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Abstract1

Advancements in Deep Neural Networks (DNNs) have made a very powerful ma-2

chine learning method available to researchers across many fields of study, including the3

bio-medical and cheminformatics communities, where DNNs help to improve tasks such4

as protein performance, molecular design, drug discovery, etc. Many of those tasks rely5

on molecular descriptors for representing molecular characteristics in cheminformatics.6

Despite significant efforts and the introduction of numerous methods that derive molec-7

ular descriptors, quantitative prediction of molecular properties remains challenging.8

One widely used method of encoding molecule features into bit strings is molecular fin-9

gerprint. In this work, we propose using new Neumann-Cayley Gated Recurrent Units10

(NC-GRU) inside the Neural Nets encoder (AutoEncoder) to create neural molecu-11

lar fingerprints, NC-GRU fingerprints. NC-GRU AutoEncoder introduces orthogonal12

weights into widely used GRU architecture, resulting in faster, more stable training,13

and more reliable molecular fingerprints. Integrating novel NC-GRU fingerprints and14

Multi-Task DNN schematics improves the performance of various molecular-related15
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tasks such as toxicity, partition coefficient, lipophilicity, and solvation-free energy, pro-16

ducing state-of-the-art results on several benchmarks.17

1 Introduction18

In recent years, there have been many advancements in drug discovery; however, building19

cheap and efficient compounds with desirable pharmacological and biochemical properties1
20

remains challenging. Binding affinity, toxicity, and octanol-water partition coefficient (logP)21

are crucial properties needed to evaluate a drug candidate.2 Drug discovery consists of several22

phases before launching to the market, such as target discovery, lead optimization, preclinical23

development, and three phases of clinical trial.1 Unpleasant results on the toxicity and the24

pharmacokinetic properties are responsible for approximately half of drug candidates failing25

to reach the market.3 In the past, some of the most popular experiments are conducted in26

vivo or in vitro to measure the drug properties. These approaches are very expensive and27

time-consuming, not to mention that testing with animals raise important ethical issues and28

concerns.29

Machine Learning (ML) and Deep Learning (DL) algorithms have been introduced into30

drug discovery and have achieved much success recently. A significant amount of work has31

been devoted to deriving molecular descriptors from the representation of a molecule,1,4,5
32

particularly molecular fingerprints that profile a molecule, usually in the form of a bit string33

or a vector, with each vector element indicating the existence, the degree, or the frequency of34

one particular structure feature.6–8 Most molecular fingerprints are derived from either two-35

dimensional (2D)6,9–13 or three-dimensional (3D)14,15 molecular structural formulas where36

2D structure can be viewed as if molecules were flat. Some of the most popular fingerprints37

are Molecular Access System (MACCS),9 FP2,10 Daylight,11 Electro Topological State (Es-38

tate),12 Extended-Connectivity Fingerprint(ECFP),6 Extended Reduced Graph (ERG),13
39

etc. DL methods have proven beneficial in obtaining valuable information about molecular40
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fingerprints.4,5,16–19
41

For example, 2D DL algorithms aim to learn a suitable data representation from a simple42

embedding layer, where the input is a one-hot vector20 of each atom in a molecule. Such43

embedding is usually a part of the encoding mechanism where one of the widely used DL44

algorithms is AutoEncoder,21 which learns the descriptors in an unsupervised and data-45

driven way.4,5,18,19 In principle, AutoEncoder can take an arbitrary molecular representa-46

tion/nomenclatures as an input; however, in practice, researchers are usually focused on47

sequence-based representations such as International Union of Pure and Applied Chem-48

istry (IUPAC),22 Simplified Molecular-Input Line-Entry System (SMILES),23 International49

Chemical Identifier (InChI)24 etc. A common AutoEncoder consists of Encoder and De-50

coder networks, where embedded input passes through the Encoder and outputs a latent51

representation. Then the Decoder network takes that latent vector and aims to transform52

it back into the input sequence of either the same or different nomenclature depending on53

the settings. The latent representation vector is associated with an information bottleneck54

between the Encoder and the Decoder. Since the information is compressed, the latent rep-55

resentation vector learns more general information related to the molecules.19 The structure56

of AutoEncoder can be different; however, as mentioned in,4 Gated Recurrent Unit (GRU)25
57

is one of the most optimized architectures to implement as the AutoEncoder cells when com-58

pared with Long-Short Term Memory (LSTM)26 or Convolutional Neural Network (CNN).27
59

Lastly, DL methods benefit from a large number of training samples; that is why large train-60

ing datasets such as ChEMBL,28 ZINC15,29 PubChem,30 etc., allow DL models to derive61

better and more efficient molecular descriptors. Derived fingerprints can later be used on62

various prediction tasks such as toxicity prognosis, partition coefficient analysis, solubility63

predictions, etc., where the latent representation vector acts as the input corresponding to64

the prediction model.1,4,31
65

This work proposes a novel AutoEncoder equipped with Neumann-Cayley Orthogonal66

Gated Recurrent Units (NC-GRU)32 to generate high-quality fingerprints for complex and67
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diverse molecules. To this end, we trained our NC-GRU AutoEncoder using the ChEMBL68

2828 dataset; see section 2.2 for more details about this dataset. Our AutoEncoder takes69

the Canonical SMILES representation of a molecule as input and outputs the same nomen-70

clature back. The advantage of employing an NC-GRU architecture instead of a standard71

GRU cell is the ability of NC-GRU to capture long-term dependencies using the orthogonal72

matrices and the capability of GRU gates to forget unnecessary information. The com-73

bination of training AutoEncoder on the ChEMBL 28 dataset with NC-GRU cells results74

in NC-GRU FingerPrints (FPs), leading to improvements in many benchmarks during the75

inference phase. Indeed, using NC-GRU FPs has resulted in state-of-the-art outcomes on76

prediction tasks such as toxicity, partition coefficient, solubility, and solvation-free energy.77

2 NC-GRU based AutoEncoder78

2.1 Architecture79

In this work, our main focus is to apply NC-GRU32 into the hidden layers of the AutoEn-80

coder.21 Figure 1b and 1c shows NC-GRU cell architecture and update diagram for the81

orthogonal weight Uc(Ac), respectively. The input sequence-based molecular representation82

given as canonical SMILES is tokenized and encoded in a one-hot vector representation be-83

fore we feed it to the AutoEncoder. Depending on the quality of the fine-tuning process,84

our AutoEncoder contains 2 or 3 stacked NC-GRU cells. If there are two cells, the hidden85

layer dimensions will be 160 and 320. In the 3-cell AutoEncoder, the third cell has a size86

of 640. Afterward, the state of each cell from the Encoder is concatenated and used as an87

input vector in a Fully-Connected Layer (FCL) with 512 neurons. The activation function88

applied to the FCL is a hyperbolic tangent (tanh). The extracted features vector with 51289

units is implemented as the input vector in another FCL. The output of this FCL is divided90

into three parts, corresponding to each dimension from the encoder, and used as the initial-91

ization in every Decoder cell. At the same time, the extracted features vector is employed92

4



as the input to a Molecular Properties Consistency Network (MPCN), a prediction (regres-93

sion) network with two FCLs of dimensions 512 and 128 with ReLU activation function after94

each, and the output FCL with seven neurons and no activation function. This extended95

Feed-Forward Neural Network (FNN) predicts specified molecular properties, namely logP,96

the Molar refractivity, Balaban’s J-value, the number of acceptors, the number of hydrogen97

bond donors, the number of valence electrons, and the Topological polar surface area. These98

properties are derived from the molecular structure of the encoder input sequence using the99

RDKit Python library. The purpose of the classifier network is to act as a regularizer for the100

AutoEncoder and assist in obtaining better molecular descriptors from the trained AutoEn-101

coder while still preserving the RDKit properties. The AutoEncoder needs to be trained to102

minimize the softmax cross-entropy between every input sequence and the Decoder output,103

LAutoEncoder and, at the same time, minimize the Mean Squared Error associated with the104

MPCN, LMPCN .105

106

Ltotal = LAutoEncoder + LMPCN (1)

107

Besides our proposed NC-GRU AutoEncoder, we implement standard GRU25 in Au-108

toEncoder for comparison, the identical network where NC-GRU cells were replaced with109

GRU cells; see section 2.4 for more details. To better understand the AutoEncoder archi-110

tecture described above, Figure 1a is provided as a visual aid. Due to the extra calculation111

steps for updating the orthogonal weight Uc(Ac), the proposed NC-GRU AutoEncoder is112

slightly slower than its counterpart. Particularly, two-layer NC-GRU AutoEncoder takes113

17.9 seconds to run 100,000 iterations, but only 11.8 seconds for two-layer GRU. Further114

comparisons between GRU and NC-GRU models, including computation time study, can be115

found in section 1 of the Supplementary Material.116
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Figure 1: Visualization of (a) AutoEncoder training process, (b) NC-GRU cell, and (c) NC-
GRU weight Uc(Ac) update scheme.
Notation: σ - sigmoid function, Φ - modReLU,33 � - Hadamard product (entrywise multi-
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2.2 Data Processing117

We have trained AutoEncoder architecture with Molecular Properties Consistency Network118

on the ChEMBL 28 dataset.28 The RDKit Python library was used to process the ChEMBL119

28 dataset. All the duplicates were removed, and the remaining molecules were filtered with120

the following criteria: only organic molecules, molecules with molecular weight between 12121

and 600, molecules with at least three heavy atoms, molecules with a partition coefficient122

logP between -7 and 5, only non-stereochemistry molecules, no salts, and molecules that123

RDKit could not process were removed. The post-filtered dataset has 1,852,637 chemical124

compounds, split into training and testing sets of sizes 1,667,373 and 185,264, respectively.125

Furthermore, seven RDKit molecular properties were extracted for each molecule: logP126

(MolLogP in the RDKit), number of valence electrons (NumValenceElectrons), number of127

hydrogen bond donors (NumHDonors), number of acceptors (NumHAcceptors), Balaban’s J-128

value (BalabanJ), molar refractivity (MolMR), and topological polar surface area (TPSA).129

Further, each of the above properties is normalized using130

x̂ =
x− µ

σ
, (2)

where µ and σ represent the mean and standard deviation of the property for the whole131

dataset, and x and x̂, represent each element of the dataset under that property and its132

normalized version, respectively. The above molecular properties were chosen to follow133

setups from4 and.18 These published works have testified that the constraints of RDKit134

features on the latent space are necessary to avoid dead areas in molecular representation135

learning. That causes the decoder network to produce invalid SMILES strings. Moreover,136

our experiments have shown that removing logP constraint in Autoencoder does not affect137

the quality of molecular representations, see Fig. 5a.138

The data processing criteria and selected statistics about normalized RDKit molecular139

properties are provided in Table 1.140
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Table 1: ChEMBL 28 processing criteria and statistics of RDKit processed and normalized
molecular properties

ChEMBL 28 Dataset

Processing Criteria Normalized Molecular Properties

Removal of duplicates min max
Only organic molecules logP -5.08 2.26
Molecular weight between 12 and 600 # of valence electrons -3.46 3.16
More than three heavy atoms # of hydrogen bond donors -1.18 10.89
A partition coefficient logP between 7 and 5 # of acceptors -2.47 7.86
Only non-stereochemistry compounds Balaban’s J-value -2.53 12.86
No salts Molar refractivity -4.08 3.40
Molecules that RDKit could not process were removed Topological polar surface area -2.26 8.68

2.3 NC-GRU Fingerprints141

Molecular descriptors are essential in chemoinformatics as they encode crucial chemical in-142

formation of molecules in a computer-interpretable format.34 Compared to the classical fin-143

gerprints, the advantage of the AutoEncoder models is the ability to learn a large and diverse144

set of molecules and yield encoded information in the latent space,19 the desired fingerprints.145

In this work, we train the proposed NC-GRU AutoEncoder on the ChEMBL 28 dataset. The146

Decoder of NC-GRU AutoEncoder is asked to output the same Canonical SMILES repre-147

sentation as the one fed into the Encoder network. As mentioned, GRU25 is one of the148

most optimized architectures for deriving neural fingerprints;4 however, the newly proposed149

NC-GRU cell has better theoretical properties than GRU cell. At its core, the NC-GRU150

is equipped with orthogonality techniques to capture long-term dependencies. Still, at the151

same time, its gates help to forget the redundant information in the memory. Inheriting152

those advanced features, we expect our proposed NC-GRU FingerPrint (NC-GRU FP) to153

provide robust and reliable molecular descriptors ready for use on various applications. As a154

result, one expects the NC-GRU FP vector representation between the Encoder and Decoder155

to gain a more extensive understanding of the input molecule sequence.19 To demonstrate156

the significance of our fingerprints, we tested NC-GRU FP on several prediction tasks, such157

as toxicity, solubility, partition coefficient, and solvation-free energy predictions, using seven158
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Figure 2: Comparison of Testing Accuracies between NC-GRU and GRU-based AutoEn-
coders on CheMBL 28 Dataset

benchmark datasets.159

2.4 Translation Accuracy160

To demonstrate the advantages of NC-GRU-based AutoEncoder compared to GRU-based161

one, we have analyzed training accuracies on ChEMBL 28. Both models were trained for162

100,000 steps, with test accuracy recorded every 1,000.163

We show the corresponding results in Figure 2, where the number of hidden layers for164

both AutoEncoders is two with dimensions 160 and 320 (similar performance was observed165

with three layers AutoEncoders). Thanks to the orthogonal gated units, we noticed a con-166

siderable improvement in training accuracy in early training when implementing NC-GRU167

AutoEncoder. However, in the later iterations, both models’ accuracies approached 99%.168

Based on our molecular property prediction tasks experiments, we believe that the earlier-169

faster convergence of NC-GRU-based AutoEncoder produces a more reliable and robust170

AutoEncoder fingerprint.171

3 Prediction Models with Molecular Fingerprints172

A prediction model or predictive modeling helps to predict future outcomes using input data173

by recognizing patterns within it. Many ML and DL algorithms have been very effective in174
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predictive tasks, including predicting molecular properties. The classical predicting models175

include linear and logistic regressions, logistic classification, k-nearest neighbors, support176

vector machine,35 etc. More recently, ML and DL methods based on ideas from algebraic177

topology,36,37 differential geometry,38 geometric graph theory,39,40 and algebraic graph the-178

ory41 show promising results on predictive modeling. However, many advanced ML and179

DL algorithms use a combination of methods mentioned above with molecular fingerprints180

(FPs) to boost the performance and obtain a more accurate model, e.g., Random Forest181

(RF),42 Gradient Boosting Decision Tree (GBDT),43 Single-Task Deep Neural Networks182

(ST-DNN),44 Multi-Task Deep Neural Networks (MT-DNN)45 etc. These models use FPs183

as input into prediction models since they carry more structural information about molecules,184

particularly stereochemical descriptions, than chemical formulas or other not neural-FP rep-185

resentations. Such algorithms have often proven very efficient when employing either 2D or186

3D molecular FPs.187

In our prediction experiments, we employ the MT-DNN to improve the performance of188

molecular property prediction.189

MT-DNN

IGC50 LC50 LC50DM

Encoder

NC-GRU Fingerprints

LD50

(a) LD50 and IGC50

LC50DM

Encoder

NC-GRU Fingerprints

IGC50

MT-DNN

LC50

(b) LC50 and LC50DM

LPFS

Encoder

NC-GRU Fingerprints

logP

MT-DNN

(c) logP, FreeSolv (FS), and
LipoPhilicity(LP)

Figure 3: MT-DNN models for prediction tasks;
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3.1 Multitask Deep Neural Network190

Multi-Task Deep Neural Network (MT-DNN)46 is a powerful tool where a shared model191

simultaneously learns multiple tasks. MT-DNN has been utilized effectively in various ap-192

plications, including computer vision,47 speech recognition,48 natural language processing,49
193

and drug discovery.2,50–53 The training process of MT-DNN consists of a joint representation194

of trainable parameters to gain knowledge from several tasks and boost performance. Its195

strength comes from learning multiple datasets simultaneously. However, MT-DNN depends196

heavily on the assumption that there is a correlation between the input datasets. Regard-197

ing the MT-DNN architecture, the number of neurons in the output layer depends on the198

number of tasks employed in the input data. Even though the output layer has more than199

one neuron, the loss function updates the parameters by focusing only on the particular200

output corresponding to the input task. For example, the MT-DNN model with four tasks201

starts training by taking a batch of data from the first task and updating the shared and202

first task output weights while not involving the other tasks’ output weights. When it fin-203

ishes with the first task’s entire dataset (i.e., finishes the first task-epoch), the MT-DNN204

model moves to the second dataset and trains the shared and only the second task output205

weights again. Then the process continues with the third and then the fourth tasks. This206

process comprises a complete single epoch of MT-DNN training with four tasks. Note that207

a traditional MT-DNN model is trained using standard backpropagation algorithms such as208

Stochastic Gradient Descent (SGD), RMSProp,54 and Adam55 while using a single optimizer209

throughout all the training and tasks.210

An illustration of the MT-DNN implemented in our experiments is given in Figure 3.211

3.2 Prediction Datasets212

We have used several datasets for toxicity, partition coefficient, solubility, and solvation-free213

energy prediction tasks.214

11



Table 2: Selected Statistics for Prediction Tasks Datasets; “ - ” - no validation data; Part.
Coeff. - Partition Coefficient.

Dataset Train Valid. Test Min. Value Max. Value Units Category

LD50 7,413 - 1,482 0.291 7.201 − log10 mol/L Toxicity
IGC50 1,434 - 358 0.334 6.36 − log10 mol/L Toxicity
LC50 659 - 164 0.037 9.261 − log10 mol/L Toxicity

LC50DM 283 - 70 0.117 10.064 − log10 mol/L Toxicity

logP 8,199 - 406 -4.64 8.42 n/a Part. Coeff.
FreeSolv 513 65 65 -25.47 3.43 kcal/mol Free energy

Lipophilicity 3,360 420 420 -1.5 4.5 n/a Solubility

3.2.1 Toxicity Prediction Datasets215

Toxicology forecasting is crucial for public health. Toxicity prediction has various uses, but216

one of its most important is lowering the expense and labor of a medicine’s preclinical and217

clinical trials. Many drug studies can be avoided because of the expected toxicity. In our218

toxicity prediction experiments, we have used four datasets: oral rate LD50 (LD50), 40219

h Tetrahymenapyriformis IGC50 (IGC50), 96 h fathead minnow LC50 (LC50), and 48 h220

Daphnia Magna LC50DM (LC50DM).221

The LD5056,57 task measures the number of chemicals that can kill half of the rats222

when orally ingested. The IGC5058,59 records the 50% growth inhibitory concentration of223

Tetrahymena pyriformis organism after 40 hours. The LC5060,61 reports the concentration of224

test chemicals in the water in milligrams per liter that cause 50% of fathead minnows to die225

after 96 hours. The last toxicity prediction task, LC50DM,60,61 represents the concentration226

of test chemicals in the water in milligrams per liter that cause 50% Daphna Magna to die227

after 48 hours. The unit of toxicity reported in these four datasets is − log10 moles per228

liter (mol/L). Among these four toxicity datasets, the sizes vary from 353 to 8,895; Table 2229

provides more information about these datasets. Unfortunately, the small size of the dataset230

(LC50 and LC50DM) and some data being very uncertain (LD50)2 are only some of the231

reasons why training these datasets can be very challenging.232
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3.2.2 Partition Coefficient Prediction Dataset233

For the task of Partition Coefficient Prediction, we have been working with the logP dataset.234

The term “logP” refers to the logarithm of a compound’s octanol-water partition coefficient.235

The partition coefficient is the ratio of a compound’s concentrations in an equilibrium two-236

phase system. It is a quantitative way to describe lipophilicity, the ability to dissolve, which237

impacts a pharmacological compound’s absorption, distribution, metabolism, elimination,238

and toxicity. The logP dataset consists of 8,199 molecules for the training data, 406 molecules239

for the testing data, and no validation data; see Table 2 for more. The Food and Drug240

Administration (FDA) approved all the components in the test data as organic drugs. The241

logP values for the partition coefficient data are compiled by.62
242

3.2.3 Lipophilicity Prediction Dataset243

The lipophilicity of a drug determines its potency, distribution, and elimination in the body.244

The current work’s dataset is curated from the ChemBL database resulting in 4,200 com-245

pounds63 where the lipophilicity index is determined by the distribution coefficient of oc-246

tanol/water at pH 7.4.247

3.2.4 Solvation Free Energy Prediction Dataset248

Solvation-free energy transfers a solute molecule from an ideal gas to water. Therefore,249

accurately modeling solvation-free energy can give insight into the uncertainty of estimating250

binding free energy between small molecules and proteins. This is a significant area of251

interest for computer-aided drug discovery. The solvation-free energy data used in this work252

is FreeSolv, originally developed by Mobley and Guthrie,64 containing 643 molecules. This253

set is divided into three sub-datasets in accordance with MoleculeNet’s suggestions:63 Train254

(513), Validation (568), and Test (65); some additional information is provided in Table 2.255

256
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3.2.5 Virtual Screening: Kinases dataset257

This dataset was provided on request by Pogodin et al.65 The Kinases dataset is a col-258

lection of SDFs divided into five subsets for 5-Fold Cross-Validation in every subset. It259

consists of 180,020 (175,076 after processing) compounds, with a number of unique ones260

being 55,594 (53,834 after processing). Every subset of this dataset was formed based on the261

data contained in the ChEMBL database, and the activities are measured on 160 different262

human-protein kinases. The ligands are classified as ATP-competitive and their score is263

recorded as active or inactive (1 or 0, respectively), depending on their inhibition rate. Fur-264

thermore, the data on the inhibition of non-human kinases was excluded from the dataset.265

Note that the dataset lacks activity information on many kinases since the ligands are only266

tested on a few. Despite several publications where the missing information is classified as267

inactive by default,65,66 we only use the information provided in the dataset without any268

further assumptions or modifications of the dataset.269

3.3 Optimized FingerPrints for Prediction Tasks270

As mentioned in section 3.1, MT-DNN models can improve prediction tasks significantly.271

However, a nearly optimal AutoEncoder structure will deliver desirable molecular repre-272

sentations, further improving downstream prediction networks. This section discusses the273

process we have followed in choosing ideal NC-GRU AutoEncoders to get more desirable274

molecular FingerPrints (FPs) for the prediction task datasets and the following MT-DNN275

training.276

The work done in the NC-GRU paper32 suggests that different gate initializations and277

the number of layers can improve the performance of a model. Based on this argument, we278

have studied and analyzed a total of six AutoEncoder FingerPrint (FPs) extraction models.279

Four of which were based on the NC-GRU AutoEncoder with two and three layers and280

two different initializations (He Normal67 and Glorot Uniform68), and the other two are281

GRU-based with two and three layers.282
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To choose a more desirable FP for a specific prediction task and future MT-DNN train-283

ing, we have considered a Single-Task DNN (ST-DNN) model with simple fully-connected284

architecture. ST-DNN model consists of two fully-connected layers with dimensions 256, 128285

for the prediction datasets with more than 1,000 data points and 128, 64 for the ones with286

less than 1,000 molecules. We have considered different sizes of ST-DNN models because of287

the problem with overfitting; the smaller datasets are more likely to overfit on structures of288

higher complexity,69 and our experiments supported that. All ST-DNN models have trained289

for 1,000 epochs with Adam55 optimizer, the learning rate of 5 · 10−3, and the batch size290

of 32. We have trained 42 ST-DNN models using seven prediction task datasets and six291

pretrained AutoEncoders.292

After ST-DNN models have finished training, we use 10-Fold Cross-Validation (CV) for293

the datasets without validation sets (LD50, IGC50, LC50, LC50DM, and logP) and valida-294

tion sets for the ones with one (Lipophilicity and FreeSolv) to choose a suitable AutoEncoder295

FP extraction models by comparing the average r2/RMSE values over ten independent runs296

of the ST-DNN models. See Table S1 in Supporting Information for these results. Table 3297

summarizes the selected AutoeEncoder architecture for each benchmark.298

Table 3: NC-GRU/GRU Autoencoder hyperparameters
The autoencoder for every dataset is selected using ten-fold cross-validation for all data
except FreeSolv and Lipophilicity, where the respective validation data is used

NC-GRU GRU

Dataset Hidden sizes Gate Init. Hidden sizes

IGC50 160, 320 He Normal 160,320, 640
LC50 160, 320 Glorot Uniform 160, 320, 640
LC50DM 160, 320, 640 He Normal 160, 320
LD50 160, 320, 640 He Normal 160, 320, 640
logP 160, 320 He Normal 160, 320, 640
FreeSolv 160, 320 He Normal 160, 320
Lipophilicity 160, 320, 640 He Normal 160, 320
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3.4 MT-DNN Models: Hyperparameters and Setup299

As mentioned before, there are many ML and DL algorithms that can be employed to learn300

various properties from a given molecular FP. In this work, MT-DNNs are the models applied301

to predict toxicity, partition coefficient, solubility, and solvation-free energy. The input size302

is set to 512, corresponding to the latent representation vector from the FP’s extraction303

AutoEncoder models; see section 3.3. The MT-DNN models consist of four hidden layers304

with dimensions 1024, 512, 256, and 64, and the ReLU70 activation function in between each305

hidden layer. All models were trained using a batch size of 18∗, the SGD optimizer with306

a momentum of 0.5, an initial learning rate of 10−2, and a step-learning rate decay, where307

the initial learning rate was used for the first 2,000 epochs and then reduced to 10−3 for308

the rest 1,000 epochs (total of 3,000 training epochs) except the FreeSolv dataset, where309

validation set was used to determine the termination of training criteria. Moreover, the310

Batch Normalization71 was applied for every task to enhance the models’ predictive power;311

a list of MT-DNN hyperparameters is provided in Table 4.312

Table 4: MT-DNN Prediction Model hyperparameters

Hyperparam. Input size Hidden sizes Learning rate Optimizer Momentum Batch size

Values 512 (1024,512,256,64) 10−2 SGD 0.5 18

As indicated in Gao et al.,2 there is a physicochemical correlation between the toxicity313

datasets. Using this assumption, we have considered two MT-DNN models to train toxicity314

datasets. One for training LD50 and IGC50 predictors where we have used all of the toxicity315

data, and another one, for training LC50 and LC50DM where the LD50 dataset is not used;316

Figures 3a and 3b depict those models. The reason to exclude the LD50 dataset from the317

second model is the high uncertainties of the LD50 dataset,2 which can potentially harm318

the learning process of MT-DNN when the test datasets are small. Similarly, logP, FreeSolv319

(FS), and Lipophilicity (LP) datasets have a chemical correlation, we use three of them320

∗such batch size was chosen to minimize the cutoff of data in the last batch, particularly important for
the small datasets
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altogether to implement the MT-DNN model; see Figure 3c.321

Note that we do not implement any type of transfer learning on the pretrained AutoEn-322

coders; we only get the FingerPrints. The Encoder part of the pretrained AutoEncoder was323

only used to obtain the molecular FingerPrints. Then, the obtained FingerPrints were fed324

into the prediction models.325

4 Experiments326

Figure 4: Performance comparison of different models on toxicity prediction tasks. Our
proposed model in this work, NC-GRU and baseline NC-GRUBL (using uniform architectures
and parameters) are highlighted in orange, the standard GRU-based model is in green,
and the rest is in purple. The performance of the purple models is taken from previous
studies.2,5,56,72,73

In this section, we present the results of various experiments to demonstrate the robust-327

ness and efficiency of the proposed NC-GRU FPs using four types of molecular properties:328

toxicity, partition coefficient, solubility, and solvation-free energy predictions where we have329

used seven benchmark datasets: IGC50, LC50DM, LC50, LD50, logP, Lipophilicity, and330

FreeSolv; see section 3.2 for details about these tasks and datasets. At the same time,331
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Figure 5: Results from NC-GRU, baseline NC-GRUBL, using uniform architectures and pa-
rameters (in orange) and GRU (in green) models. a) Comparison of various models on the
partition coefficient (logP) prediction, the other models in purple are taken from the liter-
ature;2,5,62,74 and * indicates the logP constraint is not used in training the AutoEncoders.
b) Illustrate the performances of different models on the solvation-free energy prediction on
the FreeSolv dataset, RMSE values of other models are obtained from the previous stud-
ies.5,63,75,76 c) Demonstrate the RMSE of several models on the Lipophilicity prediction,
besides our models, the rest is based on the published work.5,63,75,76 d) A summary of our
NC-GRU and standard GRU performances on all considered benchmarks. Our proposed
NC-GRU consistently outperforms its predecessor.

we compare with other available constructed models incorporating 2D/3D molecular FPs,332

including results for GRU-based FPs as a baseline to validate our proposed models. The333

accuracy of the models is measured in terms of the squared Pearson correlation coefficient334

(r2) for all experiments, except for FreeSolv and Lipophilicity datasets, where the Root Mean335

Square Error (RMSE) is considered.336

To reduce the variance in deep learning model performances, the presented NC-GRU and337

GRU results are the consensuses amidst five randomly selected seeds. The performance of338
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our models and others from the previous studies are illustrated in Figures 4 and 5. Our339

NC-GRU FP-based models demonstrate promising results, ranking first in three of seven340

experiments. Specifically, NC-GRU predictors achieve the best r2 values on IGC50 (0.816)341

and LC50 (0.759) datasets. Our NC-GRU is still the best model in the solvation-free energy342

prediction task, with RMSE being 0.757 kcal/mol. On LC50DM and LD50 benchmarks, our343

NC-GRU is ranked in second place, where our r2 coefficients are found to be 0.785 and 0.634,344

respectively. The top model on LC50DM is AGBTs-FP5 (0.830) and the best performance345

on LD50 is MACCS2 (0.643). In the Lipophilicity dataset, our model is ranked fourth but346

still above the GRU model, with RMSE=0.688, while the first rank predictor is Chemprop75
347

attaining RMSE=0.555.348

In all the interested experiments, we include GRU FP-based models for a direct compar-349

ison with its successor, NC-GRU. As seen in Figure 5d, our NC-GRU outperforms GRU in350

all the benchmarks except for the logP task, where both models produce the same r2=0.913.351

One might be concerned whether the information on logP constraint in MPCN significantly352

boosts the performance of the proposed fingerprint. We retrain the AutoEncoder network353

without the logP property to address that issue. As expected, we observe slightly reduced354

accuracy on both GRU and NC-GRU models. Specifically, while the R2 of GRU decreased355

from 0.913 to 0.910, the one of NC-GRU went down from 0.913 to 0.902. Despite that,356

these performances remain at the top among state-of-the-art models, as shown in Fig. 5a.357

The NC-GRU can improve GRU as high as 14%, which is measured at the FreeSolv bench-358

mark (NC-GRU RMSE=0.757 kcal/mol, GRU RMSE=0.882 kcal/mol). The superiority of359

NC-GRU over GRU for seven benchmarks illustrates the advantage of integrating Neumann-360

Cayley Gated Recurrent Units within the AutoEncoder architecture rather than standard361

gate components. Specifically, NC-GRU can store long-term information, which is crucial362

when encoding SMILES at various lengths. Furthermore, we conduct experiments on NC-363

GRU using the same MT-DNN as discussed before and the two-layer NC-GRU AutoEncoder364

with He Normal gate initialization across all seven datasets. This model is the baseline NC-365
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GRU, denoted as NC-GRUBL. As shown in Figs. 4 and 5, despite slightly less accuracy366

than the NC-GRU that has been fine-tuned, the baseline has still performed top among367

state-of-the-art models.368

Finally, we have conducted a similarity-based virtual screening experiment using the369

Kinases dataset. For each of the 160 human-protein kinases, we have concatenated all the370

provided ligands (since data came in a 5-Fold split for each protein) and then compared each371

concatenated ligand to the remaining concatenated ligands one protein at a time, i.e., leave-372

one-out similarity search. We use seven standard quality metrics to evaluate the results of373

virtual screening of kinase inhibitors: Recall, Specificity, Balanced Accuracy, Precision, Area374

Under the Receiver Operating Characteristics Curve (ROCAUC), and Enrichment Factor at375

1% and 2.5%. Details about these metrics can be found in.65,66 For each of the above metrics,376

the NC-GRU-based model obtains better results than the GRU-based. The average (over the377

160 proteins) results of this experiment are provided in Figure 6 with an extended version378

in Supplementary Material.

Figure 6: Results from similarity-based virtual screening for NC-GRU (in orange) and GRU
(in green) models on Kinases dataset. Metrics: Recall, Spec. - Specificity, Accu. - Balanced
Accuracy, Prec. - Precision, ROCAUC - Area Under the Receiver Operating Characteristics
(ROC) Curve, EF·% - Enrichment Factor

379
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5 Conclusion380

A fingerprint-based AutoEncoder, commonly equipped with the Gated Recurrent Unit (GRU),381

is reported to provide a reliable molecular representation for the downstream task of pre-382

dicting molecular properties. However, due to the exploding gradient issue and long-term383

dependence limitation, the GRU-AutoEncoder frameworks fail to achieve state-of-the-art384

accuracy when handling diverse biological datasets. This problem motivated us to develop385

an advanced GRU version, named NC-GRU, for the AutoEncoder to encode small molecular386

structures more efficiently by training orthogonal matrices.387

Combined with multitasking deep neural networks (MT-DNN), our NC-GRU fingerprint-388

based models achieve promising results in predicting various molecular properties, namely389

toxicity, partition coefficient, lipophilicity, and solvation-free energy. Specifically, our pro-390

posed models earned the top ranking in four of seven benchmark studies: IGC50, LC50,391

logP, and FreeSolv. NC-GRU still performed well in the other two data sets, LC50DM and392

LD50, ranking second overall. Furthermore, it is encouraging to observe that NC-GRU mod-393

els outperformed GRU versions in almost every experiment. State-of-the-art performances394

indicate that the newly developed fingerprints and their corresponding predictors could be395

used in various drug discovery applications.396
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