive treatment effect on the overall Black
participants. In this case study, our approach may help to confirm the seemly effective subgroup
observed in a random sample while providing a statistically justified estimate accounting for the

winner’s curse bias.

6 Concluding remarks

In this article, we have introduced an approach to evaluate multiple best policies based on resam-
pling in the context of a linear model with many covariates. While our approach is numerically
reliable and theoretically grounded, it is worthwhile to generalize our framework so that the pol-
icy effects can be estimated with other off-shelf methods that are, for example, robust to the
high-dimensional confounders or to the presence of interference and noncompliance. Our current
theoretical analysis suggests that our proposed approach can be readily extended as long as the
covariance matrix between different policies can be consistently estimated. It is thus desirable for

us to provide a general framework to broaden future applications for other disciplines in general.
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A Theorem 1

A.1 Review of notations and assumptions

We denote the sample {(y;n, ]

ZTL’

considered linear model:

/ / -
yi,n = mi,nﬂ + wi,n'Vn + Ui,nv 1= ]-7 ey N,

we define

€in = Uin — Eluin[{win}isi {Tin}iz1],  Vin = @in — Elzin[{win}isg], i=1,...,n

)

Let €;n = Elu; n|{win}l 1, {zin}i1], we further denote

n n

U = Y (Myp)ij(Wim — T B), Bim = > (M) jTjm,

j=1 i=1

n —1
(Mn)i,j = ]l(l = ]) - wz‘,n( Z wk,nw;c,n> Wy,
k=1
n

Uz'2,n = E[ezz,n|{wi7n}?:lv {wl n}z 1 v; n = Z Jv] Uz

1 Z?:l E[e%n] 9 Zz’:l E[E(ei,nHwi,n}?:l)Q]

Pnzin » Pp = n )

n n
Qi,n = E[mi,n - ( 2 E[wj,nw; n Z w] nw] n ‘{wz n} ]
=1 i=1

w; ) iy as {zin}i,. Recall u;y, is the random error in the

(A1)

(A.2)

We will use the notation P(:|{z; ,}I" ;) to refer to the probability that is conditional on the random

variables {Zz',n}?:r

For a policy 7, recall our definition of the near tie set:

Hey = {k 16 — Byl = o(n~2), k=1,....d}.



This suggests that Vk € H;, there exist a sequence 6, — 0 as n — 0, such that
Bk = By + n"z “On,  Vk€Hy).

Next, let €; denote a d-dimensional (sparse) vector based on the estimated tie set 7-A[(j) with

]l(k‘ € 7:\[0))

~ o k=1,....d
15l

éj = (é\j,h e é\jyd), é\jk =

and define a d—dimensional sparse index vector based on the true near-tie set H ;) as

1(ke H(j))

Bl C) VA A T (A.3)
M5l

Ej = (ejyl, ey €j7d), ejk =

We make following assumptions throughout this section:

Assumption 6 (Sampling) The errors €;,, are uncorrelated across i conditional on {x; ,}7 | and
{w;n}l . Let {N1,...,Ng,} represents a partition of {1,...,n} with  fnax |Ng| = O(1) such that
<gsGn

{(€in,Vin),i € Ny} (defined in (A.2)) are independent across g conditional on {w; n}i ;.

Assumption 7 (Design) The dimension of the covariates w; ,, satisfies that limsup,,_, ., ¢n/n < 1.
The minimum eigenvalue of of the matriz Y, wi,nw;n s bounded away from 0 with probability

approaching one, that is

n—0o0

n

lim ]ID()\min(Z wimw;n) > O)) =1.
i=1

Lastly,

1

4
oo {BLeL {winHos (i)l o

i B[00, {win )i ]

n

Efvd | {win}i], 1/ Awin )} = 0p(1).

Assumption 8 (Linear model approximation) > | E[||Q;.||?]/n = O(1), pL + n(pl — p2) +

7 Sy Bl @il P) = o(1), and yua [[8sl|/v/7 = 0p(1), nph = O(1).



Assumption 9 (Variance estimation) lim,_,, P(min; (Mn)” >0)=1,

i 1Qinll*

n

P(min (M,),, > 0) = Oy(1),

(]

= Op(l)a

and max; ||pin|l/v/n = 0p(1) with pin = Elyin[{Xin} iy AWin}i]-
Assumption 10 (Policy effect sizes) For ¢ e (0, %), the asymptotic distance between the effects

of policy k and j diverges as n — o0:

n® - min ‘5(j)—6k’—>oo, asn—>o, j=1,...,d.

kEH )
A.2 Proof of Theorem 1
In this section, we show the following theorem holds:

Theorem 2 Under Assumptions 6-10, for any t € R, for the resampled statistics, the following

holds precisely

. (\/ﬁ(@*j) - By)

(é\/,ﬁKJé\j)% < t‘{(yi,nam;,n7wg,n)/ ?—1) = (I)(t)
iS4

For the original statistics, it holds that

lim P (‘/ﬁ(g(j) —Pu) t) — (1),

O\ (@0e)

In addition, we show that

g P(P(Ea) < 6(j)|{zi,n}?:1) < S) = S.

n—00

Proof. Our proof of Theorem 1 entails the following steps:

Step 1. Under Assumptions 6-8, [36] has shown the following holds

(Q57)"2y/n(B — B) ~ N(0, I),



where I; is a d-dimensional identity matrix. Therefore, following the definition of e; in Eq

(A.3), we have

Zke?—[(j) ﬁk _ ZkE’H(j) ﬁk

(€j7e;)"2 - Vn
e ( Hj)] H )l

) ~ N(0,1). (A.4)
Step 2. Because of Lemma 1, we have

lim ]P’(?Q(j) # M) = 0.

n—o0

Combing this with (A.4), we have

Likergy Bk e, B’“) - t)

o(t) = lim P((e/S%e;)2 - v/n <
(&5t Vil = T

~ Zke’H , Bk Zke?—t - Br ~ ~
— lim |P((/S5%,) "2 - vn W _ WY <t Hy = Hepy )P(Hjy = Hjy) + op(l
n%[ (G ( o) o) ) <tHy) = Hi) ) B(FG) = Hip) +op(D)
~ Zke’)—[ . Bk Zkeﬂ . Bk ~
— lim P((e/557e,)"2 - v/n @7 DY <t = Hon ),
e (( j i) ( |H(j)| |H(j)| ) ’ (4) (J))

in which op(1) is lower bounded by zero and upper bounded by IP’(?-A[(]-) # H(j)), which tends
to zero when n tends to infinity. We use this same op(1) notion throughout this proof. Now

we have

Zke’fim B _ Zkeﬁm B
M)l M)l

lim P((égiiJéj)—% Nl

n—00

) < t‘”’q(j) = Hy) = (t).

Next, we have

Zke?—? )Bk Zk‘e’ﬁ[(j) Bk

lim P((&/S578;)7 7 - y/n(—<t )<t
fim P((@ G M)l )
Secq B Sieq B

. ~NQKITA y— L keH keH ~ ~
= lim [P(<832§Jej) Fvn(TE— - TR0 <l = ) JB(Ry) = i) + op(1)

" )l )l

Zke?—t B’f Zke?—[ B ~

— lim P((&/$578,)72 - n(—— - 0 ) <1y = H

fi P #)l #5)] ‘ )= Ho)
= (1)



The following holds precisely following the definition of the resampling procedure:

ZkE'H(j) 6;: _ ZkE'H(j) Bk
H ) Hj)l

P((e}S57e,) 7 - vin(

‘We now show that

) <tz

" [#5)] )|
. Sher BE Sweq B
= lim [P<(€;E§Jé‘])_; . \/ﬁ( ke:]:[(]) k _ kEZ'[(])
e [H5)] )l
~ Zke?—[ : 3;: Zke?—[ ; /é\k ~
= lim |P((e,S5%;)"2 -/ w_= _ WY < tl{zin}iy, Hepy = Hipy ) P(
n_,ool ( J J ( ;)] )] ) ‘ ntict M) (J))
- Sherty BE - Dheng, Pr
= lim P((e/S5%¢;)"2 - /n @B-_~ _ ) < t{{zin}n
i P((eS1e) Tt gy ) <t )
= ().

Recall our definition in the main manuscript

A~ A* A~ 2
e _ Zke”m B 3o Zke”ﬂm B

- 2 and S
D Al ’ H )|

)

we thus have reached the conclusion presented in the theorem:
. A ORTA 1L ~ ~
Tim P((&5578;)7% - V(B - By) < thzinki)

Step 3. Lastly, to prove the bootstrap consistency, we show that

~

lim P(P(ﬁgj) < By l{zinliy) < s) —s.

n—0o0

) < t}{zm};‘:l> — (1.

o(t).

)

(A.5)

k ~ ~
) < tl{zin}io1 Hy = H(j))IP’(’H(j) = M) + 09(1)]

G = M) + OP(l)]

(A.6)



B

Note that

lim P(Bf;) < By l{zin}iz1)

n—00
~ Zke’)—t - Blj Zke?—[ - Bk
= lim P (e/.QEJe. —% \/ﬁ ) . G)
A ( 7ion ) ( H)l M)l )
A Zke?—[(j) /Bk B Zke?—[(j) /Bk‘

<(& ;) - v/ ) e )|{2in}s)

P~ Zke?—t Bk Zke?—[ ; Bk
— lim ®((e/Q%e;)"2 -/ W 0 7y
n—00 J J ( ‘H(j)‘ ‘H(j)’ )

Therefore, by the bounded convergence theorem, we have

J%P(]P’(BE‘}) < Bylzintici) < 3)
Diker ;) P B Lkert;) P

- . 1 OKJI . -1 .

= Pl ((efdle;)™ - vl H )l [H )l ) <)
. Sier B Sken, . Br

= P(lim (}Q0%e;) 7 - /(T = SO T < g1 ()

n—o0 LT LT

Lemmas and corollary

B.1 Lemmal

Lemma 1 Suppose wy, (j) = 1(ke ﬁ(j)), for j,k=1,...,d, under Assumptions 6-10, we have the

following argument holds Ve > 0,

lim }P’(|wk7(j) — ]l(k € 7‘[(]))| > E) = 0.

n—0o0

Proof. We start with reviewing and introducing some notations to pave the way for a clear proof.

Recall that B;‘J) is the j-th largest effect size for the resampled statistics B(l), ... ,B(d), suppose B;‘J)



is resampled statistics from the normal distribution centered at ij that is
~ ~ ~ ~ d -~ ~
Bty {zinbior ~ N (35, (557)5), 7= X k- 13 = B;),
k=1

where (iﬁJ)H is the jth component in the diagonal of the matrix SX7.

Recall we define the near tie H(j) set as

Hy = {k: 18k — Byl = O(N_%), k=1,....d}.

We further define two sets of policies that have effect sizes lower /larger than the policies in the set

H):
L _ . ; _ v _ . _
H(j) = {k: D B < mlgtr(l]){ﬁm} k=1,.. .,d}, ’H(j) = {k‘ ;B > mrg%i){ﬁm} k=1,... ,d}.
As for the estimated near tie set, we have for any j € 7—7(]-) that

~by, < Bf — By <br,  with |bg — bz = O(n™),

where ¢ € (0,0.5). Thus, there exists a positive constant C such that

B - B

n—9

<C, Vje 7—70).

Our proof is composed of the following three steps:

Step 1. We first show that the policy with the jth largest policy effect size in the resampled

statistics falls into the set H ;) with high probability, that is
Tim P(7eHg) = 1. (B.1)
Because B]i" € [minje;.[<j) BJ*, maxje, ;) 3]*] by definition, coupled with the fact that

{ max ff < min 8} < max § < min /355} = (j G"H<j>)7
keH(Lj> JEH () JEH () keH(Uj)



it is suffice to show

lim P | max ﬁk < min ﬂ;‘ < max 53* < min 5k: =1
n—00 ke?-t< ) JEH (5) JEH ) ke?—[m

Under Assumption 10, by Lemma 2, for any k € H(Lj) and m € H;), we have

lim P(ﬁk <ﬂ*>

n—ao0

Similarly, for any k € 7—[6.) and m € H;), we have

n—ao0

lim P (5* < ,Bk) -
Step 2. We then show, for k ¢ H ;)

lim P(wk( >c k¢ H(j)) =0.

n—a0

For any € > 0 and k ¢ Hj), we have the following holds

P(wk(J >€)= k‘GH )

P(1(
= P(1( ke?—[ ) >5|ke7—l(])) (k:e’l—A[(j))

~

+P(L(k e H)) > elk ¢ Hi)) - Pk ¢ H)

%fp(’A:;§@)<C>

_P(I En_6f| <C>

:P(!Aﬁ—ﬁ*Rn‘é C)

:P(!(ﬁk Pr) — (Bj—ﬂ*ﬂ(ﬁk—ﬁ;)kn—é.c)
< P(n18y — B5| — n’|Bf — Byl — 1B - 5| < C)

:]P’( °1BE — Bl +n’|B2 — 5;|>n5!6k—,83]+c>



By definition, for k ¢ H ;)

P(n’|By — B;] < C) < P(n°|Br — B3 < C,j € Heyy) +P(J ¢ Hy))

< max P(n’|By — Bl < C,j e Hiy) +P(j ¢ H)-

J

Under Assumption 10, Lemma 2 and the conclusion in Eq (B.1) in Step 1 suggest that by
letting n — oo on both side, we have the above probability converges to zero. Based on above

derivation, we have shown that lim,,_, P(wk,(j) >c, k¢ ’H(j)) =0, for k ¢ H ;).

Step 3. We are left to prove that for all k£ € H;), the following holds Ve > 0:
q}ii%op(‘wk’(j) —1]>¢) =0.

Following similar arguments, for a positive constant C', we have for k,j € H;) the following

statement holds

P(|wk7(j) -1 > 5) = P(\]l(k € 7’-2(]-)) -1 > 5)
=P(|L(ke Hy) — 1] > elk e H(y) -B(k € Hyy)

+P(|L(ke Hiyy) — 1 > elk ¢ Hy) -P(k ¢ Hy)

— Bl + 03|82 — Bl + ni|By — B =00 ),

N
=~
S

[NIES
P?‘*>

10



By definition of the near-tie set, for k € H;y, we have

P(n2|8, — B5 < C) < P(n’|8, — B5] < C.T € Hyyy) +P(7 ¢ Hy)

< max P(n?|B, — B;| < C.j € Hjy) +P(J ¢ Heyy)-
J

Again, under Assumption 10, Lemma 2 and the conclusion in Eq (B.1) we have derived in

Step 1, by letting n — o on both side, we have the above probability converges to 1.

|
B.2 Lemma 2
Lemma 2 Under Assumption 10, we show that for all k € {1,...,d}, any positive constant C' and
§€(0,3), the following statement holds
1 A* J— _6 . —
nh_r)rololP)(Wk Brl=n=°-C) =0.

Proof. Note that

V(B — Br) = Vn(Br, — Br) + N (0, (957 ) x). (B.2)

Because \/H(Bk — Br) converges in distribution to a finite-value random variable and QEJ converges
in probability to a finite-value matrix when n tends to infinity [36], for any given € > 0, there exists

an M, such that

P(\/n|Bf — Bi| > M) <e. (B.3)

Then, for any n such that
M, 15
> (—) 2~
n> ()

we have that

P(IB; =Bl =n™"-C) <e

11



and therefore

limsup[P’(|B,’: — Bl =n"°. C) <e.

n—0o0

Note that the above inequality holds for arbitrary € > 0. Therefore, we have

linrls.upIP’(\B\/;k — Bl =n?- C) =0,

n—o0
completing the proof.

Lemma 3 Denote the selected policy as

we show that

lim P(}E H(j)) =1.

n—00

Proof. This is a direct result from Step 1 and Step 2 in the proof for Theorem 1.

B.3 Corollary 1
Corollary 2 Under Assumptions 6-10, we have that lim,_, IF’(IP’(EE'}) < 53\{,21-’“}?:1) < s) = 3.

Proof. Because of the consistency in Lemma 3, we have

lim P(3; = f;)) = 1.

n—00 J

Therefore,
nlgrgo \IP’(BE’}) < B zinbict) — P(BE’}) < BjHzimbiz1)] < nh_{fc}o P(B(;) # B(j)Hzi,n}zT‘L:l) = 0.

The result then follows by applying Step 3 in the Proof of Theorem 1.
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C Additional simulation and empirical results

C.1 Practical implementation

In this section, we discuss the choice of tuning parameters (including B, 9, by, and bg) of the proposed
method in Section 2.2. For the number of repetitions for our resampling procedure, we recommend
using B = 2,000 as a good balance between computational load and statistical inference accuracy.

For the tuning pair (bg, by), from our theoretical analysis, we need to ensure that the distance
between by and by, is of the order n® with J € (0,0.5) to guarantee the statistical validity of our
proposed procedure. To achieve this goal, for the policy B;), we adopt the tuning pair of the form

bizn_é-sg-ci, b%zn_é-sg-cé,
where 53 is the jth element in the diagonal of the estimated covariance matrix ﬁﬁJ, c{ and c; are
positive constants.

The constants ci and cfg can significantly impact the performance of the proposed approach
in finite samples. In the extreme cases, on the one hand, if both ci and c; are overly large, the
estimated near tie set might include more policies than necessary and our approach is only valid
if all true policy effects are closely ties. On the other hand, if ci and cé are both closer to zero,
our approach reduces to a standard parametric bootstrap approach, which is problematic in the
presence of tied policy effects. To present a robust algorithm in finite samples, we thus adopt the
following “double-bootstrap” method as discussed in [16] (note that double-bootstrapped statistics

are labelled with double-star superscripts):
. ® _ Z?=1 Bj A
1. For j=1,...d, set 87 = A =5—= + (1 —A)- B, where

Z?:l i _
n 3718 — B)>

A= min{l7 X nO'OS}.

2. For every candidate pair (¢, cg) such that ¢, € Cp, and cg € Cgr, do

(a) Fort < 1to T, do

i. Generate 3* = (3{‘,,3&") from N(,B*,(AZEJ/n), where 8* = (5f,...,85), and de-

13



note the ordered values in B* as ﬂE"l) =>...=0F,.
ii. For r < 1 to R, do

A. Generate double bootstrap statistics B** = ( . ,ﬁ *) from N(ﬁ*,ﬁ?/n),

and denote the ordered values of ,6** as 6(1) = BE“d’S
B. Record wi%, = 1{—cy -n0. Sg < (AZ* - BE“]’;) <cgp-n?. 83\} and 5;‘;3 =
ZZ 1 k(gﬁ**/Zk | Wiy for g =1,...,d.

iii. Calculate Bj(c,cr) = & 27}}:1 ]l(ﬁ*.*’r < Bh

() (])T) forj=1,....d.

3. Record the loss function

T N
Lj(cr,cr) = Z( (e, er) — m) , (C.1)

where B ;) (c1,cr) is the t-th smallest statistics in Bj1(cr,cr), ..., Bjr(cy, cr).

4. Choose the pair (¢, ) for inferring B(j) and B3 that minimizes L; (cL,cr), that is

(d,d) = Jmin Ll ca)s j =1 do.

Note that we only use the above procedure to choose the tuning parameters ci and cé, meaning
that we do not use the resampled statistics in Step 1 to carry out inference on ;). In Step 1, A
is adopted to stabilize the performance of the tuning parameter selection in finite samples, and A
only takes a close-to-zero value whenever limited variation is found between policy effect estimates.

Following Theorem 1, we know that IP’(BE'}) < ﬁ(j)\{zm}?:l) roughly follows Unif(0, 1) when
the sample size n is large. Given a desirable tuning pair (cr,cg), we would thus expect that
Bj 1y(cw, cr); -y By () (L, cr) share a similar distribution with the ordered statistics of i.i.d. Unif(0, 1)
random variables. The loss function defined in Eq (C.1) measures the average of squared differ-
ences between Bj (cy, cr) and the expected value of the order statistics of the Unif(0, 1) random
variables. Given the rational above, we would expect that the optimal tuning pair (¢!, ¢/) minimize
such a loss.

We further comment on several implementation details. Our numerical results suggest using

R = 200 and T = 40 can provide reasonable choice of the tuning parameters in finite samples.

14



In addition, when the loss function Lj(cr, cr) do not fluctuate substantially over all considered
pairs (cp,cr). In this case, let v denote the 97.5th percentile of Ly = %Zthl(U(b) - T%rl)2 and
Uny, -+ Uy are ordered observations from Unif(0, 1) distribution, we choose (6'7L, EJR) which is the
mean of all plausible pairs such that L;(c, cr) < . Lastly, as for the candidate region of ¢y, and cz,
we first consider selecting ¢y, from 0 to M and cg from 0 to 2(%);}#. Then based on
the values of L;(cr, cr) for different tuning pa]irs, we may choose to expand or shrink the candidate

region to make our algorithm more efficient.

C.2 Robustness to different tuning choice

We summarizing our simulation results with different choices of the tuning parameter § € {0.05,0.15,0.25},
R € {200,500} and T" € {40, 100,200}. To avoid redundancy, we showcase the results with 3 = 0 and
Bj = o1 (#'1), 7 =1,...,d while ¢, takes value 141 or 561. We report the coverage probabilities
and asymptotic biases for estimating the top two policies (i.e., dy = 2) B(1) and B(z). Supplementary
Materials Table C.1 summarizes the simulation results with different choice of § and fixed R = 200
and T = 40. There, we observe that the performance of our method is overall robust to the choice
of different § in a variety of settings. Though when ¢, is large and no policy is effective, smaller §
likely leads to under-covered confidence intervals. Supplementary Materials Table C.2 summarizes
the simulation results under R € {200,500} and T € {40,100,200}, while fixing 6 = 0.25. Our
results demonstrate that when R or T increases, the coverage probabilities are slightly increased
and biases are marginally reduced. Overall, we observe that the proposed method is not very sen-
sitive to the choice of various tuning parameters §, 7', and R. To guide readers for the selection of
tuning parameters to reach an optimal accuracy and computational efficiency trade-off, we further
provide the computational time under various choices of T" and R in the Supplementary Materials
Table C.3. In practice, to reduce computational cost while maintaining valid statistical inference,
we adopt the following tuning set in the rest of the numerical studies: R = 200, T' = 100, and
d = 0.25.

C.3 Computational time with different tuning parameters

In this section, we summarize computational time with respect to various choices of R, T', and n to

make the computational costs transparent for readers. Here, we fix § at 0.25 and select 20 candidate
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Table C.1: Coverage probability and asymptotic bias with different choices of §

No policy is effective, B3y = Bg) = 0

qn = 141 qn = 561
0=0.05 0=0.15 0=0.25 0 =0.05 0=0.15 0=0.25
By  Cover 0.97(0.00) 0.95(0.01)  0.96(0.01) 0.93(0.01)  0.92(0.01)  0.96(0.01)
y/nBias 0.01(0.02) 0.03(0.04) -0.02(0.02) 0.03(0.01)  0.03(0.01) -0.01(0.01)
By  Cover  0.98(0.00) 0.94(0.01)  0.97(0.01) 0.93 (0.01) 0.93(0.01)  0.96(0.01)
4/nBias 0.00(0.01) 0.02(0.01) 0.01(0.01) 0.03(0.01)  0.02(0.01) 0.01(0.01)
Top two policies are effective, 8(1) = 0.97, Bp) = 0.43
qn = 141 qn = 561
0=0.05 0=0.15 0=0.25 0 =0.05 0=0.15 0=0.25
By  Cover  0.94(0.01) 0.98(0.00)  0.95(0.01) 0.93(0.01)  0.95(0.01)  0.94(0.01)
4/nBias  0.05(0.05) -0.03(0.04) -0.04(0.05) -0.07(0.06) -0.06(0.07) -0.07(0.07)
By  Cover 0.94(0.01) 0.97(0.01)  0.95(0.01) 0.95(0.01)  0.96(0.01)  0.95(0.01)
4/nBias  0.08(0.08) 0.05(0.06) 0.06(0.06) 0.08(0.08)  0.07(0.08)  0.08(0.09)

Note: We fix R = 200 and T' = 40. “Cover” is the empirical coverage of the 95% confidence interval for §(;) and “
y/nBias ” captures the root-n scaled Monte Carlo bias for estimating 3(;). Monte Carlo standard errors are provided
in the parenthesis.

tuning parameters. Table C.3 demonstrates that the computational costs are largely determined
by T' and R. When both T" and R reach 500, running our method once takes approximately one
hour. For simulation study with multiple iterations, we recommend setting R = 200 and T" < 200

to achieve a reasonable trade-off between accuracy and computational efficiency.

C.4 Simulation results: [;

The simulation results presented in Table C.4 and C.5 help us confirm our theoretical analyses in

Corollary 1, and we observe similar trends compared to the results in the main manuscript.

C.5 Simulation results: d = 10

This section provides an additional set of simulation results when d = 10, which is larger than
the setting (d = 5) adopted in the main manuscript. We investigate the performance of the five
methods for estimating B(2), B(5), and B(10). Table C.6 - C.9 demonstrate that without adjustment,
the coverage probabilities for §s) fall below 80% when ¢,, > 281, while our proposed method reaches
nominal level coverage regardless the ranking of ;. “Proposed + EW”, “Proposed + HCK”, and

“Proposed + HC3” show similar trends compared to those when d = 5.
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Table C.2: Coverage probability and asymptotic bias with different choices of T and R

No policy is effective, 31y = B2) =0
gn = 141 gn = 561
T =40 T =100 T =200 T =40 T =100 T = 200
By R=200 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01)  0.96(0.02)  0.96(0.02)
4/nBias -0.02(0.02) 0.03(0.06) 0.02(0.06) -0.01(0.01) -0.01(0.12) 0.01(0.12)

(
R=500 Cover 0.96(0.01) 0.95(0.01) 0.96(0.01)  0.97(0.01) 0.96(0.01) 0.96(0.01)

(

(

VnBias  0.01(0.02) -0.02(0.04) 0.01(0.02)  0.01(0.01) 0.01(0.01)  0.01(0.01)

(
(
( ( ( (
By R=200 Cover 0.96(0.01) 0.96(0.01) 0.97(0.01)  0.96(0.01) 0.96(0.01) 0.97(0.01)
VnBias  0.01(0.01) -0.01(0.01) 0.01(0.01)  0.01(0.01)  0.01(0.01) -0.01(0.01)
( ( ( (
( ( ( (

R =500 Cover 0.95(0.01) 0.95(0.01) 0.96(0.01) 0.96(0.01)  0.95(0.01)  0.96(0.01)
4/nBias  0.01(0.01) 0.01(0.01) 0.01(0.01) 0.01(0.01)  0.01(0.01)  0.00(0. 01)

Top two policies are effective, 81) = 0.97, B9 = 0.43
qn = 141 qn = 561
T =40 T =100 T = 200 T =40 T =100 T = 200
Bu R=200 Cover 0.95(0.01) 0.950.01) 096(0.01)  0.94(0.01) 0.95(0.01) 0.95(0.01)
nBias  -0.04(0.05) 0.02(0.08) 0.02(0.08)  -0.07(0.07) 0.07(0.16)  0.06(0.18)
)

( ( ( (
R=500 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01)  0.94(0.01) 0.95(0.01) 0.95(0.01)
VnBias  0.02(0.04) 0.01(0.04) 0.01(0.05)  0.05(0.07) 0.05(0.07)  0.04(0.07)
By R=200 Cover 0.95(0.01) 0.95(0.01) 0.950.01)  0.9500.01) 0.95(0.01) 0.96(0.01)
V/nBias  0.06(0.06)  0.05(0.06) 0.05(0.06)  0.08(0.09) 0.07(0.08) 0.07(0.09)

( ( ( ( ( (

( ( ( ( ( (

R=500 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01)  0.95(0.01) 0.96(0.01) 0.96(0.01)
V/nBias  0.06(0.08)  0.05(0.06) 0.05(0.06)  0.07(0.08) 0.07(0.08) 0.06(0.09)

Note: We fix § = 0.25. “Cover” is the empirical coverage of the 95% confidence interval for ;) and “ y/nBias ”
captures the root-n scaled Monte Carlo bias for estimating B(;). Monte Carlo standard errors are provided in the
parenthesis.

Computational time with respect to various n, ¢,, T, and R

qn = 141 (s x 10%) qn = 561 (s x 10%)
T=40 T =200 T =500 T=40 T =200 T =500
n =500 R =200 0.10 0.48 1.27 0.11 0.48 1.35
R =500 0.23 1.20 3.31 0.24 1.38 3.50
n =2000 R =200 0.10 0.50 1.29 0.12 0.51 1.40
R =500 0.26 1.23 3.44 0.27 1.39 3.98
n = 5000 R =200 0.11 0.52 1.32 0.14 0.55 1.51
R =500 0.27 1.25 3.50 0.30 1.40 4.05

Table C.3: The unit: 1,000 seconds. We fix § = 0.25 and set 20 candidate tuning pairs for (cy, cz). The simulations
are performed on a Lenovo NeXtScale nx360m5 node (24 cores per node) equipped with Intel Xeon Haswell processor.
The core frequency is 2.3 Ghz and supports 16 floating-point operations per clock period.

C.6 Simulation results: realistic error terms

In this section, we consider two DGPs of generating more practical errors beyond simple i.i.d.
Gaussian noises. For the first DGP, we generate covariates from x;, ~ N(0,X) and w;, ~

N(0,1,,), and then generate random noise from (1) an asymmetric distribution with the density
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Table C.4: Simulation results (d = 5, heterogeneity, ;)

5j:®_1(ﬁ)7 =0, j=1,...,d
Tin ~N(0,%), win = LW, = 2 (0.98))
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn =1 Cover 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.96(0.01) 0.95(0.01)
y/nBias 0.04(0.06) 0.04(0.05) 0.04(0.05) -0.04(0.05) 0.04(0.06)

gn =141  Cover 0.95(0.01) 0.95(0.01) 0.93(0.01) 0.95(0.01) 0.95(0.01)
y/nBias 0.07(0.07) 0.06(0.07) 0.07(0.06) 0.06(0.06) 0.05(0.07)

gn = 281  Cover 0.94(0.01) 0.95(0.01) 0.84(0.01) 0.82(0.01) 0.94(0.01)
y/nBias  -0.09(0.08) -0.07(0.07) -0.10(0.08) -0.11(0.07) -0.07(0.08)

gn =421  Cover 0.94(0.01) 0.91(0.01) 0.76(0.02) 0.75(0.01) 0.93(0.01)
y/nBias  -0.09(0.10) -0.10(0.09) -0.15(0.09) -0.16(0.09) -0.10(0.09)

gn = 561  Cover 0.94(0.01) 0.90(0.01) 0.67(0.02) 0.65(0.01) 0.78(0.01)
V/nBias  -0.15(0.14) -0.12(0.10) -0.17(0.23) -0.25(0.12) 0.15(0.11)

qn = 631*  Cover 0.92(0.01) 0.89(0.02) 0.45(0.02) 0.42(0.01) 0.68(0.01)
y/nBias  -0.19(0.18) -0.22(0.13) -0.35(0.29) -0.54(0.22) 0.28(0.18)

Tin = ]l(iL,n > 0), Win ~ N(Oal)
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

n =1 Cover 0.97(0.01) 0.97(0.01) 0.95(0.01) 0.95(0.01) 0.96(0.01)
y/nBias  -0.05(0.10) -0.06(0.09) -0.06(0.10) -0.10(0.11) -0.04(0.09)

gn =141 Cover 0.97(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01) 0.95(0.01)
y/nBias  -0.06(0.11) -0.08(0.12) -0.07(0.11) 0.13(0.12) 0.09(0.12)

gn =281 Cover 0.96(0.01) 0.94(0.01) 0.86(0.02) 0.85(0.01) 0.95(0.01)
y/nBias  -0.09(0.13) -0.10(0.13) -0.10(0.13) -0.15(0.12) -0.09(0.13)

gn =421 Cover 0.94(0.01) 0.93(0.01) 0.75(0.02) 0.72(0.01) 0.93(0.01)
+/nBias 0.11(0.17) -0.12(0.13) 0.18(0.17) -0.20(0.17) 0.14(0.14)

gn = 561 Cover 0.94(0.01) 0.90(0.01) 0.51(0.02) 0.48(0.01) 0.92(0.01)
y/nBias  -0.15(0.22) -0.21(0.20) -0.25(0.23) -0.46(0.26) -0.21(0.20)

gn = 631 Cover 0.91(0.01) 0.90(0.01) 0.48(0.02) 0.45(0.01) 0.80(0.01)
y/nBias  -0.21(0.20) -0.23(0.22) 0.41(0.30) -0.53(0.20) 0.35(0.22)

”

Note: “Cover” is the empirical coverage of the 95% confidence interval for 8; and “ 4/nBias ” captures the root-n

scaled Monte Carlo bias for estimating ;. “ * 7 indicates that SA’ZEJ is not positive semi-definite in some Monte Carlo
samples.

function 0.5¢(¢|—0.5,0.25) + 0.5¢(£]0.5,1); (2) a bimodal distribution with the density function

0.5¢(g|—1.5,0.25)+0.5¢(¢|1.5, 1), where ¢(¢|u, 0?) denotes the density function of a normal random

variable with mean p and variance o?. The simulation results are summarized in Supplementary
Materials Table C.11. We further study this setting with a larger sample size, n = 2,000. This
sample size is closer to the sample size adopted in our case study I. The simulation results under
n = 2,000 are summarized in Supplementary Materials Table C.13. We also consider the design
with both 8 # 0 and v # 0. The simulation results are summarized in Supplementary Materials
Table C.10-C.13.

For the second DGP, we consider heteroscedastic errors following the setup in [11] with: x;, ~
N(0,%), w;, = L(W;, = ®71(0.98)) with w;,, ~ N(0, 1), and &;, ~ N(0,1) with V[g; n|@i , win] =

ce(1+ (H(1,i0) + Vw;n)?/4) and V[zg; p|win] = ¢z, (1 + (V'w;n)%/4), where zy; , denotes the kth
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Table C.5: Simulation results (d = 5, heterogeneity, ;)

ﬂj:q)_l(ﬁ)w Yo=0, j=1,....d
zin ~N(0,Y), wi,=1W;, > 2 1(0.98))
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

gn=1  Cover _ 0.96(0.01) 0.97(0.01) 0.97(0.01) 0.96(0.01) 0.97(0.01)
VnBias  -0.04(0.06) -0.03(0.06) -0.03(0.06) -0.04(0.07) -0.04(0.06)

gn =141  Cover  0.96(0.01) 0.96(0.02) 0.88(0.02) 0.90(0.01) 0.94(0.01)
V/nBias  -0.05(0.08) -0.05(0.08) -0.10(0.08) -0.09(0.06) -0.07(0.07)

gn =281  Cover  0.95(0.01) 0.94(0.02) 0.86(0.02) 0.84(0.01) 0.91(0.02)
VnBias  0.07(0.09) 0.07(0.09) 0.13(0.08) -0.15(0.10) 0.12(0.10)

gn =421  Cover  0.94(0.01) 0.93(0.02) 0.77(0.02) 0.72(0.02) 0.71(0.02)
VnBias  -0.10(0.13) -0.12(0.13) -0.15(0.11) -0.17(0.13) -0.19(0.17)

gn =561  Cover  0.94(0.01) 0.92(0.02) 0.65(0.02) 0.60(0.01) 0.69(0.02)
VnBias  -0.16(0.17) -0.18(0.16) -0.18(0.15) 0.20(0.13) 0.35(0.22)

Gn =631  Cover  0.93(0.01) 0.92(0.02) 0.44(0.02) 0.42(0.01) 0.50(0.02)
VnBias  -0.18(0.17) -0.23(0.21) -0.45(0.19) -0.49(0.17) 0.48(0.30)

Tin = ]l(iL,n > 0), Win ~ N(Oal)
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

=1 Cover  0.96(0.01) 0.98(0.01) 0.96(0.01) 0.96(0.01) 0.97(0.01)
VnBias  -0.08(0.13) -0.07(0.13) -0.10(0.12) 0.09(0.12) -0.10(0.10)

gn =141  Cover  0.96(0.01) 0.96(0.01) 0.94(0.01) 0.95(0.01) 0.95(0.01)
VnBias  0.09(0.14) 0.10(0.14) 0.13(0.14) 0.12(0.13) 0.10(0.14)

gn =281  Cover  0.95(0.01) 0.95(0.01) 0.92(0.01) 0.90(0.01) 0.95(0.01)
VnBias  -0.11(0.16) -0.11(0.15) 0.17(0.15) 0.19(0.14) 0.13(0.17)

an =421  Cover  0.95(0.01) 0.92(0.02) 0.82(0.02) 0.78(0.01) 0.94(0.01)
V/nBias  0.18(0.20) -0.20(0.20) -0.25(0.20) -0.32(0.17) -0.20(0.20)

an =561  Cover  0.94(0.01) 0.92(0.02) 0.67(0.02) 0.64(0.01) 0.73(0.01)
V/nBias  -0.26(0.24) 0.22(0.24) -0.41(0.23) -0.48(0.23) 0.27(0.25)

an =631  Cover  0.92(0.01) 0.87(0.02) 0.52(0.02) 0.48(0.01) 0.50(0.01)
VnBias  0.30(0.27) 0.41(0.29) 0.50(0.28) -0.65(0.13) 0.55(0.28)

Note: “Cover” is the empirical coverage of the 95% confidence interval for 85 and “ 4/nBias 7 captures the root-n
scaled Monte Carlo bias for estimating 85. “ * 7 indicates that €25’ is not positive semi-definite in some Monte Carlo

samples.

component of the vector ;. The constants c. and ¢, are chosen so that V[e; | = V[zg,;,] =1
and t(a) = al(—1 <a <1)+sgn(a)(l —1(—1<a<1)).lis the conformable vector of ones. The
simulation results are summarized in Supplementary Materials Table C.10.

Table C.10 shows that, under the second DGP, our proposed method has slightly compromised
performance, but still reaches nominal level coverage when ¢, < 421. Table C.11 and C.12 demon-
strate that the performance of our method is robust even when both 5 # 0 and « # 0, and ¢,, < 561.
Table C.13 suggests that when sample size increases, our proposed method has smaller bias and
improved coverage probabilities when ¢, = 631. The other considered methods show similar trends

to the settings under homoscedastic errors.
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Table C.6: Simulation results (d = 10, heterogeneity, 5(2))

Gn =1
gn = 141
gn = 281
qn = 421
qn = 561
qn = 631*

qn =1
qn = 141
qn = 281
gn = 421
gn = 561
qn = 631

Cover
y/nBias
Cover
\/nBias
Cover
y/nBias
Cover
\/nBias
Cover
\/nBias
Cover

\/nBias

Cover
y/nBias
Cover
y/nBias
Cover
y/nBias
Cover
y/nBias
Cover
y/nBias
Cover

y/nBias

Bj*q) (rl+l) Yn =0, .]led
zin ~N(0,%), w;, =1, > 2" 1(0.98))

Proposed+KJ  Proposed+HCK  Proposed+HC3 Proposed+EW No adjustment-+KJ
0.96(0.01) 0.96(0.01) 0.96(0.01) 0.97(0.01) 0.94(0.01)
-0.05(0.07) -0.04(0.07) -0.05(0.06) -0.06(0.07) 0.06(0.06)
0.96(0.01) 0.95(0.01) 0.96(0.01) 0.96(0.01) 0.94(0.01)
-0.06(0.07) -0.07(0.07) 0.07(0.08) -0.07(0.07) -0.06(0.06)
0.95(0.01) 0.95(0.01) 0.92(0.01) 0.89(0.01) 0.92(0.01)
-0.07(0.09) -0.08(0.09) 0.15(0.10) -0.18(0.08) 0.20(0.08)
0.96(0.01) 0.94(0.01) 0.88(0.01) 0.80(0.02) 0.90(0.01)
-0.08(0.11) -0.10(0.11) 0.20(0.11) -0.25(0.10) -0.25(0.09)
0.95(0.01) 0.94(0.01) 0.75(0.01) 0.67(0.02) 0.89(0.01)
0.14(0.15) 0.15(0.15) -0.27(0.16) -0.31(0.13) -0.28(0. 12
0.93(0.01) 0.91(0.01) 0.65(0.01) 0.57(0.02) 0.88(0.01)
0.22(0.20) 0.27(0.19) -0.33(0.20) 0.35(0.17) 0.38(0.16)

Tin = Il(%,j7,, > 0), Wip ~ ./\/(07 ])

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW  No adjustment+KJ
0.97(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.95(0.01)
-0.05(0.11) -0.07(0.11) 0.06(0.12) -0.08(0.11) -0.09(0.09)
0.96(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01) 0.94(0.01)
0.07(0.12) 0.10(0.13) 0.13(0.13) 0.15(0.13) 0.10(0.11)
0.95(0.01) 0.95(0.01) 0.91(0.01) 0.88(0. 1) 0.93(0.01)
0.14(0.15) 0.16(0.16) 0.20(0.13) -0.28(0.15) -0.29(0.13)
0.94(0.01) 0.93 (0.01) 0.85(0.01) 0.76(0.01) 0.92(0.01)
0.20(0.19) 0.22(0.18) 0.25(0.17) 0.37(0.18) 0.32(0.16)
0.93(0.01) 0.93(0.01) 0.77(0.01) 0.67(0.02) 0.90(0.01)
0.22(0.23) 0.25(0.23) -0.30(0.19) 0.41(0.22) 0.44(0.19)
0.90(0.01) 0.88(0.01) 0.67(0.01) 0.60(0.02) 0.88(0.01)
0.31(0.25) 0.45(0.26) -0.48(0.13) 0.55(0.25) 0.61(0.23)

Note: “Cover” is the empirical coverage of the 95% confidence interval for B2y and “ y/nBias
scaled Monte Carlo bias for estimating B(2). “*” indicates that €2} is not positive semi-definite in some Monte Carlo

samples.

C.7 Additional analysis for case study I

In this section, we revisit case study I with a much smaller model that only includes the main
effects. The results are summarized in Table C.14. Table C.14 shows that, overall, the results

under a smaller model do not change substantively. But “asking 25% more”

significant impact on donation amount even without calibration.

”

D Extension to regression models with fixed effects

As stated in the main manuscript, our approach extends to linear panel data models with fixed
effects. We shall briefly discuss this connection below. Because it is a common practice to include

the subscript ¢ to denote time in panel data analyses, to avoid using triple subscript, we drop
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Table C.7: Simulation results (d = 10, homogeneity, 3s))

B=0, v=14 Jj=1....q
Lin ~ N<0~ E), Win = ]l("-T’i,n = @—1(098))
Proposed+KJ Proposed+HCK Proposed+HC3  Proposed+EW  No adjustment+KJ

gn =1 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.93(0.01) 0.92(0.01)
+/nBias 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.04(0.02)

qn =141  Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.93(0.01) 0.82(0.01)
v/nBias  -0.01(0.01) -0.01(0.01) 0.02(0.02) 0.02(0.01) -0.17(0.02)

qn =281  Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.92(0.01) 0.80(0.01)
\/nBias 0.02(0.02) 0.02(0.02) 0.02(0.02) 0.05(0.02) -0.18(0.02)

gn =421  Cover 0.93(0.02) 0.93(0.02) 0.93(0.01) 0.80(0.02) 0.78(0.01)
y/nBias  -0.02(0.02) -0.02(0.02) 0.05(0.04) 0.17(0.03) 0.21(0.03)

gn =561  Cover 0.93(0.02) 0.92(0.02) 0.93(0.01) 0.75(0.02) 0.76(0.01)
\/nBias 0.02(0.02) -0.03(0.02) 0.05(0.04) 0.32(0.04) -0.28(0.04)

gn = 631*  Cover 0.91(0.02) 0.90(0.01) 0.90(0.01) 0.73(0.02) 0.75(0.01)
y/nBias  -0.12(0.05) -0.30(0.05) 0.14(0.09) 0.36(0.06) -0.34(0.05)

Zip = L(&in >0), wiy~N(0,1)
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed + EW  No adjustment+KJ

n =1 Cover 0.95(0.01) 0.95(0.02) 0.94(0.01) 0.93(0.02) 0.91(0.01)
\/nBias 0.01(0.01) 0.01(0.01) -0.02(0.02) 0.01(0.01) 0.06(0.03)

qn =141  Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.93(0.01) 0.81(0.01)
v/nBias  -0.01(0.01) -0.01(0.01) -0.02(0.02) 0.01(0.00) 0.19(0.03)

qn =281  Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.92(0.01) 0.78(0.01)
\/nBias 0.02(0.02) 0.02(0.02) -0.02(0.03) 0.06(0.02) -0.21(0.04)

gn =421 Cover 0.93(0.01) 0.93 (0.01) 0.92(0.02) 0.80(0.01) 0.75(0.01)
y/nBias  -0.01(0.00) -0.01(0.00) -0.04(0.03) 0.17(0.03) 0.37(0.05)

gn =561  Cover 0.93(0.01) 0.93(0.01) 0.92(0.01) 0.75(0.02) 0.70(0.01)
\/nBias 0.03(0.02) 0.03(0.02) -0.08(0.06) 0.18(0.04) -0.48(0.05)

gn =631 Cover 0.92(0.01) 0.92(0.01) 0.91(0.01) 0.75(0.02) 0.66(0.01)
y/nBias  -0.12(0.05) -0.30(0.05) -0.32(0. 11) 0.36(0.06) -0.65(0.09)

”

Note: “Cover” is the empirical coverage of the 95% confidence interval for 83y and “ y/nBias ” captures the root-n

scaled Monte Carlo bias for estimating B2y. “*” indicates that Q% is not positive semi-definite in some Monte Carlo
samples.
subscript n in all considered random variables in the discussion below.

Suppose we have access to one panel data with cross-sectional observations denoted by i € N' =
{1,...,N} and time periods t € T = {1,...,T}. Consider the following fixed effects panel data

model

/ .
Yit = Bt + ¢ +eqy tui, i=1,...,N,
where ¢; is an unobserved effect that varies across sections but is assumed to be constant over time,
it € R is the observed outcome, x; € R4 contains the policy variables of interest, and error
terms wu;;’s are uncorrelated conditional on x;; and d;;. eq;, is an unobserved effect indexed by an
observed indexing variable d;; € {1,...,G}, and is assumed to be constant across all observations

that share the same value of d;;. When e4,, = 0, this model reduces to the one-way fixed effects
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Note: “Cover” is the empirical coverage of the 95% confidence interval for B2y and “ y/nBias
scaled Monte Carlo bias for estimating B(2). “*” indicates that €2} is not positive semi-definite in some Monte Carlo
samples.

Table C.8: Simulation results (d = 10, heterogeneity, 5s))

Gn =1
gn = 141
gn = 281
qn = 421
qn = 561
qn = 631*

qn =1
qn = 141
qn = 281
gn = 421
qn = 561
qn = 631

B]*(I) (rl+l) Yn =0, .]led
@in ~N(0,%), wipn = 1(W;, > ~1(0.98))
Proposed+KJ  Proposed+HCK  Proposed+HC3 Proposed+EW No adjustment-+KJ

Cover 0.96(0.01) 0.95(0.01) 0.92(0.02) 0.96(0.01) 0.94(0.01)
y/nBias 0.06(0.07) 0.07(0.07) -0.12(0.09) 0.07(0.07) 0.06(0.06)
Cover 0.95(0.01) 0.95(0.01) 0.92(0.01) 0.92(0.01) 0.94(0.01)
\/nBias 0.08(0.08) 0.08(0.08) -0.12(0.08) 0.12(0.08) -0.07(0.07)
Cover 0.95(0.01) 0.95(0.01) 0.91(0.01) 0.91(0.01) 0.93(0.01)
y/nBias 0.08(0.08) 0.08(0.08) -0.13(0.09) 0.12(0.08) 0.10(0.07)
Cover 0.95(0.01) 0.95(0.01) 0.84(0.02) 0.82(0.02) 0.93(0.01)
\/nBias 0.10(0.11) 0.11(0.11) -0.13(0.07) 0.14(0.11) -0.12(0.09)
Cover 0.94(0.01) 0.94(0.01) 0.80(0.01) 0.79(0.02) 0.92(0.01)

\/nBias 0.12(0.13) 0.13(0.13) -0.18(0.06) 0.20(0.12) -0.15(0. 10
Cover 0.93(0.01) 0.92(0.01) 0.78(0.01) 0.76(0.01) 0.90(0.01)

\/nBias 0.16(0.14) 0.18(0.14) -0.28(0.26) 0.24(0.13) 0.18(0.12)

Tin = Il(%jﬂl > 0), Wi p ~ N((L ])
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW  No adjustment+KJ

Cover 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.96(0.01) 0.96(0.01)
y/nBias 0.05(0.11) 0.06(0.11) -0.08(0.11) 0.08(0.11) -0.06(0.09)
Cover 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01)
y/nBias 0.06(0.11) 0.08(0.11) -0.11(0.12) 0.10(0.11) 0.09(0.10)
Cover 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01) 0.95(0.01)
VnBias  0.12(0.13) 0.12(0.13) 0.10(0.10) 0.14(0.12) -0.10(0.11)
Cover 0.95(0.01) 0.95(0.01) 0.91(0.01) 0.90(0.01) 0.95(0.01)
VnBias  0.11(0.14) 0.15(0.15) -0.20(0.08) 0.25(0.14) -0.12(0.12)
Cover 0.94(0.01) 0.94(0.01) 0.85(0.01) 0.83(0.02) 0.94(0.01)
y/nBias -0.15(0.18) -0.16(0.17) -0.26(0.20) 0.28(0.18) -0.15(0.15)
Cover 0.93(0.01) 0.92(0.01) 0.75(0.01) 0.72(0.02) 0.93(0.01)
y/nBias 0.25(0.20) 0.30(0.19) -0.70(0.34) 0.68(0.20) 0.28(0.18)

”

model studied in [46], otherwise the above model coincides with the one studied in [48].

To concretely introduce the connection of the above model and our model setup, consider the

case when egq,, # 0, we stack the data over cross-sectional observations and time periods. Define

=(Y11, - YIT5 Y215 - - s Y2T -+ s YN15 - - -
:1:=(m11,...,a:lT,ac21,...,m2T,...,:L'Nl,...
w:(gth) e RNTX(N+G).

:(1 )zteNxT’ 82 =
n z(cl,...,chel,...,eg)/ER(N+G)X1,
u=(u11,...,ulT,qu,...,uzT,...,uNl,...

) yNT)

amNT)

def{1,...,G}
(1(dit=d)) (L) ENXT?
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Table C.9: Simulation results (d = 10, heterogeneity, 3(1¢))

ﬂ]itb (d+1) =0, .]:Lvd
n ~ N(O, Z) Win = ]I(HNJZ'JZ > @71«)98))
Proposed+KJ  Proposed+HCK  Proposed+HC3 Proposed+EW No adjustment-+KJ

n=1  Cover _ 0.94(0.01) 0.95(0.01) 0.94(0.01) 0.94(0.01) 0.94(0.01)
VnBias  0.06(0.07) 0.03(0.06) 0.06(0.06) 0.07(0.07) -0.04(0.05)

gn =141  Cover  0.93(0.02) 0.93(0.02) 0.92(0.02) 0.92(0.02) 0.94(0.01)
V/nBias  0.06(0.06) 0.06(0.06) 0.08(0.07) 0.08(0.06) 0.06(0.06)

qn =281  Cover  0.94(0.01) 0.94(0.01) 0.90(0.01) 0.89(0.01) 0.94(0.01)
V/nBias  0.07(0.08) 0.08(0.08) 0.11(0.08) 0.10(0.07) 0.07(0.07)

gn =421  Cover  0.94(0.01) 0.94(0.01) 0.84(0.01) 0.82(0.02) 0.93(0.01)
VnBias  0.08(0.09) 0.09(0.09) 0.16(0.10) 0.17(0.09) -0.11(0.08)

qn =561  Cover  0.93(0.01) 0.91(0.01) 0.68(0.02) 0.61(0.02) 0.91(0.01)
V/nBias  0.16(0.14) 0.18(0.14) 0.20(0.10) 0.24(0.13) 0.15(0.12)

qn =631  Cover  0.92(0.01) 0.90(0.01) 0.53(0.02) 0.50(0.02) 0.82(0.01)
VnBias  0.20(0.18) 0.23(0.18) -0.50(0.12) 0.55(0.18) -0.30(0.17)

Tin = Il(%jﬂl > 0), Wip ~ N((L ])
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW  No adjustment+KJ

n=1  Cover ~ 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.96(0.01) 0.96(0.01)
VnBias  0.08(0.11) 0.08(0.11) 0.11(0.12) 0.09(0.11) -0.08(0.09)

gn =141  Cover  0.94(0.01) 0.94(0.01) 0.93(0.01) 0.92(0.01) 0.94(0.01)
VnBias  0.10(0.12) 0.11(0.12) 0.14(0.13) 0.15(0.12) 0.11(0.11)

gn =281  Cover  0.94(0.01) 0.94(0.01) 0.88(0.01) 0.84(0.01) 0.94(0.01)
VnBias  0.11(0.15) 0.12(0.15) 0.16(0.14) 0.19(0.15) 0.12(0.13)

an =421  Cover  0.94(0.01) 0.94(0.01) 0.85(0.01) 0.82(0.01) 0.94(0.01)
VnBias  0.14(0.16) 0.16(0.16) 0.20(0.16) 0.25(0.16) 0.15(0.15)

gn =561  Cover  0.93(0.02) 0.93(0.01) 0.65(0.01) 0.62(0.02) 0.92(0.01)
VnBias  0.19(0.20) 0.23(0.21) -0.24(0.15) 0.30(0.21) -0.24(0.20)

gn =631  Cover  0.94(0.01) 0.92(0.01) 0.57(0.01) 0.50(0.02) 0.91(0.01)
VnBias  0.26(0.29) 0.30(0.28) -0.85(0.23) 0.88(0.31) -0.33(0.29)

Note: “Cover” is the empirical coverage of the 95% confidence interval for 19y and “ 4/nBias ” captures the root-n

scaled Monte Carlo bias for estimating S(10y. “*” indicates that ﬁfﬂ is not positive semi-definite in some Monte Carlo
samples.

With the above notations, the fixed effects panel data model can be written as the following
y =06+ wy, +u. (D.1)

This indicates that our approach also goes through in linear panel data models, as long as we can
construct an estimator of 3 that converges to a Gaussian distribution with its covariance matrix
being consistently estimated.

[36] has shown that the covariance matrix estimator (AZ,KIJ remains consistent in one-way fixed
effect panel data regression models when eg,, = 0. This suggests that our approach can be naturally
extended to make inference on multiple best policies in one-way fixed effect models. In addition,
[11] have shown that the covariance matrix estimator SAZELCK is consistent in both one-way and two-

way fixed effect panel data regression models. Since our resampling based approach only requires
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Table C.10: Simulation results (d = 5, heteroscedasticity, heterogeneity, 51))

B =27 (3L), win~N0O,%), wi,=1(W,>>(09%), j=1,...,4d

In = 0
Proposed+KJ  Proposed+HCK  Proposed+HC3 Proposed+EW No adjustment-+KJ

an=1  Cover _ 0.96(0.00) 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.95(0.01)
JnBias  0.06(0.07) 0.07(0.07) 0.07(0.07) 0.07(0.07) 0.07(0.07)

@n=141  Cover  0.95(0.01) 0.95(0.01) 0.94(0.01) 0.88(0.02) 0.94(0.01)
JnBias  -0.12(0.12) -0.12(0.12) -0.12(0.12) -0.16(0.07) -0.12(0.12)

4w =281  Cover  0.95(0.01) 0.93(0.02) 0.92(0.01) 0.79(0.01) 0.94(0.01)
VnBias  -0.11(0.13) ~0.13(0.13) -0.33(0.13) -0.35(0.12) -0.12(0.12)

an =421  Cover  0.94(0.01) 0.93(0.01) 0.89(0.01) 0.73(0.02) 0.93(0.01)
VnBias  -0.14(0.15) ~0.18(0.15) -0.44(0.15) -0.52(0.15) -0.19(0. 15)

@n =561 Cover  0.93(0.01) 0.91(0.01) 0.82(0.02) 0.66(0.02) 0.91(0.01)
y/nBias  -0.22(0.19) -0.32(0.19) -0.67(0.18) -0.71(0.19) -0.33(0. 18

4n=631*  Cover  0.92(0.01) 0.90(0.01) 0.76(0.02) 0.56(0.02) 0.90(0.01)
y/nBias  -0.34(0.24) -0.50(0.26) -0.73(0.30) -0.80(0.24) -0.46/(0. 24

7k:1/ka k=1,...,q
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW  No adjustment+KJ

=1 Cover ~ 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01)
VnBias  0.08(0.09) 0.08(0.09) 0.09(0.09) 0.09(0.09) 0.09(0.09)

Gn =141  Cover  0.95(0.01) 0.94(0.01) 0.92(0.01) 0.87(0.01) 0.94(0.01)
VnBias  0.12(0.16) 0.14(0.16) 0.17(0.14) 0.36(0.14) 0.14(0.14)

gn =281 Cover  0.94(0.01) 0.94(0.01) 0.88(0.01) 0.82(0.01) 0.93(0.01)
VnBias  -0.13(0.14) 0.14(0.14) -0.33(0.11) -0.45(0.13) 0.15(0.12)

gn =421 Cover  0.93(0.01) 0.92(0.01) 0.80(0.01) 0.73(0.01) 0.92(0.01)
VnBias  -0.21(0.18) -0.24(0.18) -0.40(0.11) -0.56(0.11) -0.24(0.13)

@n = 561*  Cover  0.92(0.01) 0.91(0.01) 0.67(0.01) 0.53(0.02) 0.91(0.01)
VnBias  -0.28(0.22) -0.35(0.21) -0.47(0.17) -0.51(0.19) -0.37(0.20)

qn =631  Cover  0.91(0.01) 0.89(0.01) 0.59(0.01) 0.51(0.02) 0.88(0.01)
V/nBias  -0.29(0.25) -0.33(0.26) -0.55(0.21) -0.61(0.18) -0.42 (0.22)

Note: “Cover” is the empirical coverage of the 95% confidence interval for 81y and “ y/nBias ” captures the root-

n scaled Monte Carlo bias for estimating B(1). In this heteroscedastic design, Win ~ N(0,1Ig,), €i,n ~ N(0,1),
V[ein|@in, win] = ce(1+ (tH(@1,in) + Vwin)?/4), and V[zg,in|win] = czp (1 + ('win)?/4), where zy,;n denotes
the kth component of the vector @;,. The constants c. and ¢y, are chosen so that V[e;n] = V[zi,n] = 1 and
t(a) =al(—-1<a<1)+sgn(a)(l —1(=1 < a<1)). lis the conformable vector of ones. “*” indicates that QF is
not positive semi-definite in some Monte Carlo samples.

a consistent covariance matrix estimator to calibrate multiple best policy effects, this suggests that
in two-way fixed effect models, what our approach can be adopted when using QE% to estimate
the covariance matrix of 3. Lastly, we note that our Assumption 1 in the main manuscript requires

error terms to be conditionally uncorrelated within each observation 7. This condition does rule

out dynamic models as those discussed in [48].
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Table C.11: Simulation results (d = 5, heteroscedasticity, heterogeneity, 5(;))

qn =1
qn = 141
qn = 281
qn = 421
Gn = 561*
qn = 631%

n =1
qn = 141
qn = 281
qn = 421
Gn = H61*
qn = 631%

Cover
/nBias
Cover
+/nBias
Cover
y/nBias
Cover
y/nBias
Cover
v/nBias
Cover

4/nBias

Cover
\/nBias
Cover
v/nBias
Cover
4/nBias
Cover
\/nBias
Cover
/nBias

Cover

y/nBias

Fi= (k). -

1,....d,

Y = 1/k7

kzlv"":qn

in ~N(0,X), win~N(0,I), & ~ f(e)=0.5¢(c]—0.5,0.25) + 0.54(]0.5, 1)
Proposed+KJ Proposed+HCK Proposed + HC3 Proposed+EW  No adjustment+KJ

0.94(0.01) 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.94(0.01)
-0.02(0.05) -0.02(0.05) -0.02(0.05) -0.02(0.05) 0.05(0.05)
0.94(0.01) 0.94(0.01) 0.94(0.01) 0.92(0.01) 0.94(0.01)
-0.05(0.06) -0.05(0.06) -0.05(0.06) -0.07(0.06) 0.06(0.06)
0.94(0.01) 0.94(0.01) 0.93(0.01) 0.89(0.02) 0.94(0.01)
0.06(0.06) 0.06(0.06) -0.10(0.07) 0.14(0.06) 0.07(0.07)
0.94(0.01) 0.93(0.01) 0.92(0.01) 0.73(0.02) 0.92(0.01)
-0.09(0.09) -0.12(0.09) -0.14(0.09) 0.17(0.09) -0.10(0.08)
0.93(0.02) 0.92(0.01) 0.92(0.01) 0.58(0.02) 0.92(0.01)
-0.12(0.13) -0.15(0.13) -0.15(0.12) -0.20(0.13) 0.14(0.12)
0.94(0.01) 0.91(0.01) 0.90(0.01) 0.44(0.02) 0.91(0.01)
0.17(0.17) 0.18(0.16) 0.17(0.13) 0.25(0.17) 0.19(0.17)

Zin ~NO,S), win~N(0,1,), e~ f(e)=0.5¢(c]—1.5,0.25) + 0.5¢(c[1.5, 1)

Proposed+KJ Proposed+HCK Proposed + HC3 Proposed+EW No adjustment+KJ

0.96(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01)
-0.07(0.10) -0.08(0.10) -0.09(0.10) -0.08(0.10) -0.08(0.09)
0.95(0.01) 0.95(0.01) 0.95(0.01) 0.93(0.01) 0.94(0.01)
-0.10(0.12) -0.10(0.12) -0.12(0.12) -0.13(0.12) 0.12(0.10)
0.95(0.01) 0.95(0.01) 0.95(0.01) 0.92(0.01) 0.94(0.01)
-0.11(0.12) -0.11(0.12) -0.12(0.12) -0.14(0.12) -0.13(0.13)
0.94(0.01) 0.94(0.01) 0.92(0.02) 0.78(0.02) 0.93(0.01)
-0.14(0.15) -0.14(0.15) -0.16(0.15) -0.20(0.15) -0.17(0.16)
0.94(0.01) 0.92(0.01) 0.91(0.01) 0.64(0.02) 0.92(0.01)
-0.20(0.21) -0.23(0.21) -0.26(0.24) 0.42(0.22) -0.24(0.19)
0.93(0.01) 0.92(0.01) 0.90(0.01) 0.47(0.02) 0.87(0.01)
-0.29(0.28) -0.31(0.28) -0.33(0.17) 0.85(0.29) 0.41(0.29)

Note: “Cover” is the empirical coverage of the 95% confidence interval for 81y and “ y/nBias’
scaled Monte Carlo bias for estimating 8¢1). “*” indicates that €25’ is not positive semi-definite in some Monte Carlo

samples.
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Table C.12: Simulation results (d = 5, heterogeneity, 1))

BJZCI) (d+1) j=1....d =1k k=1,...,q
Tin ~ N(O, E), Wiy = ﬂ(’lﬁi,n = (1’71(0.98))
Proposed+KJ Proposed+HCK Proposed + HC3 Proposed+EW  No adjustment+KJ

gn =1 Cover 0.95(0.01) 0.96(0.01) 0.98(0.01) 0.96(0.01) 0.96(0.01)
+/nBias 0.05(0.05) 0.05(0.05) 0.04(0.05) 0.05(0.05) 0.05(0.06)

gn =141  Cover 0.94(0.01) 0.93(0.01) 0.95(0.01) 0.91(0.01) 0.94(0.01)
y/nBias  -0.06(0.06) -0.10(0.06) -0.06(0.06) -0.12(0.06) 0.06(0.06)

qn =281  Cover 0.94(0.01) 0.93(0.01) 0.94(0.01) 0.88(0.02) 0.94(0.01)
\/nBias 0.07(0.07) 0.10(0.07) 0.07(0.07) 0.13(0.07) 0.07(0.08)

qn =421 Cover 0.94(0.01) 0.93(0.01) 0.94(0.01) 0.78(0.02) 0.91(0.01)
\/nBias 0.09(0.09) 0.12(0.09) 0.09(0.09) 0.14(0.09) 0.10(0.09)

gn = 561*  Cover 0.93(0.02) 0.89(0.01) 0.92(0.01) 0.59(0.02) 0.90(0.01)
v/nBias  -0.10(0.13) -0.15(0.13) 0.13(0.12) -0.19(0.13) 0.14(0.12)

gn = 631*  Cover 0.93(0.01) 0.92(0.01) 0.92(0.01) 0.43(0.02) 0.82(0.01)
\/nBias 0.19(0.17) 0.17(0.16) 0.16(0.13) -0.30(0.18) 0.21(0.16)

Tin = ﬂ(ii‘n > 0), Win ~ N(O, I)
Proposed+KJ Proposed+HCK  Proposed+HC3  Proposed+EW No adjustment+KJ

gn =1 Cover 0.96(0.01) 0.95(0.01) 0.95(0.01) 0.96(0.01) 0.95(0.01)
\/nBias 0.08(0.09) 0.09(0.09) 0.09(0.09) 0.08(0.09) -0.09(0.09)

qn =141 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01)
VnBias  -0.10(0.11) -0.10(0.11) -0.11(0.11) -0.11(0.11) 0.11(0.11)

qn =281  Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.92(0.01) 0.95(0.01)
VmBias  0.11(0.12) 0.11(0.12) 0.12(0.11) 0.14(0.12) 0.12(0.12)

qn =421  Cover 0.94(0.01) 0.94(0.01) 0.93(0.02) 0.73(0.02) 0.94(0.01)
V/nBias  -0.14(0.15) -0.14(0.15) -0.14(0.14) -0.22(0.15) -0.15(0.15)

qn =561  Cover 0.94(0.01) 0.93(0.01) 0.92(0.01) 0.61(0.02) 0.93(0.01)
\/nBias 0.19(0.19) 0.21(0.19) 0.20(0.16) 0.44(0.20) -0.20(0.19)

qn = 631*  Cover 0.94(0.01) 0.93(0.01) 0.90(0.01) 0.50(0.02) 0.91(0.01)
\/nBias 0.24(0.26) 0.30(0.28) 0.35(0.21) 0.72(0.28) 0.32(0.28)

Note: “Cover” is the empirical coverage of the 95% confidence interval for 81y and “ y/nBias
scaled Monte Carlo bias for estimating 8(1). “*” indicates that €25’ is not positive semi-definite in some Monte Carlo

samples.

26

”

captures the root-n



Table C.13: Simulation results (d = 5, heteroscedasticity, heterogeneity, By,n = 2000)
Bi=21(7), @in~N(0,T), w, =1L, >21098), j=1...,d
Yn = 0
Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW  No adjustment+KJ

an=1  Cover _ 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01)
VnBias  0.02(0.03) 0.03(0.03) 0.03(0.03) 0.03(0.03) 0.03(0.03)

go=141  Cover  0.95(0.01) 0.95(0.01) 0.94(0.01) 0.91(0.02) 0.94(0.01)
VnBias  -0.04(0.04) -0.04(0.04) -0.04(0.04) -0.06(0.04) -0.04(0.04)

@ =281  Cover  0.94(0.01) 0.94(0.01) 0.93(0.01) 0.88(0.01) 0.93(0.01)
VnBias  0.04(0.05) 0.05(0.05) 0.07(0.05) -0.12(0.05) 0.07(0.05)

@ =421  Cover  0.94(0.01) 0.94(0.01) 0.91(0.01) 0.85(0.01) 0.93(0.01)
nBias  -0.05(0.05) -0.05(0.05) -0.09(0.05) -0.15(0.05) -0.07(0.05)

@ =561 Cover  0.94(0.01) 0.93(0.01) 0.91(0.01) 0.82(0.01) 0.91(0.01)
nBias  -0.05(0.05) -0.06(0.05) -0.10(0.05) -0.18(0.05) ~0.11(0.05)

4w = 631*  Cover  0.93(0.01) 0.91(0.01) 0.90(0.01) 0.78(0.01) 0.90(0.01)
nBias  -0.07(0.05) -0.09(0.05) -0.12(0.05) -0.22(0.05) -0.14(0.05)

Ye=1/k, k=1....q
Proposed+KJ  Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

g=1  Cover — 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01)
JnBias  0.04(0.05) 0.05(0.05) 0.05(0.05) 0.05(0.05) 0.05(0.05)

an=141  Cover  0.95(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01) 0.94(0.01)
JnBias  0.07(0.08) 0.08(0.08) 0.08(0.08) 0.11(0.08) 0.08(0.08)

an =281  Cover  0.94(0.01) 0.94(0.01) 0.94(0.01) 0.92(0.01) 0.94(0.01)
JnBias  0.08(0.08) 0.10(0.08) 0.13(0.08) 0.14(0.08) 0.08(0.08)

Gn =421  Cover  0.94(0.01) 0.93(0.01) 0.92(0.01) 0.88(0.01) 0.92(0.01)
JnBias  0.08(0.08) 0.12(0.08) 0.14(0.08) 0.18(0.08) 0.15(0.08)

qn = 561*  Cover 0.94(0.01) 0.91(0.01) 0.90(0.01) 0.83(0.02) 0.90(0.01)
VnBias  0.09(0.08) 0.15(0.08) 0.17(0.07) 0.23(0.08) 0.18(0.08)

Gn =631*  Cover  0.92(0.01) 0.90(0.01) 0.86(0.01) 0.76(0.01) 0.85(0.01)
ViBias  0.12(0.08) 0.17(0.08) 0.20(0.05) 0.28(0.08) 0.23(0.08)

Note: “Cover” is the empirical coverage of the 95% confidence interval for 51y and “ /nBias’

)

captures the root-

n scaled Monte Carlo bias for estimating B(1). In this heteroscedastic design, win ~ N(0,1I,), €in ~ N(0,1),
V(e n|®in, Win] = ce(1 + (t(x1,i,0) + Vwin)?/4), and V[zgin|lwin] = Cz, (1 + (U'w; n)?/4), where xx ., denotes
the kth component of the vector ;. The constants c¢. and ¢, are chosen so that V[e;n] = V[zkn] = 1 and
t(a) = al(—1 < a < 1) + sgn(a)(l — 1(—1 < a < 1)). 1 is the conformable vector of ones. “*” indicates that €5 is
not positive semi-definite in some Monte Carlo samples.

Method Policies(Ask amount)  Est (95% CI)  p-value
Uncalibrated Same 0.70(0.10, 1.29)  0.023*
25% more 0.67(-0.04, 1.37)  0.065

50% more 0.38(-0.21, 0.96)  0.205

Calibrated Same 0.66(0.07, 1.24)  0.026*

Table C.14: Uncalibrated and calibrated results under a smaller model with main effects only
(n = 7,938,p = 53). Estimated treatment effects (Est), 95% confidence intervals (95% CI), and
two-sided p-values for the three “ask amount” policies. “Uncalibrated” refers to the study results
obtained without any adjustment, and the confidence intervals are constructed based on normal
approximation with the estimated covariance matrix QELJ “Calibrated” refers to our proposed
methodology. The computational time is 533 seconds on a Lenovo NeXtScale nx360m5 node (24
cores per node) equipped with Intel Xeon Haswell processor.
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