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Abstract— Contact dynamics relies on the simultaneous satis-
faction of constraints at the robot body level and at the contact
level. At both levels, various formulations can be chosen that
all must lead to the same results, given the same hypothesis,
hence the little importance of their details. Yet when using
it in an optimal control problem, a particular formulation is
often imposed by the task to be performed by the robot. In
this paper, we detail the formulation of the contact quantities
(force, movement) in an arbitrary frame imposed by the task.
In that case, we will show that we are typically not interested in
working in the local frame (attached to the robot contact point),
nor in the world frame, but in a user-defined frame centered at
the contact location with a fixed orientation in the world. The
derivations can then be used for 6D, 3D or normal (pure-sliding)
contact. We implemented the corresponding derivatives on top
of the contact dynamics of the rigid-body dynamics library
Pinocchio in the optimal control solver Crocoddyl. We show
that a unique formulation is able to handle several operational
orientations, by achieving several surfacing tasks in model
predictive control with the robot Talos.

I. INTRODUCTION

The advent of fast nonlinear model predictive control
(MPC) on torque-controlled robots is enabled by dedicated
numerical optimal control solvers that exploit the structure of
the dynamics, such as DDP [1], [2]. Despite the successful
deployment of these controllers on hardware [3]—[8], contact
tasks are still challenging to realize and subject to active
research. In this context, designing such tasks suppose the
knowledge of desired contact forces and accelerations in a
“convenient” frame - what convenient means is up to the user.
However, analytical derivatives of multi-body dynamics al-
gorithms are often expressed in local frames by construction,
i.e. in frames attached at all instants to moving parts of the
robot (following the efficiency of local formulation [9]). Yet
from a user point of view, this representation is not the most
intuitive and complicates the design of contact tasks. Indeed,
think for instance of locomotion task where we would like to
avoid slippage: the contact force could be regularized around
a vertical force in the cost objective. As a matter of fact,
doing so requires to express the residual of the contact force
and its derivatives in a frame that is aligned with the world
frame (i.e. with gravity) yet centered at all times with the
robot foot. This kind of task is the motivation of our paper:
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expressing derivatives in such a custom frame, although done
using basic spatial algebra tools, is not trivial.

In the literature, several contact models have been used
in MPC. The rigid contact dynamics implemented in Pinoc-
chio [10] is utilized for instance in [11]-[13]. In our previous
work [11] the target force was expressed in a local frame
whose alignment with the surface normal was part of the
task. In [12], [13] contact force constraints are expressed in
a surface-aligned frame but the contact forces are optimized
as control variables and not explicitly tracked. Soft contact
models are also exploited, e.g. in [14] where a visco-elastic
force objective expressed in the surface coordinates, or in
[15] where iLQG is used with Mujoco [16]. But Mujoco
performs the Recursive Newton-Euler Algorithm only in
local or world coordinates. Contact invariant approaches
allowing to optimize control policies through contact have
also been proposed in [7], [17], [18] but it is unclear in which
coordinate frame they are expressed. Overall there seem to
be little focus on this topic among the MPC community,
and the most popular contact models are usually based on
local formulations. MPC requires the explicit computation of
the derivatives, hence an effort of the community to provide
differentiable contact simulators [16], [19]-[21]. By basing
our contact formulation on a differentiable contact solver [2],
[22], we pursue the same objective and provide all necessary
derivations to obtain the derivatives of the contact dynamics.

In this paper, we propose to derive the formulation of
the rigid contact model, which includes the constrained
joint acceleration and contact forces, in arbitrary frames of
reference. We emphasize that this is a technical difficulty
that needs to be overcome by most MPC practitioners. We
present here a formal and generic way of dealing with rigid
contact models of any dimensions in arbitrary frames. In
particular, we focus on the generic spatial (6D) formulation
from which all other formulations can be deduced. The
calculations are not found explicitly in the literature, but from
our experience they are tedious and error-prone. We hope that
it can serve other researchers from the MPC community to
design contact tasks. We also provide an open-source imple-
mentation of these derivatives on top of the Pinocchio [10]
and Crocoddyl [2] libraries and we validate experimentally
these developments in a nonlinear MPC framework on the
torque-controlled humanoid robot Talos.

II. BACKGROUND

In this section we recall the rigid contact model [23], the
constrained forward dynamics [22] and the derivation of their
analytical derivatives [24]. Then we introduce the reference



frame of interest in which we want to express contact tasks,
as well as the spatial algebra tools used in the paper.

A. Constrained forward dynamics

A rigid contact is a pure kinematic constraint. The La-
grangian dynamics of a robot subject to rigid contacts is
derived from Gauss’ least action principle [23] stating that
constrained accelerations are the closest to free accelerations

min %“aq - M(Q)_l (Tq - b(q’vq))”?\/[(q) (1a)

s.t. f(g)=0 (Ib)

where ¢ € R" is the vector of joint positions, f : R"" —
R™ is the contact constraint, a, € R™ is the vector of
constrained joint accelerations, v, € R™ is the vector of
joint velocities, M(q) € S}" is the joint space inertia matrix,
b(q,v,) € R™ is the vector of centrifugal, Coriolis and
gravity forces, 7, € R"" is the vector of joint torques.

q
Differentiating twice (Tb) leads to the quadratic program

i %“aq - M()™ (g - b(q”q))”fw(q) (22)

s.t. J(q)ag + jc(q)vq = (2b)
[ —)

ao(q,vq)

where J(.) : R" — R™ "™ is the Jacobian of the contact
constraint, a(q,v,) = J(q)a, + ag(q,v,) is the contact
acceleration, og(q,v,) € R™ is the contact acceleration
drift, and a, € R™ is the desired contact acceleration,
typically a numerical stabilization term. This program can
be solved efficiently using proximal methods [25]. Dropping
the dependencies in ¢, vy, the KKT conditions of (]Z[) read
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The Lagrange multipliers A € R™ correspond to the contact
forces. The constrained forward dynamics is the solution
map of the system (3)

- R™ xR™

R™ x R™ x R"™
FD: -1 “)
(g y = K o

(4,4, 74)

Given position, velocities and torques, it computes the
constrained joint acceleration and contact forces. We are

interested in computing 9ID ' OFD , % in a particular ref-

dq 7 Ovg q
erence frame introduced later on. We also define the inverse

dynamics function

— an

R" x R*™ x R"
D : )
P 7,=Mag+b—J A

(q> ’qu aq7 )‘)
B. Differentiating the constrained dynamics

Let us now recall how the derivatives of FD can be
expressed in terms of the derivatives of ID and of the contact
acceleration [24]. Without loss of generality, we assume

ay = 0. Let 2 be any of the variables g, vy, 7. The derivatives
of (@) are given by the following proposition
Proposition 1:
)
-1 8ZID(qZ;;¢17G’Q7)‘)} if z= q or 'Uq
9FD - oz
2. = (6)

-1 _Inu
0
Proof: We simply differentiate y = FD(q,v,,7,). Let
" denote the differentiation operator w.r.t. z.
'=-K'K'K'o+ Ko’ %
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When z = 7,, the lower part vanishes and the upper part
is reduced to —1I,, . When 7, = ¢ or v,, we recognize the
derivatives of (5) and (2b) w.r.t. ¢ and v,. [ |

C. Spatial algebra tools

We remind here important definitions of spatial algebr{l
A placement is an element X of the special Euclidean
group SE(3). Given two frames A, B, the transformation of
motions from B to A is characterized by Ax B

A

~“Rs"'p§ "Ry
where ARB € S@(S),Apg € R’ are the rotation and
translation from frame B to frame A respectively, and *
transforms a vector in R into its associated skew-symmetric
matrix. Forces are transformed with

Axr s (AXB)_T

12)

(13)

Spatial velocities and accelerations are motions in M = R°
denoted by v € R® , o € R°

v, «
v = w ., a= w
Vy Ay

where v,,, v, € R? represent the angular and linear veloci-
ties, a,,, &, € R® are the angular and linear components of
the spatial acceleration. The spatial velocity (resp. accelera-
tion) of frame B expressed in frame A is denoted by “vg
(resp. AaB). The spatial force in F = R® is denoted by A

Sk

For a more detailed treatment the reader can refer to [9], Section 2.9.

(14)

15)



CENTERED (©)

WORLD (O)

Fig. 1: Representation of the 3 reference frames

where A,, Ay € R? represent the couple and linear force.
The force acting at the center of frame B expressed in 4 by
A)\B. The subscript B will be omitted from spatial motions
and forces when the frame of interest is not ambiguous. The
spatial cross product operator and its adjoint are defined as

v o0
VX £ |:I/:>)J< 1/:_,<:| (16)
vx* 2 _pxt (17)

We recall now the time derivative of a rigid transformation
Proposition 2: Let A, B be arbitrary frames.
B B B
2 (°x4) = Pwa-vs) x "X (1)
The proof can be found in [9]. This proposition will be used
to derive the derivatives of interest in the next section.

D. Reference frames convention

We define the following reference frames and their short
names (see Figure[T). On purpose, we follow the conventions
established in the software Pinocchio [10] where all the
equations recalled in this section are efficiently implemented.

« WORLD (O) : inertial frame, fixed w.r.t. the observer
o« LOCAL (L) : attached to a moving part of interest,
typically to a joint of the robot (a.k.a. “body” frame)

« CENTERED (©): centered at the local frame, but with

axes oriented like WORLD at all times

The © reference frame is the one in which we would like to
express contact tasks. It is related to frames O, L as follow

OXo(q){_;x ﬂ ”xa<q>=[§ g} (19)

where R = ORE(q) is the rotation from £ to O and p =
Opﬁ(q) is the translation from £ to O.

ITIT. DERIVATIVES OF THE CONSTRAINED
DYNAMICS IN THE © FRAME

Note that Proposition [I]is agnostic to the reference frame.
In this section, we show how the analytical derivatives of
inverse dynamics and contact acceleration used in () can be
derived in the © frame by using their counterparts known in
L [24]. Our analysis focuses on the generic case of a single

6D contact (m = Gﬂ such that the m-dimensional vectors
a, A introduced in correspond to spatial quantities c, A.

A. Derivative of the spatial acceleration in ©

The following proposition provides the derivatives of “a
(spatial acceleration of £ expressed in Q) in terms of the
derivatives of “a (spatial acceleration of £ expressed in L).

Proposition 3:

%a _
or, = 0 (20)
9% _9 9 a
9o, = XL, @21
QO X pL

%a v 9 a awR Jw

= X5 o c (22)
9q 9q { a:R J

where EJw represents the angular part (i.e. top 3 rows) of
the local contact Jacobian.

Proof: The derivatives w.r.t. 7, is trivially 0 since o
doesn’t depend on 7,. For ¢, v, we differentiate

Q Q L
a="X,(q) a
Q?al _ ng(q)ﬁa' + Q?Xl:(q)lﬁa

(23)
(24)
oXﬁ(q) does not depend on v, so the second equality

follows. For ¢, the second term involves a tensor-vector
product that can be evaluated directly using Proposition [}
2("xc) =" -vo) x "X, (25)

where v, vy are the spatial velocities of frames £ and ©
respectively. Moreover, by definition of the frame ©

16)
v, = v, O = z(:)
RCVU ) \vJ R v,

Injecting Eq. (26) in (25) and using the anti-commutativity
of the spatial cross product

(26)

O

%(”}Q)Ca{ g“:|><OX££a 7)

Q OV
= “ax| Y (28)

0

QO x L

"o, R~ J,
- wit o 29
{_Oa:Rﬁjw}vq ( )

We used wa = Rcuw and the Jacobian definition Luw =
EJqu. Observing that v, = %, the result follows. |

B. Derivative of ID in ©
The derivatives of (5) in © are given in terms of the local

ID derivatives by the following proposition.

2Adding more contacts is not an issue - they simply need to be stacked
properly in the KKT system and in the derivatives. The case of lower
dimensional constraints is discussed in Section @



Proposition 4:

2 (i) =0 (30)
7 (70) = 52, () @D
&)= & (7m) - [k ]

Proof: By definition, ID in © and its derivative are
given by

“ID(q, v, ag, “A) = Mag +b—-"J" A (33)

1
“ID'(q, v, aq, " A) = M'a, +b' - (”JT) A (34)
where a,, “X are considered constant during the differen-
tiation. The differential w.r.t. 7, is trivially 0. For ¢,v,, we
observe that the only terms depending on the reference frame

are the contact wrench X and the contact Jacobian. Using that
© Oy L
J="X,"J, we have

(OJT>'Q?)\ _ (LJTOXZ“)'O)\

c (JT)' ©xTIN\ 4 LT (”XZ)' °Xx (36)

(35)

The first term is computed naturally with the local derivatives
of ID. Since ” X} in the second term doesn’t depend on Vg,
the second equality follows. For g, we observe that X Z =

Xo. Let us use Proposition [2| for the tensor-vector product

0 c
2(°xz) = & (“xo) (37)
=“(vo -v) x “Xo (38)
The spatial velocities of © and £ expressed in £ are
0 £
Fuo = [a } v = [ﬁ”“} (39)
v, v,
Plugging expressions (39) in (38)
o (9 T\O £y Ly ©
2(x2)A=|7 e Ix XA o)

Let us notice that LX(; = EXS; since LX@ is orthogonal.
So “Xo A= X5"A="Xand

c
9 (V5T\Oy _|—Tv,| L
E(XL) A_[ . }x A 41)
c “u
="AX| ¢ (42)
0
LyXL
A,
= {L)\%ﬂji}vq (43)
Finally, the result follows from observing that v, = %. u

C. Projecting onto lower dimensional constraints

The case of an m-dimensional constraint for m < 6 can be
deduced by projections from the 6D case. It can be useful,
as illustrated in our experiments, to express tasks where the
motion is constrained only in some directions. Let us define
the set I C {1,...,6} of m dimensions. The constrained
forward dynamics read

ag | _ K Tg—b
=Ar Q1 — Qg

were the subscript A; means the m-dimensional sub-vector
obtained by masking indices in A that are not in /. Following
this notation, the constrained forward dynamics function is

FDI(vianq) 2 HDI (FD(QaquTq)) (45)

where P; : R" XR™ — R"" xR™ represents the projection
onto dimensions i € I, i.e. Py (aq,)\) £ (aq)\l).

(44)

IV. EXPERIMENTAL RESULTS

This section demonstrates the relevance of our method on
a polishing task with the torque-controlled humanoid Talos.

A. Experimental setup

The upper body (torso + right arm) is controlled in MPC
while the lower body is maintained in a fixed posture using
position control, so we have n, = n, = 6. The DDP
implementation is used to solve the optimal control problem
is available in Crocoddy and the rigid-body dynamics
computations are performed in Pinocchiq’} The analytical
derivatives of the constrained forward dynamics in the ©
frame which were derived in Section are implemented
in the open-source library Sobecﬂ The task is exert with the
right wrist a constant normal force on a flat rigid surface
while drawing a circle. This task is demonstrated on both
horizontal and vertical surfaces. For this task, the desired
contact force is naturally expressed in the © frame, as
the local frame attached to the wrist of the robot is not
necessarily aligned with the surface normal direction.

B. MPC formulation

We use the force feedback MPC formulated in [11], which
solves the following Optimal Control Problem (OCP)

T
Jmin L LCz(8), w(t). \(£). )t + Ly (2(T))  (46)

2(),A(t) = F(2(t),w(t))
s.t. 42(0) =20
2(t)e Z, w(t)ew

where z £ (¢, v,,7,) is the state, w is the control (a.k.a com-
puted) torque, z, is the initial state, L, Ly the running and
terminal costs, Z, WV represent state and control constraints.
The dynamics F' gathers the constrained forward dynamics

3https://github.com/loco—3d/crocoddyl
4https://githubAcorn/stack—of—tasks/pinocchio
5https:// github.com/MeMory-of-MOtion/sobec
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(a) Contact force in the z direction of the (centered) © frame for
the sanding task on a horizontal table
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(b) Contact force in the y direction of the (centered) © frame for
the sanding task on a vertical board

Fig. 2: Sanding task on a horizontal table (top) and on a
vertical board (bottom). Analytical derivatives of the con-
strained forward dynamics in the © frame enables to easily
design and realize a contact task using nonlinear MPC.

and a 1°"-order low-pass filter on the torques with angular
cut-off frequency wy, i.e. 2(¢), A(¢) are such that

q(t) = v,(t) (47)
0(1), A(t) = FD; (q(£), vg(t), 7(1)) (48)
7q(t) = wo(w(t) — 74(t)) (49)

The contact model used in this case is 1D (m = 1), i.e.
the robot is free to move in the plane orthogonal to the
surface normal. The definition of the index set I depends
on the experiment: when the task is to maintain contact with
a horizontal plane, then I = {3} (constraint acting along the
z-dimension in Q), whereas for the vertical plane contact,
I = {2} (constraint acting along the y-dimension in Q). The
cost function describing the sanding task has the form

L(z,w,t) = .|| A.(z = 20) |17 + &I B.(2)]1 P+
AN = "N + crllAr(R(g) © R)|I*+

el Ay (p(q) = BN+

2 lim 2
collAww|” + ¢ | Bu (w)l (50)

where p, R are the end-effector frame 3D position and
rotation respectively, A, A,,A,, A\, Ar are activation
. . lim lim

weight matrices, c,, ¢, ,Cy,Cy Cx, Cp, Cr are scalar costs
weights, © represents the difference in SO(3), B,, B,, are
weighted quadratic barriers. The reference force to exert on
the contact surface is Q)\, expressed in the centered frame
and the trajectory to track on the surface plane is p(t).

Fig. 3: Screenshot of the horizontal (top) and vertical (bot-
tom) sanding tasks.
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(a) End-effector position in the x, y-plane of the centered © frame
for the horizontal surface sanding
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(b) End-effector position in the x, y-plane of the centered © frame
for the vertical surface sanding

Fig. 4: End-effector trajectories in the surface plane for
horizontal (top) and vertical (bottom) sanding tasks

C. Results and discussion

The OCP discretization is set to 10ms and the MPC
update rate to 100 Hz. The Riccati gains in position and
velocity output by DDP are used to interpolate the solution
at 2kHz [4]. The target force was set to A = 30N and
the reference trajectory of the end-effector is a circle of

radius 7cm and angular velocity 1rad s!. The estimated



contact force is shown Figures [2a] and [2b] and the end-
effector position in Figures fa] [fb] The contact forces are
estimated from joint torques sensors, joint position encoder
measurements and joint velocities computed through finite
differences using the forward dynamics. We can see that
the robot is able to track the forces expressed in the ©
frame. It is important to note that without the mathematical
developments presented in this paper, it would have been
impossible to specify the task directly in this frame. We
would have had to make the wrist orientation as part of
the main task, i.e. to hard-code an operational frame that
must remain oriented like the world frame at all times. This
imposes an additional constraint on the robot’s motion and
makes the task more difficult to realize. By expressing the
contact task directly in the appropriate frame, the controller
is free to trade-off wrist orientation against force tracking.

D. Extension and implementation

The model covered in this paper is only considering the
case where the contact occurs between a robot body and the
world. It is implemented for the 3 proposed frames LOCAL,
CENTERED and WORLD in Sobec”. It can be generalized
to the universal case where the contact occurs between two
frames C' and C” that can both be either attached to a moving
body or fixed in the world (not limiting to one contact being
fixed). We then recover the LOCAL formulation when C Lis
attached to the robot and C? is fixed, and the CENTERED
formulation when C” is attached to the robot and C' is
fixed. This extension has been chosen for the implementation
of the constraint dynamics soon released in Pinocchio v3.
The extension of the model proposed here to this universal
description is handled in an extended version of this papelﬁ

V. CONCLUSION

In this paper we derived derivatives of the contact ac-
celeration and forces to perform contact tasks in MPC in
an arbitrary frame. The main outcome of this study is that
nonlinear skew terms need to be added to the rotated local
derivatives. We showed experimentally that our calculations
enable to exert forces in arbitrary directions. We hope this
paper will help MPC practitioners to design contact tasks
without having to go through these tedious calculations.
It is also worth emphasizing that the centered frame can
be in fact any frame deemed relevant for the task by the
user (only the rotation matrix needs to be changed, not the
maths). As future work we intend to include these derivatives
more systematically in our software stack and propagate their
use to locomotion and whole-body multi-contact problems.
Another interesting lead can be to optimize the computation
of the projected constraint derivatives.
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