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ABSTRACT

How deep neural networks can aid visualization perception re-
search is a wide-open question. This paper provides insights from
three perspectives—prediction, generalization, and interpretation—
via training and analyzing deep convolutional neural networks
on human correlation judgments in scatterplots across three stud-
ies. The first study assesses the accuracy of twenty-nine neural
network architectures in predicting human judgments, finding
that a subset of the architectures (e.g., VGG-19) has comparable
accuracy to the best-performing regression analyses in prior re-
search. The second study shows that the resulting models from
the first study display better generalizability than prior models
on two other judgment datasets for different scatterplot designs.
The third study interprets visual features learned by a convolu-
tional neural network model, providing insights about how the
model makes predictions, and identifies potential features that
could be investigated in human correlation perception studies. To-
gether, this paper suggests that deep neural networks can serve as
a tool for visualization perception researchers in devising potential
empirical study designs and hypothesizing about perpetual judg-
ments. The preprint, data, code, and training logs are available at
https://doi.org/10.17605/0sf.io/exa8m.
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1 INTRODUCTION

Understanding visualization perception is fundamental to designing
visualizations and building visual analytics systems. Research in
this area has been difficult because many interrelated factors can in-
fluence visualization perception. Conversely, deep neural networks
appear to be promising model architectures for image data even if
they do not model biological human perception. They can be opti-
mized to recognize complicated patterns from natural images to pro-
duce classifications [27], extract infographic components [19, 59], or
attempt graphical perception on elementary visual encodings [23].
These observations provoke a research question—How can deep
neural networks aid visualization perception research?

To explore this intersection, we revisit one research topic in
visualization perception: how people discriminate between two
scatterplots for larger linear correlation, quantified by the Pear-
son correlation coefficient (r). Studies model perceptual precision
using Just-Noticeable Difference (JND) [26, 89], but these models
provide little information on where JNDs do not describe judgment
behavior [26, 43]. Later studies model binary judgments [117], mo-
tivated by speculation that participants may compare correlation
using visualization features as a proxy [26, 43] (e.g., a prediction
ellipse [117]). These features were often defined from expert hy-
potheses [35, 74, 117] yet provided limited explanations as well as
prediction accuracy [117].

With this exemplar topic, we conduct three studies that explore
how deep convolutional neural networks might bring new inspira-
tions to visualization perception research. The first study assesses
twenty-nine deep convolutional neural network architectures in
predicting participants’ judgments, and finds that a subset of the ar-
chitectures holds at least the same accuracy as the best-performing
regression analyses in prior studies (Sec. 4). The second study shows
that these models display better generalizability than prior models
to two other judgment datasets (Sec. 5): one doubling data points
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and the other including outliers. The third and final study extracts
and categorizes features learned by a convolutional neural network
model, and finds these features qualitatively reflect visualization
features that may influence participants’ judgments (Sec. 6). Fi-
nally, we speculate that these approaches can feasibly be applied
to other visualizations and tasks to aid empirical studies and auto-
matic design (Sec. 7): the predictive models may inspire automatic
evaluation, and the features extracted by the models provide clues
to theorizing visualization perception and designing new models.
The specific contributions of this research include:

4 Quantitative performance measurements of twenty-nine convo-
lutional neural network architectures for predicting participants’
correlation comparison judgments in scatterplots, compared
with the best-performing regression analyses using factors pre-
viously proposed in the literature;

4 Quantitative evidence that some neural network models display
better generalizability for correlation comparison judgments in
scatterplots, compared with the regression analyses from prior
studies;

4 Qualitative evidence that deep convolutional neural network
models trained on correlation judgment data can provide in-
terpretable and novel visualization features, which may aid re-
search in construing how people make perceptual judgments in
scatterplots;

4 Insights, limitations, and challenges of using these neural net-
work models, including the possibility of building generalizable
models for visualization perception studies;

4 Three correlation comparison judgment datasets, each with
20,160 scatterplot pair images, varying in the number and distri-
bution of points presented as well as participant performance.

2 BACKGROUND

2.1 Artificial neural networks

Inspired by biological neural networks [65, 104], artificial neural
networks were designed to capture trends and patterns hidden in
large data corpora. They comprise a set of inter-connected neuron
layers that transform input data into different representations, and
deep neural networks use multiple layers. Convolutional neural
networks (CNNs) use banks of learned filters within convolutional
layers that operate over windows of the previous layer. These filters
extract features from input images for tasks like classification.

Existing research attempts to answer whether an artificial (con-
volutional) neural network can model a biological visual system [48,
50, 56, 63, 78—-80, 116] (e.g.,by comparing the extracted features [18,
37, 57, 94]). These works motivate this research. One difference is
that we consider artificial neural networks as a means for predict-
ing perceptual judgments, while the underlying operations may (or
may not) be comparable to their biological counterparts.

2.2 Machine learning & visualization

Machine learning techniques, especially deep neural networks,
were progressively applied to vision-related fields [12, 56] such as
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data visualization (see [108] for a survey). One compelling applica-
tion is to retrieve values and labels from charts [38, 40, 66, 75, 82, 97]
to improve visualization design [91] or perform Visual Question
Answering (VQA) [39, 83, 84]. Deep neural networks were used
to extract features from infographics [59] to automate design pro-
cesses [11, 14], generate recommendations [32, 54, 61, 118, 121],
and highlight visual salience [10]. Alternatively, visualizations are
effective means to explain and interpret a neural network (see [30]
for a survey).

Previous research explored how convolutional neural networks
might apply to visualizations. Several convolutional neural net-
works were applied to two-value ratio judgment in elementary vi-
sual encodings, showing limited performance [23]. Similar research
used convolutional neural networks to evaluate the effectiveness of
graph visualizations [21]. Other research employed deep generative
models to quantify and reveal various scatterplot features [36, 103].
Relevantly, neural networks are found to partially recognize Gestalt
patterns [45], an important guideline for visualization perception.

On user modeling, previous studies explored sequential models
to predict user click and navigation behaviors in visual search
tasks [8, 76], requiring hand-engineered features. Other studies used
neural networks to regress aesthetics and memorability scores of
infographics [19] or learn a similarity metric for generic correlation
perception and other visual quality in scatterplots [62, 92, 114]. The
last category is the most related to this research, both starting with a
neural network optimized from visualization images and participant
judgments. However, the cited studies ended with the initial models
and their predictions. This research explores far more territories:
we factorize model architectures, demonstrate generalizability, and
interpret the learned features.

2.3 Correlation perception & scatterplots

Early studies examine the potential factors that affect how people es-
timate linear correlation (r) in scatterplots [7, 16, 51, 55, 69]. Rensink
and Baldridge [89] first systematically model correlation perception
in scatterplots using Just-noticeable Difference (JND), a property to
describe perceptual precision. A later study extended this approach
to eight other visualizations and regarded JND as a metric for visual-
ization evaluation [26]. Soon afterward, the modeling approach was
advanced by introducing Bayesian data analysis [43, 74]. In addi-
tion to modeling JNDs, other research obtained weak evidence that
participants used visualization features as proxies in this compari-
son task, and manually extracted a set of visualization features to
explain participant judgments [117]. Other studies on scatterplots
investigated the effects of visual marks [58, 64, 70, 106], computable
features [113], mean estimation [22], indices-based correlation [95],
robust regression [13, 58], and cluster perception [109].

The studies cited above found that correlation perception in vi-
sualizations may follow a systematic order that is receptive to a
variety of factors like correlation coefficients [26, 89], visualization
forms and features [117]. They also establish a perspective that vi-
sualization perception can be modeled. However, those JND models
provide little information beyond this specific measure of percep-
tual precision, like where JNDs are unidentifiable (e.g., [26, 43]).
Similarly, those visualization feature models have limited predic-
tion accuracy and inadequate explanations, especially when the
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initial hypotheses about the features cannot be proved. For compar-
ison, this research also constructs four regression analyses based
on the above literature. The first two regressions use correlation
coeflicients as predictors (cf. [26, 87, 89]), and the other two use
visualization features (e.g., prediction ellipse) (cf. [69, 117]).

2.4 Two sets of open questions

The literature on machine learning and visualization is nascent
and raises many questions. For example, given the numerous ma-
chine/deep learning techniques, how can we navigate which, if any,
are appropriate to investigate visualization perception data? What
additional values or properties can we expect from machine/deep
learning techniques compared to existing modeling approaches
(e.g., regression analysis)? What limitations and challenges might
we encounter?

Our current research seeks to answer these questions in the con-
text of correlation perception in scatterplots, which faces another
set of open questions. First, existing models have limited accu-
racy in predicting people’s judgments—is it possible to improve
the accuracy as an improvement of model performance? Second,
researchers have to collect new data and fit new models for any
new hypothesis about design parameters—is it possible to gener-
ate a model of peoples’ judgments that transfers across multiple
visualization designs? Third, visualization features defined from
expert hypotheses (e.g., [35, 117]) could be an incomplete set—is it
possible to extract perceptual features from visualization images
automatically? Since deep neural networks often perform well on
feature extraction and prediction, we anticipate they might provide
additional insight into this second set of open questions. In doing
so, we also explore answers and uncover additional challenges for
the first set of open questions.

3 METHODOLOGY

As our research constitutes three studies, this section outlines the
methodology shared across the studies, including the human subject
experiments to collect human judgments and the setups to train
neural network models.

3.1 Preliminaries

This research is at the intersection of deep learning and visualization
perception, so we begin with preliminaries to align readers from
different backgrounds.

Following the cited studies [26, 89, 117], this research focuses on
(linear) correlation comparison judgments in scatterplots. Given
two side-by-side scatterplots, participants must choose which they
perceive as showing more correlated data (see Fig. 1). The dichoto-
mous responses make it possible to model the judgments as a classi-
fication problem. The input is raster visualization images, each com-
bining two scatterplots. The label is participants’ Left or Right
judgments. The output is predictions of participant judgments.

This research collects and uses three sets of participant judg-
ments, varying in the data properties reflected by the scatterplots
(see Fig. 1). The first dataset replicates the previous studies [26,
89, 117] and constitutes scatterplots of 100 data points, denoted by

. The second dataset constitutes scatterplots of 200

data points, denoted by . The third dataset consti-
tutes scatterplots of 100 data points with five outliers, denoted by

. Further motivation for choosing these parameters
is provided in Sec. 5.1 that covers the generalizability study.

Each dataset is randomly divided into training, validation, and
test sets. The training set is used to estimate the parameters, the
validation set determines when to stop training to avoid overfitting,
and the test set provides an unbiased evaluation of a model.

To avoid confusion, henceforth, the term regression (analysis)
is a method, model alludes to a trained (or fitted) instance with
the parameters estimated, architecture refers to the structure, and
neural network (or regression) is used when differentiating model
and architecture is unnecessary.

3.2 Present research

The three studies are formalized as three research questions on
correlation comparison judgments in scatterplots. They show how
deep neural network models could aid a visualization perception
study from three perspectives.

Study 1 asks do deep neural networks better predict partici-
pants’ correlation judgments? Presented in Sec. 4, this study fo-
cuses on prediction. We assessed the prediction accuracy of a set of
neural network architectures in predicting participants’ judgments
from the dataset. We compared them to the best-
performing regression analyses based on factors proposed in the
literature. A subset of neural network architectures has comparable
prediction accuracy to the regression analyses.

Study 2 asks do the models better generalize predictions to
other related datasets?! Presented in Sec. 5, this study focuses
on generalization, showing the models may provide predictions
for new data before human judgment is collected. We applied the
top-performing models from Study 1 to predict participants’ judg-
ments in two new datasets ( and ).
We compared their prediction accuracies with the corresponding
models trained from scratch on the new data. Two neural network
architectures outperform all the others in predicting new data.

Studies 1 and 2 suggest that compared to the previous works,
these neural network models may better capture the features in
visualization images to predict human judgments. As such, Study 3
asks what features a convolutional neural network model learns
to predict participants’ perceptual judgments? Presented in Sec. 6,
this study focuses on exploration. We first conducted an error anal-
ysis to examine the bias of a selected neural network model. We
then analyzed and interpreted the visual features learned by this
model. This study identifies both previously proposed and new visu-
alization features, yielding new clues about correlation perception
in scatterplots.

The generalizable predictions might aid in automatic design and
evaluation (e.g., inputting them with images of new designs), and
the features learned may offer clues to correlation perception and
model improvement. Together, compared to years of the previous
studies, the three studies show that deep neural network models

!Model generalizability is evaluated using the same estimated parameters. This defini-
tion is stricter than where refitting new data is allowed.
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Figure 1: Example visualization images from the three datasets. We ask participants, “please choose the scatterplot that appears
to show the more correlated data.” In each pair, the correlation coefficients are 0.6 (left) and 0.69625 (right), respectively.

optimized from one judgment dataset potentially aid multiple diffi-
culties in visualization perception research, including prediction,
generalization, and interpretation [12].

3.3 Pilot studies

We started with pilot studies to probe experimental setups. Among a
series of pilot studies, we detail one that used the 19,000 correlation
comparison judgments in scatterplots collected by Yang et al. [117].
We reproduced their visualization images and trained a set of neural
network models to help decide the visualization parameters of scat-
terplots and design our human subject experiments. Following this
pilot study, in this research, each scatterplot is 150 X 150 pixels, and
a scatterplot pair is 308 X 154 pixels. These allow a reasonable batch
size (32) to be fit into a 16GB GPU for the largest architecture used.
The visualization images are also large enough for participants to
view and compare correlation in two scatterplots. Each dot in a
scatterplot is 2 pixels in radius, colored in opaque gray (m#999999).
As this set of 19,000 judgments (images) seemed adequate, we de-
cided to collect roughly the same number of judgments. We also
determined the data splitting strategy, learning rate, batch size, the
number of epochs (for Study 1), and other hyperparameters for
training the neural networks (see Sec. 3.5) based on this pilot study.

3.4 Human subject experiments

To start, we collected the three judgment datasets from three human
subject experiments. These experiments shared the same design
and procedure, summarized in Fig. 2 and described as follows.

Experimental design The experiments tasked participants with
choosing the scatterplot that shows the higher correlation between
a pair (see Fig. 1). Because the relationship between JNDs and
correlation coefficients (r) was not of interest in this research, they
were systematically sampled as follows. In each pair, one always
had a fixed r out of six possible values (see Fig. 2 line 1), and the
other approached this fixed r from either above (r + Ar) or below
(r—Ar). For each approach and fixed r, we generated eight pairs and
varied the perceptual distance between each pair. The perceptual
distance was measured by JND of r (see Fig. 2 line 2).2 For example,
suppose JND is 0.1 when r = 0.5, we generated two scatterplot pairs
for 2 JNDs: (0.5, 0.5 + 0.2) and (0.5, 0.5 — 0.2). The exception is that
we only considered non-negative correlation and set any negative
r to 0. Last, because these 2-JND pairs were unchallenging due to
the large difference in correlation (see Appx. F), we also used them

2We consider only population-level, average JNDs here.

as attention checks. Each participant accomplished 6 (r levels) x
8 (JND levels) x 2 (approaches) = 96 judgments, randomized and
split into two sessions of 48 judgments.

To collect , we first estimated JNDs through a
pilot study using the previous staircase method [26, 89, 117]. We
then fine-tuned the JNDs and tested them in a sequence of pilot
studies until the proportion of judgments selecting higher cor-
relation was similar across different r levels (see Appx. B). This
eliminated judgment skewness within a dataset. For
and , we assumed the same JNDs to suppress vari-
ance across the datasets, but expected participants’ judgments are
proportionally different (see Appx. B).

Generating stimuli We adapted the previous algorithm [26] to
generate the datasets and then rendered scatterplots using d3. js
in a browser. For a given correlation coefficient r, this algorithm
first generated an initial set of random points (x;, y;) and then
transformed the y—coordinates to meet the given r. The transfor-
mation was smaller if a point was closer to the means of x and
y. We manipulated the initial set to generate by
placing five points near the mean of x but 3.5 standard deviations
away from the mean of y, resulting in five outliers (see Fig. 1c). This
algorithm otherwise generated all datasets in the three experiments
with minor modifications (e.g., the number of points). Each dataset
was generated onsite, and thus different participants were shown
different images. We recorded each dataset to later reproduce the
visualization images for training deep neural network models.

Procedure After the consent and an overview, participants first
viewed a grid of scatterplots at 8 different r levels as training. They
then practiced 16 judgments, with feedback on if they selected the
higher correlation. They then accomplished the two main sessions
with an optional break in the middle, followed by a demograph-
ics questionnaire. Between any two judgments, there were 500
milliseconds of a blank white screen to eliminate visual afteref-
fects. A 1-minute video to illustrate the experiment is available in
supplementary materials.

Participants Based on the experimental design and planned sam-
ple size, we decided to use 210 participants for one experiment.® All

3The experimental design allows 96 judgments per participant, and the pilot studies
show that 19,000 judgments seem sufficient. We hoped to meet 20,000 judgments and
rounded the participant numbers to the nearest 10. As such, 20,000 judgments + 96
judgments per participant &~ 210 participants.
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1. correlation coefficients (fixed r)
2. JNDs between a pair
3. How the experiment approaches the fixed r
4. the number of judgments (images) per participant
5. the number of participants in each dataset

6. the number of judgments (images) in each dataset*
7. data splitting

{0.3,0.4,0.5, 0.6, 0.7, 0.8}
{.25, .50, .75, 1.0, 1.25, 1.50, 1.75, 2.0} JNDs
{above, below}
6 rlevels x 8 INDs x 2 approaches = 96 judgments
210 participants

96 judgments per participant x 210 participants = 20160 judgments (images)
training: validation: test = 12180 : 3990 : 3990 = 0.6:0.2:0.2

8. usage

9. the proportion of selecting larger r per participant
10. the proportion of selecting Right per participant

Studies 1 and 3

78.10 [60.70, 89.60]
54.20 [38.80, 70.60]

Study 2a Study 2b

82.30 [63.50, 92.70]
54.20 [35.90, 70.80]

78.10 [58.60,89.60]
53.10 [36.50,70.80]

0 prefer not to say 2 1
11. gender 63 male 76 89

147 female 132 120

50-59

40-49

12. age 2%_30
157 18-25 148 154
13. completion time 8.87 [5.95, 20.7] minutes 9.09 [6.16, 26.9] 9.73 [6.08, 23.5]

14. correlation familiarity (1 = not at all, 7 = very familiar) 21,7

31, 7] 2501, 7]

median [95% quantile intervals]

*|t is possible that a dataset contains
identical images, but the probability is very small.

Figure 2: The summaries of the three datasets from the human subject experiments. The proportion of selecting the scatterplot
on the right side ( Right ) is about 54.2% (cf. 50%). To account for this bias, we decided on a guessing threshold of 55%, slightly

higher than the empirical observation.

participants were recruited from Prolific.co? and each was paid
1.60 USD for their time (see Fig. 2 line 13). We first recruited more
than 210 participants, and then dropped participants if they failed
to select higher correlation in more than 55% of judgments (the
guessing threshold, see Fig. 2) or if they failed in more than half of
the twelve attention checks. After this step, we had about 205 to
215 participants. We continued to drop extra participants randomly
or recruit additional participants until we met 210. The pilot and
earlier participants were excluded from later experiments. In total,
we had 210 X 3 = 630 unique participants and collected 20,160 X 3
= 60,480 judgments (images), roughly balanced in Left and Right

judgments. We used all judgments in training or testing the models.

3.5 Training neural network models

With the datasets collected, this section outlines the shared methods
to create and train neural network models. The later sections report
the results.

Visualization images We reproduced each scatterplot pair as a
.png file using Python 3.8.8, Matplotlib 3.4.1, and an SVG backend.
We manually adjusted the configuration (e.g., paddings) to match
a screenshot of the same pair originally rendered by d3. js in the
human subject experiments (see a comparison in Appx. A). Each
reproduced image is 308 X 154 pixels, with a single channel.

4The experiments were conducted in early August 2021, when participant pool on
Prolific.co was leaned towards young females. Our data quality is not affected by
this, because the judgment distributions are similar to the previous datasets [26, 117].

Data splitting We partitioned each dataset (i.e., Scatterplots100,

, or ) into the training, validation,
and test sets in a ratio close to 0.6:0.2:0.2. That is, we randomly and
respectively assigned 58, 19, and 19 judgments from each participant
to the three folds.

Implementation We used Python 3.7.11, PyTorch 1.10.0, PyTorch
lightning 1.5.10, and torchvision 0.11.3, and trained all the neural
network models on Google Colab [1] with a 16GB Tesla P100 GPU.
We always adopted the implementation from torchvision, modify-
ing the input and output layers, or noted exceptions. We imple-
mented the regression analyses using R 4.0.5, Ime4 1.1.26 [4], Rstan
2.21.1 [100], cmdStanR @.3.0 [20], brms 2.15.0 [9], and tidybayes
2.3.1[42].

Measure For the first two studies, we used prediction accuracy
on the same test sets (i.e., the proportion of correctly predicting
participants’ left or right judgment) as the only measure for
simplicity; other measures are correlated with prediction accuracy.
Because the training of a neural network model was progressive,
we selected the checkpoint with the smallest loss on the validation
test as the final model to best describe the relationship between the
input and output [60]. We used cross-entropy as the loss function
or noted exceptions. The third study is a qualitative exploration.

Training Each judgment corresponds to an image and a label
( Left or Right judgment). We initialized and trained a neural
network model from scratch, applied batch normalization (batch
size = 32, see Sec. 3.3 above), used an SGD optimizer with a momen-
tum of 0.9, and employed a scheduler to decrease the initial learning
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rate (0.001) after every five epochs at a rate of 70% (i.e., gamma =
0.7). We trained each model for 50 epochs in Study 1 and 20 epochs
in Study 2, as we later noticed that most models converged early.
We trained (or fitted) all the regression and neural network models
based on the same training and validation sets, and applied each
model to predict the judgments in the corresponding test set. We
repeated the data splitting, initialization, training, and testing pro-
cesses ten times to get ten samples of prediction accuracy. We then
calculated the means and 95% bias-corrected and accelerated (BCa)
bootstrap confidence intervals (CIs) [15, 17]. All code, datasets,
results, and training logs are provided in supplementary materials.

4 STUDY 1: PREDICTING PERCEPTUAL
JUDGMENTS

The first study focuses on predicting perceptual judgments. We
ask do deep neural networks better predict participants’ correla-
tion judgments for correlation comparison in scatterplots? This
study assessed a set of neural network architectures using

in comparison with four regression analyses based on
factors previously identified in the literature.

4.1 Previous regression analyses

The literature shows that correlation coefficients and visualiza-
tion features may influence correlation comparison in scatterplots.
To compare with these, we replicated their modeling approaches
(e.g., [117]) by constructing four logistic regressions. Logistic re-
gression is suitable for dichotomous responses, and it was used to
model correlation comparison judgments in scatterplots [117]. We
implemented both frequentist and Bayesian approaches.

Logistic regression (r) The first two regressions take pairs of cor-
relation coefficients as the predictors (input), which are known
factors that strongly affect correlation judgments [26, 89, 117].
They are also strongly correlated with the previously proposed
visualization features [117]. In Wilkinson-Rogers-Pinheiro-Bates’s
notation [4, 81, 112], the regression formula is Le ftRight ~ rpigur +
rieer + (1|ParticipantID). LeftRight denotes the Left and Right
judgments. rgigur and rigpr denote the correlation coefficients of
the two datasets; they are correlated with each other (collinearity),
making the model coefficients unidentifiable, but the model itself is
valid for prediction [67]. The (1|ParticipantID) term denotes that
each participant has a random intercept to account for the similarity
in the judgments from the same participant [99]. Bayesian logistic
regression shares the same notation and formula, but it follows a
Bayesian approach and uses weakly informative priors. Bayesian
statistics are emerging for human-computer interaction research
(e.g., [43, 44]) and are robust to random errors (e.g., outliers). For
these reasons, we included a Bayesian logistic regression.

Logistic regression (ellipse) uses the area of the prediction ellipse
(see Appx. G for examples) as the predictors, a top-performing visu-
alization feature in explaining correlation comparison judgments in
scatterplots [117]. Similarly, the regression formula is Le ftRight ~
ellipseAreagigur+ ellipseAreagpr+ (1|ParticipantID), and we con-
structed both frequentist and Bayesian models for comparison. We
also had experimented with other visualization features based on
the literature [69, 117] and a mixture model of multiple features.
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We found ellipseArea performed the best, and the mixture model
failed to converge.

These four regressions are categorically different from the neural
networks below. The first two use exact correlation coefficients that
describe the scatterplots; the other two use the best knowledge
about correlation judgments in scatterplots to make predictions.
Both are not provided with visualization images. On the contrary,
the neural networks operate on the same set of images but are not
provided with a prioriknowledge about correlation. The four regres-
sions calibrate our expectation for a “good” neural network model.
If the prediction accuracy is lower, then its estimate of correlation is
likely poor, or the model has overfitted to noisy human judgments.
If the accuracy is higher, the stimuli themselves may provide new
visualization features that help predict human judgments.

4.2 Deep convolutional neural networks

We surveyed both the computer vision and visualization literature
and collected a set of 30 neural network architectures, of which 29
are convolutional neural networks designed to solve human vision
tasks. We started with simpler architectures and fewer trainable pa-
rameters, and gradually considered depth, width, image resolution,
and invariance.

By experimenting with past and state-of-the-art architectures,
we show which architectures can provide better predictions and
learn lessons about model selection and architecture design.

Common approaches

Multilayer perceptron (MLP) [111] operates on all pixels simultane-
ously without convolution. Haehn et al. used an MLP as a baseline
to test whether a convolutional neural network was necessary to
solve graphical perception [23]. Following this logic, our MLP con-
tains three layers of 4096, 4096, and 2 perceptrons, without any
dropout layer.

AlexNet [49] is an architecture that first achieved state-of-the-art
performance for image classification [2]. It is the simplest convo-
lutional neural network in this section, consisting of five convo-
lutional layers and two fully-connected hidden layers. This archi-
tecture is deeper than LeNet [52] used by Haehn et al. [23] and
Giovannangeli et al. [21] for solving visualization tasks.

VGG [98] succeeded AlexNet by increasing depth to 11-19 convolu-
tional layers with small convolutional kernels to extract more image
features collectively. These are labeled VGG-11, VGG-13, VGG-186,
and VGG-19. In previous studies, VGG-19 was most accurate for
two visualization tasks: judging two-value ratios and counting dots
added to scatterplots [23]. Similarly, VGG-16 performed well on
counting edges and degrees in graph visualizations [21].

ResNet uses skip or residual connections to allow neural networks
to be even deeper [28], with variants widened by a factor k to im-
prove performance [119]. A ResNet-18 was trained to predict memo-
rability and aesthetics scores of infographics and visualizations [19],
and an altered version was used as a perceptual quality metric for
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generic correlation perception in scatterplots [114]. We evaluated
ResNet-18, ResNet-50, ResNet-152, and Wide ResNet-50-2.

DenseNet increases connectivity between layers rather than deep-
ening or widening the network [33]. This design results in a high
capacity but fewer learned features. We evaluated DenseNet-121,
DenseNet-161, DenseNet-169, and DenseNet-201.

EfficientNet uniformly scales width, depth, and image resolution
through a compound coefficient ¢ to improve training efficiency
and accuracy [102]. Scaling up resolution allows it to extract fine-
grained features from input images. We adapted the Pytorch imple-
mentation from Melas-Kyriazi et al. [68] and evaluated EfficientNet-
B0, EfficientNet-B2, EfficientNet-B4, and EfficientNet-B6.

Variants and alternatives

Antialiased CNNs are more robust to input translations [120]. A
regular convolutional neural network is more likely to produce
incorrectly-different predictions for image features that have trans-
lated, which might affect perceptual judgment prediction. We de-
noted these variants by (antialiased).

FiLM modules condition neural network layers on additional in-
puts [77]. We used these inputs to inform the neural networks of
participant IDs, much like the logistic regressions using partici-
pant IDs in random intercepts. In training, each input image and
judgment has an added 210-dimensional one-hot vector represent-
ing which one of the 210 participants made that judgment. We
attached FiLM modules to a feature extractor, and used 15 modules
as they were the most accurate in the pilot studies. We denoted
these variants by FiLM.

Bayesian CNNs introduce probabilistic distributions to neural net-
work parameters, making them more robust to over-fitting [96].
We constructed Bayesian variants based on the implementation
by Shridhar et al. [96], using the evidence lower bound (ELBO, a
common loss function for probabilistic inference) and an Adamax
optimizer [46].

VCC is our design to improve the training efficiency of VGG and in-
tegrate FiLM modules and Bayesian CNNs. VGG was trained slowly
due to having over a hundred million parameters. Thus, we modi-
fied VGG-11 and created three VCCs. We added one convolutional
layer with 128 filters to the first two convolutional layers of VGG-11
to create VCC-4, the first four to create VCC-5, and the first six ex-
cluding the third max-pooling layer to create VCC-7. All VCCs had
one fully-connected layer as the classifier, resulting in fewer than 5
million parameters.

Finally, VAEs (or variational autoencoders) attempt to compress
data into a latent space through an encoder/decoder structure [47].
VAEs were used to extract features in infographics and predict
memorability and aesthetics scores [19], summarize representations
in scatterplots [36], and code patterns in visualizations [54, 121]. We
adopted the f—VAE architecture [29] from Jo and Seo [36], who also
extracted correlation features from scatterplots. We used 64 latent
features and trained for 100 epochs with an Adamax optimizer [46].
The classifier had one layer connecting the 64 features to the output.

Prediction accuracy on the test set
when using ground truth as label
(which of the two scatterplots has
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Figure 3: The sanity check shows that most of the neural
networks can learn ground truth labels (i.e., which of the two
scatterplots actually has higher correlation).

4.3 Training and interpreting

As remarked in Sec. 3.5, we initialized and trained ten models for
each regression/architecture. We report the means and 95% confi-
dence intervals of prediction accuracy in Fig. 4. To help interpret
these results, we explain the sanity check and thresholds as follows.

Sanity check Human perceptual judgments are often noisy. If a
model cannot learn the ground truth labels (i.e., which of the two
scatterplots actually has a higher correlation coefficient) as an easier
problem, it is impractical to expect them to predict participants’
judgments. We therefore also trained the neural network models on
the ground truth labels for a sanity check. To simplify this process,
we only trained one model for the simplest architecture from one
category. The uncertainty in accuracy should not exceed those
from predicting participants’ judgments (shown in Fig. 4). As such,
we selected the two Bayesian logistic regressions (the frequentist
logistic regressions did not converge), MLP, AlexNet, VGG-11, VCC-4,
ResNet-18, DenseNet-121, EfficientNet-B0, VAE, and Bayesian VCC-5,
reporting the results in Fig. 3.

The results show that most models can predict the ground truth
(e.g., accuracy>90%); they can process the scatterplot images to
learn correlation comparison. One exception is MLP, which shows
an accuracy lower than others but higher than any models trained
on participants’ judgments. This indicates that MLP can learn cor-
relation comparison from the images but may need more training
epochs. Another exception is Bayesian VCC-5, showing an accuracy
of around 50%; Bayesian VCC-5 cannot process these image.’

Thresholds We also note two bounds to help interpret the results
from predicting participants’ judgments. The first one is 55%, the
guessing threshold for removing inattentive participants (see Fig. 2).
Above this threshold, we surmise that a model learned features that
help make a prediction. Below this threshold, a model likely fails
to extract information from data. The second bound is the pro-
portion of judgments where participants select the scatterplot of
higher correlation; the average proportion is 76.62% for Scatter-
plots100. We surmise that surpassing this threshold is evidence that
a model learns features that help correctly predict those judgments
where participants do not select the scatterplot of higher correlation

SWe speculate that the reason might be VCC-5 is not suitable for this dataset, but
probabilistic weights prevent overfitting an inappropriate model. The latter two studies
in this paper provide some limited evidence for this speculation.
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Study 1: Predicting participants’ correlation comparison judgments in scatterplots
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Figure 4: Study 1 shows a subset of neural network architectures has comparable prediction accuracy to regression analyses
based on previously identified factors. We repeat the training, validation, and test processes ten times and report the means

and 95% confidence intervals of prediction accuracy.

(e.g.,when a feature is deceptive to humans [74], the model agrees
with human judgments). We term this a “human” threshold.

4.4 Results

Do deep neural networks better predict participants’
correlation judgments?

As shown in Fig. 4, VGGs, VCCs, and their variants (i.e., FiLM
modules, Antialiased CNNs) have comparable prediction accu-
racy to the four regressions, outperforming the others. However,

neither variant appears to improve prediction accuracy further. For
FiLM VCC-7, it may indicate that participants’ effects, while improv-
ing the training fit of a model, may not improve its test prediction;
or the residual blocks (see below) inside FiLM modules [120] cause
drawbacks. For Antialiased CNNs, we would expect improvements
where translation equivariance is desired (such as if the visualiza-
tion axes and points vary globally in a location within the image),
but this appears not to be the case within this dataset. Additionally,
the VGG-like architectures slightly improve prediction accuracy
as the depth increases, and generally display less uncertainty in
prediction accuracy.
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Looking at others, the three architectures designed for large-scale
image analysis—ResNet, DenseNet, and EfficientNet—achieved mid-
dling prediction accuracies and displayed more uncertainty. Both
ResNet and DenseNet may worsen as the depth increases, while
EfficientNet improves as the scaling factor increases. The literature
shows that ResNet is less stable than VGG [71, 107]. Human behav-
ioral data is often quite noisy, likely affecting ResNet more as a con-
sequence. VAE also shows middling prediction accuracy, suggesting
that its encoder learned representative features, but additional fea-
tures might be necessary for improving accuracy. MLP appears able
to make predictions based on 1D sequential pixels. It may reach a
comparable accuracy after more training epochs, suggesting that
convolutional layers are helpful. AlexNet and Bayesian VCC-5 seem
unable to learn from these images. AlexNet can be trained to predict
the ground truth, but it seems to struggle with noisy judgments,
or the large kernels (11) in its first convolutional layer may have
wiped out the fine-grained features in the scatterplots.

Among the four regressions, Logistic regression (ellipse) and Bayesian

logistic regression (ellipse) yield slightly better prediction accuracy,
corroborating with the literature that this feature better explains
correlation comparison judgments in scatterplots [117]. The Bayesian
approaches could be slightly less or more accurate, likely depending
on the priors and fitting process.

Insights These results indicate that most of the optimized archi-
tectures can predict participants’ correlation comparison judg-
ments in scatterplots, and a subset has comparable prediction
accuracy to the best-performing models based on the factors
and features proposed in the literature. More complex architec-
tures may be necessary for better prediction accuracy, but not
necessarily a result of increasing depth, width, or image resolu-
tion. These quantitative performance measurements also provide
insights into which architectures might provide better predictions
for other visualizations and tasks.

5 STUDY 2: GENERALIZING THE
PREDICTIONS

This study focuses on generalizing the model predictions to other
related datasets [5]. In empirical studies, the generalizability pro-
vides hypothetical results without collecting human judgment and
refitting the model. In particular, for deep convolutional neural net-
works, this generalizability will also address the concern about their
sensitivity to small input changes [3]. As such, Study 2 asks do the
models better generalize predictions to other related datasets?
We examined two other datasets of correlation comparison judg-
ments in scatterplots: increasing the number of data points (

) and presenting outliers ( ) (see Fig. 1).
Both vary in the data presented to participants and their judgment
performance (see Appx. B).

5.1 Motivation

Study 2a: Scatterplots200 Previous studies of correlation per-
ception often have a fixed number of data points [26, 89, 117]. As
increasing the number of data points likely preserves certain scat-
terplot features, participants’ judgments are probably similar [55].
Also, if a neural network model appeals to the features varying with

the number of points (e.g., memorizing the coordinates), it may not
generalize to such a new dataset. We therefore collected

, using the same experimental protocol as
but increased the number of data points in each scatterplot to 200
(see Sec. 3.4 above).

Study 2b: Scatterplots95+5 Studies on correlation and cluster
perception also suggest that noise and outliers in scatterplots likely
affect participants’ perceptions [85, 86, 93, 105]. To a neural network
model, a change in pixel distributions might also affect its prediction.
We therefore collected , using the same protocol
as the other two datasets. The difference is that five points were
constantly located around 3.5 standard deviations from the mean
of y (see Sec. 3.4 above). We chose five points because participants
may ignore one or two points, but too many points would also
present a comparable cluster, and five out of one hundred (5%)
appear to be an acceptable threshold.

5.2 Training and interpreting

Therefore, we assessed the ten top-performing regressions (and
architectures) from Study 1: the four logistic regressions, VGG-16,
VGG-19, VCC-5, VCC-7, VGG-16 (antialiased), and VGG-19 (antialiased).
In both Studies 2a and 2b, we repeated the data splitting and testing
processes ten times. For each regression/architecture, we applied
each of their ten models from Study 1 (e.g., the same estimated
parameters) to predict each of the ten test sets, producing 10 X 10
= 100 samples of prediction accuracy.

To help understand the results, for each regression/architecture,
we also trained ten models from scratch using the corresponding
training and validation sets as analogies (we recomputed prediction
ellipse). When compared to these analogies, a generalizable model
should display the least decline in prediction accuracy. We calcu-
lated the means and confidence intervals of prediction accuracy
and comparison, and reported them in Fig. 5.

5.3 Results

Do the models better generalize predictions to other
related datasets?

In both Studies 2a and 2b, the VGG-19 and VGG-19 (antialiased)
models are the most generalizable to the new datasets; they
clearly outperform the others, especially those regression models.
VGG-16 (antialiased) also has compelling performance. The models
of other architectures (e.g., VCCs) were comparable when predicting
a specific dataset (e.g., from Study 1), but they show
notable declines in generalizability, likely due to overfitting. These
neural network models operate on visualization images, informed
about the changes in input.

The two regressions using correlation coefficients do not know
the changes in visualizations. The other two regressions using el-
lipseArea know summarized changes. They essentially learned a
difference threshold to predict the Left and Right judgments (see
Appx. B). The optimal threshold varies with datasets; therefore,
the previous models seem less generalizable to the new datasets.
Bayesian logistic regression (ellipse) on
ception, but with much more uncertainty in prediction accuracy.

seems an ex-
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Figure 5: Studies 2a and 2b show VGG19 and VGG19 (antialiased) have the best generalizability on (a)

difference in accuracy

and (b)

. Taking the top-performing regressions and neural network architectures from Study 1, we applied each of
their ten models (i.e., the same estimated parameters) to predict each of the ten test sets, and compared them with those newly

trained on the training and validation sets.

Between Studies 2a and 2b, the results are similar. The predic-
tion accuracies are higher than those of Study 1; this is because
participants selected scatterplots of higher correlation more often
in these two datasets (see Appx. B). In other words, the “human”
thresholds are higher (80.76% and 77.46%). However, most models
from Study 1 show declines in prediction accuracy, compared to
their analogies trained from scratch.

Insights This study partly answers an open question to correlation
perception in scatterplots: a deep convolutional neural network
model like VGG-19 and VGG-19 (antialiased) could provide ade-
quate predictions for new scatterplot designs without additional
data (i.e., collecting new human judgments). This is helpful in theo-
rizing results or designing a new experiment. For example, we can
use these models to infer human judgments of different visualiza-
tions or datasets, which might be used to automatically assess and
optimize different design parameters based on model predictions
of when humans may make mistakes. This study also suggests that
these deep neural network models are not very sensitive to small

input changes (e.g., a pixel change in dot size) in scatterplots. How-
ever, we are unclear about the causes of declines in their prediction
accuracy. We do not know what a model learned and how these
led to their prediction and generalization. These skepticisms invite
Study 3 below.

6 STUDY 3: EXPLORING THE LEARNED
FEATURES

Study 3 asks what features a convolutional neural network model
learns to predict participants’ correlation comparison judgments
in scatterplots? This study shows an exploration of interpreting
perceptual judgments in visualizations. We first conducted an er-
ror analysis to examine prediction bias and then extracted the
features learned by a model. Because VGG-19 is representative of
several architectures and shows the best prediction accuracy and
generalizability above, we centered on a VGG-19 model trained on
Scatterplots100 from Study 1. We reported the features of other
models in Appx. D and supplementary materials.
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6.1 Study 3a: Error analysis

We first conducted a small error analysis to examine the bias in the
model predictions. We calculated the portion of Left and Right
predictions. Of all correct predictions, 56.17% were Right , and
among all incorrect predictions, 52.41% were Right . We then vi-
sually inspected the relationship between participants’ judgments,
the model predictions, and the confidence of the model (measured
by probability) as follows.

The model makes more correct predictions as JND increases.
This is prominent—the task is getting easier, and participants are
more likely to make unambiguous (less noisy) judgments. We note
that one JND is likely to be a threshold for the model. Above one
JND, the model always predicts that participants select scatterplots
of higher correlation m m. Below one JND, the model predicts that
participants select lower correlation sometimes

The model often has a high confidence score (e.g.,>.7), indicating
sufficient training. It is more confident in a correct prediction but
can be very confident in an incorrect prediction. When its confi-
dence is very low (e.g., [.5,.55]), the model appears to assign the
two labels randomly.

Insights These results suggest that the model was sufficiently
trained to predict participants’ correlation comparison judgments
in scatterplots; it also behaves reasonably and does not have strong
biases in its predictions. These results support the following study
of learned features.

6.2 Study 3b: Extracting features learned by a
deep neural network model

Explaining a convolutional neural network model is an open prob-
lem. Here we resorted to a prevalent technique—feature visualiza-
tion [72, 73].° This technique generates images that maximize the
activation of a neuron, a filter (a channel), or a layer. The resulting
images are considered features that the model “looks for,” showing
how the model builds up its understanding [73]. We chose filter-
based optimization because it yielded the most interpretable results
of better visual quality. We then generated feature visualizations
for each filter in each convolutional layer for comprehensiveness.

Methods We used an SGD optimizer (steps = 2,048, learning rate =
0.15) with FFT parameterization and generated four diverse images
(weight = 200) in the decorrelated space to avoid high-frequency
artifacts [73]. We decided the hyperparameters based on the conver-
gence and interpretability of the resulting feature images. We did
not apply any transformation or preprocessing to preserve location
and orientation information. We based our implementation on the
lucent library [101] and obtained a total of 22,016 images for the
VGG-19 model (e.g., 512 filters X 4 feature images per filter = 2,048
images for the last convolutional layer).

To analyze the resulting feature images, we combined k-means
algorithms with a manual process to cluster the images for each
convolutional layer. We first recursively applied k-means algo-
rithms based on the Manhattan distance between image summaries
(i.e., binning pixels) and gradually increased the number of clus-
ters (usually 2 or 3 but up to 4). We terminated the recursion and
expansion until the new clusters did not appear to share similar

SThere are other approaches to explain a neural network model based on attribution
in one input image. The results are less informative than feature visualizations. See
Appx. E for an example.
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Figure 6: Study 3a reports an error analysis of a VGG19 model
from Study 1, showing no strong bias.

features. We then manually inspected each image in each cluster
and relocated them into different clusters. This clustering process
can be erroneous, as one image could ambiguously belong to more
than one cluster, but the resulting clusters generally conceptualize
features and describe their distributions. We consider each cluster
a feature learned by the model.

Results We select one image from each cluster and report the
proportion of the images in a cluster to all generated for that layer
in Fig. 7. A larger cluster means that this layer learns redundant
features. We omit non-interpretable clusters (e.g., all white images)
here but reported them in Appx. D. We provide all the feature
images of this and other models (see the beginning of Sec. 6) in
supplementary materials.

Overall, we observe that the later layers learn more detailed
features than the early layers. Max-pooling operations extract more
features (e.g., Layer 10 vs. 14) while convolution operations aggre-
gate features (e.g.,Layer 14 vs.17). These observations are consistent
with prior findings and the nature of these operations.

@ The first convolutional layer does not appear to learn any
features, and the early convolutional layers seem to learn one or
two @ 2D Gaussian kernels. This Gaussian kernel feature penetrates
all the layers and evolves into @ the ribbon feature, which may be
used to contrast different parts of the input (e.g., left and right).

As early as Layer 7, the model partially recognizes the dot feature.
At Layer 14, the model is responsive to the dot feature, which
disappears shortly and reappears at @ Layer 27. After Layer 27,
© this dot feature gradually dominates, meaning that these layers
redundantly learned this feature. The early layers also appear to
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Study 3b: Extracting and interpreting the learned features
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learn @ the stripe feature, which is preserved throughout all the
subsequent convolutional layers. This feature is later combined
with the dot feature and yields @ the raindrop and @ cloud features.
Finally, we also note @ the correlation feature, reflected as one
rotated Gaussian kernel in the middle layers (e.g., Layer 27, the
first column) and a straight line with a slope in the later layers
(e.g.,Layers 40 - 49).

6.3 Discussion

What features does a convolutional neural network
model learn to predict correlation judgments in
scatterplots?

It appears that the VGG-19 model learns Gaussian kernel, dot,
stripe, ribbon, correlation, and other local features when trained
to predict participants’ correlation comparison judgments. The
Gaussian kernel feature may allude to an estimation of pixel density.
It also corroborates that prediction ellipses are an approximation or
intermediate of the perceptual features that participants might look
for [87, 88]; however, other more detailed features in the scatterplots
would improve prediction accuracy. The correlation feature may
indicate that the cloud shape and regression slope influence both
the model predictions and participant judgments. The dot feature
may imply that the model counts pixels or dots, which can be con-
strued as some numerosity or magnitude estimation [53, 103, 115].
The ribbon feature may imply a comparison of the two scatterplots.
The Gaussian kernel feature may explain that a prediction ellipse
does not provide enough information; additional density informa-
tion is necessary for model generalizability. Other features like
cloud and raindrop may imply an estimation of dot entropy, which
were previously considered plausible visual proxies for correlation
comparison judgments in scatterplots [87, 88].

Most features share vertical patterns, which might relate to the
data generation process and the definition of Pearson’s correlation.
The data generation process transforms y-coordinates towards the
target Pearson’s correlation coefficient (r), which is defined by
the vertical distance to the regression line when x-coordinates are
fixed. These vertical features may be caused by the model trying to
attribute error to vertical distance.

We summarize the features of other models (see Appx. D) as fol-
lows. VGG-19 models trained on , ,
or ground truth share similar features but vary in their distri-
butions. For example, the proportion of the correlation feature
is much higher, especially for and ground truth.
VGG-19 (antialiased) results in similar but less detailed features, con-
sistent with the blurring operations in this architecture. VCC does
not yield any features related to local properties (e.g., dot), but in-
stead has only features related to location (e.g., ribbon). ResNet-18
is responsive to fine features in its early layers and generally yields
features with higher spatial frequency, which corroborates prior
findings that ResNet tends to learn non-robust features [3, 71, 107].

Insights This study shows that a model directly trained on the
visualization images and participant judgments provides inter-
pretable visualization features. This feature analysis and the aux-
iliary gradient analysis (see Appx. E) reveal clues to model behavior.

It may extract and compares density information to make a predic-
tion, while other fine features may provide additional information
to improve prediction accuracy. These features may also partially
explain why the model seems generalizable on and
: the features extracted are similar, and the model
does not seem to memorize pixel coordinates to make predictions.
This study also provides partial answers to one open question for
visualization perception: we show an approach to extract potential
perceptual features systematically [35]. Several of the features are
consistent with prior studies, validating our approach. More broadly,
we also demonstrate how a single neural network model optimized
on one dataset can reflect findings about visual features from a
series of prior works. Beyond validating previously hypothesized
features, the models also suggest new features of interest. These
features may provide inspiration to theorize correlation perception
in scatterplots and to design new models. For example, we can first
compute the most important features (e.g., perhaps they are the
correlation and dot features) and extract them from visualization
images, following up with a logistic regression based on them.

7 GENERAL DISCUSSION

First, a reminder that this research does not attempt to suggest
that deep neural networks are a biologically plausible model of
human vision, and they are likely not [6]. Nor do we encourage a
shortcut to study visualization perception without rigorous human-
subject experiments; in the absence of adequate prior knowledge
and caution, mindlessly fitting complex models to complex data will
undermine the scientific community and engender false discoveries.

7.1 What benefits might DNNs bring?

In comparison to previous regression analyses, we show that deep
convolutional neural networks, which process visualization images
directly, can provide comparable prediction, better generalization,
and new interpretable features. They do not require explicit re-
searcher hypotheses (which can be fallacious) or eye-tracking data
(which studies have shown can be irrelevant to participants’ judg-
ments [34]). These models might help us in forming ideas about
current perceptual judgement data, including the design of future
human subject experiments.

Of course, these models do not solve all problems we are curi-
ous about in visualization perception, but this direction of starting
with visualization images and building our understanding backward
seems promising. It may help researchers further ideate about funda-
mental theory for visualization perception and tasks. Besides deep
convolutional neural networks, other pixel-based models may also
be feasible; deep convolutional neural networks are a convenient
choice. Similarly, our goal here is not to discourage factor-based
regression analyses. They are essential for systematically investi-
gating the effects of small sets of experimental factors (e.g., mark
orientation [58] and point size).

7.2 Generalizability and future opportunities

Studies 2 and 3 suggest that the neural network models might be
generalizable to other correlation perception datasets. As some
models maintain performance with subtle changes in axes and
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points, they might be able to predict scatterplots of slightly differ-
ent parameters (e.g., dot color, marker size, fewer dots) without
additional training or new data. However, we stress that inferring
further generalization to other visualizations or tasks is challeng-
ing. As such, our research invites many possible follow-ups. One
study could include scatterplots of negative correlation or different
slopes. Human judgments are likely similar [26], but it may be
more challenging to train a model to predict both positively and
negatively correlated data. Another study could gradually drop dots
or outliers and observe changes in human and model behaviors;
such a procedure may reveal dots that are key to model prediction.
Our approach is possibly generalizable to other visualization
perception studies. It does not require a priori hypotheses, and the
number of images (judgments) used is middling among contempo-
rary research. For comparison, Harrison et al. collected ~300,000
judgments [26], and Jardine et al. collected ~5,000 judgments [35]. It
is useful to explore how model performance varies with sample size
(e.g., to find a minimal sample size with acceptable performance).

7.3 Limitations

We acknowledge the limitations in our choices of task, design, and
models. We considered only one task and three different datasets.
Other visualization tasks and visual channels, such as estimating
the mean, colors, or mark shape, could lead to different human and
model performance. Our results might be specific to our data gen-
eration process (e.g.,how we generated the five outliers). We only
considered convolutional neural networks and investigated a small
subset of all previously proposed architectures. There are many
other deep learning architectures to explore, like using CapsuleNet
to model hierarchical relationships in visualizations [90], genera-
tive adversarial networks (GAN) to model numeric responses, and
the recent proposal of vision transformers (ViT) to preserve spatial
information [24]. Similarly, further exploration of probabilistic neu-
ral networks may help address the limited sample size and noise in
the data. We also recognize the limited interpretability of a neural
network model but anticipate that future advances in interpretable
machine learning and explainable artificial intelligence will help
overcome this problem (e.g., [30, 31, 110]) and provide more insights
into visualization perception.

The long training and computation time might be a practical lim-
itation, although they largely depend on image size and hardware.
Most models were sufficiently trained within two to four hours,
but ten repeats cost more than a day. Computing feature visual-
izations for all filters may take a few days for a large architecture
like VGG-19. Previous works show that channel activation is often
power law distributed [31]. It might be sufficient only to investigate
top-activated (e.g., 3%) neurons/filters to reduce computation time.

7.4 Predictive modeling for visualization

In principle, a model predicting human judgments can help design
new visualizations by performing an automatic evaluation, opti-
mizing the choice of graphical encoding, or informing designers
of a misleading case. Given our assessment of a set of deep neural
network architectures in Study 1, researchers can use our results
for a preliminary model selection to identify a likely effective model
and avoid repetitive efforts.

Fumeng Yang, Yuxin Ma, Lane Harrison, James Tompkin, and David H. Laidlaw

In practice, the model generalizability shown in Studies 2 and 3
is limited and only hints at the possibility to build more generaliz-
able models (e.g., using very large corpora of visualization images
and human judgments on different tasks). While researchers might
have to collect such datasets, designers and practitioners could use
the trained models or fine-tune the models on a small set if they
generalized. Our study and previous studies (e.g., [21, 23]) show
the effectiveness and limitations of current architecture designs.
This points to a need to design neural network architectures and
explanation methods that are specific to visualizations. Visualiza-
tion images have different properties and patterns than natural
images. They contain more abstract and repetitive features, and
they rely on spatial information more than texture to convey infor-
mation. Previous studies also show that fine-tuning neural network
models pre-trained on natural images is not as effective as training
them from scratch [23]. From vision scientists’ perspective, humans
may extract the same statistics information from visualization and
natural images [25], but there seem to be one or more adaptation
processes between them [41]. These suggest that a possible solu-
tion is to consider the shared and different statistics information
between natural and visualization images and how people perceive
and process this information. This will likely remove the redun-
dancy in learned features and result in architectures with fewer
parameters but improved prediction accuracy. Our studies provide
evidence and insights for these open problems and hope to inspire
future work on predictive modeling for visualization.

8 CONCLUSION

This manuscript reports insights from using deep convolutional
neural networks for visualization perception research through three
studies of correlation comparison judgments in scatterplots. The
first study assessed a collection of thirty neural network architec-
tures, showing that the deep convolutional neural network models
can have equivalent prediction accuracy compared with the best-
performing regression analyses in the literature. The second study
applied the trained models to two related yet different datasets,
showing that deep neural networks have better generalizability.
The third study computed features learned by a convolutional neu-
ral network model, and revealed how the model builds its under-
standing and extracts image features to make a prediction; these
features provide new clues to correlation perception. Together, this
series of three studies show the emerging prospect of using deep
neural networks to predict, generalize, and construe perceptual
judgments for visualization perception research.
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