10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

29

30

31

32

33

34

35

Article
Transfer Learning On Small Datasets for Improved
Fall Detection

Nader Maray!, Anne H.H. Ngu'*, Jianyuan Ni', Minakshi Debnath!, and Lu Wang!

1 Department of Computer Science, Texas State University, San Marcos, Texas, 78666

Academic Editor: name
Version February 1, 2023 submitted to Sensors; Typeset by IATEX using class file mdpi.cls

Abstract: Falls in the elderly are associated with significant morbidity and mortality. While
numerous fall detection devices incorporating Al and machine learning algorithms have been
developed, no known smartwatch-based system has been used successfully in real-time to
detect falls for elderly persons. We have developed and deployed a SmartFall system on a
commodity-based smartwatch which has been trialled by nine elderly participants. The system,
while being usable and welcomed by the participants in our trials, has two serious limitations.
The first limitation is the inability to collect a large amount of personalized data for training.
When the fall detection model, which is trained with insufficient data, is used in the real world,
it generates a large amount of false positives. The second limitation is the model drift problem.
This means an accurate model trained using data collected with a specific device performs sub-par
when used in another device. Therefore, building one model for each type of device/watch is not a
scalable approach for developing smartwatch-based fall detection system. To tackle those issues, we
first collected three datasets including accelerometer data for fall detection problem from different
devices: the Microsoft watch (MSBAND), the Huawei watch, and the Meta Sensor device. After
that, transfer learning strategy was applied to first explore the use of transfer learning to overcome
the small dataset training problem for fall detection. We also demonstrated the use of transfer
learning to generalize the model across the heterogeneous devices. Our preliminary experiments
demonstrate the effectiveness of transfer learning for improving fall detection, achieving an F1
score higher by over 10% on average, an AUC higher by over 0.15 on average, and a smaller false
positive prediction rate than the non-transfer learning approach across various datasets collected
using different devices with different hardware specifications.

Keywords: Fall Detection, Transfer Learning, Small Dataset

1. Introduction

Falls are one of the leading causes of death and injury among the elderly population [1].
According to the U.S. Center of Disease Control and Prevention, one in four Americans aged 65 and
older falls each year [2]. A recent CDC report also stated that around 28% of people aged over 65
lived alone [3]. In addition, the Agency for Healthcare Research and Quality reports that each year,
somewhere between 700,000 and 1,000,000 people in the United States fall in the hospital alone [4].
The resultant inactivity caused by a fall in older adults often leads to social isolation and increased
illnesses associated with inactivity including infections and deep vein thrombosis. Consequently,
a large variety of wearable devices which incorporate fall detection systems have been developed
[5-8]. Wearable devices have the promise of bringing personalized health monitoring closer to the
consumers. This phenomenon is evidenced in the articles entitled “Staying Connected is Crucial to
Staying Healthy” (WS]J, June 25, 2015) and “Digital Cures For Senior Loneliness” (WS]J, Feb 23, 2019).
The popularity of using a smartwatch, paired with a smartphone, as a viable platform for deploying

Submitted to Sensors, pages 1 —24 www.mdpi.com/journal/sensors

http://www.mdpi.com
http://www.mdpi.com/journal/sensors

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

Version February 1, 2023 submitted to Sensors 2 of 24

digital health applications is further supported by release of the Apple Series brand of smartwatches
[9] which has a built-in “hard fall” detection application as well as an ECG monitoring App. Apple
also added car crash detection in the most recently version of Apple watches. An Android-Wear based
commercial fall detection application called RightMinder [10] has been released on Google Play since
2018. One of the major sensors used in fall detection on a smartwatch is an accelerometer, which
measures the acceleration of an object. Acceleration is the change in velocity with respect to time and
velocity represents the rate at which an object changes its position. Acceleration data is commonly
used in fall detection because accelerometer sensors are found in most smart devices, and a distinct
change in acceleration happens when a fall occurs. The clustered spikes in Figure 1a show a unique
pattern in the acceleration data during one second when the fall occurs, which means that falls can
be identified in acceleration data by that pattern.

Previously, we have developed a watch-based SmartFall App using Long Short-Term Memory
neural networks (LSTM), an artificial recurrent neural network (RNN) with feedback connections,
to detect falls based on the above pattern, by training it on simulated fall data collected using a
Microsoft watch (MSBAND) [11,12]. We have deployed this SmartFall system on a commodity-based
smartwatch which has been trialled by nine sensor participants. Each participant was recruited under
IRB 7846 at Texas State University to use the SmartFall system to collect their ADLs (Activity of
Daily Living) data by just asking them to wear the watch for three hours per day over a seven day
period. The user only needs to interact with the watch and provide feedback when false positives
are generated by the system. Despite the system was welcomed by the participants in our trials, it
still have several limitations: 1) fall detection models trained on simulated falls and ADLs performed
by young, healthy test subjects suffer from the fact that they do not exhibit the same movement
characteristics as the elderly population. For example, an elderly person typically has comorbidities
that affect their movements including the effects of multiple medications, poor vision, stroke, arthritis,
sensory neuropathies and neuro-degenerative diseases such as Parkinson’s disease, all of which may
contribute to their risk of falling [13]; 2) a sudden hand or wrist movement from some ADLs can
interfere with the recognition of this pattern. For example, Figure 1b is the signal generated from a
person putting on a jacket and has some cluster spikes which can be mistaken for a fall; 3) there is no
guarantee that accelerometer data collected from different smartwatch devices is exactly of the same
quality for fall detection since they have different hardware characteristics and API libraries.

In addition, we find that a fall detection model trained with data collected using a specific
device usually does not generalize well to similar data collected using a different device because
of differences in hardware characteristics which result in the acceleration data being sensed and
recorded with varying G units, sampling rates, and X, Y and Z orientations of the accelerometer
data. For example, Huawei watch specified that data can be collected in 32 ms, but in reality, the
data is always collected in every 20 ms while MSBAND collects data in 32 ms as specified. To
tackle the aforementioned issues, we propose to use transfer learning approach to solve the small
dataset problem in smartwatch based fall detection system. More specifically, while collecting a large
amount of ADL or fall data from the elderly population is an unrealistic task (i.e., the target domain),
collecting a small amount of everyday movement data from the elderly population is possible (i.e.,
the source domain). Therefore, the obtained model in the source domain can be utilized and retained
in the target domain. This will enable us to create a real-world smartwatch-based fall detection model
usable by older adult where we only need to collect a small amount of data to train a model tailored
to each of them.

In this paper, we first demonstrate that transfer learning is an effective strategy for overcoming
the small data set problem in fall detection by using data collected from the same type of device (Meta
Sensor) on both left and right wrists. After that, we leverage the pretrained model on one device
and generalize the model via transfer learning on another device. For instance, we perform a set of
experiments that transfer a LSTM fall detection model that we published in [11] using data collected
with the source MSBAND device to a target Meta Sensor device. We show that the fall detection

86

87

88

89

920

91

92

93

94

95

96

97

98

929

100

101

102

103

104

117

118

Version February 1, 2023 submitted to Sensors 3 0f24

o

| P

o 100 200 300 400 500 600 700 800 0 100 200 300 400

(a) Acceleration from a fall. (b) Acceleration from putting on a jacket.

Figure 1. Comparison of smartwatch accelerometer data.

model created via transfer learning has a higher F1-score than the LSTM model created directly from
the limited Meta Sensor data trained from scratch. We also demonstrate that another small fall data set
collected using a Huawei smartwatch performed better when trained using transfer learning from a
pretrained MSBAND model as well. Finally, we show that fall detection can be improved by enabling
a scablable way to add new sensors to improve our fall detection system via training an ensemble of
classifiers using transfer learning. For example, adding accelerometer data sensed from a cell phone
might resolve the false positives generated from an ADL shown in Figure 1b. The main contributions
of this paper are:

¢ Collecting three datasets including accelerometer data for fall detection problem from different
devices: the MSBAND watch, the Huawei watch, and the Meta Sensor device.

¢ Conducting an in-depth study of the effectiveness of transfer learning for fall detection using a
small data set by creating effective left and right wrist fall detection models.

¢ Exploring the practicality of applying transfer learning on heterogeneous sensing devices by
transferring an existing fall detection model, trained on our MSBAND data set, to a Meta Sensor
device (in one experiment), as well as a Huawei smartwatch (in another separate experiment),
both using a small amount of device specific data.

¢ Demonstrating the improvement of fall detection using transfer learning to create an ensemble
model of both left and right wrists or any additional heterogeneous sensing device.

The remainder of this paper is organized as follows. Section 2 describes the related work. In
section 3, we discuss the architecture of the SmartFall system and the App used for running the fall
detection model created by the transfer learning. In section 4, we provide the methodology used in
establishing our hypothesis. This includes the detailed descriptions of how to collect three datasets
from three different devices, the proposed LSTM model architecture, the tuning of hyperparameters
of the LSTM model, and the transfer learning framework that was used for our experiments. In
section 5, the experimental procedures and results are described and shown. Finally, section 6
concludes the paper.

2. Related work

We firstly review the traditional healthcare area where transfer learning is intensively explored
and then we conduct an overview of transfer learning methods with a focus on time-series data.
Finally, we compare our method to the existing works which related to fall detection area, and clarify
its novelties.

2.1. Transfer Learning for General Healthcare

Despite deep learning (DL) has achieved extraordinary success in a variety of tasks recently [14-
16], one of the main drawbacks is DL usually relies on abundant labelled training examples. In many

Version February 1, 2023 submitted to Sensors 4 of 24

scenarios, collecting sufficient training data is time-consuming or even impossible. Semi-supervised
learning method can address this problem by some extent since it only requires a limited amount
of labeled data [17]. However, it fails to produce a satisfactory models when unlabeled instances
are difficult to obtain as well. Consequently, transfer learning, which emphasizes on transferring
knowledge between various domains, is a promising approach to address the aforementioned
problem. More specifically, transfer learning aims to transfer the prior knowledge from existing
domains to a new domain [18]. Currently, transfer learning can be divided into two categories due
to the discrepancy between domains: homogeneous and heterogeneous transfer learning. In general,
homogeneous transfer learning approaches try to deal with the situations where the domains have
the same feature space. In contrast, heterogeneous transfer learning methods are proposed to handle
the situations where the domains have mismatched feature spaces [19].

Due to the fact that data collection is hard to conduct in the privacy-sensitive healthcare area,
extensive studies have been proposed to adopt homogeneous transfer learning to solve the data
scarcity issue [20-24]. For instance, Magsood et al. [20] adopted and finetuned the AlexNet [25] for the
Alzheimer’s disease detection problem. Initially, the AlexNet network is pretrained over ImageNet
[26] dataset (i.e., the source domain) first. After that, the convolutional layers of AlexNet are fixed, and
the last three fully connected layers are replaced by one softmax layer, one fully connected layer, and
one output layer. The modified AlexNet is then finetuned on the the Alzheimer’s data set [27] (i.e.,
the target domain). Results indicate that the proposed transfer learning approach retains the highest
accuracy for this multiclass classification problem. Similarly, Shin et al. [21] applied the transfer
learning method and finetuned the pretrained convolutional neural networks (CNN) to solve the
computer-aided detection problems. Moreover, Donahue et al. [28] proved that AlexNet [25] could
improve the performances of various problems, including object recognition and scene recognition.

In addition to the aforementioned homogeneous transfer learning methods, heterogeneous
transfer learning methods have been explored in healthcare area as well [29-31]. For example,
Palanisam et al. demonstrated that by applying transfer learning method, model pretrained on image
data, like ImageNet [26], can recognize features on non-image data like audio [29]. Specifically,
the audio data was converted into spectrogram images first, and the knowledge from model which
pretrained on ImageNet data can transfer to the spectrogram domain for audio classification problem.
In addition, Koike et al. applied transfer learning method on the heart disease prediction from heart
sounds [30]. They compared two transfer learning scenarios which pretrained on audio and image
dataset, respectively, and highlight how models pretrained on audio can outperform the one from
image models. In summary, it can be noted that all aforementioned works are based on the pretrained
models on a large-scale source domain, such as ImageNet [26] dataset.

2.2. Transfer Learning for Time-series Data

Time-series data has received huge attentions due to its robustness again various viewpoints or
illumination conditions [32,33]. In the healthcare domain, time-series data is also one of the most
common type of data. However, transfer learning techniques for time-series data have been less
evaluated [34-39] due to the absence of a large-scale accurately labelled dataset like ImageNet [26]
and the scarcity of publicly available time-series data in the healthcare domain. For instance, Li et al.
[34] developed a novel deep transfer learning technique for time-series data to use already-existing
datasets to overcome the target domain’s data shortage problem. Initially, they have trained a deep
neural network (DNN) using a large number of time-series data collected from various application
fields so that the general properties of time-series data can be learned by this DNN model. After
that, they implemented the transfer learning process of this model to another DNN model which is
designed to solve a specific target problem. More specifically, they used a single-channel data to train
their single-channel DNN for sensor modality classification. After that, they built a multichannel
DNN [35] by fine-tuning the single-channel DNN for each channel on the target domain and thus
the final multichannel DNN can recognize the outputs from all channels on the target domain. They

188

189

190

191

192

193

Version February 1, 2023 submitted to Sensors 5 of 24

HELP IS ON THE

el
[ok |

/ g == L

1

<> Timer Up \\

N— k
True Positive

Couchbase
——"
(b) Watch’s user interface display after a fall is

(a) An overview of the SmartFall system. detected.

Yes
—

: Android Phone Labeled Data
Raw Accelerometer Data e — s |
Bl Link ol Eerwn] s |
Atebas Personalized Model ves YES N o
ot Fln You FALL?‘ /
B

Automated Training

YES
i [

Figure 2. Architecture of SmartFall system.

evaluated their approach for human activity recognition (HAR) and emotion recognition (ER), and
results confirmed that transfer learning strategy performs better than the baseline for both HAR
and ER problem. Similarly, Gikunda et al. [36] adopted transfer learning as well as active learning
to address this same problem of insufficiency of labelled time-series data. Results indicated that
using only 20% of the training data, they achieved higher accuracy with hybrid transfer active
learning than with existing techniques. More recently, Zhou et al. [38] proposed a novel dynamic
transfer learning-based time-series prediction to address the issue of small datasets in industrial
production. The proposed dynamic transfer learning framework was created using two features:
feature mapping, and network structure. Results showed that when compared to the approach
without transfer learning, the application of source domain knowledge can greatly improve target
domain prediction performance in this dynamic transfer learning method. There are very few works
that have explored transfer learning in a domain like a fall detection [39]. For example, Villar et al. [39]
proposed a supervised fall detection model using online learning and transfer learning. They found
that designing the fall detection specifically for each user rather than acquiring generalized models
can lead to higher performance.

In summary, one of the common challenges that all of these previous works have faced is the
scarcity of time series data and most of them implemented transfer learning to overcome this issue.
However, none of them demonstrated the feasibility of transfer learning for overcoming the small
data set problem in a real-world fall detection App. In addition, our study also explore the practicality
of applying transfer learning on heterogeneous sensing devices using the same type of data collected
from three different devices. This paths the way to overcome high false rates by placing more than
other accelerometer sensors in different location of the human body.

3. SmartFall System Architecture

We implemented a three-layered architecture which has the smartwatch on the edge, the
smartphone in the middle layer, and the cloud server in the inner most layer. This is one of
the most flexible architectures for IoT applications as discussed in [40] and is a practical choice
for our prototype. Microservice is a particular implementation of the service-oriented architecture
(SOA) that enables an independent, flexible, and distributed ways of deployment of services on
the internet. Applications designed with microservices contain small, modular, and independent
services which communicate via well-defined APIs. As compared to the 3-layer architecture of our
SmartFall, microservices are more agile, flexible, and resilient. However, each microservice must be
hosted in a container and connected to a cloud framework. Moreover, the portability of an edge
container is not proven yet. Currently, there are no Docker-compatible containers that can run on
an edge device like an Android phone. We have explored a microservice-based architecture called
Accessor-based Cordova host for edge devices in [41].

Version February 1, 2023 submitted to Sensors 6 of 24

Figure 2a gives an overview of the SmartFall fall detection system. The major software
components developed on a smartphone are (a) the Config module which manages the parameters,
version of the deep learning model used by a particular user, the chosen personalization training
strategy, and the chosen cloud server for data storage and re-training; (b) the Database module which
manages all the data sensed, the uploading of the collected data to the cloud, and the downloading
of the best re-trained model for a user; (c) the Data Collector module which manages the transfer of
sensed data on the smartwatch to the smartphone using different communication protocols. Our
smartwatch and smartphone currently communicate using BLE. The smartwatch and the server
communicate using HTTP. Our system is designed to leverage multiple communication protocols;
and (d) the Prediction module, which manages different machine learning models used for fall
detection. For example, the system can be configured to run an ensemble recurrent neural network
(RNN) or a single RNN model. On the cloud, additional software components for analysis, re-training
and validation of the re-trained models are implemented. Our system is designed to be flexible for
using different personalization strategies as and when they become available.

The smartwatch’s Ul is designed to start with just the “YES” and “NO” buttons so as to overcome
the constraint of small screen space (see Figure 2b). If the user answers "NO" to the question "DID
YOU FALL?", the data is labelled as a false positive and stored as "FP" in the Couchbase database in
the cloud. If the user answers “YES”, the subsequent screen will prompt "NEED HELP?". If the user
presses "YES" again, it implies that a true fall is detected and that the user needs help. The collected
data will be labeled and stored as “TP” and "HELP IS ON THE WAY" screen will be displayed. If the
user presses “NO”, it suggests that no help is needed and the collected data is still labelled as “TP”.
If the user did not press either “YES” or “NO” after a specified period of time following the question
"DID YOU FALL?", an alert message will be sent out automatically to the designated caregiver.

Our system is structured such that all user-identifying data is only stored locally on the phone to
preserve privacy. Real-time fall prediction is performed on the phone to reduce the latency of having
to send data to the cloud for prediction. The training/re-training of the prediction model is done
offline in the cloud server. The Ul interface is designed such that there is no need to interact with the
App unless the system detects that a fall has occurred, in that case, the watch will vibrate to alert the
user that a prediction has occurred and the Ul in Figure 2b will appear. The ability to interact with
the system when a false prediction is generated allows the system to collect real-world ADL data and
fine tune the fall detection model.

The ultimate goal is for the system to detect falls accurately, i.e. not missing any falls and not
generating too many false positive prompts. Collecting data and training a new model from scratch
is labour intensive, hence, we aim to have one model that can generalize well across different smart
devices. When a new device is added, by using a small amount of feedback data collected by the user
wearing the device for a short period of time, a new model can be trained with a transfer learning
strategy and uploaded to the device to use in real-time. The following sections describe the transfer
learning experiments we conducted to support our vision in this SmartFall system.

4. Methodology

4.1. Dataset Collection

We first collected three datasets which can be used in the transfer learning experiments. Those
datasets are comprised of accelerometer data collected from the Microsoft watch (MSBAND) watch,
the Huawei watch, and the Meta Sensor device. MSBAND and Huawei data were collected in units
of 1G on the left wrist only, while Meta Sensor data was collected in units of 2G on both the left and
right wrists. The sampling rate is 32 Hz for MSBAND and Huawei watches while Meta Sensor data
is collected with the sampling rate of 50 Hz. Figure 3 shows the three different devices we used for
the data collection process.

251

Version February 1, 2023 submitted to Sensors 7 of 24

MSBand 2 Meta Sensors Huawei Watch 2

Figure 3. The three different hardware used for data collection.

The MSBAND dataset was collected from 14 volunteers each wearing a MSBAND watch. These
14 subjects were all of good health and were recruited to perform a mix of simulated falls and ADLs
(Activity of Daily Living). Their ages ranged from 21-55, height ranged from 5 ft to 6.5 ft. and weight
from 100 lbs to 230 lbs. Each subject was told to wear the smartwatch on his/her left wrist and
perform a predetermined set of ADLs consisting of: walking, sitting down, picking up an object,
and waving their hands. This initial set of ADLs were chosen based on the fact there were common
activities that involved movement of the wrists. Those data were all labelled as "NotFall". We then
asked the same subjects to perform four types of falls onto a 12-inch-high mattress on the floor;
front, back, left, and right falls. Each subject repeated each type of fall 10 times. We implemented
a data collection service on an Android phone (Nexus 5X, 1.8 GHz, Hexa-core processors with 2G of
RAM) that paired with the MSBAND smartwatch to have a button that, when pressed, labels data
as “Fall” and otherwise “NotFall”. Data was thus labelled in real-time as it was collected by the
researcher holding the smartphone. This means when the user was walking towards the mattress
before falling down or getting up from each fall, those duration of data will be labelled as "NotFall".
However, the pressing of the button can introduce errors such as the button is being pressed too
late, too early, or too long for a fall activity. To mitigate these errors, we post-processed the collected
data to ensure that data points related to the critical phase of a fall were labeled as “Fall”. This
is done by implementing an R script that will automatically check that for each fall data file, the
highest peak of acceleration, and data points before and after that point, were always labeled as
“Fall”. After this post-processing of the collected data, we have a total of 528 falls and 6573 ADLs.
The MSBAND watch was decommissioned by the vendor in May 2019. This dataset is available
http:/ /www.cs.txstate.edu/~hn12/data/SmartFallDataSet.zip.

Huawei watch is compatible with Android WearOS and we designed and implemented an
Activity Labelling App on both the watch and the Android phone for data collection. This activity
labeler consists of two components: one on the phone and one on the watch. The watch paired with
the phone using Bluetooth and collects, labels, and sends accelerometer data to the phone in real time.
The phone is considered as a gateway device where labeled data can be stored temporary and then
uploaded to a remote cloud server periodically. The App records accelerometer data sensed from
the Huawei watch with a start and stop button, and a user can enter what kind of activity is being
recorded before pressing the start button so that the data comes out labeled with a specific activity
name rather just "NotFall" as compared with the MSBAND dataset. Twelve students including 7
males and 5 females were asked to perform a prescribed list of ADL activities in triplicate and each
type of fall five times. Their ages range from 21 to 35 and their weight average from 100 to 150 lbs.
Each participant performed five different type falls on an air mattress - front, back, right, left and
rotate fall. They were also asked to perform 6 different types of ADL tasks - walking, waving hand,
drinking water, wearing a jacket, sitting down and picking stuff from floor. Collected data were
preprocessed to trim the initial and ending data segment to account for the human errors in pressing
or releasing the buttons and to segment the activities and falls into individual trial for training (since
each activity is performed 3 times and each type of fall is performed 5 times). The fall data is further
processed into equal sequence of 100 data points for each fall data sample and multiple of 100 data
points for each ADL data sample. Not all data collected were usable due to missing data points in

http://www.cs.txstate.edu/~hn12/data/SmartFallDataSet.zip

316

317

318

319

Version February 1, 2023 submitted to Sensors 8 of 24

some falls and ADLs. The final dataset after preprocessing has 144 falls and 271 ADL samples, and is
available at http:/ /www.cs.txstate.edu/~hn12/data/Huawei_7030.zip.

Meta Sensor was developed by MBIENTLAB in San Francisco(mbientlab.com). It is a wearable
device that offers continuous sensing of motion and environment data. It can sense gyroscope,
accelerometer and magnetometer, and it provides easy-to-use open source APIs for fast data
acquisition. Data can be stored locally on the phone or in a cloud server provided by MBIENLAB. The
Meta Sensor we used is the MetaMotionRL. The sensor has a weight of 0.2 0z and can be recharged
via USB port. By embedding the meta sensor in an appropriate wrist band, it can serve as a wrist
watch for easy collection of ADLs and simulated fall data. The collected data can be exported into
multiple file formats. We recruited 8 participants (3 male and 5 female) with ages from 22 to 62 for
data collection. Each participant is asked to perform four types of fall (front, back, left and right), five
time each on an air mattress, and a prescribed list of ADLs as in the Huawei watch data collection
session. These are walking, waving hand, drinking water, wearing a jacket, sitting down and picking
stuff from the floor.

The Meta Sensor fall data was first programmatically labeled by a Python script that identifies a
set amount of peak magnitudes based on the amount of trials per file and a uniform width of 35 data
points (1.12 seconds) per fall. Plotting programmatically labelled Meta Sensor data in Microsoft Excel
showed that labels were often placed around peaks caused by noise rather than actual falls and did
not capture the distinct pre-fall, fall, and post-fall activity that accompanied an actual fall. To ensure
that we have a set of accurately labelled Meta Sensor data to experiment with, we decided to manually
relabel all Meta Sensor data using Excel plots as a basis for fall window placement. We choose fall
windows with a width of 100 data points in attempt to capture both pre-fall and post-fall activities. To
minimize noise, we trimmed non-fall data in between each fall. Since an ADL activity could last much
longer than a fall, we label the non-fall data in ADL files to the smallest multiple of 100 data points
per trial that could capture the entire activity being performed. The collected Meta Sensor data has
202 falls and 492 ADL samples, and is available at http://www.cs.txstate.edu/~hn12/data/Meta_
sensor_7030.zip.

4.2. Experimental Settings

Transfer learning is a research subject in machine learning that is concerned with the transfer
of knowledge obtained while training a model for a specific task, and applying that knowledge as
a base model to a different but related task [18]. For ease of understanding, we select one of our
experiments to explain how the transfer learning strategy works in this study. Intially, we use the
MSBAND dataset, which we call the source dataset, to train a model from scratch, in turn giving us
our preliminary knowledge in the shape of a model that is fully trained to solve the fall detection
problem on data sensed by the MSBAND. After that, we use that model as a base model for the Meta
Sensor dataset, which we call the target dataset, by freezing all of its precursory layers, effectively
keeping the weights that resulted from the MSBAND dataset training process as is, and re-training
only the dense layers of the model on the Meta Sensor dataset. The intuition behind it comes from
the small size of the retraining dataset, as the base model resulted from training on a bigger, more
complete dataset, making it more desirable in its complex, initial layers, while at the same time
transferring over the knowledge needed to normalize the data in the dense layers with respect to
the differences between the two datasets. The full transfer learning process is described in algorithm
1. In the algorithm, we have the source and target datasets as the input. We start off by organizing
the data into windows (data windows are explained in section 4.3) and initializing two models, one
suffixed with TFS (Training From Scratch), and the other is suffixed with TL (Transfer Learning). We
train the TL model on the full source dataset and freeze its precursory layers, and then evaluate the TL
and TFS models on the target dataset by conducting experiments described in section 5, and compare
the performance of the two models in those experiments. All our experiments are conducted on a
Dell Precision 7820 Tower, 256 GB RAM and one GeForce GTX 1080 GPU using TensorFlow.

http://www.cs.txstate.edu/~hn12/data/Huawei_7030.zip
mbientlab.com
http://www.cs.txstate.edu/~hn12/data/Meta_sensor_7030.zip
http://www.cs.txstate.edu/~hn12/data/Meta_sensor_7030.zip
http://www.cs.txstate.edu/~hn12/data/Meta_sensor_7030.zip

Version February 1, 2023 submitted to Sensors 9 of 24

Algorithm 1 Our Transfer Learning Structure

Input: Source Domain Data Source_Data, Target Domain Data Target_Data
Organize Source_Data And Target_Data Into Data Windows

Initialize Models NN_TL And NN_TFS

Train NN_TL On Source_Data Data Windows

Freeze NN_TL’s Precursory Layers

Evaluate NN_TL And NN_TFS On Target_Data Data Windows

Compare The Evaluation Results Of NN_TL And NN_TFS On Target_Data

4.3. Model Training and Parameters Tuning

As mentioned before, we used a simple LSTM neural network structure for our model, as not
only does that fit the time-series task well, but it is also a viable option for real-time classification that
operates on the edge device without having the need to communicate to the cloud. Our classifier
had many different hyperparameters, as well as different options for layer structuring, all of which
needed extensive tuning in order to find which permutation of these hyperparameters and structures
gives the best result. The main hyperparameters for our classifier are:

* Window_Size: The number of consecutive data entries that will be fed to the LSTM classifier
at once. For example, if the window size is 35 (meaning the length of a single input block is 35
time-consecutive data entries), then the classifier will be fed a tensor of the shape 35x3 (since
we have 3 coordinates for acceleration for each entry) to give a single classification for. This
snapshot of a particular window size represents one sample of time series data as shown in
Figure 1a.

e Step_Size: The difference between two consecutive data blocks (each block comprised of
Window_Size data entries). For example, say we have 37 data entries, with a Window_Size
of 35 and a Step_Size of 1, then, we would have 3 different data blocks, them being [1, 35],
[2, 36] and [3, 37], which means we have an overlap of 34 entries between each 2 consecutive
data entries. If Step_Size was 2, then we would have 2 different data blocks, them being [1,
35] and [3, 37] (the middle block would be skipped since our step is 2), with an overlap of 33
entries between each 2 consecutive entries (Window_Size - Step_Size is the general number of
overlapping entries).

* Smooth_Window: The way we have our model make a final prediction is by predicting over
the last Smooth_Window: data blocks, and then average (take the median of) the predictions
and use that average as the final fall probability. The motivation behind the smooth window
is to take into account a wider scope of predictions, better covering pre-fall and post-fall data
points. This will also ensure that we do not miss any clustered spikes related to fall and we do
not just take a single spike as a fall prediction.

¢ Fall Threshold: After having the averaged fall probability from the most recent smooth
window, if its value is greater than Fall Threshold:, then we classify the window as a fall,
otherwise we classify it as a non-fall.

As mentioned above, the hyperparameter tuning process needed an extensive amount of
experimentation, and for each hyperparameter we tried a multitude of different numbers from lower
to higher values. In this part of the sub-section, we will be describing the experimentation process
for each hyperparameter and mentioning what the optimal value is with the reasoning behind it. The
hyperparameter turning process was validated on the MSBAND and Meta Sensor datasets, for each
dataset separately, by splitting that dataset into a training set, which consisted of 70% of the data, and
a test/validation set, which consisted of 30% of the data. For each choice of hyperparameters, we
would train our classifier on the training set, and then calculate the F1 score of the trained model on
the test set. In the results tables, we show the scores of 5 different values as the other values’ results
were similar to the value closest to them in the table.

389

390

396

397

400

401

Version February 1, 2023 submitted to Sensors 10 of 24

e Window_Size: We tried a multitude of different values, and found that the optimal value is the
same as the number of data entries sensed within 1 second (the duration of a fall), meaning that
the optimal value for the MSBAND model was 32, as the MSBand is at 32 Hz, and the optimal
value for the Meta Sensor model was 50, as the Meta Sensor is at 50 Hz. This seemed to be the
sweet-spot that captures enough data for an accurate classification, any value below that gave
a worse classification accuracy, and any value beyond that did not increase the classification
accuracy by a noticeable amount.

Table 1. Window_Size tuning for MSBAND and Meta Sensor datasets respectively

Value | 15 | 20 | 32 | 40 | 50 Value | 30 | 40 | 50 | 60 | 70
F1-Score | 0.8 | 0.85 | 0.93 | 0.91 | 0.92 F1-Score | 0.75 | 0.76 | 0.81 | 0.81 | 0.8

* Step_Size: Out of all the values, a step of 1 seemed to perform the best, which indicates that
high overlap and small increments between the consecutive data blocks is important for a good
performance, as all the higher values gave worse results.

Table 2. Step_Size tuning for MSBAND and Meta Sensor datasets respectively

Value | 1 | 3| 5 | 7 | 9 Value | 1 | 3 | 5 | 7 | 9
Fl-Score | 0.93 | 0.9 | 0.87 | 0.88 | 0.86 Fl-Score | 0.81 | 077 | 079 | 0.75 | 0.73

* Smooth_Window: As explained before, we want to capture the notion of both pre-fall and
post-fall occurrence in order to help us better classify falls and have less false positives, and
exactly matching that intuition, a broader smooth window of about 2 seconds of sensed data
entries (64 for MSBand and 100 for Meta Sensor) out-performed both shorter and longer smooth
windows.

Table 3. Smooth_Window tuning for MSBAND and Meta Sensor datasets respectively

Value | 20 | 40 | 64 | 80 | 100 Value | 20 | 60 | 100 | 130 | 160
F1-Score | 0.83 | 0.89 | 0.93 | 0.86 | 0.87 F1-Score | 0.69 | 0.75 | 0.81 | 0.75 | 0.78

¢ Fall_Threshold: Different values in increments of 10% were tried, starting from 10% and ending
at 90%, and the fall threshold of 40% performed the best as it had the best balance of accurate
true-positive classification while avoiding as many false-positives as possible. This value wasn’t
picked solely through experimentation, but also by looking at the prediction probability of the
classifier over the test set, we can see that for the fall data, the classifier predicts values above
40%, and for non-fall data, it predicts values below 40%.

Table 4. Fall_Threshold tuning for MSBAND and Meta Sensor datasets respectively

Value | 0.1 | 03 | 04 | 0.7 | 09 Value | 0.1] 03 | 04 | 07 | 09
F1-Score | 0.68 | 0.85 | 0.93 | 0.81 | 0.67 F1-Score | 0.6 | 0.76 | 0.81 | 0.73 | 0.65

As we have mentioned, not only did we tune the hyperparameters of the network, we also tried
several structures for the network itself, mainly following the LSTM layer, as a part of our model
tuning. Previous work’s benchmark model is illustrated in Figure 4a.

As we can see, the model consisted of an LSTM layer, followed by a dense layer, batch
normalization and ended off with another dense layer. It worked well as is, however, through

Version February 1, 2023 submitted to Sensors 11 of 24

— — _ _
O\;l;;u()) - > — > -
A (n=2) - p \ N p \ N Output
Input (n=2)
(n=3x32/3x50) — - = =
Input
— N N (n=3x32/3x50)
LST™M Dense Batch .
Layer Layer Norm B e o e o
(n=32/50) (n=32/50) LSTM Dense Batch Dense Batch
Layer Layer Norm Layer Norm
. . (n=32/50) (n=32/50) (n=32/50)
(@) Overview of the old classifier’s
architecture. (b) Overview of an improved LSTM classifier.

Figure 4. Comparison of classifier architectures.

examining the training accuracy during the training process, the accuracy value seemed to plateau
earlier than desired, which is what led to experimenting with the network structure by adding more,
but not too many, additional dense layers, up to a point where it wouldn’t impact the classification
time, and enough to be able to overcome the training accuracy plateau as well as achieve better test
accuracy. And indeed, after thorough experimentation, a more optimal structure was achieved, one
that had more parameters (from 13,601 to 16,351 parameters), hence more potential for knowledge
gain, while maintaining relatively quick classification speed. The new structure simply had 2
additional layers, a batch normalization layer followed by a dense layer. The structure of the new
model can be seen in Figure 4b. It is worth noting a few things that are consistent between our model
and the previous work’s model:

e All layers are fully connected, using drop-out/convolution layers made the performance of the
model slightly worse, hence why we do not use any of those layers.

* The activation function of the dense layers is Relu, and the last layer uses Sigmoid which is
commonly used for binary classification.

¢ The default Keras Library’s Binary Cross-Entropy loss function as well as the default Adam
optimizer were used as the loss function and optimizer of the network, as those two worked
well in our older version of classifier.

¢ The number of neurons in the LSTM layer, as well as the output dimensions of the Dense layers
were always set to the number of data entries sensed in one second, similarly to Window_Size,
as that generally gave the best result.

5. Experiments and Results

In this section, we present our experimental results on transfer learning between the several
datasets we described above, being the MSBAND dataset, the Meta Sensor dataset, and the Huawei
dataset. We conduct two main experiments across each pair of datasets. In one of the experiments,
we have a source dataset and a target dataset. We start off by building a model from scratch on the
target’s training dataset, and then testing out that model’s performance on the target’s test dataset.
We then build a model using the source’s complete dataset, and then use that model as a base model
for the target’s training dataset, test it out on the target’s test dataset, and compare the performance
of the two results. In the second experiment, we split the target dataset such that each person’s data
is in one data fold, meaning that if we have n different people who volunteered to collect data for a
specific dataset, we would split that dataset into n different folds, and conduct a cross validation on
those folds, the first cross validation being from scratch, and the second cross validation having the
source’s model as a base model for each iteration. This form of leave one out cross validation is more

Version February 1, 2023 submitted to Sensors 12 of 24

rigorous when the dataset is small. The models’ structures throughout our experiments will all be the
exact optimal structure described in the previous section in Figure 4b, as that structure, as explained,
performed the best across all three different datasets, while each dataset’s hyperparameters will be
specific to that dataset’s smart watch’s hardware specifications, as detailed in section 4.3.

5.1. Left Wrist to Right Wrist Transfer Learning with Meta Sensor

Our first set of experiments involved purely the Meta Sensor dataset, as we wanted to test out
the effect of transfer learning when the sensing models share identical hardware specifications, but
are however applied to different wrists. We started off by building a left wrist fall detection model,
training it from scratch using the left wrist Meta Sensor dataset, using the optimal network structure
and hyperparameters choice, which resulted in a fall detection model tailored specifically for the left
wrist. Then, using that model, we conducted two different experiments in order to evaluate the effect
of transfer learning in the manner described in the beginning of section 5, which we detail more
thoroughly below.

1. Meta Sensor Experiment I: In the first of the two experiments, we split the right wrist’s dataset
into two sets, one of them being a training dataset comprised of 70% of all the data, and the
remaining 30% are the test dataset. The content of the two datasets was such that for each
of the 8 people in the full dataset, 70% of that person’s data was in the training set, and the
remaining 30% was in the test set, which means that this experiment’s main goal is to try and
evaluate how well does the model personalize to these specific 8 people after seeing a portion
of their data during the training process. After splitting the data in the described manner, we
built two different classifiers using the right wrist training data, the first of which was built
from scratch using the right wrist training dataset only. The second classifier was built using
transfer learning by having the left wrist classifier as a base model, and then training that base
model on the right wrist training dataset. Results are presented in Figure 5. We can clearly
see the effectiveness of transfer learning over building a model from scratch throughout all 3
presented metrics. If we look at the PR curve, we can see that the transfer learning model’s PR
curve is more complete and covers more area resulting in a higher AUC. We then evaluated
both classifiers’ performance on the right wrist test dataset.

If we look at the prediction probabilities plot, we can see similar true positive classifications
between the two models (keep in mind that the prediction threshold for a fall is 0.4), however,
we can also see that the transfer learning model has fewer false positive classification instances,
for example, if we look at the entries from 12k to 15k in the x axis, we can see that the non
transfer learning model predicted them falsely as falls (the real label is in blue, the predicted
value is in red, a red value higher than 0.4 means a fall prediction), while the transfer learning
model predicted them correctly as non-falls. Finally, If we look at the F1 scores, we can see
that the transfer learning model achieved an F1 score that is higher by 8% than the non transfer
learning model as shown in Table 5.

2. Meta Sensor Experiment II: In this experiment, we conducted what we call a
leave-one-person-out cross validation, which, as its name suggests, is a cross validation method
in which, for each person involved in the Meta Sensor dataset, we train the model either from
scratch, or using the transfer learning methodology, on a dataset that is comprised of all the
people but the one specific person, and then test the resulting model on the remaining person’s
data. As mentioned, we do this process for each of the 8 people involved in the full Meta Sensor
dataset. As opposed to the first experiment, when testing a model in this experiment, the model
would have not trained on any data of the person it is being tested on.

The result of training and testing using leave-one-out strategy is shown in Figure 6. The
PR Curve and Prediction plots are taken from a random iteration of the cross validation

Version February 1, 2023 submitted to Sensors 13 of 24

TL PR Curve AUC 0.84 TL Prediction Probabilities
1 F1 Score: 0.92 1

0.8

0.6

Precision

0.4

0.2

0 0.5 1

Recall 0 sk 10k 15k 20k 25k 30k

Non TL PR Curve AUC 0.71 Non TL Prediction Probabilities

1 F1 Score: 0.86 1

0.8

0.6

Precision

0.4

0.2

0 sk 10k 15k 20k 25k 30k

Figure 5. 70/30 Train/Test Data Split Experiment for Meta Sensor. Note that, TL stands for Transfer
Learning, for prediction probabilities, x axis is the time, y axis is the prediction threshold, blue data is
the real labels, red data is the prediction probabilities.

process, and are representative of the average iteration. The evaluation results of a single
iteration are based on a dataset of one person only, hence the number of data entries in the
leave-one-person-out cross evaluation results are always significantly less than the prior 70/30
Train/Test experiment, as the evaluation results in that experiment are on 30% of the entire
dataset. Again, we can clearly see the effectiveness of transfer learning over building a model
from scratch throughout all 3 presented metrics. If we look at the PR curve, we can see that the
transfer learning model’s PR curve is more complete and covers more area resulting in a higher
AUC, even though both models do not achieve the best result, however, the improvement from
using transfer learning is substantial, as it made the PR curve over half of the area, while in the
non transfer learning case, it covered less. If we look at the prediction probabilities plot, we
can see similar true positive classifications between the two models with the transfer learning
model being slightly better, and we can see that the non transfer learning model has many more
prediction peaks and much sharper spikes in the non-fall area, resulting in more false positive
predictions. Finally, If we look at the F1 Scores, we can see that the transfer learning model
achieved an averaged F1 score that is higher by almost 10% than the non transfer learning
model as shown in Table 5.

5.2. MSBAND to Meta Sensor/Huawei Transfer Learning

Our second set of experiments involved two different inter-device transfer learning experiments.
As the main thing we want to test out in our experiments is the effect of transfer learning on small
dataset problems, the source of the transfer learning process, aka the base model, is built from training
on the Microsoft band dataset, as the MSBAND dataset is the biggest and most complete dataset out

Version February 1, 2023 submitted to Sensors 14 of 24

TL PR Curve AUC 0.6 TL Prediction Probabilities
1 F1 Score: 0.73 1

0.8

0.6

Precision

0.4

B IR

Recall

] 2k 4k 6k 8k 10k 12k

Non TL PR Curve AUC 0.41 Non TL Prediction Probabilities

1 F1 Score: 0.63 1

0.8

0.6

Precision

0.4

0.2 J
o A Ao J

0 2k 4k 6k 8k 1ok 12k

Figure 6. Leave-One-Person-Out Data Split Experiment for Meta Sensor. For prediction probabilities,
x axis is the time, y axis is the prediction threshold, blue data is the real labels, red data is the prediction
probabilities. For the F1 Scores, the averaged F1 score of all the 8 iterations of the cross validation is
shown in the top right corner of the PR curve

of the three, while the Meta Sensor dataset as well as the Huawei dataset are both smaller in size and
in fall samples.

5.2.1. MSBAND to Meta Sensor

As described above, we started off by training a fall detection model from scratch, using the
optimal network structure and hyperparameters choice, on the MSBAND dataset, which resulted in
a fall detection model tailored specifically for the MSBAND device, and then, using that model, we
conducted two different experiments on the left wrist Meta Sensor dataset similarly to what we did
in section 5.1.

1. MSBAND to Meta Sensor Experiment I: In this experiment, we conduct the exact same 70/30
Train/Test split experiment as we did in the first experiment of section 5.1. The classifiers’
performance on the left wrist dataset is shown in Figure 7.

We can see the effectiveness of transfer learning over building a model from scratch throughout
all 3 presented metrics. If we look at the PR curve, we can see that the transfer learning model’s
PR curve is slightly more complete and covers more area resulting in a higher AUC. If we look
at the prediction probabilities plot, we can see that the transfer learning model has fewer false
positive classification instances, for example, if we look at the entries from 13k all the way
up to 23k in the x axis, we can see that the non transfer learning model predicted a lot of the
non-fall entries as falls, while the transfer learning model predicted them correctly as non-fall,
resulting in a much lower false positive rate. Finally, If we look at the F1 Scores, we can see that
the transfer learning model achieved an F1 score that is higher by 12% than the non transfer
learning model, breaking into the 90% range as shown in Table 5.

Version February 1, 2023 submitted to Sensors 15 of 24

TL PR Curve AUC 0.85 TL Prediction Probabilities
F1 Score: 0.93

0.8

0.6

Precision

0.4

0.2

0.5
Recall 0 sk 10k 15k 20k 25k 30k

Non TL PR Curve AUC 0.81 Non TL Prediction Probabilities
F1 Score: 0.81

0.8

0.6

Precision

0.4

0.2

A Jld ..LL L O LA

0 5k 10k 15k 20k 25k 30k

Recall

Figure 7. 70/30 Train/Test Data Split Experiment for MSBAND to Meta Sensor. For prediction
probabilities, x axis is the time, y axis is the prediction threshold, blue data is the real labels, red
data is the prediction probabilities

530 2. MSBAND to Meta Sensor Experiment II: We conduct the exact same leave-one-person-out
531 cross validation experiment as we did in the second experiment of section 5.1 with the MSBAND
532 and left Meta Sensor datasets.

533 We compare the results of the two models as shown in Figure 8. The results we obtained show
s34 an even higher gap between the transfer learning model and the non transfer learning model
535 than the experiment we reported in section 5.1. Again, we can clearly see the effectiveness of
536 transfer learning over building a model from scratch throughout all 3 presented metrics. If
537 we look at the prediction probabilities plot, we can see that the non transfer learning model
538 has many more prediction peaks and much sharper spikes in the non-fall area, resulting in
539 more false positive predictions in the non transfer learning case. The F1 Scores with the transfer
s40 learning is higher by over 14% than the non transfer learning model in this experiment as shown
sa1 in Table 5.

sa2 5.2.2. MSBAND to Huawei

543 We conducted three experiments on the Huawei dataset, the first two experiements being the
saa 70/30 Train/Test split and the leave-one-person-out experiments described in section 5.1, and the
ses third experiment is a real-time test of the transfer-learning model by one lab volunteer. The real-time
sas test involves wearing the Huawei watch running the SmartFall App describes in section 3 using a
sz model trained with and without transfer learning.

548

540 1. MSBAND to Huawei Experiment I: the results of the 70/30 Train/Test experiment are
550 presented in Figure 9. We can see the effectiveness of transfer learning over building a model
551 from scratch throughout all 3 presented metrics.

553

554

555

557

558

559

Version February 1, 2023 submitted to Sensors 16 of 24

TL PR Curve AUC 0.78 TL Prediction Probabilities
F1 Score: 0.79

Precision

ak Bk 8k 10k 12k

0 O R

0.5 1

0.2
Ll
0 2k

Recall

Non TL PR Curve AUC 0.56 Non TL Prediction Probabilities
1 F1 Score: 0.65

Precision

JllL

0 2k 4k 6k 8k 10k 12k

Recall

Figure 8. Leave-One-Person-Out Data Split Experiment for MSBAND to Meta Sensor. For prediction
probabilities, x axis is the time, y axis is the prediction threshold, blue data is the real labels, red data
is the prediction probabilities. For the F1 Scores, the averaged F1 score of all the 8 iterations of the
cross validation is shown in the top right corner of the PR curve

If we look at the prediction probabilities plot, we can see that the transfer learning model has
fewer false positive classification instances, for example, if we look at the entries from 12k to
15k on the x axis, we can see that the transfer learning model has much less false positive
predictions. The transfer learning model achieved an F1 score that is higher by 14% than the
non transfer learning model as shown in Table 5. Note that in the transfer learning case, the F1
score isn’t as high as the AUC might imply, and that is because the F1 score is a metric that is
focused on the false positive rate and not on the general accuracy, which is an important metric
for our evaluation, since false positives are a big limitation for our problem.

Version February 1, 2023 submitted to Sensors 17 of 24

TL PR Curve AUC 0.8 TL Prediction Probabilities
F1 Score: 0.82

Precision

0.5 1

Recall

0 10k 20k 30k

Non TL PR Curve AUC 0.73 Non TL Prediction Probabilities

1 F1 Score: 0.68 i
k

o 10k 20k 30

0.8

0.6

Precision

0.4

0.2

Recall

Figure 9. 70/30 Train/Test Data Split Experiment for MSBAND to Huawei. For prediction
probabilities, x axis is the time, y axis is the prediction threshold, blue data is the real labels, red
data is the prediction probabilities

2. MSBAND to Huawei Experiment II: the results of the leave-one-person-out cross validation

experiment are presented in Figure 10. If we look at the prediction probabilities plot, we can see
that the transfer learning model has fewer false positive classification instances, for example,
from 8k onwards, we can see that the transfer learning model has no false positive predictions,
while the non-transfer learning model has 2 false positives, and even though on the entries from
2k to 4k on the x axis, both classifiers have 2 false positive classifications, the transfer learning
classifier’s prediction threshold value (the red line) only starts spiking prior to the fall close
to entry 4000, in a sense capturing the pre-fall concept, while the non-transfer learning model
spikes all through the non-fall range. Finally, If we look at the F1 Scores, we can see that the
transfer learning model achieved an F1 score that is higher by 10% than the non transfer learning
model as shown in Table 5.

. MSBAND to Huawei real-time experiment: in this experiment, we present the results of

real-time predictions of the transfer learning model against the trained-from-scratch model on
a dataset collected via user feedback by a lab volunteer. The dataset contains 25 falls, and a
series of ADL tasks. The results of the experiment are presented in Figure 11. The transfer
learning model achieves a slightly better PR Curve with a slightly higher AUC. If we look at the
prediction probabilities plot, we can see that the transfer learning predictions overall are less
aggressive, which results in predicting much less false positives as seen at entries 13k onwards,
however, we can also see that the non-transfer learning model’s aggressiveness actually makes
it cover true positives (specifically in ranges 5k-7k and 9k-12k) very slightly better than the
transfer learning model, resulting in an F1 score gap of 8% in favor of the transfer learning
model as shown in Table 5.

Version February 1, 2023 submitted to Sensors 18 of 24

TL PR Curve AUC 0.81 TL Prediction Probabilities
1, F1 Score: 0.75

k5 ‘
2

o

05 o
Recall 2000 4000 6000 8000
Non TL PR Curve AUC 0.76 Non TL Prediction Probabilities

1, F1 Score: 0.64

Precision

T

2000 4000 6000 8000

Recall

Figure 10. Leave-One-Person-Out Data Split Experiment for MSBAND to Huawei. The averaged F1
score of all the 11 iterations of the cross validation is shown in the top right corner of the PR curve

TL PR Curve AUC 0.68 TL Prediction Probabilities

F1 Score: 0.75

Precision

0.5

0

Recl 0 sk 10k 15k 20k

Non TL PR Curve AUC 0.63 Non TL Prediction Probabilities

F1 Score: 0.67

Precision

0.5

Recall

o

5k 10k 15k 20k

Figure 11. Real-life test experiment. For prediction probabilities, x axis is the time, y axis is the
prediction threshold, blue data is the real labels, red data is the prediction probabilities.

582

Version February 1, 2023 submitted to Sensors 19 of 24

5.3. Combined Left and Right Wrist Transfer Learning

In our third set of experiments, we wanted to test out the effect of using both left wrist and right
wrist fall detection models at the same time (meaning that a user would be wearing a wearable device
on both wrists), as well as the effect of transfer learning has on that experiment. For our base model,
once again, we use the model created by training on the MSBAND dataset, for the same reasons
described above. The experiment we conducted in this was was only the leave-one-person-out
experiment. We did so because for the 70/30 Train/Test data split experiment, we already managed
to get a very good F1 score (as well as good performance in the other metrics) using only one of the
wrists, up to 93% in the best case as shown in Table 5.

As before, we split the data such that for each cross-validation iteration, we train 2 ensemble
classifiers, one of them being the ensemble comprised from the left and right wrist Meta Sensor
models which train from scratch on 7 people’s data, and the second model being the ensemble
comprised from the left and right wrist Meta Sensor models which train on 7 people’s data while
having the MSBAND classifier as the base model for both members of the ensemble, and then, we
evaluate both ensembles’ performance on the 8th person’s dataset. It is important to note that each
member of the ensemble for both classifiers trains only on data specific to its wrist, and that both the
training and test dataset are synchronized in time between the left and right wrist, as if a person is
wearing two Meta Sensor devices, one on each wrist, and testing the ensemble’s fall detection (data
was indeed collected by subjects who wore the Meta Sensor devices on both wrists at the same time).

We compare the results of the two ensembles as shown in Figure 12. The PR Curve and Prediction
plots are taken from a random iteration of the cross validation process, and are representative of the
average iteration. We can see the effectiveness of using an ensemble left and right wrist model over
a single wrist model, as well as seeing the effectiveness of transfer learning over building a model
from scratch throughout all 3 presented metrics. If we look at the PR curve, we can see that the
transfer learning model’s PR curve is more complete and covers more area resulting in a higher AUC
than the normal model. If we also compare both models” PR curves to the leave-one-person-out
experiments detailed in sections 5.1 and 5.2, we can see the both models perform better than either
of their single wrist counterparts, by having a more complete AUC that covers more area. If we look
at the prediction probabilities plot, we can see that the transfer learning ensemble covers more true
positives than the ensemble built from scratch (keep in mind that the prediction threshold for a fall
is 0.4) while also classifying one less false positive instance. Finally, If we look at the F1 scores, we
can see that the transfer learning model achieved an averaged F1 score that is higher by over 7% than
the non transfer learning model, and both of them achieved a higher F1 score than either of their one
wrist counterparts as shown in Table 5. All those experiments results demonstrated the effectiveness
of ensemble models using both left and right wrist wearable accelerometers, achieving the best results
out of all the models. Such improvements indicated that we can enhance the fall detection prediction
by adding more sensors in a scalable way instead of recollecting and re-training a new set of dataset
with all the existing sensors.

6. Conclusion and Future Work

We presented an approach for fall detection based only on the acceleration data coming from an
off-the-shelf wearable edge-device on the wrist of the subject. Fall detection using acceleration data
coming strictly from a wearable on the wrist is challenging for the reason that there is a lot of room
for false positives, as many activities of daily living (ADL) produce acceleration spikes similar to
those of a fall. We collected and presented 3 different types of wearable wrist accelerometers, i.e., the
MSBAND smartwatch, the Meta Sensor device, and the Huawei smartwatch. Each device has its own
hardware specifications, hence making acceleration datasets produced from these 3 devices differ in
many aspects, such as sampling frequency, acceleration unit, axis orientation, etc. Not only are the
differences in data between devices a problem, but also, fall data in general is very scarce, as it is very
time consuming to collect, leaving us with small datasets across different hardware accelerometers.

Version February 1, 2023 submitted to Sensors 20 of 24

TL PR Curve AUC 0.87 TL Prediction Probabilities

F1 Score: 0.85 1
0.8
s 08
kil
"]
£
0.4
0.5
Recall 2000 4000 6000 8000
Non TL PR Curve AUC 0.63 Non TL Prediction Probabilities
F1 Score: 0.78 1
0.8
5 0.6
i
o]
E
0.4
e 3
Recall 2000 4000 &000 8000

Figure 12. Leave-One-Person-Out Data Split Experiment for ensemble models. For prediction
probabilities, x axis is the time, y axis is the prediction threshold, blue data is the real labels, red
data is the prediction probabilities. For the F1 Scores, the averaged F1 score of all the 8 iterations of
the cross validation is shown in the top right corner of the PR curve

Table 5. Summarization results of F1 score for all experiments. Train/Test denotes the train/test
dataset spit ratio. A check mark v’ represents the transfer learning strategy is applied and a x denotes
the transfer learning is not applied.

Experiment | Transfer Learning | Dataset split strategy | F1 score (%)
v 0.92
Meta Sensor Experiment I X Train/Test: 70/30 0.86
v 0.73
Meta Sensor Experiment II X cross validation 0.63
v 0.93
MSBAND to Meta Sensor Experiment I X Train/Test: 70/30 0.81
v 0.79
MSBAND to Meta Sensor Experiment II X cross validation 0.65
v 0.82
MSBAND to Huawei Experiment I X Train/Test: 70/30 0.68
v 0.75
MSBAND to Huawei Experiment II X cross validation 0.64
v 0.75
MSBAND to Huawei real-time experiment X 100% Test 0.67
v 0.85
Combined Left and Right wrist experiment X cross validation 0.78

672

673

674

675

676

677

Version February 1, 2023 submitted to Sensors 21 of 24

In order to overcome the problems detailed above and build a model that is robust to dataset size
as well as changes in hardware specifications, we experimented with a transfer learning approach,
where we would train a base model from scratch using one device’s dataset, and then use the trained
model as a basis for training a new model on a different device’s dataset. Specifically, to solve the
target dataset’s task, we would not start training from scratch on the target dataset, but use a model
which has already been trained on a source dataset of a similar (but not identical) feature space to the
target data set, and then, by training that model on the target dataset and having its weights adapt to
the target dataset, we would have effectively transferred the source dataset’s knowledge to the target
dataset’s model. We summarized the F-1 score of all the experiments in Table 5.

Indeed, we found out through our experiments, that building a model using transfer learning
between different wearable devices produces better results than collecting a new set of data using
the device and training a model from scratch, as the former model out-performed the latter in all
of the experiments we conducted in the paper. We also experimented with building an ensemble
fall detection model using both left and right wrist wearable accelerometers, both from scratch and
through transfer learning, and found that both ensemble models out-performed their single wrist
counterparts, with the transfer learning ensemble model achieving the best results out of all the
models. This is encouraging as we can improve the fall detection by adding more senors in a scalable
way. There is no need to re-collect a new set of dataset with all the existing sensors and re-train
everything from scratch when a new sensor is added. We just need to collect a small amount of data
using the new sensor and leverage a pretrained model with transfer learning to generalize to the
newly sensed data. We can then combine the final prediction using an ensemble approach.

We have not validated our approach with a target population of different ages, heights, weights,
and health conditions. This is a limitation of our current experiment. It is our long-term goal to use
part of our funding to recruit older adults for the collection of a small amount of ADL data and use
transfer learning for the personalization of fall detection to each person.

One immediate direction for future work is the use of data augmentation method, for further
solving the small training dataset problem. Data augmentation method is a process of artificially
increasing the amount of data by generating new data points from existing data that does not
require substantial training data, including Synthetic Minority Oversampling Technique (SMOTE)
[42], Transformers [43], Auto-Encoder [44], Generative Adversarial Network (GAN) [45]. We have
started experimentation with GAN for time series data in [46]. Recently, we have also used a GAN
product from Gretel (Gretel.ai) to generate synthetic data. Much more research is needed in this area.

Our second direction is the use of the transfer learning framework for the purpose of
personalization for new edge users, as the transfer learning model personalized very well in the
70%/30% Train/Test split experiments. The personalization process can be done by having a
pretrained global model that constantly keeps getting re-trained with newly collected data, and
whenever a new user is introduced, we collect a small dataset for that user, and train a personalized
model specifically for that user through transfer learning from the global model onto the newly
collected small dataset.

Finally, we also intend to explore other models, for further improving the accuracy performance
of fall detection. Currently, there are many time-series prediction models, such as neural ODEs [47],
CT-RNN [48], Phased LSTM[49] and Transformer [50]. We have just started exploring the transformer
model.

Acknowledgement

We thank the National Science Foundation for providing funding under the NSF-SCH grant
(2123749) and the NSF Research Experiences for Undergraduates Program (2149950) to perform this
piece of work. We thank Colin Campbell for the implementation of the activity labelling App on both
watch and phone for data collection process. We thank Ian Martinez Roquebert and Allison Anson
for the initial implementation of the LSTM model and transfer learning. We want to thank Awatif

(Gretel.ai)

686

687

688

689

690

691

692

693

702

703

704

705

706

707

708

717

718

719

720

721

722

Version February 1, 2023 submitted to Sensors 22 of 24

Yasmin for conducting the real-time test of the SmartFall system. Finally, we also want to thank 2022
REU students Jessica Wang and Elizabeth Kam for manual labelling of the Meta Sensor data.

Bibliography

1. Falls are the leading cause of death in older Americans. https://www.cdc.gov/media/releases/2016/
p0922-older-adult-falls.html. Accessed: 2019-6-17.

2. Facts About Falls. https:/ /www.cdc.gov/falls/facts.html. Accessed: 2019-6-17.

3. 2017 Profile of Older Americans. https://acl.gov/sites/default/files/AgingandDisabilityinAmerica/
20170lderAmericansProfile.pdf. Accessed: 2019-9-7.

4. Preventing Falls in Hospitals. https://www.ahrq.gov/professionals/systems/hospital/fallpxtoolkit/
index.html. Accessed:2919-11-18.

5. Tacconi, C.; Mellone, S.; Chiari, L. Smartphone-based applications for investigating falls and
mobility. 2011 5th International Conference on Pervasive Computing Technologies for Healthcare
(PervasiveHealth) and Workshops, 2011, pp. 258-261.

6. Chen, L,; Li, R.;; Zhang, H.; Tian, L.; Chen, N. Intelligent fall detection method based on accelerometer
data from a wrist-worn smart watch. Measurement 2019, 140, 215 — 226.

7. Medical Life Alert Systems. http://www.lifealert.com.

8. Mobilehelp Smart. https://www.mobilehelp.com/pages/smart. Accessed: 2019-11-18.

9. Apple Watch Series 4. http:/ /www.apple.com/apple-watch-series-4/activity /. Accessed: 2019-04-18.

10. RightMinder - Fall Detection for Android Smartwatches and Android Phones. https://mhealthspot.
com/2017/03/rightminder-android-wear-app-seniors/. Accessed: 2022-12-14.

11. Mauldin, T.R.; Ngu, A.H.; Metsis, V.; Canby, M.E. Ensemble Deep Learning on Wearables Using Small
Datasets. ACM Trans. Comput. Healthcare 2021, 2.

12. Mauldin, T.R.; Canby, M.E.; Metsis, V.; Ngu, A.H.; Rivera, C.C. SmartFall: A Smartwatch-Based Fall
Detection System Using Deep Learning. Sensors 2018, 18.

13. Seraji-Bzorgzad, N.; Paulson, H.; Heidebrink,]. Neurologic examination in the elderly. Handbook of clinical
neurology 2019, 167, 73-88.

14. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L..; Polosukhin, I.
Attention is all you need. Advances in neural information processing systems 2017, 30.

15. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural
networks. Communications of the ACM 2017, 60, 84-90.

16. Bahdanau, D.; Chorowski, J.; Serdyuk, D.; Brakel, P; Bengio, Y. End-to-end attention-based large
vocabulary speech recognition. 2016 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, 2016, pp. 4945-4949.

17. Zhu, X.J. Semi-supervised learning literature survey 2005.

18. Zhuang, F; Qi, Z.; Duan, K;; Xi, D.; Zhu, Y,; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on
transfer learning. Proceedings of the IEEE 2020, 109, 43-76.

19. Weiss, K.; Khoshgoftaar, TM.; Wang, D. A survey of transfer learning. Journal of Big data 2016, 3, 1-40.

20. Magsood, M.; Nazir, F; Khan, U.; Aadil, E; Jamal, H.; Mehmood, I.; Song, O.y. Transfer learning assisted
classification and detection of Alzheimer’s disease stages using 3D MRI scans. Sensors 2019, 19, 2645.

21. Shin, H.C.; Roth, H.R,; Gao, M.; Lu, L.; Xu, Z.; Nogues, I; Yao, J.; Mollura, D.; Summers, RM. Deep
convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics
and transfer learning. IEEE transactions on medical imaging 2016, 35, 1285-1298.

22. Byra, M.; Wu, M.; Zhang, X.; Jang, H.; Ma, Y.J.; Chang, E.Y,; Shah, S.; Du, J]. Knee menisci segmentation
and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer
learning. Magnetic resonance in medicine 2020, 83, 1109-1122.

23. Tang, X.; Du, B.; Huang,].; Wang, Z.; Zhang, L. On combining active and transfer learning for medical
data classification. IET Computer Vision 2019, 13, 194-205.

24. Zeng, M.; Li, M,; Fei, Z;; Yu, Y,; Pan, Y,; Wang,]. Automatic ICD-9 coding via deep transfer learning.
Neurocomputing 2019, 324, 43-50.

25. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural

networks. Advances in neural information processing systems, 2012, pp. 1097-1105.

https://www.cdc.gov/media/releases/2016/p0922-older-adult-falls.html
https://www.cdc.gov/media/releases/2016/p0922-older-adult-falls.html
https://www.cdc.gov/media/releases/2016/p0922-older-adult-falls.html
https://www.cdc.gov/falls/facts.html
https://acl.gov/sites/default/files/Aging and Disability in America/2017OlderAmericansProfile.pdf
https://acl.gov/sites/default/files/Aging and Disability in America/2017OlderAmericansProfile.pdf
https://acl.gov/sites/default/files/Aging and Disability in America/2017OlderAmericansProfile.pdf
https://www.ahrq.gov/professionals/systems/hospital/fallpxtoolkit/index.html
https://www.ahrq.gov/professionals/systems/hospital/fallpxtoolkit/index.html
https://www.ahrq.gov/professionals/systems/hospital/fallpxtoolkit/index.html
http://www.lifealert.com
https://www.mobilehelp.com/pages/smart
http://www.apple.com/apple-watch-series-4/activity/
https://mhealthspot.com/2017/03/rightminder-android-wear-app-seniors/
https://mhealthspot.com/2017/03/rightminder-android-wear-app-seniors/
https://mhealthspot.com/2017/03/rightminder-android-wear-app-seniors/

731

732

733

742

743

744

745

746

747

757

758

759

760

761

762

763

772

773

774

775

776

777

Version February 1, 2023 submitted to Sensors 23 of 24

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K; Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. 2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009, pp. 248-255.
Marcus, D.S.; Fotenos, A.F,; Csernansky, J.G.; Morris, J.C.; Buckner, R.L. Open access series of imaging
studies: longitudinal MRI data in nondemented and demented older adults. Journal of cognitive
neuroscience 2010, 22, 2677-2684.

Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. Decaf: A deep convolutional
activation feature for generic visual recognition. International conference on machine learning. PMLR,
2014, pp. 647-655.

Palanisamy, K.; Singhania, D.; Yao, A. Rethinking CNN models for audio classification. arXiv preprint
arXiv:2007.11154 2020.

Koike, T.; Qian, K.; Kong, Q.; Plumbley, M.D.; Schuller, B.W.; Yamamoto, Y. Audio for audio is better? An
investigation on transfer learning models for heart sound classification. 2020 42nd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2020, pp. 74-77.
Gemmeke, J.E; Ellis, D.P,; Freedman, D.; Jansen, A.; Lawrence, W.; Moore, R.C.; Plakal, M.; Ritter, M.
Audio set: An ontology and human-labeled dataset for audio events. 2017 IEEE international conference
on acoustics, speech and signal processing (ICASSP). IEEE, 2017, pp. 776-780.

Ni, J.; Sarbajna, R.; Liu, Y.; Ngu, A.H.; Yan, Y. Cross-modal knowledge distillation for Vision-to-Sensor
action recognition. ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2022, pp. 4448-4452.

Ni,J.; Ngu, A.H,; Yan, Y. Progressive Cross-modal Knowledge Distillation for Human Action Recognition.
Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 5903-5912.

Li, E; Shirahama, K.; Nisar, M.A.; Huang, X.; Grzegorzek, M. Deep Transfer Learning for Time Series
Data Based on Sensor Modality Classification. Sensors 2020, 20.

Fawaz, H.I; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification:
a review. Data Mining and Knowledge Discovery 2019, 33, 917-963.

Gikunda, P; Jouandeau, N. Homogeneous Transfer Active Learning for Time Series Classification. 2021
20th IEEE International Conference on Machine Learning and Applications (ICMLA), 2021, pp. 778-784.
Morales, E].O.n.; Roggen, D. Deep Convolutional Feature Transfer across Mobile Activity Recognition
Domains, Sensor Modalities and Locations; Association for Computing Machinery: New York, NY, USA,
2016.

Zhou, X.; Zhai, N.; Li, S.; Shi, H. Time Series Prediction Method of Industrial Process with Limited Data
Based on Transfer Learning. IEEE Transactions on Industrial Informatics 2022, pp. 1-10.

Villar, J.R.; de la Cal, E.; Fanez, M.; Gonzdlez, VM.; Sedano, J. User-centered fall detection using
supervised, on-line learning and transfer learning. Progress in Artificial Intelligence 2019, 8, 453—474.

Ngu, A.H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, Q.Z. IoT Middleware: A Survey on Issues and
Enabling Technologies. IEEE Internet of Things Journal 2017, 4, 1-20.

Ngu, A.H.H,; Eyitayo,].S.; Yang, G.; Campbell, C.; Sheng, Q.Z.; Ni,]. An IoT Edge Computing Framework
Using Cordova Accessor Host. IEEE Internet of Things Journal 2022, 9, 671-683.

Chawla, N.V.; Bowyer, KW.; Hall, L.O.; Kegelmeyer, WP. SMOTE: synthetic minority over-sampling
technique. Journal of artificial intelligence research 2002, 16, 321-357.

Kumar, V.; Choudhary, A.; Cho, E. Data augmentation using pre-trained transformer models. arXiv
preprint arXiv:2003.02245 2020.

Kuroyanagi, I.; Hayashi, T.; Adachi, Y.; Yoshimura, T.; Takeda, K.; Toda, T. Anomalous sound detection
with ensemble of autoencoder and binary classification approaches. = Technical report, DCASE2021
Challenge, Tech. Rep, 2021.

Mariani, G.; Scheidegger, F.; Istrate, R.; Bekas, C.; Malossi, C. Bagan: Data augmentation with balancing
gan. arXiv preprint arXiv:1803.09655 2018.

Li, X.; Metsis, V.; Wang, H.; Ngu, A. TTS-GAN: A Transformer-Based Time-Series Generative Adversarial
Network.; Vol. 13263 LNAI, Lecture Notes in Computer Science, Springer Science and Business Media
Deutschland GmbH: Texas State University, 2022.

Kidger, P.; Morrill,].; Foster, J.; Lyons, T. Neural controlled differential equations for irregular time series.
Advances in Neural Information Processing Systems 2020, 33, 6696—6707.

783

784

785

791

792

Version February 1, 2023 submitted to Sensors 24 of 24

48. Hasani, R.; Lechner, M.; Amini, A.; Rus, D.; Grosu, R. Liquid time-constant networks. Proceedings of the
AAAI Conference on Artificial Intelligence, 2021, Vol. 35, pp. 7657-7666.

49. Liu, Y;; Gong, C.; Yang, L.; Chen, Y. DSTP-RNN: A dual-stage two-phase attention-based recurrent neural
network for long-term and multivariate time series prediction. Expert Systems with Applications 2020,
143, 113082.

50. Li, S; Jin, X,; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.X.; Yan, X. Enhancing the locality and breaking the
memory bottleneck of transformer on time series forecasting. Advances in neural information processing
systems 2019, 32.

© 2023 by the author. Submitted to Sensors for possible open access publication under the terms and conditions
of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/)

http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related work
	Transfer Learning for General Healthcare
	Transfer Learning for Time-series Data

	SmartFall System Architecture
	Methodology
	Dataset Collection
	Experimental Settings
	Model Training and Parameters Tuning

	Experiments and Results
	Left Wrist to Right Wrist Transfer Learning with Meta Sensor
	MSBAND to Meta Sensor/Huawei Transfer Learning
	MSBAND to Meta Sensor
	MSBAND to Huawei

	Combined Left and Right Wrist Transfer Learning

	Conclusion and Future Work

