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ABSTRACT

This paper investigates the impact of communication packet loss on Distributed Optimal Frequency
Control (DOFC) in Alternating Current (AC) electric energy systems, populated with multiple clusters
of hybrid producer-consumer (prosumer) agents. The paper first establishes rigorous relationships
between the communication packet delivery ratio and the convergence rate of the proposed DOFC
algorithm. This provides a foundation for resource allocation on communication systems to enhance
the convergence speed of distributed optimization and control algorithms, such as DOFC, under noisy
and disrupted communication systems. The paper develops a systematic approach to identify the best
possible convergence rate over all possible algorithms, by introducing an algorithm that can achieve
asymptotically the Cramér-Rao (CR) lower bound. This fundamental result links the information
contents of data to the best possible mean-square estimation error. Simulation studies on an electric
energy system validate the theoretical results.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Electric energy systems are moving towards a hybrid
centralized-distributed architecture with a large penetration of
distributed energy resources (DERs), such as distributed solar
generation, energy storage, connected buildings, and electric ve-
hicles and their supporting infrastructures. Several distributed
algorithms have been proposed for solving power system prob-
lems at different time scales, such as DC Optimal Power Flow
(OPF) (Kraning, Chu, Lavaei, & Boyd, 2014; Persis, Weitenberg, &
Dorfler, 2018; Yi, Hong, & Liu, 2016), AC OPF (Dall'Anese, Zhu,
& Giannakis, 2013; Zhang, Lam, Dominguez-Garcia, & Tse, 2014),
and the optimal frequency control problem (Chang & Zhang,
2016; Nazari, Costello, Feizollahi, Grijalva, & Egerstedt, 2014;
Nazari, Wang, Grijalva, & Egerstedt, 2020; Xi, Dubbeldam, Lin, &
van Schuppen, 2018; Zhang & Cortés, 2021). The state-of-the-art
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distributed algorithms proposed for smart power grids need to
converge in the cyber network before the solutions can be im-
plemented on the physical grid and the intermittent iterations are
not satisfying power flow and other system constraints (Molzahn
et al., 2017). Note that “intermediate iterations” imply the iter-
ative steps before approximately reaching the optimal solution.
In other words, this is a “transient period” in search for the
optimal solution. On the other hand, fully decentralized methods
lose optimality and can lead to inter-area oscillations among
sub-systems (Nazari & Ilic, 2014).

Note that the impact of communications on networked control
systems has been widely studied in many perspectives, such
as noisy communication channels (Huang, Dey, Nair, & Manton,
2010; Li, Jin, & Yan, 2021), time delays (Dong, Li, Nie, Song, &
Yang, 2019; Huang & Tian, 2018), event-trigger-based strategies
(Li, Tang, & Karimi, 2020; Liuzza, Dimarogonas, Di Bernardo, &
Johansson, 2016), and so on. In Moreau (2005), the communica-
tion systems were modeled as a time-varying network topology
in terms of mobility and the impact on the network control qual-
ity was established. Moreover, an in-depth study of coordinated
control and communication design was conducted in Xu, Wang,
Yin, and Zhang (2014a). Also, the authors in Xu, Wang, Yin, and
Zhang (2014b) focused on block erasure channels. The authors
in Richardson and Urbanke (2008) established safety distances
of modulation signals. Furthermore, Nguyen et al. (2018) studied
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the impact of communication packet delivery ratio on highway
platoon performance.

In our previous work (Nazari, Xie, Wang, Yin, & Chen, 2021;
Xie, Nazari, Wang, Yin, & Chen, 2021), we investigated the impact
of communication packet loss and noisy environment on the
performance of optimal load tracking and allocation (OLTA) in
DC microgrids (MGs). This paper extends our earlier work to
distributed optimal frequency control algorithms in prosumer-
based AC electric energy systems. The main problem considered
in this paper is related to gradient-based distributed optimization,
which has been widely studied in the literature (Duchi, Agarwal,
& Wainwright, 2011; Nedi¢ & Ozdaglar, 2009; Tian, Sun, & Scutari,
2020; Wang, Liao, Huang, & Li, 2015; Wu, Yuan, Ling, Yin, & Sayed,
2017; Yuan, Ling, & Yin, 2016). It is noted that in deterministic
iterative algorithms without stochastic noises, linear convergence
of several classical and more recent algorithms has been estab-
lished, namely the error sequence ey, /ey — o < 1. This implies
that asymptotically, e, < co*ep, achieving exponential conver-
gence. This is fundamentally different from stochastic systems.
The iteration algorithms (stochastic approximation algorithms)
proposed in this paper involve stochastic noises. Consequently,
it is impossible to achieve “linear convergence” or equivalently
exponential convergence rates. Instead, the Fisher information
dictates the best achievable rates, which are of certain polyno-
mial orders. In other words, while the convergence analysis for
deterministic systems is somehow related, it cannot be directly
applied to prove the convergence properties of stochastic system
analysis in this paper.

In data-based statistical analysis, information contained in
observation data is used to estimate unknown parameters or
seek unknown optimal solutions. The error variance is a measure
of performance in this pursuit. The CR lower bound and Fisher
information (Marzetta, 1993) provide the lower bound that the
information content in data can be used in reducing the error
variance, independent of searching algorithms. When an algo-
rithm achieves this lower bound asymptotically, it becomes the
optimal or best possible among all possible algorithms, implying
that the information in data has been fully utilized. Our state-
ments in this paper follow this convention in data-based science
and statistical analysis.

In summary, this paper establishes a quantitative and fun-
damental relationship between communication packet loss ratio
and the convergence rate of the DOFC algorithm in AC power
grids, populated with multiple hybrid consumer-producer (pro-
sumer) agents. The main contributions of the paper are as fol-
lows:

(1) Implementing stochastic network models to represent
communication network dynamics in prosumer-based
electric energy grids.

(2) Embedding packet delivery ratio and communication un-
certainties into the DOFC algorithm, and laying a founda-
tion for rigorous analysis of integrated communication and
optimal control schemes.

(3) Quantitatively characterizing the fundamental relationship

between packet delivery ratios and convergence rates of

the DOFC algorithm to develop a practical criterion for se-
curing reliability of optimal frequency control under com-
munication uncertainties.

Illustrating that the convergence rate of the DOFC algo-

rithm can asymptotically achieve the CR lower bound. Note

that the CR bound represents the lower bound on the
variances of errors between the optimal control action and
estimated control solution of the DOFC algorithm.

=

The rest of the paper is organized as follows. Section 2 gives
an overview of distributed optimal frequency control problems

Automatica 154 (2023) 111088

in AC electric energy systems. Section 3 presents the global op-
timality conditions, develops distributed control algorithms with
embedded communication uncertainty, and introduces stochastic
models for erasure channels in communication systems. The main
results are established in Section 4, where error bounds, strong
convergence, and asymptotic optimality are derived. The techni-
cal findings are illustrated on two realistic electric energy systems
in Sections Section 5 to show the impact of erasure channels
on electric energy system reliability. The paper concludes with
discussions of the overall findings in Section 6.

2. Overview of distributed optimal frequency control

DOFC involves bringing the system-wide frequency to 60 Hz
or 50 Hz after a disturbance in an economically optimal way.
When the power system is clustered into multiple prosumers,
DOFC will be performed at the prosumer level. Prosumers can be
as small as a microgrid or smart building, or as large as a utility
grid sub-system. The prosumer-based electric energy grid forms
a multi-agent network, which can be represented by a graph G =
{v, £}, where vV = {1, ..., n} is the set of all prosumers and & is
the set of edges or energy system tie-lines. The presence of a tie-
line (i, j) indicates that prosumer i has direct electrical connection
to prosumer j. We assume that the network control topology
follows the prosumer grid tie-line topology. The set of neighbors
of prosumer i is denoted as N; = {£ € V|({,i) € Eor (i,¢) €
£}. In a distributed architecture, prosumer i shares information
with its neighboring prosumers in A; to achieve system-level
performance, such as optimal frequency control.

The dynamic modeling of power systems in Nazari et al. (2014,
2020) leads to dynamic relationships among prosumers. Typical
dynamic models of power systems involve complicated, nonlin-
ear, and high-order dynamics. However, for certain power system
control problems, such as frequency regulations, approximate
lower order models can be derived by using the ideas of singular
perturbations (Chow, Winkelman, Pai, & Sauer, 1990). For clarity
and conciseness, we use the following first-order, discretized,
linearized, pseudo-stationary dynamic relationships to demon-
strate our methodologies and algorithms. Consider p; € R, the
real power deviation from the scheduled value, associated with
each node i € V. After collecting all p; in V, we obtain the
ensemble state given by p = [p1,p2,...,pa]| € R By the
standard discretization with a sampling interval T, the evolution

of p at discrete times kT, k = 0, 1, ..., can be simplified as the
discrete-time dynamical system,
p(k + 1) = Ap(k) + Bu(k), (1

where u = [uj, Us, ..., us]" € R" is the vector of prosumers’
frequency control variables, A = [a;;] € R™" and B = [b;;] €
R™™ are system matrix and control matrix, respectively. These
matrices represent the underlying electrical topology of the pro-
sumer electric energy grid G, i.e,, a;; # 0,b;; #0ifj=iorj e
N, and a;j; = b;j = 0 otherwise. The matrices A and B are full
rank if the network topology is connected.

The real power deviations are directly correlated with fre-
quency deviations through power flow equations and dynamic
behavior of generators and loads (Nazari et al., 2014; Xie, Nazari,
Nezampasandarbabi, & Wang, 2022). DOFC ensures that freq-
uency stability is achieved by minimizing overall control costs.
This paper is concerned with a one-step predictive optimization
in which p(k) is given, and a linear quadratic performance of
u(k) and p(k 4+ 1) is to be minimized. As a result, the problem
is independent of k. By defining p(k) = p, u(k) = u, p(k + 1) = x,
the cost function can be written as

. 1 T
min J(u,x) = min =(x Qx4+ u' Ru)
u,x ux 2
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st. x=Ap+ Bu, (2)

where Q = diag{qi,q2,...,qn} € R™" and R = diag{ry, 12,
..., T} € R™" are positive definite diagonal cost coefficient
matrices. In the next section, we will propose a gradient-based
distributed algorithm to solve (2) and establish the convergence
results under communication packet loss.

3. Distributed algorithm and communication uncertainty

3.1. Distributed gradient algorithms with embedded communication
uncertainty

Theoretically, the global optimal solution of (2) with the equal-
ity constraint x = Ap + Bu can be obtained by the Lagrange
Multiplier method: For A € R", L(u, x, p, A) = 2(u"Ru + x"Qx) +
AT [x —(Ap+Bu)]. Thus, the optimal solution is u* = —G~'BT QAp,
where G = R + BTQB € R™™. Since this solution involves the
inverse of matrix R 4+ BT QB, it requires global information and is
not feasible in a distributed framework.

In order to obtain a distributed method to solve this op-
timization problem, we first define the following performance
index:

1
min J(u) = min E[uTRu + (Ap + Bu)TQ(Ap + Bu)],
u u

whose gradient is V,7(u) = Ru + BT Q(Bu + Ap) = Gu + BT QAp.

For each prosumeri (i € {1, ..., n}), we denote
1 2
Ji(u) = Z{T’iu,-z + qi[ > (aijpi+ b!}juj):l }
JEN;ULi}

Then, we have J(u) = Y ', Zi(u). Note that
Vu, I (1)

: e R, (3)
Vi, I (u)

VuJ(u) =

where

n
Vi, T(u) =Y Vi Ji(u),
=1

and
vui\ﬁ(u)
rui+ qibii Y (ap+ by, if =1,
JeN;Uii}
=acbei Y (ap;+bejuy), if € € N,
JeNU{t}
0, otherwise.

For each prosumer i at step t, we can adopt the following
gradient algorithm without communication uncertainty to track
the optimal solution:

= - p VI = -ty Vg,
LeN;ULH)

where the step size u' is designed to achieve convergence, and
ut = [uf, ..., u}]", which is the tth computed value for u = u(k).
This algorithm is strictly distributed since for each prosumer i, it
only needs the gradient information from its neighbors (V,, J(u")
where ¢ € A; U {i}) to update the solution. Thus, the DOFC algo-
rithm can be written in the vector form u'*! = uf — !V, 7(ub),
ie, ut! = uf — uf(Gu' + BT QAp), which relies on communication
between prosumers.
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In practical applications, packet loss and channel interrup-
tions may cause the cyber link to be randomly disconnected.
Thus, communication packet loss can pose limitations for the
convergence rate of the DOFC algorithm. The packet loss can be
represented by an indicator function

1, ifi=¢,
Vi = {1, if i # ¢ and the link (i, £) is connected at t,

0, otherwise,
which is a random variable. Denote y* = {y/,} € R™", and g} =
[Teenop e B = diag(Bi, B5. - .., By} € R™". Note that g = 0
means that at least one of the links connected to prosumer i drops
the packet at time instant t. When Viflo = 0, prosumer i lost the
information from prosumer £y, i.e., V,, J¢,(u") may not be used for
calculating the gradient value. Since £ is lost, Y ,_, Yo Vude(u')
is not the correct gradient information of prosumer i at step t,
which cannot be used for updating u} directly. In this case, we just
keep uf unchanged until we get the correct gradient value. This
may waste some information when one line is lost. It would be an
interesting problem to design more suitable partial information
gradients to update ulF in a proper way. Due to the page limitation,
we cannot have an in-depth discussion in this paper, but this will
be the research direction of our next work.

Thus, for each prosumer i, the updating algorithm to find the

optimal control strategy with packet loss becomes

=g Y V). (4)
LeN;ULI}

The algorithm with embedded communication uncertainty is
shown in Algorithm 1. Note that u‘*! = u’ will only happen when
Bt = 0, and the algorithm should not terminate since the value
does not update in this case.

Algorithm 1 DOFC Gradient Algorithm with Embedded Commu-
nication Uncertainty and Random Noise

(1) Initial condition: Select ° as the threshold error, given the
initial value for u°, and let t = 0.

(2) Update: From u' at each step t > 0, the control law is
updated by

ut+1 — ut _ utﬂt(Gut + BTQAP + dt), (5)

where d' € R" is the random gradient noise.
(3) Termination condition: If u'*! £ uf and |u*' — uf|| < €°,
end the loop. Otherwise, let t =t + 1 and go to Step (2).

Note that u* satisfies u!B¢Gu* + u!B'BTQAp = 0. Define the
optimality error i = u — u*, and by (5), we can show that

U = (I, — pwBIGN — ' pld (6)
Then, we will analyze the optimization error u'.

3.2. Communication uncertainty modeling

Information exchange among agents relies on communication
channels, thus the reality of the communication network and its
reliability in delivering critical data packets is essential for the
convergence of the DOFC algorithm. In general, data packet can
be lost due to erasure of one or multiple bits within the packet
during transmission (i Fabregas & Caire, 2006; Nguyen et al,,
2018). A data block is generated and coded by the source, and
then transmitted to the receiver during information transmission
in a given time interval. The received codeword is subject to
possible erasure of bits because of channel uncertainties. After
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decoding and error correction, the receiver either acknowledges
receipt of the data, or indicates a packet loss. If packet loss occurs
during the transmission, data re-sending is permitted only within
the given decision time interval. Probability of successful packet
delivery is defined as the packet delivery ratio.

In this paper, we assume that packet losses for all channels are
mutually independent, and each channel’s packet loss is an in-
dependent and identically distributed (i.i.d) sequence of random
variables. By applying this assumption to all channels, the com-
munication uncertainty can be modeled by randomly switching
network topologies such that the probability for each topology
is generated from individual link connection probabilities. As a
result, all related matrices in the distributed gradient algorithm
will be random.

By the above assumption, yif[ is an independent random vari-
able. Suppose yifz is stationary and its packet delivery probability
is

1, ifi=¢,
Pr{y!, = 1} = {Pri¢, iflink (i, £) is connected at t,
0, otherwise,

Denote Pr = [Pri¢] € R™", and ¢; = HeeM Pri ¢, where Q =
diag{q1, G2, ..., qn} € R™" has the same order as u. Note that
gi denotes the packet delivery ratio for prosumer i, which is the
product of ratios of all the links connected to i.

3.3. Communication packet loss and electric energy system reliabil-
ity

Timing is critical for electric energy systems operating tasks,
particularly the optimal solution to DOFC needs to be computed
in less than a few seconds. The expected communication times for
different operating tasks have very strict time constraints (Wang,
Xu, & Khanna, 2011). However, the communication networks are
not always able to meet the standard requirements in many
practical situations. Decreasing the packet delivery ratio between
prosumers can slow down the convergence rate of the DOFC
algorithm, which will increase the risk of violating the reliability
criteria since the algorithm will take more iterations, namely
more time to converge to the optimal solution and the inter-
mittent iterations are not satisfying system constraints. Note that
communication systems’ bandwidth allocation and transmission
power are commonly used to ensure a required packet deliv-
ery ratio, and the main task of this paper is to quantify how
the packet delivery ratio should be controlled to meet the grid
reliability criteria.

4. Main results

We make the following basic assumptions for the theoretical
analysis of Algorithm 1.

Assumption 1.

(1) G (power graph) is connected.

(2) The noise {d®° e R™!} is a sequence of iid. random
variables such that E[d!] = 0, € R" and E[d - (d")T] =
Y4 € R™", where E[-] is the mathematical expectation
operator and X, is symmetric positive definite.

(3) {8 € R™"} is a sequence of ii.d. random variables such
that E[B'] = B € R™" and E[B' - (B")"] = Xy € R™".
Both B and X are positive definite.

Remark 1. Since g’ satisfies Bernoulli distribution, we know
that 8 = X3 = Q. Also, the matrix BG is positive definite under
Assumption 1.
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4.1. Identifying optimization error bounds

By the above assumption, we can obtain the following expo-
nential convergence result for the optimization error mean of the
DOFC algorithm. Note that for two real symmetric matrices X €
R™andY e R™" X > Y(X > Y,X <Y,X < Y)means that X —
Y is a semi-positive (positive, semi-negative, negative) definite
matrix. Let Amin{-} and Amax{-} denote the smallest and largest
eigenvalue of a matrix, respectively. For any deterministic matrix
X € RS*!, the Euclidean norm is defined as || X| = (AmaX{XXT})%;
and for any random matrix Y, its norm is defined as ||Y|| =
{IE[||Y||2]}%. Here we first establish the mean convergence in the
following result.

Theorem 1. Suppose that u' = . Under Assumption 1, there
exist constants u* > 0 and ¢ > 0 such that for any u € (0, u*),
0<1—puc<1land

IE[@ 1 < (1 — po) [E[@°]].

Proof. Since 8’ and d' are independent, and E[d"'] = 0,, then we
have E[u"*"] = (I, — nBG)E[U"]. In addition, since BG is positive
definite by Remark 1, there exists two constants ¢; = Apin{8G} >
0 and ¢; = Amax{BG} > 0 such that ¢1l; < G < cl,. Thus, we
have (1 — uco)ly < I — uBG < (1 — pcy)ly.

If the step size p is selected to satisfy 1 — uc; < 1 and
1 — uc; > —1, then ||(I, — uBG)Y|| < (1 — uc)t. Thus, we
can choose u* = 2/c; > 0 and c such that 1 — uc =
max{|1 — ucq|, |1 — uczl} € [0, 1), which implies that |E[@']|| <
(1 — o) || E[u°]|, which converges to 0 exponentially. This com-
pletes the proof.

Then we can obtain the following optimization error bound of
the DOFC algorithm.

Theorem 2. Suppose that u' = . Under Assumption 1, for all
t > 0, there exists a constant u* > 0, for any u € (0, u*),

0 < (1= e ) 1T + e2v/k,

where c¢; € (0, 1) and ¢, > 0 are two constants.

Proof. Note that for any u € (0, u*) where u* is defined in
Theorem 1, 0 < uB'G < I, holds. Since BG is positive definite,
we know by Theorem 2.1 in Guo (1994) that for any t > s > 0,
” l_[_;:s+](1n - ,u,BJG)” < (1 — pcy)*, where ¢; = 1 — (1 —
Wimin{ BGHE** € (0, 1). Using (6), and Assumption 1, by Guo
and Ljung (1995), we can obtain that ||t'+1]| < (1—pucq ) 1@0 ||+
C2./1t, where ¢; > 0 is a constant. This completes the proof.

Denote the mean-square error of 7' as X} = E[u' - (@)1, and
X = lim;_, o, X}, when the limits exist.

Theorem 3.
constant w* > 0 such that for any n € (0, ©*),

Under Assumption 1, for all t > 1, there exists a

(1) The error variance

] _ _
SE =1 - upo)H 520 — upoy !
t

+ u ) (1= pBG) EpZall — nBG). (7)
=0

(2) Xy is the solution to the Lyapunov equation (I — wpG) Tl —
wBG) — Xy = —p? Xy X, or explicitly

Ty =p? ) (I — uBG) Ty Zally — nBG)". ®)
=0
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Proof. (1) By (6) and Assumption 1, because Xi*' = E[u**! .

(@+1)T], we have
T =(ly — pBG)Zi(ln — nBG) + 1’ EIB Za(B)']
=(I, — uﬂG)t“E (I — uBG) !
+ u? Z(In — wBG) Zp X4l — uBG).
£=0

(2) By (7) and Assumption 1, I — uBG is stable, and ¥ =

lim_ o0 L= p2 372 o(In — nBG) Xp Zg(ln — nBG) . Then
(I— MBG)E"(In — upBG)
=’ Z ~ 1PG) Ty Xl — upG)’

:Eﬂ — U E,gEd.

The desired result thus follows.

Remark 2. Theorem 3 establishes the mean square error on
the optimal solution of the DOFC algorithm, which represents
the fundamental impact of packet delivery ratio and step size
selection on obtaining the optimal solution. Since for any u €
(0, u*), Il — uBG|l < 1and 0 < up'G < I, holds, the
summation in (8) with £ from 0 to infinity is convergent to a finite
limit, which is the solution to the corresponding continuous-time
Lyapunov equation.

4.2. Convergence results of gradient-based distributed optimal fre-
quency control

To achieve strong convergence of the DOFC algorithm, the step
size should satisfy the following condition.

Assumption 2. The step size satisfies the following properties:
ut>0,u'—>0ast— oo,and Y, u' = oo.

The limit ODE (ordinary differential equation) of (5) is it =
—BGu — BB QAp, whose equilibrium point is precisely the op-
timal solution u* = —G~'BT QAp. The “limit ODE” method is a
well established and comprehensive methodology for studying
convergence properties of a large class of iterative stochastic ap-
proximation algorithms. It relates the algorithms’ convergence to
the stability of a related ODE in continuous time. Our algorithms
are stochastic approximation. As a result, their convergence anal-
ysis can benefit from the limit ODE method. Using the ODE
method in stochastic approximation (Kushner & Yin, 2003), the
following strong convergence result can be obtained for the DOFC
algorithm.

Theorem 4. Under Assumptions 1 and 2, the control action {u‘}
generated by (5) converges to the optimal solution u* — u* with
probability one (w.p.1) as t — oc.

For simplicity, we omit the detailed proof and refer the reader
to Chapters 5 and 6 of Kushner and Yin (2003). While the actual
proof of Theorem 4 will be skipped, the main ideas can be
summarized as follows. Define & = Y7 ¢/, @ (&) = max({t :
&' < £}, the piecewise constant interpolation ug(é) = u' for
£ e [£f, &™), and the shift sequence u(§) = ug(€ + £&°).
Under Assumption 2, the interpolated sequence {u.(-)} is uni-
formly bounded and equicontinuous. By Ascoli-Arzéla’s theorem

Tifs = S, H*ZH*, where H is symmetric and a contraction, then
HSH —S = —X is the Lyapunov equation. This is a set of linear equations
and can be solved exactly.
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(see Rudin, 1976), we can extract a subsequence {u,(-)}, which
converges to u(-) on any compact intervals w.p.1 such that u(-)
is a solution. The ODE has a unique equilibrium point, which is
the optimal solution. Now, by using the Lyapunov method, the
equilibrium point u* is an asymptotically stable point, since —8G
is stable by Remark 1. This theoretical result leads to the desired
property for Algorithm 1.
Next, we establish the convergence rate of Algorithm 1, which
is the property of how fast the intermittent DOFC iterations, u'
move toward the optimal solution. Note that the scaling factor
/1t together with the asymptotic covariance gives the desired
rate of convergence. The standard central limit theorem argument
yields that } Z]H,: ' Bid' converges weakly to N(0,, X), where
N(0,, X) is a normal random variable whose mean is 0,, and the
variance is given by

Z =E[BYd"(d)T(B") 1 =E[B' Z4(p") "] € R™™ 9)

Next, we will show how the packet delivery ratio will affect
convergence rate of the DOFC algorithm. In fact, there is a fun-
damental lower bound on the achievable convergence rate of
the DOFC algorithm, called the CR bound (Anderson, 1984). Any
algorithm that can asymptotically achieve the CR bound is the
“fastest” algorithm. To achieve the CR bound, we derive an im-
proved algorithm that provides the “optimal” convergence rate in
the sense of the CR bound. This is done by using iterate averaging,
i.e., (11). The idea of iterate averaging has a long history dated
back in Chung (1954), then in the 1970th by Polyak, in the 1990th
by Polyak again, then Kushner and Yin (2003), etc. By using a large
step size, it approaches the design parameter faster initially. By
using the averaging, “smaller” variance (covariance) is obtained.

For simplicity, we take the step size u' = 1/t”, where 1/2 <
y < 1. Then,

1
uttt =t — t—yﬂt(Gut +BTQAp +d"), (10)
and
t—1 —
u] t—1 t—1 t—1
it — >0 _ a4+ u ' (11)

t t
Thus, we can obtain the following result.

Theorem 5. /t(ii' — u*) converges weakly to a normal random
variable with mean 0, and asymptotic covariance

I = (BG) ' Z(GB)”
where X is defined by (9).

1 c Rnxn’

Remark 3. For a coverage on the CR lower bound, we re-
fer the reader to Rice (2007) (pp. 300-302). Since the proof of
Theorem 5 is similar to Chapter 11 of Kushner and Yin (2003),
it is omitted here. Note that &1 — u* is asymptotically normal
(Gaussian distributed) with zero mean and covariance X*/t. For
(10), @t will converge to its limit at a convergence rate that
approaches asymptotically the corresponding CR lower bound
(Polyak & Juditsky, 1992; Yin, 1991). In this sense, X* is the
“smallest” covariance possible, which is a common error mea-
sure and a main performance indicator for the convergence rate.
Hence, X'* is the measure of reliability of the DOFC algorithm
against communication uncertainties. The focus of this paper is
to use the CR lower bound and asymptotic optimality in the
convergence rate of the algorithms to study certain fundamental
impact of communication packet delivery rate.

Remark 4. Here we use the error covariance matrix X* to
evaluate how fast convergence to the optimal solution can be



S. Xie, M.H. Nazari, LY. Wang et al.

T

-

Fig. 1. Schematics of the cyber network of the IEEE 24 bus system.

achieved and how the convergence rate depends on the packet
delivery ratio. Note that

det(X*) = det((BG)~' 2(GB) ™)
=det((BG)'E[B' Z4(B") " 1(GB)™")

det(B71G'B8x,G71 B

=det(B~")det(G ' X,G 1)

:<1_[ 1_[ Pr;Q) det(G ' X, 1), (12)

i=1 LeN;

where det(-) denotes the determinant operator. It can be observed
that the lower the packet delivery ratio Pr;, is, the “larger” X* is
and in turn the DOFC algorithm weakly converges slower to the
optimal solution. This relationship will become a foundation for
resource allocation (on communication systems) and reliability
assessment (on power systems).

5. Case studies and discussions

In this part, we use realistic prosumer electric energy systems
to illustrate the relationship between the packet delivery ratio
and the convergence rate of the DOFC algorithm. The IEEE 24-
bus system represents a bulk electric energy system, which has
38 power lines and 32 generators. The average demand of the
system is 2577 MW. The detailed description of the physical layer
can be found in Grigg et al. (1999). In this study, the system is
clustered into 10 prosumers with 25 tie-line connections between
prosumers. Each prosumer represents a balancing authority area
for frequency control. Fig. 1 illustrates the cyber layer of the
prosumer-based IEEE 24-bus system. Note that the cyber-layer
follows the sparsity structure of the prosumer-based grid to allow
peer-to-peer communication among prosumers.

For simulation settings, we assume that the gradient noises
are i.i.d Gaussian random variables with zero mean and variance
1. For a chosen packet delivery ratio, we repeat the simulation
for m = 500 times with the same initial states for Algorithm 1.
Then we can get m sequences {||u —u*||, t>1},j=1,...,m,
where u* = [u}, ..., u})] € R' is the optimal solution and the
superscript j denotes the jth simulation result. We calculate the
following mean error norm trajectories: Mu® = % j";l lutd —
u*||, t > 1, and plot log(Mu') under different packet delivery ra-
tios in Fig. 2, which shows that by decreasing the packet delivery
ratio, the convergence rate of the DOFC algorithm for the IEEE
24-bus system decreases.

Also, Fig. 3 shows the frequency dynamics of the center of
inertia for different packet delivery ratios. Note that when the
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Fig. 2. Log of error norms with different packet delivery ratios for IEEE 24 bus
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Fig. 3. Frequency dynamics of the center of inertia with different packet delivery
ratios for IEEE 24 bus system.

convergence rate increases, the DOFC algorithm may take less
steps to obtain the optimal solution, which also implies that it
takes less time to recover from a disturbance, i.e., a faster con-
vergence rate ensures greater reliability of the prosumer energy
grid. It takes 340 iterations to achieve 0.005 per unit (p.u.) error
threshold for P, = 1, and 529 iterations for P,, = 0.9, 843
iterations for P,,, = 0.8. Thus, improving packet delivery ratio
can directly increase the power system reliability. It implies a
desirable approach of control-communication co-design in which
distributed optimization algorithms and communication resource
allocation must be coordinated.

Moreover, let the packet delivery ratio be 0.9, then we know
that Tr(X*) = 0.8946. We apply the iterate averaging algorithm
(10), (11) and repeat the simulation for m = 500 times with the
same initial states. We can calculate the following mean covari-
ance matrix: Cu' = L 3" (" — u* )@ — u*)" € R'*'°, Then,
we plot the trace of the mean covariance: covu® = Tr(Cut), t > 1,
in Fig. 4, which approaches Tr(X*)/t as t increases.

6. Concluding remarks

This paper developed rigorous analysis of the impact of data
packet loss on the convergence of DOFC in AC electric energy
systems, populated with many prosumer agents. The paper first
modeled the communication uncertainties using probabilistic de-
scriptions of packet delivery ratio. The proposed channel model
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Fig. 4. Trace of the covariance matrix for IEEE 24 bus system.

was congregated to derive a stochastic description of the cyber
network topology in AC electric energy systems. Stochastic ap-
proximation methods were used for the convergence analysis
of the DOFC algorithm in prosumer-based energy systems. By
embedding the information network switching model into the
DOFC algorithm and performing stochastic analysis, we estab-
lished a rigorous relationship between the packet delivery ratio
of communication erasure channels, algorithm convergence rate,
and accuracy of DOFC solutions. The theoretical findings provided
guidance on the choice of control parameters for guaranteed
convergence of the DOFC algorithm. The future research endeavor
is to develop fault-tolerant distributed algorithms to mitigate the
impact of communication failures, and to design more suitable
partial information gradients to update u in a proper way.
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