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Abstract
This short review focuses on critical issues related to the
cathode/solid-electrolyte (SE) interface in all solid-state batte-
ries (SSBs), including chemical instability, space-charge layer,
and mechanical failure. Moreover, we reviewed recent R&D
efforts to solve the issues by passivating the cathode in-
terfaces using various materials (e.g. metallic oxides, carbon-
ates, phosphates, halides, and polymers) and coating
processes (e.g. sol-gel, dry coating, and atomic layer deposi-
tion). Finally, future perspectives have been outlined to un-
derstand fundamental electro-chemo-mechanical reactions
occurring through coating layers to improve the performances
of SSBs in the future.

Addresses
1 Department of Mechanical and Aerospace Engineering, The Ohio
State University, Columbus, OH 43210, USA
2 Battery and Fuel Cell Development Group, Schaeffler Group USA
Inc., Wooster, OH 44691, USA

Corresponding author: Kim, Jung-Hyun (kim.6776@osu.edu)
Current Opinion in Electrochemistry 2023, 39:101251

This review comes from a themed issue on Energy Storage: Batteries
and Supercapacitors

Edited by Kenneth Ozoemena

For a complete overview see the Issue and the Editorial

Available online 21 February 2023

https://doi.org/10.1016/j.coelec.2023.101251

2451-9103/© 2023 Elsevier B.V. All rights reserved.

Keywords
Review, All solid-state batteries, Sulfide-based solid electrolyte, Cath-
ode coating, Cathode, Solid electrolyte interface, Coating materials
and processes.

Introduction
In the current era, researchers and industrialists have
started working toward all solid-state batteries (SSBs)
due to their high energy density, enhanced thermal
safety, and stability [1,2]. Among all the categories of
solid electrolytes (SEs), such as Li-stuffed garnet-phase
oxides [3], perovskite [4], NASICON [5], lithium
phosphorus oxynitride (LiPON) [6], and anti-

perovskite [7], sulfide-based SEs have emerged as the
prime candidate for SSBs due to their excellent ionic
www.sciencedirect.com
conductivities (e.g. 2e25 mS/cm) that is comparable to
conventional organic liquid electrolytes [8,9]. Addi-
tionally, sulfide-based SEs can offer good cycle life and
high energy densities (>900 Wh/L) [10], which make
them a front-runner in the manufacturing of light-

weight, long-range, and safe SSBs for electric vehicles.

Despite the advantages, practical applications for Li-
argyrodite SSB were still under-achieved due to a few
technical challenges (Figure 1a). First of all, sulfide-
based SEs have narrow electrochemical stability win-
dows as shown in Figure 1b (e.g. 1.71e2.01 V for
argyrodite [11]) which causes them to be thermody-
namically unstable at both anode/SE [12] and cathode/
SE interface [13e15]. Unwanted reaction products at
the electrode-electrolyte interfaces increase cell

impedance and degrade cell performance [16e19]. In
addition, volumetric changes in cathode and anode
during cycles cause the loss of interfacial contact and,
therefore, increase interfacial resistances [20]. This
electro-chemo-mechanical instability is a common issue
for all different types of SSBs.

In this short review, we focus on the current state and
progress on stabilizing the SE/cathode interface. The
SE/cathode interface stability is one of the most critical
issues of sulfide-based SSBs due to their electro-chemo-

mechanical evolutions during cycling which is respon-
sible for a premature cell death [21]. Techniques, such
as coating passive materials on cathode, doping cathode
materials, and synthesizing composite cathodes, have
been successfully demonstrated for reducing parasitic
reactions at the SE/cathode interface [19,22]. Among all
the techniques, cathode coating stands out as it is a well-
established process for manufacturing conventional Li-
ion batteries. Here, we comprehensively described
various problems at the interface between cathode and
argyrodite SE and summarized different cathode-

coating materials and processes that have been proposed
in recent years. Finally, strategies for these interfacial
problems and outlooks are prospected.

Electro-chemo-mechanical problems at SE/
cathode
Various problems occurring at SE/cathode interface are
responsible for SSB cell failure. We summarized the
Current Opinion in Electrochemistry 2023, 39:101251
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Figure 1

(a) Schematic of cathode/SE interfacial problems and coating solutions by using different types of coating materials. (b) Electrochemical stability windows
of various materials. Reprinted (adapted) with permission from [15], Copyright 2016 American Chemical Society. Scanning electron microscopy images of
NCM811 cathodes interfacing with b-Li3PS4 SE recorded (c,d) at first charge states, (e,f) after 50 cycles. Reprinted (adapted) with permission from [30].
Copyright 2017 American Chemical Society. (g) Elimination of space-charge layer by LiNbO3 (LNO)-coated interlayer. Reprinted (adapted) with
permission from [28]. Copyright 2014 American Chemical Society.
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interfacial issues into the followings: chemical insta-
bility, space-charge layer, and mechanical failure
[14,23,24]. First, the chemical side reaction of sulfide-

based SE (both glass and crystal) stems from their
very narrow electrochemical stability. For example, Mo
et al. [11] suggested that the sulfur content in thio-
phosphates tends to oxidize easily at 2.3 Vvs.Li. Since
many common cathode materials have the nominal
voltage above 3 Vvs.Li [11,25], sulfide-based SEs can be
easily oxidized by bare cathode materials. As a result, Li-
insulating layers, such as S, Li2Sn, and P2Sx, were pro-
duced at SE/cathode interface, which caused a large
Current Opinion in Electrochemistry 2023, 39:101251
capacity fading and interfacial impedance of SBBs
during initial few cycles [26]. Also, surface-to-surface
contact between cathode and SE leads to the interdif-

fusion of P element and transition-metal ions. The co-
efficient of diffusion and mutual solubility of mobile
components affect the level of interdiffusion. The SEM
image of contact loss between NCM811 and b-Li3PS4
SE after 1st and 50th cycle is shown in Figure 1cef. At
elevated temperature conditions during processing
(synthesis) and cycling, accelerated interdiffusion of
particles leads to the formation of interphase that hin-
ders Li-ion transportation [24].
www.sciencedirect.com
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Additionally, the space-charge layer (Figure 1g) at the
interface during early cycles was generally considered as
one of the origins that hindered the Li-ion diffusion
[27,28]. The interfacial gap in ionic conductivity and
energy barrier results in the existence of space-charge
layer during the transfer of Li-ions between cathode and
electrolyte. The chemical potential difference between
the cathode and Li-ion in sulfide SE develops an

interfacial lithium-deficient layer. This results in the
formation of mixed ionic and electronic conductive
phases, thus, developing space-charge layer and
lowering overall ion mobility and electrochemical sta-
bility [28]. Although the existence of the space-charge
layer has been theoretically proven [29], its experi-
mental existence still requires further understanding.

Finally, mechanical instability at the SE/cathode inter-
face is one of the major reasons of the SSB performance
degradation [30]. Most of conventional cathodes, such

as LiCoO2, LiNiO2, and LiNixCoyMnzO2 (NCM),
experience volumetric changes (up to 8%) during lith-
iation/delithiation [31]. Even though sulfide-based SEs
have relatively low Young’s Modulus (w30 GPa), they
can only accommodate extremely small elastic de-
formations, and such large volumetric changes cause loss
in the contact and cracking at SE/cathode interface
which, in turn, hinder the transportation of Li-ions and
increase interfacial resistance [32].

Coating materials
Cathode coating has been widely accepted as one of the
most promising ways to stabilize the SE/cathode inter-
face. The important roles for coating are enhancing
chemical stability and suppressing space-charge layers at
the interface [11]. In this regard, the following property
criteria will be considered when choosing a coating
material: (i) high Li-ion conductivity, (ii) low electronic
conductivity, and (iii) wide electrochemical stability
window (Figure 1b). The coating layer needs to have

good/moderate ionic conductivity for facile Li-ion
transportation at the SE/cathode interface, which, in
turn, suppresses the space-charge layer (Figure 1g) [28].

Since the unwanted oxidation reactions at SE/cathode
interface originate from the electrochemical stability
gap between cathode and SEs, the coating materials
need to have a stability window wide enough to fill the
gap [11,25]. At the same time, coating materials should
retain electronically insulating property to serve as a
kinetic barrier for electron hopping from SE to cathode.

Various coating materials have been employed to stabi-
lize SE/cathode interface in sulfide-based SSBs. Table 1
listed the coating materials, properties, coating pro-
cesses, cell configurations, and their performances re-
ported in the literature. In this table, the coating
materials have subgroups, such as oxides, phosphates,
sulfides, polymers, and hybrids. Among them, metal
www.sciencedirect.com
oxides [33e40] are the most popular due to their low
cost and readiness to scale up. The oxides act as a
physical barrier on SE/cathode interface, which can
prevent the degradation of SE and improve the perfor-
mances (e.g. capacity, cycle life, and rate capability).
Among the coating materials, LiNbO3 stands out as the
most common coating material in recent research
(Figure 2) due to its wide electrochemical stability

window [25]. Nonetheless, its moderate ionic conduc-
tivity (10�5 e 10�6 S/cm) requires thin coating layer
(e.g. 1 wt% coating) as shown in Table 1. Also, Nb is not
earth-abundant, and the use of flammable alcohol during
wet-chemical coating process can be a safety concern
when scaling up [36]. Therefore, recent R&D effort has
been directed to searching alternative coating materials.
For example, Li2CO3 is one promising candidate
because of its lower cost and reasonable Li-ion con-
ductivity (10�6 S/cm) [37]. Additionally, coating oxide-
based SEs, such as Li0.35La0.55TiO3, Li0.5La0.5TiO3, and

Li0.35La0.5Sr0.05TiO3, could facilitate the charge transfer
reaction and hence improve the performance of cath-
odes in SSBs [41e43].

NASICON-type phosphate-based SEs, such as
Li1.3Al0.3Ti1.7(PO4)3 (LATP) and Li1.5Al0.5Ge1.5(PO4)3
(LAGP), have better anodic stabilities (e.g. stable up to
4.6 Vvs.Li for LATP and 4.9 Vvs.Li for LAGP) [44] than
most oxides attribute to strong covalent bonding of
polyanions. Combined with their good Li-ion conduc-
tivity (w10�4 S/cm in Table 1), phosphate-based SEs

can stabilize the SE/cathode interface and improve the
performance of SSBs [45].

There has been an approach to hybridize coating ma-
terials and tune the properties of SE/cathode interface.
Kim et al. [37] adopted Li2CO3/LiNbO3 as the hybrid
coating onto cathode to obtain combined benefits from
them; LiNbO3 for preventing a release of harmful SO2

and CO2 gases and Li2CO3 for improving capacity
retention and lower the material cost. The STEM image
of LiNbO3 and Li2CO3 hybrid coating is shown in
Figure 2eeh. Similarly, Li2CO3 has been combined with

Li3BO3 or Li2ZrO3 as the hybrid coating layers to further
lower the material cost and enhance the perfor-
mance [39,40].

Finally, polymers have been considered as alternative
coating materials due to their good mechanical proper-
ties and manufacturability to form homogeneous coating
layer with a good thickness control. The soft polymeric
coatings can accommodate large volumetric changes of
cathodes and suppress the delamination and cracking of
the coating [48]. Since polyacrylonitrile may not have

good Li-ion conductivity, Han et al. [49] used
LATP þ polyacrylonitrile composite as the hybrid
coating on cathodes. In the composite, LATP offers a
rapid Li-ion transportation while polyacrylonitrile pas-
sivates cathode surface uniformly.
Current Opinion in Electrochemistry 2023, 39:101251

www.sciencedirect.com/science/journal/24519103


Ta
b
le

1

S
u
m
m
ar
y
o
f
re
ce

n
t
re
se

ar
ch

o
n
ca

th
o
d
e
co

at
in
g
m
at
er
ia
ls

in
su

lf
id
e
so

lid
-s
ta
te

b
at
te
ry
.

C
a
te
g
o
ry

C
o
a
tin

g
m
a
te
ria

l
s
L
i

+
(S
/c
m
)

C
o
a
tin

g
d
im

e
n
si
o
n
s

C
o
a
tin

g
m
e
th
o
d

C
a
th
o
d
e

E
le
ct
ro
ly
te

A
n
o
d
e

F
irs

t
d
is
ch

a
rg
e

ca
p
a
ci
ty

(m
A
h
/g
)

C
a
p
a
ci
ty

lo
ss

p
e
r

cy
cl
e
(%

)

C
yc
lin
g
co

n
d
iti
o
n
s

R
e
f.

B
a
re

C
o
a
te
d

B
a
re

C
o
a
te
d

V
o
lta

g
e
(V
)

C
u
rr
e
n
t

d
e
n
si
ty

T
e
m
p
.

(o
C
)

O
xi
d
es

L
iN
b
O

3
1
0
−
5
−
1
0−

6
~
2
n
m
/0
.1

w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(6
0
0

� C
)

L
iN
i 0
.8
2
M
n
0
.0
6
C
o
0
.1
2
O

2
L
i 6
P
S
5
C
l

In
-L
ip

o
w
d
e
r

o
n
N
if
o
il

1
4
1
.1

1
4
7
.6

1
.7
2

1
.0
7

1
.9
–
3
.9

3
4
m
A
/g

3
0

[3
8
]

5
–
6
n
m
/1

w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(4
0
0

� C
)

L
iN
i 0
.8
M
n
0
.1
C
o 0

.1
O

2
L
i 1
0
G
e
P
2
S
1
2

In
-L
i

~
1
6
2

~
1
8
5

1
.1
4

0
.8
9

2
.1
–
3
.7
8

0
.5

C
6
0

[3
3
]

3
w
t%

D
ry

co
a
te
d

L
iN
i 0
.6
C
o 0

.2
M
n
0
.2
O

2
L
i 7
P
2
S
8
I

L
i 0
.5
In

1
2
7

1
3
5
.1

4
.0
2

0
.7
8

2
.3
8
–
3
.6
8

1
5
m
A
/g

R
T

[5
1
]

1
w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(6
0
0

� C
)

L
iC
o
O

2
L
i 1
0
G
e
P
2
S
1
2

In
-L
i

~
1
1
0

~
1
2
2

0
.0
8

0
.0
1

2
.1
–
3
.6
8

0
.5

C
3
5

[5
3
]

~
5
n
m
/1

w
t.%

A
to
m
ic

la
ye

r
d
e
p
o
si
tio

n
L
iN
i 0
.8
M
n
0
.1
C
o 0

.1
O

2
L
i 5
.5
P
S
4
.5
C
l 1
.5

In
8
2
.7

1
2
3
.9

0
.3
7

0
.0
6

2
.1
–
3
.8

0
.2

C
R
T

[5
4
]

1
0
.5

n
m

A
to
m
ic

la
ye

r
d
e
p
o
si
tio

n
(4
0
0

� C
)

L
iN
i 0
.8
M
n
0
.1
C
o 0

.1
O

2
L
i 1
0
S
n
P
2
S
1
2

L
i 4
T
i 5
O

1
2

~
1
7
2

1
7
5

0
.0
6

0
.0
8
1

2
.8
5
–
4
.3
5

5
4
m
A
/g

3
0

[2
1
]

L
i 3
B
O

3
1
.4

×
1
0
−
9

<
4
0
n
m
/0
.1

w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(6
0
0

� C
)

L
iC
o
O

2
L
i 6
P
S
5
C
l

In
-L
i

1
1
2

1
4
2

0
.2
2

0
.1
5

3
.0
–
4
.5

0
.2

C
3
0

[3
6
]

L
iT
a
O

3
~
1
0
−
6

~
2
n
m
/0
.1

w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(6
0
0

� C
)

L
iN
i 0
.8
2
M
n
0
.0
6
C
o
0
.1
2
O

2
L
i 6
P
S
5
C
l

In
-L
ip

o
w
d
e
r

o
n
N
if
o
il

1
4
1
.1

1
5
0
.9

1
.7
2

1
.3
1

1
.9
–
3
.9

3
4
m
A
/g

3
0

[3
8
]

L
i 2
Z
rO

3
~
1
0
−
6

3
w
t%

D
ry

co
a
te
d

L
iN
i 0
.6
C
o 0

.2
M
n
0
.2
O

2
L
i 7
P
2
S
8
I

L
i 0
.5
In

1
2
7

1
3
6
.2

4
.0
2

1
.4
4

2
.3
8
–
3
.6
8

1
5
m
A
/g

R
T

[2
3
]

L
iW

O
3

–
2
–
4
n
m
/1

w
t.%

S
o
l-g

e
l

L
iN
i 0
.6
C
o 0

.2
M
n
0
.2
O

2
7
5
L
i 2
S
-2
2
P
2
S
5
-3
L
i 2
S
O

4
In
-L
i

1
2
4
.4

1
4
6
.3

0
.8
3

0
.5
6

1
.8
8
–
3
.8
8

1
7
m
A
/g

3
0

[6
1
]

L
i 2
W
O

4
–

2
0
n
m
/2

w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(3
5
0

� C
)

L
iC
o
O

2
L
i 6
P
S
5
C
l

In
-L
i

9
4
.5

1
4
2

0
.4
0

0
.0
7

2
.2
–
3
.6

0
.1

C
2
5

[3
9
]

L
i 2
M
o
O

4
–

1
w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(6
0
0

� C
)

L
iN
i 0
.8
C
o 0

.1
5
A
l 0
.0
5
O

2
7
5
L
i 2
S
-2
2
P
2
S
5
-3
L
i 2
S
O

4
In
-L
ip

o
w
d
e
r

o
n
N
if
o
il

1
1
3
.6

1
4
3

0
.2
2

0
.3
6

1
.8
8
–
3
.8
8

1
7
m
A
/g

3
0

[6
2
]

L
i 3
B
1
1
O

1
8

–
5
n
m
/0
.5

m
o
l%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(3
5
0

� C
)

L
iN
i 0
.5
C
o 0

.2
M
n
0
.3
O

2
L
i 3
P
S
4

G
ra
p
h
ite

1
0
7
.1

1
4
6
.5

0
.5
7

0
.2
2

2
.5
–
4
.3

0
.0
5
m
A
/c
m

2
R
T

[6
3
]

L
iB
(C

2
O

4
) 2

–
2
–
4
n
m
/0
.5

w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(3
5
0

� C
)

L
iN
i 0
.8
2
C
o 0

.1
2
M
n
0
.0
6
O

2
L
i 6
P
S
5
C
l

In
-L
ip

o
w
d
e
r

o
n
N
if
o
il

1
7
5
.4

1
9
4
.1

0
.6
6

0
.2
8

1
.9
–
3
.7

0
.5

C
2
5

[6
4
]

L
i 2
T
iO

3
7
.7
5
×
1
0−

7
5
.2

n
m
/1

w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(6
0
0

� C
)

L
iC
o
O

2
L
i 9
$5
4
S
i 1
$
7
4
P
1
$
4
4
S
1
1
$
7
C
l 0
.3

In
-L
i

1
1
5
.8

1
2
0

0
.1
4

0
.1
1

2
.1
–
3
.6
8

0
.5

C
5
0

[3
4
]

L
i 4
T
i 5
O

1
2

2
.5

×
1
0
−
5

5
.2

n
m
/1

w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(6
0
0

� C
)

L
iC
o
O

2
L
i 9
$5
4
S
i 1
$
7
4
P
1
$
4
4
S
1
1
$
7
C
l 0
.3

In
-L
i

1
1
5
.8

1
2
8

0
.1
4

0
.0
6

2
.1
–
3
.6
8

0
.5

C
5
0

[3
4
]

L
i 0
.5
L
a
0
.5
T
iO

3
6
.1
2
×
1
0−

5
2
0
n
m

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(1
5
0
&
4
0
0

� C
)

L
iN
i 0
.5
C
o 0

.3
M
n
0
.2
O

2
L
i 6
P
S
5
C
l

In
-L
i

1
1
6

1
3
5

0
.4

0
.0
5

2
.3
–
3
.8

0
.1

C
2
5

[4
1
]

L
i 0
.3
5
L
a
0
.5
5
T
iO

3
3
×
1
0−

4
6
n
m

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(3
5
0
a
n
d
7
5
0

� C
)

L
iN
i 0
.6
C
o 0

.2
M
n
0
.2
O

2
L
i 6
P
S
5
C
l

In
-L
i

1
4
3

1
7
9
.9

0
.5
7

0
.1
5

2
.2
–
3
.7

0
.1

C
R
T

[4
2
]

L
i 0
.3
5
L
a
0
.5
S
r 0
.0
5
T
iO

3
8
.4

×
1
0
−
5

1
5
–
2
0
n
m

S
o
l-g

e
l

L
iN
i 0
.3
3
M
n
0
.3
3
C
o
0
.3
3
O

2
L
i 6
P
S
5
C
l

In
-L
i

4
0

1
1
5

–
0
.0
1

2
.4
–
4

0
.3
3
C

R
T

[4
3
]

L
i 6
Z
n
N
b
4
O

1
4

3
×
1
0−

5
~
1
0
n
m
/1

w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(5
0
0

� C
)

L
iN
i 0
.8
5
M
n
0
.0
5
C
o
0
.1
0
O

2
L
i 6
P
S
5
C
l

L
i 4
T
i 5
O

1
2

~
1
4
2

~
1
6
2

0
.1
6

0
.0
9

1
.3
5
–
2
.7
5

1
C

4
5

[6
5
]

L
iA
lO

2
2
×
1
0−

6
(2
0
0

� C
)

8
–
1
5
n
m
/1

m
o
l.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(7
5
0

� C
)

L
iN
i 0
.3
3
M
n
0
.3
3
C
o
0
.3
3
O

2
L
i 3
P
S
4

L
i 4
.4
S
i

1
0
2

1
3
4

0
.1
1

0
.0
2

2
.5
–
4
.3

1
1
m
A
/g

R
T

[6
6
]

A
l 2
O

3
~
1
0
−
8

<
1
2
n
m
/1

w
t
%

D
ry

co
a
te
d
a
n
d

a
n
n
e
a
le
d
(6
0
0

� C
)

L
iN
i 0
.7
0
M
n
0
.1
5
C
o
0
.1
5
O

2
L
i 6
P
S
5
C
l

In
-L
i

~
9
4

~
1
2
2

0
.8

0
.4
6

2
–
3
.7

0
.2
5
C

2
5

[4
0
]

O
xi
d
es

H
fO

2
–

2
–
3
n
m

A
to
m
ic

la
ye

r
d
e
p
o
si
tio

n
a
n
d
a
n
n
e
a
le
d

(4
0
0

� C
)

L
iN
i 0
.8
5
C
o 0

.1
0
M
n
0
.0
5
O

2
L
i 6
P
S
5
C
l

L
i 4
T
i 5
O

1
2

~
9
5

~
1
4
0

0
.4

0
.3

2
.9
–
4
.3

0
.5

C
4
5

[6
7
]

T
iO

2
–

5
.2

n
m
/1

w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(6
0
0

� C
)

L
iC
o
O

2
L
i 9
$5
4
S
i 1
$
7
4
P
1
$
4
4
S
1
1
$
7
C
l 0
.3

In
-L
i

1
1
5
.8

9
7
.4

0
.1
4

0
.1
6

2
.1
–
3
.6
8

0
.5

C
5
0

[3
4
]

T
iN
b 2
O

7
–

1
5
n
m

S
o
l-g

e
l

L
iN
i 0
.6
M
n
0
.2
C
o 0

.2
O

2
L
i 1
0
G
e
P
2
S
1
2

In
-L
i

~
1
5
0

~
1
5
5

0
.4
6

0
.0
5

2
.7
2
–
4
.4

0
.1

C
–

[6
8
]

Z
rO

2
–

1
0
n
m
/0
.7

m
o
l.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(7
5
0

� C
)

L
iN
i 0
.3
3
M
n
0
.3
3
C
o
0
.3
3
O

2
a
-L
i 3
P
S
4

L
i 4
.4
S
i

1
0
5

1
2
0

0
.5
1

0
.0
8

2
.5
–
4
.3

0
.1

m
A
/c
m

2
R
T

[3
5
]

C
ar
b
o
n
at
es

L
i 2
C
O

3
>
1
0
−
6

m
a
x.

1
2
n
m
/1

w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(3
0
0

� C
)

L
iN
i 0
.6
M
n
0
.2
C
o 0

.2
O

2
b
-L
i 3
P
S
4

L
i 4
T
i 5
O

1
2

1
0
6

1
2
4

0
.3
6

0
.2
1

1
.3
5
–
2
.8
5

0
.1

C
2
5

[3
7
]

P
h
o
sp

h
at
es

L
i 3
P
O

4
~
1
0
−
7

5
n
m

A
to
m
ic

la
ye

r
d
e
p
o
si
tio

n
L
iN
i 0
.8
M
n
0
.1
C
o 0

.1
O

2
L
i 1
0
G
e
P
2
S
1
2

In
9
6
.4

1
7
1

2
0
.2
2

2
.7
–
4
.5

0
.2

C
R
T

[6
9
]

L
i 1
.4
A
l 0
.4
T
i 1
.6
(P
O

4
) 3

9
.5

×
1
0
−
3

8
n
m

L
iN
i 0
.6
C
o 0

.2
M
n
0
.2
O

2
L
i 1
0
S
n
P
2
S
1
2

In
-L
i

~
9
5

~
1
4
6

0
.6
0

0
.1
2

2
.1
–
3
.9

0
.1

C
2
5

[4
5
]

4 Energy Storage: Batteries and Supercapacitors

Current Opinion in Electrochemistry 2023, 39:101251 www.sciencedirect.com

www.sciencedirect.com/science/journal/24519103


S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(7
5
0

� C
)

L
i 3
.5
S
i 0
.5
P
0
.5
O

4
1
.6

×
1
0
−
6

4
5
n
m

P
u
ls
e
d
la
se

r
d
e
p
o
si
tio

n
L
iC
o
O

2
8
0
L
i 2
S
-2
0
P
2
S
5

In
~
9
0

~
8
0

–
<
0
.0
6

2
.0
–
3
.6

0
.1
3
m
A
/c
m

2
R
T

[7
0
]

H
yb

ri
d

L
iN
b
O

3
/d
o
p
e
d
L
iC
o
O

2
–

4
.3

n
m
/1

w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(4
0
0

� C
)

L
iN
i 0
.8
M
n
0
.1
C
o
0
.1
O

2
L
i 1
0
G
e
P
2
S
1
2

In
-L
i

~
1
2
8

~
1
6
0

0
.4
9

0
.0
3

2
.1
–
3
.7
8

0
.3

C
3
5

[4
6
]

L
i 2
C
O

3
/L
iN
b
O

3
>
1
0
−
6

m
a
x.

1
2
n
m
/1

w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(3
0
0

� C
)

L
iN
i 0
.6
M
n
0
.2
C
o
0
.2
O

2
b
-L
i 3
P
S
4

L
i 4
T
i 5
O

1
2

1
0
6

1
3
6

0
.3
6

0
.0
9

1
.3
5
–
2
.8
5

0
.1

C
2
5

[3
7
]

L
i 2
B
4
O

7
/L
iN
b
O

3
–

5
–
7
n
m
/1

w
t.%

D
ry

co
a
te
d
fo
r
L
i 2
B
4
O

7

a
n
d
so

l-g
e
lf
o
r

L
iN
b
O

3

L
iN
i 0
.8
M
n
0
.1
C
o
0
.1
O

2
L
i 6
P
S
5
C
l

L
i

~
5
1

~
1
2
2

~
0
.6
7

~
0
.2
1

2
.5
–
4
.3

0
.1

C
R
T

[5
6
]

L
i 3
B
O

3
/L
i 2
C
O

3
6
×
1
0
−
7

<
4
0
n
m
/0
.5

w
t.%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(6
0
0

� C
)

L
iC
o
O

2
L
i 6
P
S
5
C
l

In
-L
i

1
1
2

1
4
6

0
.2
2

0
.1
2

3
.0
–
4
.3

0
.2

C
3
0

[3
6
]

L
i 2
C
O

3
/L
i 2
Z
rO

3
>
1
0
−
6

<
1
0
n
m
/1

w
t.%

S
o
l-g

e
l

L
iN
i 0
.6
C
o
0
.2
M
n
0
.2
O

2
L
i 6
P
S
5
C
l

L
i 4
T
i 5
O

1
2

1
6
2

1
7
0

0
.7
1

0
.5
4

1
.3
5
–
2
.8
5

0
.2

C
4
5

[4
7
]

L
iN
b
O

3
/L
i 3
P
S
4

5
.2

×
1
0
−
6

1
0
n
m
/1

w
t.%

D
ry

m
ix
in
g
–
im

p
a
ct

b
le
n
d
in
g

L
iN
i 1
/3
C
o
1
/3
M
n
1
/3
O

2
L
i 3
P
S
4

In
-L
i

–
~
1
3
5

–
0
.4

2
.6
–
4
.3

0
.2

C
R
T

[7
1
]

L
iIn

O
2
–
L
iI

–
2
0
n
m
/0
.5

w
t.%

S
o
l-g

e
l

L
iN
i 0
.8
C
o
0
.1
5
A
l 0
.0
5
O

2
7
5
L
i 2
S
–
2
2
P
2
S
5
–
3
L
i 2
S
O

4
In
-L
i

1
4
8
.6

1
7
4
.7

0
.5
2

0
.9
2

1
.8
8
–
3
.8
8

8
.5

m
A
/g

3
0

[7
2
]

P
o
ly
m
er
s

P
o
ly
(3
,4
-

e
th
yl
e
n
e
d
io
xy
th
io
p
h
e
n
e
)

–
5
n
m

M
o
le
cu

la
r
va

p
o
r

d
e
p
o
si
tio

n
L
iN
i 0
.8
M
n
0
.1
C
o
0
.1
O

2
L
i 1
0
G
e
P
2
S
1
2

In
~
9
3

~
1
9
0

0
.8
6

0
.4
8

2
.1
–
3
.8

0
.1

C
R
T

[7
3
]

P
o
ly
a
cr
yl
o
n
itr
ile

1
.2
5
×
1
0
−
4
(s

e
le
ct
ro
n
)a

3
–
5
n
m
/0
.1
%

S
o
l-g

e
la

n
d
a
n
n
e
a
le
d

(2
7
0

� C
)

L
iN
i 0
.8
M
n
0
.1
C
o
0
.1
O

2
L
i 6
P
S
5
C
l

In
1
7
3
.0
6

1
9
2
.1
6

0
.4
1

0
.3
1

2
.5
–
4
.3

0
.1

C
6
0

[4
8
]

L
i 1
.4
A
l 0
.4
T
i 1
.6
(P
O

4
) 3

a
n
d

p
o
ly
a
cr
yl
on

itr
ile

2
.3
6
×
1
0
−
4
(s

e
le
ct
ro
n
)a

1
–
2
n
m

S
o
l-g

e
l

L
iN
i 0
.6
C
o
0
.2
M
n
0
.2
O

2
L
i 1
0
G
e
P
2
S
1
2

In
~
1
2
1

~
1
2
5

0
.0
8

0
.0
5

2
.8
–
4
.3

0
.5

C
2
5

[4
9
]

C
ar
b
o
n

L
iN
b
O

3
a
n
d
su

p
e
r
C
6
5

–
B
o
th

1
w
t.%

S
o
l-G

e
lf
o
r
L
iN
b
O

3
a
n
d

d
ry

m
ix
in
g
fo
r
su

p
e
r

C
6
5

L
iN
i 0
.6
M
n
0
.2
C
o
0
.2
O

2
L
i 6
P
S
5
C
l

L
i 4
T
i 5
O

1
2

1
6
3

1
7
3

~
0
.3

~
0
.3

1
.3
5
–
2
.8
5

0
.1

C
2
5

[7
4
]

D
ia
m
o
n
d
-li
ke

ca
rb
o
n

–
4
n
m

C
h
e
m
ic
a
lv

a
p
o
r

d
e
p
o
si
tio

n
L
iN
i 0
.8
C
o
0
.1
5
A
l 0
.0
5
O

2
7
5
L
i 2
S
,2

5
P
2
S
5

G
ra
p
h
ite

~
9
0

~
9
6

0
.3

0
.0
9

2
.5
–
4

0
.5

C
2
5

[7
5
]

*R
T
:
ro
o
m

te
m
p
e
ra
tu
re
.

a
s
e
le
ct
ro
n
:
e
le
ct
ro
n
ic

co
n
d
u
ct
iv
ity

va
lu
e
.

Coating materials/processes for cathodes in SSBs Morchhale et al. 5

www.sciencedirect.com
Coating processes
Various processes have been developed to provide uni-

form coatings on cathodes with a good thickness control
and improve the SSB performances. At the same time, in
practical perspectives, coating process should be cost-
effective, less hazardous, and environmentally friendly.
Atomic layer deposition (ALD) (Figure 3a) can precisely
control the coating layer thickness (in angstrom scale),
composition, crystallinity, and homogeneity. Such good
coating quality helps in achieving high electrochemical
performances compared with other coating techniques.
For instance, LiNbO3 coating on NMC cathode by ALD
technique offered the most stable cycle life of SSB

comparing with sol-gel and dry mixing methods in
Table 1 [21,33,53,54,51]. Figure 2 compares LiNbO3-
coated layer produced by ALD, sol-gel, and dry coating
methods. However, ALD process can increase the
manufacturing cost and decrease commercial viability.

Wet chemical processes (Figure 3b), such as sol-gel and
hydrothermal routes, have been used for commercial
coating processes. Figure 2 shows that the sol-gel process
can achieve good coating quality with homogeneous
chemical compositions. Despite such promises, wet

chemical processes may have safety concerns because
they use flammable liquids during the process [36]. The
waste liquid treatment and drying cathode material will
add extra costs [55]. Further, cathode coating using the
wet chemical processes can unwantedly leach lithium
from a cathode surface and degrade its performance [55].

Dry coating process (Figure 3c) will be highly attractive
in terms of scalability and cost-effectiveness. However,
achieving good homogeneity and thickness uniformity
via the dry coating will be more challenging than ALD or

wet chemical coating processes. Thus, it will be essen-
tial to develop optimized processing conditions for the
dry coating in practical applications. Earlier studies
demonstrated that well-optimized dry ball milling can
produce good quality coating and electrochemical per-
formances [23,40,56].

Summary and future perspectives
Sulfide-based SSBs have been the most promising
alternative to conventional liquid electrolyte-based Li-
ion batteries. Nanoscale coating on cathode has been
proven as a solution for passivating the SE/cathode and
stabilizing SSB performances. In summary, we believe
that the cathode coating layer needs to have the
following properties: (1) moderate ionic conductivity

(>10�6 S/cm), (2) low electronic conductivity
(<10�12 S/cm), (3) nanoscale thickness (<10 nm), and
(4) wide electrochemical stability window at least
covering from 1.7 V to 4.3 Vvs.Li. Also, the following
points need to be addressed via future research.

1. Understanding the chemo-mechanical property evo-
lution of the coated layers during the electrochemical
Current Opinion in Electrochemistry 2023, 39:101251
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Figure 2

(a) SEM images of LiNbO3-coated NMC by ALD method. Reprinted (adapted) with permission from [21]. Copyright 2021 American Chemical Society. (b)
SEM/TEM/EDS images of LiNbO3-coated NCM by sol-gel method. Reprinted (adapted) with permission from [50]. (c,d) LiNbO3-coated NCM by dry
coating method. Reprinted (adapted) with permission from [51]. (e–g) High-angle annular dark-field and (h) bright-field STEM images of
LiNbO3 + Li2CO3-coated NCM by sol-gel method. Reprinted (adapted) with permission from [52].
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cycling: major R&D efforts have been focused on
improving the chemical stability of SE/cathode at
operating voltages of cathodes so far. However, there
has been a lack of fundamental understanding about
Current Opinion in Electrochemistry 2023, 39:101251
the mechanical and chemical stability of the coating
layers during long-term cycles of SSBs. In situ char-
acterization techniques, such as in situ atomic force
microscopy (AFM), in situ X-ray nano-CT, in situ
www.sciencedirect.com
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Figure 3

Schematics of different coating methods. (a) Atomic layer deposition (ALD). Reprinted (adapted) with permission from [57]. (b) Sol-gel method, and (c)
dry ball milling. Reprinted (adapted) with permission from [58].
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Raman, will be critical in answering the research
questions. Recently reported polymer-inorganic

hybrid-coating approach can broaden the scope of
materials selection in terms of tuning the mechanical
properties and extending the cycle life. We antici-
pated that computational modeling combined with
experimental data can deepen the current under-
standing about the improvement mechanism of
coating and offer a guidance for selecting the coating
materials.

2. Understanding the impact of carbon conductors on
cathode/SE stability: in conventional Li-ion batteries,
nano-sized carbon conductors (w50 nm) within

cathode promote the oxidation of liquid electrolytes
and degrade the interfaces at high voltages beyond
the highest occupied molecular orbital (HOMO) of
electrolytes. Recent studies showed the positive
impact of adding small amounts of conductive carbon
coating, such as diamond-like carbon and super C65
on the performance of SSBs. Although carbon con-
ductors allow to build a good electronic conduction
network, they facilitate electrochemical decomposi-
tion of the SE at cathode/SE interface and reduce
cycle life [59,60]. Therefore, it will be necessary to

develop coating strategies that can also passivate the
carbon/SE interface in the future study.
www.sciencedirect.com
3. Explore the optimal coating process in terms of
coating quality, cost, and scalability: we discussed

three different coating methods: ALD, sol-gel, and
dry coating. Currently, sol-gel is the most balanced
way for coating process considering the inter-
relations among coating quality, cost, and scalability.
However, it is still important to understand the
quality and scalability of each coating method for the
commercialization of SSBs in the future study.
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