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a b s t r a c t

This paper investigates the impact of communication packet loss on Distributed Optimal Frequency
Control (DOFC) in Alternating Current (AC) electric energy systems, populated with multiple clusters
of hybrid producer–consumer (prosumer) agents. The paper first establishes rigorous relationships
between the communication packet delivery ratio and the convergence rate of the proposed DOFC
algorithm. This provides a foundation for resource allocation on communication systems to enhance
the convergence speed of distributed optimization and control algorithms, such as DOFC, under noisy
and disrupted communication systems. The paper develops a systematic approach to identify the best
possible convergence rate over all possible algorithms, by introducing an algorithm that can achieve
asymptotically the Cramér-Rao (CR) lower bound. This fundamental result links the information
contents of data to the best possible mean-square estimation error. Simulation studies on an electric
energy system validate the theoretical results.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

Electric energy systems are moving towards a hybrid
entralized-distributed architecture with a large penetration of
istributed energy resources (DERs), such as distributed solar
eneration, energy storage, connected buildings, and electric ve-
icles and their supporting infrastructures. Several distributed
lgorithms have been proposed for solving power system prob-
ems at different time scales, such as DC Optimal Power Flow
OPF) (Kraning, Chu, Lavaei, & Boyd, 2014; Persis, Weitenberg, &
Dörfler, 2018; Yi, Hong, & Liu, 2016), AC OPF (Dall’Anese, Zhu,
& Giannakis, 2013; Zhang, Lam, Domínguez-García, & Tse, 2014),
and the optimal frequency control problem (Chang & Zhang,
2016; Nazari, Costello, Feizollahi, Grijalva, & Egerstedt, 2014;
Nazari, Wang, Grijalva, & Egerstedt, 2020; Xi, Dubbeldam, Lin, &
van Schuppen, 2018; Zhang & Cortés, 2021). The state-of-the-art
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istributed algorithms proposed for smart power grids need to
onverge in the cyber network before the solutions can be im-
lemented on the physical grid and the intermittent iterations are
ot satisfying power flow and other system constraints (Molzahn
t al., 2017). Note that ‘‘intermediate iterations’’ imply the iter-
tive steps before approximately reaching the optimal solution.
n other words, this is a ‘‘transient period’’ in search for the
ptimal solution. On the other hand, fully decentralized methods
ose optimality and can lead to inter-area oscillations among
ub-systems (Nazari & Ilic, 2014).
Note that the impact of communications on networked control

ystems has been widely studied in many perspectives, such
s noisy communication channels (Huang, Dey, Nair, & Manton,
010; Li, Jin, & Yan, 2021), time delays (Dong, Li, Nie, Song, &
ang, 2019; Huang & Tian, 2018), event-trigger-based strategies
Li, Tang, & Karimi, 2020; Liuzza, Dimarogonas, Di Bernardo, &
ohansson, 2016), and so on. In Moreau (2005), the communica-
ion systems were modeled as a time-varying network topology
n terms of mobility and the impact on the network control qual-
ty was established. Moreover, an in-depth study of coordinated
ontrol and communication design was conducted in Xu, Wang,
in, and Zhang (2014a). Also, the authors in Xu, Wang, Yin, and
hang (2014b) focused on block erasure channels. The authors
n Richardson and Urbanke (2008) established safety distances

f modulation signals. Furthermore, Nguyen et al. (2018) studied
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he impact of communication packet delivery ratio on highway
latoon performance.
In our previous work (Nazari, Xie, Wang, Yin, & Chen, 2021;

ie, Nazari, Wang, Yin, & Chen, 2021), we investigated the impact
f communication packet loss and noisy environment on the
erformance of optimal load tracking and allocation (OLTA) in
C microgrids (MGs). This paper extends our earlier work to
istributed optimal frequency control algorithms in prosumer-
ased AC electric energy systems. The main problem considered
n this paper is related to gradient-based distributed optimization,
hich has been widely studied in the literature (Duchi, Agarwal,
Wainwright, 2011; Nedić & Ozdaglar, 2009; Tian, Sun, & Scutari,
020; Wang, Liao, Huang, & Li, 2015; Wu, Yuan, Ling, Yin, & Sayed,
017; Yuan, Ling, & Yin, 2016). It is noted that in deterministic
terative algorithms without stochastic noises, linear convergence
f several classical and more recent algorithms has been estab-
ished, namely the error sequence ek+1/ek → σ < 1. This implies
hat asymptotically, ek ≤ cσ ke0, achieving exponential conver-
ence. This is fundamentally different from stochastic systems.
he iteration algorithms (stochastic approximation algorithms)
roposed in this paper involve stochastic noises. Consequently,
t is impossible to achieve ‘‘linear convergence’’ or equivalently
xponential convergence rates. Instead, the Fisher information
ictates the best achievable rates, which are of certain polyno-
ial orders. In other words, while the convergence analysis for
eterministic systems is somehow related, it cannot be directly
pplied to prove the convergence properties of stochastic system
nalysis in this paper.
In data-based statistical analysis, information contained in

bservation data is used to estimate unknown parameters or
eek unknown optimal solutions. The error variance is a measure
f performance in this pursuit. The CR lower bound and Fisher
nformation (Marzetta, 1993) provide the lower bound that the
information content in data can be used in reducing the error
variance, independent of searching algorithms. When an algo-
rithm achieves this lower bound asymptotically, it becomes the
optimal or best possible among all possible algorithms, implying
that the information in data has been fully utilized. Our state-
ments in this paper follow this convention in data-based science
and statistical analysis.

In summary, this paper establishes a quantitative and fun-
damental relationship between communication packet loss ratio
and the convergence rate of the DOFC algorithm in AC power
grids, populated with multiple hybrid consumer–producer (pro-
sumer) agents. The main contributions of the paper are as fol-
lows:

(1) Implementing stochastic network models to represent
communication network dynamics in prosumer-based
electric energy grids.

(2) Embedding packet delivery ratio and communication un-
certainties into the DOFC algorithm, and laying a founda-
tion for rigorous analysis of integrated communication and
optimal control schemes.

(3) Quantitatively characterizing the fundamental relationship
between packet delivery ratios and convergence rates of
the DOFC algorithm to develop a practical criterion for se-
curing reliability of optimal frequency control under com-
munication uncertainties.

(4) Illustrating that the convergence rate of the DOFC algo-
rithm can asymptotically achieve the CR lower bound. Note
that the CR bound represents the lower bound on the
variances of errors between the optimal control action and
estimated control solution of the DOFC algorithm.

The rest of the paper is organized as follows. Section 2 gives

n overview of distributed optimal frequency control problems

2

n AC electric energy systems. Section 3 presents the global op-
imality conditions, develops distributed control algorithms with
mbedded communication uncertainty, and introduces stochastic
odels for erasure channels in communication systems. The main

esults are established in Section 4, where error bounds, strong
onvergence, and asymptotic optimality are derived. The techni-
al findings are illustrated on two realistic electric energy systems
n Sections Section 5 to show the impact of erasure channels
n electric energy system reliability. The paper concludes with
iscussions of the overall findings in Section 6.

. Overview of distributed optimal frequency control

DOFC involves bringing the system-wide frequency to 60 Hz
r 50 Hz after a disturbance in an economically optimal way.
hen the power system is clustered into multiple prosumers,
OFC will be performed at the prosumer level. Prosumers can be
s small as a microgrid or smart building, or as large as a utility
rid sub-system. The prosumer-based electric energy grid forms
multi-agent network, which can be represented by a graph G =

V, E}, where V = {1, . . . , n} is the set of all prosumers and E is
he set of edges or energy system tie-lines. The presence of a tie-
ine (i, j) indicates that prosumer i has direct electrical connection
o prosumer j. We assume that the network control topology
ollows the prosumer grid tie-line topology. The set of neighbors
f prosumer i is denoted as Ni = {ℓ ∈ V|(ℓ, i) ∈ E or (i, ℓ) ∈

}. In a distributed architecture, prosumer i shares information
ith its neighboring prosumers in Ni to achieve system-level
erformance, such as optimal frequency control.
The dynamic modeling of power systems in Nazari et al. (2014,

020) leads to dynamic relationships among prosumers. Typical
ynamic models of power systems involve complicated, nonlin-
ar, and high-order dynamics. However, for certain power system
ontrol problems, such as frequency regulations, approximate
ower order models can be derived by using the ideas of singular
erturbations (Chow, Winkelman, Pai, & Sauer, 1990). For clarity
nd conciseness, we use the following first-order, discretized,
inearized, pseudo-stationary dynamic relationships to demon-
trate our methodologies and algorithms. Consider pi ∈ R, the
eal power deviation from the scheduled value, associated with
ach node i ∈ V . After collecting all pi in V , we obtain the
nsemble state given by p = [p1, p2, . . . , pn]⊤ ∈ Rn. By the
tandard discretization with a sampling interval T , the evolution
f p at discrete times kT , k = 0, 1, . . ., can be simplified as the
iscrete-time dynamical system,

(k + 1) = Ap(k) + Bu(k), (1)

here u = [u1, u2, . . . , un]
⊤

∈ Rn is the vector of prosumers’
requency control variables, A = [ai,j] ∈ Rn×n and B = [bi,j] ∈
n×n are system matrix and control matrix, respectively. These
atrices represent the underlying electrical topology of the pro-
umer electric energy grid G, i.e., ai,j ̸= 0, bi,j ̸= 0 if j = i or j ∈

i, and ai,j = bi,j = 0 otherwise. The matrices A and B are full
ank if the network topology is connected.

The real power deviations are directly correlated with fre-
uency deviations through power flow equations and dynamic
ehavior of generators and loads (Nazari et al., 2014; Xie, Nazari,
ezampasandarbabi, & Wang, 2022). DOFC ensures that freq-
ency stability is achieved by minimizing overall control costs.
his paper is concerned with a one-step predictive optimization
n which p(k) is given, and a linear quadratic performance of
(k) and p(k + 1) is to be minimized. As a result, the problem
s independent of k. By defining p(k) = p, u(k) = u, p(k + 1) = x,
he cost function can be written as

in J (u, x) = min
1
(x⊤Qx + u⊤Ru)
u,x u,x 2
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.t. x = Ap + Bu, (2)

where Q = diag{q1, q2, . . . , qn} ∈ Rn×n and R = diag{r1, r2,
. . , rn} ∈ Rn×n are positive definite diagonal cost coefficient
matrices. In the next section, we will propose a gradient-based
distributed algorithm to solve (2) and establish the convergence
esults under communication packet loss.

. Distributed algorithm and communication uncertainty

.1. Distributed gradient algorithms with embedded communication
ncertainty

Theoretically, the global optimal solution of (2) with the equal-
ty constraint x = Ap + Bu can be obtained by the Lagrange
ultiplier method: For λ ∈ Rn, L(u, x, p, λ) =

1
2 (u

⊤Ru + x⊤Qx) +
⊤
[x− (Ap+Bu)]. Thus, the optimal solution is u∗

= −G−1B⊤QAp,
here G = R + B⊤QB ∈ Rn×n. Since this solution involves the

inverse of matrix R + B⊤QB, it requires global information and is
ot feasible in a distributed framework.
In order to obtain a distributed method to solve this op-

imization problem, we first define the following performance
ndex:

in
u

J (u) = min
u

1
2
[u⊤Ru + (Ap + Bu)⊤Q (Ap + Bu)],

hose gradient is ∇uJ (u) = Ru + B⊤Q (Bu + Ap) = Gu + B⊤QAp.
or each prosumer i (i ∈ {1, . . . , n}), we denote

i(u) =
1
2

{
riu2

i + qi

[ ∑
j∈Ni∪{i}

(ai,jpj + bi,juj)
]2}

.

hen, we have J (u) =
∑n

i=1 Ji(u). Note that

uJ (u) =

⎛⎜⎝∇u1J (u)
...

∇unJ (u)

⎞⎟⎠ ∈ Rn, (3)

where

∇uiJ (u) =

n∑
ℓ=1

∇uiJℓ(u),

and

∇uiJℓ(u)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
riui + qibi,i

∑
j∈Ni∪{i}

(ai,jpj + bi,juj), if ℓ = i,

qℓbℓ,i

∑
j∈Nℓ∪{ℓ}

(aℓ,jpj + bℓ,juj), if ℓ ∈ Ni,

0, otherwise.

For each prosumer i at step t , we can adopt the following
gradient algorithm without communication uncertainty to track
the optimal solution:

ut+1
i = ut

i − µt
∇uiJ (ut ) = ut

i − µt
∑

ℓ∈Ni∪{i}

∇uiJℓ(ut ),

where the step size µt is designed to achieve convergence, and
ut

= [ut
1, . . . , u

t
n]

⊤, which is the tth computed value for u = u(k).
This algorithm is strictly distributed since for each prosumer i, it
only needs the gradient information from its neighbors (∇uiJℓ(ut )
where ℓ ∈ Ni ∪ {i}) to update the solution. Thus, the DOFC algo-
rithm can be written in the vector form ut+1

= ut
− µt

∇uJ (ut ),
i.e., ut+1

= ut
−µt (Gut

+B⊤QAp), which relies on communication
between prosumers.
3

In practical applications, packet loss and channel interrup-
tions may cause the cyber link to be randomly disconnected.
Thus, communication packet loss can pose limitations for the
convergence rate of the DOFC algorithm. The packet loss can be
represented by an indicator function

γ t
i,ℓ =

{1, if i = ℓ,
1, if i ̸= ℓ and the link (i, ℓ) is connected at t ,
0, otherwise,

which is a random variable. Denote γ t
= {γ t

i,ℓ} ∈ Rn×n, and β t
i =∏

ℓ∈Ni∪{i} γ t
i,ℓ, β t

= diag{β t
1, β

t
2, . . . , β

t
n} ∈ Rn×n. Note that β t

i = 0
eans that at least one of the links connected to prosumer i drops

he packet at time instant t . When γ t
i,ℓ0

= 0, prosumer i lost the
nformation from prosumer ℓ0, i.e., ∇uiJℓ0 (u

t ) may not be used for
alculating the gradient value. Since ℓ0 is lost,

∑n
ℓ=1 γ t

i,ℓ∇ui Jℓ(u
t )

s not the correct gradient information of prosumer i at step t ,
hich cannot be used for updating ut

i directly. In this case, we just
eep ut

i unchanged until we get the correct gradient value. This
ay waste some information when one line is lost. It would be an

nteresting problem to design more suitable partial information
radients to update ut

i in a proper way. Due to the page limitation,
e cannot have an in-depth discussion in this paper, but this will
e the research direction of our next work.
Thus, for each prosumer i, the updating algorithm to find the

ptimal control strategy with packet loss becomes
t+1
i = ut

i − µtβ t
i

∑
ℓ∈Ni∪{i}

∇uiJℓ(ut ). (4)

he algorithm with embedded communication uncertainty is
hown in Algorithm 1. Note that ut+1

= ut will only happen when
t

= 0, and the algorithm should not terminate since the value
oes not update in this case.

Algorithm 1 DOFC Gradient Algorithm with Embedded Commu-
nication Uncertainty and Random Noise

(1) Initial condition: Select e0 as the threshold error, given the
initial value for u0, and let t = 0.

(2) Update: From ut at each step t ≥ 0, the control law is
updated by

ut+1
= ut

− µtβ t (Gut
+ B⊤QAp + dt ), (5)

where dt ∈ Rn is the random gradient noise.
(3) Termination condition: If ut+1

̸= ut and ∥ut+1
− ut

∥ ≤ e0,
end the loop. Otherwise, let t = t + 1 and go to Step (2).

Note that u∗ satisfies µtβ tGu∗
+ µtβ tB⊤QAp = 0. Define the

optimality error ũt
= ut

− u∗, and by (5), we can show that

ut+1
= (In − µtβ tG)̃ut

− µtβ tdt . (6)

Then, we will analyze the optimization error ũt .

3.2. Communication uncertainty modeling

Information exchange among agents relies on communication
channels, thus the reality of the communication network and its
reliability in delivering critical data packets is essential for the
convergence of the DOFC algorithm. In general, data packet can
be lost due to erasure of one or multiple bits within the packet
during transmission (i Fabregas & Caire, 2006; Nguyen et al.,
2018). A data block is generated and coded by the source, and
then transmitted to the receiver during information transmission
in a given time interval. The received codeword is subject to
possible erasure of bits because of channel uncertainties. After
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ecoding and error correction, the receiver either acknowledges
eceipt of the data, or indicates a packet loss. If packet loss occurs
uring the transmission, data re-sending is permitted only within
he given decision time interval. Probability of successful packet
elivery is defined as the packet delivery ratio.
In this paper, we assume that packet losses for all channels are

utually independent, and each channel’s packet loss is an in-
ependent and identically distributed (i.i.d) sequence of random
ariables. By applying this assumption to all channels, the com-
unication uncertainty can be modeled by randomly switching
etwork topologies such that the probability for each topology
s generated from individual link connection probabilities. As a
esult, all related matrices in the distributed gradient algorithm
ill be random.
By the above assumption, γ t

i,ℓ is an independent random vari-
ble. Suppose γ t

i,ℓ is stationary and its packet delivery probability
s

r{γ t
i,ℓ = 1} =

{ 1, if i = ℓ,
Pri,ℓ, if link (i, ℓ) is connected at t ,

0, otherwise,

enote Pr = [Pri,ℓ] ∈ Rn×n, and q̄i =
∏

ℓ∈Ni
Pri,ℓ, where Q̄ =

iag{q̄1, q̄2, . . . , q̄n} ∈ Rn×n has the same order as u. Note that
¯ i denotes the packet delivery ratio for prosumer i, which is the
roduct of ratios of all the links connected to i.

.3. Communication packet loss and electric energy system reliabil-
ty

Timing is critical for electric energy systems operating tasks,
articularly the optimal solution to DOFC needs to be computed
n less than a few seconds. The expected communication times for
ifferent operating tasks have very strict time constraints (Wang,
u, & Khanna, 2011). However, the communication networks are
ot always able to meet the standard requirements in many
ractical situations. Decreasing the packet delivery ratio between
rosumers can slow down the convergence rate of the DOFC
lgorithm, which will increase the risk of violating the reliability
riteria since the algorithm will take more iterations, namely
ore time to converge to the optimal solution and the inter-
ittent iterations are not satisfying system constraints. Note that
ommunication systems’ bandwidth allocation and transmission
ower are commonly used to ensure a required packet deliv-
ry ratio, and the main task of this paper is to quantify how
he packet delivery ratio should be controlled to meet the grid
eliability criteria.

. Main results

We make the following basic assumptions for the theoretical
nalysis of Algorithm 1.

Assumption 1.

(1) G (power graph) is connected.
(2) The noise {dt ∈ Rn×1

} is a sequence of i.i.d. random
variables such that E[dt ] = 0n ∈ Rn and E[dt · (dt )⊤] =

Σd ∈ Rn×n, where E[·] is the mathematical expectation
operator and Σd is symmetric positive definite.

(3) {β t
∈ Rn×n

} is a sequence of i.i.d. random variables such
that E[β t

] = β̄ ∈ Rn×n and E[β t
· (β t )⊤] = Σβ ∈ Rn×n.

Both β̄ and Σβ are positive definite.

Remark 1. Since β t satisfies Bernoulli distribution, we know
that β̄ = Σβ = Q̄ . Also, the matrix β̄G is positive definite under
Assumption 1.
4

4.1. Identifying optimization error bounds

By the above assumption, we can obtain the following expo-
nential convergence result for the optimization error mean of the
DOFC algorithm. Note that for two real symmetric matrices X ∈

Rn×n and Y ∈ Rn×n, X ≥ Y (X > Y , X ≤ Y , X < Y ) means that X −

Y is a semi-positive (positive, semi-negative, negative) definite
matrix. Let λmin{·} and λmax{·} denote the smallest and largest
eigenvalue of a matrix, respectively. For any deterministic matrix
X ∈ Rs×t , the Euclidean norm is defined as ∥X∥ = (λmax{XX⊤

})
1
2 ;

and for any random matrix Y , its norm is defined as ∥Y∥ =

{E[∥Y∥
2
]}

1
2 . Here we first establish the mean convergence in the

following result.

Theorem 1. Suppose that µt
= µ. Under Assumption 1, there

exist constants µ∗ > 0 and c > 0 such that for any µ ∈ (0, µ∗),
≤ 1 − µc < 1 and

E[̃ut
]∥ ≤ (1 − µc)t∥E[̃u0

]∥.

roof. Since β t and dt are independent, and E[dt ] = 0n, then we
ave E[̃ut+1

] = (In − µβ̄G)E[̃ut
]. In addition, since β̄G is positive

efinite by Remark 1, there exists two constants c1 = λmin{β̄G} >

and c2 = λmax{β̄G} > 0 such that c1In ≤ β̄G ≤ c2In. Thus, we
have (1 − µc2)In ≤ In − µβ̄G ≤ (1 − µc1)In.

If the step size µ is selected to satisfy 1 − µc1 < 1 and
1 − µc2 > −1, then ∥(In − µβ̄G)t∥ ≤ (1 − µc)t . Thus, we
can choose µ∗

= 2/c2 > 0 and c such that 1 − µc =

max{|1 − µc1|, |1 − µc2|} ∈ [0, 1), which implies that ∥E[̃ut
]∥ ≤

(1− µc)t∥E[̃u0
]∥, which converges to 0 exponentially. This com-

pletes the proof.

Then we can obtain the following optimization error bound of
the DOFC algorithm.

Theorem 2. Suppose that µt
= µ. Under Assumption 1, for all

t > 0, there exists a constant µ∗ > 0, for any µ ∈ (0, µ∗),

∥̃ut
∥ ≤ (1 − µc1)t ∥̃u0

∥ + c2
√

µ,

where c1 ∈ (0, 1) and c2 > 0 are two constants.

Proof. Note that for any µ ∈ (0, µ∗) where µ∗ is defined in
Theorem 1, 0 ≤ µβ tG < In holds. Since β̄G is positive definite,
we know by Theorem 2.1 in Guo (1994) that for any t ≥ s ≥ 0,∏t

j=s+1(In − µβ jG)
 ≤ (1 − µc1)t−s, where c1 = 1 − (1 −

∗λmin{β̄G})1/64µ
∗

∈ (0, 1). Using (6), and Assumption 1, by Guo
nd Ljung (1995), we can obtain that ∥̃ut+1

∥ ≤ (1−µc1)t+1
∥̃u0

∥+

2
√

µ, where c2 > 0 is a constant. This completes the proof.

Denote the mean-square error of ũt as Σ t
ũ = E[̃ut

· (̃ut )⊤], and
Σũ = limt→∞ Σ t

ũ, when the limits exist.

Theorem 3. Under Assumption 1, for all t ≥ 1, there exists a
constant µ∗ > 0 such that for any µ ∈ (0, µ∗),

(1) The error variance

Σ t+1
ũ =(I − µβ̄G)t+1Σ0

ũ (I − µβ̄G)t+1

+ µ2
t∑

ℓ=0

(I − µβ̄G)ℓΣβΣd(I − µβ̄G)ℓ. (7)

(2) Σũ is the solution to the Lyapunov equation (I −µβ̄G)Σũ(I −
µβ̄G) − Σũ = −µ2ΣβΣd, or explicitly

Σũ = µ2
∞∑

(In − µβ̄G)ℓΣβΣd(In − µβ̄G)ℓ. (8)

ℓ=0
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roof. (1) By (6) and Assumption 1, because Σ t+1
ũ = E[̃ut+1

·

ũt+1)⊤], we have

Σ t+1
ũ =(In − µβ̄G)Σ t

ũ(In − µβ̄G) + µ2E[β tΣd(β t )⊤]

=(In − µβ̄G)t+1Σ0
ũ (In − µβ̄G)t+1

+ µ2
t∑

ℓ=0

(In − µβ̄G)ℓΣβΣd(In − µβ̄G)ℓ.

(2) By (7) and Assumption 1, I − µβ̄G is stable, and Σũ =

imt→∞ Σ t
ũ = µ2 ∑

∞

ℓ=0(In − µβ̄G)ℓΣβΣd(In − µβ̄G)ℓ. Then

(I − µβ̄G)Σũ(In − µβ̄G)

µ2
∞∑

ℓ=1

(In − µβ̄G)ℓΣβΣd(In − µβ̄G)ℓ

Σũ − µ2ΣβΣd.

he desired result thus follows.

emark 2. Theorem 3 establishes the mean square error on
he optimal solution of the DOFC algorithm, which represents
he fundamental impact of packet delivery ratio and step size
election on obtaining the optimal solution. Since for any µ ∈

0, µ∗), ∥I − µβ̄G∥ < 1 and 0 ≤ µβ tG < In holds, the
ummation in (8) with ℓ from 0 to infinity is convergent to a finite
limit, which is the solution to the corresponding continuous-time
Lyapunov equation.1

4.2. Convergence results of gradient-based distributed optimal fre-
quency control

To achieve strong convergence of the DOFC algorithm, the step
size should satisfy the following condition.

Assumption 2. The step size satisfies the following properties:
µt

≥ 0, µt
→ 0 as t → ∞, and

∑
t µ

t
= ∞.

The limit ODE (ordinary differential equation) of (5) is u̇ =

−β̄Gu − β̄B⊤QAp, whose equilibrium point is precisely the op-
timal solution u∗

= −G−1B⊤QAp. The ‘‘limit ODE’’ method is a
well established and comprehensive methodology for studying
convergence properties of a large class of iterative stochastic ap-
proximation algorithms. It relates the algorithms’ convergence to
the stability of a related ODE in continuous time. Our algorithms
are stochastic approximation. As a result, their convergence anal-
ysis can benefit from the limit ODE method. Using the ODE
method in stochastic approximation (Kushner & Yin, 2003), the
following strong convergence result can be obtained for the DOFC
algorithm.

Theorem 4. Under Assumptions 1 and 2, the control action {ut
}

generated by (5) converges to the optimal solution ut
→ u∗ with

probability one (w.p.1) as t → ∞.

For simplicity, we omit the detailed proof and refer the reader
to Chapters 5 and 6 of Kushner and Yin (2003). While the actual
proof of Theorem 4 will be skipped, the main ideas can be
summarized as follows. Define ξ t

=
∑t−1

j=0 µj, ϖ (ξ ) = max{t :

ξ t
≤ ξ}, the piecewise constant interpolation u0(ξ ) = ut for

ξ ∈ [ξ t , ξ t+1), and the shift sequence ut (ξ ) = u0(ξ + ξ t ).
Under Assumption 2, the interpolated sequence {ut (·)} is uni-
formly bounded and equicontinuous. By Ascoli-Arzéla’s theorem

1 If S =
∑

∞

k=0 H
kΣHk , where H is symmetric and a contraction, then

SH − S = −Σ is the Lyapunov equation. This is a set of linear equations
nd can be solved exactly.
 e

5

(see Rudin, 1976), we can extract a subsequence {utℓ (·)}, which
converges to u(·) on any compact intervals w.p.1 such that u(·)
is a solution. The ODE has a unique equilibrium point, which is
the optimal solution. Now, by using the Lyapunov method, the
equilibrium point u∗ is an asymptotically stable point, since −β̄G
is stable by Remark 1. This theoretical result leads to the desired
property for Algorithm 1.

Next, we establish the convergence rate of Algorithm 1, which
is the property of how fast the intermittent DOFC iterations, ut

move toward the optimal solution. Note that the scaling factor
√

µt together with the asymptotic covariance gives the desired
rate of convergence. The standard central limit theorem argument
yields that 1

√
t

∑k+t−1
j=k β jdj converges weakly to N(0n, Σ), where

N(0n, Σ) is a normal random variable whose mean is 0n and the
ariance is given by

= E[β1d1(d1)⊤(β1)⊤] = E[β1Σd(β1)⊤] ∈ Rn×n. (9)

Next, we will show how the packet delivery ratio will affect
convergence rate of the DOFC algorithm. In fact, there is a fun-
damental lower bound on the achievable convergence rate of
the DOFC algorithm, called the CR bound (Anderson, 1984). Any
algorithm that can asymptotically achieve the CR bound is the
‘‘fastest’’ algorithm. To achieve the CR bound, we derive an im-
proved algorithm that provides the ‘‘optimal’’ convergence rate in
the sense of the CR bound. This is done by using iterate averaging,
i.e., (11). The idea of iterate averaging has a long history dated
back in Chung (1954), then in the 1970th by Polyak, in the 1990th
y Polyak again, then Kushner and Yin (2003), etc. By using a large
tep size, it approaches the design parameter faster initially. By
sing the averaging, ‘‘smaller’’ variance (covariance) is obtained.
For simplicity, we take the step size µt

= 1/tγ , where 1/2 <

< 1. Then,

t+1
= ut

−
1
tγ

β t (Gut
+ B⊤QAp + dt ), (10)

nd

¯
t
=

∑t−1
j=0 uj

t
=

(t − 1)ūt−1
+ ut−1

t
. (11)

hus, we can obtain the following result.

heorem 5.
√
t(ūt

− u∗) converges weakly to a normal random
variable with mean 0n and asymptotic covariance

Σ∗
= (β̄G)−1Σ(Gβ̄)−1

∈ Rn×n,

where Σ is defined by (9).

Remark 3. For a coverage on the CR lower bound, we re-
fer the reader to Rice (2007) (pp. 300–302). Since the proof of
Theorem 5 is similar to Chapter 11 of Kushner and Yin (2003),
t is omitted here. Note that ūt

− u∗ is asymptotically normal
Gaussian distributed) with zero mean and covariance Σ∗/t . For
10), ūt will converge to its limit at a convergence rate that
pproaches asymptotically the corresponding CR lower bound
Polyak & Juditsky, 1992; Yin, 1991). In this sense, Σ∗ is the
‘smallest’’ covariance possible, which is a common error mea-
ure and a main performance indicator for the convergence rate.
ence, Σ∗ is the measure of reliability of the DOFC algorithm
gainst communication uncertainties. The focus of this paper is
o use the CR lower bound and asymptotic optimality in the
onvergence rate of the algorithms to study certain fundamental
mpact of communication packet delivery rate.

emark 4. Here we use the error covariance matrix Σ∗ to
valuate how fast convergence to the optimal solution can be
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Fig. 1. Schematics of the cyber network of the IEEE 24 bus system.

achieved and how the convergence rate depends on the packet
delivery ratio. Note that

det(Σ∗) = det((β̄G)−1Σ(Gβ̄)−1)

= det((β̄G)−1E[β1Σd(β1)⊤](Gβ̄)−1)

det(β̄−1G−1β̄ΣdG−1β̄−1)

= det(β̄−1) det(G−1ΣdG−1)

=

( n∏
i=1

∏
ℓ∈Ni

Pr−1
i,ℓ

)
det(G−1ΣdG−1), (12)

here det(·) denotes the determinant operator. It can be observed
hat the lower the packet delivery ratio Pri,ℓ is, the ‘‘larger’’ Σ∗ is
nd in turn the DOFC algorithm weakly converges slower to the
ptimal solution. This relationship will become a foundation for
esource allocation (on communication systems) and reliability
ssessment (on power systems).

. Case studies and discussions

In this part, we use realistic prosumer electric energy systems
o illustrate the relationship between the packet delivery ratio
nd the convergence rate of the DOFC algorithm. The IEEE 24-
us system represents a bulk electric energy system, which has
8 power lines and 32 generators. The average demand of the
ystem is 2577 MW. The detailed description of the physical layer
an be found in Grigg et al. (1999). In this study, the system is
lustered into 10 prosumers with 25 tie-line connections between
rosumers. Each prosumer represents a balancing authority area
or frequency control. Fig. 1 illustrates the cyber layer of the
rosumer-based IEEE 24-bus system. Note that the cyber-layer
ollows the sparsity structure of the prosumer-based grid to allow
eer-to-peer communication among prosumers.
For simulation settings, we assume that the gradient noises

re i.i.d Gaussian random variables with zero mean and variance
. For a chosen packet delivery ratio, we repeat the simulation
or m = 500 times with the same initial states for Algorithm 1.
hen we can get m sequences {∥ut,j

− u∗
∥, t ≥ 1}, j = 1, . . . ,m,

here u∗
= [u∗

1, . . . , u
∗

10] ∈ R10 is the optimal solution and the
uperscript j denotes the jth simulation result. We calculate the
ollowing mean error norm trajectories: Mut

=
1
m

∑m
j=1 ∥ut,j

−
∗
∥, t ≥ 1, and plot log(Mut ) under different packet delivery ra-

ios in Fig. 2, which shows that by decreasing the packet delivery
atio, the convergence rate of the DOFC algorithm for the IEEE
4-bus system decreases.
Also, Fig. 3 shows the frequency dynamics of the center of

nertia for different packet delivery ratios. Note that when the
 s

6

Fig. 2. Log of error norms with different packet delivery ratios for IEEE 24 bus
system.

Fig. 3. Frequency dynamics of the center of inertia with different packet delivery
ratios for IEEE 24 bus system.

convergence rate increases, the DOFC algorithm may take less
steps to obtain the optimal solution, which also implies that it
takes less time to recover from a disturbance, i.e., a faster con-
vergence rate ensures greater reliability of the prosumer energy
grid. It takes 340 iterations to achieve 0.005 per unit (p.u.) error
threshold for Pri,ℓ = 1, and 529 iterations for Pri,ℓ = 0.9, 843
iterations for Pri,ℓ = 0.8. Thus, improving packet delivery ratio
can directly increase the power system reliability. It implies a
desirable approach of control-communication co-design in which
distributed optimization algorithms and communication resource
allocation must be coordinated.

Moreover, let the packet delivery ratio be 0.9, then we know
that Tr(Σ∗) = 0.8946. We apply the iterate averaging algorithm
(10), (11) and repeat the simulation for m = 500 times with the
same initial states. We can calculate the following mean covari-
ance matrix: Cut

=
1
m

∑m
j=1(ū

t,j
− u∗)(ūt,j

− u∗)⊤ ∈ R10×10. Then,
e plot the trace of the mean covariance: covut

= Tr(Cut ), t ≥ 1,
n Fig. 4, which approaches Tr(Σ∗)/t as t increases.

. Concluding remarks

This paper developed rigorous analysis of the impact of data
acket loss on the convergence of DOFC in AC electric energy
ystems, populated with many prosumer agents. The paper first
odeled the communication uncertainties using probabilistic de-
criptions of packet delivery ratio. The proposed channel model
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as congregated to derive a stochastic description of the cyber
etwork topology in AC electric energy systems. Stochastic ap-
roximation methods were used for the convergence analysis
f the DOFC algorithm in prosumer-based energy systems. By
mbedding the information network switching model into the
OFC algorithm and performing stochastic analysis, we estab-
ished a rigorous relationship between the packet delivery ratio
f communication erasure channels, algorithm convergence rate,
nd accuracy of DOFC solutions. The theoretical findings provided
uidance on the choice of control parameters for guaranteed
onvergence of the DOFC algorithm. The future research endeavor
s to develop fault-tolerant distributed algorithms to mitigate the
mpact of communication failures, and to design more suitable
artial information gradients to update u in a proper way.
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