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Abstract: We investigate the limit of sequences of vertex algebras. We discuss under
what condition the vector space direct limit of such a sequence is again a vertex algebra.
We then apply this framework to permutation orbifolds of vertex operator algebras and
their large N limit. We establish that for any nested oligomorphic permutation orbifold
such a large N limit exists, and we give a necessary and sufficient condition for that limit
to factorize. This helps clarify the question of what VOAs can give rise to holographic
conformal field theories in physics.

1. Introduction

In this article, we investigate the limit of sequences of Vertex Operator Algebras (VOA)
andVertexAlgebras (VA).We address the question under what circumstances the graded
vector space direct limit of such a sequence is again a VA. We find that this is decided
by convergence of the structure constants. We then use this mathematical framework
to address questions about existence and uniqueness of VA limits, and prove several
physics conjectures about limits of permutation orbifold VOAs.

To construct a VA limit, we consider a sequence (V N )N∈N of VAs together with
connecting maps fMN : V M → V N . We construct the vector space of the limit VA as
the graded vector space direct limit of that sequence. However, we do not want to require
the connecting maps to be VA homomorphisms. This means that we cannot simply work
in the category of VAs and define the limit VA as the direct VA limit of the sequence;
instead, we will have to construct the state-field map of the limit VA by hand.

The motivation to study limits of VOAs comes partly from physics. Let us therefore
briefly explain their role in physics, and also explain why we are interested in con-
necting maps that are not VA homomorphisms. In physics, VOAs and the theory of
their modules describe Conformal Field Theories (CFT) in two dimensions. They find a
particularly interesting application in the AdS/CFT correspondence [Mal98,AGM00].
This correspondence conjecturally maps theories of quantum gravity to certain types of
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CFTs, or, more precisely, to the limits of families of CFTs. In the original instance of
the conjecture, the CFTs are described by the Lie group SU (N ), and the limit N → ∞
is taken, so that the central charge diverges. For this reason such limits are often called
large N limits or large central charge limits. As the central charge of two VOAs in the
sequence is different, it is clear that the fMN are not VOA homomorphisms. Usually,
they are not VA homomorphisms either. For instance, as we discuss in the second part
of this article, often the limit VA has a very special property: it factorizes, even though
the members of the family do not factorize. The limit is thus not homomorphic to the
VAs in the sequence, and the connecting maps fMN are not VA homomorphisms either.

As mentioned above, our main interest is the limit of VOAs. However, it turns out
that the limit VA is often no longer a VOA. For this reason, we find it most appropriate
to work with grading-restricted VAs [Hua14] rather than VOAs.

A (grading-restricted) vertex algebra has twomain ingredients: a graded vector space
V , and a state-field map (or vertex operator map) Y [Kac98,LL04]. Constructing the
limit VA V∞ from the family (V N )N∈N thus involves two steps. The first step is to
construct its graded vector space V∞. This is relatively straightforward: We choose
connecting maps fMN : V M → V N , and then define V∞ to be the direct limit of the
system (V N , fMN ). The role of the connecting map is to define how the vectors in the
different V N are related. To ensure that V∞ is still grading-restricted, we need to impose
some additional conditions on the connecting maps and on the vector spaces V N . The
most important condition is that the dimensions dim V N

(n) converge as N → ∞. We call
a system that satisfies all these conditions a grading-restricted direct system. Physicists
call the numbers dim V(n) the spectrum, and would therefore say that for this system
“the spectrum of V N converges”.

Having constructed V∞, the second step is to construct a state-field map Y∞ on
it. This is harder to do than the first step. As stressed above, we do not assume that
the connecting maps fMN are VA homomorphisms. That is, they are in general not
compatible with the state field maps Y N . We thus cannot simply define Y∞ as coming
from a direct limit of a VA-system (V N ,Y N , fMN ). Instead, we are forced to define the
state-field map Y∞ by hand. No surprisingly, ensuring its existence requires additional
assumptions on the connecting maps.

In our approach, we describe state-field maps Y through their structure constants
Cabc,

Y (b, z)c =
∑

a∈�

zwt(a)−wt(b)−wt(c)Cabca , (1.0.1)

that is the matrix elements of Y (b, z) with respect to some homogeneous basis �. We
then define the structure constants of Y∞ as the limit of the structure constants of the
V N ,

C∞
abc := lim

N→∞CN
abc . (1.0.2)

Crucially, we then need to ensure that the state-field map Y∞ defined in this way satisfies
the axioms of a VA. Our first main result, theorem 2.3, is that Y∞ indeed satisfies the
Borcherds identity, as long as all structure constants converge:

Theorem. The direct limit of a grading-restricted direct system of VAs is a grading-
restricted VA, provided all structure constants converge.

Physicists would phrase this condition as “all three point functions of V N converge”.
The proof of this result uses the fact that we are working with grading-restricted VAs. It
is possible to repeat our approach for VAs that are not grading-restricted, but it is then
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harder to establish that the state-field map exists and satisfies the VA axioms. Indeed,
we give an example that has a VA-limit that is not grading-restricted in Sect. 3.

We mentioned above that we are primarily interested in the case where the V N are
VOAs. In that case, the limit we consider is usually a large central charge limit, meaning
the central charge of V N diverges as N → ∞. The limit VA V∞ therefore does not
contain a copy of the Virasoro algebra, and is thus not a VOA. It is however still a
Möbius VA: that is, the Lie algebra sl(2, C) generated by L(0), L(1), L(−1) survives
the limit. Moreover, if the V N are unitary, and the connecting maps are compatible with
that unitary structure, then V∞ is also unitary. Such large central charge limits of unitary
VOAs are probably the case of most interest in physics.

In the second part of this article we use our framework to prove certain physics
conjectures; for this we focus on the special cases of permutation orbifold VAs. These
conjectures have to do with existence and uniqueness of the VA limit. For instance, given
a sequence of VAs, it is necessary to specify the connecting maps fMN in order to define
its limit. However, there is a belief in physics that the choice of connecting maps does
not play a very important role in constructing the limit VA. On the one hand, given a
family V N that has an appropriate limit as a graded vector space, it should be possible to
find connecting maps which give convergent structure constants, leading to a consistent
limit VA: in physics language, if the spectrum converges, then the three point functions
almost automatically also converge. On the other hand, it is also believed that if there are
two different choices of connecting maps for which the limit exists, then the resulting
limit VAs should be isomorphic.

Mathematically, it is clear that these beliefs cannot hold in the generality stated
above. To turn them into conjectures, we need to impose some further assumptions
beyond the existence of the direct limit; physicists’ belief is simply that these additional
assumptions are relatively minor. For instance we cannot expect the structure constants
CN
abc to converge automatically if the spectrum converges: a sequence V N that alternates

between two VAs of identical spectrum but different structure constants (such as the
E8 × E8 and the SO(32) lattice VOAs) will have non-convergent structure constants,
giving an immediate counterexample to the first belief. A better conjecture that actually
has a chance of being true is that instead the structure constants remain bounded as
N → ∞. This weaker statement is usually enough for physicists, since then we can
pick a convergent subsequence of V N to get a limit VA.

We do indeed prove this weaker form of the conjecture for the case of permutation
orbifolds. In Sect. 4 we introduce permutation orbifold VAs [KS90,DMVV97,BHS98,
Ban98]. Here, a permutation orbifold is what we call the fixed point sub-VA of an N -
fold tensor product of a given VA under the action of a permutation group GN . Based
on previous investigations in the physics literature [LM01,BKM15,HR15,BKM16], we
established in [GK21] that the VA limit of permutation orbifolds exists, provided they
satisfy a property we called nested oligomorphic. That previous construction of the limit
VA however was rather ad-hoc. In the language of this article, the nested oligomorphic
condition guarantees that the permutation orbifolds form a grading-restricted system.

Such permutation orbifolds are an important example of large N limits, and we
establish several results. The first main result, theorem 4.6, is that the structure constants
of any nested oligomorphic permutation orbifold are bounded; by choosing suitable
subsequences, it is thus always possible to find a limit VA:

Theorem. Given a sequence of nested oligomorphic permutation orbifolds of grading-
restricted VAs of CFT type, we can always find a subsequence that converges to a VA.
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The second main result, discussed in Sect. 6, has to do with factorization in the large
N limit. We say a VA factorizes if it has a set of generators so that the commutator of the
modes of any twogenerators only contain the identity operator. SuchVAs arewell-known
in physics, as they allow to compute any correlation functions using Wick contractions.
In particular, VOAs that appear in theAdS/CFT correspondence are expected to factorize
in the large N limit. In theorem 6.4 we establish a necessary and sufficient criterion for
large N factorization of oligomorphic permutation orbifolds involving the behavior of
orbits:

Theorem. TheVA-limit of nestedoligomorphic permutationorbifolds of grading-restricted
VAs of CFT type factorizes if and only if the permutation orbifolds have no finite orbits
in the large N limit.

2. Large N Limits of Vertex Algebras

2.1. Grading-restricted vertex algebras. There are several different equivalent choices
for the axioms of vertex algebras, stressing different aspects such as locality, associativity
or commutativity [LL04]. For our purposes we find the following definition the most
useful, which stresses Borcherds’ identity [Bor86]:

Definition 2.1. A vertex algebra (V, |0〉,Y ) is a vector space V with a distinguished
non-zero vector |0〉 (vacuum vector) with a linear map Y (state-field map)

Y : V → End(V )[[z, z−1]] a �→ Y (a, z) =
∑

n∈Z
anz

−n−1 (2.1.1)

such that for all v ∈ V a(n)v = 0 if n is large enough (meaning Y (a, z) is a field)
satisfying

(1) Y (a, z)|0〉 = a + O(z) (creativity)
(2) Y (|0〉, z) = 1V
(3) Borcherds’ identity:

∞∑

j=0

(
m

j

)
(an+ j b)m+k− j c =

∞∑

j=0

(−1) j
(
n

j

)
am+n− j (bk+ j c)

−
∞∑

j=0

(−1) j+n
(
n

j

)
bn+k− j (am+ j c) for all k,m, n ∈ Z . (2.1.2)

See e.g. [Kac98] for how this implies other, maybe more commonly used axioms of a
VA. In particular note that when using this set of axioms, the commonly used translation
operator T or L(−1) is defined as Ta := a(−2)|0〉.

Motivated by physics, we are actually most interested in vertex operator algebras
(VOAs) and their large central charge limit. However, for reasons that will become clear,
this limit is not a VOA. It is thus more useful not to work in the framework of VOAs,
but rather in the framework of grading-restricted vertex algebras (see e.g. [Hua14]:

Definition 2.2. A grading-restricted vertex algebra is a vertex algebra (V, |0〉,Y )whose
vector space V is Z-graded,

V =
⊕

n∈Z
V(n) , (2.1.3)

together with a linearmap L(0) : V → V defined as L(0)v = nv for v ∈ V(n), satisfying
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(1) V(n) = 0 if n is sufficiently negative, and dim V(n) < ∞ for all n ∈ Z (grading-
restriction condition)

(2)

[L(0),Y (v, z)] = d

dz
Y (v, z) + Y (L(0)v, z)

for v ∈ V . (L(0)-bracket formula)

Note that a vertex operator algebra (V, |0〉,Y, ω) is automatically a grading-restricted
vertex algebra with L(0) and L(−1) given by the usual modes of the Virasoro field
Y (ω, z). If a ∈ V(n), we say a has weight wta = n, and then an is homogeneous of
weight −n + wta − 1.

2.2. The setup. Let us now set up the VA limit of a family of grading-restricted vertex
algebras.

Definition 2.3. Let
(
V N

)
N∈N be a sequence of grading-restricted vertex algebras to-

gether with a set of injective connecting maps fMN : V M → V N for all M ≤ N
satisfying

(1) fNK ◦ fMN = fMK for all M ≤ N ≤ K .
(2) fN N = �V N for all N .
(3) The fMN preserve grading and the vacuum element.
(4) For fixed n ∈ Z, dimV M

(n) = dimV N
(n) for all sufficiently large M and N .

(5) There is an n̄ such that V N
(n) = 0 for n < n̄ for all N .

We then call (V N , fMN ) a grading-restricted direct system.

A few remarks are in order:

(1) For such a grading-restricted direct system, define W∞ = ⊕
N∈N V N , and ιN :

V N → W∞ the canonical inclusion map. Let D ⊂ W∞ be the subspace generated
by elements of the form ιM (u)− ιN ◦ fMN (u) for any M ≤ N and u ∈ V M . We then
define V∞ to be the (linear) direct limit of the system (V N , fMN ) given by

V∞ = lim−→ V N = W∞/D . (2.2.1)

(2) We also define fN to be the linear maps

fN : V N → V∞ v �→ [ιN (v)] , (2.2.2)

where [w] denotes the class of w ∈ W∞ in V∞. The maps fN are injective by
injectivity of the fMN and satisfy fM = fN ◦ fMN for all M ≤ N .

(3) We insist that the connecting maps are injective. This is mainly for convenience, as
it will make it easier to work with bases later on.

(4) We say the homogeneous subspace V M
(n) is saturated if condition (4) holds for all

N > M . In particular, the homogeneous components f (n)
MN : V M

(n) → V N
(n) are bijective

if V M
(n) is saturated.

(5) Note that the connecting maps fMN do not need to be VA-homomorphisms. The
system (V N , fMN ) does therefore not define a direct limit in the category of VAs.
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(6) For more on direct limits in the context of VOAs see for example [CMY22].

We mention two immediate lemmas:

Lemma 2.1. Any u ∈ V∞ can be written as u = fN (v) with v ∈ V N for some N.

Proof. By construction, a general element u ∈ W∞ can be written as

u =
I∑

i=1

ιMi (v
i ), (2.2.3)

where ui ∈ V Mi for a set of integers {Mi }. This means that [u] ∈ V∞ can be written as∑I
i=1 fMi (v

i ). Taking N = max{Mi },

u =
I∑

i=1

fN ( fMi N (vi )) = fN

[
I∑

i=1

fMi N (vi )

]
. (2.2.4)


�
We will often write u = fN (uN ) =: uN and suppress the fN , where equality in V∞

is understood, call uN the representative of u in V N . It is unique in V N because fN is
injective.

Lemma 2.2. V∞ is graded by weights with finite-dimensional homogeneous subspaces.

Proof. V∞ is graded because W∞ is graded and the fMN preserve the grading, so that
quotienting by D preserves the grading. Let �M := ⋃

n �M
n be a homogeneous basis of

V M , that is �M
n a basis for V M

(n). For a fixed n, let M be such that V M
(n) is saturated. By

Lemma 2.1, any vector u ∈ V∞
(n) can be written as fN (uN ) for some vector uN , where

we can take N ≥ M . Because the homogeneous components f (n)
MN are bijective, uN can

be expressed as a linear combination of the vectors in f (n)
MN (�M

n ), meaning that u can
be expressed as a linear combination in fM (�M

n ). Moreover, since the fM are injective,

the vectors fM (�
j
n) are linearly independent, so that �n := fM (�M

n ) is indeed a finite
basis of V∞

(n). 
�
It follows that

� :=
⋃

n

�n (2.2.5)

with the �n constructed as above is a homogeneous basis of V∞. We will frequently
use this basis in what follows.

2.3. The restricted dual. It will be useful to work with the dual space of limit VAs. The
dual space (V∞)∗ of V∞ itself is given by the inverse limit of the system (V N , fMN ).
For completeness, let us give the standard definition and properties of this construction.

Let
(
V N

)∗
be the dual of V N . Define the surjective, dual connecting maps (bonding

maps) f ′
MN : (V N

)∗ → (
V M

)∗
for all M ≤ N by

〈 f ′
MN (v′), u〉 = 〈v′, fMN (u)〉, (2.3.1)

for all v′ ∈ (V N
)∗

and u ∈ V M , wherewe introduce the evaluationmap 〈v′, u〉 := v′(u).
Then for all M ≤ N ≤ K the following relations hold

f ′
MN ◦ f ′

NK = f ′
MK . (2.3.2)



Limits of Vertex Algebras and Large 3129

Definition 2.4. The inverse limit of the duals is defined by

lim←−
(
V N

)∗ = {v′ ∈
∞∏

M=1

(
V M

)∗ |v′
M = f ′

MN (v′
N ) for all M ≤ N }. (2.3.3)

For every M , there exists a canonical surjective map

πM : lim←−
(
V N

)∗ →
(
V M

)∗
, v′ �→ v′

M , (2.3.4)

such that
πM = f ′

MN ◦ πN , (2.3.5)

for all M ≤ N . The entry v′
M is therefore the representative of v′ in (V M )∗.

There is a canonical (linear) isomorphism (V∞)∗ ∼= lim←−
(
V N

)∗
, with the canonical

pairing given by

〈v′, u〉 = 〈v′
N , uN 〉 . (2.3.6)

Note this definition does not depend on the choice of representative uN of u since

〈v′
N , uN 〉 = 〈v′

M , fMN (uM )〉 = 〈 f ′
MN (v′

N ), uM 〉 = 〈v′
M , uM 〉. (2.3.7)

When working with VOAs (or grading-restricted VAs), it is better not to work with
the full dual space V ∗, but rather the restricted graded dual V ′ of V , defined as

V ′ :=
⊕

V ∗
(n) ⊂ V ∗ (2.3.8)

For V∞ it is given by

(V∞)′ :=
⊕

(V∞
(n))

∗ . (2.3.9)

We can characterize it by restricting to v′ ∈ (V∞)∗ such that

v′|V∞
(n)

= 0 for almost all n . (2.3.10)

2.4. Vertex operators and matrix elements. In Sect. 2.2, we defined V∞ = lim−→ V N as
a grading-restricted direct limit. We now want to define the state-field map Y∞ on V∞
through its matrix elements:

Definition 2.5. Assuming that the limit exists, we define the matrix elements of Y∞ on
V∞ as

〈v′,Y∞(u, z)w〉 = lim
N→∞〈v′

N ,YN ( fMN (uM ), z) fK N (wK )〉, (2.4.1)

for all u, w ∈ V∞ and v′ ∈ (V∞)′. Here uM ∈ V M and wK ∈ V K are representatives
of u and w, and we assume N ≥ M, K .

A few remarks:
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(1) This definition is independent of the choice ofM, K : ChoosingM ′ ≥ M , for example,
we find that

lim
N→∞〈v′

N ,YN ( fM ′N (uM ′
), z) fK N (wK )〉

= lim
N→∞〈v′

N ,YN ( fM ′N ( fMM ′(uM )), z) fK N (wK )〉
= lim

N→∞〈v′
N ,YN ( fMN (uM ), z) fK N (wK )〉.

(2.4.2)

(2) The limit in (2.4.1) is the ordinary limit inC order by order in the formal power series
in z. Equivalently, we can write Y∞(u, z)x as a limit in the restricted weak topology,
that is the weak topology with respect to the restricted dual V ′,

Y∞(u, z)w = lim
N→∞ fN

(
YN (uN , z)wN

)
. (2.4.3)

We now use this to define the structure constants and the state field map on V∞. Let
� := ⋃

n �n be a homogeneous basis of V∞. Because all V∞
(n) are finite dimensional,

we can pick a homogeneous dual basis �′, so that for b ∈ �, a ∈ �′

〈a, b〉 = δa,b . (2.4.4)

For convenience we will simply identify � and �′ and their vectors. Since a, b, c are
homogeneous, 〈a,Y∞(b, z)c〉 = 〈a, bwt(c)+wt(b)−wt(a)−1c〉zwt(a)−wt(b)−wt(c). This leads
to the following definition:

Definition 2.6. Let (V N , fMN ) be a grading-restricted direct system, and � a homoge-
neous basis of V∞ as above. For a, b, c ∈ � with representatives aN , bN , cN , define
the structure constants

CN
abc := 〈aN , bNwt(cN )+wt(bN )−wt(aN )−1c

N 〉 , (2.4.5)

and

C∞
abc := lim

N→∞CN
abc . (2.4.6)

Assuming the limit in definition 2.6 exists for all a, b, c ∈ �, we define the map Y∞ :
V∞ → End(V∞)[[z, z−1]] as

Y∞(b, z)c :=
∑

a∈�

zwt(a)−wt(b)−wt(c)C∞
abca (2.4.7)

Note that this definition is compatible with Definition 2.5. Also note that for conve-
nience of notation, we used the dual basis in the definition of Cabc; instead, we could
of course have considered Y (b, z)c and read off the coefficient of a, as Y (b, z)c =∑

a∈� zwt(a)−wt(b)−wt(c)Cabca.
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2.5. The VA-limit. Let us now establish the first main result of our paper:

Theorem 2.3. Let (V N , fMN ) be grading-restricted direct system with limit V∞, |0〉 :=
fN (|0〉N ) for some N, and assume that the limit of all the structure constants as in
Definition 2.6 exists. Then (V∞, |0〉,Y∞) is a grading-restricted vertex algebra, the
(grading-restricted) VA-limit of the system (V N , fMN ).

Proof. First we note that V∞ satisfies the grading-restriction condition due to (4) and
(5) of Definition 2.3. This immediately implies that Y∞(v, z) is a field for any v because
V∞ is grading-restricted, i.e. wt(a) is bounded from below.

Next,

Y∞(u, z)|0〉 = lim
N→∞ fN (YN (uN , z)|0〉) = lim

N→∞ fN (uN + O(z)) = u + O(z) (2.5.1)

establishes creativity, and limN→∞ fN (YN (|0〉, z)uN ) = u establishes Y∞(|0〉, z) =
1V∞ .

To show the L(0) bracket formula, note that the L(0)-operator commutes with the
connecting maps in the sense that

fMN (LM (0)v) = LN (0) fMN (v), (2.5.2)

and that L(0)v = limN→∞ fN (LN (0)vN ). It then follows

u = lim
N→∞ fN ([LN (0),YN (vN , z)]uN )

= lim
N→∞ fN (

d

dz
YN (vN , z)uN + YN (LN (0)vN , z)uN

= d

dz
Y∞(v, z)u + Y∞(L(0)v, z)u,

(2.5.3)

where we can exchange limit and the formal derivative term by term in the formal power
series.

Finally, let us prove that Y∞ satisfies Borcherds’ identity. Let � be a homogeneous
basis of V∞. By [GK21], Borcherds’ identity is satisfied if the following condition on
the structure constants holds: Defining

j1 = wt(b) + wt(a) − wt(d) − n − 1 , j2 = wt(c) + wt(b) − wt(d) − k − 1 ,

j3 = wt(c) + wt(a) − wt(d) − m − 1 , (2.5.4)

for all a, b, c, e ∈ �

∑

d∈�

(
m

j1

)
C∞
edcC

∞
dab =

∑

d∈�

(−1) j2
(
n

j2

)
C∞
eadC

∞
dbc −

∑

d∈�

(−1) j3+n
(
n

j3

)
C∞
ebdC

∞
dac

(2.5.5)
holds for all k, n,m ∈ Z such that j1, j2, j3 ≥ 0.

Note that due to the condition ji ≥ 0 and the grading-restriction condition of V∞,
for fixed k, n,m only finitely many weights wt(d) contribute. Since the homogeneous
subspaces V∞

(n) are finite dimensional, the sum over d ∈ � has only finitely many terms.

We can thus find an N that gives representatives aN , bN , cN , eN , dN . If N is large
enough, then the dN form a basis for the relevant homogeneous subspaces V N

(n). The

analog of identity (2.5.5) with structure constants CN
edc is then automatically satisfied

for all N , since the YN are vertex operator maps. We can thus take the limit N → ∞ of
those identities, and exchange the limit with the finite sum over d ∈ � to establish that
(2.5.5) holds for the structure constants C∞

edc. 
�
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3. A (Non-)example: Tensor Power VAs

Let us now construct some examples of such limits. Our first example is in a sense a
non-example: the assumptions of Definition 2.3 are not satisfied, and even though the
VA limit exists, it turns out to be a VA that violates the grading restriction axiom, and is
hence not a grading-restricted VA. However, the example will serve as a useful starting
point for the permutation orbifolds discussed in the next section.

3.1. Seed VAs and tensor products. Let V be a grading-restricted VA that is of the form

V = C|0〉 ⊕
∞⊕

n=1

V(n) . (3.1.1)

In the context of VOAs, this is usually called a VOA of CFT type. We call V the seed
VA. For future use we note that for such a VA, unless a ∈ C|0〉,

Ca|0〉|0〉 = C|0〉a|0〉 = C|0〉|0〉a = 0 , (3.1.2)

because of the identity and creativity properties.
Now let us consider tensor products of the seed VA V . Let IN := {1, 2, . . . , iN } be

the set of the first iN numbers. Denote by V⊗|IN | the |IN |-th tensor power of the seed
VA, with the grading given by the sum of the gradings of the individual factors. Clearly
this is again a grading-restricted VA of the form (3.1.1).

For future use, it will be useful to describe a basis of this tensor product VA in the
following way: Let � be a homogenenous basis of V with |0〉 the basis vector for V(0),
and a be a function IN → �. We define the weight of a as

|a| :=
∑

i∈IN
wt(a(i)) , (3.1.3)

and its support as
supp(a) := {i ∈ IN : a(i) �= |0〉} . (3.1.4)

Such a function a defines a vector in V⊗|IN | by

a =
⊗

i∈IN
a(i) , (3.1.5)

which by abuse of notation we denote by the same symbol a. Let FN
n be the set of

all such functions a : IN → � of weight n. It is then clear that (by the same abuse
of notation) FN = ⋃

n FN
n forms a homogeneous basis of V⊗|IN |. Next, for a tensor

product state v = ⊗
i∈IN vi ∈ V⊗|IN |, we define its support

Kv = supp(v) := {i ∈ IN : vi /∈ V(0)} . (3.1.6)

For vectors that come from functions as in (3.1.5), the two definitions of support of
course agree. Since V⊗N is a direct sum of vector spaces of definite support, in the
future we will mostly work with states of definite support, and extend our results by
linearity if needed.
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3.2. Connecting maps. Now assume that |IN | is monotonically growing in N . For all
M ≤ N we define the connecting maps

gMN : V⊗|IM | → V⊗|IN |

v1 ⊗ . . . v|IM | �→ v1 ⊗ . . . v|IM | ⊗ |0〉 ⊗ . . . ⊗ |0〉︸ ︷︷ ︸
|IN |−|IM |

. (3.2.1)

(V⊗|IN |, gMN ) is then not quite a grading-restricted direct system: It is clear that con-
ditions (1)–(3) of Definition 2.3 are satisfied, and by virtue of (3.1.1), so is (5). Unless
V is trivial however, the dimensions of most V⊗|IN |

(n≥1) will diverge, so that (4) is violated.
However, we will now prove that it is still possible to define a VA structure on V∞.

3.3. Duals. We can construct the dual spaces in the same way as before: the duals of
the components are (

V⊗|IN |)∗ = (
V ∗)⊗|IN |

, (3.3.1)

where the canonical pairing is given by

〈v′
1 ⊗ . . . ⊗ v′|IN |, v1 ⊗ . . . ⊗ v|IN |〉 =

|IN |∏

i=1

〈v′
i , vi 〉. (3.3.2)

As before, we construct the dual (V⊗∞)∗ as the inverse limit, and the restricted dual
(V⊗∞)′ as the appropriate subset.

For what follows however it is useful to construct an appropriate decomposition of
(V⊗∞). Let |0〉′ ∈ V ′

0 be the unique functional satisfying 〈|0〉′, |0〉〉 = 1 and define
connecting maps on the dual spaces for all M ≤ N by

g̃MN :
(
V⊗|IM |)′ →

(
V⊗|IN |)′

v′
1 ⊗ . . . ⊗ v′|IM | �→ v′

1 ⊗ . . . ⊗ v′|IM | ⊗ |0〉′ . . . |0〉′︸ ︷︷ ︸
|IN |−|IM |

. (3.3.3)

These are again connecting maps, so that we can take the direct limit of the system
(
(
V⊗|IN |)∗ , g̃MN ). Note that lim−→

(
V⊗i

)∗ ⊂ (
V⊗∞)∗ = lim←−

(
V⊗i

)∗
. This gives injective

maps

g̃N :
(
V⊗|IN |)′ → lim−→

(
V⊗|IN |)∗

v′
1 ⊗ . . . ⊗ v′|IN | �→ [v′

1 ⊗ . . . ⊗ v′|IN |].
(3.3.4)

We can use this to find an orthogonal decomposition of
(
V⊗∞)′:

Lemma 3.1. For all N ∈ N,

(
V⊗∞)′ = Im(g̃N )

⊕
Im(gN )⊥ , (3.3.5)

where Im(gN )⊥ is the annihilator of Im(gN ).
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Proof. Consider (V⊗∞
(n) )∗. We know that for all N , Im(g̃N )(n) ⊂ (V⊗∞

(n) )∗ is finite
dimensional, and satisfies

Im(gN )(n)
∼= Im(g̃N )(n) . (3.3.6)

Pick a basis {e′
i } of Im(g̃N )(n) and a dual basis {e j } of Im(gN )(n). Then define P(v) :=∑

i 〈v, ei 〉e′
i . In the usual way, v = P(v) + (v − P(v)) then gives the decomposition

(V⊗∞
(n) )∗ = Im(g̃N )(n)

⊕
Im(gN )⊥(n), from which (3.3.5) follows. 
�

3.4. The vertex algebra V⊗∞.

Theorem 3.2. The limit (V⊗∞, |0〉,Y∞) of the system (V N , gMN ) exists and is a vertex
algebra.

Proof. Note that we cannot directly apply Theorem 2.3 because, as pointed out above,
the grading restriction condition is not satisfied, and in general dim V∞

(n) = ∞. First, we

show that Y∞ is well-defined. Let M be such that u, w ∈ Im(gM ) and v′ ∈ (
V⊗∞)′.

The vertex operators are defined as

〈v′,Y∞(u, z)w〉 = lim
N→∞〈v′

N ,YN (uN , z)wN 〉 (3.4.1)

We first note that for u, v ∈ V⊗|IM |,

YN (gMN (u), z)gMN (v) = Y (u1, z)v1 ⊗ . . . ⊗ Y (u|IM |, z)v|IM | ⊗ (|0〉)⊗(|IN |−|IM |)〉
= gMN (YM (u, z)v)〉 (3.4.2)

Now we use the decomposition (3.3.5): For v′ ∈ Im(gM )⊥,

〈v′,Y∞(u, z)x〉 = lim
N→∞〈v′

N ,YN (gMN (uM ), z)gMN (wM )〉
= lim

N→∞〈v′
N ,YN (uN , z)wN 〉 = 0, (3.4.3)

while for v′ ∈ Im(g̃M ), we find that

〈v′,Y∞(u, z)w〉 = lim
N→∞〈v′

N ,YN (uN , z)wN 〉
= lim

N→∞〈v′
1 ⊗ . . . ⊗ v′|IM | ⊗ (|0〉′)⊗(|IN |−|IM |),

Y (u1, z)w1 ⊗ . . . ⊗ Y (u|IM |, z)w|IM | ⊗ (|0〉)⊗(|IN |−|IM |)〉
= 〈v′

M ,Y (uM , z)wM 〉.

(3.4.4)

Hence the structure constants Cabc converge and Y∞ exists. Moreover, Y∞ is a state-
field map since wt(a) ≥ 0 for all vectors a. Creativity, identity and the L(0) bracket
formula follow by the same argument as in Theorem 2.3.

Finally, Borcherds’ identity follows by a similar argument as in Theorem 2.3. The
complication here is that the homogeneous components V∞

(n) are no longer finite dimen-

sional, so that we can no longer find a N such that the dN are representatives of a basis
of V∞

(n). However, note that by construction of the tensor product that if a, b have rep-

resentatives aN , bN , then b(n)a ∈ Im(gN ), which has finite dimensional homogeneous
components. We can thus pick a finite basis dN of Im(gN ) and insert it in the same way
as in Theorem 2.3 to establish Borcherds’ identity. 
�
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We note that in this specific example, the connecting maps gMN actually are VA
homomorphisms. Therefore, we could have constructed V∞ as the direct limit of (not
grading-restricted) VAs, without worrying about convergence of the structure constants.
If the seed VAs are VOAs, then the gMN are still not VOA homomorphisms, since the
conformal vector does not get mapped to the conformal vector.

3.5. An action by S∞. We established that tensor product VAs have a large N limit.
This limit however is not a grading-restricted VA. For this reason, we want to investigate
limits of permutation orbifolds instead.

For ease of notation, let us take IN = {1, 2, . . . N } for the moment. Any permutation
σ ∈ SN acts naturally as an VA automorphism on V⊗N by

σ · v1 ⊗ . . . ⊗ vN = vσ−1(1) ⊗ . . . ⊗ vσ−1(N ) (3.5.1)

The symmetric group SN is thus a group of automorphisms of V⊗N .
For all M ≤ N , define connecting maps φMN : SM → SN bymapping a permutation

σ ∈ SM to the corresponding permutation σ N ∈ SN , that acts trivially on the last N −M
objects. Clearly, the φMN satisfy

φNK ◦ φMN = φMK for all M ≤ N ≤ K (3.5.2)

φNN = 1 for all N . (3.5.3)

Furthermore, they are compatible with the connecting maps gMN in the sense that

gMN (σ · v) = φMN (σ ) · gMN (v), (3.5.4)

for all v ∈ V⊗M and σ ∈ SM .
In view of the above, it is tempting to try to define limits of symmetric orbifold VAs

in the following way: Define S∞ as the direct group limit of SN under the connecting
maps φMN , S∞ = ∐

N SN/ ∼φMN . Then S∞ acts on V⊗∞ by

σ · u = gN (σ N · uN ). (3.5.5)

This definition is independent of the choice of representatives. Then S∞ is indeed a
group of automorphisms of V∞:

σ · (Y∞(u, z)v) = lim
N→∞ σ · gN

(
YN (uN , z)vN

)

= lim
N→∞ gN

(
σ N · (YN (uN , z)vN )

)

= lim
N→∞ gN

(
YN (σ N · uN , z)σ N · vN

)

= lim
N→∞ gN

(
YN ((σ · u)N , z)(σ N · vN )N

)

= Y∞(σ · u, z)σ · v .

(3.5.6)

Since S∞ is an automorphism of V∞, we can now in principle consider the fixed-point
VA

(
V⊗∞)S∞ . However, this does not lead to an interesting result, since

(
V⊗∞)S∞ is

trivial: By Lemma 2.1, any vector v in V∞ will be in Im(gN ) for some N . To be invariant
under all transpositions (M, N + 1) with 1 ≤ M ≤ N , v has to be the vacuum vector.
For this reason we need to take a different approach to limits of permutation orbifolds.
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4. An Example: Permutation Orbifolds

4.1. Connecting maps for the permutation orbifolds. In Sect. 3.5, we constructed an
action of the permutation group S|IN | on the vertex algebra V⊗|IN |. Let us now consider
the action of a permutation group GN ≤ S|IN |. Define the projector from V⊗|IN | onto
V N := (

V⊗|IN |)GN as

πN = 1

|GN |
∑

σ∈GN

σ. (4.1.1)

To construct a basis of V N , we start with the basis FN of V⊗|IN | defined in Sect. 3.1.
Note that GN acts on a ∈ FN by σ ◦ a(i) = a(σ−1i). Clearly, a homogeneous basis
for V N

(n) is then given by

�N =
⋃

n∈N
�N

n , �N
n = πN (FN

n ) . (4.1.2)

The number of elements in this basis is given by the number of orbits of functions of
weight n under GN , which we denote by bn(GN ),

|�N
n | = bn(GN ) . (4.1.3)

Next,wewant to define connectingmaps. For this,we introduce somenotation, following
[GK21]:

Definition 4.1. Let K ⊂ IN .

(1) Denote by GK
N := {σ ∈ GN |kσ ∈ K,∀k ∈ K} the setwise stabilizer of K.

(2) Denote by ĜK
N := {σ ∈ GN |kσ = k,∀k ∈ K} the pointwise stabilizer of K.

(3) Let G(K)N be the permutation group defined by the action of GK
N /ĜK

N on K. Note
that G(K)N is the restriction of GN to K in the natural sense.

Note that ĜK
N is a normal subgroup of GK

N , so that definition (3) makes sense.
We now construct the connecting maps fMN recursively:

Definition 4.2. Define the linear maps f̄MN : V⊗|IM | → V N in the following way:

f̄N N = πN (4.1.4)

For v ∈ V⊗|IN | with definite support supp(v) =: Kv ,

f̄N ,N+1(v) =
√√√√ |GN ||ĜKv

N |
|GN+1||ĜKgN ,N+1(v)

N+1 |
πN+1 ◦ gN ,N+1(v) (4.1.5)

and f̄MN = f̄N−1,N ◦· · ·◦ f̄M+1,M+2◦ f̄M,M+1 for N > M .We then define the connecting
maps fMN : V M → V N as

fMN := f̄MN |V M . (4.1.6)

As we will see, the unwieldy prefactor in (4.1.5) is necessary for the structure con-
stants to converge. Below we will give a much nicer expression for the homogeneous
components f (n)

NM in the case when V N
(n) is saturated. But first, we need to impose some

additional conditions on the family GN to ensure that the system (V N , fMN ) is indeed
a grading-restricted direct system as in Definition 2.3.
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4.2. Nested oligomorphic permutation orbifolds. Following [GK21], we make the fol-
lowing definition:

Definition 4.3. Assume |IN | < |IN+1|. Let the family of permutation groups (GN )N∈N
satisfy the conditions:
(1) The numbers bn(GN ) converge for all n.
(2) For every finite set K ⊂ N, there is a group G(K) such that G(K)N = G(K) for N

large enough.
(3) G(IN−1)

N < GN−1 for all N .
We then call GN nested oligomorphic.

Proposition 4.1. Let V be a seed VA as in (3.1.1), GN a nested oligomorphic family of

permutation groups, V N = (
V⊗|IN |)GN and fMN as in Definition 4.2. Then (V N , fMN )

is a grading-restricted direct system.

Proof. (1)–(3) of Definition 2.3 follow immediately by construction of the fMN , and
(5) from the form of V N . The nesting condition (3) in Definition 4.3 implies that if two
elements of V⊗|IN−1| are in different orbits under GN−1, then they are also in different
orbits as elements of V⊗|IN | under GN ; hence fN−1,N is injective. Finally, (4) follows
from (1) in Definition 4.3. 
�
Lemma 4.2. Fix n. If V M

(n) is saturated at M and N ≥ M, then

πN ◦ g(n)
MN ◦ πM = πN ◦ g(n)

MN . (4.2.1)

Proof. Saturated means that bn(GM ) = bn(GN ). As in the Proof of Proposition 4.1,
the (iterated) nesting condition (3) implies that different GM orbits are in different
GN orbits, which together with saturation implies that the GM orbits are in one-to-one
correspondence to GN orbits. This means that if we pick a representative v of a GM
orbit, then for any σ ∈ GM , we can find τσ ∈ GN such that τσ acts on gMN (v) as
φMN (σ ) ∈ SN ,

τσ ◦ gMN (v) = φMN (σ ) ◦ gMN (v) . (4.2.2)
Using this, we can write

πN ◦ g(n)
MN ◦ πM (v) = 1

|GM |
∑

σ∈GM

πN ◦ g(n)
MN ◦ σ(v) (4.2.3)

= 1

|GM |
∑

σ∈GM

πN ◦ φMN (σ ) ◦ g(n)
MN (v) (4.2.4)

= 1

|GM |
∑

σ∈GM

πN ◦ τσ ◦ g(n)
MN (v) (4.2.5)

= πN ◦ g(n)
MN (v) . (4.2.6)


�
The lemma immediately implies

Corollary 4.3. Fix n. If V N
(n) is saturated at N and M ≥ N, then

f (n)
NM =

√√√√ |GN ||ĜKv

N |
|GM ||ĜKgNM (v)

M |
πM ◦ g(n)

NM . (4.2.7)

Proof. Use Lemma 4.2 and induction in M . 
�
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4.3. Structure constants. Now let us investigate convergence of the structure constants
for nested oligomorphic permutation orbifolds. Let aN , bN , cN ∈ FN be basis vectors
of V⊗|IN |. By the remarks above, FN forms a basis of V⊗|IN |. The structure constants
of the tensor VA V⊗|IN | are given by

cN (aN , bN , cN ) :=
|IN |∏

i=1

c(aN (i), bN (i), cN (i)) (4.3.1)

where for all i ∈ IN , aN (i), bN (i), cN (i) ∈ � are basis elements of the seed VA V , and

c(aN (i), bN (i), cN (i)) (4.3.2)

are the structure constants of the seed VA V . By the remarks above, �N
n = πN (FN

n ) is
a basis for V N

(n). We choose a basis �n of V∞
(n) by picking M large enough so that V M

(n)

is saturated, and then taking
�n := fM (�N

n ) , (4.3.3)

fromwhichwe obtain a homogeneous basis� of V∞,� = ⋃
n �n . Now let a, b, c ∈ �.

We want to compute the structure constant

C∞
abc = lim

N→∞CN
aNbN cN . (4.3.4)

To do this, first write aN = fNM (aM ). By Lemma 4.2, for simplicity we can actually
choose aM ∈ FM , that is as a representative of the orbit πMaM . We then have

CN
aNbN cN = CN

fMN (aM ) fMN (bM ) fMN (cM )

=
(

|GM |3|ĜKa
M ||ĜKb

M ||ĜKc
M |

|GN |3|ĜKa
N ||ĜKb

N ||ĜKc
N |

)1/2 ∑

σ∈G×3
N

cN (σ1gMN (aM ),

σ2gMN (bM ), σ3gMN (cM )) , (4.3.5)

where σ = (σ1, σ2, σ3). To investigate the limit of CN
aNbN cN

, we use theorem 2.5 in
[GK21] to rewrite it in a form that makes the N dependence manifest. We can do to this
because (4.3.5) is essentially their equation (28), the only difference being a prefactor
that depends on M , but not on N , and therefore does not affect convergence as N → ∞.

Todo this, let usfirst introduce somenotation.WewillwriteK1,K2,K3 forKa,Kb,Kc.
We writeKi j = Ki ∪K j andK123 = K1 ∪K2 ∪K3. Finally we define the triple overlap
set Kt = K1 ∩K2 ∩K3 and the one-point set Ko = K123 − ((K1 ∩K2) ∪ (K1 ∩K3) ∪
(K2 ∩ K3)). Next we observe that

cN (aN , bN , cN ) = 0 unless Ko = ∅ . (4.3.6)

This follows from the fact that c(a, b, c) = 0 if exactly two of the arguments are inC|0〉,
as discussed around (3.1.2).

Theorem 2.5 of [GK21] then gives the following expression for the structure con-
stants:

CN
aNbN cN =

(
|GM |3|ĜK1

M ||ĜK2
M ||ĜK3

M |
)1/2
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×
∑

[κ]∈S
M(κK, N )

∑

[σ ]∈×i G(Ki )

cN (κ1σ1gMN (aM ), κ2σ2gMN (bM ),

κ3σ3gMN (cM )) , (4.3.7)

where σ = (σ1, σ2, σ3) ∈ G×3
N , κ = (κ1, κ2, κ3) ∈ G×3

N and

S = Gdiag
N \GN × GN × GN/GK1

N × GK2
N × GK3

N (4.3.8)

as a set, where Gdiag
N is the diagonal subgroup of GN × GN × GN . Finally, κK =

(κ1Ka, κ2Kb, κ3Kc) and

M(K, N ) =
⎧
⎨

⎩

(
|ĜK1

N ||ĜK2
N ||ĜK3

N |
|GN ||ĜK1∪K2∪K3

N |2

)1/2

Ko = ∅
0 else

(4.3.9)

The crucial observation here is that in (4.3.7), onlyM(κK, N ) depends on N : For N large
enough, we can find an N -independent representative for [κ] and [σ ]. With this choice,
the arguments of cN have N -independent support, so that the structure constant cN of
the tensor product VAs does actually not depend on N . For a more detailed explanation
of this, see [GK21].

4.4. The VA limit of permutation orbifolds. From Proposition 4.1 and the results in
Sect. 4.3, we conclude that the existence of the VA-limit of nested oligomorphic permu-
tation orbifolds only depends on the behavior of M(κK, N ):

Corollary 4.4. Let V be a grading-restricted VA as in (3.1.1), and GN be a nested
oligomorphic family. Then the grading-restricted direct system (V N , fMN ) defined as
inProposition4.1has aVA-limit if the M(K, N ) converge as N → ∞ for allK1,K2,K3.

The following lemma shows that the M(K, N ) are actually bounded:

Lemma 4.5.
0 ≤ M(K, N ) ≤ 1 . (4.4.1)

Proof. Note that Ĝ A∪B = Ĝ A∩ĜB . DenoteGi = ĜKi
N andGi j = Gi∩G j for i �= j etc.

The inequality is trivially satisfied ifKo �= ∅. IfKo = ∅, thenK1 ∪K2 ∪K3 = K1 ∪K2
etc., so that Gi j = G123. We claim that

|G1G2G3| = |G1||G2||G3|
|G123|2 . (4.4.2)

To see this, note that by the usual argument we have |G1G2| = |G1||G2|/|G12|. Next
consider the orbit of the set G1G2 under the right action of G3. The stabilizer subgroup
under this action is G123: On the one hand, because G123 < G2, G1G2g3 = G1G2

if g3 ∈ G123. On the other hand, if g1g2g3 = g̃1g̃2g̃3, g̃3g
−1
3 = g̃−1

2 g̃−1
1 g1g2, so that

g̃3g
−1
3 stabilizesK1 ∩K2 pointwise; clearly it also stabilizesK3 pointwise. But because

Ko = ∅, we have (K1 ∩ K2) ∪ K3 = K1 ∪ K2 ∪ K3, so that g̃3g
−1
3 ∈ G123. The

orbit stabilizer theorem then implies that the orbit has length |G3|/|G123|, from which
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it follows that |G1G2G3| = |G1G2||G3|/|G123| = |G1||G2||G3|/|G123|2 as claimed.
Plugging this into (4.3.9) gives

M(K, N ) =
(

|ĜK1
N ĜK2

N ĜK3
N |

|GN |

)1/2

, (4.4.3)

from which the claim follows since the numerator is a subset of the group in the denom-
inator. 
�

Because the M(K, N ) are bounded, it is possible to find a VA limit of V N by picking
a convergent subsequence of V N . More precisely, since the basis � is a countable set,
so is the set of structure constants Cabc with a, b, c ∈ �. We can thus order them, and
then, for the first structure constant, pick an infinite subsequence of N for which all
necessary M(K, N ) converge, giving a limit C∞

abc for this structure constant. We can
apply this procedure recursively to all triples of basis vectors: in the k-th step, we keep
the first k terms of the (k-1)-th subsequence, and then pick an infinite subsequence of
the remaining terms for which the k-th structure constant converges. In total this gives
a subsequence of V N for which all structure constants converge, automatically satisfy
Borcherds’ identity and hence define a state-field map Y∞. In summary:

Theorem 4.6. Let V be a grading-restricted VA as in (3.1.1), and (GN )N∈N be a nested
oligomorphic family of permutation groups. Then we can find a grading-restricted VA
V∞ that is a limit of an appropriate subsequence of the system (V N , fMN ) of permuta-
tion orbifolds.

5. The Large N Limit of VOAs

5.1. Large central charge limit of virasoro VOAs. Let us now discuss the large N limit
of vertex operator algebras. As the most basic example, let us start out with a sequence
of Virasoro VOAs of increasing central charge.

Let V N = V ircN be the Virasoro VOA of central charge cN for some c > 1 with
conformal vector ωN . For each N , we define a re-scaled copy of the Virasoro algebra

by taking ω̃N := ωN√
N
and YN (ω̃N , z) = ∑

n∈Z L̃ N
n z

−n−2 satisfying

[L̃ N
m , L̃ N

n ] = 1√
N

(m − n)L̃ N
m+n +

c

12
m(m2 − 1)δm,−n1V . (5.1.1)

Now define

f1N (|0〉) = |0〉 , f1N (ω1) = 1√
N

ωN = ω̃N (5.1.2)

and recursively

f1N (L1−na) = 1√
N
LN−n f1N (a) . (5.1.3)

The maps f1N are clearly bijective, so that we can define connecting maps

fMN = f1N ◦ f −1
1M . (5.1.4)

These clearly satisfy the conditions of Definition 2.3.
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We claim that the VA-limit is given by the following grading-restricted VA: Define
the Lie algebra

[L∞
m , L∞

n ] = c

12
m(m2 − 1)δm,−n1V , (5.1.5)

which acts on the graded vector space V ir∞ := U(L∞) ⊗UL∞
(≤1)

C|0〉, where as usual
L∞
n |0〉 = 0 for n ≥ −1. Together with the state-field map Y (ω∞, z) = ∑

n L
∞
n z−n−2

this is then indeed a grading-restricted VA, the grading operator being L(0) = L∞
0 .

To see that (V ir∞,Y ) is indeed the VA-limit of the above system, note that V ir∞ =
lim−→ V ircN as a graded vector space. To show that the structure constants CN

abc converge
to C∞

abc, proceed as following: Evaluate

bNn c
N (5.1.6)

recursively using Borcherds’ identity until it is a linear combination of terms the form
L̃ N
n1 · · · L̃ N

nk |0〉. Then commute modes L̃ N
n with n ≥ −1 to the right, picking up commu-

tator terms from (5.1.1). The result is a linear combination of states a, from which we
can read off the structure constants CN

abc. The point is that this computation differs from
the computation of C∞

abc using (5.1.5) only by terms of order O(N−1/2), so that

C∞
abc = CN

abc + O(N−1/2) , (5.1.7)

so that V ir∞ is indeed the VA-limit of V ircN . It is however not a VOA, since (5.1.5) is
not the Virasoro algebra.

5.2. Möbius-conformal VAs and unitary VAs. The above example shows that the VA-
limit of a family of VOAs is in general not a VOA. However, it is not just a grading-
restricted VA, but also a Möbius-conformal VA [Kac98]. That is, even though it no
longer contains a full copy of the Virasoro algebra, it still contains a copy of the global
conformal algebra sl2(C).

Proposition 5.1. The VA-limit (V∞, |0〉,Y∞) of a system of VOAs of CFT type is a
grading-restricted Möbius-conformal VA of CFT type.

Proof. Since VOAs are special cases of grading-restricted VAs with L(0) = L0 and
T = L(−1) = L−1, the only thing left to prove is the existence of the operator
L(1). We simply define it as the weak limit of LN

1 , L(1)u := limN→∞ LN
1 u

N . Since
LN
0 , LN−1, L

N
1 satisfy the commutation relations of the Möbius sl2(C) Lie algebra, so do

L(0), L(−1), L(1). 
�
Let V be a Möbius-conformal VA of CFT type. We say a ∈ V is quasiprimary if

L(1)a = 0. V is then spanned by all quasiprimary fields and their L(−1)-derivatives
(see e.g. Remark 4.9d in [Kac98]). On V , define the bilinear form B from

awta+wtb−1b =: B(a, b)|0〉 . (5.2.1)

From skew symmetry it follows that

B(a, b) = (−1)wta+wtbB(b, a) . (5.2.2)
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We have

B(a, L(−1)b) = L(−1)awta+wtbb + [L(−1), awta+wtb]b = −(wta + wtb)B(a, b) ,

(5.2.3)
where we used that awta+wtbb = 0. (5.2.3) shows that if we know B on the subspace
of quasiprimaries, its value on all descendants follows. In particular, if two quasipri-
maries are orthogonal to each other, then so all are their descendants. Finally, if a, b
are quasiprimaries, then B(a, b) vanishes unless wta = wtb: Using the commutation
relation

[L(1), an] = −(n + 2 − 2wta)an+1 + (L(1)a)n+1 , (5.2.4)

we have

L(1)awta+wtb−2b = [L(1), awta+wtb−2]b = −(wtb − wta)awta+wtb−1b

= (wta − wtb)B(a, b)|0〉 . (5.2.5)

The state on the left hand side has weight 0 and is therefore the vacuum. However, since
the vacuum is not in the image of L(1), it must vanish. It follows that either wta = wtb
or B(a, b) = 0. In total we have that B restricted to the subspace of quasiprimaries is
blockdiagonal.

Finally, let us say a few words about unitary VAs. We often want to work with
VAs whose bilinear form B is non-degenerate. From (5.2.3) it follows that for this it
is enough to ensure that B is positive definite on all (finite dimensional) subspaces of
quasiprimaries of a given weight. An example of VAs with such a B are unitary VAs: If
the VA V is unitary, then for a, b quasiprimary with wta = wtb the bilinear form B is
related to the inner product through

B(a, b) = (|0〉, a2wta−1b) = (θ(a), b) , (5.2.6)

where θ is the anti-linear involution and (, ) the positive definite Hermitian form on V
[DL14]. If we choose a real basis, that is θ(a) = a, then the bilinear form B is given by
the same matrix as the inner product, so that it is in particular non-degenerate.

Assume we have a system of unitary grading-restricted VAs V N with connecting
maps fMN that preserve the anti-linear involutions and inner products θM and (, )M ,
that is θN ◦ fMN = fMN ◦ θM and (u, v)M = ( fMN (u), fMN (v)). Then the VA limit
V∞ is again unitary, with θ∞(u) := fN (θN (uN )) and (u, v)∞ := (uN , vN )N . These
are clearly again an anti-linear involution and a positive definite Hermitian form.

We note that the connecting maps for permutation orbifolds introduced in Defini-
tion 4.2 are compatible with the unitary structure.

6. Factorization

6.1. Factorization in VAs. The example discussed in Sect. 5.1 has another interesting
property. Taking a closer look at (5.1.5), we see that V∞ is a special kind of VA: it
factorizes.

Definition 6.1. Let V be a vertex algebra. We say V factorizes if there is a set A ⊂ V
of vectors that generate V and that satisfy

[an, bm] = D(a, b, n,m)1V (6.1.1)

for some function D for all a, b ∈ A and n,m ∈ Z.
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In physics, such VAs are also called free field theories. To avoid confusion with the
notion of a free algebra, we use the term ‘factorization’ instead.

ForVAs that factorize, computations becomequite simple:UsingBorcherds’ formula,
expressions such as matrix elements or correlation functions can be written in terms of
modes of generator fields. These modes can then be commuted through, picking up
identity operators only. The matrix elements can thus be obtained by so-called Wick
contractions.

For completeness, let us make this more precise (see for instance also Sect. 3.3 in
[Kac98]). Using

[Y (a, z),Y (b, w)] =
∞∑

n=0

Y (anb, w)∂(n)
w δ(z − w) (6.1.2)

it follows that

[Y (a, z),Y (b, w)] =
∞∑

n=0

1V D(a, b, n,−1)∂(n)
w δ(z − w) (6.1.3)

since for n ≥ 0, anb = anb−1|0〉 = [an, b−1]|0〉 = D(a, b, n,−1)|0〉.
If V is grading-restricted and all generators are homogeneous, we can say something

more: (6.1.2) then implies that

[Y (a, z),Y (b, w)] = 1V B(a, b)∂(wt(a)+wt(b)−1)
w δ(z − w) , (6.1.4)

which in turn fixes the commutator to be

[an, bm] = B(a, b)1V

(
n

wta + wtb − 1

)
δn−wta+1,−m+wtb−1 . (6.1.5)

Define the annihilation part Y +(a, z) and the creation part Y−(a, z) of a field as

Y (a, z) = Y +(a, z) + Y−(a, z) =
∑

n≥0

anz
−n−1 +

∑

n<0

anz
−n−1 . (6.1.6)

We then have
[Y±(a, z),Y±(b, w)] = 0 . (6.1.7)

This follows from (6.1.5) for the Y− commutator, and from [an, bm]|0〉 = 0 for n,m ≥ 0
for the Y + commutator. Finally we have

[Y +(a, z),Y−(b, w)] = iz,w
B(a, b)

(z − w)wta+wtb
1V (6.1.8)

[Y−(a, z),Y +(b, w)] = −iw,z
B(a, b)

(z − w)wta+wtb
1V (6.1.9)

where iz,w indicates taking the formal power series given by the series expansion of the
function for |z| > |w|. The functions appearing on the right-hand side are often called
Wick functions in physics.

We can use these commutators to compute correlation functions

〈|0〉,Y (u1, z1)Y (u2, z2) . . . Y (un, zn)|0〉〉 . (6.1.10)
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To do this, we first use Borcherds’ identity to recursively write out Y (u, z) in terms of
(residues of) products of generators Y (a, z), giving a correlation function

C = 〈|0〉,Y (a1, z1) · · · Y (am, zm)|0〉〉 . (6.1.11)

We then split all fields into creation and annihilation parts and commute the annihilators
to the right, where they annihilate the vacuum, Y +(a, z)|0〉 = 0. This leaves only terms
with creation parts and with Wick functions. However, due to the grading, any terms
containing creation parts will have a vanishing matrix element when paired with |0〉.
The correlator (6.1.11) is thus simply given by a sum over all possible product Wick
functions,

C =
{∑

p∈P2
m/2

∏
{i, j}∈p

B(ai ,a j )

(zi−z j )
wtai +wta j

: m even

0 : m odd
. (6.1.12)

Here P2
n denotes all partitions of the set {1, 2, . . . , n} into disjoint pairs, and the product

is over all such pairs in the partition p. In physics this is called Wick’s theorem. It is the
analogue of Isserli’s theorem in probability theory.

6.2. The large N limit of symmetric orbifolds. Before proving the general theorem, let us
give one more example of a large N limit that factorizes. Consider symmetric orbifolds,
that is permutation orbifolds for whichGN = SN . These were worked out as an example
in [GK21]. Picking vectors v1, v2, v3 with supp(vi ) = Ki and |Ki | = Ki , (4.3.9) is given
by

M(κ, N ) =
(

(N − K1)!(N − K2)!(N − K3)!
N !(N − 1

2 (K1 + K2 + K3 − nt (κ)))!2
)1/2

. (6.2.1)

Here we defined nt (κ) := |κ1K1 ∩ κ2K2 ∩ κ3K3| as the length of the triple overlap set
under the configuration κ . Using Stirling’s approximation it follows that for nt (κ) > 0,

M(κK, N ) = O(N−nt (κ)/2) (6.2.2)

for N → ∞, and for nt (κ) = 0

M(κK, N ) → 1 . (6.2.3)

This establishes that only configurations κ contribute that have nt (κ) = 0. Theorem 6.4
below will show that therefore symmetric orbifolds indeed factorize in the large N limit.
For themoment,wewant to use (6.2.2) to discuss how symmetric orbifolds are generated.

Definition 6.2. Let v ∈ V N := (V⊗|IN |)GN . We say v is a single-trace if |supp(v)| = 1.
We say v ∈ V∞ is single-trace if v = fN (vN ) for some single-trace vector vN .

Proposition 6.1. Let V∞ = lim−→(V⊗N )SN be the limit VA of symmetric orbifolds. Then
V∞ is generated by single-trace vectors.

Proof. First let us prove that V N is generated by single-trace vectors using induction in
n = |supp(v)|. The base case n = 1 is immediate. Let v have |supp(v)|. We can write

vN = πN (v1 ⊗ v2 ⊗ · · · ⊗ vn ⊗ |0〉 ⊗ · · · ⊗ |0〉) (6.2.4)
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Next define uN = πN (vn ⊗ |0〉 · · · |0〉) and wN = πN (v1 ⊗ · · · ⊗ vn−1 ⊗ |0〉 · · · |0〉 We
then have

vN = uN−1w
N + . . . (6.2.5)

where the . . . are vectors of support length n − 1 or less. By induction, this establishes
that V N is generated by single-trace vectors.

Next consider v = fN (vN ) ∈ V∞. Consider C∞
xuw = 〈x, u−1w〉. By (6.2.2), the

structure constant vanishes unless nt = 0, which implies that |supp(x)| = n or n − 2.
The former automatically implies that x = v. It follows that

v = u−1w + · · · (6.2.6)

where the states in . . . have support n − 2 or less. By induction it follows that V∞ is
also generated by single-trace states. 
�

As a side remark, let us mention that even if the seed VA V is finitely generated, V∞
is not:

Proposition 6.2. Unless V is trivial, V∞ = lim−→(V⊗N )SN is not finitely generated.

Proof. For any finitely generated VA, the asymptotic growth of log dim V(n) for n → ∞
is bounded by A

√
n for some constant A. On the other hand, log dim V∞

(n) ∼ n/ log n as
n → ∞ (see e.g. [BKM15]). 
�

6.3. Factorization for oligomorphic permutation orbifolds. Now we want to establish
under what conditions oligomorphic permutation orbifolds factorize in the large N limit.
To this end, we first introduce the following definition:

Definition 6.3. We say a family of permutation groups (GN )N∈N has no finite orbits if
for every finite non-empty set K ⊂ N, the length of the orbit of K under GN diverges,

ON (K) → ∞ . (6.3.1)

Proposition 6.3. Let GN be nested oligomorphic. Then M(K, N ) → 0 for all configu-
rations K such that Kt �= ∅ if and only if GN has no finite orbits.

Proof. Assume GN has no orbit of finite length. If Kt �= ∅, then ĜK1
N ĜK2

N ĜK3
N ⊂ ĜKt

N .

By the orbit-stabilizer theoremwehaveON (Kt ) = |GN |/|GKt
N | = |GN |/|ĜKt

N ||G(Kt )|,
wherewe take N large enough so that condition (2) ofDefinition 4.3 applies. From (4.4.3)
it follows that

M(K, N ) ≤ |G(Kt )|−1/2ON (Kt )
−1/2 → 0 . (6.3.2)

Conversely, let K be a set whose orbit length ON (K) is bounded. Consider the configu-
ration K1 = K2 = K3 = K. Using (4.3.9), we have

M(K, N ) =
(

|ĜK
N |

|GN |

)1/2

= |G(Kt )|−1/2ON (K)−1/2 , (6.3.3)

which does not converge to 0. 
�
Theorem 6.4. The large N limit of oligomorphic permutation orbifolds with no finite
orbits factorizes.
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Proof. Clearly V∞ is generated by states of definite support. Take u = πN (uN ) and
v = πN (vN ), where uN , vN have supportKu,Kv .We can specialize Borcherds’ identity
to obtain the following expression for the commutator (see e.g. [LL04]):

[um, vn] =
∑

k≥0

(
m

k

)
(ukv)m+n−k (6.3.4)

We evaluate the structure constants C∞
wuv = 〈w, ukv〉 by using (4.3.7). We first note that

any configuration with κ3Kv �= κ2Ku automatically vanishes. This follows because for
k ≥ 0, u(i)k |0〉 = 0 and (|0〉)kv(i) = 0. For configurations with κ3Kv = κ2Ku , the
structure constant does not vanish only if κ1Kw ⊂ κ3Kv . However, if κ1Kw �= ∅, then
Kt �= ∅, so that by Proposition 6.3 CN

wuv → 0. It follows that C∞
wuv = 0 unlessKw = ∅,

that is w ∈ C|0〉, which implies that indeed only the identity operator appears in the
commutator. 
�

6.4. Uniqueness of factorizing VAs. Finally let us briefly discuss uniqueness of VAs that
factorize. Define Fk to be the factorizing grading-restricted Möbius VA generated by a
quasiprimary v of weight k > 0. That is, Y (v, z) = ∑

n vnz−n−1 with modes

[vn, vm] = 1V

(
n

2k − 1

)
δn−k+1,−m+k−1 , (6.4.1)

acting on U(V) ⊗UV(≤1)
C|0〉 , where the vacuum |0〉 is as usual annihilated by sl(2). Its

character is

Zk(τ ) =
∏

n≥k

1

(1 − qn)
. (6.4.2)

To see (6.4.2), we only need to establish that the vectors v−n1v−n2 · · · v−nl |0〉, ni > 0 are
linearly independent. But this follows from the fact that their duals maps 〈|0〉, vn1+2k−1
· · · vnl+2k−1·〉 are rank 1 and form a dual system to the vectors above, as follows from
the commutation relations (6.4.1).

Proposition 6.5. Let V be a factorizing grading-restricted Möbius VA of CFT type with
non-degenerate bilinear form B. Then V is isomorphic as a VA to

V ∼=
∞⊗

k=1

(
Fk
)⊗Nk

(6.4.3)

for some numbers Nk ∈ N0.

Proof. For a grading-restrictedVA V , denote by V(≤n) := ⊕
k≤n V(k), and denoteUn :=

⊗n
k=1

(
Fk
)⊗Nk . By induction in n, V(≤n−1) ∼= Un−1

(≤n−1). Denoting

W := Un−1
(n) (6.4.4)

we can use the fact that B is non-degenerate to decompose V(n) = W ⊕ W⊥. Note
that all vectors in W⊥ are quasi-primary: otherwise W⊥ would contain a descendant
of a quasiprimary of lower weight, which would therefore be in W and not in W⊥.
We can thus choose a (in general complex) basis vi of W⊥ such that B(vi , v j ) = δi j .
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This leads to commutators of the form (6.4.1), and since the vi are orthogonal to each
other, we have W⊥ = ((Fn)⊗ dimW⊥

)(n). Because the vi have higher weight than all
quasiprimaries inUn−1, they are orthogonal to them. It follows that V(≤n) can be written

as
(⊗n

k=1

(
Fk
)⊗Nk

)
)

(≤n)
with Nn = dimW⊥. 
�

In particular this implies that as long as the VA-limit factorizes and has a non-
degenerate bilinear form B, then the limit is unique, that is independent of the choice of
connecting maps fMN .

Let us summarize the various results that we have found for the physically most
relevant case of unitary VOAs of CFT type:

Proposition 6.6. Let V N be a family of unitary VOAs of CFT type together with connect-
ing maps fMN forming a grading-restricted system as in Definition 2.3 and compatible
with the unitary structure. If the structure constants CN

abc converge for all basis vectors,
then the VA-limit (V∞,Y∞) exists and is a grading-restricted unitaryMöbius VA of CFT
type. Moreover, if this V∞ factorizes, then the limit is unique up to isomorphism: that is,
if (V N , fMN ) and (V N , f̃MN ) are two systems whose connecting maps f and f̃ both
satisfy the above conditions and whose VA-limits both factorize, then the two limits are
isomorphic as grading-restricted VAs.
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