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Abstract: Falls in the elderly are associated with significant morbidity and mortality. While1

numerous fall detection devices incorporating AI and machine learning algorithms have been2

developed, no known smartwatch-based system has been used successfully in real-time to3

detect falls for elderly persons. We have developed and deployed a SmartFall system on a4

commodity-based smartwatch which has been trialled by nine elderly participants. The system,5

while being usable and welcomed by the participants in our trials, has two serious limitations.6

The first limitation is the inability to collect a large amount of personalized data for training.7

When the fall detection model, which is trained with insufficient data, is used in the real world,8

it generates a large amount of false positives. The second limitation is the model drift problem.9

This means an accurate model trained using data collected with a specific device performs sub-par10

when used in another device. Therefore, building one model for each type of device/watch is not a11

scalable approach for developing smartwatch-based fall detection system. To tackle those issues, we12

first collected three datasets including accelerometer data for fall detection problem from different13

devices: the Microsoft watch (MSBAND), the Huawei watch, and the Meta Sensor device. After14

that, transfer learning strategy was applied to first explore the use of transfer learning to overcome15

the small dataset training problem for fall detection. We also demonstrated the use of transfer16

learning to generalize the model across the heterogeneous devices. Our preliminary experiments17

demonstrate the effectiveness of transfer learning for improving fall detection, achieving an F118

score higher by over 10% on average, an AUC higher by over 0.15 on average, and a smaller false19

positive prediction rate than the non-transfer learning approach across various datasets collected20

using different devices with different hardware specifications.21

Keywords: Fall Detection, Transfer Learning, Small Dataset22

1. Introduction23

Falls are one of the leading causes of death and injury among the elderly population [1].24

According to the U.S. Center of Disease Control and Prevention, one in four Americans aged 65 and25

older falls each year [2]. A recent CDC report also stated that around 28% of people aged over 6526

lived alone [3]. In addition, the Agency for Healthcare Research and Quality reports that each year,27

somewhere between 700,000 and 1,000,000 people in the United States fall in the hospital alone [4].28

The resultant inactivity caused by a fall in older adults often leads to social isolation and increased29

illnesses associated with inactivity including infections and deep vein thrombosis. Consequently,30

a large variety of wearable devices which incorporate fall detection systems have been developed31

[5–8]. Wearable devices have the promise of bringing personalized health monitoring closer to the32

consumers. This phenomenon is evidenced in the articles entitled “Staying Connected is Crucial to33

Staying Healthy” (WSJ, June 25, 2015) and “Digital Cures For Senior Loneliness” (WSJ, Feb 23, 2019).34

The popularity of using a smartwatch, paired with a smartphone, as a viable platform for deploying35
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digital health applications is further supported by release of the Apple Series brand of smartwatches36

[9] which has a built-in “hard fall” detection application as well as an ECG monitoring App. Apple37

also added car crash detection in the most recently version of Apple watches. An Android-Wear based38

commercial fall detection application called RightMinder [10] has been released on Google Play since39

2018. One of the major sensors used in fall detection on a smartwatch is an accelerometer, which40

measures the acceleration of an object. Acceleration is the change in velocity with respect to time and41

velocity represents the rate at which an object changes its position. Acceleration data is commonly42

used in fall detection because accelerometer sensors are found in most smart devices, and a distinct43

change in acceleration happens when a fall occurs. The clustered spikes in Figure 1a show a unique44

pattern in the acceleration data during one second when the fall occurs, which means that falls can45

be identified in acceleration data by that pattern.46

Previously, we have developed a watch-based SmartFall App using Long Short-Term Memory47

neural networks (LSTM), an artificial recurrent neural network (RNN) with feedback connections,48

to detect falls based on the above pattern, by training it on simulated fall data collected using a49

Microsoft watch (MSBAND) [11,12]. We have deployed this SmartFall system on a commodity-based50

smartwatch which has been trialled by nine sensor participants. Each participant was recruited under51

IRB 7846 at Texas State University to use the SmartFall system to collect their ADLs (Activity of52

Daily Living) data by just asking them to wear the watch for three hours per day over a seven day53

period. The user only needs to interact with the watch and provide feedback when false positives54

are generated by the system. Despite the system was welcomed by the participants in our trials, it55

still have several limitations: 1) fall detection models trained on simulated falls and ADLs performed56

by young, healthy test subjects suffer from the fact that they do not exhibit the same movement57

characteristics as the elderly population. For example, an elderly person typically has comorbidities58

that affect their movements including the effects of multiple medications, poor vision, stroke, arthritis,59

sensory neuropathies and neuro-degenerative diseases such as Parkinson’s disease, all of which may60

contribute to their risk of falling [13]; 2) a sudden hand or wrist movement from some ADLs can61

interfere with the recognition of this pattern. For example, Figure 1b is the signal generated from a62

person putting on a jacket and has some cluster spikes which can be mistaken for a fall; 3) there is no63

guarantee that accelerometer data collected from different smartwatch devices is exactly of the same64

quality for fall detection since they have different hardware characteristics and API libraries.65

In addition, we find that a fall detection model trained with data collected using a specific66

device usually does not generalize well to similar data collected using a different device because67

of differences in hardware characteristics which result in the acceleration data being sensed and68

recorded with varying G units, sampling rates, and X, Y and Z orientations of the accelerometer69

data. For example, Huawei watch specified that data can be collected in 32 ms, but in reality, the70

data is always collected in every 20 ms while MSBAND collects data in 32 ms as specified. To71

tackle the aforementioned issues, we propose to use transfer learning approach to solve the small72

dataset problem in smartwatch based fall detection system. More specifically, while collecting a large73

amount of ADL or fall data from the elderly population is an unrealistic task (i.e., the target domain),74

collecting a small amount of everyday movement data from the elderly population is possible (i.e.,75

the source domain). Therefore, the obtained model in the source domain can be utilized and retained76

in the target domain. This will enable us to create a real-world smartwatch-based fall detection model77

usable by older adult where we only need to collect a small amount of data to train a model tailored78

to each of them.79

In this paper, we first demonstrate that transfer learning is an effective strategy for overcoming80

the small data set problem in fall detection by using data collected from the same type of device (Meta81

Sensor) on both left and right wrists. After that, we leverage the pretrained model on one device82

and generalize the model via transfer learning on another device. For instance, we perform a set of83

experiments that transfer a LSTM fall detection model that we published in [11] using data collected84

with the source MSBAND device to a target Meta Sensor device. We show that the fall detection85
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(a) Acceleration from a fall. (b) Acceleration from putting on a jacket.

Figure 1. Comparison of smartwatch accelerometer data.

model created via transfer learning has a higher F1-score than the LSTM model created directly from86

the limited Meta Sensor data trained from scratch. We also demonstrate that another small fall data set87

collected using a Huawei smartwatch performed better when trained using transfer learning from a88

pretrained MSBAND model as well. Finally, we show that fall detection can be improved by enabling89

a scablable way to add new sensors to improve our fall detection system via training an ensemble of90

classifiers using transfer learning. For example, adding accelerometer data sensed from a cell phone91

might resolve the false positives generated from an ADL shown in Figure 1b. The main contributions92

of this paper are:93

• Collecting three datasets including accelerometer data for fall detection problem from different94

devices: the MSBAND watch, the Huawei watch, and the Meta Sensor device.95

• Conducting an in-depth study of the effectiveness of transfer learning for fall detection using a96

small data set by creating effective left and right wrist fall detection models.97

• Exploring the practicality of applying transfer learning on heterogeneous sensing devices by98

transferring an existing fall detection model, trained on our MSBAND data set, to a Meta Sensor99

device (in one experiment), as well as a Huawei smartwatch (in another separate experiment),100

both using a small amount of device specific data.101

• Demonstrating the improvement of fall detection using transfer learning to create an ensemble102

model of both left and right wrists or any additional heterogeneous sensing device.103

The remainder of this paper is organized as follows. Section 2 describes the related work. In104

section 3, we discuss the architecture of the SmartFall system and the App used for running the fall105

detection model created by the transfer learning. In section 4, we provide the methodology used in106

establishing our hypothesis. This includes the detailed descriptions of how to collect three datasets107

from three different devices, the proposed LSTM model architecture, the tuning of hyperparameters108

of the LSTM model, and the transfer learning framework that was used for our experiments. In109

section 5, the experimental procedures and results are described and shown. Finally, section 6110

concludes the paper.111

2. Related work112

We firstly review the traditional healthcare area where transfer learning is intensively explored113

and then we conduct an overview of transfer learning methods with a focus on time-series data.114

Finally, we compare our method to the existing works which related to fall detection area, and clarify115

its novelties.116

2.1. Transfer Learning for General Healthcare117

Despite deep learning (DL) has achieved extraordinary success in a variety of tasks recently [14–118

16], one of the main drawbacks is DL usually relies on abundant labelled training examples. In many119
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scenarios, collecting sufficient training data is time-consuming or even impossible. Semi-supervised120

learning method can address this problem by some extent since it only requires a limited amount121

of labeled data [17]. However, it fails to produce a satisfactory models when unlabeled instances122

are difficult to obtain as well. Consequently, transfer learning, which emphasizes on transferring123

knowledge between various domains, is a promising approach to address the aforementioned124

problem. More specifically, transfer learning aims to transfer the prior knowledge from existing125

domains to a new domain [18]. Currently, transfer learning can be divided into two categories due126

to the discrepancy between domains: homogeneous and heterogeneous transfer learning. In general,127

homogeneous transfer learning approaches try to deal with the situations where the domains have128

the same feature space. In contrast, heterogeneous transfer learning methods are proposed to handle129

the situations where the domains have mismatched feature spaces [19].130

Due to the fact that data collection is hard to conduct in the privacy-sensitive healthcare area,131

extensive studies have been proposed to adopt homogeneous transfer learning to solve the data132

scarcity issue [20–24]. For instance, Maqsood et al. [20] adopted and finetuned the AlexNet [25] for the133

Alzheimer’s disease detection problem. Initially, the AlexNet network is pretrained over ImageNet134

[26] dataset (i.e., the source domain) first. After that, the convolutional layers of AlexNet are fixed, and135

the last three fully connected layers are replaced by one softmax layer, one fully connected layer, and136

one output layer. The modified AlexNet is then finetuned on the the Alzheimer’s data set [27] (i.e.,137

the target domain). Results indicate that the proposed transfer learning approach retains the highest138

accuracy for this multiclass classification problem. Similarly, Shin et al. [21] applied the transfer139

learning method and finetuned the pretrained convolutional neural networks (CNN) to solve the140

computer-aided detection problems. Moreover, Donahue et al. [28] proved that AlexNet [25] could141

improve the performances of various problems, including object recognition and scene recognition.142

In addition to the aforementioned homogeneous transfer learning methods, heterogeneous143

transfer learning methods have been explored in healthcare area as well [29–31]. For example,144

Palanisam et al. demonstrated that by applying transfer learning method, model pretrained on image145

data, like ImageNet [26], can recognize features on non-image data like audio [29]. Specifically,146

the audio data was converted into spectrogram images first, and the knowledge from model which147

pretrained on ImageNet data can transfer to the spectrogram domain for audio classification problem.148

In addition, Koike et al. applied transfer learning method on the heart disease prediction from heart149

sounds [30]. They compared two transfer learning scenarios which pretrained on audio and image150

dataset, respectively, and highlight how models pretrained on audio can outperform the one from151

image models. In summary, it can be noted that all aforementioned works are based on the pretrained152

models on a large-scale source domain, such as ImageNet [26] dataset.153

2.2. Transfer Learning for Time-series Data154

Time-series data has received huge attentions due to its robustness again various viewpoints or155

illumination conditions [32,33]. In the healthcare domain, time-series data is also one of the most156

common type of data. However, transfer learning techniques for time-series data have been less157

evaluated [34–39] due to the absence of a large-scale accurately labelled dataset like ImageNet [26]158

and the scarcity of publicly available time-series data in the healthcare domain. For instance, Li et al.159

[34] developed a novel deep transfer learning technique for time-series data to use already-existing160

datasets to overcome the target domain’s data shortage problem. Initially, they have trained a deep161

neural network (DNN) using a large number of time-series data collected from various application162

fields so that the general properties of time-series data can be learned by this DNN model. After163

that, they implemented the transfer learning process of this model to another DNN model which is164

designed to solve a specific target problem. More specifically, they used a single-channel data to train165

their single-channel DNN for sensor modality classification. After that, they built a multichannel166

DNN [35] by fine-tuning the single-channel DNN for each channel on the target domain and thus167

the final multichannel DNN can recognize the outputs from all channels on the target domain. They168
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Figure 2. Architecture of SmartFall system.

evaluated their approach for human activity recognition (HAR) and emotion recognition (ER), and169

results confirmed that transfer learning strategy performs better than the baseline for both HAR170

and ER problem. Similarly, Gikunda et al. [36] adopted transfer learning as well as active learning171

to address this same problem of insufficiency of labelled time-series data. Results indicated that172

using only 20% of the training data, they achieved higher accuracy with hybrid transfer active173

learning than with existing techniques. More recently, Zhou et al. [38] proposed a novel dynamic174

transfer learning-based time-series prediction to address the issue of small datasets in industrial175

production. The proposed dynamic transfer learning framework was created using two features:176

feature mapping, and network structure. Results showed that when compared to the approach177

without transfer learning, the application of source domain knowledge can greatly improve target178

domain prediction performance in this dynamic transfer learning method. There are very few works179

that have explored transfer learning in a domain like a fall detection [39]. For example, Villar et al. [39]180

proposed a supervised fall detection model using online learning and transfer learning. They found181

that designing the fall detection specifically for each user rather than acquiring generalized models182

can lead to higher performance.183

In summary, one of the common challenges that all of these previous works have faced is the184

scarcity of time series data and most of them implemented transfer learning to overcome this issue.185

However, none of them demonstrated the feasibility of transfer learning for overcoming the small186

data set problem in a real-world fall detection App. In addition, our study also explore the practicality187

of applying transfer learning on heterogeneous sensing devices using the same type of data collected188

from three different devices. This paths the way to overcome high false rates by placing more than189

other accelerometer sensors in different location of the human body.190

3. SmartFall System Architecture191

We implemented a three-layered architecture which has the smartwatch on the edge, the192

smartphone in the middle layer, and the cloud server in the inner most layer. This is one of193

the most flexible architectures for IoT applications as discussed in [40] and is a practical choice194

for our prototype. Microservice is a particular implementation of the service-oriented architecture195

(SOA) that enables an independent, flexible, and distributed ways of deployment of services on196

the internet. Applications designed with microservices contain small, modular, and independent197

services which communicate via well-defined APIs. As compared to the 3-layer architecture of our198

SmartFall, microservices are more agile, flexible, and resilient. However, each microservice must be199

hosted in a container and connected to a cloud framework. Moreover, the portability of an edge200

container is not proven yet. Currently, there are no Docker-compatible containers that can run on201

an edge device like an Android phone. We have explored a microservice-based architecture called202

Accessor-based Cordova host for edge devices in [41].203
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Figure 2a gives an overview of the SmartFall fall detection system. The major software204

components developed on a smartphone are (a) the Config module which manages the parameters,205

version of the deep learning model used by a particular user, the chosen personalization training206

strategy, and the chosen cloud server for data storage and re-training; (b) the Database module which207

manages all the data sensed, the uploading of the collected data to the cloud, and the downloading208

of the best re-trained model for a user; (c) the Data Collector module which manages the transfer of209

sensed data on the smartwatch to the smartphone using different communication protocols. Our210

smartwatch and smartphone currently communicate using BLE. The smartwatch and the server211

communicate using HTTP. Our system is designed to leverage multiple communication protocols;212

and (d) the Prediction module, which manages different machine learning models used for fall213

detection. For example, the system can be configured to run an ensemble recurrent neural network214

(RNN) or a single RNN model. On the cloud, additional software components for analysis, re-training215

and validation of the re-trained models are implemented. Our system is designed to be flexible for216

using different personalization strategies as and when they become available.217

The smartwatch’s UI is designed to start with just the “YES” and “NO” buttons so as to overcome218

the constraint of small screen space (see Figure 2b). If the user answers "NO" to the question "DID219

YOU FALL?", the data is labelled as a false positive and stored as "FP" in the Couchbase database in220

the cloud. If the user answers “YES”, the subsequent screen will prompt "NEED HELP?". If the user221

presses "YES" again, it implies that a true fall is detected and that the user needs help. The collected222

data will be labeled and stored as “TP” and "HELP IS ON THE WAY" screen will be displayed. If the223

user presses “NO”, it suggests that no help is needed and the collected data is still labelled as “TP”.224

If the user did not press either “YES” or “NO” after a specified period of time following the question225

"DID YOU FALL?", an alert message will be sent out automatically to the designated caregiver.226

Our system is structured such that all user-identifying data is only stored locally on the phone to227

preserve privacy. Real-time fall prediction is performed on the phone to reduce the latency of having228

to send data to the cloud for prediction. The training/re-training of the prediction model is done229

offline in the cloud server. The UI interface is designed such that there is no need to interact with the230

App unless the system detects that a fall has occurred, in that case, the watch will vibrate to alert the231

user that a prediction has occurred and the UI in Figure 2b will appear. The ability to interact with232

the system when a false prediction is generated allows the system to collect real-world ADL data and233

fine tune the fall detection model.234

The ultimate goal is for the system to detect falls accurately, i.e. not missing any falls and not235

generating too many false positive prompts. Collecting data and training a new model from scratch236

is labour intensive, hence, we aim to have one model that can generalize well across different smart237

devices. When a new device is added, by using a small amount of feedback data collected by the user238

wearing the device for a short period of time, a new model can be trained with a transfer learning239

strategy and uploaded to the device to use in real-time. The following sections describe the transfer240

learning experiments we conducted to support our vision in this SmartFall system.241

4. Methodology242

4.1. Dataset Collection243

We first collected three datasets which can be used in the transfer learning experiments. Those244

datasets are comprised of accelerometer data collected from the Microsoft watch (MSBAND) watch,245

the Huawei watch, and the Meta Sensor device. MSBAND and Huawei data were collected in units246

of 1G on the left wrist only, while Meta Sensor data was collected in units of 2G on both the left and247

right wrists. The sampling rate is 32 Hz for MSBAND and Huawei watches while Meta Sensor data248

is collected with the sampling rate of 50 Hz. Figure 3 shows the three different devices we used for249

the data collection process.250
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Huawei Watch 2MSBand 2 Meta Sensors

Figure 3. The three different hardware used for data collection.

The MSBAND dataset was collected from 14 volunteers each wearing a MSBAND watch. These251

14 subjects were all of good health and were recruited to perform a mix of simulated falls and ADLs252

(Activity of Daily Living). Their ages ranged from 21-55, height ranged from 5 ft to 6.5 ft. and weight253

from 100 lbs to 230 lbs. Each subject was told to wear the smartwatch on his/her left wrist and254

perform a predetermined set of ADLs consisting of: walking, sitting down, picking up an object,255

and waving their hands. This initial set of ADLs were chosen based on the fact there were common256

activities that involved movement of the wrists. Those data were all labelled as "NotFall". We then257

asked the same subjects to perform four types of falls onto a 12-inch-high mattress on the floor;258

front, back, left, and right falls. Each subject repeated each type of fall 10 times. We implemented259

a data collection service on an Android phone (Nexus 5X, 1.8 GHz, Hexa-core processors with 2G of260

RAM) that paired with the MSBAND smartwatch to have a button that, when pressed, labels data261

as “Fall” and otherwise “NotFall”. Data was thus labelled in real-time as it was collected by the262

researcher holding the smartphone. This means when the user was walking towards the mattress263

before falling down or getting up from each fall, those duration of data will be labelled as ’NotFall".264

However, the pressing of the button can introduce errors such as the button is being pressed too265

late, too early, or too long for a fall activity. To mitigate these errors, we post-processed the collected266

data to ensure that data points related to the critical phase of a fall were labeled as “Fall”. This267

is done by implementing an R script that will automatically check that for each fall data file, the268

highest peak of acceleration, and data points before and after that point, were always labeled as269

“Fall”. After this post-processing of the collected data, we have a total of 528 falls and 6573 ADLs.270

The MSBAND watch was decommissioned by the vendor in May 2019. This dataset is available271

http://www.cs.txstate.edu/~hn12/data/SmartFallDataSet.zip.272

Huawei watch is compatible with Android WearOS and we designed and implemented an273

Activity Labelling App on both the watch and the Android phone for data collection. This activity274

labeler consists of two components: one on the phone and one on the watch. The watch paired with275

the phone using Bluetooth and collects, labels, and sends accelerometer data to the phone in real time.276

The phone is considered as a gateway device where labeled data can be stored temporary and then277

uploaded to a remote cloud server periodically. The App records accelerometer data sensed from278

the Huawei watch with a start and stop button, and a user can enter what kind of activity is being279

recorded before pressing the start button so that the data comes out labeled with a specific activity280

name rather just "NotFall" as compared with the MSBAND dataset. Twelve students including 7281

males and 5 females were asked to perform a prescribed list of ADL activities in triplicate and each282

type of fall five times. Their ages range from 21 to 35 and their weight average from 100 to 150 lbs.283

Each participant performed five different type falls on an air mattress - front, back, right, left and284

rotate fall. They were also asked to perform 6 different types of ADL tasks - walking, waving hand,285

drinking water, wearing a jacket, sitting down and picking stuff from floor. Collected data were286

preprocessed to trim the initial and ending data segment to account for the human errors in pressing287

or releasing the buttons and to segment the activities and falls into individual trial for training (since288

each activity is performed 3 times and each type of fall is performed 5 times). The fall data is further289

processed into equal sequence of 100 data points for each fall data sample and multiple of 100 data290

points for each ADL data sample. Not all data collected were usable due to missing data points in291

http://www.cs.txstate.edu/~hn12/data/SmartFallDataSet.zip
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some falls and ADLs. The final dataset after preprocessing has 144 falls and 271 ADL samples, and is292

available at http://www.cs.txstate.edu/~hn12/data/Huawei_7030.zip.293

Meta Sensor was developed by MBIENTLAB in San Francisco( mbientlab.com). It is a wearable294

device that offers continuous sensing of motion and environment data. It can sense gyroscope,295

accelerometer and magnetometer, and it provides easy-to-use open source APIs for fast data296

acquisition. Data can be stored locally on the phone or in a cloud server provided by MBIENLAB. The297

Meta Sensor we used is the MetaMotionRL. The sensor has a weight of 0.2 oz and can be recharged298

via USB port. By embedding the meta sensor in an appropriate wrist band, it can serve as a wrist299

watch for easy collection of ADLs and simulated fall data. The collected data can be exported into300

multiple file formats. We recruited 8 participants (3 male and 5 female) with ages from 22 to 62 for301

data collection. Each participant is asked to perform four types of fall (front, back, left and right), five302

time each on an air mattress, and a prescribed list of ADLs as in the Huawei watch data collection303

session. These are walking, waving hand, drinking water, wearing a jacket, sitting down and picking304

stuff from the floor.305

The Meta Sensor fall data was first programmatically labeled by a Python script that identifies a306

set amount of peak magnitudes based on the amount of trials per file and a uniform width of 35 data307

points (1.12 seconds) per fall. Plotting programmatically labelled Meta Sensor data in Microsoft Excel308

showed that labels were often placed around peaks caused by noise rather than actual falls and did309

not capture the distinct pre-fall, fall, and post-fall activity that accompanied an actual fall. To ensure310

that we have a set of accurately labelled Meta Sensor data to experiment with, we decided to manually311

relabel all Meta Sensor data using Excel plots as a basis for fall window placement. We choose fall312

windows with a width of 100 data points in attempt to capture both pre-fall and post-fall activities. To313

minimize noise, we trimmed non-fall data in between each fall. Since an ADL activity could last much314

longer than a fall, we label the non-fall data in ADL files to the smallest multiple of 100 data points315

per trial that could capture the entire activity being performed. The collected Meta Sensor data has316

202 falls and 492 ADL samples, and is available at http://www.cs.txstate.edu/~hn12/data/Meta_317

sensor_7030.zip.318

4.2. Experimental Settings319

Transfer learning is a research subject in machine learning that is concerned with the transfer320

of knowledge obtained while training a model for a specific task, and applying that knowledge as321

a base model to a different but related task [18]. For ease of understanding, we select one of our322

experiments to explain how the transfer learning strategy works in this study. Intially, we use the323

MSBAND dataset, which we call the source dataset, to train a model from scratch, in turn giving us324

our preliminary knowledge in the shape of a model that is fully trained to solve the fall detection325

problem on data sensed by the MSBAND. After that, we use that model as a base model for the Meta326

Sensor dataset, which we call the target dataset, by freezing all of its precursory layers, effectively327

keeping the weights that resulted from the MSBAND dataset training process as is, and re-training328

only the dense layers of the model on the Meta Sensor dataset. The intuition behind it comes from329

the small size of the retraining dataset, as the base model resulted from training on a bigger, more330

complete dataset, making it more desirable in its complex, initial layers, while at the same time331

transferring over the knowledge needed to normalize the data in the dense layers with respect to332

the differences between the two datasets. The full transfer learning process is described in algorithm333

1. In the algorithm, we have the source and target datasets as the input. We start off by organizing334

the data into windows (data windows are explained in section 4.3) and initializing two models, one335

suffixed with TFS (Training From Scratch), and the other is suffixed with TL (Transfer Learning). We336

train the TL model on the full source dataset and freeze its precursory layers, and then evaluate the TL337

and TFS models on the target dataset by conducting experiments described in section 5, and compare338

the performance of the two models in those experiments. All our experiments are conducted on a339

Dell Precision 7820 Tower, 256 GB RAM and one GeForce GTX 1080 GPU using TensorFlow.340

http://www.cs.txstate.edu/~hn12/data/Huawei_7030.zip
mbientlab.com
http://www.cs.txstate.edu/~hn12/data/Meta_sensor_7030.zip
http://www.cs.txstate.edu/~hn12/data/Meta_sensor_7030.zip
http://www.cs.txstate.edu/~hn12/data/Meta_sensor_7030.zip
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Algorithm 1 Our Transfer Learning Structure

Input: Source Domain Data Source_Data, Target Domain Data Target_Data
Organize Source_Data And Target_Data Into Data Windows
Initialize Models NN_TL And NN_TFS
Train NN_TL On Source_Data Data Windows
Freeze NN_TL’s Precursory Layers
Evaluate NN_TL And NN_TFS On Target_Data Data Windows
Compare The Evaluation Results Of NN_TL And NN_TFS On Target_Data

4.3. Model Training and Parameters Tuning341

As mentioned before, we used a simple LSTM neural network structure for our model, as not342

only does that fit the time-series task well, but it is also a viable option for real-time classification that343

operates on the edge device without having the need to communicate to the cloud. Our classifier344

had many different hyperparameters, as well as different options for layer structuring, all of which345

needed extensive tuning in order to find which permutation of these hyperparameters and structures346

gives the best result. The main hyperparameters for our classifier are:347

• Window_Size: The number of consecutive data entries that will be fed to the LSTM classifier348

at once. For example, if the window size is 35 (meaning the length of a single input block is 35349

time-consecutive data entries), then the classifier will be fed a tensor of the shape 35x3 (since350

we have 3 coordinates for acceleration for each entry) to give a single classification for. This351

snapshot of a particular window size represents one sample of time series data as shown in352

Figure 1a.353

• Step_Size: The difference between two consecutive data blocks (each block comprised of354

Window_Size data entries). For example, say we have 37 data entries, with a Window_Size355

of 35 and a Step_Size of 1, then, we would have 3 different data blocks, them being [1, 35],356

[2, 36] and [3, 37], which means we have an overlap of 34 entries between each 2 consecutive357

data entries. If Step_Size was 2, then we would have 2 different data blocks, them being [1,358

35] and [3, 37] (the middle block would be skipped since our step is 2), with an overlap of 33359

entries between each 2 consecutive entries (Window_Size - Step_Size is the general number of360

overlapping entries).361

• Smooth_Window: The way we have our model make a final prediction is by predicting over362

the last Smooth_Window: data blocks, and then average (take the median of) the predictions363

and use that average as the final fall probability. The motivation behind the smooth window364

is to take into account a wider scope of predictions, better covering pre-fall and post-fall data365

points. This will also ensure that we do not miss any clustered spikes related to fall and we do366

not just take a single spike as a fall prediction.367

• Fall Threshold: After having the averaged fall probability from the most recent smooth368

window, if its value is greater than Fall Threshold:, then we classify the window as a fall,369

otherwise we classify it as a non-fall.370

As mentioned above, the hyperparameter tuning process needed an extensive amount of371

experimentation, and for each hyperparameter we tried a multitude of different numbers from lower372

to higher values. In this part of the sub-section, we will be describing the experimentation process373

for each hyperparameter and mentioning what the optimal value is with the reasoning behind it. The374

hyperparameter turning process was validated on the MSBAND and Meta Sensor datasets, for each375

dataset separately, by splitting that dataset into a training set, which consisted of 70% of the data, and376

a test/validation set, which consisted of 30% of the data. For each choice of hyperparameters, we377

would train our classifier on the training set, and then calculate the F1 score of the trained model on378

the test set. In the results tables, we show the scores of 5 different values as the other values’ results379

were similar to the value closest to them in the table.380
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• Window_Size: We tried a multitude of different values, and found that the optimal value is the381

same as the number of data entries sensed within 1 second (the duration of a fall), meaning that382

the optimal value for the MSBAND model was 32, as the MSBand is at 32 Hz, and the optimal383

value for the Meta Sensor model was 50, as the Meta Sensor is at 50 Hz. This seemed to be the384

sweet-spot that captures enough data for an accurate classification, any value below that gave385

a worse classification accuracy, and any value beyond that did not increase the classification386

accuracy by a noticeable amount.387

Table 1. Window_Size tuning for MSBAND and Meta Sensor datasets respectively

Value 15 20 32 40 50

F1-Score 0.8 0.85 0.93 0.91 0.92

Value 30 40 50 60 70

F1-Score 0.75 0.76 0.81 0.81 0.8

• Step_Size: Out of all the values, a step of 1 seemed to perform the best, which indicates that388

high overlap and small increments between the consecutive data blocks is important for a good389

performance, as all the higher values gave worse results.390

Table 2. Step_Size tuning for MSBAND and Meta Sensor datasets respectively

Value 1 3 5 7 9

F1-Score 0.93 0.9 0.87 0.88 0.86

Value 1 3 5 7 9

F1-Score 0.81 0.77 0.79 0.75 0.73

• Smooth_Window: As explained before, we want to capture the notion of both pre-fall and391

post-fall occurrence in order to help us better classify falls and have less false positives, and392

exactly matching that intuition, a broader smooth window of about 2 seconds of sensed data393

entries (64 for MSBand and 100 for Meta Sensor) out-performed both shorter and longer smooth394

windows.395

Table 3. Smooth_Window tuning for MSBAND and Meta Sensor datasets respectively

Value 20 40 64 80 100

F1-Score 0.83 0.89 0.93 0.86 0.87

Value 20 60 100 130 160

F1-Score 0.69 0.75 0.81 0.75 0.78

• Fall_Threshold: Different values in increments of 10% were tried, starting from 10% and ending396

at 90%, and the fall threshold of 40% performed the best as it had the best balance of accurate397

true-positive classification while avoiding as many false-positives as possible. This value wasn’t398

picked solely through experimentation, but also by looking at the prediction probability of the399

classifier over the test set, we can see that for the fall data, the classifier predicts values above400

40%, and for non-fall data, it predicts values below 40%.401

Table 4. Fall_Threshold tuning for MSBAND and Meta Sensor datasets respectively

Value 0.1 0.3 0.4 0.7 0.9

F1-Score 0.68 0.85 0.93 0.81 0.67

Value 0.1 0.3 0.4 0.7 0.9

F1-Score 0.6 0.76 0.81 0.73 0.65

As we have mentioned, not only did we tune the hyperparameters of the network, we also tried402

several structures for the network itself, mainly following the LSTM layer, as a part of our model403

tuning. Previous work’s benchmark model is illustrated in Figure 4a.404

As we can see, the model consisted of an LSTM layer, followed by a dense layer, batch405

normalization and ended off with another dense layer. It worked well as is, however, through406
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(a) Overview of the old classifier’s
architecture. (b) Overview of an improved LSTM classifier.

Figure 4. Comparison of classifier architectures.

examining the training accuracy during the training process, the accuracy value seemed to plateau407

earlier than desired, which is what led to experimenting with the network structure by adding more,408

but not too many, additional dense layers, up to a point where it wouldn’t impact the classification409

time, and enough to be able to overcome the training accuracy plateau as well as achieve better test410

accuracy. And indeed, after thorough experimentation, a more optimal structure was achieved, one411

that had more parameters (from 13,601 to 16,351 parameters), hence more potential for knowledge412

gain, while maintaining relatively quick classification speed. The new structure simply had 2413

additional layers, a batch normalization layer followed by a dense layer. The structure of the new414

model can be seen in Figure 4b. It is worth noting a few things that are consistent between our model415

and the previous work’s model:416

• All layers are fully connected, using drop-out/convolution layers made the performance of the417

model slightly worse, hence why we do not use any of those layers.418

• The activation function of the dense layers is Relu, and the last layer uses Sigmoid which is419

commonly used for binary classification.420

• The default Keras Library’s Binary Cross-Entropy loss function as well as the default Adam421

optimizer were used as the loss function and optimizer of the network, as those two worked422

well in our older version of classifier.423

• The number of neurons in the LSTM layer, as well as the output dimensions of the Dense layers424

were always set to the number of data entries sensed in one second, similarly to Window_Size,425

as that generally gave the best result.426

5. Experiments and Results427

In this section, we present our experimental results on transfer learning between the several428

datasets we described above, being the MSBAND dataset, the Meta Sensor dataset, and the Huawei429

dataset. We conduct two main experiments across each pair of datasets. In one of the experiments,430

we have a source dataset and a target dataset. We start off by building a model from scratch on the431

target’s training dataset, and then testing out that model’s performance on the target’s test dataset.432

We then build a model using the source’s complete dataset, and then use that model as a base model433

for the target’s training dataset, test it out on the target’s test dataset, and compare the performance434

of the two results. In the second experiment, we split the target dataset such that each person’s data435

is in one data fold, meaning that if we have n different people who volunteered to collect data for a436

specific dataset, we would split that dataset into n different folds, and conduct a cross validation on437

those folds, the first cross validation being from scratch, and the second cross validation having the438

source’s model as a base model for each iteration. This form of leave one out cross validation is more439
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rigorous when the dataset is small. The models’ structures throughout our experiments will all be the440

exact optimal structure described in the previous section in Figure 4b, as that structure, as explained,441

performed the best across all three different datasets, while each dataset’s hyperparameters will be442

specific to that dataset’s smart watch’s hardware specifications, as detailed in section 4.3.443

5.1. Left Wrist to Right Wrist Transfer Learning with Meta Sensor444

Our first set of experiments involved purely the Meta Sensor dataset, as we wanted to test out445

the effect of transfer learning when the sensing models share identical hardware specifications, but446

are however applied to different wrists. We started off by building a left wrist fall detection model,447

training it from scratch using the left wrist Meta Sensor dataset, using the optimal network structure448

and hyperparameters choice, which resulted in a fall detection model tailored specifically for the left449

wrist. Then, using that model, we conducted two different experiments in order to evaluate the effect450

of transfer learning in the manner described in the beginning of section 5, which we detail more451

thoroughly below.452

1. Meta Sensor Experiment I: In the first of the two experiments, we split the right wrist’s dataset453

into two sets, one of them being a training dataset comprised of 70% of all the data, and the454

remaining 30% are the test dataset. The content of the two datasets was such that for each455

of the 8 people in the full dataset, 70% of that person’s data was in the training set, and the456

remaining 30% was in the test set, which means that this experiment’s main goal is to try and457

evaluate how well does the model personalize to these specific 8 people after seeing a portion458

of their data during the training process. After splitting the data in the described manner, we459

built two different classifiers using the right wrist training data, the first of which was built460

from scratch using the right wrist training dataset only. The second classifier was built using461

transfer learning by having the left wrist classifier as a base model, and then training that base462

model on the right wrist training dataset. Results are presented in Figure 5. We can clearly463

see the effectiveness of transfer learning over building a model from scratch throughout all 3464

presented metrics. If we look at the PR curve, we can see that the transfer learning model’s PR465

curve is more complete and covers more area resulting in a higher AUC. We then evaluated466

both classifiers’ performance on the right wrist test dataset.467

468

If we look at the prediction probabilities plot, we can see similar true positive classifications469

between the two models (keep in mind that the prediction threshold for a fall is 0.4), however,470

we can also see that the transfer learning model has fewer false positive classification instances,471

for example, if we look at the entries from 12k to 15k in the x axis, we can see that the non472

transfer learning model predicted them falsely as falls (the real label is in blue, the predicted473

value is in red, a red value higher than 0.4 means a fall prediction), while the transfer learning474

model predicted them correctly as non-falls. Finally, If we look at the F1 scores, we can see475

that the transfer learning model achieved an F1 score that is higher by 8% than the non transfer476

learning model as shown in Table 5.477

2. Meta Sensor Experiment II: In this experiment, we conducted what we call a478

leave-one-person-out cross validation, which, as its name suggests, is a cross validation method479

in which, for each person involved in the Meta Sensor dataset, we train the model either from480

scratch, or using the transfer learning methodology, on a dataset that is comprised of all the481

people but the one specific person, and then test the resulting model on the remaining person’s482

data. As mentioned, we do this process for each of the 8 people involved in the full Meta Sensor483

dataset. As opposed to the first experiment, when testing a model in this experiment, the model484

would have not trained on any data of the person it is being tested on.485

The result of training and testing using leave-one-out strategy is shown in Figure 6. The486

PR Curve and Prediction plots are taken from a random iteration of the cross validation487



Version February 1, 2023 submitted to Sensors 13 of 24

TL PR Curve AUC 0.84 TL Prediction Probabilities

Non TL PR Curve AUC 0.71 Non TL Prediction Probabilities

Figure 5. 70/30 Train/Test Data Split Experiment for Meta Sensor. Note that, TL stands for Transfer
Learning, for prediction probabilities, x axis is the time, y axis is the prediction threshold, blue data is
the real labels, red data is the prediction probabilities.

process, and are representative of the average iteration. The evaluation results of a single488

iteration are based on a dataset of one person only, hence the number of data entries in the489

leave-one-person-out cross evaluation results are always significantly less than the prior 70/30490

Train/Test experiment, as the evaluation results in that experiment are on 30% of the entire491

dataset. Again, we can clearly see the effectiveness of transfer learning over building a model492

from scratch throughout all 3 presented metrics. If we look at the PR curve, we can see that the493

transfer learning model’s PR curve is more complete and covers more area resulting in a higher494

AUC, even though both models do not achieve the best result, however, the improvement from495

using transfer learning is substantial, as it made the PR curve over half of the area, while in the496

non transfer learning case, it covered less. If we look at the prediction probabilities plot, we497

can see similar true positive classifications between the two models with the transfer learning498

model being slightly better, and we can see that the non transfer learning model has many more499

prediction peaks and much sharper spikes in the non-fall area, resulting in more false positive500

predictions. Finally, If we look at the F1 Scores, we can see that the transfer learning model501

achieved an averaged F1 score that is higher by almost 10% than the non transfer learning502

model as shown in Table 5.503

5.2. MSBAND to Meta Sensor/Huawei Transfer Learning504

Our second set of experiments involved two different inter-device transfer learning experiments.505

As the main thing we want to test out in our experiments is the effect of transfer learning on small506

dataset problems, the source of the transfer learning process, aka the base model, is built from training507

on the Microsoft band dataset, as the MSBAND dataset is the biggest and most complete dataset out508
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TL PR Curve AUC 0.6 TL Prediction Probabilities

Non TL PR Curve AUC 0.41 Non TL Prediction Probabilities

Figure 6. Leave-One-Person-Out Data Split Experiment for Meta Sensor. For prediction probabilities,
x axis is the time, y axis is the prediction threshold, blue data is the real labels, red data is the prediction
probabilities. For the F1 Scores, the averaged F1 score of all the 8 iterations of the cross validation is
shown in the top right corner of the PR curve

of the three, while the Meta Sensor dataset as well as the Huawei dataset are both smaller in size and509

in fall samples.510

5.2.1. MSBAND to Meta Sensor511

As described above, we started off by training a fall detection model from scratch, using the512

optimal network structure and hyperparameters choice, on the MSBAND dataset, which resulted in513

a fall detection model tailored specifically for the MSBAND device, and then, using that model, we514

conducted two different experiments on the left wrist Meta Sensor dataset similarly to what we did515

in section 5.1.516

1. MSBAND to Meta Sensor Experiment I: In this experiment, we conduct the exact same 70/30517

Train/Test split experiment as we did in the first experiment of section 5.1. The classifiers’518

performance on the left wrist dataset is shown in Figure 7.519

We can see the effectiveness of transfer learning over building a model from scratch throughout520

all 3 presented metrics. If we look at the PR curve, we can see that the transfer learning model’s521

PR curve is slightly more complete and covers more area resulting in a higher AUC. If we look522

at the prediction probabilities plot, we can see that the transfer learning model has fewer false523

positive classification instances, for example, if we look at the entries from 13k all the way524

up to 23k in the x axis, we can see that the non transfer learning model predicted a lot of the525

non-fall entries as falls, while the transfer learning model predicted them correctly as non-fall,526

resulting in a much lower false positive rate. Finally, If we look at the F1 Scores, we can see that527

the transfer learning model achieved an F1 score that is higher by 12% than the non transfer528

learning model, breaking into the 90% range as shown in Table 5.529
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TL PR Curve AUC 0.85 TL Prediction Probabilities

Non TL PR Curve AUC 0.81 Non TL Prediction Probabilities

Figure 7. 70/30 Train/Test Data Split Experiment for MSBAND to Meta Sensor. For prediction
probabilities, x axis is the time, y axis is the prediction threshold, blue data is the real labels, red
data is the prediction probabilities

2. MSBAND to Meta Sensor Experiment II: We conduct the exact same leave-one-person-out530

cross validation experiment as we did in the second experiment of section 5.1 with the MSBAND531

and left Meta Sensor datasets.532

We compare the results of the two models as shown in Figure 8. The results we obtained show533

an even higher gap between the transfer learning model and the non transfer learning model534

than the experiment we reported in section 5.1. Again, we can clearly see the effectiveness of535

transfer learning over building a model from scratch throughout all 3 presented metrics. If536

we look at the prediction probabilities plot, we can see that the non transfer learning model537

has many more prediction peaks and much sharper spikes in the non-fall area, resulting in538

more false positive predictions in the non transfer learning case. The F1 Scores with the transfer539

learning is higher by over 14% than the non transfer learning model in this experiment as shown540

in Table 5.541

5.2.2. MSBAND to Huawei542

We conducted three experiments on the Huawei dataset, the first two experiements being the543

70/30 Train/Test split and the leave-one-person-out experiments described in section 5.1, and the544

third experiment is a real-time test of the transfer-learning model by one lab volunteer. The real-time545

test involves wearing the Huawei watch running the SmartFall App describes in section 3 using a546

model trained with and without transfer learning.547

548

1. MSBAND to Huawei Experiment I: the results of the 70/30 Train/Test experiment are549

presented in Figure 9. We can see the effectiveness of transfer learning over building a model550

from scratch throughout all 3 presented metrics.551
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TL PR Curve AUC 0.78 TL Prediction Probabilities

Non TL PR Curve AUC 0.56 Non TL Prediction Probabilities

Figure 8. Leave-One-Person-Out Data Split Experiment for MSBAND to Meta Sensor. For prediction
probabilities, x axis is the time, y axis is the prediction threshold, blue data is the real labels, red data
is the prediction probabilities. For the F1 Scores, the averaged F1 score of all the 8 iterations of the
cross validation is shown in the top right corner of the PR curve

If we look at the prediction probabilities plot, we can see that the transfer learning model has552

fewer false positive classification instances, for example, if we look at the entries from 12k to553

15k on the x axis, we can see that the transfer learning model has much less false positive554

predictions. The transfer learning model achieved an F1 score that is higher by 14% than the555

non transfer learning model as shown in Table 5. Note that in the transfer learning case, the F1556

score isn’t as high as the AUC might imply, and that is because the F1 score is a metric that is557

focused on the false positive rate and not on the general accuracy, which is an important metric558

for our evaluation, since false positives are a big limitation for our problem.559
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TL PR Curve AUC 0.8 TL Prediction Probabilities

Non TL PR Curve AUC 0.73 Non TL Prediction Probabilities

Figure 9. 70/30 Train/Test Data Split Experiment for MSBAND to Huawei. For prediction
probabilities, x axis is the time, y axis is the prediction threshold, blue data is the real labels, red
data is the prediction probabilities

2. MSBAND to Huawei Experiment II: the results of the leave-one-person-out cross validation560

experiment are presented in Figure 10. If we look at the prediction probabilities plot, we can see561

that the transfer learning model has fewer false positive classification instances, for example,562

from 8k onwards, we can see that the transfer learning model has no false positive predictions,563

while the non-transfer learning model has 2 false positives, and even though on the entries from564

2k to 4k on the x axis, both classifiers have 2 false positive classifications, the transfer learning565

classifier’s prediction threshold value (the red line) only starts spiking prior to the fall close566

to entry 4000, in a sense capturing the pre-fall concept, while the non-transfer learning model567

spikes all through the non-fall range. Finally, If we look at the F1 Scores, we can see that the568

transfer learning model achieved an F1 score that is higher by 10% than the non transfer learning569

model as shown in Table 5.570

3. MSBAND to Huawei real-time experiment: in this experiment, we present the results of571

real-time predictions of the transfer learning model against the trained-from-scratch model on572

a dataset collected via user feedback by a lab volunteer. The dataset contains 25 falls, and a573

series of ADL tasks. The results of the experiment are presented in Figure 11. The transfer574

learning model achieves a slightly better PR Curve with a slightly higher AUC. If we look at the575

prediction probabilities plot, we can see that the transfer learning predictions overall are less576

aggressive, which results in predicting much less false positives as seen at entries 13k onwards,577

however, we can also see that the non-transfer learning model’s aggressiveness actually makes578

it cover true positives (specifically in ranges 5k-7k and 9k-12k) very slightly better than the579

transfer learning model, resulting in an F1 score gap of 8% in favor of the transfer learning580

model as shown in Table 5.581
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TL PR Curve AUC 0.81 TL Prediction Probabilities

Non TL PR Curve AUC 0.76 Non TL Prediction Probabilities

.

Figure 10. Leave-One-Person-Out Data Split Experiment for MSBAND to Huawei. The averaged F1
score of all the 11 iterations of the cross validation is shown in the top right corner of the PR curve

TL PR Curve AUC 0.68 TL Prediction Probabilities

Non TL PR Curve AUC 0.63 Non TL Prediction Probabilities

Figure 11. Real-life test experiment. For prediction probabilities, x axis is the time, y axis is the
prediction threshold, blue data is the real labels, red data is the prediction probabilities.
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5.3. Combined Left and Right Wrist Transfer Learning582

In our third set of experiments, we wanted to test out the effect of using both left wrist and right583

wrist fall detection models at the same time (meaning that a user would be wearing a wearable device584

on both wrists), as well as the effect of transfer learning has on that experiment. For our base model,585

once again, we use the model created by training on the MSBAND dataset, for the same reasons586

described above. The experiment we conducted in this was was only the leave-one-person-out587

experiment. We did so because for the 70/30 Train/Test data split experiment, we already managed588

to get a very good F1 score (as well as good performance in the other metrics) using only one of the589

wrists, up to 93% in the best case as shown in Table 5.590

As before, we split the data such that for each cross-validation iteration, we train 2 ensemble591

classifiers, one of them being the ensemble comprised from the left and right wrist Meta Sensor592

models which train from scratch on 7 people’s data, and the second model being the ensemble593

comprised from the left and right wrist Meta Sensor models which train on 7 people’s data while594

having the MSBAND classifier as the base model for both members of the ensemble, and then, we595

evaluate both ensembles’ performance on the 8th person’s dataset. It is important to note that each596

member of the ensemble for both classifiers trains only on data specific to its wrist, and that both the597

training and test dataset are synchronized in time between the left and right wrist, as if a person is598

wearing two Meta Sensor devices, one on each wrist, and testing the ensemble’s fall detection (data599

was indeed collected by subjects who wore the Meta Sensor devices on both wrists at the same time).600

We compare the results of the two ensembles as shown in Figure 12. The PR Curve and Prediction601

plots are taken from a random iteration of the cross validation process, and are representative of the602

average iteration. We can see the effectiveness of using an ensemble left and right wrist model over603

a single wrist model, as well as seeing the effectiveness of transfer learning over building a model604

from scratch throughout all 3 presented metrics. If we look at the PR curve, we can see that the605

transfer learning model’s PR curve is more complete and covers more area resulting in a higher AUC606

than the normal model. If we also compare both models’ PR curves to the leave-one-person-out607

experiments detailed in sections 5.1 and 5.2, we can see the both models perform better than either608

of their single wrist counterparts, by having a more complete AUC that covers more area. If we look609

at the prediction probabilities plot, we can see that the transfer learning ensemble covers more true610

positives than the ensemble built from scratch (keep in mind that the prediction threshold for a fall611

is 0.4) while also classifying one less false positive instance. Finally, If we look at the F1 scores, we612

can see that the transfer learning model achieved an averaged F1 score that is higher by over 7% than613

the non transfer learning model, and both of them achieved a higher F1 score than either of their one614

wrist counterparts as shown in Table 5. All those experiments results demonstrated the effectiveness615

of ensemble models using both left and right wrist wearable accelerometers, achieving the best results616

out of all the models. Such improvements indicated that we can enhance the fall detection prediction617

by adding more sensors in a scalable way instead of recollecting and re-training a new set of dataset618

with all the existing sensors.619

6. Conclusion and Future Work620

We presented an approach for fall detection based only on the acceleration data coming from an621

off-the-shelf wearable edge-device on the wrist of the subject. Fall detection using acceleration data622

coming strictly from a wearable on the wrist is challenging for the reason that there is a lot of room623

for false positives, as many activities of daily living (ADL) produce acceleration spikes similar to624

those of a fall. We collected and presented 3 different types of wearable wrist accelerometers, i.e., the625

MSBAND smartwatch, the Meta Sensor device, and the Huawei smartwatch. Each device has its own626

hardware specifications, hence making acceleration datasets produced from these 3 devices differ in627

many aspects, such as sampling frequency, acceleration unit, axis orientation, etc. Not only are the628

differences in data between devices a problem, but also, fall data in general is very scarce, as it is very629

time consuming to collect, leaving us with small datasets across different hardware accelerometers.630
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TL PR Curve AUC 0.87 TL Prediction Probabilities

Non TL PR Curve AUC 0.63 Non TL Prediction Probabilities

Figure 12. Leave-One-Person-Out Data Split Experiment for ensemble models. For prediction
probabilities, x axis is the time, y axis is the prediction threshold, blue data is the real labels, red
data is the prediction probabilities. For the F1 Scores, the averaged F1 score of all the 8 iterations of
the cross validation is shown in the top right corner of the PR curve

Table 5. Summarization results of F1 score for all experiments. Train/Test denotes the train/test
dataset spit ratio. A check mark ✓ represents the transfer learning strategy is applied and a × denotes
the transfer learning is not applied.

Experiment Transfer Learning Dataset split strategy F1 score (%)

✓ 0.92
Meta Sensor Experiment I × Train/Test: 70/30 0.86

✓ 0.73
Meta Sensor Experiment II × cross validation 0.63

✓ 0.93
MSBAND to Meta Sensor Experiment I × Train/Test: 70/30 0.81

✓ 0.79
MSBAND to Meta Sensor Experiment II × cross validation 0.65

✓ 0.82
MSBAND to Huawei Experiment I × Train/Test: 70/30 0.68

✓ 0.75
MSBAND to Huawei Experiment II × cross validation 0.64

✓ 0.75
MSBAND to Huawei real-time experiment × 100% Test 0.67

✓ 0.85
Combined Left and Right wrist experiment × cross validation 0.78
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In order to overcome the problems detailed above and build a model that is robust to dataset size631

as well as changes in hardware specifications, we experimented with a transfer learning approach,632

where we would train a base model from scratch using one device’s dataset, and then use the trained633

model as a basis for training a new model on a different device’s dataset. Specifically, to solve the634

target dataset’s task, we would not start training from scratch on the target dataset, but use a model635

which has already been trained on a source dataset of a similar (but not identical) feature space to the636

target data set, and then, by training that model on the target dataset and having its weights adapt to637

the target dataset, we would have effectively transferred the source dataset’s knowledge to the target638

dataset’s model. We summarized the F-1 score of all the experiments in Table 5.639

Indeed, we found out through our experiments, that building a model using transfer learning640

between different wearable devices produces better results than collecting a new set of data using641

the device and training a model from scratch, as the former model out-performed the latter in all642

of the experiments we conducted in the paper. We also experimented with building an ensemble643

fall detection model using both left and right wrist wearable accelerometers, both from scratch and644

through transfer learning, and found that both ensemble models out-performed their single wrist645

counterparts, with the transfer learning ensemble model achieving the best results out of all the646

models. This is encouraging as we can improve the fall detection by adding more senors in a scalable647

way. There is no need to re-collect a new set of dataset with all the existing sensors and re-train648

everything from scratch when a new sensor is added. We just need to collect a small amount of data649

using the new sensor and leverage a pretrained model with transfer learning to generalize to the650

newly sensed data. We can then combine the final prediction using an ensemble approach.651

We have not validated our approach with a target population of different ages, heights, weights,652

and health conditions. This is a limitation of our current experiment. It is our long-term goal to use653

part of our funding to recruit older adults for the collection of a small amount of ADL data and use654

transfer learning for the personalization of fall detection to each person.655

One immediate direction for future work is the use of data augmentation method, for further656

solving the small training dataset problem. Data augmentation method is a process of artificially657

increasing the amount of data by generating new data points from existing data that does not658

require substantial training data, including Synthetic Minority Oversampling Technique (SMOTE)659

[42], Transformers [43], Auto-Encoder [44], Generative Adversarial Network (GAN) [45]. We have660

started experimentation with GAN for time series data in [46]. Recently, we have also used a GAN661

product from Gretel (Gretel.ai) to generate synthetic data. Much more research is needed in this area.662

Our second direction is the use of the transfer learning framework for the purpose of663

personalization for new edge users, as the transfer learning model personalized very well in the664

70%/30% Train/Test split experiments. The personalization process can be done by having a665

pretrained global model that constantly keeps getting re-trained with newly collected data, and666

whenever a new user is introduced, we collect a small dataset for that user, and train a personalized667

model specifically for that user through transfer learning from the global model onto the newly668

collected small dataset.669

Finally, we also intend to explore other models, for further improving the accuracy performance670

of fall detection. Currently, there are many time-series prediction models, such as neural ODEs [47],671

CT-RNN [48], Phased LSTM[49] and Transformer [50]. We have just started exploring the transformer672

model.673
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