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Abstract— Contact dynamics relies on the simultaneous satis-
faction of constraints at the robot body level and at the contact
level. At both levels, various formulations can be chosen that
all must lead to the same results, given the same hypothesis,
hence the little importance of their details. Yet when using
it in an optimal control problem, a particular formulation is
often imposed by the task to be performed by the robot. In
this paper, we detail the formulation of the contact quantities
(force, movement) in an arbitrary frame imposed by the task.
In that case, we will show that we are typically not interested in
working in the local frame (attached to the robot contact point),
nor in the world frame, but in a user-defined frame centered at
the contact location with a fixed orientation in the world. The
derivations can then be used for 6D, 3D or normal (pure-sliding)
contact. We implemented the corresponding derivatives on top
of the contact dynamics of the rigid-body dynamics library
Pinocchio in the optimal control solver Crocoddyl. We show
that a unique formulation is able to handle several operational
orientations, by achieving several surfacing tasks in model
predictive control with the robot Talos.

I. INTRODUCTION

The advent of fast nonlinear model predictive control

(MPC) on torque-controlled robots is enabled by dedicated

numerical optimal control solvers that exploit the structure of

the dynamics, such as DDP [1], [2]. Despite the successful

deployment of these controllers on hardware [3]–[8], contact

tasks are still challenging to realize and subject to active

research. In this context, designing such tasks suppose the

knowledge of desired contact forces and accelerations in a

”convenient” frame - what convenient means is up to the user.

However, analytical derivatives of multi-body dynamics al-

gorithms are often expressed in local frames by construction,

i.e. in frames attached at all instants to moving parts of the

robot (following the efficiency of local formulation [9]). Yet

from a user point of view, this representation is not the most

intuitive and complicates the design of contact tasks. Indeed,

think for instance of locomotion task where we would like to

avoid slippage: the contact force could be regularized around

a vertical force in the cost objective. As a matter of fact,

doing so requires to express the residual of the contact force

and its derivatives in a frame that is aligned with the world

frame (i.e. with gravity) yet centered at all times with the

robot foot. This kind of task is the motivation of our paper:
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Research University, Paris, France
This work was in part supported by the National Science Foundation

(grants 1825993, 1932187, 1925079 and 2026479), Meta Platforms Inc.,
and ANR Dynamo-grade (ANR-21-LCV3-0002)

expressing derivatives in such a custom frame, although done

using basic spatial algebra tools, is not trivial.

In the literature, several contact models have been used

in MPC. The rigid contact dynamics implemented in Pinoc-

chio [10] is utilized for instance in [11]–[13]. In our previous

work [11] the target force was expressed in a local frame

whose alignment with the surface normal was part of the

task. In [12], [13] contact force constraints are expressed in

a surface-aligned frame but the contact forces are optimized

as control variables and not explicitly tracked. Soft contact

models are also exploited, e.g. in [14] where a visco-elastic

force objective expressed in the surface coordinates, or in

[15] where iLQG is used with Mujoco [16]. But Mujoco

performs the Recursive Newton-Euler Algorithm only in

local or world coordinates. Contact invariant approaches

allowing to optimize control policies through contact have

also been proposed in [7], [17], [18] but it is unclear in which

coordinate frame they are expressed. Overall there seem to

be little focus on this topic among the MPC community,

and the most popular contact models are usually based on

local formulations. MPC requires the explicit computation of

the derivatives, hence an effort of the community to provide

differentiable contact simulators [16], [19]–[21]. By basing

our contact formulation on a differentiable contact solver [2],

[22], we pursue the same objective and provide all necessary

derivations to obtain the derivatives of the contact dynamics.

In this paper, we propose to derive the formulation of

the rigid contact model, which includes the constrained

joint acceleration and contact forces, in arbitrary frames of

reference. We emphasize that this is a technical difficulty

that needs to be overcome by most MPC practitioners. We

present here a formal and generic way of dealing with rigid

contact models of any dimensions in arbitrary frames. In

particular, we focus on the generic spatial (6D) formulation

from which all other formulations can be deduced. The

calculations are not found explicitly in the literature, but from

our experience they are tedious and error-prone. We hope that

it can serve other researchers from the MPC community to

design contact tasks. We also provide an open-source imple-

mentation of these derivatives on top of the Pinocchio [10]

and Crocoddyl [2] libraries and we validate experimentally

these developments in a nonlinear MPC framework on the

torque-controlled humanoid robot Talos.

II. BACKGROUND

In this section we recall the rigid contact model [23], the

constrained forward dynamics [22] and the derivation of their

analytical derivatives [24]. Then we introduce the reference



frame of interest in which we want to express contact tasks,

as well as the spatial algebra tools used in the paper.

A. Constrained forward dynamics

A rigid contact is a pure kinematic constraint. The La-

grangian dynamics of a robot subject to rigid contacts is

derived from Gauss’ least action principle [23] stating that

constrained accelerations are the closest to free accelerations

min
aq

1

2

!!!!!aq −M(q)
−1 (τq − b(q, vq))!!!!!2

M(q)
(1a)

s.t. f(q) = 0 (1b)

where q ∈ R
nq is the vector of joint positions, f ∶ R

nq
→

R
m

is the contact constraint, aq ∈ R
nv is the vector of

constrained joint accelerations, vq ∈ R
nv is the vector of

joint velocities, M(q) ∈ S
nv

+ is the joint space inertia matrix,

b(q, vq) ∈ R
nv is the vector of centrifugal, Coriolis and

gravity forces, τq ∈ R
nv is the vector of joint torques.

Differentiating twice (1b) leads to the quadratic program

min
aq

1

2

!!!!!aq −M(q)
−1 (τq − b(q, vq))!!!!!2

M(q)
(2a)

s.t. J(q)aq + J̇c(q)vq$ %%%%%%%%%%%%%%%%%& %%%%%%%%%%%%%%%%%%'
α0(q, vq)

= α∗ (2b)

where J(.) ∶ R
nq

→ R
m×nv is the Jacobian of the contact

constraint, α(q, vq) = J(q)aq + α0(q, vq) is the contact

acceleration, α0(q, vq) ∈ R
m

is the contact acceleration

drift, and α∗ ∈ R
m

is the desired contact acceleration,

typically a numerical stabilization term. This program can

be solved efficiently using proximal methods [25]. Dropping

the dependencies in q, vq , the KKT conditions of (2) read

[M J
T

J 0
]

$%%%%%%%%%%%%%%%%%%%%%%%%%%%& %%%%%%%%%%%%%%%%%%%%%%%%%%%%'
K

[ aq
−λ

]
$%%%%%%%%%%& %%%%%%%%%% '

y

= [ τq − b

α∗ − α0

]
$%%%%%%%%%%%%%%%%%%%%%%%%%%%%&%%%%%%%%%%%%%%%%%%%%%%%%%%%% '

σ

(3)

The Lagrange multipliers λ ∈ R
m

correspond to the contact

forces. The constrained forward dynamics is the solution

map of the system (3)

FD ∶ {Rnq
× R

nv
× R

nv
→ R

nv
× R

m

(q, vq, τq) ↦ y = K
−1
σ

(4)

Given position, velocities and torques, it computes the

constrained joint acceleration and contact forces. We are

interested in computing ∂FD

∂q
, ∂FD

∂vq

, ∂FD

∂τq
in a particular ref-

erence frame introduced later on. We also define the inverse

dynamics function

ID ∶ {Rnq
× R

2nv
× R

m
→ R

nv

(q, vq, aq,λ) ↦ τq = Maq + b − J
T
λ

(5)

B. Differentiating the constrained dynamics

Let us now recall how the derivatives of FD can be

expressed in terms of the derivatives of ID and of the contact

acceleration [24]. Without loss of generality, we assume

α∗ = 0. Let z be any of the variables q, vq, τq . The derivatives

of (4) are given by the following proposition

Proposition 1:

∂FD

∂z
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−K
−1 [ ∂

∂z
ID(q, vq, aq,λ)

∂α

∂z

] if z ≡ q or vq

−K
−1 [−Inv

0
] if z ≡ τq

(6)

Proof: We simply differentiate y = FD(q, vq, τq). Let
′

denote the differentiation operator w.r.t. z.

y
′
= −K

−1
K

′
K

−1
σ +K

−1
σ
′

(7)

y
′
= −K

−1
(K

′
y − σ

′
) (8)

y
′
= −K

−1 ⎛⎝K ′ [ aq
−λ

] − [τ ′q − b
′

−α
′

0

]⎞⎠ (9)

y
′
= −K

−1 ⎛⎝[M
′

J
′T

J
′

0
] [ aq

−λ
] − [τ ′q − b

−α
′

0

]⎞⎠ (10)

y
′
= −K

−1 [M ′
aq − J

′T
λ + b

′
− τ

′

q

J
′
aq + α

′

0

] (11)

When z ≡ τq , the lower part vanishes and the upper part

is reduced to −Inv
. When τq ≡ q or vq , we recognize the

derivatives of (5) and (2b) w.r.t. q and vq .

C. Spatial algebra tools

We remind here important definitions of spatial algebra
1
.

A placement is an element X of the special Euclidean

group SE(3). Given two frames A,B, the transformation of

motions from B to A is characterized by
A
XB

A
XB ≜ [ A

RB 0

−
A
RB

A
p
×

B

A
RB

] (12)

where
A
RB ∈ SO(3),

A
pB ∈ R

3
are the rotation and

translation from frame B to frame A respectively, and
×

transforms a vector in R
3

into its associated skew-symmetric

matrix. Forces are transformed with

A
X

∗

B ≜ (AXB)−T (13)

Spatial velocities and accelerations are motions in M ≃ R
6

denoted by ν ∈ R
6

, α ∈ R
6

ν = [νω

νv
] , α = [αω

αv
] (14)

where νω,νv ∈ R
3

represent the angular and linear veloci-

ties, αω,αv ∈ R
3

are the angular and linear components of

the spatial acceleration. The spatial velocity (resp. accelera-

tion) of frame B expressed in frame A is denoted by
A
νB

(resp.
A
αB). The spatial force in F ≃ R

6
is denoted by λ

λ = [λη

λf
] (15)

1
For a more detailed treatment the reader can refer to [9], Section 2.9.





Proposition 4:

∂

∂τq
(♡ID) = 0 (30)

∂

∂vq

(♡ID) =
∂

∂vq
(LID) (31)

∂

∂q
(♡ID) =

∂

∂q
(LID) − L

J
T [Lλ×

η
L
Jω

L
λ
×

f
L
Jω

] (32)

Proof: By definition, ID in ♡ and its derivative are

given by

♡
ID(q, vq, aq,

♡
λ) = Maq + b −

♡
J
T♡

λ (33)

♡
ID

′
(q, vq, aq,

♡
λ) = M

′
aq + b

′
− (♡JT )′ ♡λ (34)

where aq,
♡
λ are considered constant during the differen-

tiation. The differential w.r.t. τq is trivially 0. For q, vq , we

observe that the only terms depending on the reference frame

are the contact wrench λ and the contact Jacobian. Using that
♡
J =

♡
XL

L
J , we have

(♡JT )′ ♡λ = (LJT♡
X

T
L )′ ♡λ (35)

=
L (JT )′ ♡XT

L

♡
λ +

L
J
T (♡XT

L )′ ♡λ (36)

The first term is computed naturally with the local derivatives

of ID. Since
♡
X

T
L in the second term doesn’t depend on vq ,

the second equality follows. For q, we observe that
♡
X

T
L =

L
X♡. Let us use Proposition 2 for the tensor-vector product

∂

∂t
(♡XT

L ) =
∂

∂t
(LX♡) (37)

=
L
(ν♡ − ν) ×

L
X♡ (38)

The spatial velocities of ♡ and L expressed in L are

L
ν♡ = [ 0

L
νv

] , L
ν = [Lνω

L
νv

] (39)

Plugging expressions (39) in (38)

∂

∂t
(♡XT

L )♡
λ = [−L

νω

0
] ×

L
X♡

♡
λ (40)

Let us notice that
L
X♡ =

L
X

∗

♡ since
L
X♡ is orthogonal.

So
L
X♡

♡
λ =

L
X

∗

♡

♡
λ =

L
λ and

∂

∂t
(♡XT

L )♡
λ = [−L

νω

0
] ×

L
λ (41)

=
L
λ × [Lνω

0
] (42)

= [Lλ×

η
L
Jω

L
λ
×

f
L
Jω

] vq (43)

Finally, the result follows from observing that vq =
∂q

∂t
.

C. Projecting onto lower dimensional constraints

The case of an m-dimensional constraint for m < 6 can be

deduced by projections from the 6D case. It can be useful,

as illustrated in our experiments, to express tasks where the

motion is constrained only in some directions. Let us define

the set I ⊂ {1, ..., 6} of m dimensions. The constrained

forward dynamics read

[ aq
−λI

] = K
−1 [ τq − b

α∗,I −α0,I
] (44)

were the subscript λI means the m-dimensional sub-vector

obtained by masking indices in λ that are not in I . Following

this notation, the constrained forward dynamics function is

FDI(q, vq, τq) ≜ PI (FD(q, vq, τq)) (45)

where PI ∶ R
nv

×R
m

→ R
nv

×R
m

represents the projection

onto dimensions i ∈ I , i.e. PI (aq,λ) ≜ (aq,λI).

IV. EXPERIMENTAL RESULTS

This section demonstrates the relevance of our method on

a polishing task with the torque-controlled humanoid Talos.

A. Experimental setup

The upper body (torso + right arm) is controlled in MPC

while the lower body is maintained in a fixed posture using

position control, so we have nq = nv = 6. The DDP

implementation is used to solve the optimal control problem

is available in Crocoddyl
3

and the rigid-body dynamics

computations are performed in Pinocchio
4
. The analytical

derivatives of the constrained forward dynamics in the ♡

frame which were derived in Section III, are implemented

in the open-source library Sobec
5
. The task is exert with the

right wrist a constant normal force on a flat rigid surface

while drawing a circle. This task is demonstrated on both

horizontal and vertical surfaces. For this task, the desired

contact force is naturally expressed in the ♡ frame, as

the local frame attached to the wrist of the robot is not

necessarily aligned with the surface normal direction.

B. MPC formulation

We use the force feedback MPC formulated in [11], which

solves the following Optimal Control Problem (OCP)

min
w(.),z(.)

∫ T

0

L(z(t), w(t),λ(t), t)dt + LT (z(T )) (46)

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ż(t),λ(t) = F (z(t), w(t))

z(0) = z0

z(t) ∈ Z, w(t) ∈ W

where z ≜ (q, vq, τq) is the state, w is the control (a.k.a com-

puted) torque, z0 is the initial state, L,LT the running and

terminal costs, Z,W represent state and control constraints.

The dynamics F gathers the constrained forward dynamics

3
https://github.com/loco-3d/crocoddyl

4
https://github.com/stack-of-tasks/pinocchio

5
https://github.com/MeMory-of-MOtion/sobec





contact force is shown Figures 2a and 2b and the end-

effector position in Figures 4a, 4b. The contact forces are

estimated from joint torques sensors, joint position encoder

measurements and joint velocities computed through finite

differences using the forward dynamics. We can see that

the robot is able to track the forces expressed in the ♡

frame. It is important to note that without the mathematical

developments presented in this paper, it would have been

impossible to specify the task directly in this frame. We

would have had to make the wrist orientation as part of

the main task, i.e. to hard-code an operational frame that

must remain oriented like the world frame at all times. This

imposes an additional constraint on the robot’s motion and

makes the task more difficult to realize. By expressing the

contact task directly in the appropriate frame, the controller

is free to trade-off wrist orientation against force tracking.

D. Extension and implementation

The model covered in this paper is only considering the

case where the contact occurs between a robot body and the

world. It is implemented for the 3 proposed frames LOCAL,

CENTERED and WORLD in Sobec
5
. It can be generalized

to the universal case where the contact occurs between two

frames C
1

and C
2

that can both be either attached to a moving

body or fixed in the world (not limiting to one contact being

fixed). We then recover the LOCAL formulation when C
1

is

attached to the robot and C
2

is fixed, and the CENTERED

formulation when C
2

is attached to the robot and C
1

is

fixed. This extension has been chosen for the implementation

of the constraint dynamics soon released in Pinocchio v3.

The extension of the model proposed here to this universal

description is handled in an extended version of this paper
6
.

V. CONCLUSION

In this paper we derived derivatives of the contact ac-

celeration and forces to perform contact tasks in MPC in

an arbitrary frame. The main outcome of this study is that

nonlinear skew terms need to be added to the rotated local

derivatives. We showed experimentally that our calculations

enable to exert forces in arbitrary directions. We hope this

paper will help MPC practitioners to design contact tasks

without having to go through these tedious calculations.

It is also worth emphasizing that the centered frame can

be in fact any frame deemed relevant for the task by the

user (only the rotation matrix needs to be changed, not the

maths). As future work we intend to include these derivatives

more systematically in our software stack and propagate their

use to locomotion and whole-body multi-contact problems.

Another interesting lead can be to optimize the computation

of the projected constraint derivatives.
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