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ABSTRACT
Quantum computers have demonstrated exponential speedup for
certain computational tasks like integer factorization, molecular
simulation, andmachine learning, compared to the classical comput-
ers. One of the most challenging problems in quantum computing is
quantum compilation, which involves the translation of a quantum
circuit into a representation that adheres to the constraints imposed
by the quantum hardware. However, this process of mapping the
logical qubits to physical qubits incurs a significantly large search
space, which needs to be analyzed to obtain the optimal mapping.
A non-optimal mapping or compilation strategy introduces addi-
tional hardware overhead, thereby rendering inefficiency. Recently,
researchers have proposed a technique to reduce the search space
for efficient quantum compilation. However, this approach focuses
on a generic solution involving only the physical architecture, and
hence, as shown in our paper, often fails to incorporate the opti-
mal solution in the reduced search space. To this end, we propose
PERM and SGO (PAS), which, to the best of our knowledge, is the
first quantum compilation strategy that facilitates a reduced search
space comprising a more optimal solution in terms of additional
CNOT gates compared to the existing technique. Our experimental
evaluation using the MQT benchmarks demonstrates the efficacy
of our approach, which furnishes up to 428× reduction compared
to the unoptimized search space, and 57.1× reduction compared to
existing research, while providing savings in terms of additional
CNOT gates by up to 53.85%.
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1 INTRODUCTION
Recent research demonstrates the prowess of quantum algorithms,
owing to their exponential speedup over their classical counterparts
in certain computational tasks, including cryptography, machine
learning, and molecular simulation [3, 5, 6]. The performance im-
provement is attributed to the ability of quantum computers to
detect multiple solutions concurrently via quantum specifications
(such as superposition and entanglement). This is in contrast to
classical computers, which analyze solutions sequentially [7]. For
instance, Shor’s Algorithm has been demonstrated to perform inte-
ger factorization in polynomial time on a quantum computer [9].
Furthermore, recent research has facilitated improved fidelity and
qubit availability in quantum computers, which might potentially
lead to their common-user adoption in the near future [4].

During quantum computation, it is necessary to translate the
quantum circuit into a representation that adheres to the constraints
imposed by the physical quantum hardware. This process is known
as Quantum Compilation [10]. Specifically, it entails the mapping
of logical qubits constituting the Logical Quantum Circuit (LQC) to
the physical qubits present in quantum hardware. A critical issue
encountered during such mapping is the lack of connectivity be-
tween the physical qubits, whose logical counterparts are connected
directly. In such a scenario, quantum SWAP gates can be introduced
to establish a direct connection between the logical qubits.

For example, consider Fig. 1a. As illustrated here, although the
logical qubits, 𝑞1 and 𝑞3 are connected via a CNOT gate, a direct
connectivity between their physical counterparts, 𝑃1 and 𝑃3 in
the Physical Architecture Graph (PG) (as shown in Fig. 1b), is not
feasible. In order to execute the CNOT gate, we need to incorporate
a SWAP gate, which is used to interchange the positions of two
logical qubits according to the permitted connections in the physical
architecture. This SWAP gate can be inserted in two ways: either by
switching 𝑞1 and 𝑞2, or by interchanging 𝑞3 and 𝑞2. Among these
configurations, we consider the configuration with the minimum
number of SWAP gates as the optimal solution. The next step is
associated with updating the LQC by the insertion of a CNOT gate
between the revised positions of 𝑞1 or 𝑞3. Afterwards, the updated
LQC is considered for all subsequent quantum gate operations
according to the desired physical architecture. However, inserting a
SWAP gate in the LQC results in an increase in hardware overhead,
along with the possible induction of additional noise [8, 13].
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In order to reduce the overhead, it is imperative to minimize the
number of SWAP gate insertions. To this end, optimal quantum
compilation techniques, which rearrange the logical qubits in a
favorable manner, are required. There are various ways to perform
the aforementioned rearrangement, all of which are permutations
constituting the search space (𝑆), defined by: 𝑆 = 𝑚 ∗ 𝑛!. Here,𝑚
and 𝑛 correspond to the number of gates in the LQC and qubits in
the PG, respectively. As evident, 𝑆 grows appreciably with 𝑛, which
could result in non-scalability and increased space complexity.

Existing state-of-the-art quantum compilation approaches utilize
this unoptimized search space to determine the optimal solution,
i.e.. the qubit mapping with the least overhead. This, in turn, leads
to an enhanced time complexity [2, 10]. In order to reduce this
overhead of traversing through a large search space, researchers
have proposed search space reduction techniques [2]. However,
this approach is limited by utilization of only the physical qubit
layout of the quantum hardware and not the LQC. This leads to re-
duced search spaces that might not include the optimal compilation
solution, as explained in Section 2.

In this paper, we propose a novel solution to this problem, PERM
and SGO (PAS), which addresses the limitations of existing research.
PAS, to the best of our knowledge, is the first quantum compilation
strategy that generates a reduced search space containing a more
optimal mapping compared to other strategies. This technique in-
corporates a priority rank-based approach for the aforementioned
permutations. Our search space comprises permutations that gen-
erate an ideal initial mapping to obtain the minimum number of
SWAP gate insertions (SGI), and thus, reduce the overhead. In our
approach, the logical qubit, which is connected with the maximum
number of CNOT gates, gets mapped to the physical qubit with the
highest connectivity in the physical architecture of the quantum
hardware. Other qubits are subsequently mapped in a similar man-
ner. The proposed technique limits the search space, which contains
the permutation that results in the least possible number of SGI.
Next, in order to determine the optimal mapping, each permutation
in the search space is analyzed by using a Breadth First Search
(BFS) algorithm, which traverses the physical architecture graph to
find the shortest path between two vertices, and SWAP gates are
introduced where necessary [1]. Since we utilize both the physical
architecture and the LQC, our proposed approach is efficient in pro-
ducing a significant reduction over the unoptimized search space,
as shown in Table 1. The proposed approach can be employed as a
starting point for future quantum compilation algorithms, in order
to determine the optimal solution from a reduced search space. The
major contributions of our paper are:

• This paper proposes PERM and SGO (PAS), which, to the
best of our knowledge, is the first strategy to generate a
reduced search space containing a more optimal solution for
quantum compilation in comparison to other state-of-the-art
techniques.
• We perform a novel rank-based approach to generate the
mapping set (i.e. the search space) of permutations of logical
qubits mapped to physical qubits.
• We design a BFS-based algorithm to identify an optimal
quantum compilation solution, in terms of SGI, from the
reduced search space.

(a) (b)

Figure 1: (a) Logical circuit and (b) 4-qubit linear architecture.
• The proposed approach, when evaluated on the MQT bench-
marks, furnishes up to 428× reduction of the unoptimized
search space and 57.1× reduction compared to the state-of-
the-art technique. Moreover, we also obtain up to 53.85%
savings in cost, in terms of additional CNOT gates.

The rest of the paper is organised as follows. Section ?? reviews
prior related work. Section 2 provides a background on quantum
computing and motivates our problem. Section 3 describes the
proposed methodology. Section 4 evaluates the proposed approach
using experiments. The paper is concluded in Section 6.

2 MOTIVATION
In this section, we provide an example to illustrate the limitations
faced by the existing state-of-the-art approach that addresses search
space reduction [2]. To this end, we use the LQC from Fig. 1a and
physical architecture from Fig. 1b. Both architectures are composed
of four qubits, which results in an unoptimized search space of 96
states. On application of the approach proposed by [2], we obtain
a reduced set of search space 𝑃 , consisting of 8 elements (permu-
tations), as follows. 𝑃 = {0312, 1032, 1203, 0231, 2013, 0132, 1023,
0213}, where each element (𝑒.𝑔., 0312) represents a specific mapping
strategy. For example, 0312 represents the mapping 𝑞0-𝑃0, 𝑞3-𝑃1,
𝑞1-𝑃2, 𝑞2-𝑃3. This is followed by adding permutations for every
gate in the circuit. Therefore, the overall search space becomes
S = 8 ×𝑚, where𝑚 is the number of gates (which is four in this
example). Hence, the resulting search space has 32 elements in total.
The minimum number of SWAP gates that can be obtained through
these mappings is two, as shown in Fig. 2a.

(a) (b)

Figure 2: Mapped circuit for (a) 0312 and (b) 1302.

On the other hand, when we apply our proposed method PAS, as
described in Section 3, to the same LQC and physical architecture,
we obtain a reduced search space (using the PERM algorithm),
denoted by 𝑃 ′ = {1302, 2013, 3012, 1032, 2031, 2103, 3102, 2301}.
This is followed by performing the SGO algorithm which adds the
permutations obtained for all the possible SGIs (required to obtain
the optimal solution) to the search space. In the example shown in
Fig. 2b, the SWAP gate required for the fourth CNOT gate can be
inserted by moving either the control qubit 𝑞0 or the target qubit 𝑞1,
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resulting in two permutations. In this manner, the size of the search
space obtained using PAS consists of 10 permutations, which is 3.2×
less than [2]. Moreover, it is also 9.6× less than the unoptimized
search space. The permutation 1302 in 𝑃 ′ results in only one SWAP
gate (as opposed to two for [2]), as shown in Fig. 2b. Therefore, it
is evident that the reduced space obtained using PAS consists of a
more optimal solution, as compared to [2].

3 PROPOSED PAS TECHNIQUE
Our proposed technique, PAS, comprises two steps: Permutation
(PERM) and SWAP Gate Optimization (SGO). First, the PERM algo-
rithm determines the number of permutations in the reduced search
space. Following this, we utilize the SGO algorithm to determine
the optimal number and position of SWAP gates required to execute
the quantum circuit.

3.1 Permutation Algorithm (PERM)

Algorithm 1 Permutation Algorithm
Input: LQC, PG
Output: Mapping Set (MS)
1: for CNOT gate in LQC do
2: Control Qubit =𝑄𝑥

3: Target Qubit =𝑄𝑦

4: Extract Gate_Coordinates (𝑄𝑥 ,𝑄𝑦 )
5: Graph add_vertex(𝑄𝑥 )
6: Graph add_vertex (𝑄𝑦 )
7: Add_Edge (𝑄𝑥 ,𝑄𝑦 )
8: end for
9: for 𝑃𝑖 in PG do
10: Degree 𝑃𝑖 =

∑
Edges of 𝑃𝑖

11: end for
12: for 𝑄𝑖 in Graph do
13: Degree 𝑄𝑖 =

∑
Edges of 𝑄𝑖

14: end for
15: for 𝑄𝑖 in Graph, 𝑃𝑖 in PG do
16: MS = [Max(Degree in 𝑄𝑖 )→Max(Degree in 𝑃𝑖 )]
17: end for
18: return MS

In this section, we describe the proposed PERM algorithm, which
involves the mapping of frequently-used logical qubits to the phys-
ical qubits associated with a high number of adjacent connections
in the PG. This approach, demonstrated in Algorithm 1, utilizes
both the PG and the LQC as input arguments. This is in contrast to
existing approaches, as mentioned in Section ??, which utilize only
the PG for determining the reduced search space [2]. In the PG, the
physical qubits (𝑃𝑖 ) and the connections between them correspond
to vertices and edges, respectively. For the LQC, the single qubit
gates are ignored, since they do not form any connections with
other qubits, which is a crucial criterion used to determine the
number of permutations. The first step is to define the control qubit
(𝑄𝑥 ) and target qubit (𝑄𝑦 ) for each CNOT gate, as seen in lines 2
and 3 of Algorithm 1, respectively. Subsequently, each CNOT gate
is extracted from the LQC and represented in a graphical form, as
indicated in line 4. Following this, 𝑄𝑥 and 𝑄𝑦 are added as vertices

to the LQC graph, from which the corresponding edges are gener-
ated, as indicated in lines 5 to 7. In the next steps, we determine the
degree of connectivity for each qubit in both PG and LQC graph, as
represented in lines 9 to 14. The degree of connectivity for a qubit
(defined as the number of edges associated with that qubit/vertex),
increases along with the number of connections. Based on this,
we assign a rank, 𝑖 .𝑒 ., label, to each logical and physical qubit to
indicate their priority. Next, we map each logical qubit to a physical
qubit of the same rank. During the first iteration, the logical and
physical qubits with the highest rank (𝑖 .𝑒 ., 1) will get mapped to
each other. This is followed by the mapping of the logical qubit
in the subsequent rank (𝑖 .𝑒 ., 2) to its corresponding physical coun-
terpart in the next iteration. These iterations will terminate once
the mapping has been accomplished for all the qubits from each
rank, as shown in lines 15-17. Moreover, if the number of logical
qubits is less than the physical qubits, we add additional logical
qubits, which are considered idle, 𝑖 .𝑒 ., vertices in the LQC graph
without any connections. Specifically, these idle qubits will always
be paired with the physical qubits having the least connectivity. In
this manner, all the possible combinations of the mapping of the
logical to the physical qubits are generated, which we term as the
Mapping Set (MS). This constitutes the output of the algorithm.

q1

q0 q3

q2

Figure 3: Logical Circuit to Graph.

We further explain our strategy using an illustrative example.
The LQC in consideration is from Fig. 3 and the PG to be used is
from Fig. 1b. The qubits in PG are associated with two ranks: (i)
𝑃1 and 𝑃2 in rank one, since they are connected with two other
qubits; (ii) 𝑃0 and 𝑃3 in rank two, since they only have one qubit
connection. The same strategy also applies for the LQC, and the
degree for each of the logical qubits is determined from LQC graph,
as shown in Fig. 3: degree(𝑞0) = 2, degree(𝑞1) = 3, degree(𝑞2) = 1,
degree(𝑞3) = 2. The resulting order of logical qubits becomes 𝑞1,
𝑞0/𝑞3, 𝑞2. Finally, the LQC vertex with the highest degree, 𝑞1, gets
mapped to the PG vertex with the highest degree, 𝑃1 or 𝑃2, and the
process is continued until all qubits follow the rank-based system.
Here, we only need eight different permutation groups, as opposed
to the unoptimized search space, which is 120. These permutations
are denoted as [3102, 2103, 0312, 2130, 3012, 2013, 0312, 2310],
where the permutation [3102] is the abbreviation of the mapping
strategy of [𝑞3-𝑃0, 𝑞1-𝑃1, 𝑞0-𝑃2, 𝑞2-𝑃3]. The time complexity of the
PERM algorithm is O(𝑛), where n is number of the physical qubits.
Therefore, its runtime increases at most linearly with the size of
the input.

3.2 SWAP Gate Optimization Algorithm (SGO)
The second aspect of our PAS approach is to find the optimal num-
ber of SWAP gates for each of the permutations in Mapping Set
(MS), generated using Algorithm 1. We call this the SGO algorithm,
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Algorithm 2 SWAP Gate Optimization Algorithm

Input: LQC, PG, MS
Output: SWAP, LQC′
Initial Mapping ∈ MS

1: for CNOT Gate in LQC do
2: if Physical Qubits connected directly then
3: Insert CNOT Gate in LQC′
4: else
5: n← Distance between Physical Qubits
6: do Swap_List(n, 𝑄𝑐 , 𝑄𝑡 )
7: return list(Swap_Type)
8: SWAP = Choose_Swap(Swap_Type, LQC, PG )
9: Insert SWAP gate in LQC′
10: end if
11: end for
12: return SWAP, LQC′

as shown in Algorithm 2. The inputs to Algorithm 2 are LQC, PG,
and MS, obtained from Algorithm 1. The physical qubits in PG
corresponding to each CNOT gate in LQC are examined for direct
connectivity, as seen in line 1. If they are connected directly, the
CNOT gate can be inserted in the updated LQC (LQC′), as indicated
in lines 2 and 3. If any direct connection cannot be established
between them, SWAP gates need to be added in LQC′ prior to in-
serting the CNOT gate. These SWAP gates can be inserted between
the two logical qubits (control qubit or 𝑄𝑐 and target qubit or 𝑄𝑡 )
in various ways, depending on the distance (𝑛) between the corre-
sponding physical qubits (𝑃𝑥 and 𝑃𝑦 ). In order to achieve this, we
use the function Swap_List, which furnishes the list of all possible
SWAP gate insertions (SGI).𝑄𝑐 ,𝑄𝑡 , and 𝑛 are provided as inputs to
Swap_List, as shown in lines 5 and 6. Next, we define the function
Choose_swap to identify the optimal number of SWAP gates from
all the possible combinations for 𝑃𝑥 and 𝑃𝑦 (line 8). In this function,
we provide 𝐿𝑄𝐶 , 𝑃𝐺 , and 𝑆𝑤𝑎𝑝_𝑡𝑦𝑝𝑒 (an element obtained from
Swap_List) as input arguments. The SWAP evaluation is performed
by investigating all possible updated logical circuits, which are
obtained after performing each type of SGI. The comparison of SGI
is based on a list of conditions, as detailed below.

(1) Condition 1: 𝑃 ′𝑥 and 𝑃 ′𝑦 are not connected directly by any of
the possible SGIs.

(2) Condition 2: 𝑃 ′𝑥 and 𝑃 ′𝑦 are connected directly by only one
type of SGI.

(3) Condition 3: 𝑃 ′𝑥 and 𝑃 ′𝑦 are connected directly by more than
one type of SGI, as follows:

(a) Sub Condition 1: 𝑃 ′′𝑥 and 𝑃 ′′𝑦 are connected directly by
only one type of SGI.

(b) Sub Condition 2: 𝑃 ′′𝑥 and 𝑃 ′′𝑦 are connected directly by
more than one type of SGI.

(c) Sub Condition 3: 𝑃 ′′𝑥 and 𝑃 ′′𝑦 are not connected directly by
any SGI.

For these conditions, we consider the (𝑁 + 1)𝑡ℎ CNOT gate in
the circuit, with control qubit, 𝑄 ′𝑐 , and target qubit, 𝑄 ′𝑡 , where 𝑁
is the position of the current CNOT gate. Also, we refer to the
physical qubits mapped to 𝑄 ′𝑐 and 𝑄 ′𝑡 as 𝑃

′
𝑥 and 𝑃 ′𝑦 . Similarly, we

also consider the (𝑁 +2)𝑡ℎ CNOT gate in the circuit, associated with

𝑄 ′′𝑐 , 𝑄 ′′𝑡 as 𝑃 ′′𝑥 , and 𝑃 ′′𝑦 . If condition 1 is true, we perform Breadth
First Search (BFS) on 𝑃 ′𝑥 and 𝑃 ′𝑦 , for all the types of SGI. BFS is a
graph searching strategy which guarantees finding the shortest
path between two nodes [1]. BFS traverses all the vertices of PG
and identifies the shortest path between two vertices, which in this
case are 𝑃 ′𝑥 and 𝑃 ′𝑦 . The selection from these SGI types is contingent
upon the path length, which is obtained by performing BFS. The
SGI with the minimum path length is selected. For identical path
lengths between multiple SGIs, we can choose any of the available
SGI. If condition 2 is satisfied, we consider that type of SGI as the
best option. The sub-conditions 1 to 3 are examined if condition 3
is satisfied. If sub-condition 1 is fulfilled, the corresponding type
of SGI is considered to be optimal. If sub-condition 2 is true, any
one type of SGI can be selected as the best alternative. However, if
sub-condition 3 is true, then we conduct BFS on 𝑃 ′′𝑥 and 𝑃 ′′𝑦 for each
type of SGI that satisfies condition 3. In this scenario as well, the SGI
with the minimum path length is selected. We repeat this process
for each CNOT gate in the LQC, and update the circuit (LQC′)
based on the optimal SGI type, and count the number of SWAP
gates inserted. SGIs can be achieved in n number of ways, where n

(a) Type 1 (b) Type 2 (c) Type 3

Figure 4: SGI Types.

is the distance between the logical qubits involved. Since we search
through all of these ways (i.e. all the SGIs) for the optimal solution,
the permutation obtained after performing each SGI is added to
the search space. Therefore, the size of the search space becomes
𝑆 = 𝑝 × 𝑛, where 𝑝 is the size of the permutation set obtained from
the PERM algorithm.This can be explained using an illustrative
example, as shown in Fig. 4. The LQC and PG considered here are
as shown in Fig. 3 and Fig. 1b, respectively. When the iteration for
LQC commences, all possible types of SGIs for the first CNOT gate
are considered. The logical qubits for the gate are 𝑞0, 𝑞3, and the
corresponding physical qubits are 𝑃0, 𝑃3, as illustrated in Fig. 3.
Here, we observe a distance of three between 𝑃0 and 𝑃3 in PG, and
thus, three types of SGIs are possible. In this example, 𝑃 ′𝑥 and 𝑃 ′𝑦
correspond to 𝑃1 and 𝑃3 respectively. For SGI type 2, two SWAP
gates are inserted between 𝑃0, 𝑃1, and 𝑃2, 𝑃3 respectively. This,
however, does not result in any connection between 𝑃3 and 𝑃1. In
SGI type 3, SWAP gates are inserted between 𝑃0, 𝑃1, and 𝑃1, 𝑃2
respectively. This type of SGI also does not result in any connection
between 𝑃3 and 𝑃1. On the other hand, SGI type 1 is the only one that
furnishes a direct connection between P1 and P3. Thus, it satisfies
condition 2 and is implemented for the first CNOT gate of the LQC.
Since we search for the solution in three types of SGIs, the search
space also increases by three for the first CNOT gate. This process
terminates when all CNOT gates in LQC have been inserted into
LQC′. Moreover, for every CNOT gate, the permutation obtained
for each type of SGI is added to the search space until the process
ends. The time complexity of the SGO algorithm is O(𝑛2). However,
it can be reduced to O(𝑛𝑙𝑜𝑔(𝑛)), if lines 6-8 are implemented using
a priority queue [11].
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4 RESULTS
4.1 Experimental Setup
In this section, we evaluate our proposed approach on the MQT
benchmarks by utilizing the open-source JKQ toolkit designed for
quantum computing [12]. Since the benchmark suite predominantly
comprises circuits of five physical qubits, we have primarily con-
sidered a corresponding IBMQ London architecture (five physical
qubits) for our experiments. However, our solution also accounts for
scenarios where the number of logical qubits is less than their phys-
ical counterparts, such as𝑚𝑖𝑙𝑙𝑒𝑟_11 and 𝑟𝑑32−𝑣1_68, which have 3
and 4 qubits, respectively. We utilize the IBM quantum computing
platform to simulate the circuits.

4.2 Analysis of Results
In this section, we analyze the performance of the proposed PAS
technique, as demonstrated in Table 1. Column 1 in the table pro-
vides details about the benchmarks used and consists of three sub-
columns, with the first one referring to the name of the benchmark.
The second and third sub-columns correspond to the number of
qubits and gates present in the circuit, respectively. Column 2 of the
table refers to the search space for each benchmark, and is further
divided into three sub-columns. The first sub-column lists the num-
ber of permutations (PRM) that generate the search space for PAS,
whereas the second one refers to the search space furnished by ex-
isting state-of-the-art approaches [2]. Finally, the third sub-column
corresponds to the size of the unoptimized search space.

Column 3 corresponds to the reduction of the search space fur-
nished by PAS over other techniques. It is further divided into two
sub-columns, where the first one denotes the reduction in search
space over [2] using Equation 1.

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 =
search space size in [2]
search space size in PAS

(1)

The second sub-column corresponds to the reduction in the un-
optimized search space, which can be calculated by replacing the
numerator in Equation 1 with the size of the unoptimized search
space. Column 4 represents the number of additional CNOT gates,
i.e., the cost required to map the logical circuit for two strategies,
and is therefore divided into two sub-columns. The first sub-column
denotes the cost for our proposed method, PAS, and the second
refers to cost from [2]. Finally, the last column refers to the per-
centage savings in cost compared to [2] when augmented by PAS
strategy, as indicated by Equation 2. This cost is a measure of the
number of additional CNOT gates required to map a logical circuit
to the physical architecture.

𝑆𝑎𝑣𝑖𝑛𝑔𝑠 𝑖𝑛 𝑐𝑜𝑠𝑡 = 1 − cost in PAS
cost in [2]

(2)

As seen from the second column of Table 1, the maximum num-
ber of permutations possible for PAS is 1162, which is apprecia-
bly less compared to the unoptimized search space as well as the
state-of-the-art existing approach [2]. As observed in Table 1, PAS
requires 320 permutations to map to the IBMQ London architecture
in benchmark ℎ𝑤𝑏4_49, which is significantly better compared to
the unoptimized search space of 27960 permutations and 3728 per-
mutations furnished by [2]. The values from the first sub-column in

column 3 demonstrate up to 57.1× reduction in search space size for
our strategy over [2]. Furthermore, it is evident from the second sub-
column that for each benchmark, the reduction is at least 20.73×
compared to the unoptimized search space. From these results, we
can infer that Algorithm 1 is successful in significantly reducing
the search space. Results from column 4 indicate that, although
limited, our search space still provides a more optimal solution
compared to the state-of-the-art technique. As seen from column 5
of Table 1, our additional SWAP gate cost is also minimized, when
deployed in the reduced search space. For instance, the cost reduces
to as low as 153 from 213 for the ℎ𝑤𝑏4_49 circuit, compared to [2].
However, there are some cases where the cost remains the same,
as seen for the benchmark 𝑞𝑒_𝑞𝑓 𝑡_5. The reason is attributed to
the relatively small size of the circuit, when compared to other
circuits, for this benchmark. Overall, our method outperforms [2]
(with the least number of SWAP gates) by optimizing the cost by
up to 53.85%. The reduction in number of additional CNOT gates
as compared to [2] for the benchmarks indicates that Algorithm
2 successfully optimizes the cost of the circuits. Moreover, it also
demonstrates the prowess of PAS in incorporating a more optimal
solution in the reduced search space compared to [2]. PAS can be
utilized as a starting point by other approaches, which attempt to
find an optimal quantum compilation mapping strategy.
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6 CONCLUSION
This paper proposes PERM and SGO (PAS), a novel search space
reduction strategy that facilitates efficient quantum compilation.
Most existing approaches have primarily focused on identifying the
optimal compilation strategy, without optimizing the search space.
Although recent research has explored search space reduction to
address this issue, the proposed approach only considers the physi-
cal architecture and obtains a less optimal solution in the reduced
search space. This paper, to the best of our knowledge, is the first
solution that addresses both issues by: (1) Developing a permuta-
tion algorithm, PERM, that furnishes a significant reduction in the
unoptimized search space; (2) Formulating a SWAP Gate Optimiza-
tion (SGO) algorithm, which identifies a reduced number of SWAP
gates required to establish the quantum circuit functionality, com-
pared to the existing methodology [2]. Our experimental analysis
furnishes promising results of up to 428× reduction in unoptimized
search space and 57.1× reduction over the state-of-the-art search
space reduction technique [2], while incurring a savings of up to
53.85% in the number of additional CNOT gates compared to [2].
Although experimented on the IBMQ London Architecture, the pro-
posed approach can be incorporated on any physical architecture
layout. Furthermore, our solution can augment other methods that
primarily focus on minimizing the number of SWAP gate insertions
in quantum circuits.
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