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1. Abstract

utonomous Driving Systems (ADS) are developing

rapidly. As vehicle technology advances to SAE level

3 and above (L4, L5), there is a need to maximize and
verify safety and operational benefits. As a result, maintenance
of these ADS systems is essential which includes scheduled,
condition-based, risk-based, and predictive maintenance. A
lot of techniques and methods have been developed and are
being used in the maintenance of conventional vehicles as well
as other industries, but ADS is new technology and several of
these maintenance types are still being developed as well as

2. Introduction

roper maintenance is a crucial aspect of ensuring the

safety and reliability of any vehicle, especially

Autonomous Driving Systems (ADS) vehicles. The
objective of this study is to conduct a state-of-the-art review
of various preventive maintenance techniques that can
be employed to enhance the safety of ADS vehicles [1].
Preventative maintenance involves proactively replacing parts
that are likely to fail in the near future, based on their expected
lifespan and performance and monitored data [1]. This type
of maintenance can be based on predetermined schedules or
triggered by data from predictive maintenance systems.
Definitions and descriptions of the ever-evolving maintenance
methodologies which draw from the fields of reliability engi-
neering, prognostics engineering, and risk management as
applied in a variety of at-risk industries will be presented and
proposed for use by ADS vehicle fleets.

Maintenance can be grouped into several basic concepts
and definitions that often overlap, but in general, we can look
at it from one of two perspectives proactive v. reactive. Which
to apply can involve extensive analysis and introduces two
other considerations which are reliability and risk-based.
Consider that ADS vehicles are equipped with complex
systems and sensors that enable them to navigate and operate

adapted for ADS. In this work, we are presenting a systematic
literature review of the “State of the Art” knowledge for the
maintenance of a fleet of ADS which includes fault diagnos-
tics, prognostics, predictive maintenance, and preventive
maintenance. We are providing statistical inference of
different methodologies, comparison between methodologies,
and providing our inference of different techniques that are
used in other industries for maintenance that can be utilized
for ADS. This paper presents a summary, main result, chal-
lenges, and opportunities of these approaches and supports
new work for the maintenance of ADS.

without human intervention. These systems include sensors
for perception, localization, and mapping, as well as control
systems for steering, braking, and acceleration. The reliability
of these systems is essential for the safe operation of ADS
vehicles and applying the best practice maintenance approach
which limits liability and manages the overall program cost
is often the ultimate goal.

Preventive maintenance involves identifying and
addressing potential issues before they can cause problems,
thereby reducing the likelihood of unexpected breakdowns
or accidents. There are several preventive maintenance tech-
niques that can be employed for ADS vehicle safety, including
prescriptive maintenance, predictive maintenance, and
preventative maintenance [36,37].

Regular inspections involve the systematic examination
of the vehicle's systems and components to identify any issues
that may need to be addressed. These inspections can
be performed by trained technicians or automated systems,
and they typically involve visual inspections, tests, and
measurements of various systems and components.

Predictive maintenance uses data and analytics to antici-
pate when maintenance may be needed, based on the condi-
tion and performance of the vehicle's systems and components
[1]. Predictive maintenance relies on sensors and other
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monitoring devices that collect data on the vehicle's perfor-
mance, which can then be analyzed to identify potential issues
and determine when maintenance is required [1,36].

One of the main benefits of preventive maintenance is
that it can help reduce the likelihood of unexpected break-
downs or accidents, which can have serious consequences for
ADS vehicles. By identifying and addressing potential issues
before they can cause problems, preventive maintenance can
help ensure the reliability and safety of ADS vehicles.

However, there are also limitations to preventive main-
tenance techniques, including the cost and complexity of
implementing these techniques, as well as the potential for
human error or oversight. Additionally, there may be trade-
offs between the benefits of preventive maintenance and the
costs and inconveniences it can impose on the user.

Overall, this study aims to provide a comprehensive
overview of the state of the art in preventive maintenance
techniques for ADS vehicle safety, highlighting the best prac-
tices and strategies that can be employed to ensure the reli-
ability and safety of these vehicles. By examining the various
preventive maintenance techniques that are currently avail-
able or under development, this study will contribute to the
ongoing efforts to enhance the safety and reliability of
ADS vehicles.

The rest of the paper is structured as follows: Section 3
describes the development of text analytic tools. This tool is
used to segregate the papers into different categories during
this study. The background of preventive maintenance and its
types has been discussed in Section 4. Section 5 explained the
preventive maintenance techniques in different industries.
Preventive maintenance in ADS vehicles is explained in
Section 6. Identification and evaluation of ADS vehicle failure
and safety risks are outlined in Sections 7 and 8. ADS vehicle
failure and safety risks are categorized in Section 9 based on
components, subsystems, and control interfaces. Today’s chal-
lenges in preventive maintenance are described in Section 10.
Future recommendations for preventive maintenance in ADS
vehicle safety are explained in section 11. Concluding remarks
are presented in section 12.

3. Development of Text
Analytic Tool

Surveying relevant publications, public research libraries, and
industry libraries addressing the “state of the art” techniques
in preventive maintenance, including potential failures and
associated safety risks related to ADS results in more than
fifty thousand articles. Filtering such a large volume of litera-
ture manually will consume an enormous amount of time,
therefore, it is required that a text analytics approach to filter
out the relevant literature is used. It improved the quality of
the given topic from the database.

With the advancement in data science, there are plenty
of tools available that have been developed for text analytics
by different companies. These text analytics tool combines a
set of machine learning, statistical and linguistic techniques
to process large volumes of unstructured text or text that does

TABLE 1 Text analytics tool in the Market

Tool Name Benefits

MATLAB Text Analytics Provides algorithms and
visualizations for preprocessing,
analyzing, and modeling text
data

MonkeylLearn Create a custom text analysis
model

Aylien Powerful API for text analysis

IBM Watson Advanced text analytics

Thematic Analyze customer feedback at
the scale

Google Cloud NLP Train your own Machine Learning
model

Pre-trained NLP models

Extract insights from
unstructured text data

Amazon Comprehend
MeaningCloud

Lexalytics Text analytics libraries

not have a predefined format, to derive insights and patterns.
A few such tools are mentioned in table 1.

All the tools mentioned in table 1 utilize some type of
machine learning for text analysis and could turn complicated
for analyzing text from research papers, articles, and automo-
tive standards. Also, developing text analytics using machine
learning could turn out to be a complex and time-consuming
task on its own and would require a considerable amount of
time which could impact the timeline of the project. Therefore,
to analyze text from the research paper and to shortlist
relevant papers from the database, a simpler approach for
analyzing the text from the research paper and shortlisting
the articles into different categories has been developed in
this study.

3.1. Text Analytics Tool
Development

This study requires authors to survey relevant publications,
public research libraries, and industry libraries addressing
the “state of the art” techniques in preventive maintenance,
and a simple search on google scholar results in more than
50,000 articles. First, all the relevant literature on preventive,
predictive, and reactive maintenance techniques in automo-
tive and other sectors from SAE, IEEE, and Elsevier has been
downloaded. Similarly, a database has been created and a text
analytics tool has been used to read the papers and arrange
the papers into different categories.

The tool read each pdf in the directory and extracts all
the text from the pdf. Then, we are filtering all the unnecessary
words (e.g., the, and, or, then, their, there, etc.) and symbols
(e.g., ¥, 7, %, ‘&, - etc.) from the text and then converting
all text into the smaller case to make it easy to compare the
words with keywords. Then all the words are saved into an
array to compare it with keywords specified in table 2 and
categorize the research papers into different categories when
the number of matches with the word exceeds a certain
threshold specified in the program.
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TABLE 2 Keywords to categorize local database.

Keyword Class Keywords

Maintenance Preventive Maintenance
Predictive Maintenance
Condition based Maintenance
Reactive Maintenance

Time triggered maintenance
Maintenance

Prescriptive Maintenance
Time based maintenance
Electrical System Maintenance
Electrical System Diagnosis
Electronic System Diagnostic

Maintenance of
Electric/
Electronic

System
Electronic Fault

Electrical Diagnostic
Electronic Maintenance
Prognostic

Diagnostic

fault

Vehicle fault

Fault tolerant

Fault Diagnostic

Fault Management

Fault Prognostic

Failure Mode

Failure

Wear

Tear

Risk Management
Maintenance optimization
Potential loss of life (PLL)
Fatal Accident Rate (FAR)
Event tree Analysis

Fault tree analysis

Failure mode and effect and criticality analysis
(FMECA)

Hazard and operability study (HAZOP)
FMEA

Reliability Centered Maintenance (RCM)
Safety

FTA

Vehicle Health Management

Vehicle Health

Vehicle Diagnostic

Vehicle Prognostics

Vehicle Fault

Autonomous System maintenance
ADS Maintenance

ADS

ADAS

Vehicle Maintenance

Ground Vehicle Maintenance

Risk Analysis

Maintenance
for Automotive
Industry

(Continued)

TABLE 2 (Continued) Keywords to categorize local database.

Maintenance IVHM
for Aerospace  Ajrplane Maintenance
Industry .
Airplane Health Management
Aeroplan Maintenance
Aeroplan Health Management
Airplane Fault
Airplane Prognostic
Airplane Diagnostic

4. Background-Preventive
Maintenance

Preventive maintenance is a type of maintenance that is
performed on equipment or machines before they break down
or malfunction. The goal of preventive maintenance is to
reduce the likelihood of equipment failure and extend the
lifespan of the equipment. Preventive maintenance is typically
scheduled on a regular basis, such as daily, weekly, monthly,
or annually.

Preventive maintenance can take many forms, including
inspections, cleaning, lubrication, adjustments, and repairs.
The specific preventive maintenance tasks that are performed
depend on the type of equipment and the nature of its usage.
For example, a manufacturing plant may perform preventive
maintenance on its production line by regularly inspecting
and cleaning the equipment, lubricating moving parts, and
adjusting any components that are out of specification. A
hospital may perform preventive maintenance on its medical
equipment by calibrating and testing the equipment on a
regular basis to ensure that it is operating correctly [18, 51].

Preventive maintenance can be performed by in-house
staff or by specialized contractors. In some cases, the equip-
ment manufacturer may provide guidelines for preventive
maintenance tasks, as well as recommended frequency and
procedures [1, 18]. There are also several software tools and
systems that can be used to manage and schedule preventive
maintenance tasks, as well as track the history and status of
the equipment.

Preventive maintenance has several benefits, including
increased equipment reliability, reduced downtime, improved
safety, and lower maintenance costs. By catching and
addressing problems before they cause equipment failure,
preventive maintenance can help organizations avoid costly
repairs and lost productivity. Preventive maintenance can also
help organizations meet regulatory requirements and improve
customer satisfaction. For example, a company that provides
critical services, such as electricity or water, may rely on
preventive maintenance to ensure that its equipment is reliable
and available when needed, to avoid service interruptions and
maintain customer satisfaction.
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4.1. Types of Maintenance

The automotive industry is witnessing a shift towards the
adoption of automated driving systems, as the progress in
research has made advanced driver assistance systems (ADAS)
features more secure and reliable. The integration of safety
features with ADAS is driving this change. For instance, many
vehicles now come equipped with pedestrian detection inte-
grated with automatic emergency braking systems. To ensure
that ADAS features are always functioning properly, reliable,
and safe, robust maintenance of these systems is of
utmost importance.

Maintenance techniques play a crucial role in main-
taining the proper functioning of ADAS and ADS features,
as itacts as a primary defense system to prevent and mitigate
safety risks. For example, Lidars, which are commonly used
in autonomous and automated vehicles, are responsible for
perceiving the vehicle's environment and creating a 3-D image
of the surroundings, allowing the vehicle to detect objects. If
any system or component associated with the Lidar system
experiences an error that is not addressed during mainte-
nance, it could result in a collision, which is a critical safety
hazard. There are several other ADS features that require
proper maintenance to always function correctly.

At a high level, there are two main categories of mainte-
nance strategies: Preventive Maintenance and Corrective
Maintenance. These strategies are further divided into sub-
categories, as shown in Figure 1.

4.1.1. Corrective Maintenance Corrective mainte-
nance is a type of maintenance that focuses on fixing a failure
or malfunction that has already occurred. This type of main-
tenance is performed to restore a piece of equipment or a
system to its normal operating state, allowing it to perform
its intended function as intended. Corrective maintenance
can take several forms, including planned maintenance, where
the repair is scheduled in advance, or unplanned maintenance,
where the repair is necessary for response to a sudden
failure [18].

Corrective maintenance is typically performed when a
fault is detected during an inspection, when a piece of equip-
ment breaks down, or when a system is behaving abnormally.
This type of maintenance is appropriate when the equipment
or system can be easily repaired, or when the cost of repairing

IGIETEERN Maintenance Types

Maintenance

Preventive
Maintenance

I
S S v

Corrective
Maintenance

Condition- N Prescriptive
Based Predictive Maintenance
Maintenance

Time based

Maintenance
Maintenance

it is relatively low. In order to ensure that corrective mainte-
nance is effective, it is important to have a well-structured
approach to diagnosis, isolation, and repair of the failure.

Overall, corrective maintenance plays a crucial role in
maintaining the health of equipment and systems, ensuring
that they continue to perform as intended. As such, it is an
important aspect of any comprehensive maintenance program
M)Qa%]‘

4.1.2. Preventive Maintenance This isa maintenance
technique that is performed routinely and regularly on a
system or any physical asset to minimize unplanned machine
downtime and equipment failure that can be very costly for
the asset owner [2]. In the case of an autonomous vehicle or
a fleet owner, this maintenance technique can help to detect
failure and error in the vehicle before it arises. Detected errors
can be fixed on time and therefore, makes the vehicle safer to
drive on road and reduces the cost of maintenance for the
vehicle owner and fleet owner.

Preventive maintenance can be classified into three
different strategies depending on what maintenance activity
needs to be carried out for the system.

4.1.2.1. Time-Based Maintenance (TBM). Time-based
maintenance (TBM), also referred to as periodic maintenance
[33,34] is a traditional technique for the maintenance decision-
making process. Maintenance decisions in TBM are carried
out based on failure time analysis (FT'A), that is, to determine
the expected lifetime, T, of any equipment failure time data,
and usage-based data is analyzed [35]. For the TBM process
to work it is assumed that the characteristic of failure for
equipment is predictable.

The bathtub curve is used to analyze the failure trend or
hazard trend for the TBM process as shown in figure 2 [36].
The hazard trend is divided into 3 phases: burn-in, useful life,
and wear-out which are used to measure the life of equipment
[37]. The trend suggests that in the burn-in phase the equip-
ment experience a decreasing failure rate, following that it
experiences a constant failure rate that is the useful life of the
equipment and at the end of the life cycle the equipment starts
to see an increasing failure rate that is the wear-out phase.

The TBM process can be presented in two simple steps as
shown in figure 3 First is failure data analysis and modeling
followed by the maintenance decision-making process.

IGITLIEY Bathtub Curve [37]

Failure
rate, 1
Y

Useful life Wear-out

Burn-in

Time, ¢

Equipment operating life (age)
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Failure Data Analysis

During the failure data analysis, characteristics of failure data
of equipment based on failure time data gathered are statisti-
cally investigated. Figure 4 shows the failure data modeling
process for the TBM process.

Failure data modeling uses equipment’s failure charac-
teristics such as Mean time to failure (MTTF) and failure trend
based on the bathtub curve. Statistical modeling of the
gathered data can be carried out using different statistical
tools such as the normal distribution model, lognormal distri-
bution model, Weibull distribution model, etc. out of these
statistical tools, the Weibull distribution model is widely being
used to model failure for many applications due to its ability
to model various aging categories of life distribution such as
decreasing, stable and increasing failure rates [37,40,41].

When the failure data modeling process suggests that the
equipment has an increasing failure rate, then the PM deci-
sion-making process becomes effective which aims to provide
optimal system availability and safe performance at optimum
maintenance cost [42]. Figure 5 shows the maintenance deci-
sion-making process.

IGETEE Failure data modeling process [36]

Failure time data set

!
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The first step of the maintenance decision-making process
is cost assessment which is discussed in section 4 in detail.
Then the system’s structure type is identified which is then
classified into reparable and non-repairable components.
Finally, according to the repair and replacement policy, main-
tenance is performed for the system.

4.1.2.2. Condition-Based Maintenance (CBM). This
maintenance strategy involves monitoring the normal behavior
of the system and suggesting maintenance in case of deviation
from normal behavior or degradation in the asset [3]. The
abnormality in the system is detected using condition moni-
toring technology such as cloud computing and IoT [1]. Using
new technologies such as Artificial Intelligence and Machine
Learning condition monitoring can be improved further to
perform maintenance more optimally [5]. Since condition-
based maintenance focuses majorly on the diagnostic of the
system it is also referred to as Diagnosis-based maintenance [1].

Under CBM, maintenance decision-making can be clas-
sified into two types: Diagnostic and Prognostic [36].
Diagnostic of equipment helps to find the source of fault
whereas prognostic of the system helps to estimate or predict
the occurrence of failure [43, 44]. Prognostics aims to provide
the engineers with early signs when monitoring the condition
of the equipment that is showing abnormality. Abnormal
behavior of the system does not mean that the equipment has
failed and cannot be used further. This is where prognostic is
done to estimate the time when a failure might occur. This
can help to maximize the equipment use and schedule main-
tenance right before failure and thus save time and unplanned
maintenance costs.

Equipment deterioration modeling can be used to make
maintenance decisions, particularly towards the prognostic
process. There are two methods to make decisions: Current
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condition evaluation-based (CCEB) and Future condition  [[RIlLil FCPB decision-making process [36]

prediction-based (FCPB) [36]. In the CCEB method, the
current equipment condition is first evaluated based on which
appropriate maintenance steps are taken. Monitoring data is
collected to evaluate the condition of equipment at present Deterioration modelling to predict |

which is then compared to the predetermined failure limit. If the future equipment condition
the limit is exceeded, then the maintenance is performed
under the CCEB process. Generally, this process is performed

| Evaluation

. . o S I Process |
by inspection monitoring of the current condition of the I |
system. Figure 6 illustrates the decision-making process under . I
the CCEB process. | Is the future
I equipment |
condition T
IGTIEEEY CCEB Decision Process [36] ! reached or close

o the failure
to the fail |
I |
Deterioration modelling to | I
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| |
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equipmen

I condition level I process [1]

reached or exceed I N

| the failure limit?

| |

| | Acquisition and storage of signal data

N (Data received from sensors such as

v v accelerometer, acoustic sensor, ultrasonic
Perform appropriate sensor etc.)
maintenance activities 1
Data Processing
(Cleaning, transforming, normalizing data
The second method is FCPB which is used for making etc.)
CBM decisions based on the analysis of the future trend of
assets condition. Depending on the predictive modeling 1

process if the system reaches or exceeds the predetermined
failure threshold then maintenance is planned accordingly,

Machine learning, Deep learning techniques
otherwise, the system is in a good state and can further & oep s a

application
be operated. The monitoring of asset condition is done by (Regression, classification, Artificial neural
using sensors and condition monitoring technology to contin- network, SVM, Decision tree etc.)
uously monitor the state of the asset condition. Figure 7 shows
the FCPB process. 1

4.1.2.3. Predictive Maintenance. It is also referred to as Fault Diagnostic and Prognostic

prognostic maintenance as this maintenance type involves

gathering data from different parts that compose and surround Fault Diagnostic Prognostic
the asset [6]. The information is then used to predict the Feature extraction Health Indicator
remaining life of the asset. There are four phases in this main- Feature selection Health stage
tenance strategy [7]: Classification division
RUL prediction

1. Monitoring and collecting data from different sensors

of the asset.
2. Processing the gathered data 1
3. Diagnosing faults in the system Maintenance decision

4. Making the decision for maintenance strategy
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m Prescriptive Maintenance Framework [50]
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Furthermore, to process the data gathered from the
sensors surrounding the system, Artificial Intelligence (AI)
and Machine Learning (ML) techniques are used [8,9].
Predictive maintenance can be performed in several ways [10],

* Physical model approach

This uses underlying physics and mathematics to evaluate
the degradation of assets. The accuracy of this modeling tech-
nique depends on the accuracy of the model as well as the
statistical method used to process and validate the data [45].

* Knowledge-based approach

This modeling approach depends on some prior knowl-
edge and expertise which is used to reduce the complexity of
the system. The knowledge of the system can be reproduced
to apply automatically by using some inference mechanism
to emulate thought to provide practical solutions for instance
fuzzy logic and expert systems [46].

* Data-driven approach

This method uses data collected from the system to
evaluate health using computation and statistics. This model
is further classified into the following categories: Statistical
models, stochastic models, and machine learning models
[47,48]
¢ Digital twin approach

This method uses the modeling of physical systems to
create a virtual replica which is linked together to monitor
the health of the system. Data from both physical and real-
world systems is evaluated along with virtual twins to analyze
and evaluate the system [49].

Figure 8 illustrates the predictive maintenance decision-
making process.

4.1.2.4. Prescriptive maintenance. Prescriptive mainte-
nance uses advanced ML techniques, Al techniques, and
analytics similar to predictive maintenance but it optimizes
maintenance based on prediction [1]. It prescribes an action
plan for maintenance in addition to using historical and real-
time data to predict the status of the system [11]. The

IEEILEEN Cost graph 141
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== Prevention Cost
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framework presented in figure 9 shows the working of a
predictive maintenance strategy.

One key aspect of prescriptive maintenance in the auto-
motive industry is the use of data and analytics to identify
potential issues and determine the appropriate maintenance
actions. For example, sensors and other diagnostic tools can
be used to monitor the performance of a vehicle and send data
back to a central system, which can then analyze the data to
identify patterns and predict when maintenance is needed.

In addition to using data and analytics, prescriptive main-
tenance in the automotive industry often involves following
a predetermined maintenance schedule based on factors such
as the age of the vehicle, the number of miles driven, and the
type of driving conditions it has been exposed to. This can
involve tasks such as replacing oil and filters, checking and
replacing brakes and tires, and performing general inspections
to identify any potential issues. By following a prescriptive
maintenance schedule, automotive companies can help ensure
that their vehicles are operating at optimal levels and minimize
the risk of unexpected failures or downtime.

4.2. Cost Analysis for
Maintenance Strategies

For every maintenance strategy there is a cost associated with
itand choosing the right maintenance model for a component
is necessary to be cost-efficient. Not all maintenance strategies
cost the same, for example, an asset or component which is
cheap to replace must follow a corrective or reactive mainte-
nance strategy whereas a complex system can use predictive,
preventive, and reactive maintenance strategies based on the
requirement and budget to increase the productivity at an
optimum cost. All costs need to be accounted for while
deciding which maintenance strategy is best. For the correc-
tive maintenance strategy, maintenance is performed when
the equipment fails or stops working therefore the cost
involved accounts for only corrective maintenance cost (Cc),
whereas for preventive maintenance since it requires sequen-
tial maintenance actions, the cost involved accounts for cost
related to inspection (Ci), the cost for preventive maintenance
(Cp), cost related to downtime (Cd) as well as cost for



Downloaded from SAE International by Ohio State University, Thursday, June 08, 2023

- STUDY OMN STATE-OF-THE-ART PREVENTIVE MAINTENANCE TECHNIQUES FOR ADS VEHICLE SAFETY

corrective maintenance (Cc) as some equipment could have
stopped working [14].

In [13], Grall et al., has presented a cost model in their
paper continuous time predictive maintenance that aims to
find an optimal prevention threshold for the maintenance of
a system. The cumulative cost of maintenance is represented

in Eg.1

C(t)=CyN;(t)+C,-N,(t)+ Cc-N_(t)+C,d(t) Eq.1

Where N/(f) represents the number of inspections,
N,(f) represents the number of preventive repairs, N.(f) repre-
sents the number of corrective repairs and dt) represents the
duration for which equipment is not operating all of them in
the time interval [0, t].

The objective function to be minimized given in Eq. 2
represents the cumulative expected cost for long-term main-
tenance of the asset.

EC,= .Ein"iﬂ:@1

fim—— Eq.2

Where, E[C(f)] is the expected value of long-
term maintenance.

In [16], Mobley has pointed out that the corrective main-
tenance type has the lowest prevention cost, whereas the repair
cost associated with preventive maintenance is the lowest
because of well-scheduled and planned downtime for the
system. As pointed out by Ran et al., in [15], failure predictions
are used to take maintenance actions for predictive and
prescriptive maintenance, therefore, the cost model for predic-
tion is associated with the remaining useful life of the asset
or equipment. Figure 10 sugpests that predictive maintenance
presents the optimal compromise between maintenance cost
and prevention cost.

5. Preventive Maintenance
Techniques in Different
Industries

Preventive maintenance techniques are used in many indus-
tries to ensure the smooth and safe operation of equipment.
These techniques can include regular inspections, cleaning,
and lubrication, replacing worn parts, testing and calibration,
and predictive maintenance. By identifying and correcting
potential problems before they cause equipment failures or
other issues, preventive maintenance can help to reduce
downtime, increase productivity, and extend the lifespan of
the equipment. The specific techniques used will depend on
the types of equipment being used, the operating conditions,
and the maintenance goals of the organization. For example,
a preventive maintenance program for a wind turbine might
include weekly inspections to check for cracks or other
damage to the blades, as well as regular measurements of
vibration and lubricant levels, while a program for a food
processing facility might include daily cleaning of production

equipment and weekly lubrication of bearings and other
moving parts.

Regular inspections: Inspections can be performed on
a regular basis, such as daily, weekly, or monthly, depending
on the equipment and the operating conditions. During an
inspection, an operator or maintenance technician may look
for visual signs of wear or damage, such as cracks, corrosion,
or leaks. They may also use specialized tools to measure things
like temperature, vibration, or pressure, to ensure that the
equipment is operating within normal parameters. A wind
turbine’s preventive maintenance schedule could include
weekly inspections of its blades for cracks or other damage
and regular monitoring of vibration and lubricant levels.

Cleaning and lubrication: Proper cleaning and lubrica-
tion of equipment can help to prevent wear and tear and can
extend the lifespan of the equipment. Cleaning may involve
removing dust, dirt, or other contaminants from the equip-
ment, while lubrication involves applying lubricants to moving
parts to reduce friction and wear. For example, a preventive
maintenance schedule for a food processing facility might
include daily cleaning of production equipment, as well as
weekly lubrication of bearings and other moving parts.

Replacing worn parts: As the equipment is used over
time, certain parts may become worn or damaged and will
need to be replaced to keep the equipment functioning
properly. These parts may include things like bearings, seals,
belts, and other worn items. For example, a preventive main-
tenance schedule for an aircraft might include replacing the
tires, brakes, and other worn items on a regular basis to ensure
that the aircraft is safe to fly.

Testing and calibration: Equipment may need to
be tested and calibrated to ensure that it is operating within
its specified tolerances. Testing may involve running the
equipment through a series of tests to ensure that it is func-
tioning properly, while calibration involves adjusting the
equipment to ensure that it is measuring or performing within
specified limits. For example, a preventive maintenance
schedule for a power plant might include testing and cali-
brating the control systems and sensors on a regular basis to
ensure that the plant is operating safely and efficiently.

Predictive maintenance: Predictive maintenance
involves using sensors and other monitoring devices to predict
when equipment is likely to fail so that preventative action
can be taken. By collecting data on things like vibration,
temperature, and other parameters, it is possible to predict
when equipment is likely to fail and take action to prevent it.
For example, a predictive maintenance program for a factory
might involve using vibration sensors on its production
machinery to monitor for abnormal vibrations that could
indicate an impending failure, and scheduling maintenance
to fix the problem before the equipment fails.

6. Preventive Maintenance
in ADS Vehicles Safety

As autonomous vehicles (AVs) continue to gain popularity,
it's crucial to consider the safety risks involved. These advanced
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vehicles rely on complex software systems and a variety of
sensors to navigate and make decisions on the road, but there
are several potential hazards that must be addressed.

One significant risk is the possibility of a cyber-attack.
AVs are vulnerable to hackers who could potentially take
control of the vehicle or manipulate its sensor data, leading
to dangerous or malicious behavior. To protect against this
threat, AV manufacturers must implement strong cybersecu-
rity measures, such as secure communication protocols and
frequent software updates.

Sensor malfunctions can also pose a risk to AVs. These
vehicles rely on sensors like cameras, radar, and lidar to gather
information about their environment, but if any of these
sensors fail or produce incorrect data, the AV could make
incorrect decisions and potentially cause an accident. To
reduce this risk, AV manufacturers should use redundant
sensors and have robust error-checking systems in place.

Incorrect software behavior is another potential hazard
for AVs. The software that controls these vehicles is complex
and can be difficult to test thoroughly, so there is a risk that
it may behave unexpectedly in certain situations. To minimize
this risk, AV manufacturers must implement thorough testing
and validation processes to ensure the safety and reliability
of the software.

While these vehicles are designed to operate without
human intervention, there are still situations where a human
operator must take control. If the operator is not paying atten-
tion or is not properly trained, they may not be able to react
in time to prevent an accident. To reduce the risk of human
error, AV manufacturers should design vehicles with appro-
priate safeguards and ensure that operators are well-trained
and prepared for emergency situations.

Finally, the limitations of infrastructure can also pose a
risk to AVs. These vehicles rely on GPS, mapping systems, and
other infrastructure to navigate and make decisions, but if these
systems are inaccurate or unavailable in certain areas, the AV
could become lost or make incorrect decisions. To address this
risk, AV manufacturers should ensure that their vehicles can
operate safely in a variety of environments and work with
relevant authorities to improve infrastructure as needed.

7. ldentification and
Evaluation of ADS
Failures and Safety
Risks

Autonomous vehicles (AVs) have garnered a lot of attention
in recent years due to their potential to improve road traffic
safety by replacing human drivers and using better recogni-
tion, decision-making, and driving skills. However, AVs also
have inherent safety and security challenges that must
be addressed before they can be widely adopted.

Cui etal, in [57] present an in-depth analysis of research
on AV safety failures and security attacks, as well as the avail-
able safety and security countermeasures.

Safety failures in AVs can be classified into failures
related to AV components (VF) and failures related to infra-
structure (IF). VFs include hardware system failures, software
failures, vehicle mechanical failures, communication system
failures, and interaction platform failures. IFs include failures
of other road users, weather, construction zones, road condi-
tions, and traffic signals and signs. To address these failures,
safety countermeasures (CMs) can be applied. CMs can
be classified into active CMs and passive CMs. Active CMs
provide active safety features that aim to prevent the vehicle
from crashing, while passive CMs serve to protect vehicle
users during a crash. Active CMs include several driving
assistance methods and AV-specific countermeasures. Passive
CMs consist of crash-worthy systems or devices and the
conspicuity of the vehicle.

In addition to safety failures, AVs are also vulnerable
to security attacks. These attacks can be classified into three
categories: attacks on the communication system, attacks
on the on-board computer and in-vehicle network, and
attacks on the vehicle itself. To mitigate these attacks, several
security countermeasures (SCMs) have been proposed. These
include secure communication protocols, intrusion detec-
tion, and prevention systems, and secure software
development practices.

There are also open issues and challenges in the field of
AV safety and security that need to be addressed. These
include the need for robust and reliable sensors and commu-
nication systems, the need for effective sensor data fusion and
decision-making algorithms, and the need for effective testing
and validation methods for AVs. In addition, there is a need
for standardization and regulation in the field of AV safety
and security.

Overall, ensuring the safety and security of AVs is a
complex and multifaceted challenge that requires the inte-
gration of various technologies and practices. Further
research is needed to address the open issues and chal-
lenges in this field to enable the widespread deployment
of AVs.

There are several approaches that have been used in the
literature to quantify the safety of AVs. These approaches
include target crash population studies, road test data analysis,
driving simulators, system failure risk assessment, and AV
safety effectiveness.

One approach to evaluating AV safety is target crash
population studies, which estimate the number of preventable
crashes in each population. This approach involves analyzing
crash datasets to extract crash characteristics and quantifying
the safety benefits of AVs in terms of the number of prevent-
able crashes or the reduced cost of crashes. AV safety is often
attributed to advanced driver assistance systems (ADASs) and
autonomous driving systems (ADSs).

Another approach to evaluating AV safety is road test
data analysis, which involves analyzing data from AV road
tests to investigate the characteristics of AV crashes and
compare them to conventional vehicle crashes. This approach
is often used to compare the incident rate of AVs to that of
conventional vehicles, using metrics such as the number of
crashes per vehicle miles traveled (VMT) or the number of
disengagements per VMT.
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8. ADS Failures and
Associated Risks

Autonomous driving systems have the potential to revolu-
tionize transportation and improve safety on the roads.
However, as with any complex system, there is a risk of failure
that can occur during the operation of autonomous vehicles.
This section of the research paper will focus on the various
types of failures that can occur in autonomous driving systems
and the associated risks that these failures pose to the vehicle's
passengers, other road users, and the overall operation of the
vehicle. The purpose of this section is to understand the types
of failures that can occur in autonomous driving systems and
the associated risks, as well as to identify potential solutions
to mitigate these risks and improve the overall safety and
reliability of autonomous vehicles.

Health Monitoring of ADS and
Automated Vehicle

Jeong et al. [58] developed a self-diagnosis system for autono-
mous vehicles that utilize an Internet of Things (IoT) infra-
structure and deep learning models. The system includes a
detailed communication network to read data from the vehicle
and transfer it to a cloud-based backend. A multilayer percep-
tron (MLP), which is a type of artificial neural network
(ANN), is used in a supervised learning scenario with dynam-
ically adapted nodes and layers. The condition of vehicle
components is then classified as "normality," "inspection," or
"danger," and the driver is warned in case of risk.

Van Wyk et al. [59] combined a convolutional neural
network (CNN) with well-established anomaly detection
methods to detect and identify anomalous behavior in
connected and automated vehicles. Using real data, they
showed that a combined approach of feature extraction and
classification outperforms the use of either method alone. The
proposed system can be applied to any motor data.

Failure in Generators, Electric
Motors, and Starter

An adaptive neuro-fuzzy inference system (ANFIS), which
combines an artificial neural network with fuzzy logic, was
used by Wu and Kuo to classify faults in automotive genera-
tors. To gather the data for their study, they set up an experi-
mental system featuring an engine and a generator as the
primary components. Synthetic failures were then induced in
the generator, and the output voltage signal was analyzed
using a discrete wavelet transformation (DWT). The DWT
coefficients were extracted as features, and the ANFIS was
trained to recognize various fault classes at different engine
speeds. This approach resulted in a classification accuracy of
98.8% [60].

Seera et al. [61] developed a hybrid condition monitoring
model for electric vehicles, which use induction motors exten-
sively. The model consists of a fuzzy min-max artificial neural
network (ANN) and a random forest. The researchers tested

the effectiveness of their model in monitoring multiple incip-
ient faults in induction motors using only stator current data
in both noise-free and noisy environments. They also consid-
ered the interpretability of the model and extracted a decision
tree to explain the model's predictions to domain experts. An
experiment was conducted to monitor and predict three
different induction motor conditions: normal operation, stator
winding faults, and eccentricity issues.

Simsir et al. [62] developed a real-time monitoring and
diagnosis system for faults in a hub motor. They gathered data
on key system parameters and trained an artificial neural
network (ANN) to detect a range of faults, including an open
circuit in a coil, a short circuit in a coil, a problem with a hall
effect sensor, a short circuit between coils, and damaged
bearing faults. To enable mobile, real-time monitoring, and
fault diagnosis, the model was integrated into an Arduino
Due microcontroller card.

Vehicle Fault Detection

Fault detection in autonomous and automated vehicles has
been a topic of interest in several research studies. One
approach, proposed by Theissler, [63] involves using an
ensemble of one-class and two-class classifiers to detect faults
in data collected from road trials using the in-vehicle network.
The one-class classifiers are trained on recordings of normal
vehicle operation, while the two-class classifiers are trained
on both normal and faulty data. This semi-supervised approach
allows for the detection of both known and unknown fault
types, while a standard classification approach would only
be able to detect known faults. Theissler used and enhanced
the support vector data description (SVDD) as a base classifier
and evaluated the approach using data from multiple vehicles.

Tagawa et al. [65] proposed the use of structured denoising
autoencoders, a variant of denoising autoencoders, for fault
detection in driving scenarios. This method allows for the
incorporation of partial knowledge about the relationships
between variables and faults. The authors demonstrated that
their approach outperformed other methods such as one-class
support vector machines, vanilla denoising autoencoders, and
the local outlier factor. However, their study did not use real
faults, but rather recorded different driving scenarios and
assumed one of them to represent the normal condition while
others simulated faults such as going down a slope.

On the other hand, Shafi et al. [64] developed a system
for fault detection in a fleet of vehicles. They collected data
from the on-board diagnostic (OBD) interface of the vehicles
and transferred it to a common backend, where a knowledge
base for the entire fleet was created. Decision trees, support
vector machines, k-nearest neighbors, and random forests
were used for fault detection in different vehicle subsystems.
The approach was evaluated using data from 70 vehicles, and
the authors stated that faults identified in one vehicle would
also be used to warn drivers of vehicles with similar conditions.

Failure in the Brake System

Jegadeeshwaran and Sugumaran [66] propose an approach
for the detection of faults in the brake system. Vibration
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signals are acquired from a brake test rig with an additional
accelerometer. From these signals, statistical features are
extracted, and a subset is algorithmically selected.
Classification is then conducted with a clonal selection
classification algorithm.

In [67], the research group around Jegadeeshwaran
preprocessed the vibration data from the brake test rig via
wavelet analysis. Based on that they evaluated a set of classi-
fication approaches, namely best first trees, Hoeffding trees,
SVMs, and an ANN, to detect and classify ten different
hydraulic brake states, ranging from “Good” over “Drum
Brake Pad Wear”, “Air in Brake Fluid”, up to failure states like
“Brake Oil Spill” and “Reservoir Leak”. The best classification
results were achieved with the Hoeffding trees.

Failure in the Electric Power
Steering

Ghimire et al. [68] developed a physics-based model of an
electric power steering system. Through a series of fault injec-
tion experiments, they were able to derive fault-sensor measure-
ment dependencies to isolate the faults. They used support
vector regression (SVR) to estimate the severity of faults. In the
later work of Ghimire et al. [69], the same main author enhanced
the previous work. In the first step, a physical model was built,
and simulations were conducted under different fault condi-
tions. In addition to physical models, the authors evaluated
data-driven approaches, namely k-NN, a probabilistic ANN,
SVM, decision trees as well as rough set theory. According to
the authors, the rough set theory method performed superior
on sparse data compared to the other methods.

9. Categorization Based
on ADS Component,
Subsystem, and Control
Interfaces

Durability-related safety risks are risks that are related to the
ability of an autonomous vehicle (AV) or its components to
withstand the stresses and strains of normal operation over
an extended period. These risks can have serious conse-
quences, including accidents or injuries, and it is important
for AV developers to carefully consider and address them to
ensure the long-term safety and reliability of AVs.

The following are some of the durability-related safety
risks for AVs,

1. Sensor degradation: AVs rely on sensors to gather
information about their surroundings, including
cameras, lidar, radar, and ultrasonic sensors. These
sensors can degrade over time due to a variety of
factors, including exposure to the elements, physical
wear, and tear, and electrical or electronic issues. If
sensors degrade, it can lead to reduced accuracy and
reliability, which could impact the performance and
safety of the AV.

10.

11.

Actuator failure: Actuators are components that move
or control other parts of the AV, such as steering,
braking, and acceleration. If an actuator fails, it could
result in the loss of control of the AV, potentially
leading to accidents or injuries.

Software degradation: AVs rely on complex software
systems to process sensor data and make decisions.
Over time, the software may become outdated or may
develop errors that could impact the performance and
safety of the AV. This could be due to issues with the
software itself, or due to changes in the operating
environment that the software was not designed

to handle.

Structural failure: AVs are subjected to a variety of
loads and stresses during normal operation, including
impacts from other vehicles or objects, and the weight
of passengers and cargo. If structural components of
the AV become damaged or weakened, it could lead to
the failure of the AV. Structural failures could occur
due to physical damage, corrosion, or other factors.

Wear and tear on components: AVs have many
moving parts that are subjected to wear and tear
during normal operation. This can lead to component
failures and reduce the reliability of the AV. Wear and
tear can be caused by a variety of factors, including
friction, impact, and corrosion.

Accumulation of damage: AVs may be subjected to
impacts or other forms of damage during normal
operation, which can accumulate over time and lead
to failures. This could include damage to sensors,
actuators, or other components.

Corrosion: AVs may be exposed to corrosive elements
such as salt, water, or chemicals, which can cause
corrosion and weaken components. This can lead to
component failures and reduced reliability of the AV.

Electrical or electronic issues: AVs rely on electrical
and electronic systems to function, and these systems
can experience issues over time that could impact the
performance and safety of the AV. These issues could
include electrical shorts, power surges, or

other problems.

Human error: Human error in the maintenance or
operation of an AV can lead to durability-related
safety risks. For example, if an AV is not properly
maintained, it could result in component failures or
other issues. Similarly, if an AV is operated in a
manner that is not in accordance with its intended
use or capabilities, it could increase the risk of
durability-related safety issues.

Poor quality components: Using low-quality
components in the construction of an AV can
increase the risk of component failures and other
durability-related safety issues. Poor-quality
components may be more prone to failures or may not
be able to withstand the stresses and strains of
normal operation.

Misuse of the AV: Using an AV in a manner that is
not in accordance with its intended use or capabilities
can increase the risk of durability-related safety
issues. For example, using an AV to transport heavy
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loads beyond its rated capacity could lead to
structural failures or other issues.

12. Operating outside of design limits: Operating an AV
outside of its design limits, such as by exceeding its
maximum speed or carrying more weight than it is
designed for, can increase the risk of durability-
related safety issues.

Different frameworks have been developed by the
industry to deal with durability-related safety risks for
example., Waymo's Fatigue Risk Management Framework is
a set of guidelines for preventing, monitoring, and mitigating
fatigue-induced risks during the testing of autonomous
driving systems. The framework is informed by practices from
avariety of industries, including transportation, aviation, and
nuclear and chemical sectors, and follows the principles of a
Safety Management System, in which specific hazards are
identified and risk is managed systematically. The framework
consists of three main components: fatigue prevention, fatigue
monitoring, and fatigue mitigation, which work together to
form a cycle. The fatigue prevention component includes
measures such as work-rest scheduling, training, and fatigue
awareness, while the fatigue monitoring component involves
the use of tools such as questionnaires, wearables, and other
sensors. The fatigue mitigation component includes strategies
such as emergency procedures, shift adjustments, and contin-
gency plans. Overall, Waymo's Fatigue Risk Management
Framework aims to ensure the safe testing and development
of autonomous driving systems.

10. Challenges Today

Preventive maintenance for autonomous driving systems is
crucial for ensuring the safe and reliable operation of these
vehicles. However, as the technology behind autonomous
vehicles is still relatively new and rapidly evolving, there are
several challenges that engineers and technicians must face
to effectively maintain these vehicles. There are several chal-
lenges to the preventive maintenance of autonomous
driving systems,

Complexity: Autonomous driving systems are highly
complex and consist of multiple subsystems and components,
making it difficult to identify and diagnose potential issues.

Safety: Ensuring the safety of passengers and other road
users is a top priority, which can make it difficult to perform
maintenance without disrupting the system's functionality.

Cost: Autonomous driving systems are expensive to
develop and maintain, and preventive maintenance can add
significant costs to the overall operation of the system.

Data management: Autonomous driving systems
generate large amounts of data, which must be effectively
managed and analyzed to identify potential issues and
plan maintenance.

Software updates: Autonomous driving systems rely on
sophisticated software, which must be regularly updated to
address security vulnerabilities and improve performance.

Regulation: Governments and industry organizations
have not yet developed a clear regulatory framework for the

maintenance of autonomous driving systems, which can make
it difficult for manufacturers and operators to know how to
maintain and service their systems.

Scalability: Autonomous driving systems need to be able
to operate in a wide range of environments and conditions,
making it difficult to develop a one-size-fits-all
maintenance strategy.

Remote monitoring: Autonomous driving systems need
to be monitored in real-time to identify potential issues before
they become critical, but this can be difficult and costly to
implement, especially in remote locations.

Cybersecurity: Autonomous driving systems are vulner-
able to cyber-attacks, and preventive maintenance must
include measures to protect the system from potential threats
and breaches.

11. Future
Recommendations

To effectively maintain autonomous driving systems, it is
crucial to develop advanced diagnostic systems that can detect
and diagnose potential issues with the vehicle's sensors,
software, and other components in real-time. These systems
should be based on the latest technologies such as artificial
intelligence and machine learning, which would enable the
ability to analyze large amounts of data quickly and accurately,
and alert maintenance personnel to any potential problems.
Furthermore, it is recommended to have a centralized moni-
toring system that can track the vehicle's performance and
report any issues to the maintenance team.

Cybersecurity is another important aspect that should
be considered when it comes to the preventive maintenance
of autonomous driving systems. It is recommended to imple-
ment advanced security measures to protect the vehicle's
systems from cyber-attacks, such as encryption of sensitive
data, secure communication protocols, and regular security
updates. Additionally, it is essential to conduct regular pene-
tration testing to identify and address any vulnerabilities in
the system. Furthermore, it is recommended to have a dedi-
cated cyber security team that can monitor the systems and
take proactive measures to prevent any cyber-attacks.

In addition to the aforementioned recommendations, it
is important for maintenance personnel to stay up to date with
the latest advancements in autonomous vehicle technology.
This can be achieved by attending training and education
programs, participating in industry conferences and work-
shops, and staying informed about the latest research in the
field. Furthermore, it is recommended to have a dedicated
team that can conduct research and development to develop
new and advanced maintenance techniques.

A comprehensive and proactive maintenance strategy
should be developed that considers the unique characteristics
and requirements of autonomous vehicles. This strategy
should include regular inspections and testing of the vehicle's
sensors, software, and other components, as well as regular
updates and upgrades to keep the vehicle's technology current.
Furthermore, it is recommended to have a clear
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communication channel between the vehicle manufacturers
and the maintenance providers to ensure that they are aware
of the latest updates and can conduct the necessary
maintenance accordingly.

It is also recommended that vehicle manufacturers and
maintenance providers collaborate with government agencies
and other organizations to establish industry standards and
guidelines for autonomous vehicle maintenance. This will help
to ensure that all autonomous vehicles are maintained to the
same high standards and will help to promote the safe and
reliable operation of these vehicles on the road.

Finally, it is important for vehicle manufacturers and
maintenance providers to invest in new technologies, such
as artificial intelligence, machine learning, and other
advanced analytics tools, that can help to improve the effi-
ciency and accuracy of preventive maintenance for
autonomous vehicles.

12. Concluding Remarks

Preventive maintenance for autonomous driving systems is
critical for ensuring the safe and reliable operation of these
vehicles. As the technology behind autonomous vehicles is
still relatively new and rapidly evolving, there are several chal-
lenges that engineers and technicians must face to effectively
maintain these vehicles. These challenges include ensuring
the accuracy and safety of the vehicle's navigation, dealing
with the large amount of data generated by the vehicle,
ensuring the security of the vehicle against cyber-attacks, and
staying up to date with the latest developments in autonomous
vehicle technology. Despite these challenges, research and
development in this field are ongoing, and new solutions and
approaches are being developed to address these challenges.
With continued advancements in autonomous vehicle tech-
nology, it is likely that the challenges associated with preven-
tive maintenance for these vehicles will be overcome and
autonomous vehicles will become a safe and reliable mode of
transportation for all.
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