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Abstract

In this manuscript, we expand the conforming to interface structured adaptive mesh refinement (CISAMR) algorithm
for modeling complex two-dimensional (2D) crack growth problems involving contact/friction along the crack surface and
interaction between multiple cracks. The CISAMR algorithm transforms a structured mesh into a high-quality conforming
mesh non-iteratively, which is an attractive feature for modeling the evolution of the crack geometry with minimal changes
to the underlying mesh structure. To model such problems, the mesh structure is first adaptively refined and updated near
the crack tip to form a spider-web pattern of elements for the accurate approximation of the energy release rate and thereby
predicting the new crack path. In each step of the crack advance simulation, a small subset of elements in the vicinity of the
crack tip is detected using a tree data structure and then deleted/regenerated to simulate the crack growth. The construction of
a high-quality mesh with appropriate element aspect ratios in the algorithm allows the use of an explicit dynamic solver, which
is essential to simulate the nonlinear response of the problem caused by contact forces along crack faces. Several benchmark
fracture problems are presented to study the accuracy of the proposed algorithm, as well as two more complex problems to
demonstrate its ability for modeling interaction of multiple growing cracks with one another and with embedded heterogeneities
in the domain.
© 2022 Published by Elsevier B.V.
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1. Introduction

The reliability assessment and predicting the remaining service life of structural components/materials with
embedded cracks is an important step towards their computational design. Many problems, such as predicting
the fatigue life of a structure, require simulating the growth of these cracks, which is often set up as a linear
elastic fracture problem at each load step. The finite element method (FEM) is one of the most versatile numerical
techniques for modeling problems with both weak and strong discontinuities. However, the main challenge towards
simulating crack growth problems using FEM is the spatial discretization of the domain (mesh generation), which
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must evolve at each load step to adapt to the changing topology of cracks [1]. To overcome this challenge, several
numerical techniques are introduced to either facilitate the meshing process in the context of FEM or eliminate the
need for generating conforming meshes throughout the simulation process. In the next few paragraphs, we briefly
visit some of these algorithms.

A well-known strategy for modeling fracture problems without updating the mesh is the nodal release ap-
proach [2,3], which is a popular algorithm due to its relatively straightforward implementation. In this method,
the crack is allowed to only propagate along element edges and thereby no remeshing is required, although
adaptive refinement is often employed near crack tips to improve the accuracy of predicting stress intensity factors.
However, simulation results are mesh dependent and the growing crack trajectory could considerably change with
the refinement level and element type [4]. Note that forcing the crack trajectory to conform to the underlying mesh
structure could lead to artificial local stress concentrations that reduce the accuracy of calculations required for
determining the onset and angle of crack propagation [5].

The element free Galerkin (EFG) method [6] is another numerical technique that has shown promising outcomes
for modeling progressive crack growth problems. This mesh free method does not require any element connectivity
data and even in the case of irregular nodal arrangements discretizing the domain can maintain a good accuracy [7].
Moreover, it does not show any volumetric locking and its rate of convergence can exceed conventional FEM, while
maintaining the continuity of both the field and its gradients in the entire domain [8]. On the other hand, one of
the main limitations of the EFG method is the difficulty associated with imposing Dirichlet boundary conditions,
which requires the use of Lagrange multipliers [9]. It should be noted that applying Lagrange multipliers for dynamic
simulations is a major implementation issue. Numerical techniques such as the Reproducing Kernel Particle Method
(RKPM) [10] and the EFG-Particle method [11] have been introduced to improve the accuracy or address some of
the implementation issues associated with the EFG method.

The phase field method has also widely been used for simulating problems involving the initiation and
propagation of damage, although the cracks are not explicitly represented in this approach [12,13]. Instead, a
continuous field parameter (phase field variable) is employed to differentiate between fully damaged and intact
material phases, with a sharp (but continuous) transition between them indicating the crack location. The evolution
of crack geometry is then simulated by minimizing an energy functional in terms of the displacement field and
internal fracture surface variable [14]. The most attractive feature of the phase field method is its ability to simulate
crack initiation, propagation, merging and branching automatically, without any ad-hoc fracture criteria, on a fixed
mesh [15]. Among drawbacks of this method, we can mention its high computational cost and parameter sensitivity
of results [16], where accuracy is dependent on the solver type, length scale, mesh orientation, mesh refinement in
transition zone, and conditioning coefficient [17].

Similarly, in the smeared crack approach [18], rather than an explicit representation of the crack geometry (strong
discontinuity), it is modeled by modifying material constitutive relation of elements. While this method is easy to
implement and does not need the remeshing process for each simulation step, the results are mesh sensitive [19] and
suffer from spurious mesh bias [20]. Moreover, although the displacement field can be approximated accurately,
the higher error associated with recovery of gradients near the crack tip undermines the fidelity of this method
in predicting the crack path [21]. To reduce the influence of the mesh orientation, the constitutive models for
the regularization of ill-posed strain softening problems such as nonlocal model [22] and gradient-enhanced
approach [23] can be employed. However, these methods require a refined mesh in the localization zones to assure
mesh objectivity. Therefore, for large scale problems, they are computationally expensive.

The eXtended/Generalized FEM (X/GFEM) [24-26] is one of the most successful methods for modeling
fracture problems, which unlike standard FEM, does not require the construction of a conforming mesh for
approximating the field [27]. This algorithm uses additional (generalized) degrees of freedom at the nodes of
elements intersecting with the crack, as well as their neighboring (blending) elements and interpolates appropriate
enrichment functions using the partition of unity method (PUM) at these nodes to reconstruct the discontinuous
field [28]. Special enrichment functions are often used in the vicinity of a crack tip or at a branching point to
accurately simulate the stress singularity, which can even yield a higher convergence rate than standard FEM [29,30].
Using X/GFEM, the background elements cut by the crack must still be subdivided into conforming sub-elements
(children elements) to allow accurate numerical quadrature [31]. Additional considerations (e.g., inverse mapping
of quadrature points) are needed during the numerical integration, although the added computational cost is justified
by the rise in the convergence rate [32]. Various treatment strategies are introduced in the literature to address other
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challenges associated with the implementation of X/GFEM, such as enforcing Dirichlet boundary conditions and
ill-conditioning of the stiffness matrix [24,33] Among other enriched methods used for modeling fracture problems
we can mention the discontinuity enriched FEM (DEFEM) [34], which extends the Interface-enriched generalized
FEM (IGFEM) [35,36] for approximating crack growth problems.

In the context of standard FEM approximation of fracture problems, the greatest challenge is reconstructing a
high-quality mesh at each step of the simulation to accurately approximate the field and predict crack path in the
next step [37]. Several algorithms have been introduced for remeshing the domain in such problems, among which
we can mention the nodal relaxation and remeshing approach in [38,39], moving meshes relying on the Delaunay
triangulation scheme [40], combining quad tree and advancing front technique [41], the Lepp-Delaunay based
technique [42], adaptive Delaunay triangulation [43], adaptive mesh refinement algorithms relying on the super
convergent patch recovery [44], and iterative h/r-adaptive schemes [45,45], edge rotation technique for efficient
local refinement [46,47], and the universal mesh method relying on an iterative relaxation algorithm [48,49]. The
overall remeshing procedure involves deleting a set of elements in the vicinity of the crack tip, evaluating/extending
the crack tip to its new location, and finally creating new elements in this region to reconstruct the mesh [50].
It is critical that the remeshing algorithm is capable of generating high-quality elements at every step of the
simulation, as the accuracy of stress intensity factors evaluated to predict the crack tip location at the following
step is highly dependent on the mesh quality. Moreover, maintaining an acceptable computational efficiency while
minimizing error requires generating much finer elements near the crack tip to accurately recover sharp gradients
in this region [51].

There are three major criteria used for determining the crack growth orientation/length in an FE-based simulation:
(i) energy-based methods; (ii) stress-based methods; and (iii) displacement-based methods. According to the
minimum strain energy density criterion [52], the failure (crack growth) occurs when the strain energy density
near the crack tip reaches a critical value. The J-integral [53] is a path-independent contour integral for evaluating
the strain energy release rate near the crack front, although accurate calculation of this integral in FE implementation
could be challenging [54]. By applying the divergence theorem, the J-integral can be converted into an area
(2D) or volume (3D) integral [55], also known as interaction integral or M-integral, which not only facilitates
its implementation over unstructured meshes but can also significantly increase the accuracy [56,57]. This approach
relies on conservation integrals for two states of the material (actual and auxiliary) which has also been implemented
in other numerical techniques such as BEM, XFEM, and EFG [58]. The virtual crack closure technique (VCCT) [59]
is another approach for the evaluation of stress intensity factor in mixed-mode fracture problems, which is based on
the assumption that released energy in the crack growth process is equal to the energy needed to close the crack to its
original state. Another criterion originally introduced in [60] assumes when the maximum circumferential stress near
the crack tip reaches a critical value, the crack propagates along the plane that is normal to the maximum hoop stress.
Alternatively, the displacement extrapolation technique [61] utilizes relative opening and sliding displacements
along opposing sides of the crack to approximate the stress intensity factor at the crack tip. In an FE simulation,
this method yields considerably more accurate predictions when implemented together with quarter-point singular
elements at the crack tip [62].

In this manuscript, we present an automated meshing/remeshing approach by expanding the Conforming to
Interface Structured Adaptive Mesh Refinement (CISAMR) algorithm [63,64] for modeling crack growth problems.
CISAMR is a non-iterative algorithm especially suited for meshing problems with complex geometries. The
algorithm proposed here for modeling crack growth problems merely remeshes a small portion of the initial mesh in
the vicinity of the crack tip, while the remainder of the mesh remains intact. Besides facilitating the implementation,
this feature can considerably reduce the interpolation errors in non-linear fracture problems (not addressed in this
work) by eliminating the need for element-to-element mapping to transfer the field and its gradients between old
and new meshes. Further, the remeshing algorithm uses adaptive refinement and a spider-web pattern of elements at
the crack tip to facilitate the use of interaction integral for the accurate approximation of stress intensity factors and
subsequently the crack path. The geometric engine developed for CISAMR can automatically detect cracks that are
about to intersect and the meshing algorithm readily accommodates merging them. Similarly, intersection between
cracks and embedded heterogeneities can easily be handled using CISAMR. We have also integrated CIASMR with
ABAQUS to use the explicit solver and ability to model contact/friction in this software to facilitate to simulate crack
closure (contact forces) in mixed mode fracture problems and in particular after crack merging. It must be noted
that CISAMR meshes are generated by converting an initial structured mesh into a conforming mesh. Therefore,
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Fig. 1. An open domain with a pre-existing crack, which also shows a sub-domain that can be used for evaluating the M-integral.

the algorithm presented here is only capable of generating meshes composed of 4-node quadrilateral and 3-node
triangular elements. It is worth mentioning that CISAMR has previously been extended to higher-order elements for
interface problems [65]; thus expansion of the current remeshing algorithm to higher order for fracture problems
would be feasible.

In the remainder of the article, we first present strong and weak forms of governing equations for modeling
linear elastic fracture mechanics problems in Section 2, together with the equations used for the calculation of the
interaction integral. After a brief review of original CISAMR algorithm in Section 3, the new features added to
this algorithm for the automated modeling of crack growth problems are presented in Section 4. Several numerical
examples are presented in Section 5 to verify the accuracy and demonstrate the versatility of CISAMR algorithm
for modeling various fracture problems. Final concluding remarks are provided in Section 6.

2. Governing equations

2.1. Linear elastic fracture

Although in some examples of this manuscript we study multi-crack problems, without the loss of generality
and to simplify the formulations that follow, we present the governing equations for a domain with a single crack.
Consider the open domain 2 C R? shown in Fig. 1 with an outward unit normal vector n and the boundary 92
subdivided into regions with applied displacement (I}) and traction (/) boundary condition. The strong form of
linear elasticity governing equations in this domain can be expressed as

V-o+b=0 in 2
u=u on I, (D)
g-n=t on I,

Where u, b, o, and C are the Qisplacement field, body force, Cauchy stress tensor, and the 4th-order elasticity
tensor, respectively. Also, u and t denote prescribed displacement and traction boundary conditions along [}, and

I}, respectively, and V = (%, %) The infinitesimal strain tensor & and Cauchy stress tensor ¢ are evaluated as

e=1(Vu+ vul)
2 9
{ o=C:e. 2)
To derive the weak (variational) form of (1) for an open domain with an embedded crack, consider the trial

function u(x) € H'(£2) and test function §v(x) € H'({2), where H'! is a Hilbertian Sobolev space of order 1. The
weak form of (1) can be written as

/3v:ad9—/av-bd(z— Sv-tdl, =0 Véve H'(N). (3)
2 2 Iy

Using the Galerkin method and utilizing Lagrangian shape functions, (3) can be approximated by discretizing the
domain into m finite elements that conform to the crack geometry such that 2 ~ u;":]fz,-, where (2 is the area
of each element. Note that the accuracy of the FE approximation is highly dependent on the quality of the mesh
(elements aspect ratio and size), specially near the crack tips to minimize the discretization and interpolation errors.
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2.2. Interaction integral and crack path

The energy release rate associated with a crack tip can be evaluated using the J-integral, which can be written
as

J(S) = Illglo - (W51i — a,-juj,l)nidf, (4)

where I is a closed contour surrounding the crack tip (cf. Fig. 1), u; is the displacement vector, and W is the
strain energy density given by

1 1
W= Soijeij = E(Cijklgklgij- o)
Using the divergence theorem with a weighting function ¢, the domain integral equivalent to (4) can be written as
J(s) = f(Uiij,l — Wéii)g,dA + f(Uiij,l — Wéi),iqdA —/ tiuj1qds, (6)
A A rr+rs

where ¢; is the traction vector along on the crack surface. By superposing William’s solution [58] for the
displacement field in the vicinity of the crack (auxiliary field) on the actual field, The combined J-integral, J5, is
given by

J5(s) = /{(Uu + oy +ul) — W35,:}q.:dA + /{(o,, + oW+ ul) — W358y} .,qdA
A
@)
— / (tj + thX)(u] 1 + udUX)qu
rd+re

where superscripts “S” and “aux” denote superimposed and auxiliary states, respectively. For linear elastic problems,
the strain energy density of the superimposed state, W5, is expressed as

1
WS =W+ Waux + WI — E(Gl] + O_auX)(El] + EaUX) (8)
where W/ is evaluated as
1
W! = 2 (@), ©
Similarly, the superimposed J-integral in (7) can be decomposed into three terms as
J3(s) = J(s) + T () + 1 (), (10)

where J%* and [ are auxiliary and interaction domain integrals, respectively. Comparing (7) and (10), the interaction
integral (also known as M-integral) can then be expressed as

1
IZ/{Gi] “”x—l—a"uxuj, (U]kéd —I—Udux ,k)Sli}q,idA
A
1
+ / (o33 + 0%y = 5 (e + 0B8] 1A ()
A
—_ / (tJ aUX+tauXu] 1)qu
rr+rz

Assuming the same elasticity tensor for both states, C;j; couples the auxiliary and actual stress and strain
components. Also, using the equilibrium of actual stresses, (11) can be simplified as

I = /A{a,-j aux—}—aa“x j. ojkejzxrsl,}q ;dA —i—/{a,j(uj“i‘l —sf‘ju’i)—i—ola“xuj,l}qu

(12)
. f auqu[s
F}%F‘
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After discretizing the domain in the FE approximation, (12) can be evaluated as

€A De

=" {oyul + o™ uj1 — ojety81)q. 11 ,w)
e=1 p=1
ea pe _— (13)
+ YD oy @ — %) + ofui g pl3w, — Y ()13 ,w,.
e=1 p=1 f=1e=1

where e, and e, are the number of elements in the contour integral and number of element faces, respectively,
and p, is number of integration points per element. Also, w), is the weight factor at integration point p and |J],, is
the determinant of the element Jacobian matrix. Note that ¢ is an arbitrary function in the contour integral domain
that for plain stress/strain problems must satisfy the requirement of being ¢ = 1 along the inner ring and ¢ = 0
along the outer boundary of this contour. In [66], it has been shown that the integral value is insensitive to the
function chosen for g, although the shape of the integration domain (including or excluding the crack tip) affects
the accuracy. In Section 4, we discuss how the integration domain and g function are selected in the CISAMR
implementation for simulation crack growth problems.
The relationship between the interaction integral and SIFs (K; and K;;) is given by

2

= —
Etip

1 (K K™ + K Ki. (14)

For plain stress problems, Et/ip is elastic modulus at the crack tip while for plain strain problems it is evaluated

Eii . > . .

as and Ej, = - ‘V'; (vgp: Poisson’s ratio at the crack tip). One could calculate the SIF for each fracture mode by
. . T S . ’ .

setting K™ =1 and K}7* = 0 for mode I and K}7* =1 and K" = 0 for mode II. The crack propagation angle,

6, can then be evaluated using maximum circumferential stress criterion as [67]

0, =2 tan- Ki <K’ )2+8 (15)
= X arctan— X — — .
b 4 K1 K

2.3. Contact and friction along the crack face

Under mixed mode fracture loading and in particular after the merging of two nearby cracks, contact and relative
sliding could occur along crack faces. The frictional contact is often applied in an FE model by constraining the
nodes on one surface (labeled slave) to prohibit its penetration to the other surface (master). Using a balanced
master—slave contact is crucial to minimizing the penetration of contacting bodies, as well as the accurate
approximation of contact forces along crack faces. Coupling the software package ABAQUS with CISAMR for
simulating crack growth problems, the general contact model [68] in this software was implemented to apply this
constraint. We used the Coulomb friction model in conjunction with the finite sliding formulation and surface-to-
surface contact model, together with the penalty method to approximate the pressure overclosure behavior. More
details regarding how master/slave nodes are specified during the CISAMR meshing process and fed to ABAQUS
solver are provided in Section 4.1.

3. CISAMR algorithm: Overview

Before discerning the modified CISAMR algorithm for modeling crack growth problems, it is worthwhile to
review the original CISAMR algorithm for meshing 2D interface problems, as presented in [63]. This algorithm
automatically transforms a structured background mesh composed of 4-node quadrilateral elements (Q4) into a
high-quality conforming hybrid mesh composed of 3-node triangle (T3) and Q4 elements. A unique feature of
CISAMR is that this transformation is carried out non-iteratively while ensuring resulting elements aspect ratios
do not exceed three via h-adaptivity, r-adaptivity, and sub-triangulation of background elements. This process is
schematically shown in Fig. 2 and each step of the algorithm is described in more detail below.

o h-adaptive refinement: To achieve the desired level of refinement along the interface (here, the crack body)
and minimize the geometric discretization error, we implement a customized Structured Adaptive Mesh Refinement
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Fig. 2. Transforming a background mesh into a conforming mesh using CISAMR: (a) h-adaptive refinement of background elements; (b)
r-adaptivity of elements cut by the interface; (c) sub-triangulating of elements with a node on the interface or with hanging nodes.

(SAMR) algorithm (cf. Fig. 2(a)). At each level of refinement, all elements cut by the interface/crack and their
selected neighboring elements are subdivided into four sub-quadrangles. The neighboring elements selected for
refinement must have at least one node whose distance with the intersection of crack/interface and the edges
connected to that node is less than half of the element size. As discussed in Section 4, to accurately approximate
SIFs and the crack kinking angle in fracture problems, additional level of refinement is applied to the background
mesh near the crack tip grid along the whole crack body, near crack tip regions are refined further locally.

o r-adaptivity: A non-iterative r-adaptivity algorithm is then employed to relocate selected nodes of the adap-
tively refined background elements intersecting the interface/crack. These nodes are relocated to the interface/crack
in the direction of element edges. Assume the length of element edges connected to node A are h; and intersection
points of these edges with the interface/crack are at distance(s) d; form N. The following algorithm is used to
determine if and how this node is relocated (cf. Fig. 3(a)):

1. If only one of the edges connected to A intersects the interface/crack:

(a) If d = 0.5h: no need to relocate the node.
(b) If d < 0.5h: move the node to the edge—interface intersection point.

2. If two of the edges connected to N intersect the interface/crack:

(a) If d; = 0.5h; and d, > 0.5h,: do not relocate the node.

(b) If dy < 0.5h; and d, > 0.5h,: move the node to the closer intersection point at distance d; and ignore
the second intersection point at distance d.

() If dy < 0.5h; and d, < 0.5k, and d; < d,: move the node to the closer intersection point at distance
d; and delete the second intersection point at distance d,.

Note that by imposing certain constraints on the mesh size during the SAMR phase (see [63] for details), no
case scenario other than those outlined above could occur during the r-adaptivity phase for smooth interfaces. For
interfaces with sharp corners (slope discontinuity), which also frequently occurs due to the initial crack kinking in
crack growth problems, the r-adaptivity is carried out similarly to that discussed above with one additional step
after the completion of this process. As shown in Fig. 3(b), after performing the regular r-adaptivity, the background
element node with the closest distance to the sharp corner is snapped to this point to prepare the mesh for the next
step (sub-triangulation). Similarly, two intersecting interfaces are handled using a hierarchical r-adaptivity algorithm
in which regular r-adaptivity is carried out for each interface independently in a given order, followed by snapping
the closest background element node to their intersection point.

o Sub-triangulation: Finally, all the elements intersecting the interface/crack or deformed during the r-adaptivity
phase, and also elements with hanging nodes generated due to h-adaptive refinement process are subdivided into T3
elements to generate the final conforming mesh (cf. Fig. 2(c)). The sub-triangulation phase must also be extended
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Fig. 3. (a) Three case scenarios for relocating background element nodes during the r-adaptivity process; (b) hierarchical r-adaptivity for
handling a sharp corner of the interface.

Material
interface

emax

=

Cut along largest angle

Material interface Case I Case I1

(a) Single-diagonal sub-triangulation (b) Double-diagonal sub-triangulation

Fig. 4. Single- and double-diagonal rules for sub-triangulating a background element cut by the interface.

to elements with hanging nodes, which could emerge due to applying SAMR to their neighboring elements. To
ensure that resulting element aspect ratios do not exceed three, the following rules must be followed for their
sub-triangulation:

e Case I: If the Q4 element does not intersect the interface along the diagonal emanating from its smallest angle
Omin, Sub-triangles are created by cutting that element along the diagonal corresponding to its largest angle
(cf. Fig. 4(a)).

e Case II: Otherwise, two case scenarios could occur:

— If Onin > 60°: subdivide by cutting along iy, as the aspect ratios of resulting sub-triangles would still
be acceptable.

— If Omin < 60°: subdivide by cutting along both diagonals, which results in creating four conforming
sub-triangles (cf. Fig. 4(b)).

4. Modeling crack growth problems using CISAMR

4.1. Meshing the initial crack

In order to generate the conforming mesh corresponding to initial crack(s) embedded in the domain using
CISAMR, we must interact each crack with the background mesh. In all examples presented here initial shape
of cracks are modeled as line segments passing though two crack tips. To identify the background elements cut by
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Fig. 5. (a) The conforming mesh generated using CISAMR for a domain with a 45° initial crack, showing three circular regions centered
at the crack tip with higher SAMR levels; (b,c) enlarged views of the mesh near the crack tip; (d) spider web pattern of elements in the
vicinity of the crack tip.

each crack, a quadtree search algorithm is first implemented to find a background element holding one of the crack
tips. We then march from this element towards the second crack tip to locate the remainder of elements intersecting
the crack body without searching the entire domain (see [63] for details).

The first step of the CISAMR algorithm is the SAMR phase, which is conducted similarly to that described in
Section 3 along the crack length. However, because an accurate prediction of the crack growth path requires an
accurate approximation of SIFs through calculating the interaction integral /, as outlined in (12)—(16), additional
levels of refinement must be applied in the vicinity of crack tips. Given the singularity of the field at crack tips,
creating refined elements with proper aspect ratios is crucial to minimize the error in the recovery of gradients
(stresses and strains) used in the calculation of /. To achieve this goal, we adopt a topological refinement strategy,
where all background elements with at least one node at distance Rsamr from the crack tip are subjected to Nsamr
levels of refinement, i.e., each Q4 background element is recursively refined into four Q4 sub-elements Ngamr
times. For the example problem shown in Fig. 5a, four additional levels of refinement are applied near the tip of
the 45° crack embedded in the domain. As shown in this figure, since in CISAMR any element with more than
one hanging node emerged from adaptive refinement of its neighboring element must be subjected to SAMR before
sub-triangulation, the refined region further extends beyond Rsamr and gradually fades to blend with the coarse
background mesh. This automatically leads to a decreasing SAMR level as we move away from the crack tip, where
field gradients sharply drop and highly refined elements are no longer required for their accurate approximation.

The next two steps of the CISAMR meshing process, i.e., r-adaptivity and sub-triangulation, are conducted
mostly similar to those described in Section 3 with only two adjustments: (i) identifying elements located along the
crack face, separating degrees of freedom at nodes along the crack, and identifying master—slave element edges for
the contact model; (ii) modifying the mesh structure near the crack tip to generate a spider-web pattern of elements
(cf. Fig. 5d) for the efficient and accurate evaluation of the M-integral. The former is a rather straightforward task
after the completion of the sub-triangulation phase. It begins by identifying sub-triangles with two nodes along the
crack face marching from one crack tip to the other and separating the degrees of freedom (DOFs) at these nodes
to model the strong discontinuity along the crack length. The corresponding element edges are then paired and
grouped into slave and master edges on opposing sides of the crack, which will be written into the input file fed
to ABAQUS for simulating the linear elastic response of the domain taking into account potential contact/friction
forces along the crack face. Note that the element edges on opposing sides of the crack face, one being labeled as
master and the other as slave, can easily be distinguished based on the counter clockwise node numbering of each
element: If corresponding node numbers appear successively in this numbering they belong to one side of the crack
and otherwise to the opposing side.

Generating a spider-web pattern of elements near the crack tip highly facilitates the selection of appropriate
elements in this region for the accurate approximation of M-integral. Note that, as shown in [66], the calculation
of M-integral over a domain in the vicinity of the crack tip that excludes the crack tip itself yields the most
accurate approximation of the energy release rate and thereby the crack path. As shown in Fig. 5d, such domain
can easily be identified as each ring of elements in a spider web pattern. Fig. 6 illustrates the non-iterative process
of generating spider web elements using CISAMR, starting by deleting the background element holding the crack
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\ | Crack tip

(a) (®) (©)

Fig. 6. Process of creating the spider web element pattern: (a) identify the background element holding the crack tip; (b) deleting this element
after snapping all its nodes to the crack tip; sub-triangulating the remaining rectangular elements after performing this node snapping; (c)
further sub-triangulating the triangular elements with a node at the crack tip in a radial pattern with respect to this node.
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Fig. 7. (a) The function g corresponding to the M-integral domain depicted in Fig. 6d; (b) The crack growth in the second time step
corresponding to the initial mesh view depicted in Fig. 5c; (c) comparison between the old and new meshes (old elements are shown in a
lighter color).

tip (¢f. Fig. 6a) followed by snapping all four nodes of its neighboring elements to the tip during the r-adaptivity
process (cf. Fig. 6b). The standard sub-triangulation phase of CISAMR is carried out on this region identical to
that described in Section 3, resulting in cutting the Q4 elements sharing the crack tip along their shorter diagonal
to create conforming sub-triangles (cf. Fig. 6¢c). The spider web is then created by cutting the triangles sharing
the crack tip in the middle of the edge sharing this node to create T3 and Q4 sub-elements, where the former
is recursively subjected to the same process Nyep times. As shown in Fig. 6d, the final spider web pattern has a
transition from extremely fine elements very close to the crack tip (where they are most needed) to coarser elements
moving away from this point.

After the construction of the spider web pattern of elements near the crack tip, any ring of Q4 elements similar
to that shown in Fig. 6d can be used for approximating the M-integral. To minimize the numerical error, we use
the average of the integral values obtained for all rings except for the first two rings (where field gradients and
corresponding interpolation error are excessively high) to calculate SIFs and subsequently the growth angle 6,,.
Note that the calculation of M-integral for each ring also requires adopting an arbitrary weighting function ¢,
which in this work assumed to vary linearly from 1 along the inner boundary to O along the outer boundary of the
ring, as shown in Fig. 7a. While dependent on the size of the background mesh, our numerical experiments showed
that using max(N;) = 3 or 4 and Ny, = 4 or 5 often yields an accurate approximation of the crack growth path
with no oscillations during the simulation.

4.2. Remeshing to simulate the crack growth

After approximating €, over the spider web corresponding to each crack tip to determine its new location based on
a user-defined growth length Aa, as shown in Fig. 7b, we must remesh the domain in this region to enable a similar
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(b)

Fig. 8. The tree data structure corresponding to a portion of the mesh (a) before and (b) after the deletion of elements.

task in the next step. The fact that CISAMR non-iteratively transforms an initial structured mesh to a conforming
mesh is a key advantage here, as it preserves the hierarchy of elements during the SAMR, r-adaptivity, and sub-
triangulation phases, which in turn facilitates the deletion and reconstruction of sub-elements while remeshing the
new crack geometry at each load step. As shown in Fig. 8, this can easily be achieved using a tree data structure to
keep track of parent and children elements while generating the mesh, with roots representing original background
elements and leaves the most refined (conforming) elements of the final mesh. Note that only leaf elements contribute
to the assembly of the stiffness matrix for approximating the field and other elements are merely kept in this data
structure to facilitate the deletion of unwanted elements and generating new elements during the remeshing process.
After determining the new crack tip at each load step, a line segment connecting new and old crack tips is
appended to the crack geometry to simulate the crack growth. All children elements with at least one node located
in an area with radius Ry centered at the old crack tip are then deleted and this region is remeshed to locally
update the mesh, as well as the corresponding tree data structure. The radius of the deletion area is selected as

Ryet = Rsamr + Nsamrho, (16)

where hg is the size of the background element. Note that this value of Ry ensures that all children elements
generated during the SAMR phase near the crack tip, as well as children of their neighboring elements with hanging
nodes that are subjected to subtriangulation are deleted before reconstructing the mesh for the new crack tip. The
local remeshing process near the new crack tip, involving applying additional SAMR and generating the spider web,
is identical to that previously described in Section 4.1.

It is worth emphasizing that, without any major additional effort, CISAMR can handle remeshing the domain
when two nearby cracks are merging (cf. Fig. 9). To simulate problems with multiple embedded cracks, we must
keep track of the minimum distance dy,, between every crack tip to other growing cracks, as well as angle O,
of the corresponding line segment with the crack orientation. If diy;, < Aa cos(Oin), rather than generating a
spider web element pattern at the crack tip, we imply snap the tip to the nearby crack, followed by using the
hierarchical r-adaptivity scheme and standard sub-triangulation algorithms to remesh this region; cf. Fig. 9(b).
Note that no additional SAMR is required in this region, as after the disappearance of crack tip corresponding
stress concentrations are vanishing as well.

4.3. Coupling CISAMR code with ABAQUS

While in this work we only study linear elastic problems, the occurrence of contact and friction along crack
faces under mixed mode loading and in particular after crack merging demands a robust solver to simulate these
nonlinear phenomena. In fact, given the high nonlinearity of the problem in the presence of contact/friction forces,
our numerical studies show that an implicit solver is often not capable of achieving convergence in domains with
multiple growing cracks. This has motived using the robust explicit dynamic solver of ABAQUS, with the ability
to model contact and friction along crack faces, to simulate crack growth problems in this work.

In order to integrate our in-house CISAMR C++ code with ABAQUS, at each load step, the updated mesh
structure (nodes and their connectivity), master/slave element edges along crack faces, and applied BCs are written
in a standard ABAQUS input file to perform the FE simulation. After simulating the field, nodal displacements and
recovered stresses associated with each ring of the spider web elements of each crack tip are written in an ABAQUS
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Fig. 9. CISAMR simulation of the interaction between two cracks (a) before their intersection and (b) after their merging.
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Fig. 10. Flow chart of the algorithm used for simulating crack growth problems by integrating CISAMR and ABAQUS.

journal file. The key advantage of generating a spider web pattern of elements, where elements belonging to each
ring and their connectivity are known a priori becomes evident at this stage, as it minimizes the post-processing
phase and eliminates the need to write a complete ABAQUS output file (i.e., an ODB file) and search for elements
used in calculation of M-integral in the post-processing phase. The information written in the journal file is then
used by our C++ code to evaluate the M-integral, SIFs, crack orientation, and subsequently the new location for all
crack tips. The CISAMR algorithm is utilized to remesh the domain and write the results in a new ABAQUS input
file to resume this recursive process until we reach either complete failure or a certain number of crack advance
steps. A flow chart summarizing this algorithm is presented in Fig. 10.

5. Numerical examples

Six example problems are presented in this section, with the first four being benchmark problems aimed at
verifying the accuracy of crack growth simulations relying on CISAMR through comparison with other numerical
or experimental results. The last two examples are more geometrically elaborate fracture problems that demonstrate
the ability of CISAMR to simulate complex multi-crack growth problems involving contact and friction along crack
faces. In all the examples presented below, the spider web element pattern generated at the crack tip to evaluate
the M-integral has five layers of Q4 elements and the crack growth length, Aa, is assumed to be 5% of the initial
crack length.

5.1. Inclined crack under tension

In this example, we simulate the growth of an initial crack with length 2a = 0.14 mm and orientation 45°
embedded at the centroid of a 1 mm x 1 mm domain subjected to a tensile load in the y-direction, which is applied
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Fig. 11. First example problem: Simulated crack growth path and CISAMR mesh structure in a domain with an initial 45° crack subjected
to a tensile load. The inset of Figure (c) shows the results approximated using the distributed dislocation method in [69].

as a traction BC, 7, along the top and bottom edges of the domain; cf. Fig. 11(a). Under plane strain condition, the
elastic modulus and Poisson’s ratio of the domain are assumed to be E = 10 and v = 0.3, respectively. A 50 x 50
structured background mesh is employed to generate the initial FE model and its subsequent local remeshing as
the crack grows using CISAMR. One level of SAMR is applied along the crack length, while an area with radius
Rsamr = 0.08 mm centered at the crack tips is subjected to three additional levels of SAMR, as illustrated in the
inset of Fig. 11(b).

Figs. 11(b) and 11(c) show two snapshots of the simulated crack growth path, corresponding mesh structures,
and displacement fields in the domain approximated using the CISAMR-ABAQUS framework described previously.
Due to the 45° orientation of the initial crack, at the first load step, we deal with a mixed mode fracture problem
resulting in a kink in the crack direction, which can easily be handled by CISAMR during the remeshing process.
Since the domain is subjected to a tensile load, mode I quickly becomes the dominant fracture mode while Ky goes
to zero after a few load steps, meaning the crack grows perpendicular to the loading direction (cf. Fig. 11(c)). The
inset of Fig. 11(c) also compared our simulated crack growth path with the results approximated using distributed
dislocation method in [69], which shows a perfect agreement between the two simulations. It is worth noting that
by applying additional SAMR levels and creating spider web elements at the crack tip, the crack grows with no
oscillations due to the accurate approximation of the M-integral used in predicting the crack path. To demonstrate
the mesh independency of the results presented above, we studied the effect of three background meshes of size
25 x 25, 50 x 50, and 100 x 100 on the predicted crack growth path. The resulting crack trajectories are compared
in Fig. 12, showing the simulation relying on the coarsest mesh leads to only a slightly different crack path than
the other two simulation, while the difference between results on 50 x 50 and 100 x 100 is negligible.

The analytical solution for mode I and I stress intensity factors in this problem are given by

K[exact = KI(O)COSZ(ﬂ), KIC)I(aCt = KI(())COS(,B)SiH(,B), (17)

where B is the crack orientation angle and K;q, = fy/a is the SIF for mode / when the crack is horizontal
(B = 0) [70]. The variation of relative errors in predicting normalized SIFs versus the background mesh size are
illustrated in Fig. 13 for different background mesh sizes and SAMR levels. It is seen that increasing the refinement
levels near the crack tip not only leads to a significant decrease in error but also improves the convergence rate.
Moreover, even for the coarsest background mesh, the errors associated with predicting SIFs would be below 0.5%
when Nsamr = 4, which enables accurate prediction of the crack path for simulating the crack growth process.

5.2. Two parallel cracks

In this example, we use CISAMR to simulate the growth of two parallel cracks with the same length (I = 2 mm)
and at distance d. = 1 mm, which are embedded in a 10 mm x 10 mm domain as shown in Fig. 14. The domain
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Fig. 12. First example problem: Crack propagation trajectories for different background element sizes.
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Fig. 13. First example problem: Normalized SIFs relative error versus the background mesh size for different refinement levels near the
crack tip for (a) mode 7/ and (b) mode I1.

is subjected to a tensile displacement BC in the y direction, i, and discretized using a 50 x 50 background mesh
with one level of SAMR along the crack body. The crack tip is subjected to three additional levels of refinement
within a distance of Rsamr = 0.4 mm from the crack tip. The domain has elastic modulus £ = 70 MPa and
Poisson’s ratio v = 0.3 and the simulation is conducted under the assumption of plane stress condition. Multiple
snapshots of the simulated crack geometry, CISAMR mesh, and the displacement field in this domain are depicted
in Fig. 14. Note how adaptively refined, high-quality meshes generated by CISAMR in this problem yield a smooth
crack path with no oscillations during the crack growth simulation. Further, CISAMR maintains a perfect symmetry
of the shape of both growing cracks due to accurate prediction of SIFs after applying additional SAMR levels near
the crack tips. These simulations are similar to XFEM results for the same problem presented in [71].

5.3. Domain with two circular holes

In this example, we simulate the crack growth in the 20 cm x 10 cm rectangular domain shown in Fig. 15, which
contains two circular holes with diameter D = 2 cm and two initial horizontal cracks with / = 1 cm. The domain
is subjected to a tensile displacement BC in the y-direction along the top edge of the domain, while displacement
along the bottom edge is constrained in the same direction. A 100 x 50 background mesh is used for generating
the CISAMR mesh using one level of SAMR along the crack body and the circular holes. Three additional levels
of refinement are applied in a circular region with R = 0.25 cm centered at the crack tip. The material properties
used in this example are E = 10° and v = 0.3 and the simulation is carried out under the plane strain condition.
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Fig. 14. Second example problem: Simulated crack growth path and CISAMR mesh structure in a domain with two initial parallel cracks
subjected to a tensile load.

Fig. 15 illustrates three snapshots of the simulated crack path, CISAMR mesh, and displacement field in this
example problem, where Fig. 15(d) shows the CISAMR ability to capture cracks merging with circular holes in last
step of the simulation. It is worth noting that the crack morphologies shown in this example are similar to simulation
results obtained using adaptive mesh refinement based on modified super convergent patch recovery in [44], but
with even less oscillations in predicting the crack path due to more accurate approximation of the M-integral.

5.4. Three-point bending of a beam with three circular holes

In this example, we further verify the accuracy of CISAMR for modeling crack growth problems by replicating a
three-point bending test and comparing resulting fracture patterns with experimental results presented in [51]. Fig. 16
shows the domain geometry and applied BCs for this problem, which contains three circular holes with diameter
D = 5 in and a vertical crack on the bottom edge with length a. The beam is made of polymethyl methacrylate
(PMMA) with E = 199.95 GPa and v = 0.3, which is modeled as a plane strain problem. The CISAMR mesh is
generated using a 200 x 80 background mesh with one level of SAMR along the crack body and circular holes.
Also, an area with radius R = 0.2 in centered at the crack tip is subjected to 3 additional levels of SAMR during
the meshing/remeshing process.

Following the three-point bending tests conducted in [51], two sets of simulations are conducted considering
different initial crack lengths of @ = 1 in and @ = 1.5 in. An intermediate and the final simulated crack geometries
for each case scenario, together with corresponding CISAMR mesh structures, and also the experimental results are
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Fig. 15. Third example problem: Simulated crack growth path and CISAMR mesh structure in a domain with two circular holes and two
initial parallel cracks subjected to a tensile load.
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Fig. 16. Fourth example problem: domain geometry and boundary conditions.

illustrated in Fig. 17. Note that the difference between initial crack lengths (i.e., @ = 1 in versus a = 1.5 in) leads
to completely distinct crack trajectories, with the former merging with the middle hole while the latter narrowly
passes by this hole and merges the top hole. Also, it is seen that the simulation results for both cases show an
excellent agreement with crack shapes obtained from three-point bending experiments in [72]. Fig. 18 better shows
the evolution of the mesh structure and the lack of oscillation in the predicted crack path near the middle and top
holes for the simulation with @ = 1.5 in.
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crack lengths a, as well as their comparison with the experimental results in [72].
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Fig. 18. Fourth example problem: a closer view of the evolution of the mesh structure generated using CIASMR near the middle and top
holes for an initial crack length of ¢ = 1.5 in.

5.5. Multiple crack growth and merging

In this example, we demonstrate the CISAMR ability for modeling a more complex crack growth problem
involving the growth and merging of 15 cracks with the initial geometry and spatial distribution shown in Fig. 19. As
depicted in this figure, the 20 cm x 10 cm domain with material properties £ = 100 GPa and v = 0.3 is subjected
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Fig. 19. Fifth example problem: Geometry and BCs of the domain with multiple randomly distributed initial cracks.

to a tensile displacement BC in the y direction. Also, a friction coefficient of wy = 0.01 is considered along
crack faces. To generate CISAMR meshes throughout the simulation, the domain is discretized using a 200 x 100
background mesh with one level of SAMR along the crack body and three additional refinement levels within a
radius of Rsamr = 0.1 cm from the crack tip.

Fig. 20 illustrates four snapshots of the evolving crack shapes simulated for this problem, which involves the
merging of multiple cracks effortlessly handled by CISAMR. Note how the geometric complexity caused by the
random distribution of cracks in the domain leads to mixed-mode growth of each crack during the simulation, even
though the domain is subjected to a tensile load. The figure also shows that some crack faces collapse on one another
after merging with a nearby crack, which gives rise to contact and friction forces approximated by the ABAQUS
explicit solver.

5.6. Heterogeneous domain with multiple cracks

In this final example problem, we implement CISAMR to simulate the propagation of four initial cracks in
a heterogeneous 1 cm x 1 cm domain subjected to a biaxial tensile load, as shown in Fig. 21(a). The tensile
displacement BC along the right and top edges of the domain linearly ramp up from O to 0.1 mm in 50 steps.
Mechanical properties of the domain are assumed to be E,, = 10* and v,, = 0.3 for the matrix and E, = 10* and
v, = 0.3 for the soft particles embedded in the domain. The friction coefficient along crack faces is s = 0.01.
To simulate the crack growth in this domain, CISAMR meshes are constructed on a 100 x 100 background mesh
with one level of SAMR along particle-matrix interfaces and crack bodies. Three additional levels of refinement
are applied near the crack tips. Fig. 21 illustrates three snapshots of predicted crack shapes at different stages of
this simulation, which leads to the merging of three cracks and contact along one of the crack faces in the last few
load steps. The CISAMR non-iterative algorithm is not only capable of handling such cases but can also maintain
conforming elements when cracks intersect embedded particles during the remeshing process.

6. Summary and conclusion

A recently introduced meshing algorithm named Conforming to Interface Structured Adaptive Mesh Refinement
(CISAMR) was expanded for modeling 2D crack growth problems with complex geometries. CISAMR non-
iteratively transforms an initial (background) structured mesh into a high-quality conforming mesh with the desired
level of adaptive refinement along the crack body, as well as additional refinement level in the vicinity of the crack
tip. Moreover, a spider web pattern of elements centered at the crack tip was generated for the easy and accurate
approximation of M-integral, which in turn reduces the error associated with evaluating SIFs and subsequently
the crack growth orientation at each load step. In addition to describing new algorithmic aspects of CISAMR, we
discussed implementation details such as coupling this algorithm with ABAQUS for modeling such problems. Since
in multi-crack growth problems involving crack merging, contact between crack faces is often inevitable, using the
robust explicit dynamic solver and contact model readily available in ABAQUS highly facilitated approximating
the domain response. Several example problems were presented to verify the accuracy of simulations relying on
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Fig. 20. Fifth example problem: Four snapshots of the displacement field and crack paths at different load steps, showing contact along
some crack faces after merging with nearby cracks.

CISAMR algorithm for modeling crack growth problem through comparing results with predictions made by other
numerical techniques or experimental data. Two additional problems were presented to demonstrate the coupled
CISAMR-ABAQUS framework ability to capture crack merging and intersections between cracks and embedded
heterogeneities in the domain in mixed-mode multi-crack growth problems.
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Fig. 21. Sixth example problem: (a) Domain geometry and BCs; (b—d) growing cracks shapes and evolving CISAMR mesh at different
load steps throughout the simulation, showing cracks merging and crack-particle intersections.
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