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Abstract: We investigate the limit of sequences of vertex algebras. We discuss under
what condition the vector space direct limit of such a sequence is again a vertex algebra.
We then apply this framework to permutation orbifolds of vertex operator algebras and
their large N limit. We establish that for any nested oligomorphic permutation orbifold
such a large N limit exists, and we give a necessary and sufficient condition for that limit
to factorize. This helps clarify the question of what VOAs can give rise to holographic
conformal field theories in physics.

1. Introduction

In this article, we investigate the limit of sequences of Vertex Operator Algebras (VOA)
and Vertex Algebras (VA). We address the question under what circumstances the graded
vector space direct limit of such a sequence is again a VA. We find that this is decided
by convergence of the structure constants. We then use this mathematical framework
to address questions about existence and uniqueness of VA limits, and prove several
physics conjectures about limits of permutation orbifold VOAs.

To construct a VA limit, we consider a sequence (V")yen of VAs together with
connecting maps fyn : VM — V. We construct the vector space of the limit VA as
the graded vector space direct limit of that sequence. However, we do not want to require
the connecting maps to be VA homomorphisms. This means that we cannot simply work
in the category of VAs and define the limit VA as the direct VA limit of the sequence;
instead, we will have to construct the state-field map of the limit VA by hand.

The motivation to study limits of VOAs comes partly from physics. Let us therefore
briefly explain their role in physics, and also explain why we are interested in con-
necting maps that are not VA homomorphisms. In physics, VOAs and the theory of
their modules describe Conformal Field Theories (CFT) in two dimensions. They find a
particularly interesting application in the AdS/CFT correspondence [Mal98, AGMOO].
This correspondence conjecturally maps theories of quantum gravity to certain types of
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CFTs, or, more precisely, to the limits of families of CFTs. In the original instance of
the conjecture, the CFTs are described by the Lie group SU(N), and the limit N — oo
is taken, so that the central charge diverges. For this reason such limits are often called
large N limits or large central charge limits. As the central charge of two VOAs in the
sequence is different, it is clear that the fj;y are not VOA homomorphisms. Usually,
they are not VA homomorphisms either. For instance, as we discuss in the second part
of this article, often the limit VA has a very special property: it factorizes, even though
the members of the family do not factorize. The limit is thus not homomorphic to the
VAs in the sequence, and the connecting maps fyy are not VA homomorphisms either.

As mentioned above, our main interest is the limit of VOAs. However, it turns out
that the limit VA is often no longer a VOA. For this reason, we find it most appropriate
to work with grading-restricted VAs [Hual4] rather than VOAs.

A (grading-restricted) vertex algebra has two main ingredients: a graded vector space
V, and a state-field map (or vertex operator map) Y [Kac98,LL04]. Constructing the
limit VA V> from the family (V™)yen thus involves two steps. The first step is to
construct its graded vector space V°. This is relatively straightforward: We choose
connecting maps fyny : VM — VN and then define V> to be the direct limit of the
system (VY fyn). The role of the connecting map is to define how the vectors in the
different V' are related. To ensure that V*° is still grading-restricted, we need to impose
some additional conditions on the connecting maps and on the vector spaces V. The
most important condition is that the dimensions dim V(IX) converge as N — oo. We call
a system that satisfies all these conditions a grading-restricted direct system. Physicists
call the numbers dim V{,) the spectrum, and would therefore say that for this system
“the spectrum of V¥V converges”.

Having constructed V°°, the second step is to construct a state-field map Yo, on
it. This is harder to do than the first step. As stressed above, we do not assume that
the connecting maps fyny are VA homomorphisms. That is, they are in general not
compatible with the state field maps Y. We thus cannot simply define Y> as coming
from a direct limit of a VA-system (V™ , YV fy;n). Instead, we are forced to define the
state-field map Y*° by hand. No surprisingly, ensuring its existence requires additional
assumptions on the connecting maps.

In our approach, we describe state-field maps Y through their structure constants
Cabc’

Y(b, 2)c = Z M@-wb-w e, g (1.0.1)

acd

that is the matrix elements of Y (b, z) with respect to some homogeneous basis ©. We
then define the structure constants of Y, as the limit of the structure constants of the
VN
. : N
ohe = lim Cp. . (1.0.2)
N—o00

Crucially, we then need to ensure that the state-field map Y, defined in this way satisfies
the axioms of a VA. Our first main result, theorem 2.3, is that Y, indeed satisfies the
Borcherds identity, as long as all structure constants converge:

Theorem. The direct limit of a grading-restricted direct system of VAs is a grading-
restricted VA, provided all structure constants converge.

Physicists would phrase this condition as “all three point functions of V" converge”.
The proof of this result uses the fact that we are working with grading-restricted VAs. It
is possible to repeat our approach for VAs that are not grading-restricted, but it is then
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harder to establish that the state-field map exists and satisfies the VA axioms. Indeed,
we give an example that has a VA-limit that is not grading-restricted in Sect. 3.

We mentioned above that we are primarily interested in the case where the VV are
VOA:s. In that case, the limit we consider is usually a large central charge limit, meaning
the central charge of V" diverges as N — oo. The limit VA V> therefore does not
contain a copy of the Virasoro algebra, and is thus not a VOA. It is however still a
Mobius VA: that is, the Lie algebra s/(2, C) generated by L(0), L(1), L(—1) survives
the limit. Moreover, if the V'V are unitary, and the connecting maps are compatible with
that unitary structure, then V°° is also unitary. Such large central charge limits of unitary
VOAs are probably the case of most interest in physics.

In the second part of this article we use our framework to prove certain physics
conjectures; for this we focus on the special cases of permutation orbifold VAs. These
conjectures have to do with existence and uniqueness of the VA limit. For instance, given
a sequence of VAs, it is necessary to specify the connecting maps fysy in order to define
its limit. However, there is a belief in physics that the choice of connecting maps does
not play a very important role in constructing the limit VA. On the one hand, given a
family V' that has an appropriate limit as a graded vector space, it should be possible to
find connecting maps which give convergent structure constants, leading to a consistent
limit VA: in physics language, if the spectrum converges, then the three point functions
almost automatically also converge. On the other hand, it is also believed that if there are
two different choices of connecting maps for which the limit exists, then the resulting
limit VAs should be isomorphic.

Mathematically, it is clear that these beliefs cannot hold in the generality stated
above. To turn them into conjectures, we need to impose some further assumptions
beyond the existence of the direct limit; physicists’ belief is simply that these additional
assumptions are relatively minor. For instance we cannot expect the structure constants
C ﬁw to converge automatically if the spectrum converges: a sequence V¥ that alternates
between two VAs of identical spectrum but different structure constants (such as the
E8 x ES8 and the SO (32) lattice VOAs) will have non-convergent structure constants,
giving an immediate counterexample to the first belief. A better conjecture that actually
has a chance of being true is that instead the structure constants remain bounded as
N — oo. This weaker statement is usually enough for physicists, since then we can
pick a convergent subsequence of V" to get a limit VA.

We do indeed prove this weaker form of the conjecture for the case of permutation
orbifolds. In Sect. 4 we introduce permutation orbifold VAs [KS90,DMVV97,BHS9S,
Ban98]. Here, a permutation orbifold is what we call the fixed point sub-VA of an N-
fold tensor product of a given VA under the action of a permutation group G y. Based
on previous investigations in the physics literature [LM01,BKM15,HR15,BKM16], we
established in [GK21] that the VA limit of permutation orbifolds exists, provided they
satisfy a property we called nested oligomorphic. That previous construction of the limit
VA however was rather ad-hoc. In the language of this article, the nested oligomorphic
condition guarantees that the permutation orbifolds form a grading-restricted system.

Such permutation orbifolds are an important example of large N limits, and we
establish several results. The first main result, theorem 4.6, is that the structure constants
of any nested oligomorphic permutation orbifold are bounded; by choosing suitable
subsequences, it is thus always possible to find a limit VA:

Theorem. Given a sequence of nested oligomorphic permutation orbifolds of grading-
restricted VAs of CFT type, we can always find a subsequence that converges to a VA.
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The second main result, discussed in Sect. 6, has to do with factorization in the large
N limit. We say a VA factorizes if it has a set of generators so that the commutator of the
modes of any two generators only contain the identity operator. Such VAs are well-known
in physics, as they allow to compute any correlation functions using Wick contractions.
In particular, VOAs that appear in the AdS/CFT correspondence are expected to factorize
in the large N limit. In theorem 6.4 we establish a necessary and sufficient criterion for
large N factorization of oligomorphic permutation orbifolds involving the behavior of
orbits:

Theorem. The VA-limit of nested oligomorphic permutation orbifolds of grading-restricted
VAs of CFT type factorizes if and only if the permutation orbifolds have no finite orbits
in the large N limit.

2. Large N Limits of Vertex Algebras

2.1. Grading-restricted vertex algebras. There are several different equivalent choices
for the axioms of vertex algebras, stressing different aspects such as locality, associativity
or commutativity [LLO4]. For our purposes we find the following definition the most
useful, which stresses Borcherds’ identity [Bor86]:

Definition 2.1. A vertex algebra (V,|0),Y) is a vector space V with a distinguished
non-zero vector |0) (vacuum vector) with a linear map Y (state-field map)

Y:V—> EndV)z,z7 '] ar> Y(a,z) = Zanz_”_l 2.1.1)

nez

such that for all v € V a)v = 0 if n is large enough (meaning Y (a, z) is a field)
satisfying

(1) Y(a, 2)|0) = a + O(z) (creativity)
(2) Y(10),2) =1y
(3) Borcherds’ identity:

> (?)(anﬂ-b)m_ je=y (=1 (j)am_ j (bt jc)

j=0 j=0

o0
=Y (=D (”,)bm_j(amﬂc) forallk,m,neZ . (2.1.2)
j=0 J

See e.g. [Kac98] for how this implies other, maybe more commonly used axioms of a
VA. In particular note that when using this set of axioms, the commonly used translation
operator T or L(—1) is defined as T'a := a(—2)|0).

Motivated by physics, we are actually most interested in vertex operator algebras
(VOAs) and their large central charge limit. However, for reasons that will become clear,
this limit is not a VOA. It is thus more useful not to work in the framework of VOAs,
but rather in the framework of grading-restricted vertex algebras (see e.g. [Hual4]:

Definition 2.2. A grading-restricted vertex algebra is a vertex algebra (V, |0), Y) whose
vector space V is Z-graded,
V= V. (2.1.3)
nez
together with alinearmap L(0) : V — V defined as L(0)v = nvforv € V), satisfying
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(1) Vipy = 0 if n is sufficiently negative, and dim V(,) < oo for all n € Z (grading-
restriction condition)

2
[L(0), Y (v,2)] = ;—ZY(U, 2)+Y(LO)v,2)

for v € V. (L(0)-bracket formula)

Note that a vertex operator algebra (V, |0), ¥, w) is automatically a grading-restricted
vertex algebra with L(0) and L(—1) given by the usual modes of the Virasoro field
Y(w,z). If a € Vi), we say a has weight wta = n, and then a, is homogeneous of
weight —n + wta — 1.

2.2. The setup. Let us now set up the VA limit of a family of grading-restricted vertex
algebras.

Definition 2.3. Let (V)

gether with a set of injective connecting maps fyn : VM — VN forall M < N
satisfying

() fvk o fun = fuk foral M < N < K.

(2) fnn =W yn forall N.

(3) The fyn preserve grading and the vacuum element.

(4) For fixed n € Z, dim V(% = dim V(Q’) for all sufficiently large M and N.

(5) There is an n such that V(lr\l’) = 0forn < n forall N.

be a sequence of grading-restricted vertex algebras to-

We then call (VY| fyn) a grading-restricted direct system.

A few remarks are in order:

(1) For such a grading-restricted direct system, define W™ = @y VY, and 1y :
VN — W the canonical inclusion map. Let D C W be the subspace generated
by elements of the form ¢7 (1) — iy o fyrn(u) forany M < N andu € VM We then
define V™ to be the (linear) direct limit of the system (V" fy;n) given by

V® =1lim VN = w®/D . (2.2.1)
—
(2) We also define fy to be the linear maps
v VYN S v® v v, (2.2.2)

where [w] denotes the class of w € W in V°. The maps fx are injective by
injectivity of the fiy/n and satisfy fiyy = fy o fyn forall M < N.

(3) We insist that the connecting maps are injective. This is mainly for convenience, as
it will make it easier to work with bases later on.

(4) We say the homogeneous subspace V(% is saturated if condition (4) holds for all

N > M .Inparticular, the homogeneous components flf,;’ 1)\, : (”‘1”) — V(Ir\l’) are bijective

if V! is saturated.
(5) Note that the connecting maps fyy do not need to be VA-homomorphisms. The
system (VN furn) does therefore not define a direct limit in the category of VAs.
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(6) For more on direct limits in the context of VOAs see for example [CMY22].
We mention two immediate lemmas:
Lemma 2.1. Any u € V™ can be written as u = fy () withv € V¥ for some N.

Proof. By construction, a general element u € W can be written as
1
w=>y "), (22.3)
i=1

where u' € VMi for a set of integers {M;}. This means that [u] € V° can be written as
Y/_y fu, (). Taking N = max{M;},

I I
u=3" v fun @) = f [Z fM,.N(v')} . (22.4)
i=1 i=1

O

We will often write u = fy (u’V) =: u” and suppress the fy, where equality in V>

is understood, call " the representative of u in V. It is unique in V" because fy is
injective.

Lemma 2.2. V° is graded by weights with finite-dimensional homogeneous subspaces.

Proof. V° is graded because W is graded and the fj;y preserve the grading, so that

quotienting by D preserves the grading. Let ®¥ := U, @,1}’[ be a homogeneous basis of

VM that is dD,]:’I a basis for V(%. For a fixed n, let M be such that V(% is saturated. By

Lemma 2.1, any vector u € V(C,’S can be written as fy (u™) for some vector u”, where

we can take N > M. Because the homogeneous components f’ Zf,;l[)\, are bijective, u” can

be expressed as a linear combination of the vectors in jf,;’ ])V(CDQ” ), meaning that u can
be expressed as a linear combination in fj, (q),]:’[ ). Moreover, since the fj, are injective,
the vectors fy;(®;) are linearly independent, so that ®,, := fM(CD,’y ) is indeed a finite
basis of V3. ]

It follows that
O = U @, (2.2.5)
n

with the @, constructed as above is a homogeneous basis of V. We will frequently
use this basis in what follows.

2.3. The restricted dual. Tt will be useful to work with the dual space of limit VAs. The
dual space (V>°)* of V° itself is given by the inverse limit of the system (V" fysn).
For completeness, let us give the standard definition and properties of this construction.

Let ( yN )* be the dual of V. Define the surjective, dual connecting maps (bonding

maps) f1;n : (VV)" — (VM) forall M < N by
(fun @), u) = (', fun @), (2.3.1)

forallv’ € (V¥)"andu € V™, where we introduce the evaluation map (v', u) 1= v'(u).
Then for all M < N < K the following relations hold

fun © fakx = fux- (2.3.2)
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Definition 2.4. The inverse limit of the duals is defined by

tim (V) = (' e [T (VM) ojy = fuw @) forall M < N). (23.3)

For every M, there exists a canonical surjective map
NY* m\* /
Ty : lim (V ) — (V ) Ve vy, (2.3.4)
Pt
such that

M =f1(,1N07TN, (2.3.5)

forall M < N. The entry v’ is therefore the representative of v’ in (VM)*.
Iy Uy, P

There is a canonical (linear) isomorphism (V*°)* = lim (VN )*, with the canonical
pairing given by

W, u) = Wy, u"). (2.3.6)

Note this definition does not depend on the choice of representative "V of u since

(W, uy = W)y, fun@™)) = (frn Oy, u™) = (), u). (2.3.7)

When working with VOAs (or grading-restricted VAs), it is better not to work with
the full dual space V*, but rather the restricted graded dual V' of V, defined as

V=V cv (2.3.8)
For Vit is given by

vy =P (2.3.9)
We can characterize it by restricting to v’ € (V°°)* such that

v/|v&<; =0 foralmostalln . (2.3.10)

2.4. Vertex operators and matrix elements. In Sect. 2.2, we defined V*° = lim VN as

a grading-restricted direct limit. We now want to define the state-field map Yo, on V>
through its matrix elements:

Definition 2.5. Assuming that the limit exists, we define the matrix elements of Y, on
V> as

(U/, YOO(uv Z)w> =

= lim (v}, Yx(fun @), ) frn @), 24D

forall u, w € V® and v’ € (V®). Here uM € V™ and wX e VX are representatives
of u and w, and we assume N > M, K.

A few remarks:
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(1) This definition is independent of the choice of M, K: Choosing M’ > M, forexample,
we find that

lim (. Yn (fuarw @), ) few ()

= lim (v, Y (farn e @), 2) fien ') (2.4.2)
= lim (v, Y (fun @), 2) fien ).

(2) The limitin (2.4.1) is the ordinary limit in C order by order in the formal power series
in z. Equivalently, we can write Yoo (1, z)x as a limit in the restricted weak topology,
that is the weak topology with respect to the restricted dual V',

Yoot DJw = lim fy (YN(uN : z)wN) . (2.4.3)

We now use this to define the structure constants and the state field map on V°. Let
@ := |, ®, be a homogeneous basis of V>°. Because all V(‘,’f; are finite dimensional,

we can pick a homogeneous dual basis @, so that for b € ®,a € ¢’
(a,b) =dap - (2.4.4)

For convenience we will simply identify ® and @’ and their vectors. Since a, b, ¢ are
homogeneous, (a, Yoo (b, z)c) = (a, bwt(c)+wt(h)_wt(a)_1c)th(“)_Wt(b)_Wt(c). This leads
to the following definition:

Definition 2.6. Let (V" f;n) be a grading-restricted direct system, and ® a homoge-
neous basis of V> as above. For a, b, ¢ € ® with representatives a’V, bV, ¢V, define
the structure constants

N . N 1N N
Cape = (a”, bwt(cN)+wt(bN)—wt(aN)—1C ) 2.4.5)
and
. : N
glc;c = ngréo Cope - (2.4.6)

Assuming the limit in definition 2.6 exists for all a, b, c € ®, we define the map Y :
V® — End(V®)[[z,z7 1] as

Yoo (b, 2)C := Z th(“)_Wt(b)_Wt(C)Cglfca 2.4.7)

acd

Note that this definition is compatible with Definition 2.5. Also note that for conve-
nience of notation, we used the dual basis in the definition of C,p.; instead, we could
of course have considered Y (b, z)c and read off the coefficient of a, as Y (b, z)c =
Zae(b Zwt(a)fwt(b)fwt(c)cabca'
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2.5. The VA-limit. Let us now establish the first main result of our paper:

Theorem 2.3. Let (VV, fun) be grading-restricted direct system with limit V°°, |0) :=
fn(0)yn) for some N, and assume that the limit of all the structure constants as in
Definition 2.6 exists. Then (V°°,|0), Yoo) is a grading-restricted vertex algebra, the
(grading-restricted) VA-limit of the system (VY| fyn).

Proof. First we note that V' satisfies the grading-restriction condition due to (4) and
(5) of Definition 2.3. This immediately implies that Y, (v, z) is a field for any v because
Voo 1s grading-restricted, i.e. wt(a) is bounded from below.

Next,

Yoo(u, 2)/0) = lim In ¥y, 2))0) = Jim v +0@) =u+0() (25.1)

establishes creativity, and limy_, oo fy(Yn(|0), 2)u") = u establishes Yoo (|0), z) =
lyco.

To show the L(0) bracket formula, note that the L(0)-operator commutes with the
connecting maps in the sense that

SN Ly (0)v) = Ly(0) fun (v), (2.5.2)
and that L(0)v = limy_ o fN (L x(0)v™). It then follows

= lim fy((Ly(0), Yn @V, 2)lu™)
= Jim_ fN(j—ZYN(vN, uN + Yy (Ly (0N, 2yu (2.5.3)

d
= d_ZYoo(U, Du + Yoo (LO)v, 2)u,

where we can exchange limit and the formal derivative term by term in the formal power
series.

Finally, let us prove that Y, satisfies Borcherds’ identity. Let ® be a homogeneous
basis of V°°. By [GK21], Borcherds’ identity is satisfied if the following condition on
the structure constants holds: Defining

Jj1 = wt(b) +wt(a) —wt(d) —n — 1, jo = wt(c) +wt(b) —wt(d) —k — 1,
Jj3 = wt(c) +wt(a) —wt(d) —m — 1, (2.5.4)

foralla,b,c,e € ®

m . n . n
Z <j1> edeCdap = Z(_l)]2 <j2)C§§dC§§c N Z(_1)13+" (B>C§gdc§2€
ded

ded® ded
(2.5.5)
holds for all k, n, m € Z such that ji, j», j3 > 0.
Note that due to the condition j; > 0 and the grading-restriction condition of V',
for fixed k, n, m only finitely many weights wt(d) contribute. Since the homogeneous
subspaces V(ff; are finite dimensional, the sum over d € ® has only finitely many terms.

We can thus find an N that gives representatives aV, bV, N eN dV If N is large
enough, then the d" form a basis for the relevant homogeneous subspaces V@’). The

analog of identity (2.5.5) with structure constants C é\éc is then automatically satisfied
for all N, since the Yy are vertex operator maps. We can thus take the limit N — oo of
those identities, and exchange the limit with the finite sum over d € ® to establish that
(2.5.5) holds for the structure constants C2; . O
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3. A (Non-)example: Tensor Power VAs

Let us now construct some examples of such limits. Our first example is in a sense a
non-example: the assumptions of Definition 2.3 are not satisfied, and even though the
VA limit exists, it turns out to be a VA that violates the grading restriction axiom, and is
hence not a grading-restricted VA. However, the example will serve as a useful starting
point for the permutation orbifolds discussed in the next section.

3.1. Seed VAs and tensor products. Let V be a grading-restricted VA that is of the form

o0
Vv =Cl0) & D Vi - (.11

n=1

In the context of VOAs, this is usually called a VOA of CFT type. We call V the seed
VA. For future use we note that for such a VA, unless a € C|0),

Caj0yjo) = Clojajo) = Cloyjoya =0, (3.1.2)

because of the identity and creativity properties.

Now let us consider tensor products of the seed VA V. Let Iy :={1,2,...,iny} be
the set of the first i)y numbers. Denote by V&Nl the |Iyy|-th tensor power of the seed
VA, with the grading given by the sum of the gradings of the individual factors. Clearly
this is again a grading-restricted VA of the form (3.1.1).

For future use, it will be useful to describe a basis of this tensor product VA in the
following way: Let W be a homogenenous basis of V with |0) the basis vector for V(q,
and a be a function Iy — V. We define the weight of a as

lal = ) wi(a(i)) , (3.1.3)
iely
and its support as
supp(a) :=1{i € Iy : a(i) # |0)}. 3.1.4)

Such a function a defines a vector in V®!/N| by

a=@Q)ali). (3.1.5)

iely

which by abuse of notation we denote by the same symbol a. Let F ,’1\/ be the set of
all such functions a : Iy — W of weight n. It is then clear that (by the same abuse
of notation) FV = U, F N forms a homogeneous basis of V®!/¥|. Next, for a tensor

product state v = ®i€11v v; € VOIUNI we define its support
Ky =supp(v) :={i € Iy 1 v; ¢ V(0)}. (3.1.6)

For vectors that come from functions as in (3.1.5), the two definitions of support of
course agree. Since V®¥ is a direct sum of vector spaces of definite support, in the
future we will mostly work with states of definite support, and extend our results by
linearity if needed.
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3.2. Connecting maps. Now assume that |/y| is monotonically growing in N. For all
M < N we define the connecting maps

yelnl _, yolly|

8MN :
V1 Q... > V1 Q... Uy RIN®...x®10). (3.2.1)
~— ———
HnI=I1m|

(V@INI g1y is then not quite a grading-restricted direct system: It is clear that con-
ditions (1)—(3) of Definition 2.3 are satisfied, and by virtue of (3.1.1), so is (5). Unless
V is trivial however, the dimensions of most V(QELI f’)l will diverge, so that (4) is violated.

However, we will now prove that it is still possible to define a VA structure on V°.

3.3. Duals. We can construct the dual spaces in the same way as before: the duals of
the components are

k
(V®|1N|> — (V*)®|1N‘ , (331)
where the canonical pairing is given by
IIn|
(W ®...®@ vy, 11 ®...@vy) =] [v] v). (33.2)

i=1

As before, we construct the dual (V®>®)* as the inverse limit, and the restricted dual
(V®XY as the appropriate subset.

For what follows however it is useful to construct an appropriate decomposition of
(V®). Let |0) € V} be the unique functional satisfying (|0)’,|0)) = 1 and define
connecting maps on the dual spaces for all M < N by

By <V®\1M|)/ N (V®|1N\>’
N ®...QU P U ®...Qu, ®0)...[0).
—— ———

nl=1m|

(3.3.3)

These are again connecting maps, so that we can take the direct limit of the system
®|IN| ko~ . ®l * ®00 * BT ®l * . . o . .
I(IE;;S )", gmn)-Note that lim (Ve c (ve>)" = lim (V®')". This gives injective

’ *
= . ®|In| ; ®[In|
o () — )

(3.3.4)
V® ... QU - [V ®... @l
We can use this to find an orthogonal decomposition of (V®°°)/:
Lemma 3.1. Forall N € N,
(V) = Im@n) € Im(gn)* . (335)

where Im (gN)J‘ is the annihilator of Im(gn).
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Proof. Consider (V(%OO)*. We know that for all N, Im(gn)m) C (V(%OO)* is finite

dimensional, and satisfies
Im(gn) )y = Im@EN)n) - (3.3.6)

Pick a basis {e}} of Im(gn) ) and a dual basis {e;} of Im(gn) ). Then define P (v) :=
> i(v,ei)el. In the usual way, v = P(v) + (v — P(v)) then gives the decomposition
(VRO = Im(@n) oy @ Im(gn)y,» from which (3.3.5) follows. O

3.4. The vertex algebra V®>.

Theorem 3.2. The limit (V®, |0), Yoo) of the system (VN , gpn) exists and is a vertex
algebra.

Proof. Note that we cannot directly apply Theorem 2.3 because, as pointed out above,
the grading restriction condition is not satisfied, and in general dim V&‘; = o0. First, we

show that Yo is well-defined. Let M be such that u, w € Im(gy) and V' € (V®°°)/.
The vertex operators are defined as

WV, Yoo, 2)w) Wy, Yn @, 2w?) (3.4.1)

= lim
N—oo
We first note that for u, v € V®HUul

Yn(gmn @), 2)gun () = Y (u1, 2)v1 ® ... ® Y (w1, 2)vj1,,| @ (|0) VN I=aDy
= gmun (Ym(u, 2)v)) (3.4.2)
Now we use the decomposition (3.3.5): For v’ € Im(gm)™,
(', Yoo, 2)x) = lim {vly, Yn (g ('), Dgman (™)
lim (vy, Yy @, 2)w") =0, (3.4.3)
N—oo

while for v/ € Im(gy), we find that

(U/’ Yoo(u, z)w) = lim (U}v, YN(MN, Z)wN>
N—o00
= lim V. ®...0 v, & (0 ®(|1N|_|IMD’
N_)oo< 1 11y @ (10)) (344)

Y(ui, 2)wi ® ... ® Y(ujy,|, 2)ws, @ (10)EUNI=ID)
= (V. Y@, 2w™).

Hence the structure constants C,p. converge and Yo, exists. Moreover, Y is a state-
field map since wt(a) > 0O for all vectors a. Creativity, identity and the L(0) bracket
formula follow by the same argument as in Theorem 2.3.

Finally, Borcherds’ identity follows by a similar argument as in Theorem 2.3. The
complication here is that the homogeneous components V(?S are no longer finite dimen-

sional, so that we can no longer find a N such that the 4" are representatives of a basis
of V(‘:l‘)’. However, note that by construction of the tensor product that if a, b have rep-
resentatives a”, bV, then buya € Im(gy), which has finite dimensional homogeneous

components. We can thus pick a finite basis d" of Im(gy) and insert it in the same way
as in Theorem 2.3 to establish Borcherds’ identity. O



Limits of Vertex Algebras and Large 3135

We note that in this specific example, the connecting maps gun actually are VA
homomorphisms. Therefore, we could have constructed V> as the direct limit of (not
grading-restricted) VAs, without worrying about convergence of the structure constants.
If the seed VAs are VOAs, then the gy are still not VOA homomorphisms, since the
conformal vector does not get mapped to the conformal vector.

3.5. An action by Sx. We established that tensor product VAs have a large N limit.
This limit however is not a grading-restricted VA. For this reason, we want to investigate
limits of permutation orbifolds instead.

For ease of notation, let us take Iy = {1, 2, ... N} for the moment. Any permutation
o € Sy acts naturally as an VA automorphism on V®V by

0 VI®... 8 UN =Vs-1() ® ... Q V-1 (3.5.1)

The symmetric group Sy is thus a group of automorphisms of V&V

Forall M < N, define connecting maps ¢y : Sy — Sy by mapping a permutation
o € Sy to the corresponding permutation o € Sy, that acts trivially on the last N — M
objects. Clearly, the ¢y satisfy

dNKk o dunN = duk forallM < N < K (3.5.2)
¢ny = 1forall N. (3.5.3)

Furthermore, they are compatible with the connecting maps g/ in the sense that
guN (0 - v) = dun(0) - gun (), (3.5.4)

forallv € V®M and o € Sy.

In view of the above, it is tempting to try to define limits of symmetric orbifold VAs
in the following way: Define S as the direct group limit of Sy under the connecting
maps ¢mn, Soo = [y SN/ ~¢uy- Then Soo acts on VE® by

o-u= gN(GN cuM). (3.5.5)

This definition is independent of the choice of representatives. Then Sy, is indeed a
group of automorphisms of V*°:

0 - (Yoo, 20) = lim o - gy (e, o)

L N N N
= Jim gy (o7 (rx e, 20™))

lim gy (YN(O,N N oM. UN) (3.5.6)
N—o0

= lim gy (Yw(@ 0", " o™
=Ys(o-u,z)o-v.

Since Soo is an automorphism of V°°, we can now in principle consider the fixed-point
VA (V®°°)S°°. However, this does not lead to an interesting result, since (V‘X""’)SOc is
trivial: By Lemma 2.1, any vector v in V°° will be in Im (g ) for some N. To be invariant
under all transpositions (M, N + 1) with 1 < M < N, v has to be the vacuum vector.
For this reason we need to take a different approach to limits of permutation orbifolds.
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4. An Example: Permutation Orbifolds

4.1. Connecting maps for the permutation orbifolds. In Sect.3.5, we constructed an
action of the permutation group S);,| on the vertex algebra V@IINI Let us now consider

the action of a permutation group Gy < S|, . Define the projector from VOIUNT onto
VN .= (V®|1N|)GN as
1

= — 4.1.1
|G @1D

TN
(TEGN

To construct a basis of V¥, we start with the basis FV of V®¥| defined in Sect. 3.1.
Note that Gy acts on a € FV by o o a(i) = a(o~'i). Clearly, a homogeneous basis
for V) is then given by

oV = U oV dN =y (FYy. (4.1.2)

n o n

neN

The number of elements in this basis is given by the number of orbits of functions of
weight n under G y, which we denote by b, (Gy),

DY = b, (Gy) . (4.1.3)

Next, we want to define connecting maps. For this, we introduce some notation, following
[GK21]:

Definition 4.1. Let I C Iy.

(1) Denote by G§ = {0 € Gylko € K, Vk € K} the setwise stabilizer of .

(2) Denote by G§ := {0 € Gnlko =k, Vk € K} the pointwise stabilizer of K.

(3) Let G(K)" be the permutation group defined by the action of G’1$ / GIIS on K. Note
that G(K)" is the restriction of Gy to K in the natural sense.

Note that G% is a normal subgroup of GX | so that definition (3) makes sense.
We now construct the connecting maps fj,y recursively:

Definition 4.2. Define the linear maps fy;y : VE/M! — VN in the following way:
fvn = 7N (4.1.4)

For v € V®INI with definite support supp(v) =: C,,

IGNIIG]

T AI)
|GN+1||GN+1‘ ’ |

fune1(v) = TN+1 0 N, N+1 (V) (4.1.5)

and fyyn = fN_1.80- - -0 fars1.m+20 far.m41 for N > M. We then define the connecting
maps fyy : VM — VN as .
Jmn = funlym . (4.1.6)

As we will see, the unwieldy prefactor in (4.1.5) is necessary for the structure con-
stants to converge. Below we will give a much nicer expression for the homogeneous
components f 15,",84 in the case when V(I:l]) is saturated. But first, we need to impose some

additional conditions on the family G y to ensure that the system vV, fmn) is indeed
a grading-restricted direct system as in Definition 2.3.
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4.2. Nested oligomorphic permutation orbifolds. Following [GK21], we make the fol-
lowing definition:

Definition 4.3. Assume || < |Iy+1]. Let the family of permutation groups (G y)yeN

satisfy the conditions:

(1) The numbers b, (G ) converge for all n.

(2) For every finite set X C N, there is a group G (K) such that G(K)N = G(K) for N
large enough.

3) GUy-1)N < Gy_; forall N.

We then call Gy nested oligomorphic.

Proposition 4.1. Let V be a seed VA as in (3.1.1), G y a nested oligomorphic family of

permutation groups, VN = (V®‘1N|)GN and fyn as in Definition 4.2. Then (VN , fyrn)
is a grading-restricted direct system.

Proof. (1)-(3) of Definition 2.3 follow immediately by construction of the fjsy, and
(5) from the form of V. The nesting condition (3) in Definition 4.3 implies that if two
elements of V®!/N-11 are in different orbits under G y_, then they are also in different
orbits as elements of V®U¥ under G y; hence Sfn—1,n is injective. Finally, (4) follows
from (1) in Definition 4.3. |

Lemma 4.2. Fix n. IfV(% is saturated at M and N > M, then

N ogi oy =y oglhy . (4.2.1)
Proof. Saturated means that b, (G ) = b,(Gy). As in the Proof of Proposition 4.1,
the (iterated) nesting condition (3) implies that different Gy, orbits are in different
G y orbits, which together with saturation implies that the G orbits are in one-to-one
correspondence to Gy orbits. This means that if we pick a representative v of a Gy
orbit, then for any 0 € Gy, we can find t, € Gy such that 7, acts on gy (v) as
$mn (o) € Sn,

To 0 gUN (V) = pun(0) o gun (V) . (4.2.2)
Using this, we can write

TN © gy © Ty (V) = G 2 e g™ oo (v) (4.2.3)

JEGM
Z N o pun(0) o gMN(v) 4.2.4)

|GM| A
Z TN ©T5 O gMN(U) (4.2.5)

|GM| UGGM
=TNo© gM N(v) (4.2.6)
O

The lemma immediately implies
Corollary 4.3. Fix n. If V(% is saturated at N and M > N, then

e
IGNIIGY"]
= | —— - Moy, - 4.2.7)
IGull G|

Proof. Use Lemma 4.2 and induction in M. m|
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4.3. Structure constants. Now let us investigate convergence of the structure constants
for nested oligomorphic permutation orbifolds. Let a™, bV, ¢V e FV be basis vectors
of V®INI, By the remarks above, F N forms a basis of V®!NI The structure constants
of the tensor VA V®!/N| are given by

[In]
AN, bV, Ny = l_[c(aN(i), N (), N () 4.3.1)

i=1
where foralli € Iy, a™ (i), bY (i), ¢V (i) € W are basis elements of the seed VA V, and
c@@ @), b (i), N (i) (43.2)

are the structure constants of the seed VA V. By the remarks above, d>,11v =nan(F, ,]ZV ) is
a basis for V(lr\l/). We choose a basis &, of V(C;lo) by picking M large enough so that V(%
is saturated, and then taking

@, = fu (@), (4.3.3)

from which we obtain a homogeneous basis ® of V°, & = Un ®,.Nowleta, b, c € ®.
We want to compute the structure constant

: N
e = lim - 43.4)

To do this, first write ¥ = fyu(a™). By Lemma 4.2, for simplicity we can actually
choose a¥ ¢ FM , that is as a representative of the orbit wya™. We then have

N _ N
Cavon ey = C @) fun 6M) fra (e

AKCa i AK AKC. 1/2
_(1GuPIG IIG1IG | T (@™
~ GBIk 6k .
IGNPIGY NG IGNT) oo

o2gmn (M), o3gmn (™)) (43.5)

where 0 = (01, 02, 03). To investigate the limit of C /\f\, ~.n» We use theorem 2.5 in
[GK21] to rewrite it in a form that makes the N dependence manifest. We can do to this
because (4.3.5) is essentially their equation (28), the only difference being a prefactor
that depends on M, but not on N, and therefore does not affect convergence as N — oo.
To do this, let us first introduce some notation. We will write K1, IC, KC3 for IC, ICp, ICe.
We write K;; = K; UK and K23 = Ky UKo UK. Finally we define the triple overlap
set IC; = K1 N Ky N K3 and the one-point set K, = K123 — (K1 N ) U (K NC3) U
(K2 N K3)). Next we observe that

AN@V, bV, Ny =0 unless K,=0. (4.3.6)

This follows from the fact that c¢(a, b, ¢) = 0 if exactly two of the arguments are in C|0),
as discussed around (3.1.2).

Theorem 2.5 of [GK21] then gives the following expression for the structure con-
stants:

AK L AR ks ) 2
Cliper = (1IGMPIGNIGNIG )
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x Y MuK, Ny Y MNoigun @), kaoagun M),
[kleS [o]lex; G(K})

k303gmn (™)) (43.7)

where o = (01, 02, 03) € G;,3, Kk = (k1, k2, K3) € G;ﬁ and

S =GYE\Gy x Gy x Gn/Gh' x GR2 % Gh? (4.3.8)
as a set, where G%ag is the diagonal subgroup of Gy x Gy X Gy. Finally, « =
(k1K k2KCh, 3KC;) and
MKy K A 1/2
GReR 68 Y K =y
M(IC, N) = |GNHG§1U)C2UK3|2 o= (439)
0 else

The crucial observation here is that in (4.3.7), only M (« /C, N)) depends on N: For N large
enough, we can find an N-independent representative for [«] and [o']. With this choice,
the arguments of ¢V have N-independent support, so that the structure constant ¢V of
the tensor product VAs does actually not depend on N. For a more detailed explanation
of this, see [GK21].

4.4. The VA limit of permutation orbifolds. From Proposition 4.1 and the results in
Sect. 4.3, we conclude that the existence of the VA-limit of nested oligomorphic permu-
tation orbifolds only depends on the behavior of M (x/IC, N):

Corollary 4.4. Let V be a grading-restricted VA as in (3.1.1), and Gy be a nested
oligomorphic family. Then the grading-restricted direct system (VN | farn) defined as
in Proposition 4.1 has a VA-limit ifthe M (IC, N) convergeas N — oo forall Cy, KCa, K3.

The following lemma shows that the M (/C, N) are actually bounded:

Lemma 4.5.
O<M(K,N)<1. 4.4.1)

Proof. Note that GAYB = GANG®E. Denote G; = é’;’ and G;; = G;NGfori # jetc.
The inequality is trivially satisfied if KCp # 0. If I, = 0, then K1 UK, UK 3 = KL UK,
etc., so that G;; = G123. We claim that

|G111G2|[G3|

|G1G2G3| =
|G 123/

(4.4.2)

To see this, note that by the usual argument we have |G1G2| = |G1]|G2|/|G12|. Next
consider the orbit of the set G| G, under the right action of G3. The stabilizer subgroup
under this action is G123: On the one hand, because G123 < G2, G1G2g3 = G1G»

if g3 € Gi23. On the other hand, if g;g223 = 218283, g3g;1 = g;lgf]glgz, so that
8383 U stabilizes K1 N K, pointwise; clearly it also stabilizes K3 pointwise. But because
Ko = @, we have (K1 N K2) UK3 = K; UK, U K3, so that g3g;' € Gios. The
orbit stabilizer theorem then implies that the orbit has length |G3|/|G 23], from which
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it follows that |G1G2G3| = |G1G2||G3|/|G123] = |G1]|G2||G3]/|G123]? as claimed.

Plugging this into (4.3.9) gives
MKy AKy AK N\ 1/2
Gy GV G
M. Ny = (1Gv On GhT) 4.43)

|G NI

from which the claim follows since the numerator is a subset of the group in the denom-
inator. |

Because the M (KC, N) are bounded, it is possible to find a VA limit of V¥ by picking
a convergent subsequence of V. More precisely, since the basis ® is a countable set,
so is the set of structure constants Cyp. With a, b, c € ®. We can thus order them, and
then, for the first structure constant, pick an infinite subsequence of N for which all
necessary M (K, N) converge, giving a limit C3p . for this structure constant. We can
apply this procedure recursively to all triples of basis vectors: in the k-th step, we keep
the first k terms of the (k-1)-th subsequence, and then pick an infinite subsequence of
the remaining terms for which the k-th structure constant converges. In total this gives
a subsequence of V¥ for which all structure constants converge, automatically satisfy
Borcherds’ identity and hence define a state-field map Yoo. In summary:

Theorem 4.6. Let V be a grading-restricted VA as in (3.1.1), and (G y) yeN be a nested
oligomorphic family of permutation groups. Then we can find a grading-restricted VA
V' that is a limit of an appropriate subsequence of the system (VN , fayrn) of permuta-
tion orbifolds.

5. The Large N Limit of VOAs

5.1. Large central charge limit of virasoro VOAs. Let us now discuss the large N limit
of vertex operator algebras. As the most basic example, let us start out with a sequence
of Virasoro VOAs of increasing central charge.

Let VN = Vir.y be the Virasoro VOA of central charge ¢N for some ¢ > 1 with
conformal vector " . For each N, we define a re-scaled copy of the Virasoro algebra

by taking &V := :‘)—% and Yy(@",2) =, LN 772 satisfying

- - 1 ~ c
(LN, LN = ﬁ(m—n)LZ+n+Em(m2— D, _nly . (5.1.1)
Now define

1
AnA0) =10y, finh = TN‘”N =aV (5.1.2)

and recursively

IR
fin(L_,a) = —=LZ, fin(a) . (5.1.3)

VN

The maps f1n are clearly bijective, so that we can define connecting maps

fun = fino fiy - (5.1.4)

These clearly satisfy the conditions of Definition 2.3.
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We claim that the VA-limit is given by the following grading-restricted VA: Define
the Lie algebra

(L2, L] = %m(mz )8 nly (5.1.5)

which acts on the graded vector space Vire := U(L®) Qu o0 C|0), where as usual
(=D

L°|0) = 0 for n > —1. Together with the state-field map ¥ (0™, z) = >, L;’,OZ_”_2
this is then indeed a grading-restricted VA, the grading operator being L(0) = Lg°.

To see that (Vire, Y) is indeed the VA-limit of the above system, note that Vire, =
li_r)n Viren as a graded vector space. To show that the structure constants C ZI\;C converge

to Cyp., proceed as following: Evaluate

bN N (5.1.6)

recursively using Borcherds’ identity until it is a linear combination of terms the form
L,ﬁvl e fo{ |0). Then commute modes LY with n > —1 to the right, picking up commu-
tator terms from (5.1.1). The result is a linear combination of states a, from which we

can read off the structure constants C %C. The point is that this computation differs from

the computation of C  using (5.1.5) only by terms of order O (N ~1/2) ‘50 that

abc

o =CN +O0N"?), (5.1.7)

abc

so that Vir is indeed the VA-limit of Vir.y. It is however not a VOA, since (5.1.5) is
not the Virasoro algebra.

5.2. Mobius-conformal VAs and unitary VAs. The above example shows that the VA-
limit of a family of VOAs is in general not a VOA. However, it is not just a grading-
restricted VA, but also a Mobius-conformal VA [Kac98]. That is, even though it no
longer contains a full copy of the Virasoro algebra, it still contains a copy of the global
conformal algebra s/, (C).

Proposition 5.1. The VA-limit (V°, |0), Yo) of a system of VOAs of CFT type is a
grading-restricted Mobius-conformal VA of CFT type.

Proof. Since VOAs are special cases of grading-restricted VAs with L(0) = Lo and
T = L(—1) = L_j, the only thing left to prove is the existence of the operator
L(1). We simply define it as the weak limit of lev, L(Du := limy_ o LiVuN. Since
Lév , Lﬁ I lev satisfy the commutation relations of the Mobius s/, (C) Lie algebra, so do
L(0), L(—=1), L(1). |

Let V be a Mobius-conformal VA of CFT type. We say a € V is quasiprimary if
L(1)a = 0. V is then spanned by all quasiprimary fields and their L (—1)-derivatives
(see e.g. Remark 4.9d in [Kac98]). On V, define the bilinear form B from

awta+wib—1b =1 B(a, b)|0) . (5.2.1)

From skew symmetry it follows that

B(a,b) = (=)™ pp a) . (5.2.2)
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We have

B(a, L(=1)b) = L(=1)awta+wrb + [L(=1), awta+wr1b = —(Wta + wtb) B(a, b) ,
(5.2.3)
where we used that ayig+wipbd = 0. (5.2.3) shows that if we know B on the subspace
of quasiprimaries, its value on all descendants follows. In particular, if two quasipri-
maries are orthogonal to each other, then so all are their descendants. Finally, if a, b
are quasiprimaries, then B(a, b) vanishes unless wta = wtb: Using the commutation
relation

[L(D), an] = —(n+2 —2wta)an+1 + (L(1)a)n+1 (5.2.4)
we have
L(Dawtarwir—2b = [L(1), awtarwir—210 = —(Wth — wWta)awtarwip—1b
= (wWta — wtb)B(a, b)|0) . (5.2.5)

The state on the left hand side has weight O and is therefore the vacuum. However, since
the vacuum is not in the image of L(1), it must vanish. It follows that either wta = wtb
or B(a,b) = 0. In total we have that B restricted to the subspace of quasiprimaries is
blockdiagonal.

Finally, let us say a few words about unitary VAs. We often want to work with
VAs whose bilinear form B is non-degenerate. From (5.2.3) it follows that for this it
is enough to ensure that B is positive definite on all (finite dimensional) subspaces of
quasiprimaries of a given weight. An example of VAs with such a B are unitary VAs: If
the VA V is unitary, then for a, b quasiprimary with wta = wtb the bilinear form B is
related to the inner product through

B(a, b) = (|0), azwia—1b) = (6(a), b) (5.2.6)

where 6 is the anti-linear involution and (, ) the positive definite Hermitian form on V
[DL14]. If we choose a real basis, that is 8 (a) = a, then the bilinear form B is given by
the same matrix as the inner product, so that it is in particular non-degenerate.

Assume we have a system of unitary grading-restricted VAs V" with connecting
maps fyn that preserve the anti-linear involutions and inner products 6y and (, )y,
that is Oy o fyn = fun o Oy and (u, v)y = (fun @), fun(v)). Then the VA limit
V' is again unitary, with O () := fy(@n@™)) and (1, v)oo := @, vV)y. These
are clearly again an anti-linear involution and a positive definite Hermitian form.

We note that the connecting maps for permutation orbifolds introduced in Defini-
tion 4.2 are compatible with the unitary structure.

6. Factorization

6.1. Factorization in VAs. The example discussed in Sect. 5.1 has another interesting
property. Taking a closer look at (5.1.5), we see that V™ is a special kind of VA: it
factorizes.

Definition 6.1. Let V be a vertex algebra. We say V factorizes if there isaset A C V
of vectors that generate V and that satisfy

lan, bm] = D(a, b, n,m)1y (6.1.1)

for some function D foralla,b € A andn, m € Z.
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In physics, such VAs are also called free field theories. To avoid confusion with the
notion of a free algebra, we use the term ‘factorization’ instead.

For VAs that factorize, computations become quite simple: Using Borcherds’ formula,
expressions such as matrix elements or correlation functions can be written in terms of
modes of generator fields. These modes can then be commuted through, picking up
identity operators only. The matrix elements can thus be obtained by so-called Wick
contractions.

For completeness, let us make this more precise (see for instance also Sect.3.3 in
[Kac98]). Using

[Y(a,2), Y (b, w)] = Y ¥ (anb, w)d\8(z — w) (6.1.2)
n=0
it follows that
[Y(a.2).Y(b.w)] =Y 1yD(a.b.n,—1)3y8(z — w) (6.1.3)
n=0

since forn > 0, a,b = a,b_1|0) = [a,, b_1]|0) = D(a, b, n, —1)|0).
If V is grading-restricted and all generators are homogeneous, we can say something
more: (6.1.2) then implies that

[Y(a,z), Y (b, w)] = 1y B(a, b)d" @O =Dsz _ ) (6.1.4)

which in turn fixes the commutator to be

[an, bu] = B(a, b)IV( >8n—wta+1,—m+wtb—1 . (6.1.5)

wta + wth — 1

Define the annihilation part Y*(a, z) and the creation part ¥~ (a, z) of a field as

Y(a,z) =Y (a,2)+Y (a,2) = Zanzf"*l + Zan17”71 . (6.1.6)
n>0 n<0
‘We then have
[Y*(a,2), Y5 (b, w)]=0. (6.1.7)

This follows from (6.1.5) for the Y ~ commutator, and from [a,,, b,,]|0) = Oforn, m > 0
for the Y* commutator. Finally we have

B(a, b)
(Z _ w)wta+wtb 14

B(a, b)
(Z _ w)wta+wtb v

[Y*(a,2), Y (b,w)] =i,y (6.1.8)

(Y™ (a,2), YT (b, w)] = —iy,; (6.1.9)

where i, ,, indicates taking the formal power series given by the series expansion of the
function for |z] > |w]|. The functions appearing on the right-hand side are often called
Wick functions in physics.

We can use these commutators to compute correlation functions

(10), Y (u1, z21)Y (u2, 22) . .. Y (un, 20)10)) . (6.1.10)
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To do this, we first use Borcherds’ identity to recursively write out ¥ (, z) in terms of
(residues of) products of generators Y (a, z), giving a correlation function

C={(0),Y(a1,z1) - Y(am, zm)|0)) . (6.1.11)

We then split all fields into creation and annihilation parts and commute the annihilators
to the right, where they annihilate the vacuum, Y *(a, z)|0) = 0. This leaves only terms
with creation parts and with Wick functions. However, due to the grading, any terms
containing creation parts will have a vanishing matrix element when paired with |0).
The correlator (6.1.11) is thus simply given by a sum over all possible product Wick
functions,

B(a;,aj) .
o= 2pery, H{”f}gl’ Gz g eng . (6.1.12)
D m o
Here Pn2 denotes all partitions of the set {1, 2, ..., n} into disjoint pairs, and the product

is over all such pairs in the partition p. In physics this is called Wick’s theorem. It is the
analogue of Isserli’s theorem in probability theory.

6.2. The large N limit of symmetric orbifolds. Before proving the general theorem, let us
give one more example of a large N limit that factorizes. Consider symmetric orbifolds,
that is permutation orbifolds for which G y = Sy . These were worked out as an example
in [GK21]. Picking vectors vy, va, v3 with supp(v;) = K; and |K;| = K;, (4.3.9) is given
by

6.2.1)

(N — KDIN — K)I(N — K3)! >”2

Mk, N) =
G, N) (N!(N—%(K1+K2+K3—nt(’€)))!2

Here we defined n; (k) := |11 N k2K N «3/C3| as the length of the triple overlap set
under the configuration . Using Stirling’s approximation it follows that for n;(x) > 0,

MK, N) = O(N"®/2) (6.2.2)
for N — oo, and for n, (k) =0
MKIC,N) — 1. (6.2.3)

This establishes that only configurations k contribute that have n,(«) = 0. Theorem 6.4
below will show that therefore symmetric orbifolds indeed factorize in the large N limit.
For the moment, we want to use (6.2.2) to discuss how symmetric orbifolds are generated.

Definition 6.2. Letv € VN := (VOIN)ON We say v is a single-trace if |supp(v)| = 1.
We say v € V™ is single-trace if v = fy (v"V) for some single-trace vector v".

Proposition 6.1. Let V° = 1i_r)n(V®N VSN be the limit VA of symmetric orbifolds. Then
V' is generated by single-trace vectors.

Proof. First let us prove that V" is generated by single-trace vectors using induction in
n = |supp(v)|. The base case n = 1 is immediate. Let v have |supp(v)|. We can write

W=y @’ 01" ®[0)®- - ®10) (6.2.4)
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Next define u¥ = 7y (0" ®10)---[0)) and w =7y W' @ - - @ v" 1 ®|0) - --|0) We
then have
oV = ulfle +... (6.2.5)

where the . .. are vectors of support length n — 1 or less. By induction, this establishes
that V" is generated by single-trace vectors.

Next consider v = fy(v") € V>. Consider C., = (x,u_jw). By (6.2.2), the
structure constant vanishes unless n, = 0, which implies that [supp(x)| = n orn — 2.

The former automatically implies that x = v. It follows that
vV=u_jw+--- (6.2.6)

where the states in ... have support n — 2 or less. By induction it follows that V*° is
also generated by single-trace states. O

As a side remark, let us mention that even if the seed VA V is finitely generated, V>
is not:

Proposition 6.2. Unless V is trivial, V> = li_n)l(V@’N VSN is not finitely generated.

Proof. For any finitely generated VA, the asymptotic growth of log dim V{;) forn — oo
is bounded by A /n for some constant A. On the other hand, log dim V(‘fl‘; ~ n/logn as
n — oo (see e.g. [BKM15]). |

6.3. Factorization for oligomorphic permutation orbifolds. Now we want to establish
under what conditions oligomorphic permutation orbifolds factorize in the large N limit.
To this end, we first introduce the following definition:

Definition 6.3. We say a family of permutation groups (G n) yeN has no finite orbits if
for every finite non-empty set K C N, the length of the orbit of /C under Gy diverges,

ON(K) = 00 (6.3.1)

Proposition 6.3. Let G y be nested oligomorphic. Then M (IC, N) — 0 for all configu-
rations IC such that IC; # O if and only if G y has no finite orbits.

Proof. Assume G y has no orbit of finite length. If KC; # @, then éﬁl ng CA}§3 C G’;’.
By the orbit-stabilizer theorem we have O (K,) = |Gy |/IGN'| = |Gy |/IGN11G (K,
where we take N large enough so that condition (2) of Definition 4.3 applies. From (4.4.3)
it follows that

MU, N) < IGK)IPon(En ™ = 0. (6.3.2)
Conversely, let IC be a set whose orbit length Oy (K) is bounded. Consider the configu-
ration Ky = Ky = K3 = K. Using (4.3.9), we have

651\
M(K,N)=<ﬁ> = |G(K)I Fon) 12, (6.3.3)

which does not converge to 0. O

Theorem 6.4. The large N limit of oligomorphic permutation orbifolds with no finite
orbits factorizes.
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Proof. Clearly V™ is generated by states of definite support. Take u = my (") and
v=n" "), whereu®, v¥ have support K,,, KC,. We can specialize Borcherds’ identity
to obtain the following expression for the commutator (see e.g. [LL04]):

m
[um, vp] = Z (k ) (k) man—k (6.3.4)
k>0
We evaluate the structure constants C5.,, = (w, urv) by using (4.3.7). We first note that

any configuration with «3/C,, # 2/, automatically vanishes. This follows because for
k > 0, u(i)x|0) = 0 and (|0))xv(i) = 0. For configurations with 3/, = k2, the
structure constant does not vanish only if x{/C,, C k3K,. However, if «1/C,, # @, then
K; # @, so that by Proposition 6.3 C{Xuv — 0. It follows that C2 = O unless IC,, = 0,

that is w € CJ0), which implies that indeed only the identity operator appears in the
commutator. ]

6.4. Uniqueness of factorizing VAs. Finally let us briefly discuss uniqueness of VAs that
factorize. Define F¥ to be the factorizing grading-restricted Mobius VA generated by a
quasiprimary v of weight k > 0. Thatis, Y (v,2) =), v,z with modes

[Vn, o] = IV( )8n—k+l,—m+k—1 , (6.4.1)

n
2k — 1
acting on U (V) ®Uv(<]) C]0) , where the vacuum |0) is as usual annihilated by s/(2). Its

character is |
Zi(v) = ]_[ S (6.4.2)
ok (I—q™

To see (6.4.2), we only need to establish that the vectors v_y, v_p, - - - v_p,|0),n; > Oare
linearly independent. But this follows from the fact that their duals maps (|0), v, +2k—1
-+ VUp42k—1-) are rank 1 and form a dual system to the vectors above, as follows from
the commutation relations (6.4.1).

Proposition 6.5. Let V be a factorizing grading-restricted Mobius VA of CFT type with
non-degenerate bilinear form B. Then V is isomorphic as a VA to

®Nj

= é (Fk) (6.4.3)

k=1
for some numbers Ny € Ny.

Proof. Foragrading-restricted VA V, denote by V(<) := Py <, Vix), and denote U" :=

R (Fk)®Nk. By induction in n, V(<,—1) = U("S_nl_l). Denoting

-1
W =Ug;) (6.4.4)
we can use the fact that B is non-degenerate to decompose V() = W @ W+. Note
that all vectors in W+ are quasi-primary: otherwise W+ would contain a descendant
of a quasiprimary of lower weight, which would therefore be in W and not in wt.
We can thus choose a (in general complex) basis v’ of W+ such that B(v', v/) = §; iz
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This leads to commutators of the form (6.4.1), and since the v’ are orthogonal to each
other, we have W+ = ((F")®dim WL)(n). Because the v’ have higher weight than all
quasiprimaries in U, they are orthogonal to them. It follows that V(<n) can be written

o (@ (P)),,, vit iy = dim - D

In particular this implies that as long as the VA-limit factorizes and has a non-
degenerate bilinear form B, then the limit is unique, that is independent of the choice of
connecting maps fy/n.

Let us summarize the various results that we have found for the physically most
relevant case of unitary VOAs of CFT type:

Proposition 6.6. Let VYV be a family of unitary VOAs of CFT type together with connect-
ing maps fyn forming a grading-restricted system as in Definition 2.3 and compatible
with the unitary structure. If the structure constants C ‘% . converge for all basis vectors,
then the VA-limit (V°, Yoo ) exists and is a grading-restricted unitary Mobius VA of CFT
type. Moreover, if this V° factorizes, then the limit is unique up to isomorphism: that is,
if (VN, fun) and (VV, fMN) are two systems whose connecting maps f and f both
satisfy the above conditions and whose VA-limits both factorize, then the two limits are
isomorphic as grading-restricted VAs.
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