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Abstract

Advancements in Deep Neural Networks (DNNs) have made a very powerful ma-
chine learning method available to researchers across many fields of study, including the
bio-medical and cheminformatics communities, where DNNs help to improve tasks such
as protein performance, molecular design, drug discovery, etc. Many of those tasks rely
on molecular descriptors for representing molecular characteristics in cheminformatics.
Despite significant efforts and the introduction of numerous methods that derive molec-
ular descriptors, quantitative prediction of molecular properties remains challenging.
One widely used method of encoding molecule features into bit strings is molecular fin-
gerprint. In this work, we propose using new Neumann-Cayley Gated Recurrent Units
(NC-GRU) inside the Neural Nets encoder (AutoEncoder) to create neural molecu-
lar fingerprints, NC-GRU fingerprints. NC-GRU AutoEncoder introduces orthogonal
weights into widely used GRU architecture, resulting in faster, more stable training,
and more reliable molecular fingerprints. Integrating novel NC-GRU fingerprints and

Multi-Task DNN schematics improves the performance of various molecular-related
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tasks such as toxicity, partition coefficient, lipophilicity, and solvation-free energy, pro-

ducing state-of-the-art results on several benchmarks.

1 Introduction

In recent years, there have been many advancements in drug discovery; however, building
cheap and efficient compounds with desirable pharmacological and biochemical properties?
remains challenging. Binding affinity, toxicity, and octanol-water partition coefficient (logP)
are crucial properties needed to evaluate a drug candidate.? Drug discovery consists of several
phases before launching to the market, such as target discovery, lead optimization, preclinical
development, and three phases of clinical trial.! Unpleasant results on the toxicity and the
pharmacokinetic properties are responsible for approximately half of drug candidates failing
to reach the market.? In the past, some of the most popular experiments are conducted in
viwo or in vitro to measure the drug properties. These approaches are very expensive and
time-consuming, not to mention that testing with animals raise important ethical issues and
concerns.

Machine Learning (ML) and Deep Learning (DL) algorithms have been introduced into
drug discovery and have achieved much success recently. A significant amount of work has
been devoted to deriving molecular descriptors from the representation of a molecule,4?
particularly molecular fingerprints that profile a molecule, usually in the form of a bit string
or a vector, with each vector element indicating the existence, the degree, or the frequency of
one particular structure feature.®® Most molecular fingerprints are derived from either two-
dimensional (2D)%%13 or three-dimensional (3D)'*15 molecular structural formulas where
2D structure can be viewed as if molecules were flat. Some of the most popular fingerprints
are Molecular Access System (MACCS),? FP2,!% Daylight,!! Electro Topological State (Es-
tate),'? Extended-Connectivity Fingerprint(ECFP),% Extended Reduced Graph (ERG),'?

etc. DL methods have proven beneficial in obtaining valuable information about molecular
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For example, 2D DL algorithms aim to learn a suitable data representation from a simple
embedding layer, where the input is a one-hot vector? of each atom in a molecule. Such
embedding is usually a part of the encoding mechanism where one of the widely used DL
algorithms is AutoEncoder,?! which learns the descriptors in an unsupervised and data-
driven way.%%'819 In principle, AutoEncoder can take an arbitrary molecular representa-
tion/nomenclatures as an input; however, in practice, researchers are usually focused on
sequence-based representations such as International Union of Pure and Applied Chem-
istry (IUPAC),?? Simplified Molecular-Input Line-Entry System (SMILES),?* International
Chemical Identifier (InChI)?* etc. A common AutoEncoder consists of Encoder and De-
coder networks, where embedded input passes through the Encoder and outputs a latent
representation. Then the Decoder network takes that latent vector and aims to transform
it back into the input sequence of either the same or different nomenclature depending on
the settings. The latent representation vector is associated with an information bottleneck
between the Encoder and the Decoder. Since the information is compressed, the latent rep-
resentation vector learns more general information related to the molecules.!® The structure
of AutoEncoder can be different; however, as mentioned in,* Gated Recurrent Unit (GRU)?®
is one of the most optimized architectures to implement as the AutoEncoder cells when com-
pared with Long-Short Term Memory (LSTM)? or Convolutional Neural Network (CNN).?7
Lastly, DL methods benefit from a large number of training samples; that is why large train-
ing datasets such as ChEMBL,?® ZINC15,2° PubChem,?° etc., allow DL models to derive
better and more efficient molecular descriptors. Derived fingerprints can later be used on
various prediction tasks such as toxicity prognosis, partition coefficient analysis, solubility
predictions, etc., where the latent representation vector acts as the input corresponding to
the prediction model.!*3!

This work proposes a novel AutoEncoder equipped with Neumann-Cayley Orthogonal

Gated Recurrent Units (NC-GRU)?? to generate high-quality fingerprints for complex and
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diverse molecules. To this end, we trained our NC-GRU AutoEncoder using the ChEMBL
2828 dataset; see section 2.2 for more details about this dataset. Our AutoEncoder takes
the Canonical SMILES representation of a molecule as input and outputs the same nomen-
clature back. The advantage of employing an NC-GRU architecture instead of a standard
GRU cell is the ability of NC-GRU to capture long-term dependencies using the orthogonal
matrices and the capability of GRU gates to forget unnecessary information. The com-
bination of training AutoEncoder on the ChEMBL 28 dataset with NC-GRU cells results
in NC-GRU FingerPrints (FPs), leading to improvements in many benchmarks during the
inference phase. Indeed, using NC-GRU FPs has resulted in state-of-the-art outcomes on

prediction tasks such as toxicity, partition coefficient, solubility, and solvation-free energy.

2 NC-GRU based AutoEncoder

2.1 Architecture

In this work, our main focus is to apply NC-GRU?? into the hidden layers of the AutoEn-
coder.?! Figure 1b and lc shows NC-GRU cell architecture and update diagram for the
orthogonal weight U.(A.), respectively. The input sequence-based molecular representation
given as canonical SMILES is tokenized and encoded in a one-hot vector representation be-
fore we feed it to the AutoEncoder. Depending on the quality of the fine-tuning process,
our AutoEncoder contains 2 or 3 stacked NC-GRU cells. If there are two cells, the hidden
layer dimensions will be 160 and 320. In the 3-cell AutoEncoder, the third cell has a size
of 640. Afterward, the state of each cell from the Encoder is concatenated and used as an
input vector in a Fully-Connected Layer (FCL) with 512 neurons. The activation function
applied to the FCL is a hyperbolic tangent (tanh). The extracted features vector with 512
units is implemented as the input vector in another FCL. The output of this FCL is divided
into three parts, corresponding to each dimension from the encoder, and used as the initial-

ization in every Decoder cell. At the same time, the extracted features vector is employed
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as the input to a Molecular Properties Consistency Network (MPCN), a prediction (regres-
sion) network with two FCLs of dimensions 512 and 128 with ReLU activation function after
each, and the output FCL with seven neurons and no activation function. This extended
Feed-Forward Neural Network (FNN) predicts specified molecular properties, namely logP,
the Molar refractivity, Balaban’s J-value, the number of acceptors, the number of hydrogen
bond donors, the number of valence electrons, and the Topological polar surface area. These
properties are derived from the molecular structure of the encoder input sequence using the
RDKit Python library. The purpose of the classifier network is to act as a regularizer for the
AutoEncoder and assist in obtaining better molecular descriptors from the trained AutoEn-
coder while still preserving the RDKit properties. The AutoEncoder needs to be trained to
minimize the softmax cross-entropy between every input sequence and the Decoder output,

L putoEncoder and, at the same time, minimize the Mean Squared Error associated with the

MPCN, Lupon.

‘Ctotal - EAutoEncoder + EMPC’N (1)

Besides our proposed NC-GRU AutoEncoder, we implement standard GRU?® in Au-
toEncoder for comparison, the identical network where NC-GRU cells were replaced with
GRU cells; see section 2.4 for more details. To better understand the AutoEncoder archi-
tecture described above, Figure la is provided as a visual aid. Due to the extra calculation
steps for updating the orthogonal weight U.(A.), the proposed NC-GRU AutoEncoder is
slightly slower than its counterpart. Particularly, two-layer NC-GRU AutoEncoder takes
17.9 seconds to run 100,000 iterations, but only 11.8 seconds for two-layer GRU. Further
comparisons between GRU and NC-GRU models, including computation time study, can be

found in section 1 of the Supplementary Material.



/ AutoEncoder \
7 N\ () "\ |O=C (CCCN1CCC

O=C (CCCN1cCCC Encoder Decoder
(0) (c2ccc %—»[ One-hot encoding | | One-hot encoding | (0) (c2ccc
(Br)cc2) LA i ,2 " v (Br) cc2)
0 —‘
CCl)clc NC-GRU E g E T l CClLClCl
cc(F)ccl Ay © 5 o " cc(F)cc
D a iy
0 .
AvA 8 & 8 VA
i i T
Bf / AN B

v
/ Fully-Connected Layer \ —> forward propagation
RDKit Molecular *l
Properties : backward propagation
Fully-Connected Layer """ through AutoEncoder
Molecular Al .

. i backward propagation
Properties Fully-Connected Layer through MPCN
Consistency A

\ Network e EEEEEEE Y,

(a) Architecture for training NC-GRU fingerprints using NC-GRU AutoEncoder together with
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Figure 1: Visualization of (a) AutoEncoder training process, (b) NC-GRU cell, and (c¢) NC-
GRU weight U.(A.) update scheme.

Notation: ¢ - sigmoid function, ® - modReLU,3* @ - Hadamard product (entrywise multi-
plication), T - transpose, X - matrix multiplication, opt 4 - weight A optimizer, any algebraic
expression (e.g., 1 — z) is evaluated with previous step output as input (1 represents an
identity matrix); refer to Algorithm 132 for the order of non-commutative operations
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2.2 Data Processing

We have trained AutoEncoder architecture with Molecular Properties Consistency Network
on the ChEMBL 28 dataset.?® The RDKit Python library was used to process the ChEMBL
28 dataset. All the duplicates were removed, and the remaining molecules were filtered with
the following criteria: only organic molecules, molecules with molecular weight between 12
and 600, molecules with at least three heavy atoms, molecules with a partition coefficient
log P between -7 and 5, only non-stereochemistry molecules, no salts, and molecules that
RDKit could not process were removed. The post-filtered dataset has 1,852,637 chemical
compounds, split into training and testing sets of sizes 1,667,373 and 185,264, respectively.
Furthermore, seven RDKit molecular properties were extracted for each molecule: log P
(MolLogP in the RDKit), number of valence electrons (NumValenceElectrons), number of
hydrogen bond donors (NumHDonors), number of acceptors (NumHAcceptors), Balaban’s J-
value (BalabanJ), molar refractivity (MolMR), and topological polar surface area (TPSA).

Further, each of the above properties is normalized using

£=—F, 2)
o

where p and o represent the mean and standard deviation of the property for the whole
dataset, and x and Z, represent each element of the dataset under that property and its
normalized version, respectively. The above molecular properties were chosen to follow
setups from* and.'® These published works have testified that the constraints of RDKit
features on the latent space are necessary to avoid dead areas in molecular representation
learning. That causes the decoder network to produce invalid SMILES strings. Moreover,
our experiments have shown that removing logP constraint in Autoencoder does not affect

the quality of molecular representations, see Fig. 5a.
The data processing criteria and selected statistics about normalized RDKit molecular

properties are provided in Table 1.
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Table 1: ChEMBL 28 processing criteria and statistics of RDKit processed and normalized
molecular properties

ChEMBL 28 Dataset

Processing Criteria H Normalized Molecular Properties
Removal of duplicates min | max
Only organic molecules log P | -5.08 | 2.26
Molecular weight between 12 and 600 # of valence electrons | -3.46 | 3.16
More than three heavy atoms # of hydrogen bond donors | -1.18 | 10.89
A partition coefficient log P between 7 and 5 # of acceptors | -2.47 | 7.86
Only non-stereochemistry compounds Balaban’s J-value | -2.53 | 12.86
No salts Molar refractivity | -4.08 | 3.40
Molecules that RDKit could not process were removed || Topological polar surface area | -2.26 | 8.68

2.3 NC-GRU Fingerprints

Molecular descriptors are essential in chemoinformatics as they encode crucial chemical in-
formation of molecules in a computer-interpretable format.3* Compared to the classical fin-
gerprints, the advantage of the AutoEncoder models is the ability to learn a large and diverse
set of molecules and yield encoded information in the latent space,'® the desired fingerprints.
In this work, we train the proposed NC-GRU AutoEncoder on the ChEMBL 28 dataset. The
Decoder of NC-GRU AutoEncoder is asked to output the same Canonical SMILES repre-
sentation as the one fed into the Encoder network. As mentioned, GRU?® is one of the
most optimized architectures for deriving neural fingerprints;* however, the newly proposed
NC-GRU cell has better theoretical properties than GRU cell. At its core, the NC-GRU
is equipped with orthogonality techniques to capture long-term dependencies. Still, at the
same time, its gates help to forget the redundant information in the memory. Inheriting
those advanced features, we expect our proposed NC-GRU FingerPrint (NC-GRU FP) to
provide robust and reliable molecular descriptors ready for use on various applications. As a
result, one expects the NC-GRU FP vector representation between the Encoder and Decoder
to gain a more extensive understanding of the input molecule sequence.'® To demonstrate
the significance of our fingerprints, we tested NC-GRU FP on several prediction tasks, such

as toxicity, solubility, partition coefficient, and solvation-free energy predictions, using seven
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Figure 2: Comparison of Testing Accuracies between NC-GRU and GRU-based AutokEn-
coders on CheMBL 28 Dataset

benchmark datasets.

2.4 Translation Accuracy

To demonstrate the advantages of NC-GRU-based AutoEncoder compared to GRU-based
one, we have analyzed training accuracies on ChEMBL 28. Both models were trained for
100,000 steps, with test accuracy recorded every 1,000.

We show the corresponding results in Figure 2, where the number of hidden layers for
both AutoEncoders is two with dimensions 160 and 320 (similar performance was observed
with three layers AutoEncoders). Thanks to the orthogonal gated units, we noticed a con-
siderable improvement in training accuracy in early training when implementing NC-GRU
AutoEncoder. However, in the later iterations, both models’ accuracies approached 99%.

Based on our molecular property prediction tasks experiments, we believe that the earlier-
faster convergence of NC-GRU-based AutoEncoder produces a more reliable and robust

AutoEncoder fingerprint.

3 Prediction Models with Molecular Fingerprints

A prediction model or predictive modeling helps to predict future outcomes using input data

by recognizing patterns within it. Many ML and DL algorithms have been very effective in
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predictive tasks, including predicting molecular properties. The classical predicting models
include linear and logistic regressions, logistic classification, k-nearest neighbors, support
vector machine,®> etc. More recently, ML and DL methods based on ideas from algebraic

topology,3%37 differential geometry,® geometric graph theory,3%40

and algebraic graph the-
ory*' show promising results on predictive modeling. However, many advanced ML and
DL algorithms use a combination of methods mentioned above with molecular fingerprints
(FPs) to boost the performance and obtain a more accurate model, e.g., Random Forest
(RF),** Gradient Boosting Decision Tree (GBDT),%® Single-Task Deep Neural Networks
(ST-DNN),* Multi-Task Deep Neural Networks (MT-DNN)%5 etc. These models use FPs
as input into prediction models since they carry more structural information about molecules,
particularly stereochemical descriptions, than chemical formulas or other not neural-FP rep-
resentations. Such algorithms have often proven very efficient when employing either 2D or
3D molecular FPs.

In our prediction experiments, we employ the MT-DNN to improve the performance of

molecular property prediction.

LD50 IGC50 | LC50 |LC50DM| |IGC50 LC50 LC50DM| logP FS | LP |
\ \ \ \ v v v v v v

[ Encoder ] [ Encoder ] [ Encoder ]
\ \ \ \ v v v v v v

[ NC-GRU Fingerprints ] [NC—GRU Fingerprints] [NC—GRU Fingerprints]

(a) LD50 and IGC50 (b) LC50 and LC50DM (c) logP, FreeSolv (FS), and
LipoPhilicity (LP)

Figure 3: MT-DNN models for prediction tasks;

10
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3.1 Multitask Deep Neural Network

Multi-Task Deep Neural Network (MT-DNN)%® is a powerful tool where a shared model
simultaneously learns multiple tasks. MT-DNN has been utilized effectively in various ap-
plications, including computer vision,*” speech recognition,*® natural language processing,*°
and drug discovery.?°°3 The training process of MT-DNN consists of a joint representation
of trainable parameters to gain knowledge from several tasks and boost performance. Its
strength comes from learning multiple datasets simultaneously. However, MT-DNN depends
heavily on the assumption that there is a correlation between the input datasets. Regard-
ing the MT-DNN architecture, the number of neurons in the output layer depends on the
number of tasks employed in the input data. Even though the output layer has more than
one neuron, the loss function updates the parameters by focusing only on the particular
output corresponding to the input task. For example, the MT-DNN model with four tasks
starts training by taking a batch of data from the first task and updating the shared and
first task output weights while not involving the other tasks’ output weights. When it fin-
ishes with the first task’s entire dataset (i.e., finishes the first task-epoch), the MT-DNN
model moves to the second dataset and trains the shared and only the second task output
weights again. Then the process continues with the third and then the fourth tasks. This
process comprises a complete single epoch of MT-DNN training with four tasks. Note that
a traditional MT-DNN model is trained using standard backpropagation algorithms such as
Stochastic Gradient Descent (SGD), RMSProp,** and Adam®® while using a single optimizer
throughout all the training and tasks.

An illustration of the MT-DNN implemented in our experiments is given in Figure 3.

3.2 Prediction Datasets

We have used several datasets for toxicity, partition coefficient, solubility, and solvation-free

energy prediction tasks.

11
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Table 2: Selected Statistics for Prediction Tasks Datasets; “ - 7 - no validation data; Part.
Coeff. - Partition Coefficient.

Dataset H Train ‘ Valid. ‘ Test H Min. Value ‘ Max. Value ‘ Units H Category
LD50 7,413 - 1,482 0.291 7.201 —log;, mol/L Toxicity
IGC50 1,434 - 358 0.334 6.36 —log;, mol/L Toxicity
LC50 659 - 164 0.037 9.261 —log,, mol/L Toxicity

LC50DM 283 - 70 0.117 10.064 —log,, mol/L Toxicity
logP 8,199 - 406 -4.64 8.42 n/a Part. Coeff.

FreeSolv 513 65 65 -25.47 3.43 keal /mol Free energy

Lipophilicity || 3,360 420 420 -1.5 4.5 n/a Solubility

3.2.1 Toxicity Prediction Datasets

Toxicology forecasting is crucial for public health. Toxicity prediction has various uses, but
one of its most important is lowering the expense and labor of a medicine’s preclinical and
clinical trials. Many drug studies can be avoided because of the expected toxicity. In our
toxicity prediction experiments, we have used four datasets: oral rate LD50 (LD50), 40
h Tetrahymenapyriformis IGC50 (IGC50), 96 h fathead minnow LC50 (LC50), and 48 h
Daphnia Magna LC50DM (LC50DM).

The LD50%7 task measures the number of chemicals that can kill half of the rats
when orally ingested. The IGC50°%® records the 50% growth inhibitory concentration of

Tetrahymena pyriformis organism after 40 hours. The LC50%06

reports the concentration of
test chemicals in the water in milligrams per liter that cause 50% of fathead minnows to die
after 96 hours. The last toxicity prediction task, LC50DM, %61 represents the concentration
of test chemicals in the water in milligrams per liter that cause 50% Daphna Magna to die
after 48 hours. The unit of toxicity reported in these four datasets is —log;, moles per
liter (mol/L). Among these four toxicity datasets, the sizes vary from 353 to 8,895; Table 2
provides more information about these datasets. Unfortunately, the small size of the dataset

(LC50 and LC50DM) and some data being very uncertain (LD50)? are only some of the

reasons why training these datasets can be very challenging.

12
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3.2.2 Partition Coefficient Prediction Dataset

For the task of Partition Coefficient Prediction, we have been working with the logP dataset.
The term “logP” refers to the logarithm of a compound’s octanol-water partition coefficient.
The partition coefficient is the ratio of a compound’s concentrations in an equilibrium two-
phase system. It is a quantitative way to describe lipophilicity, the ability to dissolve, which
impacts a pharmacological compound’s absorption, distribution, metabolism, elimination,
and toxicity. The logP dataset consists of 8,199 molecules for the training data, 406 molecules
for the testing data, and no validation data; see Table 2 for more. The Food and Drug
Administration (FDA) approved all the components in the test data as organic drugs. The

logP values for the partition coefficient data are compiled by.%?

3.2.3 Lipophilicity Prediction Dataset

The lipophilicity of a drug determines its potency, distribution, and elimination in the body.
The current work’s dataset is curated from the ChemBL database resulting in 4,200 com-
pounds® where the lipophilicity index is determined by the distribution coefficient of oc-

tanol /water at pH 7.4.

3.2.4 Solvation Free Energy Prediction Dataset

Solvation-free energy transfers a solute molecule from an ideal gas to water. Therefore,
accurately modeling solvation-free energy can give insight into the uncertainty of estimating
binding free energy between small molecules and proteins. This is a significant area of
interest for computer-aided drug discovery. The solvation-free energy data used in this work
is FreeSolv, originally developed by Mobley and Guthrie,®* containing 643 molecules. This
set is divided into three sub-datasets in accordance with MoleculeNet’s suggestions: % Train

(513), Validation (568), and Test (65); some additional information is provided in Table 2.

13
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3.2.5 Virtual Screening: Kinases dataset

This dataset was provided on request by Pogodin et al.%® The Kinases dataset is a col-
lection of SDFs divided into five subsets for 5-Fold Cross-Validation in every subset. It
consists of 180,020 (175,076 after processing) compounds, with a number of unique ones
being 55,594 (53,834 after processing). Every subset of this dataset was formed based on the
data contained in the ChEMBL database, and the activities are measured on 160 different
human-protein kinases. The ligands are classified as ATP-competitive and their score is
recorded as active or inactive (1 or 0, respectively), depending on their inhibition rate. Fur-
thermore, the data on the inhibition of non-human kinases was excluded from the dataset.
Note that the dataset lacks activity information on many kinases since the ligands are only
tested on a few. Despite several publications where the missing information is classified as
inactive by default,%% we only use the information provided in the dataset without any

further assumptions or modifications of the dataset.

3.3 Optimized FingerPrints for Prediction Tasks

As mentioned in section 3.1, MT-DNN models can improve prediction tasks significantly.
However, a nearly optimal AutoEncoder structure will deliver desirable molecular repre-
sentations, further improving downstream prediction networks. This section discusses the
process we have followed in choosing ideal NC-GRU AutoEncoders to get more desirable
molecular FingerPrints (FPs) for the prediction task datasets and the following MT-DNN
training.

The work done in the NC-GRU paper?? suggests that different gate initializations and
the number of layers can improve the performance of a model. Based on this argument, we
have studied and analyzed a total of six AutoEncoder FingerPrint (FPs) extraction models.
Four of which were based on the NC-GRU AutoEncoder with two and three layers and
two different initializations (He Normal®” and Glorot Uniform®), and the other two are

GRU-based with two and three layers.

14
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To choose a more desirable FP for a specific prediction task and future MT-DNN train-
ing, we have considered a Single-Task DNN (ST-DNN) model with simple fully-connected
architecture. ST-DNN model consists of two fully-connected layers with dimensions 256, 128
for the prediction datasets with more than 1,000 data points and 128, 64 for the ones with
less than 1,000 molecules. We have considered different sizes of ST-DNN models because of
the problem with overfitting; the smaller datasets are more likely to overfit on structures of
higher complexity,% and our experiments supported that. All ST-DNN models have trained
for 1,000 epochs with Adam® optimizer, the learning rate of 5- 1073, and the batch size
of 32. We have trained 42 ST-DNN models using seven prediction task datasets and six
pretrained AutoEncoders.

After ST-DNN models have finished training, we use 10-Fold Cross-Validation (CV) for
the datasets without validation sets (LD50, IGC50, LC50, LC50DM, and logP) and valida-
tion sets for the ones with one (Lipophilicity and FreeSolv) to choose a suitable AutoEncoder
FP extraction models by comparing the average r?/RMSE values over ten independent runs
of the ST-DNN models. See Table S1 in Supporting Information for these results. Table 3
summarizes the selected AutoeEncoder architecture for each benchmark.

Table 3: NC-GRU/GRU Autoencoder hyperparameters
The autoencoder for every dataset is selected using ten-fold cross-validation for all data
except FreeSolv and Lipophilicity, where the respective validation data is used

H NC-GRU H GRU
Dataset H Hidden sizes ‘ Gate Init. ‘ Hidden sizes
IGC50 160, 320 He Normal 160,320, 640
LC50 160, 320 | Glorot Uniform 160, 320, 640
LC50DM 160, 320, 640 He Normal 160, 320
LD50 160, 320, 640 He Normal 160, 320, 640
logP 160, 320 He Normal 160, 320, 640
FreeSolv 160, 320 He Normal 160, 320
Lipophilicity 160, 320, 640 He Normal 160, 320

15
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3.4 MT-DNN Models: Hyperparameters and Setup

As mentioned before, there are many ML and DL algorithms that can be employed to learn
various properties from a given molecular FP. In this work, MT-DNNs are the models applied
to predict toxicity, partition coefficient, solubility, and solvation-free energy. The input size
is set to 512, corresponding to the latent representation vector from the FP’s extraction
AutoEncoder models; see section 3.3. The MT-DNN models consist of four hidden layers
with dimensions 1024, 512, 256, and 64, and the ReLU™ activation function in between each
hidden layer. All models were trained using a batch size of 18", the SGD optimizer with
a momentum of 0.5, an initial learning rate of 1072, and a step-learning rate decay, where
the initial learning rate was used for the first 2,000 epochs and then reduced to 1073 for
the rest 1,000 epochs (total of 3,000 training epochs) except the FreeSolv dataset, where
validation set was used to determine the termination of training criteria. Moreover, the
Batch Normalization™ was applied for every task to enhance the models’ predictive power;

a list of MT-DNN hyperparameters is provided in Table 4.

Table 4: MT-DNN Prediction Model hyperparameters

Hyperparam. H Input size ‘ Hidden sizes ‘ Learning rate ‘ Optimizer ‘ Momentum ‘ Batch size

Values || 512 | (1024,512,256,64) | 10 | sGb | 05 | 18

As indicated in Gao et al.,? there is a physicochemical correlation between the toxicity
datasets. Using this assumption, we have considered two MT-DNN models to train toxicity
datasets. One for training LD50 and IGC50 predictors where we have used all of the toxicity
data, and another one, for training LC50 and LC50DM where the LD50 dataset is not used;
Figures 3a and 3b depict those models. The reason to exclude the LD50 dataset from the
second model is the high uncertainties of the LD50 dataset,? which can potentially harm
the learning process of MT-DNN when the test datasets are small. Similarly, logP, FreeSolv

(FS), and Lipophilicity (LP) datasets have a chemical correlation, we use three of them

*such batch size was chosen to minimize the cutoff of data in the last batch, particularly important for
the small datasets
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altogether to implement the MT-DNN model; see Figure 3c.

Note that we do not implement any type of transfer learning on the pretrained AutoEn-
coders; we only get the FingerPrints. The Encoder part of the pretrained AutoEncoder was
only used to obtain the molecular FingerPrints. Then, the obtained FingerPrints were fed

into the prediction models.

4 Experiments

c LC50DM d
AGBT-FP

NC-GRU NC-GRU
NC-GRUg,

GRU

NC-GRUg, NC-GRUg,
NC-GRU FP2

BTAMDL1 N. Neighbour HybridModel

AGBT,-FP
HybridModel

AGBT-FP GRU GRU Daylight
FDA Daylight BTAMDL1 AGBT,-FP

Estate2 Hierarchical Hierarchical NC-GRUg,
Estatel Estatel Daylight: BTAMDL1
BTAMDL1 HybridModel Estatel Estatel
Hierarchical N. Neighbour Estate2 GRU

Daylight Estate2 HybridModel Estate2

FP2 FDA FDA ECFP:
ECFP

MACCS

FP2 ECFP Hierarchical

MACCS N. Neighbor

N. Neighbour:

05 06 0.7 0.8 .
R? R2

FP2 FDA
0.2 ; : . 0.50 055 _0.60
R? R?

0.7

Figure 4: Performance comparison of different models on toxicity prediction tasks. Our
proposed model in this work, NC-GRU and baseline NC-GRU g, (using uniform architectures
and parameters) are highlighted in orange, the standard GRU-based model is in green,
and the rest is in purple. The performance of the purple models is taken from previous
studies, 25:56,72,73

In this section, we present the results of various experiments to demonstrate the robust-
ness and efficiency of the proposed NC-GRU FPs using four types of molecular properties:
toxicity, partition coefficient, solubility, and solvation-free energy predictions where we have
used seven benchmark datasets: 1GC50, LC50DM, LC50, LD50, logP, Lipophilicity, and

FreeSolv; see section 3.2 for details about these tasks and datasets. At the same time,
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Figure 5: Results from NC-GRU, baseline NC-GRU gy, using uniform architectures and pa-
rameters (in orange) and GRU (in green) models. a) Comparison of various models on the
partition coefficient (logP) prediction, the other models in purple are taken from the liter-
ature;>>%%™ and * indicates the logP constraint is not used in training the AutoEncoders.
b) Hlustrate the performances of different models on the solvation-free energy prediction on
the FreeSolv dataset, RMSE values of other models are obtained from the previous stud-
ies. 037,76 ¢) Demonstrate the RMSE of several models on the Lipophilicity prediction,
besides our models, the rest is based on the published work.>63776 d) A summary of our
NC-GRU and standard GRU performances on all considered benchmarks. Our proposed
NC-GRU consistently outperforms its predecessor.

we compare with other available constructed models incorporating 2D /3D molecular FPs,
including results for GRU-based FPs as a baseline to validate our proposed models. The
accuracy of the models is measured in terms of the squared Pearson correlation coefficient
(r?) for all experiments, except for FreeSolv and Lipophilicity datasets, where the Root Mean
Square Error (RMSE) is considered.

To reduce the variance in deep learning model performances, the presented NC-GRU and

GRU results are the consensuses amidst five randomly selected seeds. The performance of
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our models and others from the previous studies are illustrated in Figures 4 and 5. Our
NC-GRU FP-based models demonstrate promising results, ranking first in three of seven
experiments. Specifically, NC-GRU predictors achieve the best r? values on IGC50 (0.816)
and LC50 (0.759) datasets. Our NC-GRU is still the best model in the solvation-free energy
prediction task, with RMSE being 0.757 kcal /mol. On LC50DM and LD50 benchmarks, our
NC-GRU is ranked in second place, where our r? coefficients are found to be 0.785 and 0.634,
respectively. The top model on LC50DM is AGBT,-FP5 (0.830) and the best performance
on LD50 is MACCS? (0.643). In the Lipophilicity dataset, our model is ranked fourth but
still above the GRU model, with RMSE=0.688, while the first rank predictor is Chemprop ™
attaining RMSE=0.555.

In all the interested experiments, we include GRU FP-based models for a direct compar-
ison with its successor, NC-GRU. As seen in Figure 5d, our NC-GRU outperforms GRU in
all the benchmarks except for the logP task, where both models produce the same 72=0.913.
One might be concerned whether the information on logP constraint in MPCN significantly
boosts the performance of the proposed fingerprint. We retrain the AutoEncoder network
without the logP property to address that issue. As expected, we observe slightly reduced
accuracy on both GRU and NC-GRU models. Specifically, while the R? of GRU decreased
from 0.913 to 0.910, the one of NC-GRU went down from 0.913 to 0.902. Despite that,
these performances remain at the top among state-of-the-art models, as shown in Fig. ba.
The NC-GRU can improve GRU as high as 14%, which is measured at the FreeSolv bench-
mark (NC-GRU RMSE=0.757 kcal/mol, GRU RMSE=0.882 kcal/mol). The superiority of
NC-GRU over GRU for seven benchmarks illustrates the advantage of integrating Neumann-
Cayley Gated Recurrent Units within the AutoEncoder architecture rather than standard
gate components. Specifically, NC-GRU can store long-term information, which is crucial
when encoding SMILES at various lengths. Furthermore, we conduct experiments on NC-
GRU using the same MT-DNN as discussed before and the two-layer NC-GRU AutoEncoder

with He Normal gate initialization across all seven datasets. This model is the baseline NC-
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GRU, denoted as NC-GRUpgy. As shown in Figs. 4 and 5, despite slightly less accuracy
than the NC-GRU that has been fine-tuned, the baseline has still performed top among
state-of-the-art models.

Finally, we have conducted a similarity-based virtual screening experiment using the
Kinases dataset. For each of the 160 human-protein kinases, we have concatenated all the
provided ligands (since data came in a 5-Fold split for each protein) and then compared each
concatenated ligand to the remaining concatenated ligands one protein at a time, i.e., leave-
one-out similarity search. We use seven standard quality metrics to evaluate the results of
virtual screening of kinase inhibitors: Recall, Specificity, Balanced Accuracy, Precision, Area
Under the Receiver Operating Characteristics Curve (ROCAUC), and Enrichment Factor at
1% and 2.5%. Details about these metrics can be found in.%¢ For each of the above metrics,
the NC-GRU-based model obtains better results than the GRU-based. The average (over the
160 proteins) results of this experiment are provided in Figure 6 with an extended version

in Supplementary Material.

B NC-GRU B GRU

0.9- 3.3-

0.8-
3.2-

0.7-

0.6-
3.1-

0.4- 3.0-

Recall Spec. Accu. Prec. EF1% EF2.5%

Figure 6: Results from similarity-based virtual screening for NC-GRU (in orange) and GRU
(in green) models on Kinases dataset. Metrics: Recall, Spec. - Specificity, Accu. - Balanced
Accuracy, Prec. - Precision, ROCAUC - Area Under the Receiver Operating Characteristics
(ROC) Curve, EF-% - Enrichment Factor

20



= o Conclusion

se1 A fingerprint-based AutoEncoder, commonly equipped with the Gated Recurrent Unit (GRU),
32 18 reported to provide a reliable molecular representation for the downstream task of pre-
;83 dicting molecular properties. However, due to the exploding gradient issue and long-term
ssa  dependence limitation, the GRU-AutoEncoder frameworks fail to achieve state-of-the-art
35 accuracy when handling diverse biological datasets. This problem motivated us to develop
sss  an advanced GRU version, named NC-GRU, for the AutoEncoder to encode small molecular
ss7  structures more efficiently by training orthogonal matrices.

388 Combined with multitasking deep neural networks (MT-DNN), our NC-GRU fingerprint-
30 based models achieve promising results in predicting various molecular properties, namely
300 toxicity, partition coefficient, lipophilicity, and solvation-free energy. Specifically, our pro-
s1 posed models earned the top ranking in four of seven benchmark studies: IGC50, LC50,
302 logP, and FreeSolv. NC-GRU still performed well in the other two data sets, LC50DM and
33 D50, ranking second overall. Furthermore, it is encouraging to observe that NC-GRU mod-
304 els outperformed GRU versions in almost every experiment. State-of-the-art performances
305 indicate that the newly developed fingerprints and their corresponding predictors could be

36 used in various drug discovery applications.
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e Supporting Figure S1 shows the visual representation of the GRU and NC-GRU archi-
tecture including forward propagation for both models and rules for updating weight

U. and U.(A.) for GRU and NC-GRU models, respectively.

e Supporting Figure S2 provides information related to the computational time compar-

ison between GRU and NC-GRU AutoEncoders.

e Supporting Figure S3 provides the comparison plots of the predicted data points of
NC-GRU and GRU models vs. target points for each prediction dataset. In addition,

the mean absolute and the mean square residual errors are provided.
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