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Stable cooperation emerges in stochastic multiplicative growth
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Understanding the evolutionary stability of cooperation is a central problem in biology, sociology, and
economics. There exist only a few known mechanisms that guarantee the existence of cooperation and its
robustness to cheating. Here, we introduce a mechanism for the emergence of cooperation in the presence of
fluctuations. We consider agents whose wealth changes stochastically in a multiplicative fashion. Each agent
can share part of her wealth as a public good, which is equally distributed among all the agents. We show that,
when agents operate with long-time horizons, cooperation produces an advantage at the individual level, as it
effectively screens agents from the deleterious effect of environmental fluctuations.
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Introduction. The emergence and the stability of coop-
eration are a central problem in biology, sociology, and
economics [1-5]. Cooperation produces an advantage for the
group, through the creation and sharing of social goods, but
it is inherently unstable to cheating and to the tragedy of
the commons, where individual agents benefit from the social
good without contributing to its creation [6,7]. The dilemma
of the evolution of cooperation can be solved in the presence
of some specific mechanisms [8], which lead to the emergence
and long-term stability of the cooperative trait.

Many systems of interest for the study of cooperation ex-
ist in a context exposed to fluctuations and stochasticity. A
paradigmatic model for such systems, which has applications
both in economics and in population biology, is geometric
Brownian motion, which describes the stochastic dynamics
of a variable x(z) as x = ux + ox&(t), where &(¢) is a delta-
correlated white noise and p and o are respectively drift and
volatility. In biology, x could represent the abundance of a
population, and in economics x is the value of an asset or
the wealth accumulated by a gambler. In the following we
will refer to x as the wealth or value of an agent, keeping
in mind however the breadth of possible applications of the
geometric Brownian motion. An essential feature of multi-
plicative growth is that it lacks ergodicity, as the time-average
behavior differs from the ensemble average [9]. The latter
grows exponentially in time with rate pu, while the former
grows with rate g = lim, o (logx(t))/t = u — o'?/2. This
difference parallels the difference between arithmetic mean
(which corresponds to the ensemble average) and geometric
mean (which converges to the time average), and it is the
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deep reason why the latter is a natural quantity to optimize for
agents aiming at maximizing their future profits or growth. In
the context of gambling, the Kelly criterion defines the opti-
mal size of a bet based on optimization of the geometric mean
[10]. In evolutionary biology, under varying environmental
conditions, natural selection favors traits on the basis of their
geometric mean fitness [11,12]. An important consequence
of the fact that the geometric mean fitness determines the
optimal solution is that not only the average environment but
also the amplitude of its fluctuations determine its value, as
the geometric average grows with rate ;4 — o2/2. Reducing
fluctuations, i.e., reducing the value of o, has therefore a
positive effect and should be expected to be advantaged by
natural selection [13].

In the context of growth under fluctuating conditions, we
introduce the possibility of asymmetric cooperation between
G agents with different drifts and volatilities, expanding on
the settings of Refs. [14-20].

Each agent shares—independently—part of her wealth as
a public good, with a sharing rate «;, which is then divided
equally among the agents. The presence of sharing couples
the dynamics of agent’s value,

. 1
() = () + o (O&) + = D _le (@) — o),
JF
(1

where §;(¢) are delta-correlated white noises, with an arbitrary
correlation p across agents. While we formulate the model as
a diffusion process, its equivalency to time-discrete processes
is discussed in detail in Supplemental Material (SM) [21]
Secs. S1 and S2.

The full-defector scenario «; = O corresponds to the orig-
inal geometric Brownian motion solution g; = u; — o7 /2. If
all the agents fully cooperate («; — oo for all i) and all the
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agents are equivalent (u; = u and 0; = o), one can obtain an
exact solution of the trajectories x;(¢) [15—18] resulting in a
higher growth rate g; = i — >/(2G). The intuition behind
these results is that, in this context, cooperation produces an
advantage as it reduces effectively variability. By sharing their
values with others, agents effectively diversify their invest-
ments, making their values less subject to fluctuations and
therefore leading to faster growth. However, this advantage
alone does not explain how cooperation can emerge and why
it could be stable to defection: Also in the simple context
of the prisoner dilemma, cooperation produces an individual
advantage over defection, when all agents cooperate (i.e., co-
operation is Pareto optimal). The dilemma is, as well known,
that cooperation is not stable (given that all the other agents
are cooperating is advantageous for the individual to defect)
while defection is (if all the agents are defecting there is no
advantage in starting cooperating).

In this Letter, we explore the stability and origin of co-
operation under fluctuating conditions, using the setting of
Eq. (1) in the case of two agents (G = 2). We show that
the maximization of the individual long-time return leads
to the emergence and stability of cooperation. We further
explore the robustness of these results to uneven growth
rates, correlated fluctuations, colored noise, costly coopera-
tion, finiteness of time horizons, and extend them to arbitrary
group sizes. We show that, for large enough time horizons,
arbitrary levels of correlated fluctuations, noise time correla-
tion, and costly sharing, cooperation (either full or partial) is
advantageous at the individual level. Finally, we explore the
effect of these results on an explicit evolutionary dynamics.

Emergence and stability of cooperation. In order to make
analytical progress on Eq. (1) it is convenient to introduce
qi(t) := In[x;(¢)]. The quantity that agents optimize is simply
the typical growth rate g; = lim;_, »{(q;(¢))/t. The dynamics
of g; can be obtained from Eq. (1) using It6 calculus (see SM
[21] Sec. S3). One obtains

(G =gl — 5+ >

7 T 5 (exp (g2 — q)) (@), 2

where ggl)o = W —I—oiz /2 is the growth rate in the absence
of cooperation. The typical growth rate of agent i, in the
presence of another agent with resource sharing ratio o, will
therefore depend on both «; and «; and will be denoted by
8aila;- In the simple case of two agents, we can treat gq,jo; as
the payoff function of a continuous game, aiming at finding
the (pure-strategy) Nash equilibria and the evolutionary stable
strategies.

We analytically derive (SM [21] Sec. S3) that the dynamics
of exp(q> — q1)—the only nontrivial term in Eq. (2)—is er-
godic with a stationary distribution, leading to a well-defined
term (exp(q2 — g1))eq- The growth rate gg,-)m,- will be equal to
ggl)o + (aj(exp(g2 — q1))eq — o;)/2. In particular, the effect of
cooperation can be quantified by the difference [22]
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where Kg(z) is the modified Bessel function of the sec-
ond type. The value of 0> = (0(21) + 0(22))(1 — p)/2 quantifies

the effective magnitude of stochasticity (SM [21] Sec. S4).
The parameter y is defined as the intrinsic difference of the
uncoupled growth rates of the two agents with respect to
stochasticity: y = (gf)ll()) - ggzl()))/oz.

A relevant question now reads: Given a strategy of the
second player o, what is the optimal value of «;? Mathe-
matically, what is the value of a*(ay) := argmax,gqja, that
maximizes the long-term growth rate as a function of the other
agents’ strategy?

Moreover, let us define an iterative process: Agent 1 opti-
mizes her sharing rate to maximize her own growth rate, given
the sharing rate of the partner, following by agent 2, and again
agent 1 and so on and so forth. What can we say about the
evolutionary stable states (ESSs) of their sharing rates () ?

Absence of agents’ intrinsic differences (y = 0). We start
by considering the simplest, yet nontrivial, case y = 0. Fig-
ure 1 shows that our analytical solution of Eq. (3) correctly
matches the numerical simulations. For fixed strategies «; and
ap, the effect of cooperation increases monotonically with o:
The higher are the fluctuations, the higher is the advantage of
cooperation. Interestingly, however, for a fixed value of «y,
the long-term growth rate is not monotonic in «j.

The first nontrivial original result of our Letter is that
the value of resource sharing that maximize the growth rate
o (o) for a given strategy of the other agent a; > 0 is always
larger than the latter: of (a2) > oy (Fig. 1).

Given the symmetry in the problem, the two agents
converge—independently—to the same value a. of the shar-
ing rate. Particularly, for large «, we find a*(az) ~ s +
o2 /4, implying that aes, — 00. This mathematical result im-
plies that, contrarily to the mechanism in the tragedy of the
commons, each agent has an individual advantage in sharing
more than the other agent. As a consequence, the evolutionary,
adaptive, or learning dynamics maximizing the growth g leads
to a larger and larger level of cooperation (i.e., larger and
larger values of «).

The intuition behind this result is that, in the presence
of fluctuations, sharing is akin to investment diversification,
screening the agent from the detrimental effects of fluctua-
tions. In the long-time horizon, the return from this investment
[the term aa(exp(g2 — q1))eq/2] repays its cost (equal to
a1/2).

Complete defection remains a strict Nash equilibrium.
However, as soon as both agents have any small sharing rate,
they will escape from it and converge to full cooperation. In
the definition of Ref. [23], it is not an ESS.

Presence of agents’ intrinsic differences (y # 0). The pres-
ence of ¥y # 0 in Eq. (3) makes the agents’ optimization
nonsymmetric: Under what conditions is it convenient for the
agent with a higher intrinsic growth rate to share with the
other?

To investigate the evolution of o upon optimization we
define Aa = a;j[af}, (a)], that is the difference in the value
of « on one individual after both individuals have asyn-
chronously optimized their «. Figure 1(c) shows that if the
intrinsic differences between the two agents are smaller than
the level of noise (]| < 1) both the agents are expected to
increase the sharing rate as Ao > 0 for every value of «.
This implies that «{) — oo. However, as shown in SM [21]

ess
Sec. S5, the presence of intrinsic differences between the two
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FIG. 1. The optimal strategy for long-term growth is to cooperate more than the partner as the growth rate of individual 1 is maximized
by a value of o bigger than the partner’s a,. (a) displays the difference between the infinite-time growth rate gq, ., and the growth rate of
the fully defecting case goj as a function of o, for a fixed value o, = 0.5 (vertical gray line). Colors identify different noise amplitudes o.
The analytical results of Eq. (3) (solid lines) match the numerical simulations (markers). Red markers indicate the maxima of the curves, i.e.,
the value of o; maximizing agent 1’s growth rate. Maxima appear on the right-hand side of the vertical gray line (c,), indicating that the optimal
choice for agent 1 is to share more than agent 2. (b) shows the dependence on the partner’s o of the optimal o* := argmax(ge,|e, — gojo) that
is the position of the maxima in (a). Different lines represent different values of o. Decreasing the noise amplitude the curves get closer to the
diagonal while staying above it, showing that the optimal « is higher than the partner’s « for any noise amplitude. In (c) we represent the effect
of intrinsic differences y on the optimal cooperation strategy. The plot shows the variation of cooperation rate Aw(«) during a single step of
the evolutionary process as a function of y and «. Ae > O as long as y < 1. That is, for y < 1 both agents tend to increase their « in time for

any value of «.

agents (y # 0) corresponds to a not trivial ratio between the
evolutionary stable share rates o) /a(2) — (1 —y)/(1 + y).
On the contrary, when |y| > 1 we find that the cooperative
solution becomes evolutionary unstable and that evolution
brings the value of o to decrease in time. It thus becomes
more advantageous for the better agent to defect, and the
evolutionary stable strategy for both agents is () = 0.
Robustness of cooperation to neglected factors. Increasing
the group size does not alter our results. Naively, increasing
the group size G could favor cheaters, that would take advan-
tage of G — 1 agents. On the other hand, larger group sizes
reduce even more the effect of fluctuations, providing a higher
diversification. In particular, the growth rate in the case of
full cooperation converges to u — o2/(2G) [15-18]. As we
numerically find (SM [21] Fig. S4), the latter effect is the
dominates on the former, maintaining the evolutionary stabil-
ity, while producing even higher advantages for cooperation.
Another key assumption is to describe fluctuations as
white noise. In reality we might expect, e.g., in biology
[24] or economics [25], that fluctuations are time correlated,
over some timescale v, which could be comparable to the
other timescales of the process. We introduce this effect by
assuming that fluctuations have an exponentially decaying au-
tocorrelation (&;(¢)&;(t")) = exp(—|t —t'|/7)/(27), reducing
to white noise in the limit 7 — 0. While this case cannot be
exactly solved, we approximated it using unified colored noise
approximation [26]. Our analytical approximation correctly
matches numerical simulations for a wide range of values of
7. In particular, we obtain that full cooperation (tess — 00)
is no longer an equilibrium strategy. The optimal sharing rate
turns out instead to depend on the value of t. For any value of
7, the equilibrium sharing rate a.g is a positive finite value.
For small values of t, the equilibrium sharing rate scales as

“4)

which tends to full cooperation in the white-noise limit T —
0. Also, for a given value of t, larger levels of fluctuations and
lower noise correlation produce increased cooperation.

In many settings cooperation is associated with a cost as
seen, e.g., in microbe systems [7,27-29]. A cost can be intro-
duced in multiple ways. If it is chosen to be proportional to
the resource share rate, the model can be solved again analyti-
cally, showing that for any positive value of cooperation there
exists a finite equilibrium sharing rate (SM [21] Secs. S5 and
S6).

A further key assumption of our framework was focusing
on infinite-time horizons. This can be relaxed by considering
growth over finite-time horizons 7', and evaluating the average
log returns (g;(T))/T. This case is not amenable to analytical
treatment but it can be studied in the context of evolutionary
dynamics of finite populations discussed below.

Evolutionary dynamics in finite populations.The results
presented above provide a clear mathematical mechanism for
the emergence and stability of cooperation in the presence of
fluctuations. In order to apply these results to a more concrete
example, we perform an explicit evolutionary dynamics in
a finite population. We define a Wright-Fisher model with
N individuals (SM [21] Sec. S8). We associate the random
variable x;(¢) to the fitness and characterize individuals by
their propensity to share a; € [0, 1], the discrete counterpart
to o; (SM [21] Sec. S7). Individuals live in couples for a time
T and reproduce proportionally to the final fitness x;(T).

As expected from previous results of population genetics in
fluctuating environments [11], evolution drives the population
to traits that maximize the expected log fitness. Figure 2 (main
panel) shows the distribution of resource sharing probability
a over time. For a short-time horizon T, defection dominates
and the distribution of a is peaked close to 0, with some
variance due to mutations and genetic drift. Conversely, for
large enough time horizons, the vast majority of individuals
cooperate, and a peaks close to one.
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FIG. 2. The emergence of cooperation in evolutionary dynamics
depends on the time horizon of the agents. Two similar populations,
with shared fractions ¢; initially distributed around 0.6, evolve with
different time horizons Ty =20 (green dots) and Tiyne = 2000
(blue dots). The population with a short-time horizon evolves to-
wards a distribution peaked in ¢ = 0 while the long-time horizon
one, in the opposite direction, towards a @ = 1. The inset shows the
equilibrium value of the shared fraction a.y, which displays a phase
transition while increasing time horizon 7' (measured in the number
of discrete time steps).

The inset in Fig. 2 shows that the two regimes appear sep-
arated by a critical time horizon T*. For T > T*, the system
behaves qualitatively as in the infinite-time-horizon case: The
individual optimizations of the log-average return lead agents
to converge to a value aes > 0. In particular, for very large
time horizons we recover the prediction obtained under the
diffusion limit and aess — 1. This result sheds light on the
mechanism producing cooperation in our modeling setting:
For long-time horizons, cooperation, thus investing in the
other agents, continues providing returns, overcompensating
its costs.

Discussion. In this Letter, we have discussed the optimal
sharing strategy of agents in the presence of multiplicative
stochastic growth. Cooperation can lead to the faster growth of
individual agents, therefore becoming an evolutionary stable
strategy. In this context, cooperation effectively screens agents
from the detrimental effect of fluctuations: By cooperating,
an agent effectively diversifies its investment, producing a
higher return in the long term. This is a sustainable strategy

only if agents act with a long-time horizon and this altruistic
investment have the time to repay off. For short-time horizons,
defection becomes again the evolutionary stable strategy.

Our approach differs considerably from previously identi-
fied mechanisms that explain the emergence and the stability
of cooperation [8]. It does not in fact invoke multilevel selec-
tion (as in group or kin selection), as we consider individuals
that only maximize their own growth rate. Moreover, direct
reciprocity [30] is not the ingredient determining cooperation
in our framework. Direct reciprocity requires agents to change
their actions based on the previous actions of other agents. In
our setting, given a value of the resource sharing rate o, of
agent 2, even if agent 1 is allowed to choose her own sharing
rate o) once and for all, her optimal choice would be to share
more than the other (o; > o).

The fundamental origin of the advantage of cooperation in
our framework is due to the nonergodicity of stochastic ex-
ponential growth, which effectively determines an individual
advantage in reducing the level of fluctuations. Increasing the
rate of cooperation comes at an immediate individual cost,
as part of the wealth is diluted among agents as a public
good, and has a long-term return, as the wealth shared with
others is subject to independent fluctuations. The surprising
result of this Letter is that the second effect is stronger than
the first one, making it more advantageous—at the individual
level—to cooperate.

It would be interesting to extend our framework in multi-
ple directions. We assume that individuals share their value,
but the scenario where they share only the income is poten-
tially very interesting. We also assume that the group size is
fixed, but for many biological (e.g., origin of multicellularity
[31,32]) and sociological (e.g., group formation [33]) applica-
tions it would be interesting to treat it as a dynamical variable
that can be optimized. Finally, we note that the results hold for
unconstrained growth, which—while a reasonable assumption
in the context of economic theory—may not apply in full
generality to biological settings. Our results on finite-time
horizons (which effectively limit growth) suggest however
that the main phenomenology could apply for different forms
of constrained growth.

Acknowledgments. We thank J. P. Bouchaud, M. Smerlak,
M. A. Muiioz, and M. Cosentino Lagomarsino for insightful
discussions and comments at various stages of the work, and
I. Macocco, M. Carli, and T. Cossetto for the meetings that
began our journey. O.M. acknowledges the Alexander von
Humboldt Foundation in the framework of the Sofja Ko-
valevskaja Award endowed by the German Federal Ministry
of Education and Research for providing funding for this
work.

[1] P. A. Kropotkin, Mutual Aid: A Factor of Evolution (McClure
Phillips, New York, 1902).

[2] W. D. Hamilton, J. Theor. Biol. 7, 17 (1964).

[3] R. Axelrod and W. D. Hamilton, Science 211, 1390 (1981).

[4] J. Bendor and P. Swistak, Am. Polit. Sci. Rev. 91, 290 (1997).

[5] L. Lehmann and L. Keller, J. Evol. Biol. 19, 1365 (2006).

[6] G. Hardin, Science 162, 1243 (1968).

[7]1 D.J. Rankin, K. Bargum, and H. Kokko, Trends Ecol. Evol. 22,
643 (2007).
[8] M. A. Nowak, Science 314, 1560 (2006).
[9] O. Peters and W. Klein, Phys. Rev. Lett. 110, 100603 (2013).
[10] J. L. Kelly, Jr., The Kelly Capital Growth Investment Crite-
rion: Theory and Practice (World Scientific, Singapore, 2011),
pp- 25-34.

L012401-4



STABLE COOPERATION EMERGES IN STOCHASTIC ...

PHYSICAL REVIEW E 108, L012401 (2023)

[11] O. Rivoire and S. Leibler, J. Stat. Phys. 142, 1124 (2011).

[12] C.J. Graves and D. M. Weinreich, Annu. Rev. Ecol. Evol. Syst.
48, 399 (2017).

[13] A. Melbinger and M. Vergassola, Sci. Rep. 5, 15211 (2015).

[14] J.-P. Bouchaud and M. Mézard, Physica A 282, 536 (2000).

[15] G. Yaari and S. Solomon, Eur. Phys. J. B 73, 625 (2010).

[16] O. Peters and A. Adamou, Philos. Trans. R. Soc. A 380,
20200425 (2022).

[17] T. Liebmann, S. Kassberger, and M. Hellmich, Eur. J. Oper.
Res. 258, 193 (2017).

[18] V. Stojkoski, Z. Utkovski, L. Basnarkov, and L. Kocarev, Phys.
Rev. E 99, 062312 (2019).

[19] C. Hilbe, S. Simsa, K. Chatterjee, and M. A. Nowak, Nature
(London) 559, 246 (2018).

[20] M. A. Amaral and M. M. de Oliveira, Phys. Rev. E 104, 064102
(2021).

[21] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.108..012401 for supplemental details on
methods and results, which includes Ref. [34].

[22] J.-P. Bouchaud, J. Stat. Mech.: Theory Exp. (2015) P11011.

[23] B. Thomas, J. Math. Biol. 22, 105 (1985).

[24] D. A. Vasseur and P. Yodzis, Ecology 85, 1146 (2004).

[25] J. Perell6 and J. Masoliver, Physica A 314, 736
(2002).

[26] P. Jung and P. Hanggi, Phys. Rev. A 35, 4464 (1987).

[27] A. S. Griffin, S. A. West, and A. Buckling, Nature (London)
430, 1024 (2004).

[28]1 J. A. Damore and J. Gore, J. Theor. Biol. 299, 31
(2012).

[29] O. X. Cordero, L.-A. Ventouras, E. F. DeLong, and M. F. Polz,
Proc. Natl. Acad. Sci. USA 109, 20059 (2012).

[30] R. L. Trivers, Q. Rev. Biol. 46, 35 (1971).

[31] E. Szathméry and J. M. Smith, Nature (London) 374, 227
(1995).

[32] J. T. Bonner, Integr. Biol. 1, 27 (1998).

[33] V. Reynolds, Man 1, 441 (1966).

[34] V. N. Kampen, Stochastic Processes in Physics and Chemistry,
3rd ed. (Elsevier, Amsterdam, 2007).

L012401-5



