An Ambient Pressure, Direct Hydrogenation of Ketones
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We report two bifunctional (pyridyl)carbene-iridium(l) complexes
that catalyze ketone and aldehyde hydrogenation at ambient
pressure. Aryl, heteroaryl, and alkyl groups are demonstrated, and
mechanistic studies reveal an unusual polarization effect in which
the rate is dependant of proton, rather than hydride, transfer. This
method introduces a convenient, waste-free alternative to
traditional borohydride and aluminum hydride reagents.

Direct hydrogenation of carbonyl groups is a 100% atom
efficient, environmentally benign synthetic process. While
hydride reagents like LiAlHs and NaBH, are effective and
expedient for this transformation, these are accompanied by
the cost and separation issues that accompany a stoichiometric
portion of any metallic reagent, which makes direct
hydrogenation an important option at scale.! Since Noyori’s
milestone discovery of asymmetric ketoester direct
hydrogenation,2 many well-defined molecular catalysts for
hydrogenation, transfer hydrogenation, and dehydrogenation
of C=0 systems have emerged,3 yet most rely on hydrogen gas
pressure or a hydrogen donor/acceptor to obtain useful rates.*
Frustrated Lewis-pair species have also been demonstrated,>
although also rely on elevated gas pressure.® Such requirements
for pressurization limit the utility of these methods and make
them inconvenient for users without pressurization tools. Base
metals (Fe, Co, Ni, and Cu) are emerging in this space;’ in fact,
the Hanson PNP-Co complexes catalyze ambient pressure
hydrogenation of some ketones in THF at 60 °C,”* but room
remains to introduce high reactivity, highly functional group
tolerant catalysts for ambient pressure carbonyl hydrogenation.
Thus, we report here a catalytic hydrogenation system that
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affects carbonyl hydrogenation with ambient hydrogen
pressure at up to quantitative yield on a diverse set of ketones
and aldehydes.

_ @ _ 1@ _ Jl®
Q\Ir/CO > '\i\lr/r: Q\Ir/r:
I T =
&’N‘Mes \/NxR &’N‘Mes
1 2R =Me 4
3 R =Mes

Chart 1 Four iridium-based catalyst precursors. Anion = TfO".

We previously reported complexes 1-3 as pre-catalysis for
glycerol dehydrogenation.? Therein we found that backbone
deprotonation of 2 with concurrent pyridine dearomatization
plays a mechanistic role in cleaving glycerol’s O—H bond,
apparently through a metal-ligand cooperative step. We further
found that electron withdrawing CO ligands slowed
dehydrogenation by comparing rates of reactions of 1 and 3. We
propose that the opposite should be true in the reductive
direction, and that the apparent bifunctional nature of the
backbone of 1-3 could facilitate H, cleavage as highlighted in
Scheme 1.3d

Scheme 1 Hydrogen molecule cleavage and dihydride iridium formation, ORTEP
diagram of 5 (CCDC 2142636) with 50% ellipsoids.

When we treated precursor 1 with KO!Bu and one bar H, in a
J. Young tube at room temperature, we found that it rapidly
split hydrogen and formed iridium dihydride complex 5 (Scheme
1).° The same reaction is unsuccessful with iridium complex 4
that lacks a pyridyl methylene arm, which is consistent with our
view that the backbone CH group is important to hydrogen
cleavage.

Whereas complexes 1-3 cleave H, at ambient temperature
and pressure as shown in Scheme 1, we screened them for



ambient pressure acetophenone hydrogenation. Complex 1 has
the highest reactivity among the three (Table S1). By contrast,
complex 4 has no reactivity in acetone hydrogenation, again
consistent with a role for the backbone CH group. Further
consistent, none of these four iridium complexes has reactivity

for acetone hydrogenation if base is removed from this reaction,

although the role of the base could be to deprotonate a
coordinated H, ligand. We therefore expect that ligand
deprotonation and dearomatization play a role in hydrogen
splitting and catalyst precursor activation for these precursors.

Condition optimization for the hydrogenation of
acetophenone with 1 are outlined in Table S1. Various bases
were tested for the hydrogenation of acetophenone, using 3
mol % 1, 10 mol % base and 1 atm hydrogen pressure at 40 °
C. This taught us that effective bases have a pKa above ca. 16,
which is appropriate for ligand backbone deprotonation: KOtBu,
KH, and NaOEt afforded productive reaction where KOH and
K,CO3 did not. We next turned to solvent and temperature.
Increasing the temperature provided a modest increase in the
reaction yield, but the yield at 120 °
C, thus leaving toluene as a suitable solvent for this reaction
system. Gratifyingly, the system operates efficiently down to
ambient pressure.

With optimized reaction conditions, we screened a series of
ketones and aldehydes to understand the rection’s scope.
Studying a series of differentially para-substituted
acetophenones (Table 1, entries 1-7) enabled calculation of a
negative (nucleophilic substrate) Hammett reaction parameter
of p =-0.93 (see Supporting Information). This negative p value
is atypical for reduction, which should normally involve an
electrophilic accepter receiving a nucleophilic hydride in a
kinetically-relevant step: for example, the p value for NaBH,
reduction of this reaction is +3.06,10 and LiAlH4 reduction of
benzophenones +1.95.11 Catalytic ketone hydrogenation with
the Shvo system has p = +1.77, +0.91 under two conditions
studied.1213 These undergo a concerted, outer-sphere hydrogen
transfer mechanism. The p for Noyori type catalyst
[RuCly(diphosphine)(1,2-diamine)] is p = +1.03.14 Lewis acid-
catalyzed acetophenone hydrogenation also has a positive p >
1.15

The negative p value in our system is consistent with kinetic
relevance of a proton transfer step, rather than a hydride
transfer as in the above cases. Its magnitude, p < -0.5, is
consistent with the involvement of an anionic phenonone-
containing fragment in or before our rate-limiting step.16 Such a
species could be a metal alkoxide,” which is protonated in a
slow step (vide infra).

Continuing our study of substrate scope (Table 1), we
examined ketones with increased steric demand. These are well
tolerated (entries 8—9). Particularly, benzophenone was
reduced at the larger 500 mg scale (entry 9b) to show that
scaling the biphasic reaction does not significantly retard the
yield. Furthermore, we tested the hydrogenation of
benzophenone using conditions that did not involve our glove
box, which we use for convenience in other cases. In entry 9c,
all reagents were weighed out on the benchtop, and then the
Schlenk flask was purged with H,. This result shows that the
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Table 1 Substrate scope.
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Entry Substrates Products [Il  Yield (%)?
o) OH
19 19a
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20 20a
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22 22a
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dlsolated yield, 100 mg substrate scale. °NMR yield. <500 mg scale. Reagents
weighed out in air.

glove box is not necessary for this system, thus making it
practically accessible to organic practitioners.
Diphenylcyclopropenone was reduced chemoselectively at the
C=0 bond, with no evidence of C=C reduction (entry 10).
Heteroaryl-substituted ketones and aldehydes were also
hydrogenated (entries 11, 18). For aliphatic ketones such as 5-
nonanone and 2,2,4,4-tetramethyl-3-pentanone, lower activity
was observed (entries 12, 13).

To gain insight into the chemoselectivity of reactions of
catalyst 1, a competition experiment was performed in which a
1:1 mixture of styrene and benzaldehyde was hydrogenated
using 1. Benzaldehyde was hydrogenated more rapidly, with
complete conversion of benzaldehyde and only 8% conversion
of styrene observed over 48 hours. We can exploit this in the
chemoselective reduction of enones (entries 14, 15), although
cyclohexenone and cyclohexanone have low reactivity with this
system. While highly chemoselective, entry 15 highlights a
weakness of the method, which is that cyclohexanone and
cyclopentanone substrates are low-yielding in our hands.

We also explored the activity of the complex 1 towards a
collection of aldehydes. Benzaldehyde and 4-
hydroxybenzaldehyde were reduced (entries 16, 17). Complex 1
has lower activity for heterocyclic aldehydes, possibly due to
coordination of the heterocycle to the iridium center competing
with H,. While 1 operates efficiently with many substrates, we
sought a faster and more efficient catalyst to address cases that
are not well-served by 1. Suspecting that carbonylation in 1
reduces the basicity of the intermediate that must receive a
proton in the slow step, we designed and synthesized chloride-
substituted pre-catalyst (CN)IrCI(CO), 6. Single crystals of 6 were
prepared from slow liquid diffusion of dichloromethane and
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diethyl ether to enable determination of its molecular structure
(Scheme 2). Unlike Nozaki’s pincer iridium system [k3-[2,6-
('ProPCH3)2(CeH3N)]IrHs], which takes 20 hours to form its active
iridium trihydride complex,'®8 precursor 6 immediately
transforms to trihydride 7 at ambient temperature and pressure
(see Supporting Information). While it is somewhat less shelf-
stable than 1, we find that complex 6 enables more rapid
reactions than 1. Table 1 shows compared yields of
hydrogenations with catalysts 1 and 6 in which the more rapid
reactivity of 6 enables significantly superior performance.

=, H
— NaOH §:\7I/H
Q\Ir:%lo _— [\(_N/\l{\H
LS5\Mes Hy (1atm) <SEN.CO
Mes

6 7

Scheme 2 Catalyst precursor 6 and iridium trihydride 7.18 ORTEP diagram of 6
(CCDC 2258133) with 50% ellipsoids.

A series of experiments were conducted to establish the
reaction mechanism. We have measured the kinetic order of
reaction for ketone, base, and catalyst and each is first order.
We performed a kinetic isotope effect study by parallel
reactions with complex 1 and benzophenone to investigate
whether the H; coordinating step is rate-limiting. The observed
KIE value of 1.06(11) is inconsistent with a kinetically relevant
step involving H, metal complex coordination and cleavage;
these typically have KIE > 2.19 Further, hydrogen pressure does
not effect this reaction rate. An Eyring plot, constructed using
acetone as the substrate over a temperature range of 60-90 °C
results in AS' = -42.7(25) cal molt K-t and AH* = 9.5(7) kcal mol-!
(see Supporting Information). This indicates a very low enthalpic
(bond cleavage) component, but a significant entropic cost, in
or before the rate-limiting transition state. We see this body of
data as consistent with a reversible H; activation and a fast,
facile hydride transfer early in the mechanism, both preceding
a slow proton transfer to alkoxide or alcohol dissociation step.
While the strong AS' fits with rate-limiting gas activation, kinetic
independence of [H;] leads us to explain this as an
intramolecular proton shutte. Thus, the ratio of reaction rates
with and without added alcohol, kipron/kno ipron = 1.625,
illustrates that added isopropanol accelerates the reaction
overall, which is consistent with a role of for the alcohol as a
proton shuttle in a rate-limiting proton transfer. In our previous
work, we calculated the energetic advantage of such a proton
shuttle in ketone hydrogenation by an analogous bifunctional
iridium complex.20

We advance the mechanistic hypothesis shown in Scheme 3.
We propose that species 5 transfers a hydride to substrate in a
kinetically invisible step to form proposed intermediate 8. Then,
a kinetically relevant proton transfer from the catalyst’s
methylene arm to the alkoxide occurs. We suspect that an
equivalent of alcohol or the protonated conjugate acid of the
base is involved in this step as a proton shuttle, sketched as 9.
A neutral alcohol is then formed and released. We propose that
the slow step is in this proton transfer/ alcohol dissociation
sequence. Next, we believe that H, coordinates to the
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dearomatized iridium species to form a structure like 10. A
proton can then be transferred from H, to the ligand backbone
to regenerate the aromatized iridium-dihydride 5 in a reaction
analogous to the one we observe stoichiometrically in scheme
1. Again, a proton shuttle would be logical.

—1® KO'Bu —1® o]
= =, H
Y N_ CO HpH Q I_CO )L
No -~ N~
>irl —_— >irl Ry R2
__"~co _I~n
@NMes @N\ég
1 Mes
5
® R, 1°
H—H )<R1
Q\‘/co —, 0" H
I \ N\I| _CO
~&N_co Ib/|r\H
Mes ~&N_co
10 Mes
8
R @
| RZR T slow
Ho| O--H !
/ ~07 TH
H/S
OH Q | co
)<H b \|||' H
R4 R ~&N_co
9 Mes

Scheme 3 Proposed mechanism of catalysis.

In conclusion, we have developed efficient iridium catalysts 1
and 6 for the hydrogenation of ketones and aldehydes at
ambient pressure. Importantly, finding a kinetic scheme in
which H; is zero order enables facile ambient pressure reactions,
which avoid the use of expensive autoclave reactors that are not
readily available in every lab. Further, reactions can be
accomplished using traditional Schlenk techniques without
need for a glove box or freeze-pump-thaw conditions. These
attributes improve the safety and operational convenience of
the reaction. Complex, 6, which differs from 1 by substitution of
a CO for a chloride, has higher catalytic hydrogenation reactivity,
affording useful results for some systems that are not easily
reduced with 1. We envision these catalysts as useful tools both
for organic synthesis at scale, where the by-product of NaBH, or
LiAlH, reduction creates operational costs and challenges, or
small-scale practitioners needing to eliminate by-product
separation, as in radiopharmaceutical synthesis.
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1. General Procedures

All air and water sensitive procedures were carried out either in a Vacuum Atmosphere glove box under nitrogen (2-10 ppm O, for all
manipulations) or using standard Schlenk techniques under nitrogen. Deuterated NMR solvents were purchased from Cambridge Isotopes
Laboratories. Unless otherwise stated, all reagents were purchased from major commercial suppliers (Sigma-Aldrich, Merck, Fluorochem,
Apollo Scientific, Fischer Scientific, Tokyo Chemical Industry, Acros Organics) and used without further purification. Dichloromethane,
acetonitrile and hexanes are purchased from VWR and dried in a J. C. Meyer solvent purification system with alumina/copper(Il) oxide columns;
toluene was dried using sodium benzophenone ketyl; dichloromethane was dried by vacuum transfer from a calcium hydride suspension;
chloro(1,5-cyclooctadiene)iridium(I) dimer (Strem), sodium trifluoromethanesulfonate (Sigma-Aldrich), potassium tert-butoxide (Sigma-
Aldrich) were purged with nitrogen and stored under nitrogen atmosphere; pyridine-imidazolium ligands and corresponding silver carbenes
were synthesized using a literature procedure.! CO was supplied by Airgas through USC Mailing and Material Management.

NMR spectra were recorded on a Varian Mercury 400, Varian VNMRS 500, or VNMRS 600, spectrometers processed using MestReNova.
All chemical shifts are reported in units of ppm and referenced to the residual 'H or '3C solvent peak and line-listed according to (s) singlet,
(bs) broad singlet, (d) doublet, (t) triplet, (dd) double doublet, etc. 13C spectra are delimited by carbon peaks, not carbon count. '°F chemical
shifts are referenced to a trichlorofluoromethane external (coaxial insert tube) standard (0 ppm). Air-sensitive NMR spectra were taken in 8”
J-Young tubes (Wilmad or Norell) with Teflon valve plugs. Data were collected and graphed was plotted with Microsoft Excel.

Hydrogenation Procedures

The iridium catalysts for carbonyl groups hydrogenation are stored in a glovebox for long term purpose. In a typical reaction, iridium catalyst,

base (i.e. KOtBu) and solid substrates are weighed inside the glovebox, added to a Schlenk flask equipped with a magnetic stir bar. (Figure S1)

Liquid substrates and toluene are measured and added to the same flask with a disposable plastic syringe. An oil bath is used for reactions at

100 °C. Bath temperature is monitor using an alcohol thermometer. Normally <+2.5 °C temperature fluctuation is observed for oil baths.
—

T
il

AR

-

[Ir] + Base — °om’®
Ry = Aryl, Heteroaryl, Alkyl H Y N
R = Aryl, Heteroaryl, Alkyl, H [IN=H \ co

Ir
S e
Mes

=

Base= KOBu

Figure S1. Apparatus set up for hydrogenation reactions.



I1. Controlled experiments for the hydrogenation of acetophenone

Different conditions were tried to optimize the hydrogenation of acetophenone. Complex 1—4 has been screened for catalytic hydrogenation
under ambient pressure. In a typical reaction, the solvent of the resulting solution was removed in vacuum and 5 mL saturated NaCl solution
was added into the residue. The resulting mixture was extracted with DCM (3 times, 15 mL) and concentrated under reduced pressure. The
residue was dissolved in deuterated chloroform and analyzed by NMR. The NMR yields were obtained by quantitative '"H NMR analysis using
mesitylene as the internal standard.

Table S1. Optimization of the hydrogenation of acetophenone.
(0] OH

[Ir] (3 mol%)
Phk Ph)\

H, (1 atm), base, solvent,

T(°C),48h
Entry [Ir] base solvent T(°C) NMR yield (%)
1 1 KO'Bu toluene 40 40
2 2 KO'Bu toluene 40 <5
3 3 KO'Bu toluene 40 13
4 4 KO'Bu toluene 40 0
5 1 K2CO3 toluene 40 <5
6 1 NaOEt toluene 40 37
7 1 KOH toluene 40 8
8 1 KH toluene 40 1
9 1 — toluene 40 0
10 1 KO'Bu benzene 40 13
11 1 KO'Bu THF 40 <5
12 1 KO'Bu MeOH 40 5
13 1 KO'Bu toluene 60 46
14 1 KO'Bu toluene 80 78
15 1 KO'Bu toluene 100 88
16 1 KO'Bu toluene 120 61




II1. Preparation of catalyst

Note: all the procedures for syntheses of iridium complexes are performed in the glovebox.

Complex 4
Mes N/ _ “1®0oTf®
N N [Icop)Ci} SN \
_Br__ :l 2 N,
— I
[N}Ag\Br/Ag{N ‘ then NaOTf <b\( N |
Mes/ DeM N‘
v '(f 359 Mes
= [Agh 4

In the glovebox under nitrogen, in a 100 mL Schlenk flask wrapped in foil to avoid light, dibromo-di(3-mestiyl-1H-imidazol-2-ylidene)-
disilver(I) (100 mg, 0.111 mmol)> was added in small portions to a stirring solution of chloro(1,5-cyclooctadiene)Iridium(I) dimer (74.6 mg,
0.222 mmol) in dry dichloromethane (20 mL). After 6 hours, sodium trifluoromethanesulfonate (38.2 mg, 0.222 mmol) was also added to the
mixture. After stirring for 30 minutes, the solution was filtered through a dry pad of celite to remove the byproducts. The solvent was evaporated
under reduced pressure to yield a red glassy solid. This red solid was dissolved in dry dichloromethane (10 mL), and dry hexanes (20 mL) was
added to the solution to facilitate a precipitation. A red crystalline solid was acquired and dried under vacuum (54 mg, 35%). This sample was
spectroscopically pure by "H NMR (Figure S2).

This synthetic step can be done without a glove box. Pyridine-imidazolium ligands were synthesized in a laboratory reflux apparatus out of the
glove box. For [Ag]; synthesis in air, pyridine-imidazolium ligand (500 mg, 1.59 mmol), Ag,O (221.5mg, 0.96 mmol, 0.6 eq) and
dichloromethane (50 mL) were added in a 250 mL round bottom flask wrapped in foil. This flask was purged with N, and connected with a N,
balloon. After stirring for 48 hours, the solution was filtered through a pad of celite to remove the unreacted Ag>O and byproducts. Half of the
solvent was evaporated under reduced pressure and then hexanes (50 mL) was dropped into this solution using a pressure-equalizing dropping
funnel. The top of the dropping funnel is connected with a N, balloon. A grey crystalline solid was acquired and dried under vacuum (520 mg,
77.6%).

For complex 4 synthesis in air, in a 100 mL round bottom flask, chloro(1,5-cyclooctadiene)Iridium(I) dimer (100 mg, 0.3 mmol) was dissolved
in dichloromethane (10 mL). Then, using a pressure-equalizing dropping funnel to drop a solution of [Ag]; (134 mg, 0.15 mmol) in
dichloromethane (10 mL) into this stirring solution. The apparatus was equipped with an N, balloon. After 6 hours, sodium
trifluoromethanesulfonate (51.2 mg, 0.3 mmol) was also added to the mixture. After stirring for another 30 minutes, the solution was filtered
through a pad of celite to remove byproducts. Half of the solvent was evaporated under reduced pressure and then hexanes (25 mL) was
dropped into this solution using a pressure-equalizing dropping funnel. The top of the dropping funnel is connected with a N, balloon. A red
solid was acquired and dried under vacuum (68 mg, 33%).

'TH NMR (500 MHz, cdcls) 6 8.64 (t, J= 1.7 Hz, Im 1H), 8.59 (d, J = 8.4 Hz, py 1H), 8.33 (t,J=7.9 Hz, py 1H), 8.04 (d, J= 5.7 Hz, py 1H),
7.54 —7.48 (m, py 1H), 7.01 (s, mesityl-ar 2H), 6.86 (d, J= 2.1 Hz, Im 1H), 4.91 —4.71 (m, COD sp? 2H), 3.77 — 3.56 (m, COD sp? 2H), 2.37
(s, mesityl-para-methyl 3H), 2.21 (d, J = 12.5 Hz, COD sp? 4H), 2.13 — 2.11 (s, mesityl-ortho-methyl 6H) 2.01 — 1.83 (m, COD sp?® 4H).

13C NMR (126 MHz, cdcls) & 172.87 (carbene C), 154.55 (py), 147.49 (py), 144.99 (py), 141.00 (mesityl-ar), 134.37 (mesityl-ar), 133.64
(mesityl-ar), 130.01 (mesityl-ar), 125.81 (Im), 124.40 (py), 119.53 (Im), 114.33 (py), 86.42 (COD sp?), 65.99 (COD sp?), 33.80 (COD sp?),
29.24 (COD sp?), 21.41 (mesityl-CH3), 17.74 (mesityl-CH3), 14.27 (mesityl-CH3).

IR (thin film/cm-1) v 3533, 3109, 3052, 2914, 2831, 1734, 1591, 1570, 1470, 1435, 1394, 1263, 1223, 1150, 1030, 730, 700, 636.

MS (MALDI) calc’d for [CosHaolrNs]* 563.7, found 563.2.
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Figure S2. "H NMR spectrum of complex 4 at 25 °C in CDCls.
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Figure S3. 3C NMR spectrum of complex 4 at 25 °C in CDCls.
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Complex 6

7\ _
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N N /
N el N (O}, N
[ >meli e ] — e
N cl N MeCN @Nb\m

N= Mes/ 65%
\

[Adl. 6

In the glovebox under nitrogen, in a 100 mL Schlenk flask, chloro(1,5-cyclooctadiene)iridium(I) dimer (100 mg, 0.15 mmol) was dissolved in
dry acetonitrile (20 mL). The flask was purged with 1 atm CO gas. After 5 min, dichloro-di(1-(2,4,6-trimethylphenyl)-3-(2-picolyl)-imidazol-
2-ylidene)-disilver(I)? ([Ag]s, 125 mg, 0.15 mmol) was added in small portions to this stirring solution. After stirring for 1 hour, the solution
was filtered through a tube of dry cotton, apparently to remove the silver chloride byproduct. The solvent was evaporated under reduced
pressure to yield a yellow glassy solid. This yellow solid was dissolved in dry dichloromethane (10 mL), and dry hexanes (20 mL) was added
to the solution to facilitate a precipitation. A yellow crystalline solid was acquired and dried under vacuum (104 mg, 65%). This sample was
spectroscopically pure by "H NMR (Figure S6).

This synthetic step can be done without a glove box. [Ag], can be synthesized out in air and the procedure is the same as the steps mentioned
in preparation of complex 4.

For complex 6 synthesis out in air, chloro(1,5-cyclooctadiene)iridium(I) dimer (100 mg, 0.15 mmol) was dissolved in acetonitrile (20 mL) in
a 100 mL Schlenk flask. After 5 min, using a pressure-equalizing dropping funnel to drop a solution of [Ag]» (125 mg, 0.15 mmol) in acetonitrile
(10 mL) into this stirring solution. After 1 hour, the solution was filtered through a pad of celite to remove byproducts. The solvent was
evaporated under reduced pressure to yield a yellow glassy solid. This yellow solid was dissolved in dichloromethane (10 mL) and then hexanes
(25 mL) was dropped into this solution using a pressure-equalizing dropping funnel. The top of the dropping funnel is connected with a N
balloon. A yellow solid was acquired and dried under vacuum (93 mg, 58%).

TH NMR (500 MHz, cdxcl) 8 9.31 (dd, J = 5.8, 1.7 Hz, py 1H), 7.97 (td, J= 7.7, 1.7 Hz, py 1H), 7.59 (d, J = 7.8 Hz, py 1H), 7.51 (dd, J =
7.5,5.9 Hz, py 1H), 7.22 (d, J= 2.1 Hz, Im 1H), 7.03 (s, mesityl-ar 2H), 6.82 (d, J = 2.1 Hz, Im 1H), 5.38 — 5.36 (s, methylene 2H), 2.39 (s,
mesityl-para-methyl 3H), 2.10 (s, mesityl-ortho-methyl 6H).

13C NMR (126 MHz, cdacly) § 176.02 (carbene C), 162.09 (CO), 154.13 (py), 153.58 (py), 139.81 (py), 139.60 (mesityl), 136.26 (py), 135.97
(mesityl), 129.32 (mesityl), 125.05 (py), 123.92 (mesityl), 121.31 (Im), 120.38 (Im), 55.42 (py-CH>), 21.25 (mesityl-CH3), 18.64 (mesityl-
CHa).

IR (thin film/cm-1) v 3055, 2992, 2939, 2252 (CO), 1558, 1505, 1435, 1416, 1374, 1270, 1035, 917, 734, 702.

MS (MALDI) calc’d for [CigHioIrN3]™ 469.6, found 469.7.
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Figure S5. "H NMR spectrum at 25 °C in CD>Cl,.
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IV. NMR Spectra of products in Table 1

All compounds formed in Table 1 are known compounds, and most are commercially available.
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TH NMR (500 MHz, cdels) & 7.38 — 7.30 (m, 4H), 7.28 — 7.24 (m, 1H), 4.87 (q, J = 6.5 Hz, 1H), 1.48 (d, J = 6.4 Hz, 3H).

Figure S8. "H NMR spectrum of Table 1 Entry 1 product 11aa in CDCI;. Data are consistent with a commercial compound.
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'H NMR (400 MHz, cdcl3) § 7.30 — 7.25 (m, 2H), 6.78 — 6.73 (m, 2H), 4.82 (q, J = 6.4 Hz, 1H), 2.96 (s, 6H), 1.50 (d, J = 6.4 Hz, 3H).

Figure S9. 'H NMR spectrum of Table 1 Entry 2 product 11ba in CDCls. Data are consistent with a commercial compound.
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'H NMR (500 MHz, cdcl3) § 7.29 — 7.24 (m, 2H), 6.88 — 6.83 (m, 2H), 4.81 (q, J = 6.4 Hz, 1H), 3.78 (s, 3H), 1.45 (d, J = 6.4 Hz, 3H).

Figure S10. "H NMR spectrum of Table 1 Entry 3 product 11ca in CDCl;. Data are consistent with a commercial compound.
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'H NMR (500 MHz, cdcl3) § 7.10 — 7.04 (m, 2H), 6.84 — 6.78 (m, 2H), 6.15 — 6.09 (q, 1H), 1.23 (m, J = 7.6 Hz, 3H).

Figure S11. '"H NMR spectrum of Table 1 Entry 4 product 11da in CDCl;. Data are consistent with a commercial compound.
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TH NMR (400 MHz, cdels) & 7.53 — 7.46 (m, 2H), 7.28 — 7.22 (m, 2H), 4.86 (q, J = 6.5 Hz, 1H), 1.48 (d, J = 6.5 Hz, 3H).

Figure S12. '"H NMR spectrum of Table 1 Entry 5 product 11ea in CDCl;. Data are consistent with a commercial compound.
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'H NMR (400 MHz, cdcls) 5 7.83 — 7.86 (m, 2H), 7.39 — 7.42 (m, 2H), 4.82 (q, J = 6.4 Hz, 1H), 1.41 (d, J = 6.4 Hz, 3H).

Figure S13. '"H NMR spectrum of Table 1 Entry 6 product 11fa in CDCl;. Data are consistent with a commercial compound.
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Entry 7 product 11ga:

OH

O,N

'H NMR (600 MHz, cdcls) § 8.17 — 8.13 (m, 2H), 7.55 — 7.50 (m, 2H), 5.01 (q, /= 6.5 Hz, 1H), 1.50 (d, J = 6.5 Hz, 3H).
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'"H NMR (600 MHz, cdcl3) & 6.58 (t, J = 0.7 Hz, 2H), 4.82 (tdd, J = 6.4, 6.1, 1.1 Hz, 1H), 3.85 (d, J= 1.0 Hz, 6H), 3.82 (d, J =
0.9 Hz, 3H), 1.47 (dd, J=6.5, 0.9 Hz, 3H).
Figure S14. '"H NMR spectrum of Table 1 Entry 8 product 12a in CDCl;. Data are consistent with a commercial compound.
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'H NMR (600 MHz, cdcls) § 7.41 — 7.36 (m, 4H), 7.34 (dd, J = 8.5, 6.8 Hz, 4H), 7.30 — 7.26 (m, 2H), 5.86 (s, 1H).

Figure S15. "H NMR spectrum of Table 1 Entry 9 product 13a in CDCl;. Data are consistent with a commercial compound.
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TH NMR (500 MHz, cdels) & 7.69 — 7.64 (m, 4H), 7.50 (t, J = 7.7 Hz, 4H), 7.43 — 7.40 (m, 2H), 3.07 (s, 1H).

Figure S16. "H NMR spectrum of Table 1 Entry 10 product 14a in CDCl;. Data are consistent with a known compound.3
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TH NMR (400 MHz, cdels) & 8.51 — 8.31 (m, 2H), 7.34 — 7.19 (m, 2H), 4.85 (q, J = 6.5 Hz, 1H), 1.45 (d, J = 6.5 Hz, 3H).

Figure S17. "H NMR spectrum of Table 1 Entry 11 product 15a in CDCls. Data are consistent with a commercial compound.
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'H NMR (600 MHz, cdcl3) § 3.83 —3.74 (m, 1H), 1.47 — 1.28 (m, 6H), 1.18 (d, J = 6.2 Hz, 3H), 0.92 — 0.89 (m, 3H).

Figure S18. '"H NMR spectrum of Table 1 Entry 12 product 16a in CDCls. Data are consistent with a commercial compound.
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'H NMR (400 MHz, cdcl3) & 3.56 (h, J=4.3 Hz, 1H), 1.49 — 1.21 (m, 12H), 0.98 — 0.80 (t, 6H).

Figure S19. "H NMR spectrum of Table 1 Entry 13 product 17a in CDCl;. Data are consistent with a commercial compound.

Entry 14 product 18a:

©/\/\OH

'H NMR (400 MHz, cdcls) § 7.37 (d, J = 7.2 Hz, 2H), 7.34 — 7.27 (m, 3H), 6.59 (dd, J = 15.8, 1.7 Hz, 1H), 6.35 (dt, J = 15.9, 5.7 Hz, 1H),
4.30 (dd, J=5.7, 1.6 Hz, 2H).

Entry 15 product 19a:

OH

'H NMR (400 MHz, cdcls) § 5.90 — 5.87 (t, 1H), 5.76 — 5.73 (t, 1H), 4.06 (t, 1H), 2.08 — 2.04 (m, 2H), 1.87 — 1.83 (m, 2H), 1.73 — 1.69 (m,
2H).
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H NMR (400 MHz, cdcls) § 7.50 — 7.04 (m, SH), 4.52 (s, 2H).

Figure S20. "H NMR spectrum of Table 1 Entry 16 product 20a in CDCls. Data are consistent with a commercial compound.
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TH NMR (400 MHz, d0) 8 7.30 (dd, J = 8.5, 2.3 Hz, 2H), 7.00 — 6.83 (m, 2H), 4.55 (d, J = 2.2 Hz, 2H).

Figure S21. '"H NMR spectrum of Table 1 Entry 17 product 21a in D,O. Data are consistent with a commercial compound.
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'H NMR (600 MHz, cdcl3) § 6.67 — 6.61 (m, 1H), 6.11 (dd, J= 3.6, 1.8 Hz, 1H), 6.05 (dd, J = 3.5, 2.7 Hz, 1H), 4.59 (s, 2H), 3.69 (s, 3H).

Figure S22. '"H NMR spectrum of Table 1 Entry 18 product 22a in CDCl;. Data are consistent with a commercial compound.
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'H NMR (600 MHz, cdsod) 8 3.54 (t, J = 6.7 Hz, 2H), 1.58 — 1.49 (m, 2H), 1.40 — 1.30 (m, 4H), 0.96 — 0.89 (m, 3H).

Figure S23. "H NMR spectrum of Table 1 Entry 19 product 23a in CD;OD. Data are consistent with a commercial compound.
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V. Mechanistic Study

Catalyst Initiation

In a glovebox, iridium compound 1 (20 mg, 0.030 mmol) and KO'Bu (11.0 mg, 3.3 eq) are added to a J. Young tube. dichloromethane-d, (1.0
mL) solvent is added to dissolve the solid mixture. J. Young tube is then gently evacuated, refilled with 1 atm H, and placed at room temperature
for 10 min. '"H NMR shows a kind of Ir-dihydride (compound 5) formed (Figure S26). Data are consistent with a known compound.* CCDC#
2142636 contains supplementary crystallographic data for 5.
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Figure S24. 'H NMR spectrum of compound 5 in CD,Cl,.

In a glovebox, iridium compound 6 (20 mg, 0.038 mmol) and NaOH (4.6 mg, 3.3 eq) are added to a J. Young tube. Acetonitrile-d; (1.0 mL)
solvent is added to dissolve the solid mixture. J. Young tube is then gently evacuated, refilled with 1 atm H, and placed at room temperature
for 60 min. "H NMR shows three Ir-H signals (Figure S27).
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Figure S25. "H NMR spectrum of Ir-H species in CD,Cl,.
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Reaction orders

Kinetic dependence on ketone concentration

In a glovebox, four different amounts of acetone (0.01mL, 0.138 mmol, or 0.02 mL, 0.276 mmol, or 0.03 mL, 0.414 mmol, or 0.04 mL, 0.552
mmol), iridium compound 1 (1.86 mg, 0.032 mmol) and KO'Bu (1.03 mg, 0.009 mmol) are added to a J. Young tube. Toluene-ds (1.0 mL) is
added to dissolve the solid mixture. The J. Young tube is then gently evacuated, refilled with 1 atm H,. The NMR tube is heated to 100 °C for
a kinetic run. Rate constant of each kinetic run is calculated based on the consumption of the acetone substrate. Rate constants are calculated
to be 5.0(1) x 105!, 5.1(2) x 1057, 4.2(9) x 10° 57!, 4.8(5) x 10° s! (figure S28). A log-log plot (figure S29) gives us a slop of 0.94(5),
indicating the reaction is first order on the ketone substrate.
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Figure S26. Kinetic profile of hydrogenation of four different amounts of acetone.
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Kinetic dependence on base concentration

In a glovebox, four different amounts of KO'Bu (1.5 mg, 0.0138 mmol, or 3.0 mg, 0.0276 mmol, or 4.5 mg, 0.0414 mmol, or 6.0 mg, 0.0552
mmol), iridium compound 1 (5.6 mg, 0.008 mmol) and acetone (0.02 mL, 0.276 mmol) are added to a J. Young tube. Toluene-ds (1.0 mL) is
added to dissolve the solid mixture. The J. Young tube is then gently evacuated, refilled with 1 atm H,. The NMR tube is heated to 100 °C for
a kinetic run. Rate constant of each kinetic run is calculated based on the consumption of the acetone substrate. Rate constants are calculated
to be 5.0(1) x 107!, 5.3(3) x 10° s, 5.0(1) x 10° s, 5.0(1) x 10 57! (figure S30). A log-log plot (figure S31) gives us a slop of 0.76(12),

indicating the reaction is first order on the base KO'Bu.
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Figure S29. Kinetic dependence of base.
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Kinetic dependence on catalyst concentration

In a glovebox, four different amounts of iridium compound 1 (0.93 mg, 0.00138 mmol, or 4.65 mg, 0.0069 mmol, or 9.3 mg, 0.0138 mmol, or
18.6 mg, 0.0276 mmol), KO'Bu (10.1 mg, 0.09 mmol) and acetone (0.02 mL, 0.276 mmol) are added to a J. Young tube. Toluene-ds (1.0 mL)
is added to dissolve the solid mixture. The J. Young tube is then gently evacuated, refilled with 1 atm H,. The NMR tube is heated to 100 °C
for a kinetic run. Rate constant of each kinetic run is calculated based on the consumption of the acetone substrate. Rate constants are calculated
to be 5.1(2) x 105!, 5.2(3) x 10 57!, 5.0(2) x 10° 57!, 5.3(3) x 10° s! (figure S32). A log-log plot (figure S33) gives us a slop of 0.88(4),

indicating the reaction is first order on the iridium compound 1.
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KIE Study

In a glovebox, benzophenone (16 mg, 0.0878 mmol), iridium catalyst 1 (1.78 mg, 0.00263 mmol, 3 mol %) and KOBu (0.99 mg, 0.00878
mmol) are added to a J. Young tube. Toluene-ds (1.0 mL) is added to dissolve the solid mixture. The J. Young tube is then gently evacuated,
refilled with 1 atm H, or D5 and heated to 100 °C for a kinetic study. Rate constant of each kinetic run is calculated based on the consumption

of the benzophenone substrate (figure S33). For the H, experiment, a rate constant of 5.3(3) x 10 s! could be obtained, while for the D; run,
we observed a rate constant of 5.6(4) x 10 5™, This gives us a KIEgypa= 1.06(11).
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Figure S32. KIE study of benzophenone hydrogenation by catalyst 1.
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Hammett Analysis

In four parallel runs, 0.06 mmol substrates (acetophenone or 4'-methoxyacetophenone or 4'-chloroacetophenone or 4'-bromoacetophenone or
4'-nitroacetophenone), iridium catalyst 1 (1.2 mg, 1.8 x 10> mmol) and KO'Bu (0.67 mg, 6.0 x 10 mmol) are added to a J. Young tube. 1.0
mL toluene-ds is added to dissolve the solid mixture. The J. Young tube is then gently evacuated, refilled with 1 atm H,. The NMR tube is
heated to 100 °C for a kinetic run (Figure S35). The Hammett plot (Figure S36) gives us the reaction constant p =-0.93.
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Figure S33. Kinetic profile of hydrogenation of a series of para-substituted acetophenones with different hydride affinities.
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Figure S34. Hammett plot of hydrogenation of a series of para-substituted acetophenones with different hydride affinities.
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Eyring Plot

In a glovebox, benzophenone (16 mg, 0.0878 mmol), iridium catalyst 1 (1.78 mg, 2.6 x 10> mmol, 3 mol %) and KO'Bu (0.3 mg, 2.63x 10
mmol) are added to a J. Young tube. 1.0 mL toluene-ds is added to dissolve the solid mixture. The J. Young tube is then gently evacuated,
refilled with 1 atm H,. The tubes are heated to four temperatures (60 °C or 70 °C or 75 °C or 90°C) for kinetic runs. Rate constant of each
kinetic run is calculated based on the consumption of the acetone substrate. A plot (figure S37) gives us the AH** = +9.5(7) kcal molt and AS**
=-42.8(25) cal mol* K-1.
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Figure S35. Eyring plot of benzophenone hydrogenation by catalyst 1.

Proton Shuttle

In a glovebox, iridium compound 1 (2.6 mg, 0.00386 mmol), KO'Bu (1.4 mg, 0.013 mmol), 4'-dimethylaminoacetophenone (21 mg, 0.129
mmol) and isopropanol (0.01 mL, 0.131 mmol, 1 eq to ketone substrate or 0 mL) are added to a J. Young tube. Toluene-ds (1.0 mL) is added
to dissolve the solid mixture. The J. Young tube is then gently evacuated, refilled with 1 atm H,. The NMR tube is heated to 100 °C for a
kinetic run. Rate constant of each kinetic run is calculated based on the consumption of the ketone substrate. Rate constants are calculated to
be 3.9(1) x 10° s! and 2.4(6) x 10° s (figure S38). This gives us a ratio of these two different reaction rates kron/kno ron = 1.625.
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Figure S36. Kinetic profile of hydrogenation of 4'-dimethylaminoacetophenone with or without alcohol.
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VI. Crystal Structure of 6
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Figure S37. Molecular structure of 6.

Yellow single crystals of C19H9CIIrN3O [6] were prepared from slow liquid diffusion of dichloromethane and diethyl ether. A suitable crystal
was selected and mounted on a loop on a XtalLAB Mini II diffractometer. The crystal was kept at 100.00(10) K during data collection. The X-
ray intensity data were measured on a Bruker APEX DUO system equipped with a fine-focus tube (MoK @ , A =0.71073 A) and a TRIUMPH
curved-crystal monochromator.

Table S2. Crystal data and structure refinement for 6.

Identification code Iridium CN carbonyl chloride
Empirical formula Ci9HoCIIrN;O
Formula weight 533.02
Temperature/K 100.00(10)
Crystal system monoclinic
Space group P2/c

alA 8.7180(2)

b/A 15.1641(3)
c/A 14.4976(3)

a/° 90

pre 106.108(2)

v/° 90

Volume/A3 1841.35(7)

Z 4

Pealeg/cm’ 1.923
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wmm-! 7.408

F (000) 1024.0

Crystal size/mm? 0.173 x 0.095 x 0.058
Radiation Mo Ko (A=0.71073)

20 range for data collection/®
Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?

Final R indexes [[>=2c (I)]
Final R indexes [all data]
Largest diff. peak/hole / e A~

5.372 to 64.818
-13<h<12,-22<k<20,-20<1<21
50998

5943 [Rint = 0.0498, Ryigma = 0.0296]
5943/0/232

1.041

R; =0.0251, wR, = 0.0457

R; =0.0377, wR, = 0.0501

2.65/-1.10

Table S3. Fractional Atomic Coordinates (x10*) and Equivalent Isotropic Displacement Parameters (A2x10%) for Iridium CN Carbonyl
Chloride. U, is defined as 1/3 of the trace of the orthogonalised Uy; tensor.

Atom X y z U(eq)
Irl 3407.11(13) 7004.50(7) 6358.82(8) 15.41(4)
Cll1 1781.1(9) 8218.5(5) 5624.7(6) 22.14(15)
01 903(3) 6376.5(17) 7228(2) 33.7(6)
N1 4774(3) 5210.1(18) 7182(2) 20.4(5)
N2 6544(3) 6203.4(18) 7216.6(19) 18.6(5)
N3 5147(3) 7429.4(17) 5672.3(19) 17.7(5)
Cl 4665(4) 7684(2) 4748(2) 20.7(6)
C2 5719(4) 7884(2) 4221(2) 23.3(7)
C3 7343(4) 7843(2) 4663(2) 23.5(7)
Cc4 7854(4) 7578(2) 5615(2) 20.1(6)
C5 6738(4) 7374(2) 6100(2) 17.1(6)
Co6 7234(3) 7063(2) 7125(2) 18.7(6)
Cc7 7366(4) 5452(2) 7609(3) 26.5(7)
C8 6262(4) 4831(2) 7591(3) 26.6(7)
C9 4938(4) 6074(2) 6948(2) 18.0(6)

C10 3274(4) 4756(2) 7031(2) 20.4(6)
Cl1 2702(4) 4596(2) 7827(2) 21.1(6)
C12 3605(5) 4880(3) 8827(2) 30.5(8)
C13 1226(4) 4174(2) 7666(2) 21.3(6)
Cl4 360(4) 3906(2) 6757(2) 21.4(6)
C15 -1192(4) 3421(2) 6599(3) 28.4(7)
Cl6 978(4) 4081(2) 5981(2) 21.8(6)
C17 2434(4) 4500(2) 6102(2) 20.2(6)
C18 3091(5) 4666(2) 5262(3) 27.7(7)
C19 1899(4) 6611(2) 6896(3) 22.1(6)

Table S4. Anisotropic Displacement Parameters (A?x10?) for Iridium CN Carbonyl Chloride. The Anisotropic displacement factor exponent
takes the form: -2n[h?a*?U};+2hka*b*U,+...].

Atom Un Uz Uss Uz Uz Uiz
Irl 12.66(5) 16.78(6) 17.60(6) -0.37(4) 5.54(4) -0.14(5)
cl 17.6(3) 21.9(4) 27.9(4) 2.9(3) 8.0(3) 33(3)
o1 26.5(13) 28.8(13) 55.3(18) 6.4(10) 27.0(13) 12.9(12)
NI 17.1(12) 19.3(13) 24.7(14) 1.8(10) 5.8(10) 47(11)
N2 14.7(12) 21.9(13) 19.7(13) 0.4(10) 5.6(10) 2.6(10)
N3 15.4(12) 18.7(12) 20.4(13) -1.1(9) 7.2(10) 2.6(10)
c1 20.1(15) 23.2(15) 19.0(15) 1.3(12) 6.0(12) 0.5(12)
2 25.3(16) 27.7(17) 19.2(15) 0.4(13) 9.9(13) 3.0(13)
3 22.2(15) 27.3(17) 25.0(16) -1.0(12) 13.5(13) 2.4(13)
C4 16.0(14) 22.0(15) 24.1(16) 0.7(11) 8.4(12) -0.2(12)
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Table S4. Anisotropic Displacement Parameters (A?x10?) for Iridium CN Carbonyl Chloride. The Anisotropic displacement factor exponent
takes the form: -2n’[h?a*?U};+2hka*b*Uo+...].

Atom Un Uz Uss Uz Uz Uiz
cs 16.7(14) 17.8(14) 17.5(14) -14(11) 5.7(11) 2.8(11)
C6 13.5(13) 23.3(15) 19.1(14) 33(11) 4.0(11) 0.5(12)
c7 18.3(15) 31.9(18) 29.0(18) 5.2(13) 6.2(13) 7.8(14)
C8 21.5(16) 23.9(17) 33.6(19) 5.9(13) 6.3(14) 8.8(14)
9 16.6(13) 21.5(15) 16.4(14) -0.9(11) 5.6(11) -1.6(12)
1o 17.0(14) 17.3(14) 26.9(16) -0.9(11) 6.2(12) 1.9(12)
cll 22.5(15) 19.1(15) 21.6(15) 0.2(12) 6.0(12) 3.7(12)
c12 34.5(19) 34.6(19) 20.1(16) -9.6(16) 3.9(14) 0.9(14)
c13 22.8(15) 19.7(15) 22.8(16) 1.4(12) 8.8(13) 3.7(12)
Cl4 20.1(14) 17.5(14) 27.6(16) -1.2(11) 8.3(13) 0.0(12)
C15 23.7(17) 26.2(17) 35(2) -3.3(13) 7.9(14) -0.5(15)
Cl16 23.1(15) 21.2(15) 20.8(15) 1.4(12) 5.8(12) 2.0(12)
C17 24.1(15) 16.1(14) 23.2(16) 3.4(11) 11.1(13) 22(12)
18 34.6(19) 26.0(17) 27.6(18) 2.5(14) 17.5(15) 2.1(14)
c19 20.9(15) 18.0(15) 27.9(17) 0.8(12) 7.8(13) -1.1(13)

Table S5. Bond Lengths for Iridium CN Carbonyl Chloride.
Atom Atom  Length/A AtomAtom  Length/A

Irl  Cll 2.3863(8) 2 3 1.384(5)
Irl N3 2.132(3) 3 Cc4 1.387(5)
Il 9 1.967(3) c4 G5 1.384(4)
Irl Cl19 1.806(3) Ccs C6 1.504(4)
ol C19 1.159(4) Cc7 C8 1.342(5)
Nl C8 1.392(4) clo ci1 1.399(5)
Nl 9 1.370(4) Cl10 C17 1.398(5)
N1 Cl0 1.440(4) Cll CI12 1.508(5)
N2 C6 1.457(4) Cll CI3 1.398(5)
N2 C7 1.382(4) C13 Cl4 1.386(5)
N2 C9 1.360(4) Cl4 CI5 1.501(5)
N3 ClI 1.345(4) Cl4 Cl6 1.400(5)
N3 C5 1.355(4) Cl6 C17 1.387(5)
cl C2 1.382(4) Cl7 CI8 1.503(5)

Table S6. Bond Angles for Iridium CN Carbonyl Chloride.

Atom Atom Atom Angle/* Atom Atom Atom Angle/*
N3 Irl Cll 88.30(7) C5 Co6 N2 111.0(2)
co Irl Cl 174.06(9) c8 C7 N2 106.5(3)
C9 Irl N3 86.24(11) C7 C8 NI 107.3(3)

Cl9 Ir1 Cll 91.94(11) NI C9 1Irl 133.5(2)
Cl19 Ir1 N3 177.44(13) N2 C9 1Irl 122.8(2)
Cl9 Ir1 C9 93.62(14) N2 C9 NI 103.7(3)
C9 NI C8 110.6(3) Cll Cl10 NI 118.3(3)
Cl10 NI C8 124.5(3) C17 CI10 NI 119.3(3)
Cl10 N1 C9 124.9(3) C17 C10 Ci11 122.4(3)
C7 N2 Cé6 126.5(3) Cl12 Cl11 C10 122.2(3)
C9 N2 Cé6 121.4(3) C13 Cl11 C10 117.6(3)
c9 N2 C7 112.0(3) C13 Cl11 C12 120.2(3)
Cl N3 Irl 119.1(2) Cl4 C13 Ci11 121.8(3)
C5 N3 Irl 122.6(2) Cl5 Cl14 Ci13 121.2(3)
C5 N3 (I 118.1(3) Cl6 Cl4 Ci13 118.6(3)
C2 Cl1 N3 122.8(3) Cl6 Cl4 Ci15 120.2(3)
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Table S6. Bond Angles for Iridium CN Carbonyl Chloride.

Atom Atom Atom Angle/* Atom Atom Atom Angle/*
C3 C2 I 119.0(3) Cl17 Cl16 Cl14 121.93)
C4 C3 C2 118.6(3) Cl6 C17 C10 117.7(3)
Cs C4 3 119.5(3) C18 C17 C10 121.3(3)
C4 C5 N3 121.9(3) C18 C17 Cl16 121.0(3)
C6 C5 N3 116.6(3) 01 C19 Irl 178.1(3)
C6 C5 C4 121.5(3)

Table S7. Torsion Angles for Iridium CN Carbonyl Chloride.

A B C D Angle/* A B C D Angle/*
Ir1 N3 C1 C2 -173.3(2) N2 C6 C5 N3 56.7(3)
Irl N3 C5 C4 174.1(2) N2 C6 C5 C4 -122.3(3)
Ir1 N3 C5 C6 -4.9(2) N3 C1 C2 C3 -1.7(4)
Ir1 C9 N1 C8 180.0(3) N3 C5 ¢4 C3 -0.4(4)
Ir1 C9 N1 C10 -0.3(4) Cl C2 C3 C4 1.8(4)
Ir1 C9 N2 C6 3.03) C2 C3 C4 C5 -0.9(4)
Ir1 C9 N2 C7 -179.8(3) C3 C4 C5 C6 178.5(3)
N1 C8 C7 N2 0.3(3) CI10C11C13C14 1.1(4)
N1 C9 N2 Cé -177.4(2) C10C17C16C14 -0.7(4)
N1 C9 N2 C7 -0.2(3) C11C13C14Cl15 177.5(3)
NI1C10C11C12 -0.2(4) C11C13C14C16 -1.2(4)
N1C10C11C13 178.5(3) C13C14C16C17 1.0(4)
N1C10C17C16 -178.7(3) C14C16C17C18 178.7(3)
N1C10C17C18 1.8(4)

Table S8. Hydrogen Atom Coordinates (Ax10*) and Isotropic Displacement Parameters (A?x10?) for Iridium CN Carbonyl Chloride.

Atom x y z U(eq)
H1 3552(4) 7728(2) 4444(2) 24.8(7)
H2 5334(4) 8046(2) 3564(2) 28.0(8)
H3 8092(4) 7994(2) 4322(2) 28.2(8)
H4 8963(4) 7537(2) 5932(2) 24.2(7)
Héa 6879(3) 7496(2) 7534(2) 22.5(7)
Héb 8413(3) 7024(2) 7351(2) 22.5(7)
H7 8491(4) 5388(2) 7846(3) 31.8(9)
HS8 6458(4) 4242(2) 7816(3) 31.909)

Hi2a 4616(16) 4556(14) 9032(8) 45.7(12)

H12b 3820(30) 5514(4) 8830(5) 45.7(12)

Hi2¢ 2963(15) 4755(17) 9270(4) 45.7(12)
HI3 805(4) 4067(2) 8194(2) 25.6(7)

Hl5a -1098(11) 2835(7) 6335(19) 42.7(11)

H15b -1451(17) 3359(16) 7212(4) 42.7(11)

Hi5¢ 22042(8) 3752(9) 6148(16) 42.7(11)
H16 382(4) 3909(2) 5355(2) 26.1(7)

Hi8a 3270(30) 5299(3) 5209(12) 41.5(11)

H18b 4102(17) 4349(14) 5358(9) 41.5(11)

Hi8c 2325(15) 4458(16) 4672(4) 41.5(11)
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