
July 7, 2022 10:38 output

International Journal of Neural Systems, Vol. 0, No. 0 (2005) 1–??

© World Scientific Publishing Company

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud
Framework *

Anne Hee Ngu, Vangelis Metsis, Shuan Coyne†, Priyanka Srinivas‡, Tarek Salad Uddin Mahmud
Department of Computer Science, Texas State University, 601 University Drive

San Marcos, TX, 78666, USA
E-mail: angu@txstate.edu

Kyong Hee Chee
Department of Sociology, Texas State University, 601 University Drive,

San Marcos, TX,78666, USA

The majority of current smart health applications are deployed on a smartphone paired with a smart-
watch. The phone is used as the computation platform or the gateway for connecting to the cloud
while the watch is used mainly as the data sensing device. In the case of fall detection applications for
older adults, this kind of setup is not very practical since it requires users to always keep their phones
in proximity while doing the daily chores. When a person falls, in a moment of panic, it might be
difficult to locate the phone in order to interact with the Fall Detection App for the purpose of indicat-
ing whether they are fine or need help. This paper demonstrates the feasibility of running a real-time
personalized deep-learning-based fall detection system on a smartwatch device using a collaborative
edge-cloud framework. In particular, we present the software architecture we used for the collaborative
framework, demonstrate how we automate the fall detection pipeline, design an appropriate UI on the
small screen of the watch, and implement strategies for the continuous data collection and automation
of the personalization process with the limited computational and storage resources of a smartwatch.
We also present the usability of such a system with nine real-world older adult participants.

Keywords: fall detection, smart health, model personalization, deep learning, edge computing

∗This work is supported by the National Science Foundation under the Research Experiences for Undergraduates Program
(CNS-1358939, CCF-1659807, CNS-1757893) as well as the recent NSF-SCH award (2123749) at Texas State University.
†Shuan has graduated and his current email is mickcoyne@mailbox.org
‡Priyanka has graduated and her current email is priyankasrinivas37@gmail.com

1

July 7, 2022 10:38 output

2 Anne Hee Ngu et.al

1. Introduction

Wearable smartwatches paired with smartphones

have brought health monitoring applications, such

as fall detection, closer to reality. However, a one

size fits all algorithm such as Apple Watch’s “hard

fall” detection or even more advanced deep learn-

ing models1 have proven to be ineffective at cover-

ing all patterns of falls and ADL (Activities of Daily

Living) data. Our previous work,2 using simulated

data from fourteen young and healthy adults, demon-

strated that we can detect most falls as well as ADLs

by utilizing a personalization strategy. This strategy

involved a deep learning model trained offline on sim-

ulated falls, plus labeled ADL data collected from the

user (feedback data) while wearing the watch for a

specified period. The feedback data from each user

was used to create a personalized fall detection model

that had over 90% recall with very few false alarms.

However, there are two main issues with this person-

alized fall detection system.

First, our previous fall detection application,

called SmartFall, runs the user interface (UI) on the

phone, with the watch used mainly for sensing of ac-

celerometer data. This is problematic because older

adults have difficulties keeping up with devices that

are not directly attached to them. Moreover, when

an older adult falls, in a moment of panic, it might

be difficult to locate the phone in order to interact

with the App for the purpose of indicating whether

they are fine or need help if the App is running on

the phone. A watch’s UI, on the other hand, would

allow interaction with the SmartFall App at any time

and anywhere.

The second issue in the previous system is that,

creating a personalized model was done manually as

a proof of concept. The SmartFall App is designed to

save the collected data on the phone using a CSV file

format. After data have been collected for a period

of time, a programmer has to manually organize the

data in a file to prepare it for re-training. This is not

scalable when the system is being used by more than

a handful of users in a nursing home and leaves room

for human error.

We propose a scalable solution by automating

the entire personalization process using a collabo-

rative edge-cloud framework, from the user initially

wearing the watch, to getting feedback or labeled

ADL/fall data from the user, re-training a new fall

detection model tailored to the user, validating the

new model on the cloud, and finally, pushing the new

model to the watch automatically. Some of the chal-

lenges for automating the personalization process on

the watch include continuous collection and robust

archiving of labeled data on a limited watch’s stor-

age, keeping track of the best personalized model and

personalized training dataset for each user, conserv-

ing the battery power of the watch, and the valida-

tion and selection of the new model daily.

Our solution involves migrating the SmartFall

App (UI and the prediction logic) to a single device

(smartwatch) and using a robust and efficient Couch-

base3 storage system on both the watch and the

cloud for data collection and archiving. The Couch-

base on the watch and on the cloud can be syn-

chronized periodically and allows the data on the

watch to be purged automatically after synchroniza-

tion. Couchbase on the cloud provides a central place

to store all users’ feedback data reliability including

tracking the best personalized fall detection model

for each user, the personalized training dataset for

each user, and most important of all, the fast re-

trieval of user’s feedback data for re-training on the

cloud.

We demonstrate the feasibility of automated

real-time personalized fall detection and deployment

of the system on a commodity-based smartwatch.

We describe how we robustly collect labeled feedback

data from the user in real-time, test the scalability

of the automation pipeline, and the intuitiveness of

the App’s user interface on the watch. We further

validated the usability of the system by recruiting

nine real-world participants to wear the watch for

three hours each day for seven continuous days. The

main contribution of the paper is a prototype data

engineering architecture consisting of the following

components:

• A simplified UI on the watch interface tai-

lored to the small screen space and easy to

use for seniors.

• Automated personalization pipeline includ-

ing when to re-train, strategies used for re-

training, and accurate offline validation of

the new model.

• Robust archiving of feedback data using an

in-memory queue structure and Couchbase,

a NoSQL database.

July 7, 2022 10:38 output

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 3

• The edge-cloud software architecture that

enables optimization of the battery power

and storage space of the watch. The fall de-

tection App is able to run in the background

and only uploads the collected data via a

Wi-fi connection at a configurable interval.

• The usability study of the watch-based

SmartFall App with nine older adult fall risk

participants.

We would like to emphasize that in our system, the

fall detection at inference time runs solely on the

watch, so there is no latency incurred during predic-

tion since data do not need to be transferred to the

server. The watch does not require constant connec-

tivity to the internet and the type of connectivity is

dependent on the type of watch. Internet connectiv-

ity is needed only for periodical data archiving and

for downloading new personalized fall detection mod-

els. We prototyped our system on a watch with only

WiFi connectivity but that does not imply that our

system is for indoor only use or that cellular data

cannot be used for communication with the server.

Our system is designed to store the sensed data on

the local storage first. When internet connection is

not detected, so long as there is sufficient local stor-

age, the collected data will be archived locally and

sent to the server later.

The paper is organized as follows. In Section 2,

we present the background and previous work re-

lated to our problem. The overview of the system ar-

chitecture is presented in Section 3. The edge-cloud

database synchronization is described in Section 3.5

followed by the personalization automation pipeline

in Section 3.6. The evaluation of the pipeline is pre-

sented in Section 4. The usability study of the Smart-

Fall App by older adult participants is presented in

Section 5. Finally, we presented our conclusion and

future work in Section 7.

2. Background and Related Work

A recent survey on fall detection systems shows much

progress in using machine learning to detect falls

given accelerometer data.4 The datasets used to train

models are all synthetically created by utilizing sim-

ulated falls and ADLs collected in controlled exper-

iments with primarily young, healthy adult partici-

pants.

There has been a wide range of success, however

the most success has been achieved using custom

hardware mounted on the chest or waist. Unfortu-

nately, chest or waist mounted fall detection systems

can be invasive, uncomfortable, or self conscious for

users to wear in public. Other systems that range

from infrared monitoring5 to location monitoring6

all require wearable custom hardware.4 It is not rea-

sonable to setup a custom array of cameras and sen-

sors throughout a home to detect falls; not only is it

invasive, but also it does not help seniors who need

to venture outside of the detection area. This is one

of the main motivations for creating a fall detection

system on a single commodity-based wearable device

such as smartwatch which has unrestricted mobil-

ity. Moreover, a smartwatch-based fall detection is

portable and does not require video/cameras or cus-

tom devices. Many of the custom hardware solutions

involve mounting the system in a very specific posi-

tion of the person, usually around the waist or chest.

If the device’s position is altered, the system stops

working. Additionally, even a small device such as

a pendant can be difficult to use, and overall frus-

trating as pointed out by Ref. 7. Thus, we propose a

smartwatch-based fall detection system as a familiar

device that an elder person would be more inclined

to use.

Another challenge of fall detection system is the

high false positives generated. A survey paper in 8

described the various strategies used to help combat

false positives. However, this remains an unsolved is-

sue. This, in large is due to difficulties in obtaining

large amount of quality labeled data for model train-

ing. Not only are the datasets synthetic and not rep-

resentative of the elderly population, but also they

are relatively small with limited variation in types

of falls and ADLs. When taken to the real world,

any activity not represented in the training set can

lead to a false positive. This could lead to hundreds,

if not thousands of incorrect alarms when scaled to

a single nursing home.8 There have been some pro-

posed strategies to reduce false positives by detect-

ing relevant context to a fall. Specifically, it has been

proposed that if you can detect a fall and someone

lying still, then they have truly fallen.9–11 This strat-

egy greatly reduced the false positives. However, this

assumes expert knowledge on a dataset that does

not exist. Currently, there is no dataset of elderly

people falling or performing ADLs while wearing a

watch-based accelerometer sensor. There are various

July 7, 2022 10:38 output

4 Anne Hee Ngu et.al

instances in which a fall occurs but acceleration data

could continue to be recorded. These cases could be

things such as Parkinson’s, seizures, injury or any in-

stance in which the user is awake but unable to get

up or dial for help. We do not know to what propor-

tions of elderly falling resulted in total stillness vs

continued movement. While false positives are an-

noying, false negatives can be deadly. Therefore, any

proposed system will need to rely solely on its abil-

ity to learn patterns of falls and ignore patterns in

ADLs without expert knowledge.

Most recently, personalization has been used to

reduce false positives. This has been achieved by two

strategies. Both strategies utilized some form of a

generic model that was trained on a synthetic fall

dataset from wrist-worn devices. The first system

utilized a bag-of-words strategy to collect labeled FP

(False Positive) data from the user. Each ADL was

added to the bag and future detected falls were com-

pared against these previous ADLs. If the data was

similar, then it was an ADL. Otherwise, it was a fall.

After each detected fall, the user could confirm if this

was a fall or another ADL.12 This personalized bag of

words was able to reduce some of the false positives

without affecting recall. This system also attempted

to use common ADLs for transfer learning, such that

new users could benefit from this labeled data. How-

ever, it was found that most of the labeled data in

the bag was never encountered again. Meaning the

bag kept growing as new ADLs kept being received.

This does not scale well for mobile devices. There

was a severe lack of commonly occurring ADLs and

this prevented transfer learning from being a practi-

cal solution.

Our personalization of fall detection was first

reported in 2. We demonstrated that we could main-

tain the high recall (sensitivity) of a wrist-worn

watch based fall detection system as well as increase

the precision (specificity) by collecting personal false

positive data, including them in the dataset and then

re-train the model. This strategy uses an RNN en-

semble model first trained with simulated falls and

ADL data to detect if a user has fallen given the

user’s accelerometer data collected from the watch.

Then the user is asked to wear the watch for a few

hours. After a couple rounds of various ADLs per-

formed by the user, the collected false positive data

is used in combination with the original dataset to re-

generate a new model, thus creating a “personalized”

fall detection model. This personalized model was

nearly twice as precise as the generic model (a model

trained without personal ADL data). This process

shows that we can create a system that learns the

difference between falls and ADLs without expert

knowledge. It needs only feedback from the user to

increase its precision.

Tsinganos and Skodras13 also studied person-

alization of fall. They used a traditional K-Nearest

Neighbor (KNN) machine learning algorithm while

we used deep learning. Their acceleration data was

sampled at 50 Hz compared to ours at 31.2 Hz. Their

data was collected using a smartphone while ours

was via a smartwatch. To incorporate personaliza-

tion, the authors added the misclassified ADLs (i.e.

false positives) back into the training dataset one

sample at a time and concluded that seven sam-

ples could reduce false positives by 10%. Similarly,

our personalization strategy also collected the false

positives and added them back to original training

dataset. However, we collected and added the false

positives data in batches. The size of the batch is

dependent on how long the watch is being worn con-

tinuously and how many false positives are generated

during that period of time.

Another approach that has been traditionally

used to improve the behavior of systems or agents

over time is Reinforcement Learning (RL) and its re-

cent adaptations to Deep Reinforcement Learning.14

Although the goal of our system is to improve its

accuracy over time, by collecting personalized in-

formation, RL is not the best strategy to follow in

our case, as RL is more well-suited to applications

where the learning agent receives immediate feed-

back about the effect of each action/decision. A more

suitable approach for our problem is the one known

as Incremental Learning.15

The personalization process in our prior work

is manual and the fall detection App only runs on

a smartphone with the watch being a data sensing

device. In this paper, we will show how to automate

the personalization process using edge to cloud col-

laborative framework so that fall detection can be

adapted to a particular person in real-time and run

on a single wearable device.

July 7, 2022 10:38 output

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 5

Figure 1: Training from Scratch Strategy.

3. SmartFall on a Wearable device
with Edge-Cloud Collaboration

Our main goal is to demonstrate the feasibility of

implementing a practical and robust automated per-

sonalized fall detection system on a single personal

device (i.e. smartwatch) within an edge-cloud collab-

orative framework.

To achieve that, we first ported the deep learn-

ing model and the prediction algorithm in our prior

work2 to run on the watch and verified that there was

no loss of accuracy or delay in prediction. Person-

alization requires continuous collection of feedback

data that needs to be stored locally on the watch to

reduce the communication overhead with the cloud.

Since the storage on the watch is very limited (only

2 GB is available on the test watch after installing

WearOS), periodically, there is a need to upload the

collected data without personal identifying informa-

tion robustly to the cloud to free up space on the

watch for further collection of data. After a new

model is validated to be better based on user’s feed-

back, that model will be downloaded to the watch to

replace the previous model without asking the user

to re-install the App.

3.1. Overview of the personalization
process

We utilized the training from scratch (TFS) person-

alization strategy described in our previous work2

for re-training. This personalization strategy reduces

false positives (increases precision) by combining a

generic dataset containing simulated falls and ADL

data from 14 volunteers with personal ADL data col-

lected from the user via simple feedback. TFS aims to

improve the model by re-training from scratch with

additional false positive data samples collected from

a specific user. Figure 1 is an illustration on TFS

training strategy.

The personalization strategy enables us to cre-

Figure 2: User interface display after a fall is de-

tected.

ate models that are highly tuned to the user’s per-

sonal ADL patterns. The personalization process

starts when a user is asked to wear the watch for the

first time for half an hour of prescribed ADL activi-

ties (this list includes common tasks such as walking,

hand waving, sitting down, standing up, changing

clothes, picking up objects, washing hands, eating

food, brushing teeth, etc). This is referred to as the

calibration phase or the first round of personaliza-

tion. During this phase, whenever the system gen-

erates a prediction, the user will provide feedback

through the watch’s UI, see Figure 2.

The labeled feedback data is stored locally

in a Couchbase database on the watch and will

be uploaded periodically to the cloud’s Couchbase

database. On the cloud, during the night and when

a certain number of false alarms have been generated,

the re-training of the model is initiated and a new

model is created. This model is validated and will be

automatically pushed onto the watch if it is deemed

to be a better model. An overview of the SmartFall

software architecture system with personalization is

shown in Figure 3.

3.2. Watch-based Fall Detection App
(SmartFall)

Our original SmartFall App presented in16 had all of

the user interface’s screens on the phone. Accelerom-

eter data are continuously streamed from the watch

to the phone. When a fall has been detected by the

SmartFall App on the phone, an alert text message

can be sent to the caregiver if the user did not re-

July 7, 2022 10:38 output

6 Anne Hee Ngu et.al

Automated Training

Analyze

Train

Upload

PHP
tunnel

Couchbase

profile information
Labeled data

Personalized model

Personalized model

Labeled data

WearOS
watch

Android Phone

Figure 3: Overview of the system data flow.

Figure 4: SmartFall User Interface on the Phone.

spond within a configurable fixed time interval (e.g.

30 seconds). Figure 4 shows three core user interfaces

(UI) for the phone-based SmartFall App. The screen

on the left shows the home screen UI for the applica-

tion and the screen on the center shows the UI when

a fall is detected.

Since the watch has a very small screen space.

To migrate the user interface to the watch, the UI

screen to collect feedback from the user after a fall

prediction is re-designed to start with just two “yes”

and “no” buttons (see figure 2) rather than listing

all the choices as shown in the center screen in Fig-

ure 4. If the user pressed “yes”, the next screen will

ask whether the user needs help or not. If the user

did not press either “yes” or “no”, after a specified

period of time, an alert message will be sent auto-

matically to the designated caregiver. We followed

the best practices advocated in 17 for the design of

the UI for older adults. The three main principles we

Figure 5: Various watch-based UI screens.

adopted were a strict color scheme with high con-

trast, legible and big fonts, simple description of the

system to engage them to use it.

We leave the profile creation on the phone. Pro-

file creation (Figure 4) needs to be done only once

and it is very tedious to create the profile using the

watch’s UI. Profile creation includes generating a

unique id for a user as well as collecting contact de-

tails of the carer in case of a fall.

After the watch and the phone were paired, by

opening the SmartFall App on the phone and then

opening the corresponding App on the watch, the

watch will display “Create profile on phone”. Af-

ter the user created the profile on the phone and

pressed the “upload” button on the phone, the watch

will display “Profile Created” as shown in Figure 5.

The SmartFall App will be activated and run on the

watch (refer to Figure 5) when the user pressed the

“continue” button on this UI. From now onwards,

the user only needs to interact with SmartFall App

via the watch. There is no need to interact with the

App unless the system detects that a fall has oc-

curred. The watch will vibrate to alert the user that

a prediction has occurred and the UI in Figure 2 will

appear.

When the user presses “STOP” button on the

SmartFall App (Figure 5), the system is deacti-

vated, any remaining data collected during this pe-

riod are uploaded to the cloud before shutting down

the App. For privacy concerns, the only data be-

ing uploaded are the labeled accelerometer data with

system-generated user-id attached. No other profile

information is ever uploaded to the cloud.

July 7, 2022 10:38 output

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 7

3.3. Real-time Fall Prediction

One of the requirements for fall detection is that the

sampling rate must be sufficiently high to capture

a fall and samples must be received in order. The

system should not miss any real fall (i.e. high re-

call/sensitivity) and it should not generate too many

false alarms (i.e. high precision/specificity). The sys-

tem must be able to predict falls in real-time with

very little time delay. We determined through exper-

imentation18 that 35 data points received/sampled

about every 32 ms is sufficient to capture the gen-

eral pattern for a fall.

The fall prediction is made using a pre-trained

deep learning model created in TensorFlow 2.0 as

described in 19. Our earlier work demonstrated that

using an ensemble of four LSTM RNN models to

make predictions for falls yields a slightly better pre-

cision compared to a single model. This model archi-

tecture was adopted in previous iterations when in-

ference ran on the smartphone and the watch acted

merely as a sensing device. In the current version,

where inference runs directly on the smartwatch, the

added computational complexity cannot be justified

by the minor increase in precision. Therefore, we use

a single RNN model which still achieves the same re-

call as the four RNN models but with slightly lower

precision. However, this lower precision, as demon-

strated in this paper, can be mitigated by personal-

ization which enables the SmartFall App to collect

feedback data from the user to improve the model

dynamically. The fall prediction is made on a sliding

window of data that is 35 samples (time-steps) in

length. Each prediction output a probability of fall

between 0 and 1. The sliding window shifts by one

time-step at each prediction. That means consecu-

tive windows have a K − 1 time step overlap, where

K is the size of the window. Figure 6 displays our

model architecture.

The model contains an input layer, two hidden

layers, and an output layer. The input layer contains

3 nodes for the raw data; the accelerometer (x, y, z)

vectors. It then feeds through our hidden layers: a

recurrent layer of size 30 LSTM nodes, and a fully

connected dense layer of size 30 nodes. The output

is a 2-node softmax layer which outputs a predicted

probability that a fall has occurred. The input data

is batch normalized, a batch size of 64 is used. The

BinaryCrossEntropy with ADAM optimizer is used

Figure 6: Deep learning model architecture.

Figure 7: Prediction scheme for the deep learning

model.

for the loss function. This model is lightweight rela-

tive to many deep learning architectures, and makes

inference computation much more efficient for mobile

devices.

Each prediction will output a probability of a

fall and we average the last 20 probabilities of pre-

diction together to infer fall or not fall. Basically, if

the averaged probability reaches a threshold of 0.3,

we determine that a fall has occurred. Figure 7 out-

lines this schematic.

The 0.3 threshold was determined via grid

search to give the best results in our dataset and

it is adjusted for different users via personalization.

We use a nested queue data structure to store the

sensed data in memory during prediction and mark

them for archiving as labeled feedback data after get-

ting confirmation from the user. The nested queue is

visualized in Figure 8.

The original phone version of the SmartFall App

is designed to archive the sensed data samples using

a CSV file for simplicity. However, to keep track of

July 7, 2022 10:38 output

8 Anne Hee Ngu et.al

Alpha queue

Each is a queue which consists of features used to classify falls

Beta
queue

Beta
queue

0.2 0.4 0.3

1 20

…..

Heuristics queue

…

Figure 8: A visualization of the Alpha and Beta

queue.

where to slide the window for each prediction, there

is a need to store the line numbers of the CSV file

in memory. A prediction was made by reading the

CSV file and re-winding to the line number recorded.

This solution was inadequate for the long term us-

age of the App, since the file would get bigger and

bigger and the prediction time would get slower and

slower when the App was being used continuously

for a period of time. This problem is ultimately mit-

igated by storing the latest sensed data in the queue

data structure in memory. Upon a successful predic-

tion, the data in the queue is archived to the Couch-

base database system on the watch. This storage sys-

tem will be emptied periodically by uploading past

archived data points to the cloud and removing them

from the local storage to free up limited storage space

on the watch.

The structure of the queue is as follows: the main

queue is designed with a length of 20 (the number of

predictions we wish to average over to get an accu-

rate prediction). We call this the Alpha queue. The

main role of alpha queue is to mark all the samples

that have been used to make inference for a fall for

ultimate storage in Couchbase with least I/O and

for re-training. Data in each cell of the Alpha queue

have K − 1 time steps (i.e. 34 data points) overlap

with the next cell. This is done to ensure that for

every new data point collected, we make a new fall

prediction. Each item in the Alpha queue is a queue

of samples (accelerometer data). We call these Beta

queues. Each Beta queue is of length 35 (the predic-

tion window size). A sample is simply one instance

of linear acceleration data sampled at 32 ms and the

timestamp from when it was sampled.

The Beta queue starts as an empty queue and

is populated every 32 ms with the latest data from

the watch’s sensor. Once the Beta queue has reached

its max length of 35 samples, the content is copied

into the Alpha queue. That same 35 samples in the

Beta queue is then used as input to the RNN Model

for prediction, and the prediction result for those 35

samples is stored in a heuristics queue. Since Beta

queue is limited to storing 35 samples, whenever a

new sample has arrived in 32 ms time period, we

pushed the new sample into the head of the Beta

queue, and popped the oldest sample off the tail of

the Beta queue. These 35 samples is again saved in

the Alpha queue and then sent for another predic-

tion. The predicted result is stored in the heuristics

queue. This process repeats continuously. Once the

Alpha queue is full (reached 20), we are ready to

start making the final inference by checking whether

the averaged probability over the 20 predictions is

greater than the 0.3 threshold.

If the system infers that a fall has occurred

(threshold is > 0.3), we empty the Alpha queue by

saving the data to the Couchbase database on the

watch with unknown label at this point because we

do not yet know whether it is TP or FP. However,

these data are saved immediately as they could con-

tain true positive fall samples which are rare and

valuable and thus must be archived robustly. This

eager archiving of data also ensures that our system

is robust in collecting user’s feedback data which is

very important for personalization. When the user

provides the correct feedback on the UI, these data

will be labeled and can be used for re-training as dis-

cussed in the next section. If no fall is predicted and

the queue is full, we pop the oldest item (one Beta

queue) out of the Alpha queue and save that as true

negative (TN) data.

3.4. Data Archiving

Couchbase3 is chosen as the storage system in both

the watch and the cloud for the ease of data archiv-

ing. Couchbase was chosen for its ability to scale up

easily, fast I/O, compact JSON format, and built-in

synchronization of data between clients and servers

with CAP (Consistency-Availability-Partition) guar-

antee. Details of Couchbase’s server architecture can

be found in .20 In our implementation, we did not

use the built-in Sync gateway module of Counchbase.

Our application does not require synchronization in

both directions. Moreover, a single node Couchbase

July 7, 2022 10:38 output

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 9

False Positive

UUID
acc-x
acc-y
acc-z
timestamp
document-id

True Positive

UUID
acc-x
acc-y
acc-z
timestamp
document-id

False Negative

UUID
document-id
timestamp

True Negative

UUID
acc-x
acc-y
acc-z
timestamp
document-id

User

UUID
Tracker

UUID
version
model-id
first-document
last-document

Dataset

training type
version
fpath
UUID

Model

UUID
fpath
isBest
score
trainingTime
version
threshold

Figure 9: Structure of the archived data on the

cloud/server.

server is sufficient for prototyping our system. We

are mainly interested in sending data to the server

for archival and sending a query to check for the

availability of new models. There is never a need to

synchronize raw data from to the server to the watch.

Details of our data synchronization is found in sec-

tion 3.5.

All data are stored using Couchbase’s document

structure. Figure 9 gives an overview of the struc-

ture of the archived data in the cloud/server. There

are 4 document types used to store the sensed ac-

celerometer data. These correlate to true positive

(“TP”), false positive (“FP”), true negative (“TN”),

false negative (“FN”) data. These four types of data

are tracked for each user for personalization. When a

fall is detected, the entire Alpha queue’s data in the

memory is saved to the local database. Since data is

processed in windows with K − 1 time steps over-

lap, to save only unique data samples, we have to

remove the overlapping data such that the samples

are still in temporal order, and each sample is unique.

To remove overlapping data, we use a simple strat-

egy of popping/removing each Beta queue from the

Alpha queue and only save the first sample of each

Beta queue except for the last Beta queue (the 20th)

where all data points are saved. This gives a final

size of 54 samples being saved when there is a posi-

tive prediction. We need to save all the data used to

make the 20 predictions. Since the prediction is done

on a sliding window with K − 1 data points overlap,

the final prediction consists of 20 beta queues which

has 54 unique samples. After obtaining the actual

label from the user from the UI’s prompt, the saved

data is updated with the correct label of either TP

(True Positive) or FP (False Positive).

When the Alpha queue is full and a fall has not

been predicted, a Beta queue needs to be popped off

and saved as TN (True Negative) data. Because of

the overlap, we only save the the oldest item in each

of the popped Beta queue. To minimize I/O, we ac-

cumulate true negative data samples to 375 before

saving to the local database as TN. Since the major-

ity of archived data is TN, the 375 is a number that

is large enough (represents around 512 KB) to reduce

the overhead of creating Couchbase documents and

small enough for fast transfer to the cloud.

The final type of accelerometer data that needs

to be archived are the FN (False Negative) data.

These data are generated when a fall has occurred

but was not detected by the application. We de-

signed a button on one of the UI screens of the watch

(see Figure 5) labeled “I JUST FELL” to allow for

the recording of a timestamp marking the moment

when a conscious user indicated that a fall occurred

but was missed by the fall detection system. This is

used by the system to re-label sections of the data

as fall. False negative information is thus saved to

the database in a simple meta record consisting of

only the timestamp and user-id to facilitate the re-

labeling process later. The labeling of FN will incur

some level of inaccuracy because the recorded times-

tamp might not align with the moment the person

falls. To mitigate this misalignment, we label 54 data

points before the recorded timestamp as FN. The

number 54 is the number of samples we save for true

or false positives.

Other important database structures that

are needed for automatic personalization are the

Tracker, theModel and the Dataset. The tracker doc-

ument is first created by the SmartFall App on the

watch. It associates a specific deep learning fall detec-

tion model the App was using when it was activated.

As better models were downloaded to the watch,

newer tracker documents were created to track which

set of feedback data was recorded with which model.

Tracker document contains the ID of the first and

last document recorded when using the model. It also

contains the name of the current model and its ver-

sion number, and the UUID, the id of the user, which

tells us which user this tracker document belongs to.

The Model document is used to store different

personalized fall detection models that have been

generated for a user. The fpaths field is an array that

stores the filenames and locations of all the models.

July 7, 2022 10:38 output

10 Anne Hee Ngu et.al

This is designed as an array to accommodate mul-

tiple learning models that might be needed in the

future. The version field keeps track of the latest

model while the isBest field is a Boolean that de-

termines which model is the best. The scores field

is a map of all the statistics generated during offline

validation (including the precision and recall curve)

when the best model was tested on the test dataset.

The training time is the number of seconds it took

to generate this model. The threshold stores the best

threshold value to use for the best model.

The Dataset document is used to store the train-

ing dataset used for each user. With personalization,

each model is trained using data specific to a user.

This document contains a training type parameter

that identifies which re-training strategy was used.

Currently, we only experimented with Training From

Scratch (TFS). This attribute enables us to scale to

other re-training strategies if they are available. The

version is used to keep track of the version of the

dataset used. The fpaths is the file name of the CSV

file and the location of the file that contains the train-

ing data of a specific user.

The watch database used the same document

type for storing the collected accelerometer data as

on the cloud database for the ease of synchroniza-

tion. It does not have the Model and the Dataset

documents. The watch database has an additional

document called User Profile which stores informa-

tion such as the caregiver’s contact details.

Note that if the watch accelerometer data is

stored using a traditional relational database man-

agement system, a design with the least redundancy

will require data to be stored using two relations.

A meta table that indicates who owns a specific

data sample and a separate table for each of the

accelerometer data samples recorded every 32 ms.

In order to retrieve accelerometer data for a specific

user for re-training purposes, the query will involve

the join over two large tables and will incur high la-

tency. This will have a big impact on the scalability

of the personalization pipeline.

3.5. Database Synchronization

Synchronizing data collected on the watch to the

cloud database is a core part of achieving automa-

tion in personalization process of fall detection. We

upload 20 saved documents in batches periodically

(the interval can be configured) to avoid continuous

usage of the watch’s Wifi connection which can drain

the battery.

Once data are confirmed to be uploaded suc-

cessfully, we delete them from the watch’s database

to free up storage. A Tracker Document is designed

to synchronize the fall detection model used on the

watch and the cloud’s database. The Tracker details

are also uploaded to the cloud database to keep track

of the latest model being used on the watch, but

never deleted from the watch.

All archived data is associated with a user-id

which is a 32-letter string that is generated using a

random number generator during a profile creation.

Here is an example of a UUID: 9d94c957-5f4b-49ba-

b555-b31db45ca9f7. Each time the user starts the

SmartFall App, the App queries the cloud database

for the best model using the UUID. If the watch does

not already have the best model, it is then down-

loaded to the watch. Fall detection will then proceed

to start with the best model.

3.6. Automation of model validation
and selection

The automation is divided into two parts; both parts

are run and co-dependent on each other. The first

part is run to evaluate the user’s feedback data stored

in the database, it determines if the current model is

generating too many false positives or false negatives

and the system needs to train a new model. If the

decision is to re-train, the request is passed on for

the training of a new model to the second part.

The second part of the system handles the train-

ing of the model in the cloud using GPU, offline val-

idation of the trained model, and saving of the new

model to the cloud database for eventual transfer to

the watch.

3.6.1. Part One

Criteria for Re-Training We analyze the archived

data of a user in the database within a specific

time interval to see if we need to train a better

model. Since each user’s fall detection model and

the archived data are tracked using the Tracker doc-

uments, we simply need to grab the latest tracker

document for each user. This tracker document con-

tains the first and last document ID that contains

data relevant to the model the user is currently us-

ing. With the relevant data retrieved, we need a way

July 7, 2022 10:38 output

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 11

to evaluate how the current model is performing. If

the model is performing well, there is no need to re-

train.

It is expected that activities that produce high

acceleration values on the wrist will generate more

false positives than sedentary activities. To eval-

uate the number of false positives that occur for

each user while controlling for different activity lev-

els and life styles (e.g. active subjects vs. less active

ones), we leverage a new custom metric for measuring

false positives for evaluation in.19 This new metric

takes into consideration the number of acceleration

“spikes” that occurred during a time period and uses

those as a normalization factor for the false positive

count. We consider a “spike” to occur when the mag-

nitude of acceleration for a user exceeds the double

of their average acceleration. The average accelera-

tion is computed by processing all the acceleration

data recorded during the evaluation period. When

a spike is detected, we ignore the next 16 sample

points (approximately half a second) before examin-

ing another spike. This ensures that a single jump in

acceleration magnitude, which could generate con-

secutive high sample points, is not read as multiple

spikes. The total number of false positives (FP) a

particular model detects will be compared against

the total number of spikes a user emitted to give our

Normalized Precision (NP) value:

NP =
of spikes− FP

of spikes
(1)

In brief, spikes measure performance in relation to

activity levels. We choose .98 to be the threshold

for which if the spike score achieves, we do not need

to re-train. This means that 2 percent or less of all

high acceleration activities result in a false alarm.

If the spike score does not reach the threshold, the

retrieved FP data is prepared for re-training.

Data Trimming and dataset creation In analyzing

when re-training should happen, we use all the cap-

tured data in a specific interval to calculate the

spikes. Note that majority of data collected from a

user is TN (True Negative) data which can contain

large amounts of low acceleration data if the user is

not active. Adding too much low acceleration data to

the original dataset will result in a highly unbalanced

fall training data set.

This trimming process removes some low ac-

celerometer data such that the percentage and diver-

sity of each type of data should remain the same as

the original generic dataset. We found that removing

data points that are not within 750 data points from

a spike (roughly 24 seconds) and keeping a buffer

of around 250 data points on each spike (roughly

6 seconds) will achieve the right diversity of data.

The data remains in chronological order after being

trimmed; however, now all long periods of low accel-

eration data are removed.

After the data are trimmed, a new training

dataset is created and appended to the original

dataset (generic set), then written to a CSV file with

a new version number. The file path of this CSV file

is uploaded to the database as the latest training set.

Finally, the file path of the new training set is passed

to the second part of the system that is responsible

for model creation and validation.

3.6.2. Part Two

Model Generation Creating models in TensorFlow

2.0 using the TFS (Training From Scratch) method

has been described in earlier works.2 To recap, the

TFS method discards the previous model and trains

a new model from a random initialized state using

the new dataset. This new dataset is a combination

of the original dataset with new data appended to

it. The re-training takes place in the cloud/server. To

manage multiple users using this personalized Smart-

Fall system, we implemented a FIFO queue to sched-

ule re-training automatically. An array consisting of

the UUID, version number of model, training dataset

path, and the testing dataset path is used to store

the details of each job. The training thread periodi-

cally checks the queue every few minutes. If there is

a job in the queue, it schedules the job to run using

a GPU server in the cloud/server. Each job in the

queue is run one by one sequentially until the queue

is empty.

Model Validation Once training is complete, the new

model must be validated offline. A high-performing

personalized fall detection model is a model that has

high sensitivity and specificity. A missed fall is repre-

sented as a False Negative (FN) and a “false alarm”

is represented as a False Positive (FP). Since we are

dealing with time-series data, validation of the model

needs to account for the sequential nature of the

data. We evaluate the model on the test set using a

July 7, 2022 10:38 output

12 Anne Hee Ngu et.al

simulation program that replicates how predictions

are made in real time as mentioned earlier in Sec-

tion 3.3.

In our system, the final inference of fall or not

fall is based on a threshold which is set as 0.3 in the

generic model. With personalization, this threshold

will vary between users and play a critical role in

selecting the best model. Therefore, for a newly gen-

erated model, we first validate that model against

test data with various thresholds until we can find

a threshold that will give the precision better than

the generic model or the existing model with a pre-

determined recall of 95%. If we cannot find a thresh-

old that gives a better precision at 95% recall, this

means the newly generated model is not better than

the generic model or the prior one. Otherwise, the

new model with the specified threshold is set as the

best model for this particular user.

Figure 10 shows a box highlighting the best pre-

cision for a personalized model compared to the best

precision of the generic model when the recall is fixed

above .95. Here, the new personalized model is better

and will be selected as the user’s new model.

4. Evaluation

4.1. Performance of Personal Model

We first want to confirm that the personalized model

from the automated pipeline is indeed better than

the generic model. We used the SmartFall dataseta

collected from 14 volunteers to train and test the

generic model. This dataset is divided into 2/3 for

training and 1/3 for testing. For personalization, we

recruited two volunteers to wear the watch running

our SmartFall for a period of time (45 mins to an

hour) and performed a scripted set of activities of

daily life. Whenever a fall is predicted, if it is a false

positive, the volunteer will label that. All the labeled

data will be used to train the personalized model

at the end of this personalization period. We tested

the two personalized models using the test dataset.

Figure 10 shows that at 0.95 recall, both the two

personalized models have above 0.9 precision versus

the generic model whose precision is below 0.9 with

the same recall.

aThis dataset is available in:
http://www.cs.txstate.edu/ hn12/data/SmartFallDataSet

Figure 10: Performance of Generic vs Personalized

model created using the automated pipeline. The box

highlights where the system looks for the best thresh-

old given that recall is fixed above .95. The precision

achieved at this point is compared to the user’s pre-

vious model to ensure the model has improved.

4.2. Personalization pipeline

Next, we want to confirm that the automated per-

sonalization pipeline as a whole can repeat the re-

sults of the previous manual method for personaliz-

ing fall detection models described in.2 The manually

generated model did not use a database to archive

the collected data or store the personal test dataset

for each user and data must be prepared manually

for each user for re-training which is labor-intensive.

Moreover, the manual system cannot handle multiple

users’ personalization at the same time. We validated

both personalized models using the simulated fall

prediction program on the test data set. Figure 11

shows the comparable Precision-Recall (PR) curves

of both models.

As stated in Section 3.6.1, we used an additional

metric called “spike score” to further validate the

model generated via the automated pipeline. The

spike score takes into consideration the number of

acceleration “spikes” that occurred during a time pe-

riod and uses those as a normalization factor for the

false positive rate. Different users can have varying

levels of activities and counting the absolute num-

ber of false positives generated is not accurate in

deriving the accuracy of the model. We computed

the spike score for the personalized model generated

automatically. The spike score is 0.97 which is close

to the personalized model generated manually that

July 7, 2022 10:38 output

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 13

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Recall

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Manual Model
Automated Model

Figure 11: Automated model vs Manual model.

achieved a spike score of 0.98.

To ensure recall is still as good as the manually

generated model, we asked the same two volunteers

to perform 20 simulated falls on a mattress (five of

each: back, front, left and right) and recorded the

correctly detected (TP) and missed falls (FN), as well

as possible false alarms (FP). The confirmed recall

is around 90% for both models.

4.3. How long does it take to
personalize?

We want to evaluate how many rounds of person-

alization are needed to derive a satisfactory model

for a user. The following protocol was only tested on

young and healthy users.

(1) The user is first told to wear the watch running

SmartFall App with the generic model on their

left arm wrist.

(2) The user will perform a set of prescribed activi-

ties for 30 minutes. This is the calibration phase.

(3) The user will keep track of false positives and

provide feedback when prompted during the cal-

ibration phase.

(4) The user will press the “STOP” button to de-

activate the SmartFall App at the end of the

calibration phase.

(5) The recorded feedback data will be uploaded to

the cloud’s database automatically at the end of

calibration phase.

(6) The user will perform the simulated fall test to

record the recall of the model at the beginning

and the end of the study.

In the cloud, the system will analyze the feedback

data and compute the spike score every night. If the

spike score is high (above .98), no new model will be

generated. This means no personalization is needed.

Otherwise, a new model is generated and validated

as described in section 3.6.2.

After this initial round, we simply ask the same

user to wear the watch for a few hours each day for

five days and label the false positive, true positive,

or false negative predictions if they pop up using

the newly created personalized model. At the end

of each night, the system will analyze the feedback

data and create a new personalized model if there

is sufficient labeled data and the spike score is below

.98. If the newly created model validated to be better

than the existing model, the watch will automatically

download the new model and the associated thresh-

old value the next time when the SmartFall App is

activated. This process repeats for five days.

Table 1 shows the result of personalization for

three different users over a period of five days. At

the end of the five-day testing period, we found that

User3 only requires one round, User2 requires two

rounds, and User2 required four rounds to achieve a

spike score of ≥0.97. All users performed simulated

fall tests at the start and at the end of the person-

alization process to verify that the recall is retained.

Table 2 shows the recall of the model before and after

the personalization. For User1, the recall is 0.95 be-

fore personalization and it decreased to 0.85 on the

fifth round of personalization. For User2, the recall

is 0.85 before personalization and it is 0.7 after the

personalization. For User3, the recall is 0.85 and de-

creased to 0.75. This shows that there is a definite

tradeoff between recall and precision. The falls that

are missed are mostly the right falls when the users

are wearing the watch on their left wrists.

This experiment suggested that there is no fixed

number of personalization rounds for every user. It is

highly dependent on how the current model performs

in relation to the kind of ADL activities performed.

Our personalization is a continuous process and the

goal is to always have the best model for each user.

The experiment also shows that the number of FP

has decreased significantly on Day 5 due to person-

alization.

July 7, 2022 10:38 output

14 Anne Hee Ngu et.al

Table 1: Performance of the model with continuous

personalization.

R1 R2 R3 R4 R5

User1

Hours worn 0.87 2.99 2.83 2.72 3.65
of FP 27 20 5 9 12

of spikes 314 922 1099 953 1863
Spike Score 0.91 0.97 0.99 0.99 0.99

User2

Hours worn 1.15 0.72 2.95 2.06 2.08
of FP 109 16 14 36 8

of Spikes 779 343 2753 1295 581
Spike score 0.86 0.95 0.97 0.97 0.98

User3

Hours worn 0.65 2.3 1.9 2.2 2.1
of FP 50 5 9 14 18

of spikes 674 693 1607 2718 2667
Spike score 0.92 0.99 0.99 0.99 0.99

Table 2: Comparison of recall before and after per-

sonalization.

User1 User2 User3 Avg.

Generic model 0.95 0.85 0.85 0.88
Personalization 0.85 0.7 0.75 0.76

Table 3: Performance of watch’s battery when Smart-

Fall is running with WiFi off.

Hour Test1 Test2 Test3 Test4 Test5 Avg.

1 80 80 79 79 80 79.5
2 58 59 59 58 59 58.6
3 39 35 39 39 38 38
4 19 15 19 19 17 17.8
5 0 0 0 0 0 0

4.4. Battery Performance

We tested the performance of the battery by record-

ing the average time the battery lasted from a full

charge until the watch runs out of battery when

SmartFall App is running. The user is not using any

other App on the watch during this battery testing

period. As shown in Table 3 which records the bat-

tery performance, at the end of the first hour, the

percentage of battery left was around 80%. At the

fifth hour, the battery runs out before the end of

that hour. In summary, the watch lasted an average

of five hours (taken from five test runs where the

watch was worn continuously from 100 percent to 0

percent). However, if the wifi on the watch is left

on, the battery on the watch lasted only around 3.5

hours with the SmartFall App running. Note that our

experiment is run on a five-year old Huawei smart-

watch. When the App runs in background mode, fur-

ther battery power can be conserved. For the system

to be of practical value, we would like the battery

to last for 12 hours or more. We believe as more

advanced smartwatches come to market with better

battery technology, this problem can be solved.

4.5. Scalability of the pipeline

We tested the system’s ability to generate person-

alized models for multiple users. We tested this by

uploading feedback data from 21 different users for

personalization at the same time. This means the

system must complete the re-training of 21 models

overnight. We confirmed that new models were gen-

erated for all of the 21 users the next day. It took

11.18 hours to complete the personalization process

for 21 users’ models. All models were trained on on

a Dell Precision 7820 Tower, 256 GB RAM with one

GPU (GeForce GTX 1080). In summary, the sys-

tem can process 21 personalization requests within

an 11-hour period. With an increase in the number

of GPUs to five, our system can scale to a hundred

users. This is sufficient for a mid-sized nursing home

which is where we want to deploy the system first.

5. Usability of SmartFall App

The watch-based SmartFall App has recently been

used by 9 participants who were recruited under IRB

approved protocol 7846 at Texas State University.

Each participant was asked to wear the watch for

7 continuous days. The participant was expected to

wear the watch for around 3 hours when he/she was

relatively active during each of the 7 days. Each par-

ticipant completed 3 surveys during the 7-day period.

Each participant was also asked to complete a post-

study interview, conducted via zoom by a sociologist

specializing in gerontology.

The first survey assessed baseline altitudes to-

wards technology and participant fall risk. The sec-

ond survey was to check the ability of the partici-

pant to use the SmartFall App independently and

correctly after the initial training. The third survey

was to gather the feedback on the usability of the

SmartFall App after using it for a week, including

July 7, 2022 10:38 output

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 15

information regarding the UI, the comfort of wear-

ing the watch, efficacy of the fall detection, interest

in using the App or recommending it to others. Each

participant was paid a gift card of $25 for participat-

ing in this study.

Table 4 summarizes the profile of the partic-

ipants. Four of them (44.4%) were men, and five

(55.6%) were women. The mean age of the sample

was 71.4 years, and only 2 of them (22.2%) had ever

used a smartwatch. All except 1 reported of being

at fall risk, with 4 (44.4%) having fallen within the

last 12 months. A third (3, 33.3%) reported having

experienced balance issues. Two thirds of the partic-

ipants expressed concerns about falling, specifically

while taking a bath or shower (66.7%), going up or

down stairs (55.6%), walking on a slippery surface

(88.9%), or on an uneven surface (88.9%). Neverthe-

less, most were independent, with few having prob-

lems with ADL’s. All of the participants reported

that they were very comfortable with using com-

puters and reported no trouble with charging and

putting on the watch each day. In fact, 7 (77.8%) of

them used a computer daily. The majority of them

(66.7%) stated that they had no concerns with hav-

ing their vitals monitored by a smart device. Yet, a

smaller number of participants (5, 55%) were willing

to wear devices that could record videos such as a

body camera.

All 9 participants reported feeling comfortable

wearing the fall detection device, with as many as 5

(55.6%) of them confirming that the App was easy

to use after the initial training. Given that only 2 out

of the 9 participants had used smartwatches before,

this result is very positive regarding the design of the

App. Overall, one third (33.3%) of the participants

indicated that they were satisfied with the App, and

44.4% would recommend it to a friend and felt that

they would be able to use it after a fall.

Themes that emerged from post-study inter-

views concern: 1) learning to use the App, 2) con-

venience of wearing a watch, 3) false positives, 4)

potential benefits of the App, 5) improving the App,

and 6) developing an attitude about something new.

First, participants talked about how they had to

learn to use the App, but after some initial difficulty,

they all found it easy to use. For example, one partic-

ipant mentioned that there were a lot of instructions

to read and understand first: “It was not easy to use

in the beginning, but it got easier after that.” Sec-

Table 4: Background of Participants.

Race Gender Age Fall Use of
Risk Smartwatch

P1 White M 44 Yes No
P2 White M 54 Yes Yes
P3 White F 89 Yes No
P4 White F 76 Yes No
P5 White M 79 Yes No
P6 Black F 77 Yes No
P7 White F 76 Yes Yes
P8 Asian M 78 No No
P9 White F 71 Yes No

ond, one of the advantages of the App seems to be

related with to convenient it is to have it on a watch,

which is not intrusive at all. One stated, “..,compared

to the other ones that are in the market, like the one

you wear around your neck, this is a lot more con-

venient.” Third, all complained that there were too

many false positives. Although the personalized fall

detection model has reduced false positives, partici-

pants reported that the false positive rate needed to

be reduced further for the App to be useful for their

daily life. Fourth, one participant stressed the need

of a fall detection device like this App, especially for

those living alone with the fear of falling. Another in-

terviewee stated, “Someone will come to help you if

you are unconscious.” Fifth, participants offered var-

ious recommendations for improving the App, such

as reducing false positives, making it simpler to use,

making the screen more sensitive to touches, reorder-

ing the questions to ask “Have you fallen?” first, and

repeating the question about the fall: “Did you say

you have fallen?” Five of the nine participants said

that the initial prompt of “Are you OK?” was con-

fusing. The App should ask whether they have fallen

or not. If the answer is “No,” it should go back to

the home screen. In addition, 2 participants said that

the vibration sound of the watch alerting them of

the prediction was too soft to be heard. This sug-

gests the need to choose a smartwatch that can take

into consideration of diminished hearing abilities of

older adults. Finally, one participant brought up the

importance of priming users of the App by helping

them develop a good attitude toward something new

such as a new technology or device.

The relatively low endorsement of the App in-

dicates that there remains plenty of room for im-

July 7, 2022 10:38 output

16 Anne Hee Ngu et.al

provement. This is a research prototype, and there

are hardware issues. For example, the watch screen

is sometimes insensitive, and the vibration tone can

be too low for some users with diminished hearing

abilities.

The total activity data collected from the 9 par-

ticipants amounted to 495MB with each participant

wearing the watch for 3 hours each day for 7 days.

If we scale that to 12 hours each day, this will gen-

erate around 2Gb for nine users for the same group

of users. These data are not yet compressed. This

suggests that the system only requires a moderate

amount of storage. We conclude that the storage re-

quired for continuously monitoring of fall in a mid-

sized nursing home is manageable.

In summary, this study with real-world partici-

pants demonstrated that the SmartFall App was val-

ued and usable by the targeted population group of

older adults with fall risk. Older adult participants

did not feel the device was intrusive. More research

with a larger and more diverse sample is, however,

needed for optimizing the personalized fall detection

algorithm to further reduce false positives for the

SmartFall App to be acceptable by the target popu-

lation.

6. Discussion

Our work demonstrates the feasibility of running a

personalized real-time fall detection application on

a commodity-based wearable device. A robust au-

tomatic personalization process can be achieved us-

ing an edge-cloud collaborative framework where the

computational intensive re-training of a new model

can be done on the cloud and the real-time detection

can be performed on the edge device Management

of each user’s model, feedback data, and personal

test dataset is achieved by using a NoSQL Couch-

base database which is scalable for many users and

where data can be versioned and exported as CSV

files for re-training.

The real-time requirement of our prediction is

satisfied despite the need to smooth over 20 predic-

tions because the model we used is a simple LSTM

model with two dense layers. The prediction is per-

formed on the watch where the data is sensed, there

is no latency being incurred due to data transmis-

sion. Data is sampled at 32 ms, and a total of 54

unique samples are used for the 20 predictions. That

amounts to 32*54 = 1728 ms. So, in the worst case

a fall will be detected 1.7 seconds after it has hap-

pened. However, often the inference average proba-

bility of the last 20 will exceed the threshold before

the entire alpha queue is updated. Thus, a fall will

be detected in less than 1.7 seconds.

We tested the personalization pipeline with

three young and healthy users over a total of 31.17

hours and with all three users (two females and one

male) able to obtain a model that achieve an average

spike score of 0.99 with 0.76 recall.

We demonstrated the feasibility and usability of

the system for the target population by recruiting 9

older adults to wear the watch Although the majority

of the participants have never used a smartwatch be-

fore, all of them including an 89-year-old participant

reported that they were comfortable in using Smart-

Fall. We are able to collect a watch-based dataset of

ADL data from these 9 older adults by just asking

them to wear the watch for 3 hours each day over a

seven-day period. This dataset will be used for fur-

ther fine-tuning of future fall detection algorithms.

The most significant drawback of the personal-

ization strategy, when scaling up for multiple users,

is the long training time involved in creating and

validating a new model (around 30 minutes for each

user), although such training can take place offline,

on a server. One of our future directions is to explore

more efficient re-training strategies such as more

accurate incremental re-training or transfer learn-

ing and more efficient validation, and also look into

less computationally intensive network architectures

such as a combination of one-dimensional convolu-

tional layers (1D-CNN) and transformers for less bat-

tery consumption.

Our model is trained on data collected from 14

subjects. This is still considered a small dataset. One

of our future work is to explore the use of a data aug-

mentation technique based on Generative Adversar-

ial Networks (GAN) to augment our dataset. Initial

exploration of this data augmentation technique is

published in.21

The usability study indicates that user satisfac-

tion was relatively low. To improve user satisfaction

and consequently the probability of long-term adop-

tion, the current system needs to be enhanced in sev-

eral aspects: (1) reducing false positives, (2) making

it simpler to use, (3) increasing the sensitivity of the

screen to touches, (4) reordering the questions, and

(5) increasing the vibration sound of the watch. Some

July 7, 2022 10:38 output

Personalized Watch-based Fall Detection Using a Collaborative Edge-Cloud Framework 17

of those issues have already been addressed in our

second prototype which will be trialed in early 2023.

7. Conclusion

This work paves the way for creating a fall detec-

tion system that can be tailored to each person. The

infrastructure for collecting and labeling data is re-

liable and secure while preserving user privacy. The

personalization process requires no intervention only

requires a brief period of calibration. The system is

set up to provide a robust way of deploying person-

alized fall detection models with the ability to imme-

diately review performance and generate new models

without the need for experienced programmers.

Bibliography

1. T. Theodoridis, V. Solachidis, N. Vretos and
P. Daras, Human fall detection from acceleration
measurements using a recurrent neural network, In-
ternational Conference on Biomedical and Health In-
formatics , Springer, (Greece, 2017), pp. 145–149.

2. A. H. Ngu, V. Metsis, S. Coyne, B. Chung, R. Pai
and J. Chang, Personalized fall detection system,
2020 IEEE International Conference on Pervasive
Computing and Communications Workshops (Per-
Com Workshops), (Austin, 2020), pp. 1–7.

3. M. A. I. Hubail, A. Alsuliman, M. Blow, M. Carey,
D. Lychagin, I. Maxon and T. Westmann, Couchbase
analytics: NoETL for scalable NoSQL data analysis,
Proceedings of the VLDB Endowment 12(12) (2019)
2275–2286.

4. A. Gigantesco, A. Ramachandran and A. Karup-
piah, A Survey on Recent Advances in Wearable Fall
Detection Systems, BioMed Research International
2020 (2020).

5. F. Riquelme, C. Espinoza, T. Rodenas, J.-G. Mi-
nonzio and C. Taramasco, eHomeSeniors Dataset:
An Infrared Thermal Sensor Dataset for Automatic
Fall Detection Research., Sensors (Basel, Switzer-
land) 19(20) (2019).

6. M. C. Shastry, M. Asgari, E. A. Wan, J. Leitschuh,
N. Preiser, J. Folsom, J. Condon, M. Cameron and
P. G. Jacobs, Context-aware fall detection using iner-
tial sensors and time-of-flight transceivers, 2016 38th
Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC),
IEEE, (USA, 2016), pp. 570–573.

7. G. Demiris, S. Chaudhuri and H. J. Thompson,
Older Adults’ Experience with a Novel Fall Detec-
tion Device., TELEMEDICINE AND E-HEALTH
22(9) (2018) 726–732.

8. A. Fanca, A. Puscasiu, D.-I. Gota and H. Valean,
Methods to minimize false detection in accidental

fall warning systems, 2019 23rd International Con-
ference on System Theory, Control and Computing
(ICSTCC), IEEE, (Romania, 2019), pp. 851–855.

9. V. Mirchevska, M. Luštrek and M. Gams, Combining
domain knowledge and machine learning for robust
fall detection., Expert Systems 31(2) (2014) 163–175.

10. I. Chandra, N. Sivakumar, C. B. Gokulnath and
P. Parthasarathy, IoT based fall detection and am-
bient assisted system for the elderly., Cluster Com-
puting: The Journal of Networks, Software Tools and
Applications 22(Suppl 1) (2019) p. 2517.

11. P. Van Thanh, D.-T. Tran, D.-C. Nguyen, N. D. Anh,
D. N. Dinh, S. El-Rabaie and K. Sandrasegaran, De-
velopment of a real-time, simple and high-accuracy
fall detection system for elderly using 3-DOF ac-
celerometers, Arabian Journal for Science and En-
gineering 44(4) (2019) 3329–3342.

12. J. R. Villar, E. de la Cal, M. Fañez, V. M. González
and J. Sedano, User-centered fall detection using
supervised, on-line learning and transfer learning.,
Progress in Artificial Intelligence 8(4) (2019) p. 453.

13. P. Tsinganos and A. Skodras, A smartphone-based
fall detection system for the elderly, Proceedings of
the 10th International Symposium on Image and Sig-
nal Processing and Analysis , (Slovenia, 2017), pp.
53–58.

14. K. Arulkumaran, M. P. Deisenroth, M. Brundage
and A. A. Bharath, Deep reinforcement learning: A
brief survey, IEEE Signal Processing Magazine 34(6)
(2017) 26–38.

15. A. Rosenfeld and J. K. Tsotsos, Incremental learning
through deep adaptation, IEEE transactions on pat-
tern analysis and machine intelligence 42(3) (2018)
651–663.

16. T. R. Mauldin, M. E. Canby, V. Metsis, A. H. H.
Ngu and C. C. Rivera, SmartFall: A Smartwatch-
Based Fall Detection System Using Deep Learning,
Sensors 18(10) (2018).

17. H. M. Salman, W. F. W. Ahmad and S. Sulaiman,
Usability Evaluation of the Smartphone User Inter-
face in Supporting Elderly Users From Experts’ Per-
spective, IEEE Access 6 (2018) 22578–22591.

18. N. A. Hee, W. Yeahuay, Z. Habil, P. Andrew,
Y. Brock and Y. Lina, Fall Detection Using Smart-
watchSensor Data with Accessor Architecture, In-
ternational Conference for Smart Health (ICSH),
(China, 2017), pp. 81–93.

19. T. Mauldin, A. H. Ngu, V. Metsis, M. E. Canby and
J. Tesic, Experimentation and Analysis of Ensemble
Deep Learning in IoT Applications, Open Journal of
Internet Of Things (OJIOT) 5(1) (2019) 133–149.

20. Couchbase Server Architecture
https://www.youtube.com/watch?v=bgFyBEgTBc4
.

21. X. Li, V. Metsis, H. Wang and A. H. H. Ngu, Tts-
gan: A transformer-based time-series generative ad-
versarial network, arXiv preprint arXiv:2202.02691
(2022).

