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Abstract: Sulfur cements have drawn significant attention as binders because sulfur is a byproduct of
fossil fuel refining. Sulfur cements that can be formed by the vulcanization of elemental sulfur and
plant-derived olefins such as terpenoids are particularly promising from a sustainability standpoint.
A range of terpenoid-sulfur cements have shown compressional and flexural properties exceeding
those of some commercial structural mineral cements. Pozzolans such as fly ash (FA), silica fume (SF),
and ground granulated blast furnace slag (GGBFS) and abundant clay resources such as metakaolin
(MK) are attractive fines for addition to binders. Herein, we report 10 composites prepared by a
combination of sulfur, terpenoids (geraniol or citronellol), and these pozzolans. This study reveals
the extent to which the addition of the pozzolan fines to the sulfur-terpenoid cements influences their
mechanical properties and chemical resistance. The sulfur—terpenoid composites CitS and GerS were
prepared by the reaction of 90 wt% sulfur and 10 wt% citronellol or geraniol oil, respectively. The
density of the composites fell within the range of 1800~1900 kg/m? and after 24 h submersion in water
at room temperature, none of the materials absorbed more than 0.7 wt% water. The compressional
strength of the as-prepared materials ranged from 9.1-23.2 MPa, and the percentage of compressional
strength retained after acid challenge (submersion in 0.1 M H,SOy for 24 h) ranged from 80-100%.
Incorporating pozzolan fines into the already strong CitS (18.8 MPa) had negligible effects on its
compressional strength within the statistical error of the measurement. CitS-SF and CitS-MK had
slightly higher compressive strengths of 20.4 MPa and 23.2 MPa, respectively. CitS-GGBFS and
CitS-FA resulted in slightly lower compressive strengths of 17.0 MPa and 15.8 MPa, respectively.
In contrast, the compressional strength of initially softer GerS (11.7 MPa) benefited greatly after
incorporating hard mineral fines. All GerS derivatives had higher compressive strengths than GerS,
with GerS-MK having the highest compressive strength of 19.8 MPa. The compressional strengths of
several of the composites compare favorably to those required by traditional mineral cements for
residential building foundations (17 MPa), whereas such mineral products disintegrate upon similar
acid challenge.

Keywords: sustainable composite; terpenoid; sulfur; hybrid organic-inorganic composite; sulfur
cement; polymer cement

1. Introduction

The modern infrastructure of human civilization—roads, bridges, houses, etc.—is
largely built from cement and petrochemical products. The ecological toll of cement and
plastic manufacturing is staggering [1-4]. There is a clear and pressing need to develop
alternative structural goods that can be recycled or synthesized more sustainably, using
renewably sourced or waste-product precursors [5-7]. The materials studied herein have
the potential to serve as alternatives for ecologically less advantageous materials. Many
terpenoid—sulfur cements have shown compressional and flexural properties surpassing
those of some commercial structural mineral cements [8-11].
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Terpenes and terpenoids are olefins that can be produced by a variety of plants,
algae, and bacteria that have tremendous potential to replace petrochemical olefins and
develop a greener economy [12]. In addition to naturally occurring plants, genetically
engineered organisms have been designed to efficiently produce terpenoids [13-17], to
the extent that techno-economic assessment suggests terpenoids are competitive with
petrochemical olefins for some markets [18,19]. In durable structural materials, terpenoids
have found use in more sustainable tars and bitumen for asphalt [20-28] and in sulfur
cements/composite materials [8-10]. The sulfur used in sulfur cements is a byproduct of
fossil fuel refining, which is annually produced in megaton quantities of unutilized material
for valorization [29-37]. Upon heating with olefins, sulfur undergoes a low-temperature
(<200 °C) reaction to crosslink the olefins via a process known as inverse vulcanization
(Scheme 1) [31,38]. Whereas classic vulcanization is a process used for strengthening natural
rubber, by reacting it with small amounts of sulfur and, thus, producing primarily materials,
inverse vulcanization employs sulfur as the bulk component, so that more mineral-like
strength profiles can be attained. The inverse vulcanization route is advantageous because
it is both a simple and an up-to-100% atom-economical way of producing recyclable
composites, which maintain favorable properties that are competitive with commercial
materials [35,39-41]. As such, the inverse vulcanization process has been used to prepare
high sulfur-content materials (HSMs) for a wide range of applications [34-36,42-53] in
lithium-sulfur batteries [50,51,54-56], infrared imaging [57], water purification [58-62],
and fertilizers [46,63,64]. A wide range of sulfur cements has also been prepared by the
inverse vulcanization of olefins [65-67]. In previous work, for example, we demonstrated
that sulfur cements comprising fatty acids as the sustainable olefin source [7,68-74] could
be combined with pozzolanic fines from industrial waste such as fly ash (FA), silica fume
(SF), or ground granulated blast-furnace slag (GGBES) as well as abundant clay resources
such as metakaolin (MK), to form a variety of durable composites. Mineral, industrial
waste, and fiber fillers are all important for both extending composites and providing them
with enhanced physical characteristics. Especially notable advances in these areas have
been achieved in fiber-reinforced polymer materials [75-78].

>159 °C 0 St
),

network solids

Scheme 1. Heating elemental sulfur produces radicals that add to olefin 7t bonds to yield cross-linked
high sulfur-content materials (HSMs) via a process known as inverse vulcanization.

In the current work, it was of interest to evaluate the extent to which the addition
of fines to sulfur—terpenoid cements influences their mechanical properties and chemical
resistance. Sulfur—terpenoid cements comprising 90 wt% sulfur vulcanized with citronellol
oil (CitS) or geraniol oil to yield (GerS) were used as the binders for these studies. The
fines used for this study were FA, SE, GGBFS, and MK. Combination of the fines (10 wt%)
with CitS binder yielded CitS-FA, CitS-SF, CitS-GGBFS, and CitS-MK, while combination
with GerS binder produced composites GerS-FA, GerS-SE, GerS-GGBEFS, and GerS-MK. The
density, water uptake, and compressional strength before and after acid challenge were
evaluated for the two binders alone as well as for the eight derivative composites.

2. Materials and Methods
2.1. Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) data were acquired using a Mettler Toledo
(USA) DSC 3 STAR® System from —60 to 140 °C, with a heating rate of 5 °C min~! under a
flow of N, (200 mL min~!). Each DSC measurement was carried out over three heat—cool
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cycles to screen out thermal history. The data reported were taken from the third cycle of
the experiment. The first cycle is used for removing solvent impurities. The melting and
crystallization transitions as well as the glass-transition temperature were observed in the
third cycle.

2.2. Compressional Measurements

Compressional measurements were acquired on cylinders (Figure 1) using a Mark-10
ES30 (USA) Manual Test Stand equipped with a Mark 10 M3-200 Force Gauge (USA) by
a modified ASTM C39 standard. Terpenoid-sulfur composite materials were aged for
4 d prior to compressional strength testing. The four-day aging period was selected after
assessing material properties over shorter and longer times for one set of samples, and
the properties were leveled off after four days. Longer-term stability is not known for
these materials.

Cits CitS-MK CitS-SF CitS-GGBFS  CitS-FA

R,

GerS GerS-MK GerS-SF GerS-GGBFS GerS-FA

(b)

Figure 1. Representative photos of compressional cylinders of CitS-derived (a) and GerS-derived
composites (b) before (upper row in each image) and after (lower row in each image) acid challenge.

2.3. Chemical Precursor Sources

Terpenoids (Alfa Aesar, Ward Hill, MA, USA or Sigma-Aldrich, St. Louis, MO, USA)
and elemental sulfur (99.5%, Alfa Aesar) were used without further purification. Fly
ash (FA), silica fume (SF), and ground granulated blast-furnace slag (GGBFS) pozzolanic-
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cement components were purchased from Diversified Minerals, Inc., Oxnard, CA, USA,
while metakaolin was manufactured by Opptipozz, Sandersville, GA, USA.

2.4. General Synthesis of Terpenoid—Sulfur Composites

CAUTION: Heating elemental sulfur with organics can result in the formation of
H,S gas. H,S is toxic, foul-smelling, and corrosive. This procedure follows the reported
method [8]. A 180.0 g sample of elemental sulfur was added to a 2.5 L Erlenmeyer flask.
The vessel was placed in a thermostat-controlled oil bath set to 180 °C and stirred with an
overhead mechanical stirrer equipped with a stainless-steel stir rod and vane. Elemental
sulfur was initially heated at 120 °C. Upon further heating, the viscosity of elemental sulfur
increased, and a deep red color characteristic of polymeric sulfur radicals was observed. At
this point, 20.0 g of citronellol for CitS or geraniol for GerS was added to the flask dropwise
with rapid stirring for 35 min, over which time the color changed to a deep brown color.
After cooling to room temperature, the materials were rigid brown to black solids that were
readily remeltable and could be shaped into compressive test cylinders by pouring into
silicone molds. A total of five independent samples were prepared for each measurement.

2.5. General Procedure for Addition of Fines to Binders

CAUTION: Heating elemental sulfur with organics can result in the formation of H,S
gas. HjS is toxic, foul-smelling, and corrosive. This procedure follows a reported method
for adding fines to fatty acid—sulfur cements [37]. Approximately 27 g of the requisite
binder was melted in a 125 mL Erlenmeyer flask equipped with a Teflon-coated magnetic
stir bar. The flask was submerged in a thermostat-controlled oil bath set to 180 °C. Once
the binder had fully melted, the corresponding pozzolan (10 wt%) was added with rapid
stirring. After rapid stirring for 10 min, the mixture was removed from the heat, and
cylinders for compressional analysis were prepared by pouring the molten mixture into
silicone cylinder molds.

3. Results and Discussion
3.1. Component Properties and Preparation of Composites

The binders for this study were terpenoid-sulfur cements prepared from the reaction
of either geraniol oil or citronella oil with molten elemental sulfur at 180 °C for 35 min
according to the reported procedure [8]. These particular terpenoids were selected for the
current study because citronellol is a monounsaturated compound, whereas geraniol is a
diunsaturated compound and, thus, is capable of additional crosslinking. The reaction of
citronella oil or geraniol oil with 90 wt% sulfur, thus, led to CitS and GerS, respectively,
as homogeneous brown solids (Figure 1). These binders are remeltable to form a free-
flowing brown liquid phase at temperatures above 120 °C. The thermal and morphological
properties of CitS and GerS derived from differential scanning calorimetry (DSC) are
summarized in Table 1. The data in Table 1 are reported for the third heating cycle in each
case, such that i) their thermal history effects can be removed and ii) their comparison to
the reported data for other HSMs, which are also widely reported from the third heating
cycle, is allowed.

Table 1. Properties of terpenoid-sulfur cement binders and comparison to elemental
sulfur (orthorhombic).

. ° o AH,, 13l AH, P! Percentage
Materials Tg/°C Tm/°C g g Crystallinity ]
Sg NA 119 45 NA 100
CitS NA 114 ND ND ND
GerS —-37 116 25 20 23

[al Integrated heat of melting for the orthorhombic sulfur melt transition. P! Integrated area for all cold crystalliza-
tion transitions. [! The reduction in the percentage of crystallinity of each of the samples was calculated with
respect to sulfur (normalized to 100%).
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The DSC data for all of the composites reflect the typical behavior observed in the
third heating cycle of other high sulfur content materials (HSMs) [46,79-83]. The glass-
transition temperature (Tg) near —37 °C observable in the DSC thermogram is particularly
notable, as it is the diagnostic for the polymeric sulfur domains and, thus, confirms that, as
previously reported [8], the binders are covalently crosslinked network materials rather
than physical blends of terpenoids with sulfur. The other features in the DSC thermograms
correspond to a sulfur melting temperature (T,) near 118 °C, a monoclinic—orthorhombic
crystal morphology transition near 106 °C, and cold crystallization features. Before adding
fines, the binder crystallinity can be assessed by integrating thermal features according
to Equation (1), reflecting the successful conversion of crystalline orthorhombic sulfur
domains to amorphous polymeric sulfur domains in the structures [19].

AH,, — AH_
Axe=1-— «100% 1)
‘ { AH,,5) — AH(s) }

where Ay, a dimensionless variable, is the change in the percentage of the crystallinity
with respect to sulfur; AHy, , in units of ] /g, is the melting enthalpy of the binder material;
AH,., in units of ] /g, is the cold crystallization enthalpy of the binder material; AHm( S)s
in units of J/g, is the melting enthalpy of sulfur; and AHs), in units of J /g, is the cold
crystallization enthalpy of sulfur.

The pozzolans selected for the current study were fly ash (FA), silica fume (SF), and
ground granulated blast-furnace slag (GGBFS) and the abundant clay resource metakaolin
(MK). These materials were selected on the basis of their established utility as additives to
more traditional mineral cements, affordability, abundance, thermal and chemical stability
under planned composite preparation conditions, and, in the case of FS, SF, and GGBFS,
classification as industrial waste products. Chemically, these fines are oxides or silicates
of Ca, Si, Al, and Fe (Table 2). The fineness moduli for these materials (Table 2) were
determined by weighing the particles passing through progressively finer ASTM-certified
sieves (numbers 18, 30, 50, 100, and 200), according to the reported procedure [37,84].

Table 2. Fineness moduli (F) and compositions for pozzolans used in this study.

Materials Fineness Modulus Primary Constituents
Silica Fume 3.78 Si0,
Fly Ash 2.53 SiOz, CaO, A1203, Fe302
Ground Granulated . .
Blast-Furnace Slag 3.35 2Ca0-5i0,, CaAl;SiOg
Metakaolin 4.63 Al»Si, Oy

The preparation of composites was effected by following a procedure from the litera-
ture for preparing composites of the same fines with an oleic acid—sulfur binder comprising
90 wt% sulfur [37]. Briefly, the binders were first melted down in an Erlenmeyer flask
above its melting point of 120 °C. The requisite fine was then added with rapid mechanical
stirring, and the stirring was continued for 10 min to ensure homogenization. Each molten
composite mixture was poured into a series of cylindrical molds and allowed to set for four
days, giving brown cylinders (Figure 1).

Scanning electron microscopy (SEM) imaging with element mapping by energy dis-
persive X-ray analysis (EDX) was undertaken to assess the distribution of the mineral
components in the GerS-derived materials. SEM/EDX data previously reported for GerS
showed a uniform, homogeneous distribution of S, C, and O in the absence of mineral
additives. In the current case, the distribution of geraniol-derived C and of sulfur remained
homogenously distributed in the composites, while well-dispersed particles high in Si and
O content were also observed for the minerals (Figure 2).
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Figure 2. SEM/EDX data for composites reveals the presence of mineral additive well-dispersed in
the homogeneous GerS binder for the GerS-derived materials.

3.2. Physical and Mechanical Properties

Several key metrics were assessed to evaluate the composites’ viability as struc-
tural materials. The density of the materials (Table 3) is 1800~1900 kg/m?, thus meeting
American Concrete Institute (ACI) standard ACI-213R and ASTM 169C guidelines for
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lightweight structural materials [85,86]. These densities are also similar to commercial com-
posites such as fiber-reinforced resins (i.e., Lyondell Basell product BMC 940-21769, with a
density = 1900 kg/m?) and are slightly higher than the densities of composites made using
ZOSy as the binder with FA (giving FAOS), SF (giving SFOS), GGBFS (giving GGBFSOS),
and metakaolin (giving MKOS), with densities that range from 1600 to 1700 kg/m?3.

Table 3. Properties of composites and binders.

Compressional Strength [¢]

Density [# Water L pued  AfterAcid  Strengin
. ensit s-Prepare er Aci ren
Materials (k g/nE;) U}()tatlz/e)[b] (MPa) (MPa) (% é;f
wth As-Prepared)
CitS 1800 01+01 188 +23 158 £0.5 85
Cit5-MK 1800 0.2+ 0.01 204 £22 195+04 95
CitS-SF 1800 0.7£0.3 232 +£32 187 +1.3 80
CitS-GGBFS 1800 02+01 170+ 04 16.7 £ 0.6 98
CitS-FA 1800 02+03 158 +2.1 171+£12 108
GerS 1800 02+02 11.7+15 94+21 80
GerS-MK 1800 01+£01 19.8 +23 232+3.6 116
GerS-SF 1900 02+02 16.4 +0.9 142 +13 87
GerS-GGBFS 1900 02+£0.1 194+ 1.6 18.0 £3.1 93
GerS-FA 1900 02=+02 16.5 + 0.7 16.5 £ 0.7 100
OPC [d] 1500 Up to 28% 17 decomposed 0
Z0OSgg 1700 0.0 194 +1.8 ND ND
FAOS 1700 0.0 20.6 =5.7 ND ND
GGBFSOSs 1700 0.0 8.50 £ 0.1 ND ND
MKOS 1700 0.0 91+12 ND ND
PCOS 1600 0.1 22.0£0.1 ND ND
SFOS 1600 0.0 124+ 44 ND ND
GCNO ND ND 49.50 ND ND
GCN5 ND ND 57.17 ND ND
GCN10 ND ND 63.59 ND ND
GCN15 ND ND 38.79 ND ND
GCN20 ND ND 35.05 ND ND

[l Density is reported as the average of three measurements on cylinders used for mechanical testing. P! Water
uptake was calculated by measuring the mass before and after the cylinder was submerged in deionized water for
24 h (average of three trials). [! Average of three measurements with standard deviations. [4l Values for residential
building-grade ordinary Portland cement for foundations and footings.

Water uptake (Table 3) is another critical metric for building applications due to
the change in weight and strength of material after water absorption and the potential
for product deterioration and failure resulting from cyclic freeze-thaw expansion and
contraction. High sulfur-content materials (HSMs) generally have superior resistance to
water absorption. The water uptake of the composites, as required under ASTM D570 by
24 h submersion at near room temperature, likewise confirmed that none of the materials
absorb more than 0.7 wt% water, which is similar to the parent binder, despite the addition
of 10 wt% of potentially hygroscopic mineral oxide/silicate fines. This observation is in line
with the similar water-uptake values for the composites made using ZOSg as the binder.
The low water uptake of sulfur cement—pozzolan composites stands in sharp contrast to
the behavior of traditional mineral cements such as OPC, which absorb up to 28% water
under identical testing conditions.

The compressional strengths of the binders and terpenoid—sulfur-cement-derived
composites are displayed in Figure 3 and are summarized in Table 1 along with the data for
comparison to ZOSg and its derivative composites as well as metakaolin-based geopolymer
cements. With the exception of GerS, the binders and derivative composites all exhibited
compressional strength that was competitive with or exceeding that required (17 MPa)
for cement foundations and footings for residential buildings (ACI specification 332.1R-



J. Compos. Sci. 2023, 7, 35

90f13

06). The incorporation of fines into the already-strong CitS had a negligible impact on its
compressional strength within the statistical error of the measurements. In contrast, and
unsurprisingly, the compressional strength of the initially softer GerS benefited signifi-
cantly from incorporating the hard mineral fines. The previously reported ZOSg-derived
composites did not show such a predictable trend, with some of the composites showing
improved compressional strength and others showing diminished compressional strength.
Composites of fatty acid and sulfur, however, suffer from homogenization issues and have
been shown to exhibit reactivity between the acidic fatty acid chains and some metal oxides.
Such reactivity is not possible for the nonacidic terpenoids selected for the current study.

30.0

@ As Prepared

— 250 @ After Acid Challenge
&
2
< 20.0
o
[=
L
& 15.0
%)
2
A
o 10.0
Q.
£
o
© 50

0.0

& & 3 ) * o » <
& N b & « S K3 X < <
o € @'00 & e & & 8 & S

Figure 3. Comparison of compressional strength before (blue bars) and after (green bars) exposure to
0.1 M H,SOy for 24 h.

The compressive strength of the materials studied herein may also be compared to
previously studied geopolymer cements with variable quantities of mineral additives.
For example, a series of metakaolin geopolymer cements [87] was prepared including
GCNx having x wt% calcium aluminate. These materials exhibited higher compressive
strengths compared to the composites reported herein of the previously reported ZOSgg
and its derivative composites. These data reflect the superiority that purely mineral-
based materials can hold over the HSM cements reported to date, despite some HSMs
outperforming the ordinary Portland cement used in residential building contexts.

Previous work has demonstrated that sulfur cements can exhibit some properties that
are difficult for mineral products to attain, such as exceptional resistance to degradation
by acid [88]. Whereas mineral cements such as OPC generally have very low resistance
to acidic environments, some HSMs retain their full mechanical strength even after being
submerged in acidic solutions for 24 h [41]. To assess the extent to which the current com-
posites could withstand acid challenge, their compressional strengths were measured after
the cylinders were submerged in 0.1 M H,SOy4 for 24 h, conditions under which OPC loses
its structural and geometric integrity. The data from these analyses (Table 3 and Figure 3)
reveal that neither the binders nor the derivative composites exhibit any significant loss of
compressional strength within the range of statistical error.

4. Conclusions

Sulfur cements formed by inverse vulcanization of elemental sulfur and terpenoids
show potential as sustainable alternatives for OPC and other traditional materials. Inverse
vulcanization offers both a simple and highly atom-economical route for producing recy-
clable composites with favorable properties competitive with commercial materials. These
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properties include density, water uptake, compressive strength, and acid resistance. Adding
pozzolans to CitS had fairly negligible effects on the compressive strength within standard
error of measurements, so they could be used as fillers when economically advantageous,
without any significant changes in application. The mechanical properties of GerS, however,
benefited from the addition of pozzolans. Except for GerS, the compressional strength of
the materials was similar or higher than required for cement foundations and footings
for residential buildings (ACI specification 332.1R-06). The pozzolan-sulfur-terpenoid
composites reported in this study, thus, hold potential as more sustainable alternatives
for traditional cements and can be used in acid-contact contexts where ordinary Portland
cement is susceptible to degradation. Work to build on the current study is underway to
assess the influence of the quantity of the fines or other additives added to terpenoid-sulfur
and other organic-sulfur cements, to explore the mechanical robustness of the compos-
ites over time, and to assess the influence of other chemical and physical strains on the
long-term viability of the composites as cement surrogates.
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