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Abstract— Model predictive control is a powerful tool to
generate complex motions for robots. However, it often requires
solving non-convex problems online to produce rich behaviors,
which is computationally expensive and not always practical in
real time. Additionally, direct integration of high dimensional
sensor data (e.g. RGB-D images) in the feedback loop is
challenging with current state-space methods. This paper aims
to address both issues. It introduces a model predictive control
scheme, where a neural network constantly updates the cost
function of a quadratic program based on sensory inputs,
aiming to minimize a general non-convex task loss without
solving a non-convex problem online. By updating the cost,
the robot is able to adapt to changes in the environment
directly from sensor measurement without requiring a new cost
design. Furthermore, since the quadratic program can be solved
efficiently with hard constraints, a safe deployment on the robot
is ensured. Experiments with a wide variety of reaching tasks on
an industrial robot manipulator demonstrate that our method
can efficiently solve complex non-convex problems with high-
dimensional visual sensory inputs, while still being robust to
external disturbances.

I. INTRODUCTION

Robots deployed in factories and warehouses are able

to perform repetitive tasks accurately. However, they are

not able to carry out more complex tasks as they lack the

ability to adapt their motions according to high-dimensional

sensory feedback such as vision, touch, or sound from the

surrounding environment. This inadequacy arises from the

fact that these robots typically track pre-defined motions that

do not adapt to changes in the environment.

One popular way to adapt motions online is through model

predictive control (MPC), which requires solving trajectory

optimization problems repeatedly based on state feedback.

MPC has become standard in many robotic applications, such

as legged locomotion, enabling robots to adapt their behavior

to unforeseen events. Many approaches use linear approx-

imations of the non-linear robot dynamics and quadratic

cost to describe the desired behaviours such as walking,

trotting or bounding [1]–[3]. This then allows the trajectory

optimization problem to be solved as a Quadratic Program

(QP). Thus, they guarantee real-time convergence to a unique

global optimum and hard constraint satisfaction, leading

to robustness to external disturbances and easy transfer to

robots. However, they can only generate limited types of

behaviours due to the use of simplified models and fixed,

hand-tuned cost functions that do not change based on sensor

feedback. As a result, different behaviours often require

different hand-crafted cost functions and simplified models.
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Recent advances in MPC have removed the need for re-

duced order models by directly using the full non-linear robot

dynamics [4]–[9]. This enables rapid generation of a variety

of behaviours with a unified formulation. However, low

computation time is achieved by making sacrifices such as

inability to enforce hard constraints [4], [7], [9] or allowing

only quadratic costs [6]. Consequently, any increase in the

complexity of the cost, such as adding non-convex obstacle

avoidance tasks, would significantly increase computation

time. To date, only empirical real-time convergence has been

shown with these methods.

More importantly, visual sensory data is rarely used in the

feedback loop, because modelling system or environment dy-

namics with images as part of the state is usually intractable.

As a result, the few approaches that do use visual inputs

extract important features from the images such as obstacles,

goal locations or keypoints through image processing [10]

or train neural networks that checks for collisions with

the environment [11]. This information is then included

manually inside the cost function. Consequently, the feature

extraction is tailored for a particular task and would require

modifications for new situations. Further, image processing

based methods are sensitive to lighting, image contrast, etc.

which can undermine the quality of trajectories or stability

of the numerical solver, especially when the underlying

optimizer cannot enforce hard constraints [10].

To address these issues, we introduce a MPC scheme

featuring an adaptive QP. The cost function of this QP

is constantly updated by a neural network directly from

multiple sensors (e.g. joint encoders and vision) and aims

to generate trajectories that minimize a non-convex general

task loss. This procedure enables solving a convex problem

(QP) online while still generating rich behaviours defined by

a non-linear general task loss. Consequently, this guarantees

safe deployment of sensor-driven MPC on real robots by

enforcing hard constraints and real-time convergence. At the

same time, direct integration of vision into the MPC feedback

loop is simple by leveraging the neural network. Thus

eliminating the need for hand-engineered feature extraction.

Figure 1 depicts the MPC scheme deployed on the robot.

For every new sensor measurement, a neural network, called

QPNet, predicts the cost function. Then, the associated QP

is solved and its solution is tracked by a model-based inverse

dynamics controller at a higher frequency. Consequently, at

each new sensor measurement, the QP varies and adapts

to changes in the environment and the desired task goal,

in order to minimize the general non-linear task loss. The

online adaption of the cost function allows the generation of

complex behaviours while still solving a QP. The training of

the QPNet is done in a supervised way after generating the



QP costs using techniques of implicit differentiation [12].

The proposed method is a general reactive MPC frame-

work that has three main advantages:

1) Allows a simple and clean way to incorporate high-

dimensional sensory inputs into the feedback loop while

still using established optimization techniques for MPC.

2) Enforces hard constraints during deployment even while

using neural networks in the feedback loop to integrate

different sensor modalities.

3) Guaranteed real-time solve rates of the MPC loop that

remain constant irrespective of the task complexity.

We demonstrate these advantages by choosing one applica-

tion - a set of reaching tasks (3D locations and 6D poses)

on a 7-DoF KUKA LBR iiwa robot under different settings

1) when the target location is provided by a Motion Capture

(MC) system, 2) when only a RGB-D camera is available,

and 3) when the robot is required to avoid an obstacle.

We also demonstrate stable push recovery in all the above

mentioned situations. These experiments show that by simply

modifying the high-level task loss, our approach can handle

more complex settings without any change to the general

method while retaining all the above mentioned advantages.

This is in contrast to existing methods for adaptive reaching

tasks that only show a subset of these advantages and require

modification in the cost design to extract suitable features

from images [10], [11].

II. RELATED WORK

a) Learning-based MPC: It is not a new idea to approx-

imate MPC with neural networks. For example, Parisini and

Zoppoli have proposed in [13] to approximate a receding-

horizon controller (MPC) for a nonlinear system using neural

networks almost three decades ago. Since then, advances

have been made by exploiting techniques from explicit MPC

to establish constraint satisfaction [14] and robust MPC

to improve robustness by design [15]. However, they do

not address the problem of fusing high-dimensional sensory

data. More recently, this methodology has been further

investigated through the lens of imitation learning (IL). In

particular, the MPC policy is viewed as an algorithmic expert

to be imitated by a student policy that can incorporate high-

dimensional sensory inputs [16]; however, in this work,

the underlying trajectory optimization problem is solved

by dynamic differential programming (DDP), thus does not

enforce hard constraints.

b) Implicit differentiation through convex optimization:

A key ingredient of our approach is the ability to differentiate

through convex optimization problems via the implicit func-

tion theorem [12], [17]. Indeed, such techniques have been

successfully applied to learning parameters of optimization-

based control policies. For instance, Amos et al. learns the

cost function and the dynamics jointly for a MPC policy in

a model-free setting [18]; Agrawal et al. tunes parameters

for various forms of control policies represented as convex

optimization [19]. However, neither of these methods ad-

dress the problem of fusing high-dimensional sensory data

and they have only been demonstrated on simple problems

without deploying the learned policies on real hardware.

c) Inverse optimal control: Learning cost functions to

generate desired behaviours is studied in inverse optimal

control (IOC). In particular, cost parameters are inferred

to recreate desired behaviour from expert demonstrations

with policy optimization [20]–[22]. Visual demonstrations

have also been used to learn cost functions via bi-level

optimization [23]. However, in this line of work, the learned

cost cannot be adapted by additional sensory inputs to

generalize to new situations. Also, due to the use of tra-

jectory optimization, our approach does not require human

demonstrations, which can be tedious to obtain.

III. METHOD

In this section, we present our approach that is able to

perform MPC to achieve a non-convex reaching task [4] with

high-dimensional sensory inputs in real time on a robot.

A. Problem Formulation

We consider a typical optimal control problem, where

the goal is to find an optimal trajectory x⋆ of states and

controls that minimizes a non-convex task loss. Instead of

directly solving this problem with a nonlinear optimization

method, we would like to re-parameterize it as a QP so

that it can be solved efficiently at run time. To achieve

this, we formulate the trajectory optimization problem as bi-

level optimization, with an upper-level non-convex cost that

describes the complex motion needed to be performed and

a lower-level QP-based trajectory optimizer. Mathematically,

the problem is formulated as follows

min
G,c

φtask(x
⋆, g) , (1)

where x⋆ = argmin
x

xTGx+ cTx (2a)

s.t. Ax = b, Kx ≤ h . (2b)

This bi-level optimization problem aims to minimize the

high-level non-convex task loss (1) parameterized by a task

goal g with respect to the cost parameters, the matrix G

and the vector c, of the lower-level QP (2). The QP has a

formulation of a standard optimal control problem, where

the constraints (2b) enforce the system dynamics and the

feasibility of the states and controls.

We solve this bi-level problem with Adam [24]. The

gradients through the lower-level QP (∂x
⋆

∂G
and ∂x⋆

∂c
), are

obtained using the implicit differentiation technique pro-

posed in [12]. The cost function matrix G is internally

parameterized as G = ReLu(L)ReLu(L)T where L is the

actual parameter optimized in the bi-level problem. This

ensures that all constructed cost parameters G in the QP are

positive semidefinite. Since the dynamics is known and the

gradients are exact, our method does not require sampling to

estimate the gradient as opposed to model-free methods [23],

[25] and takes very few iterations to converge.

Remark 1: It is important to note that we design the

lower-level problem as a QP due to the availability of

efficient off-the-shelf solver, bounded computation time for

reliable deployment, and guaranteed convergence to global

optimum (which is important for implicit differentiation).
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