International Journal of Neural Systems, Vol. 0, No. 0 (2005) 1-7?
(© World Scientific Publishing Company

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud
Framework *

Anne Hee Ngu, Vangelis Metsis, Shuan Coynejr Priyanka Srinivasi, Tarek Salad Uddin Mahmud
Department of Computer Science, Texas State University, 601 University Drive
San Marcos, TX, 78666, USA
E-mail: angu@tzstate.edu

Kyong Hee Chee
Department of Sociology, Texas State University, 601 University Drive,
San Marcos, TX,78666, USA

The majority of current smart health applications are deployed on a smartphone paired with a smart-
watch. The phone is used as the computation platform or the gateway for connecting to the cloud
while the watch is used mainly as the data sensing device. In the case of fall detection applications for
older adults, this kind of setup is not very practical since it requires users to always keep their phones
in proximity while doing the daily chores. When a person falls, in a moment of panic, it might be
difficult to locate the phone in order to interact with the Fall Detection App for the purpose of indicat-
ing whether they are fine or need help. This paper demonstrates the feasibility of running a real-time
personalized deep-learning-based fall detection system on a smartwatch device using a collaborative
edge-cloud framework. In particular, we present the software architecture we used for the collaborative
framework, demonstrate how we automate the fall detection pipeline, design an appropriate Ul on the
small screen of the watch, and implement strategies for the continuous data collection and automation
of the personalization process with the limited computational and storage resources of a smartwatch.
We also present the usability of such a system with nine real-world older adult participants.

Keywords: fall detection, smart health, model personalization, deep learning, edge computing

*This work is supported by the National Science Foundation under the Research Experiences for Undergraduates Program
(CNS-1358939, CCF-1659807, CNS-1757893) as well as the recent NSF-SCH award (2123749) at Texas State University.
fShuan has graduated and his current email is mickcoyne@mailbox.org

iPriyankau has graduated and her current email is priyankasrinivas37@gmail.com

2 Anne Hee Ngu et.al

1. Introduction

Wearable smartwatches paired with smartphones
have brought health monitoring applications, such
as fall detection, closer to reality. However, a one
size fits all algorithm such as Apple Watch’s “hard
fall” detection or even more advanced deep learn-
ing models' have proven to be ineffective at cover-
ing all patterns of falls and ADL (Activities of Daily
Living) data. Our previous work,? using simulated
data from fourteen young and healthy adults, demon-
strated that we can detect most falls as well as ADLs
by utilizing a personalization strategy. This strategy
involved a deep learning model trained offline on sim-
ulated falls, plus labeled ADL data collected from the
user (feedback data) while wearing the watch for a
specified period. The feedback data from each user
was used to create a personalized fall detection model
that had over 90% recall with very few false alarms.
However, there are two main issues with this person-
alized fall detection system.

First, our previous fall detection application,
called SmartFall, runs the user interface (UI) on the
phone, with the watch used mainly for sensing of ac-
celerometer data. This is problematic because older
adults have difficulties keeping up with devices that
are not directly attached to them. Moreover, when
an older adult falls, in a moment of panic, it might
be difficult to locate the phone in order to interact
with the App for the purpose of indicating whether
they are fine or need help if the App is running on
the phone. A watch’s Ul on the other hand, would
allow interaction with the SmartFall App at any time
and anywhere.

The second issue in the previous system is that,
creating a personalized model was done manually as
a proof of concept. The SmartFall App is designed to
save the collected data on the phone using a CSV file
format. After data have been collected for a period
of time, a programmer has to manually organize the
data in a file to prepare it for re-training. This is not
scalable when the system is being used by more than
a handful of users in a nursing home and leaves room
for human error.

We propose a scalable solution by automating
the entire personalization process using a collabo-
rative edge-cloud framework, from the user initially
wearing the watch, to getting feedback or labeled
ADL/fall data from the user, re-training a new fall

detection model tailored to the user, validating the
new model on the cloud, and finally, pushing the new
model to the watch automatically. Some of the chal-
lenges for automating the personalization process on
the watch include continuous collection and robust
archiving of labeled data on a limited watch’s stor-
age, keeping track of the best personalized model and
personalized training dataset for each user, conserv-
ing the battery power of the watch, and the valida-
tion and selection of the new model daily.

Our solution involves migrating the SmartFall
App (UI and the prediction logic) to a single device
(smartwatch) and using a robust and efficient Couch-
3 storage system on both the watch and the
cloud for data collection and archiving. The Couch-

base

base on the watch and on the cloud can be syn-
chronized periodically and allows the data on the
watch to be purged automatically after synchroniza-
tion. Couchbase on the cloud provides a central place
to store all users’ feedback data reliability including
tracking the best personalized fall detection model
for each user, the personalized training dataset for
each user, and most important of all, the fast re-
trieval of user’s feedback data for re-training on the
cloud.

We demonstrate the feasibility of automated
real-time personalized fall detection and deployment
of the system on a commodity-based smartwatch.
We describe how we robustly collect labeled feedback
data from the user in real-time, test the scalability
of the automation pipeline, and the intuitiveness of
the App’s user interface on the watch. We further
validated the usability of the system by recruiting
nine real-world participants to wear the watch for
three hours each day for seven continuous days. The
main contribution of the paper is a prototype data
engineering architecture consisting of the following
components:

e A simplified UI on the watch interface tai-
lored to the small screen space and easy to
use for seniors.

e Automated personalization pipeline includ-
ing when to re-train, strategies used for re-
training, and accurate offline validation of
the new model.

e Robust archiving of feedback data using an
in-memory queue structure and Couchbase,

a NoSQL database.

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 3

e The edge-cloud software architecture that
enables optimization of the battery power
and storage space of the watch. The fall de-
tection App is able to run in the background
and only uploads the collected data via a
Wi-fi connection at a configurable interval.

e The usability study of the watch-based
SmartFall App with nine older adult fall risk
participants.

We would like to emphasize that in our system, the
fall detection at inference time runs solely on the
watch, so there is no latency incurred during predic-
tion since data do not need to be transferred to the
server. The watch does not require constant connec-
tivity to the internet and the type of connectivity is
dependent on the type of watch. Internet connectiv-
ity is needed only for periodical data archiving and
for downloading new personalized fall detection mod-
els. We prototyped our system on a watch with only
WiFi connectivity but that does not imply that our
system is for indoor only use or that cellular data
cannot be used for communication with the server.
Our system is designed to store the sensed data on
the local storage first. When internet connection is
not detected, so long as there is sufficient local stor-
age, the collected data will be archived locally and
sent to the server later.

The paper is organized as follows. In Section 2,
we present the background and previous work re-
lated to our problem. The overview of the system ar-
chitecture is presented in Section 3. The edge-cloud
database synchronization is described in Section 3.5
followed by the personalization automation pipeline
in Section 3.6. The evaluation of the pipeline is pre-
sented in Section 4. The usability study of the Smart-
Fall App by older adult participants is presented in
Section 5. Finally, we presented our conclusion and
future work in Section 7.

2. Background and Related Work

A recent survey on fall detection systems shows much
progress in using machine learning to detect falls
given accelerometer data.* The datasets used to train
models are all synthetically created by utilizing sim-
ulated falls and ADLs collected in controlled exper-
iments with primarily young, healthy adult partici-
pants.

There has been a wide range of success, however

the most success has been achieved using custom
hardware mounted on the chest or waist. Unfortu-
nately, chest or waist mounted fall detection systems
can be invasive, uncomfortable, or self conscious for
users to wear in public. Other systems that range
from infrared monitoring® to location monitoring®
all require wearable custom hardware.? It is not rea-
sonable to setup a custom array of cameras and sen-
sors throughout a home to detect falls; not only is it
invasive, but also it does not help seniors who need
to venture outside of the detection area. This is one
of the main motivations for creating a fall detection
system on a single commodity-based wearable device
such as smartwatch which has unrestricted mobil-
ity. Moreover, a smartwatch-based fall detection is
portable and does not require video/cameras or cus-
tom devices. Many of the custom hardware solutions
involve mounting the system in a very specific posi-
tion of the person, usually around the waist or chest.
If the device’s position is altered, the system stops
working. Additionally, even a small device such as
a pendant can be difficult to use, and overall frus-
trating as pointed out by Ref. 7. Thus, we propose a
smartwatch-based fall detection system as a familiar
device that an elder person would be more inclined
to use.

Another challenge of fall detection system is the
high false positives generated. A survey paper in 8
described the various strategies used to help combat
false positives. However, this remains an unsolved is-
sue. This, in large is due to difficulties in obtaining
large amount of quality labeled data for model train-
ing. Not only are the datasets synthetic and not rep-
resentative of the elderly population, but also they
are relatively small with limited variation in types
of falls and ADLs. When taken to the real world,
any activity not represented in the training set can
lead to a false positive. This could lead to hundreds,
if not thousands of incorrect alarms when scaled to
a single nursing home.® There have been some pro-
posed strategies to reduce false positives by detect-
ing relevant context to a fall. Specifically, it has been
proposed that if you can detect a fall and someone
lying still, then they have truly fallen.® 1! This strat-
egy greatly reduced the false positives. However, this
assumes expert knowledge on a dataset that does
not exist. Currently, there is no dataset of elderly
people falling or performing ADLs while wearing a
watch-based accelerometer sensor. There are various

4 Anne Hee Ngu et.al

instances in which a fall occurs but acceleration data
could continue to be recorded. These cases could be
things such as Parkinson’s, seizures, injury or any in-
stance in which the user is awake but unable to get
up or dial for help. We do not know to what propor-
tions of elderly falling resulted in total stillness vs
continued movement. While false positives are an-
noying, false negatives can be deadly. Therefore, any
proposed system will need to rely solely on its abil-
ity to learn patterns of falls and ignore patterns in
ADLSs without expert knowledge.

Most recently, personalization has been used to
reduce false positives. This has been achieved by two
strategies. Both strategies utilized some form of a
generic model that was trained on a synthetic fall
dataset from wrist-worn devices. The first system
utilized a bag-of-words strategy to collect labeled FP
(False Positive) data from the user. Each ADL was
added to the bag and future detected falls were com-
pared against these previous ADLs. If the data was
similar, then it was an ADL. Otherwise, it was a fall.
After each detected fall, the user could confirm if this
was a fall or another ADL.'2 This personalized bag of
words was able to reduce some of the false positives
without affecting recall. This system also attempted
to use common ADLs for transfer learning, such that
new users could benefit from this labeled data. How-
ever, it was found that most of the labeled data in
the bag was never encountered again. Meaning the
bag kept growing as new ADLs kept being received.
This does not scale well for mobile devices. There
was a severe lack of commonly occurring ADLs and
this prevented transfer learning from being a practi-
cal solution.

Our personalization of fall detection was first
reported in 2. We demonstrated that we could main-
tain the high recall (sensitivity) of a wrist-worn
watch based fall detection system as well as increase
the precision (specificity) by collecting personal false
positive data, including them in the dataset and then
re-train the model. This strategy uses an RNN en-
semble model first trained with simulated falls and
ADL data to detect if a user has fallen given the
user’s accelerometer data collected from the watch.
Then the user is asked to wear the watch for a few
hours. After a couple rounds of various ADLs per-
formed by the user, the collected false positive data
is used in combination with the original dataset to re-
generate a new model, thus creating a “personalized”

fall detection model. This personalized model was
nearly twice as precise as the generic model (a model
trained without personal ADL data). This process
shows that we can create a system that learns the
difference between falls and ADLs without expert
knowledge. It needs only feedback from the user to
increase its precision.

Tsinganos and Skodras'? also studied person-
alization of fall. They used a traditional K-Nearest
Neighbor (KNN) machine learning algorithm while
we used deep learning. Their acceleration data was
sampled at 50 Hz compared to ours at 31.2 Hz. Their
data was collected using a smartphone while ours
was via a smartwatch. To incorporate personaliza-
tion, the authors added the misclassified ADLs (i.e.
false positives) back into the training dataset one
sample at a time and concluded that seven sam-
ples could reduce false positives by 10%. Similarly,
our personalization strategy also collected the false
positives and added them back to original training
dataset. However, we collected and added the false
positives data in batches. The size of the batch is
dependent on how long the watch is being worn con-
tinuously and how many false positives are generated
during that period of time.

Another approach that has been traditionally
used to improve the behavior of systems or agents
over time is Reinforcement Learning (RL) and its re-
cent adaptations to Deep Reinforcement Learning. '
Although the goal of our system is to improve its
accuracy over time, by collecting personalized in-
formation, RL is not the best strategy to follow in
our case, as RL is more well-suited to applications
where the learning agent receives immediate feed-
back about the effect of each action/decision. A more
suitable approach for our problem is the one known
as Incremental Learning.'®

The personalization process in our prior work
is manual and the fall detection App only runs on
a smartphone with the watch being a data sensing
device. In this paper, we will show how to automate
the personalization process using edge to cloud col-
laborative framework so that fall detection can be
adapted to a particular person in real-time and run
on a single wearable device.

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 5

-—————— 1
Personalized
Data .
No Train Model Personall'zed
Model trained
from scratch

|
1
I
I pre-existing
L
|
Generic Data |
1
I

1
1
|
1
model :
1
1
I

Figure 1: Training from Scratch Strategy.

3. SmartFall on a Wearable device
with Edge-Cloud Collaboration

Our main goal is to demonstrate the feasibility of
implementing a practical and robust automated per-
sonalized fall detection system on a single personal
device (i.e. smartwatch) within an edge-cloud collab-
orative framework.

To achieve that, we first ported the deep learn-
ing model and the prediction algorithm in our prior
work? to run on the watch and verified that there was
no loss of accuracy or delay in prediction. Person-
alization requires continuous collection of feedback
data that needs to be stored locally on the watch to
reduce the communication overhead with the cloud.
Since the storage on the watch is very limited (only
2 GB is available on the test watch after installing
WearOS), periodically, there is a need to upload the
collected data without personal identifying informa-
tion robustly to the cloud to free up space on the
watch for further collection of data. After a new
model is validated to be better based on user’s feed-
back, that model will be downloaded to the watch to
replace the previous model without asking the user
to re-install the App.

3.1. Overview of the personalization
process

We utilized the training from scratch (TFS) person-
alization strategy described in our previous work?
for re-training. This personalization strategy reduces
false positives (increases precision) by combining a
generic dataset containing simulated falls and ADL
data from 14 volunteers with personal ADL data col-
lected from the user via simple feedback. TFS aims to
improve the model by re-training from scratch with
additional false positive data samples collected from
a specific user. Figure 1 is an illustration on TFS
training strategy.

The personalization strategy enables us to cre-

Help is on the way

Figure 2: User interface display after a fall is de-
tected.

ate models that are highly tuned to the user’s per-
sonal ADL patterns. The personalization process
starts when a user is asked to wear the watch for the
first time for half an hour of prescribed ADL activi-
ties (this list includes common tasks such as walking,
hand waving, sitting down, standing up, changing
clothes, picking up objects, washing hands, eating
food, brushing teeth, etc). This is referred to as the
calibration phase or the first round of personaliza-
tion. During this phase, whenever the system gen-
erates a prediction, the user will provide feedback
through the watch’s Ul, see Figure 2.

The labeled feedback data is stored locally
in a Couchbase database on the watch and will
be uploaded periodically to the cloud’s Couchbase
database. On the cloud, during the night and when
a certain number of false alarms have been generated,
the re-training of the model is initiated and a new
model is created. This model is validated and will be
automatically pushed onto the watch if it is deemed
to be a better model. An overview of the SmartFall
software architecture system with personalization is
shown in Figure 3.

3.2. Waitch-based Fall Detection App
(SmartFall)

Our original SmartFall App presented in'® had all of
the user interface’s screens on the phone. Accelerom-
eter data are continuously streamed from the watch
to the phone. When a fall has been detected by the
SmartFall App on the phone, an alert text message
can be sent to the caregiver if the user did not re-

6 Anne Hee Ngu et.al

PHP

Android Phone . ! Labeled data tunnel
profile information WearOS —)=
_—> watch =
11

Personalized model

Automated Training

-

Couchbase

Labeled data

Analyze

Train
¥
Upload %

Figure 3: Overview of the system data flow.

!

Personalized model

Personal Information

Name: Placeholder
Date of Birth: Selectadate
15 June 2019 21:57:07.890 Sex: Omale O Female

Detection

Height: 5 ft. o in.

is OFF e 2
Email: Placeholder
ACHIVATE FELL BUT OK [
¥) S ——
I'M OKAY

Figure 4: SmartFall User Interface on the Phone.

spond within a configurable fixed time interval (e.g.
30 seconds). Figure 4 shows three core user interfaces
(UT) for the phone-based SmartFall App. The screen
on the left shows the home screen UI for the applica-
tion and the screen on the center shows the UI when
a fall is detected.

Since the watch has a very small screen space.
To migrate the user interface to the watch, the Ul
screen to collect feedback from the user after a fall
prediction is re-designed to start with just two “yes”
and “no” buttons (see figure 2) rather than listing
all the choices as shown in the center screen in Fig-
ure 4. If the user pressed “yes”, the next screen will
ask whether the user needs help or not. If the user
did not press either “yes” or “no”, after a specified
period of time, an alert message will be sent auto-
matically to the designated caregiver. We followed
the best practices advocated in 17 for the design of
the UI for older adults. The three main principles we

Figure 5: Various watch-based Ul screens.
adopted were a strict color scheme with high con-
trast, legible and big fonts, simple description of the
system to engage them to use it.

We leave the profile creation on the phone. Pro-
file creation (Figure 4) needs to be done only once
and it is very tedious to create the profile using the
watch’s UL Profile creation includes generating a
unique id for a user as well as collecting contact de-
tails of the carer in case of a fall.

After the watch and the phone were paired, by
opening the SmartFall App on the phone and then
opening the corresponding App on the watch, the
watch will display “Create profile on phone”. Af-
ter the user created the profile on the phone and
pressed the “upload” button on the phone, the watch
will display “Profile Created” as shown in Figure 5.
The SmartFall App will be activated and run on the
watch (refer to Figure 5) when the user pressed the
“continue” button on this Ul. From now onwards,
the user only needs to interact with SmartFall App
via the watch. There is no need to interact with the
App unless the system detects that a fall has oc-
curred. The watch will vibrate to alert the user that
a prediction has occurred and the Ul in Figure 2 will
appear.

When the user presses “STOP” button on the
SmartFall App (Figure 5), the system is deacti-
vated, any remaining data collected during this pe-
riod are uploaded to the cloud before shutting down
the App. For privacy concerns, the only data be-
ing uploaded are the labeled accelerometer data with
system-generated user-id attached. No other profile
information is ever uploaded to the cloud.

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 7

3.3. Real-time Fall Prediction

One of the requirements for fall detection is that the
sampling rate must be sufficiently high to capture
a fall and samples must be received in order. The
system should not miss any real fall (i.e. high re-
call/sensitivity) and it should not generate too many
false alarms (i.e. high precision/specificity). The sys-
tem must be able to predict falls in real-time with
very little time delay. We determined through exper-
imentation!'® that 35 data points received/sampled
about every 32 ms is sufficient to capture the gen-
eral pattern for a fall.

The fall prediction is made using a pre-trained
deep learning model created in TensorFlow 2.0 as
described in 19. Our earlier work demonstrated that
using an ensemble of four LSTM RNN models to
make predictions for falls yields a slightly better pre-
cision compared to a single model. This model archi-
tecture was adopted in previous iterations when in-
ference ran on the smartphone and the watch acted
merely as a sensing device. In the current version,
where inference runs directly on the smartwatch, the
added computational complexity cannot be justified
by the minor increase in precision. Therefore, we use
a single RNN model which still achieves the same re-
call as the four RNN models but with slightly lower
precision. However, this lower precision, as demon-
strated in this paper, can be mitigated by personal-
ization which enables the SmartFall App to collect
feedback data from the user to improve the model
dynamically. The fall prediction is made on a sliding
window of data that is 35 samples (time-steps) in
length. Each prediction output a probability of fall
between 0 and 1. The sliding window shifts by one
time-step at each prediction. That means consecu-
tive windows have a K — 1 time step overlap, where
K is the size of the window. Figure 6 displays our
model architecture.

The model contains an input layer, two hidden
layers, and an output layer. The input layer contains
3 nodes for the raw data; the accelerometer (x, vy, z)
vectors. It then feeds through our hidden layers: a
recurrent layer of size 30 LSTM nodes, and a fully
connected dense layer of size 30 nodes. The output
is a 2-node softmax layer which outputs a predicted
probability that a fall has occurred. The input data
is batch normalized, a batch size of 64 is used. The
BinaryCrossEntropy with ADAM optimizer is used

Accelerometer X, Y, Z

@)

o
o

Output (n=2)

)

00000
00000

Input (n =3)

LSTM Layer (n = 30) Dense Layer (n = 30)

Figure 6: Deep learning model architecture.

Accelerometer Data Model Output Prediction

AccX AccY AccZ Eall Not fall

[1.083252 -0.303955 -0.36035156]1 |— [0.03714421 0.96285 |
[2.053711 0.135253 -0.50512695]2 [0.04565457 095434]
[1.543457 0.449707 -0.26367188 |3 [0.05419699 0.94580]

0.07034099 0.92965
[1.206543 0.2512207 -0.02368164]4 ! !
[0.09201283 0.90798]

[0.11373042 0.88626]

Yy y

[1.083252 -0.303955 -0.36035156]n
[2.053711 0.135253 -0.50512695] n+1
[1.543457 0.449707 -0.26367188]n+2

[0.179237 3076]
[0.20559086 0.79440]
[0.21992548 0.78007]

[0.2476773 075232]
[0.2863127 0.71368]
[0.30930176 0.69069]
[0.32877013 067122]
[0.305385 0.69461]
[0.2891071 0.71089]
[0.36568543 0.63431] —» Heuristic: 0.34470954 (Fall)
[0.43843526 6156 |
[0.4558128 /ﬁ:m 1
[0.42060798 057939]

Figure 7: Prediction scheme for the deep learning
model.

for the loss function. This model is lightweight rela-
tive to many deep learning architectures, and makes
inference computation much more efficient for mobile
devices.

Each prediction will output a probability of a
fall and we average the last 20 probabilities of pre-
diction together to infer fall or not fall. Basically, if
the averaged probability reaches a threshold of 0.3,
we determine that a fall has occurred. Figure 7 out-
lines this schematic.

The 0.3 threshold was determined via grid
search to give the best results in our dataset and
it is adjusted for different users via personalization.
We use a nested queue data structure to store the
sensed data in memory during prediction and mark
them for archiving as labeled feedback data after get-
ting confirmation from the user. The nested queue is
visualized in Figure 8.

The original phone version of the SmartFall App
is designed to archive the sensed data samples using
a CSV file for simplicity. However, to keep track of

[0.14570129 085429 1) Heuristic: 0.11635346 (not fall)

8 Anne Hee Ngu et.al

/ Each is a queue which consists of features used to classify falls

e

20

Beta
queue

Beta
queue

1

Alpha queue

Heuristics queue
S

02/ 04|03 ..

Figure 8: A visualization of the Alpha and Beta
queue.

where to slide the window for each prediction, there
is a need to store the line numbers of the CSV file
in memory. A prediction was made by reading the
CSV file and re-winding to the line number recorded.
This solution was inadequate for the long term us-
age of the App, since the file would get bigger and
bigger and the prediction time would get slower and
slower when the App was being used continuously
for a period of time. This problem is ultimately mit-
igated by storing the latest sensed data in the queue
data structure in memory. Upon a successful predic-
tion, the data in the queue is archived to the Couch-
base database system on the watch. This storage sys-
tem will be emptied periodically by uploading past
archived data points to the cloud and removing them
from the local storage to free up limited storage space
on the watch.

The structure of the queue is as follows: the main
queue is designed with a length of 20 (the number of
predictions we wish to average over to get an accu-
rate prediction). We call this the Alpha queue. The
main role of alpha queue is to mark all the samples
that have been used to make inference for a fall for
ultimate storage in Couchbase with least I/O and
for re-training. Data in each cell of the Alpha queue
have K — 1 time steps (i.e. 34 data points) overlap
with the next cell. This is done to ensure that for
every new data point collected, we make a new fall
prediction. Each item in the Alpha queue is a queue
of samples (accelerometer data). We call these Beta
queues. Each Beta queue is of length 35 (the predic-
tion window size). A sample is simply one instance
of linear acceleration data sampled at 32 ms and the
timestamp from when it was sampled.

The Beta queue starts as an empty queue and

is populated every 32 ms with the latest data from
the watch’s sensor. Once the Beta queue has reached
its max length of 35 samples, the content is copied
into the Alpha queue. That same 35 samples in the
Beta queue is then used as input to the RNN Model
for prediction, and the prediction result for those 35
samples is stored in a heuristics queue. Since Beta
queue is limited to storing 35 samples, whenever a
new sample has arrived in 32 ms time period, we
pushed the new sample into the head of the Beta
queue, and popped the oldest sample off the tail of
the Beta queue. These 35 samples is again saved in
the Alpha queue and then sent for another predic-
tion. The predicted result is stored in the heuristics
queue. This process repeats continuously. Once the
Alpha queue is full (reached 20), we are ready to
start making the final inference by checking whether
the averaged probability over the 20 predictions is
greater than the 0.3 threshold.

If the system infers that a fall has occurred
(threshold is > 0.3), we empty the Alpha queue by
saving the data to the Couchbase database on the
watch with unknown label at this point because we
do not yet know whether it is TP or FP. However,
these data are saved immediately as they could con-
tain true positive fall samples which are rare and
valuable and thus must be archived robustly. This
eager archiving of data also ensures that our system
is robust in collecting user’s feedback data which is
very important for personalization. When the user
provides the correct feedback on the Ul, these data
will be labeled and can be used for re-training as dis-
cussed in the next section. If no fall is predicted and
the queue is full, we pop the oldest item (one Beta
queue) out of the Alpha queue and save that as true
negative (TN) data.

3.4. Data Archiving

Couchbase? is chosen as the storage system in both
the watch and the cloud for the ease of data archiv-
ing. Couchbase was chosen for its ability to scale up
easily, fast I/O, compact JSON format, and built-in
synchronization of data between clients and servers
with CAP (Consistency-Availability-Partition) guar-
antee. Details of Couchbase’s server architecture can
be found in .2° In our implementation, we did not
use the built-in Sync gateway module of Counchbase.
Our application does not require synchronization in
both directions. Moreover, a single node Couchbase

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 9

Dataset

Macker — fraining type
uuiD version
version fpath
model-id uuIb
first-document
last-document
Model
~
uuID
fpath
isBest
- score
False Positive| True Positive [True Negati False Negati trainingTime
uuID uuID uuID uuID version
acc-x ace-x ace-x document-id threshold
acey accy accy i

acc-z acc-z acc-z
timestamp i i
document-id document-id document-id

Figure 9: Structure of the archived data on the
cloud/server.

server is sufficient for prototyping our system. We
are mainly interested in sending data to the server
for archival and sending a query to check for the
availability of new models. There is never a need to
synchronize raw data from to the server to the watch.
Details of our data synchronization is found in sec-
tion 3.5.

All data are stored using Couchbase’s document
structure. Figure 9 gives an overview of the struc-
ture of the archived data in the cloud/server. There
are 4 document types used to store the sensed ac-
celerometer data. These correlate to true positive
(“TP”), false positive (“FP”), true negative (“TN”),
false negative (“FN”) data. These four types of data
are tracked for each user for personalization. When a
fall is detected, the entire Alpha queue’s data in the
memory is saved to the local database. Since data is
processed in windows with K — 1 time steps over-
lap, to save only unique data samples, we have to
remove the overlapping data such that the samples
are still in temporal order, and each sample is unique.
To remove overlapping data, we use a simple strat-
egy of popping/removing each Beta queue from the
Alpha queue and only save the first sample of each
Beta queue except for the last Beta queue (the 20th)
where all data points are saved. This gives a final
size of 54 samples being saved when there is a posi-
tive prediction. We need to save all the data used to
make the 20 predictions. Since the prediction is done
on a sliding window with K — 1 data points overlap,
the final prediction consists of 20 beta queues which
has 54 unique samples. After obtaining the actual
label from the user from the UI’s prompt, the saved
data is updated with the correct label of either TP
(True Positive) or FP (False Positive).

When the Alpha queue is full and a fall has not
been predicted, a Beta queue needs to be popped off
and saved as TN (True Negative) data. Because of
the overlap, we only save the the oldest item in each
of the popped Beta queue. To minimize I/0, we ac-
cumulate true negative data samples to 375 before
saving to the local database as TN. Since the major-
ity of archived data is TN, the 375 is a number that
is large enough (represents around 512 KB) to reduce
the overhead of creating Couchbase documents and
small enough for fast transfer to the cloud.

The final type of accelerometer data that needs
to be archived are the FN (False Negative) data.
These data are generated when a fall has occurred
but was not detected by the application. We de-
signed a button on one of the Ul screens of the watch
(see Figure 5) labeled “I JUST FELL” to allow for
the recording of a timestamp marking the moment
when a conscious user indicated that a fall occurred
but was missed by the fall detection system. This is
used by the system to re-label sections of the data
as fall. False negative information is thus saved to
the database in a simple meta record consisting of
only the timestamp and user-id to facilitate the re-
labeling process later. The labeling of FN will incur
some level of inaccuracy because the recorded times-
tamp might not align with the moment the person
falls. To mitigate this misalignment, we label 54 data
points before the recorded timestamp as FN. The
number 54 is the number of samples we save for true
or false positives.

Other important database structures that
are needed for automatic personalization are the
Tracker, the Model and the Dataset. The tracker doc-
ument is first created by the SmartFall App on the
watch. It associates a specific deep learning fall detec-
tion model the App was using when it was activated.
As better models were downloaded to the watch,
newer tracker documents were created to track which
set of feedback data was recorded with which model.
Tracker document contains the ID of the first and
last document recorded when using the model. It also
contains the name of the current model and its ver-
sion number, and the UUID, the id of the user, which
tells us which user this tracker document belongs to.

The Model document is used to store different
personalized fall detection models that have been
generated for a user. The fpaths field is an array that
stores the filenames and locations of all the models.

10 Anne Hee Ngu et.al

This is designed as an array to accommodate mul-
tiple learning models that might be needed in the
future. The wersion field keeps track of the latest
model while the isBest field is a Boolean that de-
termines which model is the best. The scores field
is a map of all the statistics generated during offline
validation (including the precision and recall curve)
when the best model was tested on the test dataset.
The training time is the number of seconds it took
to generate this model. The threshold stores the best
threshold value to use for the best model.

The Dataset document is used to store the train-
ing dataset used for each user. With personalization,
each model is trained using data specific to a user.
This document contains a training type parameter
that identifies which re-training strategy was used.
Currently, we only experimented with Training From
Scratch (TFS). This attribute enables us to scale to
other re-training strategies if they are available. The
version is used to keep track of the version of the
dataset used. The fpaths is the file name of the CSV
file and the location of the file that contains the train-
ing data of a specific user.

The watch database used the same document
type for storing the collected accelerometer data as
on the cloud database for the ease of synchroniza-
tion. It does not have the Model and the Dataset
documents. The watch database has an additional
document called User Profile which stores informa-
tion such as the caregiver’s contact details.

Note that if the watch accelerometer data is
stored using a traditional relational database man-
agement system, a design with the least redundancy
will require data to be stored using two relations.
A meta table that indicates who owns a specific
data sample and a separate table for each of the
accelerometer data samples recorded every 32 ms.
In order to retrieve accelerometer data for a specific
user for re-training purposes, the query will involve
the join over two large tables and will incur high la-
tency. This will have a big impact on the scalability
of the personalization pipeline.

3.5. Database Synchronization

Synchronizing data collected on the watch to the
cloud database is a core part of achieving automa-
tion in personalization process of fall detection. We
upload 20 saved documents in batches periodically
(the interval can be configured) to avoid continuous

usage of the watch’s Wifi connection which can drain
the battery.

Once data are confirmed to be uploaded suc-
cessfully, we delete them from the watch’s database
to free up storage. A Tracker Document is designed
to synchronize the fall detection model used on the
watch and the cloud’s database. The Tracker details
are also uploaded to the cloud database to keep track
of the latest model being used on the watch, but
never deleted from the watch.

All archived data is associated with a user-id
which is a 32-letter string that is generated using a
random number generator during a profile creation.
Here is an example of a UUID: 9d9/c957-5f4b-49ba-
b555-b81db45ca9f7. Each time the user starts the
SmartFall App, the App queries the cloud database
for the best model using the UUID. If the watch does
not already have the best model, it is then down-
loaded to the watch. Fall detection will then proceed
to start with the best model.

3.6. Automation of model validation
and selection

The automation is divided into two parts; both parts
are run and co-dependent on each other. The first
part is run to evaluate the user’s feedback data stored
in the database, it determines if the current model is
generating too many false positives or false negatives
and the system needs to train a new model. If the
decision is to re-train, the request is passed on for
the training of a new model to the second part.

The second part of the system handles the train-
ing of the model in the cloud using GPU, offline val-
idation of the trained model, and saving of the new
model to the cloud database for eventual transfer to
the watch.

3.6.1. Part One

Criteria for Re-Training We analyze the archived
data of a user in the database within a specific
time interval to see if we need to train a better
model. Since each user’s fall detection model and
the archived data are tracked using the Tracker doc-
uments, we simply need to grab the latest tracker
document for each user. This tracker document con-
tains the first and last document ID that contains
data relevant to the model the user is currently us-
ing. With the relevant data retrieved, we need a way

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 11

to evaluate how the current model is performing. If
the model is performing well, there is no need to re-
train.

It is expected that activities that produce high
acceleration values on the wrist will generate more
false positives than sedentary activities. To eval-
uate the number of false positives that occur for
each user while controlling for different activity lev-
els and life styles (e.g. active subjects vs. less active
ones), we leverage a new custom metric for measuring
false positives for evaluation in.'® This new metric
takes into consideration the number of acceleration
“spikes” that occurred during a time period and uses
those as a normalization factor for the false positive
count. We consider a “spike” to occur when the mag-
nitude of acceleration for a user exceeds the double
of their average acceleration. The average accelera-
tion is computed by processing all the acceleration
data recorded during the evaluation period. When
a spike is detected, we ignore the next 16 sample
points (approximately half a second) before examin-
ing another spike. This ensures that a single jump in
acceleration magnitude, which could generate con-
secutive high sample points, is not read as multiple
spikes. The total number of false positives (FP) a
particular model detects will be compared against
the total number of spikes a user emitted to give our
Normalized Precision (NP) value:
#_of _spikes — FP (1)

#_of _spikes

In brief, spikes measure performance in relation to
activity levels. We choose .98 to be the threshold
for which if the spike score achieves, we do not need
to re-train. This means that 2 percent or less of all
high acceleration activities result in a false alarm.
If the spike score does not reach the threshold, the
retrieved FP data is prepared for re-training.

NP =

Data Trimming and dataset creation In analyzing
when re-training should happen, we use all the cap-
tured data in a specific interval to calculate the
spikes. Note that majority of data collected from a
user is TN (True Negative) data which can contain
large amounts of low acceleration data if the user is
not active. Adding too much low acceleration data to
the original dataset will result in a highly unbalanced
fall training data set.

This trimming process removes some low ac-
celerometer data such that the percentage and diver-

sity of each type of data should remain the same as
the original generic dataset. We found that removing
data points that are not within 750 data points from
a spike (roughly 24 seconds) and keeping a buffer
of around 250 data points on each spike (roughly
6 seconds) will achieve the right diversity of data.
The data remains in chronological order after being
trimmed; however, now all long periods of low accel-
eration data are removed.

After the data are trimmed, a new training
dataset is created and appended to the original
dataset (generic set), then written to a CSV file with
a new version number. The file path of this CSV file
is uploaded to the database as the latest training set.
Finally, the file path of the new training set is passed
to the second part of the system that is responsible
for model creation and validation.

3.6.2. Part Two

Model Generation Creating models in TensorFlow
2.0 using the TFS (Training From Scratch) method
has been described in earlier works.? To recap, the
TFS method discards the previous model and trains
a new model from a random initialized state using
the new dataset. This new dataset is a combination
of the original dataset with new data appended to
it. The re-training takes place in the cloud/server. To
manage multiple users using this personalized Smart-
Fall system, we implemented a FIFO queue to sched-
ule re-training automatically. An array consisting of
the UUID, version number of model, training dataset
path, and the testing dataset path is used to store
the details of each job. The training thread periodi-
cally checks the queue every few minutes. If there is
a job in the queue, it schedules the job to run using
a GPU server in the cloud/server. Each job in the
queue is run one by one sequentially until the queue
is empty.

Model Validation Once training is complete, the new
model must be validated offline. A high-performing
personalized fall detection model is a model that has
high sensitivity and specificity. A missed fall is repre-
sented as a False Negative (FN) and a “false alarm”
is represented as a False Positive (FP). Since we are
dealing with time-series data, validation of the model
needs to account for the sequential nature of the
data. We evaluate the model on the test set using a

12 Anne Hee Ngu et.al

simulation program that replicates how predictions
are made in real time as mentioned earlier in Sec-
tion 3.3.

In our system, the final inference of fall or not
fall is based on a threshold which is set as 0.3 in the
generic model. With personalization, this threshold
will vary between users and play a critical role in
selecting the best model. Therefore, for a newly gen-
erated model, we first validate that model against
test data with various thresholds until we can find
a threshold that will give the precision better than
the generic model or the existing model with a pre-
determined recall of 95%. If we cannot find a thresh-
old that gives a better precision at 95% recall, this
means the newly generated model is not better than
the generic model or the prior one. Otherwise, the
new model with the specified threshold is set as the
best model for this particular user.

Figure 10 shows a box highlighting the best pre-
cision for a personalized model compared to the best
precision of the generic model when the recall is fixed
above .95. Here, the new personalized model is better
and will be selected as the user’s new model.

4. Evaluation
4.1. Performance of Personal Model

We first want to confirm that the personalized model
from the automated pipeline is indeed better than
the generic model. We used the SmartFall dataset®
collected from 14 volunteers to train and test the
generic model. This dataset is divided into 2/3 for
training and 1/3 for testing. For personalization, we
recruited two volunteers to wear the watch running
our SmartFall for a period of time (45 mins to an
hour) and performed a scripted set of activities of
daily life. Whenever a fall is predicted, if it is a false
positive, the volunteer will label that. All the labeled
data will be used to train the personalized model
at the end of this personalization period. We tested
the two personalized models using the test dataset.
Figure 10 shows that at 0.95 recall, both the two
personalized models have above 0.9 precision versus
the generic model whose precision is below 0.9 with
the same recall.

#This dataset is available in:
http://www.cs.tzstate.edu/ hnl2/data/SmartFallDataSet

Precision

1

0.6 4

0.5 4 —— Generic Model
User 1 (personalized)
.. User 2 (personalized)

0.4 T T T T T T T
0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

Recall

Figure 10: Performance of Generic vs Personalized
model created using the automated pipeline. The box
highlights where the system looks for the best thresh-
old given that recall is fixed above .95. The precision
achieved at this point is compared to the user’s pre-
vious model to ensure the model has improved.

4.2. Personalization pipeline

Next, we want to confirm that the automated per-
sonalization pipeline as a whole can repeat the re-
sults of the previous manual method for personaliz-
ing fall detection models described in.2 The manually
generated model did not use a database to archive
the collected data or store the personal test dataset
for each user and data must be prepared manually
for each user for re-training which is labor-intensive.
Moreover, the manual system cannot handle multiple
users’ personalization at the same time. We validated
both personalized models using the simulated fall
prediction program on the test data set. Figure 11
shows the comparable Precision-Recall (PR) curves
of both models.

As stated in Section 3.6.1, we used an additional
metric called “spike score” to further validate the
model generated via the automated pipeline. The
spike score takes into consideration the number of
acceleration “spikes” that occurred during a time pe-
riod and uses those as a normalization factor for the
false positive rate. Different users can have varying
levels of activities and counting the absolute num-
ber of false positives generated is not accurate in
deriving the accuracy of the model. We computed
the spike score for the personalized model generated
automatically. The spike score is 0.97 which is close
to the personalized model generated manually that

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 13

1.0

0.9 4
0.8 1
c
.2
5 0.7 4
<
o
0.6 4
0.5 4
—— Manual Model
Automated Model

0.4 T T T T T T T
0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Recall

Figure 11: Automated model vs Manual model.

achieved a spike score of 0.98.

To ensure recall is still as good as the manually
generated model, we asked the same two volunteers
to perform 20 simulated falls on a mattress (five of
each: back, front, left and right) and recorded the
correctly detected (TP) and missed falls (FN), as well
as possible false alarms (FP). The confirmed recall
is around 90% for both models.

4.3. How long does it take to
personalize?

We want to evaluate how many rounds of person-
alization are needed to derive a satisfactory model
for a user. The following protocol was only tested on
young and healthy users.

(1) The user is first told to wear the watch running
SmartFall App with the generic model on their
left arm wrist.

(2) The user will perform a set of prescribed activi-
ties for 30 minutes. This is the calibration phase.

(3) The user will keep track of false positives and
provide feedback when prompted during the cal-
ibration phase.

(4) The user will press the “STOP” button to de-
activate the SmartFall App at the end of the
calibration phase.

(5) The recorded feedback data will be uploaded to
the cloud’s database automatically at the end of
calibration phase.

(6) The user will perform the simulated fall test to
record the recall of the model at the beginning

and the end of the study.

In the cloud, the system will analyze the feedback
data and compute the spike score every night. If the
spike score is high (above .98), no new model will be
generated. This means no personalization is needed.
Otherwise, a new model is generated and validated
as described in section 3.6.2.

After this initial round, we simply ask the same
user to wear the watch for a few hours each day for
five days and label the false positive, true positive,
or false negative predictions if they pop up using
the newly created personalized model. At the end
of each night, the system will analyze the feedback
data and create a new personalized model if there
is sufficient labeled data and the spike score is below
.98. If the newly created model validated to be better
than the existing model, the watch will automatically
download the new model and the associated thresh-
old value the next time when the SmartFall App is
activated. This process repeats for five days.

Table 1 shows the result of personalization for
three different users over a period of five days. At
the end of the five-day testing period, we found that
User3 only requires one round, User2 requires two
rounds, and User2 required four rounds to achieve a
spike score of >0.97. All users performed simulated
fall tests at the start and at the end of the person-
alization process to verify that the recall is retained.
Table 2 shows the recall of the model before and after
the personalization. For Userl, the recall is 0.95 be-
fore personalization and it decreased to 0.85 on the
fiftth round of personalization. For User2, the recall
is 0.85 before personalization and it is 0.7 after the
personalization. For User3, the recall is 0.85 and de-
creased to 0.75. This shows that there is a definite
tradeoff between recall and precision. The falls that
are missed are mostly the right falls when the users
are wearing the watch on their left wrists.

This experiment suggested that there is no fixed
number of personalization rounds for every user. It is
highly dependent on how the current model performs
in relation to the kind of ADL activities performed.
Our personalization is a continuous process and the
goal is to always have the best model for each user.
The experiment also shows that the number of FP
has decreased significantly on Day 5 due to person-
alization.

14 Anne Hee Ngu et.al

Table 1: Performance of the model with continuous
personalization.

| R R2 R3 R4 RS

Hours worn | 0.87 299 283 272 3.65
Userl # of.FP 27 20 5 9 12
of spikes | 314 922 1099 953 1863
Spike Score | 0.91 0.97 099 0.99 0.99
Hours worn | 1.15 0.72 295 2.06 2.08
User2 # of FP | 109 16 14 36 8
of Spikes | 779 343 2753 1295 581
Spike score | 0.86 0.95 0.97 097 0.98
Hours worn | 0.65 2.3 1.9 2.2 2.1
User3 # of.FP 50 5 9 14 18
of spikes | 674 693 1607 2718 2667
Spike score | 0.92 0.99 0.99 099 0.99

Table 2: Comparison of recall before and after per-
sonalization.

Userl User2 User3d Avg.

Generic model 0.95 0.85 0.85 0.88
Personalization 0.85 0.7 0.75 0.76

Table 3: Performance of watch’s battery when Smart-
Fall is running with WiFi off.

Hour Testl Test2 Test3d Testd Testh Avg.

1 80 80 79 79 80 79.5
2 58 59 59 58 59 58.6
3 39 35 39 39 38 38
4 19 15 19 19 17 17.8
5 0 0 0 0 0 0

4.4. Battery Performance

We tested the performance of the battery by record-
ing the average time the battery lasted from a full
charge until the watch runs out of battery when
SmartFall App is running. The user is not using any
other App on the watch during this battery testing
period. As shown in Table 3 which records the bat-
tery performance, at the end of the first hour, the
percentage of battery left was around 80%. At the
fifth hour, the battery runs out before the end of
that hour. In summary, the watch lasted an average
of five hours (taken from five test runs where the
watch was worn continuously from 100 percent to 0

percent). However, if the wifi on the watch is left
on, the battery on the watch lasted only around 3.5
hours with the SmartFall App running. Note that our
experiment is run on a five-year old Huawei smart-
watch. When the App runs in background mode, fur-
ther battery power can be conserved. For the system
to be of practical value, we would like the battery
to last for 12 hours or more. We believe as more
advanced smartwatches come to market with better
battery technology, this problem can be solved.

4.5. Scalability of the pipeline

We tested the system’s ability to generate person-
alized models for multiple users. We tested this by
uploading feedback data from 21 different users for
personalization at the same time. This means the
system must complete the re-training of 21 models
overnight. We confirmed that new models were gen-
erated for all of the 21 users the next day. It took
11.18 hours to complete the personalization process
for 21 users’ models. All models were trained on on
a Dell Precision 7820 Tower, 256 GB RAM with one
GPU (GeForce GTX 1080). In summary, the sys-
tem can process 21 personalization requests within
an 11-hour period. With an increase in the number
of GPUs to five, our system can scale to a hundred
users. This is sufficient for a mid-sized nursing home
which is where we want to deploy the system first.

5. Usability of SmartFall App

The watch-based SmartFall App has recently been
used by 9 participants who were recruited under IRB
approved protocol 7846 at Texas State University.
Each participant was asked to wear the watch for
7 continuous days. The participant was expected to
wear the watch for around 3 hours when he/she was
relatively active during each of the 7 days. Each par-
ticipant completed 3 surveys during the 7-day period.
Each participant was also asked to complete a post-
study interview, conducted via zoom by a sociologist
specializing in gerontology.

The first survey assessed baseline altitudes to-
wards technology and participant fall risk. The sec-
ond survey was to check the ability of the partici-
pant to use the SmartFall App independently and
correctly after the initial training. The third survey
was to gather the feedback on the usability of the
SmartFall App after using it for a week, including

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 15

information regarding the UI, the comfort of wear-
ing the watch, efficacy of the fall detection, interest
in using the App or recommending it to others. Each
participant was paid a gift card of $25 for participat-
ing in this study.

Table 4 summarizes the profile of the partic-
ipants. Four of them (44.4%) were men, and five
(55.6%) were women. The mean age of the sample
was 71.4 years, and only 2 of them (22.2%) had ever
used a smartwatch. All except 1 reported of being
at fall risk, with 4 (44.4%) having fallen within the
last 12 months. A third (3, 33.3%) reported having
experienced balance issues. Two thirds of the partic-
ipants expressed concerns about falling, specifically
while taking a bath or shower (66.7%), going up or
down stairs (55.6%), walking on a slippery surface
(88.9%), or on an uneven surface (88.9%). Neverthe-
less, most were independent, with few having prob-
lems with ADL’s. All of the participants reported
that they were very comfortable with using com-
puters and reported no trouble with charging and
putting on the watch each day. In fact, 7 (77.8%) of
them used a computer daily. The majority of them
(66.7%) stated that they had no concerns with hav-
ing their vitals monitored by a smart device. Yet, a
smaller number of participants (5, 55%) were willing
to wear devices that could record videos such as a
body camera.

All 9 participants reported feeling comfortable
wearing the fall detection device, with as many as 5
(55.6%) of them confirming that the App was easy
to use after the initial training. Given that only 2 out
of the 9 participants had used smartwatches before,
this result is very positive regarding the design of the
App. Overall, one third (33.3%) of the participants
indicated that they were satisfied with the App, and
44.4% would recommend it to a friend and felt that
they would be able to use it after a fall.

Themes that emerged from post-study inter-
views concern: 1) learning to use the App, 2) con-
venience of wearing a watch, 3) false positives, 4)
potential benefits of the App, 5) improving the App,
and 6) developing an attitude about something new.
First, participants talked about how they had to
learn to use the App, but after some initial difficulty,
they all found it easy to use. For example, one partic-
ipant mentioned that there were a lot of instructions
to read and understand first: “It was not easy to use
in the beginning, but it got easier after that.” Sec-

Table 4: Background of Participants.

Race Gender Age Fall Use of
Risk Smartwatch
P1 White M 44 Yes No
P2 White M 54 Yes Yes
P3 White F 89 Yes No
P4 White F 76 Yes No
P5 White M 79 Yes No
P6 Black F 77 Yes No
P7 White F 76 Yes Yes
P8 Asian M 78 No No
P9 White F 71 Yes No

ond, one of the advantages of the App seems to be
related with to convenient it is to have it on a watch,
which is not intrusive at all. One stated, “..,compared
to the other ones that are in the market, like the one
you wear around your neck, this is a lot more con-
venient.” Third, all complained that there were too
many false positives. Although the personalized fall
detection model has reduced false positives, partici-
pants reported that the false positive rate needed to
be reduced further for the App to be useful for their
daily life. Fourth, one participant stressed the need
of a fall detection device like this App, especially for
those living alone with the fear of falling. Another in-
terviewee stated, “Someone will come to help you if
you are unconscious.” Fifth, participants offered var-
ious recommendations for improving the App, such
as reducing false positives, making it simpler to use,
making the screen more sensitive to touches, reorder-
ing the questions to ask “Have you fallen?” first, and
repeating the question about the fall: “Did you say
you have fallen?” Five of the nine participants said
that the initial prompt of “Are you OK?” was con-
fusing. The App should ask whether they have fallen
or not. If the answer is “No,” it should go back to
the home screen. In addition, 2 participants said that
the vibration sound of the watch alerting them of
the prediction was too soft to be heard. This sug-
gests the need to choose a smartwatch that can take
into consideration of diminished hearing abilities of
older adults. Finally, one participant brought up the
importance of priming users of the App by helping
them develop a good attitude toward something new
such as a new technology or device.

The relatively low endorsement of the App in-
dicates that there remains plenty of room for im-

16 Anne Hee Ngu et.al

provement. This is a research prototype, and there
are hardware issues. For example, the watch screen
is sometimes insensitive, and the vibration tone can
be too low for some users with diminished hearing
abilities.

The total activity data collected from the 9 par-
ticipants amounted to 495MB with each participant
wearing the watch for 3 hours each day for 7 days.
If we scale that to 12 hours each day, this will gen-
erate around 2Gb for nine users for the same group
of users. These data are not yet compressed. This
suggests that the system only requires a moderate
amount of storage. We conclude that the storage re-
quired for continuously monitoring of fall in a mid-
sized nursing home is manageable.

In summary, this study with real-world partici-
pants demonstrated that the SmartFall App was val-
ued and usable by the targeted population group of
older adults with fall risk. Older adult participants
did not feel the device was intrusive. More research
with a larger and more diverse sample is, however,
needed for optimizing the personalized fall detection
algorithm to further reduce false positives for the
SmartFall App to be acceptable by the target popu-
lation.

6. Discussion

Our work demonstrates the feasibility of running a
personalized real-time fall detection application on
a commodity-based wearable device. A robust au-
tomatic personalization process can be achieved us-
ing an edge-cloud collaborative framework where the
computational intensive re-training of a new model
can be done on the cloud and the real-time detection
can be performed on the edge device Management
of each user’s model, feedback data, and personal
test dataset is achieved by using a NoSQL Couch-
base database which is scalable for many users and
where data can be versioned and exported as CSV
files for re-training.

The real-time requirement of our prediction is
satisfied despite the need to smooth over 20 predic-
tions because the model we used is a simple LSTM
model with two dense layers. The prediction is per-
formed on the watch where the data is sensed, there
is no latency being incurred due to data transmis-
sion. Data is sampled at 32 ms, and a total of 54
unique samples are used for the 20 predictions. That
amounts to 32*¥54 = 1728 ms. So, in the worst case

a fall will be detected 1.7 seconds after it has hap-
pened. However, often the inference average proba-
bility of the last 20 will exceed the threshold before
the entire alpha queue is updated. Thus, a fall will
be detected in less than 1.7 seconds.

We tested the personalization pipeline with
three young and healthy users over a total of 31.17
hours and with all three users (two females and one
male) able to obtain a model that achieve an average
spike score of 0.99 with 0.76 recall.

We demonstrated the feasibility and usability of
the system for the target population by recruiting 9
older adults to wear the watch Although the majority
of the participants have never used a smartwatch be-
fore, all of them including an 89-year-old participant
reported that they were comfortable in using Smart-
Fall. We are able to collect a watch-based dataset of
ADL data from these 9 older adults by just asking
them to wear the watch for 3 hours each day over a
seven-day period. This dataset will be used for fur-
ther fine-tuning of future fall detection algorithms.

The most significant drawback of the personal-
ization strategy, when scaling up for multiple users,
is the long training time involved in creating and
validating a new model (around 30 minutes for each
user), although such training can take place offline,
on a server. One of our future directions is to explore
more efficient re-training strategies such as more
accurate incremental re-training or transfer learn-
ing and more efficient validation, and also look into
less computationally intensive network architectures
such as a combination of one-dimensional convolu-
tional layers (1D-CNN) and transformers for less bat-
tery consumption.

Our model is trained on data collected from 14
subjects. This is still considered a small dataset. One
of our future work is to explore the use of a data aug-
mentation technique based on Generative Adversar-
ial Networks (GAN) to augment our dataset. Initial
exploration of this data augmentation technique is
published in.?!

The usability study indicates that user satisfac-
tion was relatively low. To improve user satisfaction
and consequently the probability of long-term adop-
tion, the current system needs to be enhanced in sev-
eral aspects: (1) reducing false positives, (2) making
it simpler to use, (3) increasing the sensitivity of the
screen to touches, (4) reordering the questions, and
(5) increasing the vibration sound of the watch. Some

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 17

of those issues have already been addressed in our
second prototype which will be trialed in early 2023.

7. Conclusion

This work paves the way for creating a fall detec-
tion system that can be tailored to each person. The
infrastructure for collecting and labeling data is re-
liable and secure while preserving user privacy. The
personalization process requires no intervention only
requires a brief period of calibration. The system is
set up to provide a robust way of deploying person-
alized fall detection models with the ability to imme-
diately review performance and generate new models
without the need for experienced programmers.

Bibliography

1. T. Theodoridis, V. Solachidis, N. Vretos and
P. Daras, Human fall detection from acceleration
measurements using a recurrent neural network, In-
ternational Conference on Biomedical and Health In-
formatics, Springer, (Greece, 2017), pp. 145-149.

2. A. H. Ngu, V. Metsis, S. Coyne, B. Chung, R. Pai
and J. Chang, Personalized fall detection system,
2020 IEEE International Conference on Pervasive
Computing and Communications Workshops (Per-
Com Workshops), (Austin, 2020), pp. 1-7.

3. M. A. 1. Hubail, A. Alsuliman, M. Blow, M. Carey,
D. Lychagin, I. Maxon and T. Westmann, Couchbase
analytics: NoETL for scalable NoSQL data analysis,
Proceedings of the VLDB Endowment 12(12) (2019)
2275-2286.

4. A. Gigantesco, A. Ramachandran and A. Karup-
piah, A Survey on Recent Advances in Wearable Fall
Detection Systems, BioMed Research International
2020 (2020).

5. F. Riquelme, C. Espinoza, T. Rodenas, J.-G. Mi-
nonzio and C. Taramasco, eHomeSeniors Dataset:
An Infrared Thermal Sensor Dataset for Automatic
Fall Detection Research., Sensors (Basel, Switzer-
land) 19(20) (2019).

6. M. C. Shastry, M. Asgari, E. A. Wan, J. Leitschuh,
N. Preiser, J. Folsom, J. Condon, M. Cameron and
P. G. Jacobs, Context-aware fall detection using iner-
tial sensors and time-of-flight transceivers, 2016 38th
Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC),
IEEE, (USA, 2016), pp. 570-573.

7. G. Demiris, S. Chaudhuri and H. J. Thompson,
Older Adults’ Experience with a Novel Fall Detec-
tion Device., TELEMEDICINE AND E-HEALTH
22(9) (2018) 726-732.

8. A. Fanca, A. Puscasiu, D.-I. Gota and H. Valean,
Methods to minimize false detection in accidental

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

fall warning systems, 2019 23rd International Con-
ference on System Theory, Control and Computing
(ICSTCC), IEEE, (Romania, 2019), pp. 851-855.
V. Mirchevska, M. Lustrek and M. Gams, Combining
domain knowledge and machine learning for robust
fall detection., Expert Systems 31(2) (2014) 163-175.
I. Chandra, N. Sivakumar, C. B. Gokulnath and
P. Parthasarathy, IoT based fall detection and am-
bient assisted system for the elderly., Cluster Com-
puting: The Journal of Networks, Software Tools and
Applications 22(Suppl 1) (2019) p. 2517.

P. Van Thanh, D.-T. Tran, D.-C. Nguyen, N. D. Anh,
D. N. Dinh, S. El-Rabaie and K. Sandrasegaran, De-
velopment of a real-time, simple and high-accuracy
fall detection system for elderly using 3-DOF ac-
celerometers, Arabian Journal for Science and En-
gineering 44(4) (2019) 3329-3342.

J. R. Villar, E. de la Cal, M. Fanez, V. M. Gonzélez
and J. Sedano, User-centered fall detection using
supervised, on-line learning and transfer learning.,
Progress in Artificial Intelligence 8(4) (2019) p. 453.
P. Tsinganos and A. Skodras, A smartphone-based
fall detection system for the elderly, Proceedings of
the 10th International Symposium on Image and Sig-
nal Processing and Analysis, (Slovenia, 2017), pp.
53-58.

K. Arulkumaran, M. P. Deisenroth, M. Brundage
and A. A. Bharath, Deep reinforcement learning: A
brief survey, IEEE Signal Processing Magazine 34(6)
(2017) 26-38.

A. Rosenfeld and J. K. Tsotsos, Incremental learning
through deep adaptation, IEFE transactions on pat-
tern analysis and machine intelligence 42(3) (2018)
651-663.

T. R. Mauldin, M. E. Canby, V. Metsis, A. H. H.
Ngu and C. C. Rivera, SmartFall: A Smartwatch-
Based Fall Detection System Using Deep Learning,
Sensors 18(10) (2018).

H. M. Salman, W. F. W. Ahmad and S. Sulaiman,
Usability Evaluation of the Smartphone User Inter-
face in Supporting Elderly Users From Experts’ Per-
spective, IEEE Access 6 (2018) 22578-22591.

N. A. Hee, W. Yeahuay, Z. Habil, P. Andrew,
Y. Brock and Y. Lina, Fall Detection Using Smart-
watchSensor Data with Accessor Architecture, In-
ternational Conference for Smart Health (ICSH),
(China, 2017), pp. 81-93.

T. Mauldin, A. H. Ngu, V. Metsis, M. E. Canby and
J. Tesic, Experimentation and Analysis of Ensemble
Deep Learning in IoT Applications, Open Journal of
Internet Of Things (OJIOT) 5(1) (2019) 133-149.
Couchbase Server Architecture
https://www.youtube.com/watch?v=bgF'yBEgTBc4

X. Li, V. Metsis, H Wang and A. H. H. Ngu, Tts-
gan: A transformer-based time-series generative ad-
versarial network, arXiv preprint arXiv:2202.02691
(2022).

