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ABSTRACT 
How deep neural networks can aid visualization perception re-
search is a wide-open question. This paper provides insights from 
three perspectives—prediction, generalization, and interpretation— 
via training and analyzing deep convolutional neural networks 
on human correlation judgments in scatterplots across three stud-
ies. The frst study assesses the accuracy of twenty-nine neural 
network architectures in predicting human judgments, fnding 
that a subset of the architectures (e.g., VGG-19) has comparable 
accuracy to the best-performing regression analyses in prior re-
search. The second study shows that the resulting models from 
the frst study display better generalizability than prior models 
on two other judgment datasets for diferent scatterplot designs. 
The third study interprets visual features learned by a convolu-
tional neural network model, providing insights about how the 
model makes predictions, and identifes potential features that 
could be investigated in human correlation perception studies. To-
gether, this paper suggests that deep neural networks can serve as 
a tool for visualization perception researchers in devising potential 
empirical study designs and hypothesizing about perpetual judg-
ments. The preprint, data, code, and training logs are available at 
https://doi.org/10.17605/osf.io/exa8m. 

CCS CONCEPTS 
• Human-centered computing → Visualization design and evalu-
ation methods; Information visualization; Empirical studies in visual-
ization; User models; • Computing methodologies → Neural 
networks. 
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1 INTRODUCTION 
Understanding visualization perception is fundamental to designing 
visualizations and building visual analytics systems. Research in 
this area has been difcult because many interrelated factors can in-
fuence visualization perception. Conversely, deep neural networks 
appear to be promising model architectures for image data even if 
they do not model biological human perception. They can be opti-
mized to recognize complicated patterns from natural images to pro-
duce classifcations [27], extract infographic components [19, 59], or 
attempt graphical perception on elementary visual encodings [23]. 
These observations provoke a research question—How can deep 
neural networks aid visualization perception research? 

To explore this intersection, we revisit one research topic in 
visualization perception: how people discriminate between two 
scatterplots for larger linear correlation, quantifed by the Pear-
son correlation coefcient (� ). Studies model perceptual precision 
using Just-Noticeable Diference (JND) [26, 89], but these models 
provide little information on where JNDs do not describe judgment 
behavior [26, 43]. Later studies model binary judgments [117], mo-
tivated by speculation that participants may compare correlation 
using visualization features as a proxy [26, 43] (e.g., a prediction 
ellipse [117]). These features were often defned from expert hy-
potheses [35, 74, 117] yet provided limited explanations as well as 
prediction accuracy [117]. 

With this exemplar topic, we conduct three studies that explore 
how deep convolutional neural networks might bring new inspira-
tions to visualization perception research. The frst study assesses 
twenty-nine deep convolutional neural network architectures in 
predicting participants’ judgments, and fnds that a subset of the ar-
chitectures holds at least the same accuracy as the best-performing 
regression analyses in prior studies (Sec. 4). The second study shows 
that these models display better generalizability than prior models 
to two other judgment datasets (Sec. 5): one doubling data points 
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and the other including outliers. The third and fnal study extracts 
and categorizes features learned by a convolutional neural network 
model, and fnds these features qualitatively refect visualization 
features that may infuence participants’ judgments (Sec. 6). Fi-
nally, we speculate that these approaches can feasibly be applied 
to other visualizations and tasks to aid empirical studies and auto-
matic design (Sec. 7): the predictive models may inspire automatic 
evaluation, and the features extracted by the models provide clues 
to theorizing visualization perception and designing new models. 

The specifc contributions of this research include: 
✦ Quantitative performance measurements of twenty-nine convo-

lutional neural network architectures for predicting participants’ 
correlation comparison judgments in scatterplots, compared 
with the best-performing regression analyses using factors pre-
viously proposed in the literature; 

✦ Quantitative evidence that some neural network models display 
better generalizability for correlation comparison judgments in 
scatterplots, compared with the regression analyses from prior 
studies; 

✦ Qualitative evidence that deep convolutional neural network 
models trained on correlation judgment data can provide in-
terpretable and novel visualization features, which may aid re-
search in construing how people make perceptual judgments in 
scatterplots; 

✦ Insights, limitations, and challenges of using these neural net-
work models, including the possibility of building generalizable 
models for visualization perception studies; 

✦ Three correlation comparison judgment datasets, each with 
20,160 scatterplot pair images, varying in the number and distri-
bution of points presented as well as participant performance. 

2 BACKGROUND 
2.1 Artifcial neural networks 
Inspired by biological neural networks [65, 104], artifcial neural 
networks were designed to capture trends and patterns hidden in 
large data corpora. They comprise a set of inter-connected neuron 
layers that transform input data into diferent representations, and 
deep neural networks use multiple layers. Convolutional neural 
networks (CNNs) use banks of learned flters within convolutional 
layers that operate over windows of the previous layer. These flters 
extract features from input images for tasks like classifcation. 

Existing research attempts to answer whether an artifcial (con-
volutional) neural network can model a biological visual system [48, 
50, 56, 63, 78–80, 116] (e.g., by comparing the extracted features [18, 
37, 57, 94]). These works motivate this research. One diference is 
that we consider artifcial neural networks as a means for predict-
ing perceptual judgments, while the underlying operations may (or 
may not) be comparable to their biological counterparts. 

2.2 Machine learning & visualization 
Machine learning techniques, especially deep neural networks, 
were progressively applied to vision-related felds [12, 56] such as 

data visualization (see [108] for a survey). One compelling applica-
tion is to retrieve values and labels from charts [38, 40, 66, 75, 82, 97] 
to improve visualization design [91] or perform Visual Question 
Answering (VQA) [39, 83, 84]. Deep neural networks were used 
to extract features from infographics [59] to automate design pro-
cesses [11, 14], generate recommendations [32, 54, 61, 118, 121], 
and highlight visual salience [10]. Alternatively, visualizations are 
efective means to explain and interpret a neural network (see [30] 
for a survey). 

Previous research explored how convolutional neural networks 
might apply to visualizations. Several convolutional neural net-
works were applied to two-value ratio judgment in elementary vi-
sual encodings, showing limited performance [23]. Similar research 
used convolutional neural networks to evaluate the efectiveness of 
graph visualizations [21]. Other research employed deep generative 
models to quantify and reveal various scatterplot features [36, 103]. 
Relevantly, neural networks are found to partially recognize Gestalt 
patterns [45], an important guideline for visualization perception. 

On user modeling, previous studies explored sequential models 
to predict user click and navigation behaviors in visual search 
tasks [8, 76], requiring hand-engineered features. Other studies used 
neural networks to regress aesthetics and memorability scores of 
infographics [19] or learn a similarity metric for generic correlation 
perception and other visual quality in scatterplots [62, 92, 114]. The 
last category is the most related to this research, both starting with a 
neural network optimized from visualization images and participant 
judgments. However, the cited studies ended with the initial models 
and their predictions. This research explores far more territories: 
we factorize model architectures, demonstrate generalizability, and 
interpret the learned features. 

2.3 Correlation perception & scatterplots 
Early studies examine the potential factors that afect how people es-
timate linear correlation (� ) in scatterplots [7, 16, 51, 55, 69]. Rensink 
and Baldridge [89] frst systematically model correlation perception 
in scatterplots using Just-noticeable Diference (JND), a property to 
describe perceptual precision. A later study extended this approach 
to eight other visualizations and regarded JND as a metric for visual-
ization evaluation [26]. Soon afterward, the modeling approach was 
advanced by introducing Bayesian data analysis [43, 74]. In addi-
tion to modeling JNDs, other research obtained weak evidence that 
participants used visualization features as proxies in this compari-
son task, and manually extracted a set of visualization features to 
explain participant judgments [117]. Other studies on scatterplots 
investigated the efects of visual marks [58, 64, 70, 106], computable 
features [113], mean estimation [22], indices-based correlation [95], 
robust regression [13, 58], and cluster perception [109]. 

The studies cited above found that correlation perception in vi-
sualizations may follow a systematic order that is receptive to a 
variety of factors like correlation coefcients [26, 89], visualization 
forms and features [117]. They also establish a perspective that vi-
sualization perception can be modeled. However, those JND models 
provide little information beyond this specifc measure of percep-
tual precision, like where JNDs are unidentifable (e.g., [26, 43]). 
Similarly, those visualization feature models have limited predic-
tion accuracy and inadequate explanations, especially when the 
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initial hypotheses about the features cannot be proved. For compar-
ison, this research also constructs four regression analyses based 
on the above literature. The frst two regressions use correlation 
coefcients as predictors (cf. [26, 87, 89]), and the other two use 
visualization features (e.g., prediction ellipse) (cf. [69, 117]). 

2.4 Two sets of open questions 
The literature on machine learning and visualization is nascent 
and raises many questions. For example, given the numerous ma-
chine/deep learning techniques, how can we navigate which, if any, 
are appropriate to investigate visualization perception data? What 
additional values or properties can we expect from machine/deep 
learning techniques compared to existing modeling approaches 
(e.g., regression analysis)? What limitations and challenges might 
we encounter? 

Our current research seeks to answer these questions in the con-
text of correlation perception in scatterplots, which faces another 
set of open questions. First, existing models have limited accu-
racy in predicting people’s judgments—is it possible to improve 
the accuracy as an improvement of model performance? Second, 
researchers have to collect new data and ft new models for any 
new hypothesis about design parameters—is it possible to gener-
ate a model of peoples’ judgments that transfers across multiple 
visualization designs? Third, visualization features defned from 
expert hypotheses (e.g., [35, 117]) could be an incomplete set—is it 
possible to extract perceptual features from visualization images 
automatically? Since deep neural networks often perform well on 
feature extraction and prediction, we anticipate they might provide 
additional insight into this second set of open questions. In doing 
so, we also explore answers and uncover additional challenges for 
the frst set of open questions. 

3 METHODOLOGY 
As our research constitutes three studies, this section outlines the 
methodology shared across the studies, including the human subject 
experiments to collect human judgments and the setups to train 
neural network models. 

3.1 Preliminaries 
This research is at the intersection of deep learning and visualization 
perception, so we begin with preliminaries to align readers from 
diferent backgrounds. 

Following the cited studies [26, 89, 117], this research focuses on 
(linear) correlation comparison judgments in scatterplots. Given 
two side-by-side scatterplots, participants must choose which they 
perceive as showing more correlated data (see Fig. 1). The dichoto-
mous responses make it possible to model the judgments as a classi-
fcation problem. The input is raster visualization images, each com-
bining two scatterplots. The label is participants’ Left or 
judgments. The output is predictions of participant judgments. 

Right

This research collects and uses three sets of participant judg-
ments, varying in the data properties refected by the scatterplots 
(see Fig. 1). The frst dataset replicates the previous studies [26, 
89, 117] and constitutes scatterplots of 100 data points, denoted by 
Scatterplots100. The second dataset constitutes scatterplots of 200 

data points, denoted by Scatterplots200. The third dataset consti-
tutes scatterplots of 100 data points with fve outliers, denoted by 
Scatterplots95+5. Further motivation for choosing these parameters 
is provided in Sec. 5.1 that covers the generalizability study. 

Each dataset is randomly divided into training, validation, and 
test sets. The training set is used to estimate the parameters, the 
validation set determines when to stop training to avoid overftting, 
and the test set provides an unbiased evaluation of a model. 

To avoid confusion, henceforth, the term regression (analysis) 
is a method, model alludes to a trained (or ftted) instance with 
the parameters estimated, architecture refers to the structure, and 
neural network (or regression) is used when diferentiating model 
and architecture is unnecessary. 

3.2 Present research 
The three studies are formalized as three research questions on 
correlation comparison judgments in scatterplots. They show how 
deep neural network models could aid a visualization perception 
study from three perspectives. 

Study 1 asks do deep neural networks better predict partici-
pants’ correlation judgments? Presented in Sec. 4, this study fo-
cuses on prediction. We assessed the prediction accuracy of a set of 
neural network architectures in predicting participants’ judgments 
from the Scatterplots100 dataset. We compared them to the best-
performing regression analyses based on factors proposed in the 
literature. A subset of neural network architectures has comparable 
prediction accuracy to the regression analyses. 

Study 2 asks do the models better generalize predictions to 
other related datasets?1 Presented in Sec. 5, this study focuses 
on generalization, showing the models may provide predictions 
for new data before human judgment is collected. We applied the 
top-performing models from Study 1 to predict participants’ judg-
ments in two new datasets (Scatterplots200 and Scatterplots95+5). 
We compared their prediction accuracies with the corresponding 
models trained from scratch on the new data. Two neural network 
architectures outperform all the others in predicting new data. 

Studies 1 and 2 suggest that compared to the previous works, 
these neural network models may better capture the features in 
visualization images to predict human judgments. As such, Study 3 
asks what features a convolutional neural network model learns 
to predict participants’ perceptual judgments? Presented in Sec. 6, 
this study focuses on exploration. We frst conducted an error anal-
ysis to examine the bias of a selected neural network model. We 
then analyzed and interpreted the visual features learned by this 
model. This study identifes both previously proposed and new visu-
alization features, yielding new clues about correlation perception 
in scatterplots. 

The generalizable predictions might aid in automatic design and 
evaluation (e.g., inputting them with images of new designs), and 
the features learned may ofer clues to correlation perception and 
model improvement. Together, compared to years of the previous 
studies, the three studies show that deep neural network models 

1Model generalizability is evaluated using the same estimated parameters. This defni-
tion is stricter than where reftting new data is allowed. 
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(a) Scatterplots100 (b) Scatterplots200 (c) Scatterplots95+5

Figure 1: Example visualization images from the three datasets. We ask participants, “please choose the scatterplot that appears 
to show the more correlated data.” In each pair, the correlation coefcients are 0.6 (left) and 0.69625 (right), respectively. 

optimized from one judgment dataset potentially aid multiple dif-
culties in visualization perception research, including prediction, 
generalization, and interpretation [12]. 

3.3 Pilot studies 
We started with pilot studies to probe experimental setups. Among a 
series of pilot studies, we detail one that used the 19,000 correlation 
comparison judgments in scatterplots collected by Yang et al. [117]. 
We reproduced their visualization images and trained a set of neural 
network models to help decide the visualization parameters of scat-
terplots and design our human subject experiments. Following this 
pilot study, in this research, each scatterplot is 150 × 150 pixels, and 
a scatterplot pair is 308 × 154 pixels. These allow a reasonable batch 
size (32) to be ft into a 16GB GPU for the largest architecture used. 
The visualization images are also large enough for participants to 
view and compare correlation in two scatterplots. Each dot in a 
scatterplot is 2 pixels in radius, colored in opaque gray (■#999999). 
As this set of 19,000 judgments (images) seemed adequate, we de-
cided to collect roughly the same number of judgments. We also 
determined the data splitting strategy, learning rate, batch size, the 
number of epochs (for Study 1), and other hyperparameters for 
training the neural networks (see Sec. 3.5) based on this pilot study. 

3.4 Human subject experiments 
To start, we collected the three judgment datasets from three human 
subject experiments. These experiments shared the same design 
and procedure, summarized in Fig. 2 and described as follows. 

Experimental design The experiments tasked participants with 
choosing the scatterplot that shows the higher correlation between 
a pair (see Fig. 1). Because the relationship between JNDs and 
correlation coefcients (� ) was not of interest in this research, they 
were systematically sampled as follows. In each pair, one always 
had a fxed � out of six possible values (see Fig. 2 line 1), and the 
other approached this fxed � from either above (� + Δ� ) or below 
(� −Δ� ). For each approach and fxed � , we generated eight pairs and 
varied the perceptual distance between each pair. The perceptual 
distance was measured by JND of � (see Fig. 2 line 2).2 For example, 
suppose JND is 0.1 when � = 0.5, we generated two scatterplot pairs 
for 2 JNDs: (0.5, 0.5 + 0.2) and (0.5, 0.5 − 0.2). The exception is that 
we only considered non-negative correlation and set any negative 
� to 0. Last, because these 2-JND pairs were unchallenging due to 
the large diference in correlation (see Appx. F), we also used them 

2We consider only population-level, average JNDs here. 

as attention checks. Each participant accomplished 6 (r levels) × 
8 (JND levels) × 2 (approaches) = 96 judgments, randomized and 
split into two sessions of 48 judgments. 

To collect Scatterplots100, we frst estimated JNDs through a 
pilot study using the previous staircase method [26, 89, 117]. We 
then fne-tuned the JNDs and tested them in a sequence of pilot 
studies until the proportion of judgments selecting higher cor-
relation was similar across diferent � levels (see Appx. B). This 
eliminated judgment skewness within a dataset. For Scatterplots200 
and Scatterplots95+5, we assumed the same JNDs to suppress vari-
ance across the datasets, but expected participants’ judgments are 
proportionally diferent (see Appx. B). 

Generating stimuli We adapted the previous algorithm [26] to 
generate the datasets and then rendered scatterplots using d3.js 
in a browser. For a given correlation coefcient � , this algorithm 
frst generated an initial set of random points (�� , �� ) and then 
transformed the �−coordinates to meet the given � . The transfor-
mation was smaller if a point was closer to the means of � and 
�. We manipulated the initial set to generate Scatterplots95+5 by 
placing fve points near the mean of � but 3.5 standard deviations 
away from the mean of �, resulting in fve outliers (see Fig. 1c). This 
algorithm otherwise generated all datasets in the three experiments 
with minor modifcations (e.g., the number of points). Each dataset 
was generated onsite, and thus diferent participants were shown 
diferent images. We recorded each dataset to later reproduce the 
visualization images for training deep neural network models. 

Procedure After the consent and an overview, participants frst 
viewed a grid of scatterplots at 8 diferent � levels as training. They 
then practiced 16 judgments, with feedback on if they selected the 
higher correlation. They then accomplished the two main sessions 
with an optional break in the middle, followed by a demograph-
ics questionnaire. Between any two judgments, there were 500 
milliseconds of a blank white screen to eliminate visual afteref-
fects. A 1-minute video to illustrate the experiment is available in 
supplementary materials. 

Participants Based on the experimental design and planned sam-
ple size, we decided to use 210 participants for one experiment.3 All 

3The experimental design allows 96 judgments per participant, and the pilot studies 
show that 19,000 judgments seem sufcient. We hoped to meet 20,000 judgments and 
rounded the participant numbers to the nearest 10. As such, 20,000 judgments ÷ 96 
judgments per participant ≈ 210 participants. 

https://doi.org/10.17605/OSF.IO/EXA8M


How Can Deep Neural Networks Aid Visualization Perception Research? Three Studies on Correlation Judgments in Scaterplots CHI ’23, April 23–28, 2023, Hamburg, Germany 

Studies 1 and 3

13. completion time
14. correlation familiarity (1 = not at all, 7 = very familiar)

9. the proportion of selecting larger r per participant
10. the proportion of selecting  Right  per participant

{0.3, 0.4, 0.5, 0.6, 0.7, 0.8}
{.25, .50, .75, 1.0, 1.25, 1.50, 1.75, 2.0} JNDs

6 r levels × 8 JNDs × 2 approaches = 96 judgments 
210 participants  

96 judgments per participant  × 210 participants = 20160 judgments (images) 

82.30 [63.50, 92.70] 78.10  [58.60,89.60]

training: validation: test = 12180  : 3990  : 3990  ≈ 0.6:0.2:0.2   

78.10 [60.70, 89.60]

female
male

prefer not to say

18−25
25−39

40−49
50−59

11. gender

12. age

8.87  [5.95, 20.7] minutes 9.09 [6.16, 26.9] 9.73 [6.08,  23.5] 
2  [1 ,  7] 3  [1,  7] 2.5 [1,  7]

54.20 [38.80, 70.60] 54.20  [35.90, 70.80] 53.10  [36.50,70.80]

{above, below}

median [95% quantile intervals]

120

154

89
132

76
147

63

148157

2 1

8. usage

1. correlation coefficients (fixed r)
2. JNDs between a pair

3. How the experiment approaches the fixed r
4. the number of judgments (images) per participant

5. the number of participants in each dataset
6. the number of judgments (images) in each dataset

7. data splitting

Study 2a Study 2b

(a) Scatterplots100 (b) Scatterplots200 (c) Scatterplots95+5

0

*It is possible that a dataset contains 
identical images, but the probability is very small.

*

Figure 2: The summaries of the three datasets from the human subject experiments. The proportion of selecting the scatterplot 
on the right side ( Right ) is about 54.2% (cf. 50%). To account for this bias, we decided on a guessing threshold of 55%, slightly 
higher than the empirical observation. 

participants were recruited from Prolific.co4 and each was paid 
1.60 USD for their time (see Fig. 2 line 13). We frst recruited more 
than 210 participants, and then dropped participants if they failed 
to select higher correlation in more than 55% of judgments (the 
guessing threshold, see Fig. 2) or if they failed in more than half of 
the twelve attention checks. After this step, we had about 205 to 
215 participants. We continued to drop extra participants randomly 
or recruit additional participants until we met 210. The pilot and 
earlier participants were excluded from later experiments. In total, 
we had 210 × 3 = 630 unique participants and collected 20,160 × 3 
= 60,480 judgments (images), roughly balanced in Left and 
judgments. We used all judgments in training or testing the models. 

Right

3.5 Training neural network models 
With the datasets collected, this section outlines the shared methods 
to create and train neural network models. The later sections report 
the results. 

Visualization images We reproduced each scatterplot pair as a 
.png fle using Python 3.8.8, Matplotlib 3.4.1, and an SVG backend. 
We manually adjusted the confguration (e.g., paddings) to match 
a screenshot of the same pair originally rendered by d3.js in the 
human subject experiments (see a comparison in Appx. A). Each 
reproduced image is 308 × 154 pixels, with a single channel. 

4The experiments were conducted in early August 2021, when participant pool on 
Prolific.co was leaned towards young females. Our data quality is not afected by 
this, because the judgment distributions are similar to the previous datasets [26, 117]. 

Data splitting We partitioned each dataset (i.e., Scatterplots100, 
Scatterplots200, or Scatterplots95+5) into the training, validation, 
and test sets in a ratio close to 0.6:0.2:0.2. That is, we randomly and 
respectively assigned 58, 19, and 19 judgments from each participant 
to the three folds. 

Implementation We used Python 3.7.11, PyTorch 1.10.0, PyTorch 
lightning 1.5.10, and torchvision 0.11.3, and trained all the neural 
network models on Google Colab [1] with a 16GB Tesla P100 GPU. 
We always adopted the implementation from torchvision, modify-
ing the input and output layers, or noted exceptions. We imple-
mented the regression analyses using R 4.0.5, lme4 1.1.26 [4], Rstan 
2.21.1 [100], CmdStanR 0.3.0 [20], brms 2.15.0 [9], and tidybayes 
2.3.1 [42]. 

Measure For the frst two studies, we used prediction accuracy 
on the same test sets (i.e., the proportion of correctly predicting 
participants’ left or right judgment) as the only measure for 
simplicity; other measures are correlated with prediction accuracy. 
Because the training of a neural network model was progressive, 
we selected the checkpoint with the smallest loss on the validation 
test as the fnal model to best describe the relationship between the 
input and output [60]. We used cross-entropy as the loss function 
or noted exceptions. The third study is a qualitative exploration. 

Training Each judgment corresponds to an image and a label 
( Left or Right judgment). We initialized and trained a neural 
network model from scratch, applied batch normalization (batch 
size = 32, see Sec. 3.3 above), used an SGD optimizer with a momen-
tum of 0.9, and employed a scheduler to decrease the initial learning 

https://prolific.co/
https://blog.prolific.co/we-recently-went-viral-on-tiktok-heres-what-we-learned/
https://Prolific.co
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rate (0.001) after every fve epochs at a rate of 70% (i.e., gamma = 
0.7). We trained each model for 50 epochs in Study 1 and 20 epochs 
in Study 2, as we later noticed that most models converged early. 
We trained (or ftted) all the regression and neural network models 
based on the same training and validation sets, and applied each 
model to predict the judgments in the corresponding test set. We 
repeated the data splitting, initialization, training, and testing pro-
cesses ten times to get ten samples of prediction accuracy. We then 
calculated the means and 95% bias-corrected and accelerated (BCa) 
bootstrap confdence intervals (CIs) [15, 17]. All code, datasets, 
results, and training logs are provided in supplementary materials. 

4 STUDY 1: PREDICTING PERCEPTUAL 
JUDGMENTS 

The frst study focuses on predicting perceptual judgments. We 
ask do deep neural networks better predict participants’ correla-
tion judgments for correlation comparison in scatterplots? This 
study assessed a set of neural network architectures using Scat-
terplots100 in comparison with four regression analyses based on 
factors previously identifed in the literature. 

4.1 Previous regression analyses 
The literature shows that correlation coefcients and visualiza-
tion features may infuence correlation comparison in scatterplots. 
To compare with these, we replicated their modeling approaches 
(e.g., [117]) by constructing four logistic regressions. Logistic re-
gression is suitable for dichotomous responses, and it was used to 
model correlation comparison judgments in scatterplots [117]. We 
implemented both frequentist and Bayesian approaches. 

Logistic regression (� ) The frst two regressions take pairs of cor-
relation coefcients as the predictors (input), which are known 
factors that strongly afect correlation judgments [26, 89, 117]. 
They are also strongly correlated with the previously proposed 
visualization features [117]. In Wilkinson-Rogers-Pinheiro-Bates’s 
notation [4, 81, 112], the regression formula is �� � ����ℎ� 

Left
∼ �right 

Right
+ 

�left + (1|�������������). �� � ����ℎ� denotes the and 
judgments. �right and �left denote the correlation coefcients of 
the two datasets; they are correlated with each other (collinearity), 
making the model coefcients unidentifable, but the model itself is 
valid for prediction [67]. The (1|�������������) term denotes that 
each participant has a random intercept to account for the similarity 
in the judgments from the same participant [99]. Bayesian logistic 
regression shares the same notation and formula, but it follows a 
Bayesian approach and uses weakly informative priors. Bayesian 
statistics are emerging for human-computer interaction research 
(e.g., [43, 44]) and are robust to random errors (e.g., outliers). For 
these reasons, we included a Bayesian logistic regression. 

Logistic regression (ellipse) uses the area of the prediction ellipse 
(see Appx. G for examples) as the predictors, a top-performing visu-
alization feature in explaining correlation comparison judgments in 
scatterplots [117]. Similarly, the regression formula is �� � ����ℎ� ∼ 
�����������right+ �����������left+ (1|�������������), and we con-
structed both frequentist and Bayesian models for comparison. We 
also had experimented with other visualization features based on 
the literature [69, 117] and a mixture model of multiple features. 

We found ����������� performed the best, and the mixture model 
failed to converge. 

These four regressions are categorically diferent from the neural 
networks below. The frst two use exact correlation coefcients that 
describe the scatterplots; the other two use the best knowledge 
about correlation judgments in scatterplots to make predictions. 
Both are not provided with visualization images. On the contrary, 
the neural networks operate on the same set of images but are not 
provided with a priori knowledge about correlation. The four regres-
sions calibrate our expectation for a “good” neural network model. 
If the prediction accuracy is lower, then its estimate of correlation is 
likely poor, or the model has overftted to noisy human judgments. 
If the accuracy is higher, the stimuli themselves may provide new 
visualization features that help predict human judgments. 

4.2 Deep convolutional neural networks 
We surveyed both the computer vision and visualization literature 
and collected a set of 30 neural network architectures, of which 29 
are convolutional neural networks designed to solve human vision 
tasks. We started with simpler architectures and fewer trainable pa-
rameters, and gradually considered depth, width, image resolution, 
and invariance. 

By experimenting with past and state-of-the-art architectures, 
we show which architectures can provide better predictions and 
learn lessons about model selection and architecture design. 

Common approaches 

Multilayer perceptron (MLP) [111] operates on all pixels simultane-
ously without convolution. Haehn et al. used an MLP as a baseline 
to test whether a convolutional neural network was necessary to 
solve graphical perception [23]. Following this logic, our MLP con-
tains three layers of 4096, 4096, and 2 perceptrons, without any 
dropout layer. 

AlexNet [49] is an architecture that frst achieved state-of-the-art 
performance for image classifcation [2]. It is the simplest convo-
lutional neural network in this section, consisting of fve convo-
lutional layers and two fully-connected hidden layers. This archi-
tecture is deeper than LeNet [52] used by Haehn et al. [23] and 
Giovannangeli et al. [21] for solving visualization tasks. 

VGG [98] succeeded AlexNet by increasing depth to 11–19 convolu-
tional layers with small convolutional kernels to extract more image 
features collectively. These are labeled VGG-11, VGG-13, VGG-16, 
and VGG-19. In previous studies, VGG-19 was most accurate for 
two visualization tasks: judging two-value ratios and counting dots 
added to scatterplots [23]. Similarly, VGG-16 performed well on 
counting edges and degrees in graph visualizations [21]. 

ResNet uses skip or residual connections to allow neural networks 
to be even deeper [28], with variants widened by a factor � to im-
prove performance [119]. A ResNet-18 was trained to predict memo-
rability and aesthetics scores of infographics and visualizations [19], 
and an altered version was used as a perceptual quality metric for 
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generic correlation perception in scatterplots [114]. We evaluated 
ResNet-18, ResNet-50, ResNet-152, and Wide ResNet-50-2. 

DenseNet increases connectivity between layers rather than deep-
ening or widening the network [33]. This design results in a high 
capacity but fewer learned features. We evaluated DenseNet-121, 
DenseNet-161, DenseNet-169, and DenseNet-201. 

EfcientNet uniformly scales width, depth, and image resolution 
through a compound coefcient � to improve training efciency 
and accuracy [102]. Scaling up resolution allows it to extract fne-
grained features from input images. We adapted the Pytorch imple-
mentation from Melas-Kyriazi et al. [68] and evaluated EfcientNet-
B0, EfcientNet-B2, EfcientNet-B4, and EfcientNet-B6. 

Variants and alternatives 

Antialiased CNNs are more robust to input translations [120]. A 
regular convolutional neural network is more likely to produce 
incorrectly-diferent predictions for image features that have trans-
lated, which might afect perceptual judgment prediction. We de-
noted these variants by (antialiased). 

FiLM modules condition neural network layers on additional in-
puts [77]. We used these inputs to inform the neural networks of 
participant IDs, much like the logistic regressions using partici-
pant IDs in random intercepts. In training, each input image and 
judgment has an added 210-dimensional one-hot vector represent-
ing which one of the 210 participants made that judgment. We 
attached FiLM modules to a feature extractor, and used 15 modules 
as they were the most accurate in the pilot studies. We denoted 
these variants by FiLM. 

Bayesian CNNs introduce probabilistic distributions to neural net-
work parameters, making them more robust to over-ftting [96]. 
We constructed Bayesian variants based on the implementation 
by Shridhar et al. [96], using the evidence lower bound (ELBO, a 
common loss function for probabilistic inference) and an Adamax 
optimizer [46]. 

VCC is our design to improve the training efciency of VGG and in-
tegrate FiLM modules and Bayesian CNNs. VGG was trained slowly 
due to having over a hundred million parameters. Thus, we modi-
fed VGG-11 and created three VCCs. We added one convolutional 
layer with 128 flters to the frst two convolutional layers of VGG-11 
to create VCC-4, the frst four to create VCC-5, and the frst six ex-
cluding the third max-pooling layer to create VCC-7. All VCCs had 
one fully-connected layer as the classifer, resulting in fewer than 5 
million parameters. 

Finally, VAEs (or variational autoencoders) attempt to compress 
data into a latent space through an encoder/decoder structure [47]. 
VAEs were used to extract features in infographics and predict 
memorability and aesthetics scores [19], summarize representations 
in scatterplots [36], and code patterns in visualizations [54, 121]. We 
adopted the � −VAE architecture [29] from Jo and Seo [36], who also 
extracted correlation features from scatterplots. We used 64 latent 
features and trained for 100 epochs with an Adamax optimizer [46]. 
The classifer had one layer connecting the 64 features to the output. 

The range of accuracy when using 
participants’ judgments as label. 
This is a replot of Fig. 4.  

Prediction accuracy on the test set 
when using ground truth as label 
(which of the two scatterplots has 
larger correlation). 
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Figure 3: The sanity check shows that most of the neural 
networks can learn ground truth labels (i.e., which of the two 
scatterplots actually has higher correlation). 

4.3 Training and interpreting 
As remarked in Sec. 3.5, we initialized and trained ten models for 
each regression/architecture. We report the means and 95% conf-
dence intervals of prediction accuracy in Fig. 4. To help interpret 
these results, we explain the sanity check and thresholds as follows. 

Sanity check Human perceptual judgments are often noisy. If a 
model cannot learn the ground truth labels (i.e., which of the two 
scatterplots actually has a higher correlation coefcient) as an easier 
problem, it is impractical to expect them to predict participants’ 
judgments. We therefore also trained the neural network models on 
the ground truth labels for a sanity check. To simplify this process, 
we only trained one model for the simplest architecture from one 
category. The uncertainty in accuracy should not exceed those 
from predicting participants’ judgments (shown in Fig. 4). As such, 
we selected the two Bayesian logistic regressions (the frequentist 
logistic regressions did not converge), MLP, AlexNet, VGG-11, VCC-4, 
ResNet-18, DenseNet-121, EfcientNet-B0, VAE, and Bayesian VCC-5, 
reporting the results in Fig. 3. 

The results show that most models can predict the ground truth 
(e.g., accuracy>90%); they can process the scatterplot images to 
learn correlation comparison. One exception is MLP, which shows 
an accuracy lower than others but higher than any models trained 
on participants’ judgments. This indicates that MLP can learn cor-
relation comparison from the images but may need more training 
epochs. Another exception is Bayesian VCC-5, showing an accuracy 
of around 50%; Bayesian VCC-5 cannot process these image.5 

Thresholds We also note two bounds to help interpret the results 
from predicting participants’ judgments. The frst one is 55%, the 
guessing threshold for removing inattentive participants (see Fig. 2). 
Above this threshold, we surmise that a model learned features that 
help make a prediction. Below this threshold, a model likely fails 
to extract information from data. The second bound is the pro-
portion of judgments where participants select the scatterplot of 
higher correlation; the average proportion is 76.62% for Scatter-
plots100. We surmise that surpassing this threshold is evidence that 
a model learns features that help correctly predict those judgments 
where participants do not select the scatterplot of higher correlation 

5We speculate that the reason might be VCC-5 is not suitable for this dataset, but 
probabilistic weights prevent overftting an inappropriate model. The latter two studies 
in this paper provide some limited evidence for this speculation. 
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VCC−5 (antialiased)
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76.62%. This is the 
human threshold, 
above which a 
model may correctly 
predict judgments 
where participants 
do not select higher 
correlation. 

r as input

images as input

convolutional 
neural networks

76.27 [75.77,76.69]

69.34 [67.85,70.64]

Study 1: Predicting participants’ correlation comparison judgments in scatterplots
better

ellipse area as input

...

77.06 [76.57,77.43]*

77.23 [76.90,77.54]*

* used in Study 2

mean [95% CI]

prediction accuracy

55% 76.62%

55%. This is the 
guessing threshold, 
above which a model 
likely learns features 
helpful for predicting 
correlation comparison 
judgments. 

Figure 4: Study 1 shows a subset of neural network architectures has comparable prediction accuracy to regression analyses 
based on previously identifed factors. We repeat the training, validation, and test processes ten times and report the means 
and 95% confdence intervals of prediction accuracy. 

(e.g., when a feature is deceptive to humans [74], the model agrees 
with human judgments). We term this a “human” threshold. 

4.4 Results 

Do deep neural networks better predict participants' 
correlation judgments?

As shown in Fig. 4, VGGs, VCCs, and their variants (i.e., FiLM 
modules, Antialiased CNNs) have comparable prediction accu-
racy to the four regressions, outperforming the others. However, 

neither variant appears to improve prediction accuracy further. For 
FiLM VCC-7, it may indicate that participants’ efects, while improv-
ing the training ft of a model, may not improve its test prediction; 
or the residual blocks (see below) inside FiLM modules [120] cause 
drawbacks. For Antialiased CNNs, we would expect improvements 
where translation equivariance is desired (such as if the visualiza-
tion axes and points vary globally in a location within the image), 
but this appears not to be the case within this dataset. Additionally, 
the VGG-like architectures slightly improve prediction accuracy 
as the depth increases, and generally display less uncertainty in 
prediction accuracy. 
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Looking at others, the three architectures designed for large-scale 
image analysis—ResNet, DenseNet, and EfcientNet—achieved mid-
dling prediction accuracies and displayed more uncertainty. Both 
ResNet and DenseNet may worsen as the depth increases, while 
EfcientNet improves as the scaling factor increases. The literature 
shows that ResNet is less stable than VGG [71, 107]. Human behav-
ioral data is often quite noisy, likely afecting ResNet more as a con-
sequence. VAE also shows middling prediction accuracy, suggesting 
that its encoder learned representative features, but additional fea-
tures might be necessary for improving accuracy. MLP appears able 
to make predictions based on 1D sequential pixels. It may reach a 
comparable accuracy after more training epochs, suggesting that 
convolutional layers are helpful. AlexNet and Bayesian VCC-5 seem 
unable to learn from these images. AlexNet can be trained to predict 
the ground truth, but it seems to struggle with noisy judgments, 
or the large kernels (11) in its frst convolutional layer may have 
wiped out the fne-grained features in the scatterplots. 

Among the four regressions, Logistic regression (ellipse) and Bayesian 
logistic regression (ellipse) yield slightly better prediction accuracy, 
corroborating with the literature that this feature better explains 
correlation comparison judgments in scatterplots [117]. The Bayesian 
approaches could be slightly less or more accurate, likely depending 
on the priors and ftting process. 

Insights These results indicate that most of the optimized archi-
tectures can predict participants’ correlation comparison judg-
ments in scatterplots, and a subset has comparable prediction 
accuracy to the best-performing models based on the factors 
and features proposed in the literature. More complex architec-
tures may be necessary for better prediction accuracy, but not 
necessarily a result of increasing depth, width, or image resolu-
tion. These quantitative performance measurements also provide 
insights into which architectures might provide better predictions 
for other visualizations and tasks. 

5 STUDY 2: GENERALIZING THE 
PREDICTIONS 

This study focuses on generalizing the model predictions to other 
related datasets [5]. In empirical studies, the generalizability pro-
vides hypothetical results without collecting human judgment and 
reftting the model. In particular, for deep convolutional neural net-
works, this generalizability will also address the concern about their 
sensitivity to small input changes [3]. As such, Study 2 asks do the 
models better generalize predictions to other related datasets? 
We examined two other datasets of correlation comparison judg-
ments in scatterplots: increasing the number of data points (Scat-
terplots200) and presenting outliers (Scatterplots95+5) (see Fig. 1). 
Both vary in the data presented to participants and their judgment 
performance (see Appx. B). 

5.1 Motivation 
Study 2a: Scatterplots200 Previous studies of correlation per-
ception often have a fxed number of data points [26, 89, 117]. As 
increasing the number of data points likely preserves certain scat-
terplot features, participants’ judgments are probably similar [55]. 
Also, if a neural network model appeals to the features varying with 

the number of points (e.g., memorizing the coordinates), it may not 
generalize to such a new dataset. We therefore collected Scatter-
plots200, using the same experimental protocol as Scatterplots100 
but increased the number of data points in each scatterplot to 200 
(see Sec. 3.4 above). 

Study 2b: Scatterplots95+5 Studies on correlation and cluster 
perception also suggest that noise and outliers in scatterplots likely 
afect participants’ perceptions [85, 86, 93, 105]. To a neural network 
model, a change in pixel distributions might also afect its prediction. 
We therefore collected Scatterplots95+5, using the same protocol 
as the other two datasets. The diference is that fve points were 
constantly located around 3.5 standard deviations from the mean 
of � (see Sec. 3.4 above). We chose fve points because participants 
may ignore one or two points, but too many points would also 
present a comparable cluster, and fve out of one hundred (5%) 
appear to be an acceptable threshold. 

5.2 Training and interpreting 
Therefore, we assessed the ten top-performing regressions (and 
architectures) from Study 1: the four logistic regressions, VGG-16, 
VGG-19, VCC-5, VCC-7, VGG-16 (antialiased), and VGG-19 (antialiased). 
In both Studies 2a and 2b, we repeated the data splitting and testing 
processes ten times. For each regression/architecture, we applied 
each of their ten models from Study 1 (e.g., the same estimated 
parameters) to predict each of the ten test sets, producing 10 × 10 
= 100 samples of prediction accuracy. 

To help understand the results, for each regression/architecture, 
we also trained ten models from scratch using the corresponding 
training and validation sets as analogies (we recomputed prediction 
ellipse). When compared to these analogies, a generalizable model 
should display the least decline in prediction accuracy. We calcu-
lated the means and confdence intervals of prediction accuracy 
and comparison, and reported them in Fig. 5. 

5.3 Results 

Do the models better generalize predictions to other 
related datasets?

In both Studies 2a and 2b, the VGG-19 and VGG-19 (antialiased) 
models are the most generalizable to the new datasets; they 
clearly outperform the others, especially those regression models. 
VGG-16 (antialiased) also has compelling performance. The models 
of other architectures (e.g.,VCCs) were comparable when predicting 
a specifc dataset (e.g., Scatterplots100 from Study 1), but they show 
notable declines in generalizability, likely due to overftting. These 
neural network models operate on visualization images, informed 
about the changes in input. 

The two regressions using correlation coefcients do not know 
the changes in visualizations. The other two regressions using el-
lipseArea know summarized changes. They essentially learned a 
diference threshold to predict the Left and Right judgments (see 
Appx. B). The optimal threshold varies with datasets; therefore, 
the previous models seem less generalizable to the new datasets. 
Bayesian logistic regression (ellipse) on Scatterplot95+5 seems an ex-
ception, but with much more uncertainty in prediction accuracy. 
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Study 2: Generalizing model predictions to different datasets

Figure 5: Studies 2a and 2b show VGG19 and VGG19 (antialiased) have the best generalizability on (a) Scatterplots200 and (b) 
Scatterplots95+5. Taking the top-performing regressions and neural network architectures from Study 1, we applied each of 
their ten models (i.e., the same estimated parameters) to predict each of the ten test sets, and compared them with those newly 
trained on the training and validation sets. 

Between Studies 2a and 2b, the results are similar. The predic-
tion accuracies are higher than those of Study 1; this is because 
participants selected scatterplots of higher correlation more often 
in these two datasets (see Appx. B). In other words, the “human” 
thresholds are higher (80.76% and 77.46%). However, most models 
from Study 1 show declines in prediction accuracy, compared to 
their analogies trained from scratch. 

Insights This study partly answers an open question to correlation 
perception in scatterplots: a deep convolutional neural network 
model like VGG-19 and VGG-19 (antialiased) could provide ade-
quate predictions for new scatterplot designs without additional 
data (i.e., collecting new human judgments). This is helpful in theo-
rizing results or designing a new experiment. For example, we can 
use these models to infer human judgments of diferent visualiza-
tions or datasets, which might be used to automatically assess and 
optimize diferent design parameters based on model predictions 
of when humans may make mistakes. This study also suggests that 
these deep neural network models are not very sensitive to small 

input changes (e.g., a pixel change in dot size) in scatterplots. How-
ever, we are unclear about the causes of declines in their prediction 
accuracy. We do not know what a model learned and how these 
led to their prediction and generalization. These skepticisms invite 
Study 3 below. 

6 STUDY 3: EXPLORING THE LEARNED 
FEATURES 

Study 3 asks what features a convolutional neural network model 
learns to predict participants’ correlation comparison judgments 
in scatterplots? This study shows an exploration of interpreting 
perceptual judgments in visualizations. We frst conducted an er-
ror analysis to examine prediction bias and then extracted the 
features learned by a model. Because VGG-19 is representative of 
several architectures and shows the best prediction accuracy and 
generalizability above, we centered on a VGG-19 model trained on 
Scatterplots100 from Study 1. We reported the features of other 
models in Appx. D and supplementary materials. 
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6.1 Study 3a: Error analysis 
We frst conducted a small error analysis to examine the bias in the 
model predictions. We calculated the portion of Left and 
predictions. Of all correct predictions, 56.17% were Right , and 
among all incorrect predictions, 52.41% were Right . We then vi-
sually inspected the relationship between participants’ judgments, 
the model predictions, and the confdence of the model (measured 
by probability) as follows. 

Right

The model makes more correct predictions as JND increases. 
This is prominent—the task is getting easier, and participants are 
more likely to make unambiguous (less noisy) judgments. We note 
that one JND is likely to be a threshold for the model. Above one 
JND, the model always predicts that participants select scatterplots 
of higher correlation ■ ■. Below one JND, the model predicts that 
participants select lower correlation sometimes ■ ■. 

The model often has a high confdence score (e.g.,>.7), indicating 
sufcient training. It is more confdent in a correct prediction but 
can be very confdent in an incorrect prediction. When its conf-
dence is very low (e.g., [.5,.55]), the model appears to assign the 
two labels randomly. 

Insights These results suggest that the model was sufciently 
trained to predict participants’ correlation comparison judgments 
in scatterplots; it also behaves reasonably and does not have strong 
biases in its predictions. These results support the following study 
of learned features. 

6.2 Study 3b: Extracting features learned by a 
deep neural network model 

Explaining a convolutional neural network model is an open prob-
lem. Here we resorted to a prevalent technique—feature visualiza-
tion [72, 73].6 This technique generates images that maximize the 
activation of a neuron, a flter (a channel), or a layer. The resulting 
images are considered features that the model “looks for,” showing 
how the model builds up its understanding [73]. We chose flter-
based optimization because it yielded the most interpretable results 
of better visual quality. We then generated feature visualizations 
for each flter in each convolutional layer for comprehensiveness. 

Methods We used an SGD optimizer (steps = 2,048, learning rate = 
0.15) with FFT parameterization and generated four diverse images 
(weight = 200) in the decorrelated space to avoid high-frequency 
artifacts [73]. We decided the hyperparameters based on the conver-
gence and interpretability of the resulting feature images. We did 
not apply any transformation or preprocessing to preserve location 
and orientation information. We based our implementation on the 
lucent library [101] and obtained a total of 22,016 images for the 
VGG-19 model (e.g., 512 flters × 4 feature images per flter = 2,048 
images for the last convolutional layer). 

To analyze the resulting feature images, we combined �-means 
algorithms with a manual process to cluster the images for each 
convolutional layer. We frst recursively applied �-means algo-
rithms based on the Manhattan distance between image summaries 
(i.e., binning pixels) and gradually increased the number of clus-
ters (usually 2 or 3 but up to 4). We terminated the recursion and 
expansion until the new clusters did not appear to share similar 
6There are other approaches to explain a neural network model based on attribution 
in one input image. The results are less informative than feature visualizations. See 
Appx. E for an example. 
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Figure 6: Study 3a reports an error analysis of a VGG19 model 
from Study 1, showing no strong bias. 

features. We then manually inspected each image in each cluster 
and relocated them into diferent clusters. This clustering process 
can be erroneous, as one image could ambiguously belong to more 
than one cluster, but the resulting clusters generally conceptualize 
features and describe their distributions. We consider each cluster 
a feature learned by the model. 

Results We select one image from each cluster and report the 
proportion of the images in a cluster to all generated for that layer 
in Fig. 7. A larger cluster means that this layer learns redundant 
features. We omit non-interpretable clusters (e.g., all white images) 
here but reported them in Appx. D. We provide all the feature 
images of this and other models (see the beginning of Sec. 6) in 
supplementary materials. 

Overall, we observe that the later layers learn more detailed 
features than the early layers. Max-pooling operations extract more 
features (e.g., Layer 10 vs. 14) while convolution operations aggre-
gate features (e.g.,Layer 14 vs.17). These observations are consistent 
with prior fndings and the nature of these operations. 

➊ The frst convolutional layer does not appear to learn any 
features, and the early convolutional layers seem to learn one or 
two ➋ 2D Gaussian kernels. This Gaussian kernel feature penetrates 
all the layers and evolves into ➌ the ribbon feature, which may be 
used to contrast diferent parts of the input (e.g., left and right). 

As early as Layer 7, the model partially recognizes the dot feature. 
At Layer 14, the model is responsive to the dot feature, which 
disappears shortly and reappears at ➍ Layer 27. After Layer 27, 
➎ this dot feature gradually dominates, meaning that these layers 
redundantly learned this feature. The early layers also appear to 

https://doi.org/10.17605/OSF.IO/EXA8M
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learn ➏ the stripe feature, which is preserved throughout all the 
subsequent convolutional layers. This feature is later combined 
with the dot feature and yields ➐ the raindrop and ➑ cloud features. 
Finally, we also note ➒ the correlation feature, refected as one 
rotated Gaussian kernel in the middle layers (e.g., Layer 27, the 
frst column) and a straight line with a slope in the later layers 
(e.g., Layers 40 - 49). 

6.3 Discussion 

What features does a convolutional neural network 
model learn to predict correlation judgments in 
scatterplots?

It appears that the VGG-19 model learns Gaussian kernel, dot, 
stripe, ribbon, correlation, and other local features when trained 
to predict participants’ correlation comparison judgments. The 
Gaussian kernel feature may allude to an estimation of pixel density. 
It also corroborates that prediction ellipses are an approximation or 
intermediate of the perceptual features that participants might look 
for [87, 88]; however, other more detailed features in the scatterplots 
would improve prediction accuracy. The correlation feature may 
indicate that the cloud shape and regression slope infuence both 
the model predictions and participant judgments. The dot feature 
may imply that the model counts pixels or dots, which can be con-
strued as some numerosity or magnitude estimation [53, 103, 115]. 
The ribbon feature may imply a comparison of the two scatterplots. 
The Gaussian kernel feature may explain that a prediction ellipse 
does not provide enough information; additional density informa-
tion is necessary for model generalizability. Other features like 
cloud and raindrop may imply an estimation of dot entropy, which 
were previously considered plausible visual proxies for correlation 
comparison judgments in scatterplots [87, 88]. 

Most features share vertical patterns, which might relate to the 
data generation process and the defnition of Pearson’s correlation. 
The data generation process transforms �-coordinates towards the 
target Pearson’s correlation coefcient (� ), which is defned by 
the vertical distance to the regression line when �-coordinates are 
fxed. These vertical features may be caused by the model trying to 
attribute error to vertical distance. 

We summarize the features of other models (see Appx. D) as fol-
lows. VGG-19 models trained on Scatterplots200, Scatterplots95+5, 
or ground truth share similar features but vary in their distri-
butions. For example, the proportion of the correlation feature 
is much higher, especially for Scatterplots95+5 and ground truth. 
VGG-19 (antialiased) results in similar but less detailed features, con-
sistent with the blurring operations in this architecture. VCC does 
not yield any features related to local properties (e.g., dot), but in-
stead has only features related to location (e.g., ribbon). ResNet-18 
is responsive to fne features in its early layers and generally yields 
features with higher spatial frequency, which corroborates prior 
fndings that ResNet tends to learn non-robust features [3, 71, 107]. 

Insights This study shows that a model directly trained on the 
visualization images and participant judgments provides inter-
pretable visualization features. This feature analysis and the aux-
iliary gradient analysis (see Appx. E) reveal clues to model behavior. 

It may extract and compares density information to make a predic-
tion, while other fne features may provide additional information 
to improve prediction accuracy. These features may also partially 
explain why the model seems generalizable on Scatterplots200 and 
Scatterplots95+5: the features extracted are similar, and the model 
does not seem to memorize pixel coordinates to make predictions. 

This study also provides partial answers to one open question for 
visualization perception: we show an approach to extract potential 
perceptual features systematically [35]. Several of the features are 
consistent with prior studies, validating our approach. More broadly, 
we also demonstrate how a single neural network model optimized 
on one dataset can refect fndings about visual features from a 
series of prior works. Beyond validating previously hypothesized 
features, the models also suggest new features of interest. These 
features may provide inspiration to theorize correlation perception 
in scatterplots and to design new models. For example, we can frst 
compute the most important features (e.g., perhaps they are the 
correlation and dot features) and extract them from visualization 
images, following up with a logistic regression based on them. 

7 GENERAL DISCUSSION 
First, a reminder that this research does not attempt to suggest 
that deep neural networks are a biologically plausible model of 
human vision, and they are likely not [6]. Nor do we encourage a 
shortcut to study visualization perception without rigorous human-
subject experiments; in the absence of adequate prior knowledge 
and caution, mindlessly ftting complex models to complex data will 
undermine the scientifc community and engender false discoveries. 

7.1 What benefts might DNNs bring? 
In comparison to previous regression analyses, we show that deep 
convolutional neural networks, which process visualization images 
directly, can provide comparable prediction, better generalization, 
and new interpretable features. They do not require explicit re-
searcher hypotheses (which can be fallacious) or eye-tracking data 
(which studies have shown can be irrelevant to participants’ judg-
ments [34]). These models might help us in forming ideas about 
current perceptual judgement data, including the design of future 
human subject experiments. 

Of course, these models do not solve all problems we are curi-
ous about in visualization perception, but this direction of starting 
with visualization images and building our understanding backward 
seems promising. It may help researchers further ideate about funda-
mental theory for visualization perception and tasks. Besides deep 
convolutional neural networks, other pixel-based models may also 
be feasible; deep convolutional neural networks are a convenient 
choice. Similarly, our goal here is not to discourage factor-based 
regression analyses. They are essential for systematically investi-
gating the efects of small sets of experimental factors (e.g., mark 
orientation [58] and point size). 

7.2 Generalizability and future opportunities 
Studies 2 and 3 suggest that the neural network models might be 
generalizable to other correlation perception datasets. As some 
models maintain performance with subtle changes in axes and 
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points, they might be able to predict scatterplots of slightly difer-
ent parameters (e.g., dot color, marker size, fewer dots) without 
additional training or new data. However, we stress that inferring 
further generalization to other visualizations or tasks is challeng-
ing. As such, our research invites many possible follow-ups. One 
study could include scatterplots of negative correlation or diferent 
slopes. Human judgments are likely similar [26], but it may be 
more challenging to train a model to predict both positively and 
negatively correlated data. Another study could gradually drop dots 
or outliers and observe changes in human and model behaviors; 
such a procedure may reveal dots that are key to model prediction. 

Our approach is possibly generalizable to other visualization 
perception studies. It does not require a priori hypotheses, and the 
number of images (judgments) used is middling among contempo-
rary research. For comparison, Harrison et al. collected ∼300,000 
judgments [26], and Jardine et al.collected ∼5,000 judgments [35]. It 
is useful to explore how model performance varies with sample size 
(e.g., to fnd a minimal sample size with acceptable performance). 

7.3 Limitations 
We acknowledge the limitations in our choices of task, design, and 
models. We considered only one task and three diferent datasets. 
Other visualization tasks and visual channels, such as estimating 
the mean, colors, or mark shape, could lead to diferent human and 
model performance. Our results might be specifc to our data gen-
eration process (e.g., how we generated the fve outliers). We only 
considered convolutional neural networks and investigated a small 
subset of all previously proposed architectures. There are many 
other deep learning architectures to explore, like using CapsuleNet 
to model hierarchical relationships in visualizations [90], genera-
tive adversarial networks (GAN) to model numeric responses, and 
the recent proposal of vision transformers (ViT) to preserve spatial 
information [24]. Similarly, further exploration of probabilistic neu-
ral networks may help address the limited sample size and noise in 
the data. We also recognize the limited interpretability of a neural 
network model but anticipate that future advances in interpretable 
machine learning and explainable artifcial intelligence will help 
overcome this problem (e.g., [30, 31, 110]) and provide more insights 
into visualization perception. 

The long training and computation time might be a practical lim-
itation, although they largely depend on image size and hardware. 
Most models were sufciently trained within two to four hours, 
but ten repeats cost more than a day. Computing feature visual-
izations for all flters may take a few days for a large architecture 
like VGG-19. Previous works show that channel activation is often 
power law distributed [31]. It might be sufcient only to investigate 
top-activated (e.g., 3%) neurons/flters to reduce computation time. 

7.4 Predictive modeling for visualization 
In principle, a model predicting human judgments can help design 
new visualizations by performing an automatic evaluation, opti-
mizing the choice of graphical encoding, or informing designers 
of a misleading case. Given our assessment of a set of deep neural 
network architectures in Study 1, researchers can use our results 
for a preliminary model selection to identify a likely efective model 
and avoid repetitive eforts. 

In practice, the model generalizability shown in Studies 2 and 3 
is limited and only hints at the possibility to build more generaliz-
able models (e.g., using very large corpora of visualization images 
and human judgments on diferent tasks). While researchers might 
have to collect such datasets, designers and practitioners could use 
the trained models or fne-tune the models on a small set if they 
generalized. Our study and previous studies (e.g., [21, 23]) show 
the efectiveness and limitations of current architecture designs. 
This points to a need to design neural network architectures and 
explanation methods that are specifc to visualizations. Visualiza-
tion images have diferent properties and patterns than natural 
images. They contain more abstract and repetitive features, and 
they rely on spatial information more than texture to convey infor-
mation. Previous studies also show that fne-tuning neural network 
models pre-trained on natural images is not as efective as training 
them from scratch [23]. From vision scientists’ perspective, humans 
may extract the same statistics information from visualization and 
natural images [25], but there seem to be one or more adaptation 
processes between them [41]. These suggest that a possible solu-
tion is to consider the shared and diferent statistics information 
between natural and visualization images and how people perceive 
and process this information. This will likely remove the redun-
dancy in learned features and result in architectures with fewer 
parameters but improved prediction accuracy. Our studies provide 
evidence and insights for these open problems and hope to inspire 
future work on predictive modeling for visualization. 

8 CONCLUSION 
This manuscript reports insights from using deep convolutional 
neural networks for visualization perception research through three 
studies of correlation comparison judgments in scatterplots. The 
frst study assessed a collection of thirty neural network architec-
tures, showing that the deep convolutional neural network models 
can have equivalent prediction accuracy compared with the best-
performing regression analyses in the literature. The second study 
applied the trained models to two related yet diferent datasets, 
showing that deep neural networks have better generalizability. 
The third study computed features learned by a convolutional neu-
ral network model, and revealed how the model builds its under-
standing and extracts image features to make a prediction; these 
features provide new clues to correlation perception. Together, this 
series of three studies show the emerging prospect of using deep 
neural networks to predict, generalize, and construe perceptual 
judgments for visualization perception research. 
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