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1. Introduction

In an environmental approach, one of the most significant concerns in population dynamics is the effect of harvesting
or stocking which plays a crucial role for optimal management of limited resources to ensure the balance in ecology [1-
6]. Harvesting indicates reducing the population size due to hunting, fishing, or capturing, which shrinks the population
density. The study of harvesting for one population was limited in [7-9], and in some situations, these are unable to
explain the actual situation better. More interesting situations are discovered when harvesting is implied for two or more
interacting population dynamics [10-13] that represent either coexistence or competitive exclusion by others. A global
behavior of predator-prey systems is analyzed under constant harvesting or stocking of either or both species in [14].
To present the pattern and visualize the effects of harvesting, reaction-diffusion equation is the constitutive equation of
population dynamics, e.g., competition and prey-predator models.
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We consider the efficient and accurate numerical approximation of the population dynamics in a reaction-diffusion
N-species competition model with harvesting or stocking, which is governed by the following system of nonlinear
evolutionary equations [15-17]: Fori=1,2,...,N

N
% =diAu+ru | 1= pi— :{;‘uj +fi, Y(t,x)€(0,T] x £2, (1.1)
together with known initial and boundary conditions (which are suppressed momentarily) where u;, d;, r; and p; represent
the population density, diffusion rate, intrinsic growth rate and harvesting or stocking coefficient of the ith competing
species, respectively. N denotes the number of species in the competition, if N = 1, the model (1.1) represents simple
logistic growth model of a single species. Here, K represents carrying capacity of the heterogeneous environment, f; the
forcing, t the time, x € £ the spatial variable, £2 the domain, and T the simulation end time. It is assumed that the
harvesting rate is proportional to the intrinsic growth rate in the model (1.1).

The difficultly in simulating Eq. (1.1) is that we need to solve a non-linearly coupled system of partial differential
equations at each time-step, where the intrinsic growth rates and carrying capacity all depend on space and time. It is an
open problem how to decouple the system in a stable way. A three-species competition-diffusion model with constant
intrinsic growth rate in a homogeneous environment (K = constant) without harvesting or stocking is given by Wong
in [17]. The author presented one first-order and another second-order decoupled time-stepping discrete schemes and
their convergence rates however only the first-order scheme in a finite element setting was analyzed, and no numerical
experiments were given beyond the convergence rate verification. The optimal harvesting in controlling species density
in a two-species competition model with a heterogeneous environment is investigated in [15], where a fully-discrete
backward-Euler decoupled time-stepping algorithm is used without any analysis of the discrete algorithm. A Lotka-
Volterra interactions model with no-flux boundary conditions in the presence of prey-taxis and spatial diffusion is given
in [18] and discussed the existence and uniqueness of the weak solution. Kamrujjaman et al. studied the spatial-temporal
effects for logistic and Gilpin-Ayala growth function with starvation type diffusion for single species population with
stocking [19,20]. They studied the stability properties for the existence and extinction of species. Also, in the case of space-
dependent carrying capacity, they established the presence of optimal harvesting efforts. They presented their outcomes
analytically and computationally. The main interest focused on the analytical approach instead of claiming any robust
numerical algorithm.

Significance of the work

In this paper, we propose, analyze, and test two fully discrete and decoupled linearized stable time-stepping algorithms
of a non-linearly coupled system of reaction-diffusion equations that describes an N-species competition model in a
heterogeneous environment with harvesting or stocking. We provide rigorous analysis of the existence and uniqueness
of the solutions of the algorithms together with the priori error estimates by proving their stability and convergence
theorems. We prove that the both algorithms are optimally accurate in time and space. The numerical tests are presented
showing their convergence rates on some known analytical test problems varying number of species. The solution at each
time-step can be computed simultaneously for each species in the competition, which can reduce a huge computational
cost when compared to coupled non-linear algorithms. A series of numerical experiments are given that show the
effect of exponentially varying carrying capacity, non-stationary intrinsic growth rates, varying diffusion parameters, and
harvesting or stocking on the population density of the species in the competition.

To the best of our knowledge, the proposed efficient fully-discrete algorithms of the N-species reaction-diffusion
competition model in (1.1) with harvesting or stocking have not been investigated to date. The proposed algorithms
are expected to enable new tools for large-scale computing in population dynamics.

The rest of the paper is organized as follows: In Section 2, we present some necessary notation and preliminaries
for a thorough analysis. We present two fully discrete decoupled schemes and analyze them in Section 3. In Section 4,
we perform several numerical experiments to support the theoretical findings in Section 3. Finally, the conclusion and
discussions of future research are given in Section 5.

2. Notation and preliminaries

Let £2 C RY(d € {1, 2, 3}) be a convex domain with boundary 2. For a given carrying capacity K : (0, T] x 2 — R,
we define

Kin = inf K(t, x)|, 2.1
min (t,x)el(gl,T]x.Q| (t, %) (2.1)

and assume Kpin > 0. The usual L*(£2) norm and inner product are denoted by ||.|| and (., .), respectively. Similarly, the
[P(£2) norms and the Sobolev W!’,‘(Q) norms are ||.||;» and ”'”W5' respectively for k € N, 1 < p < oco. The Sobolev space

WX(£2)? is represented by H¥(£2)? with norm |. ||, which are Hilbert spaces.
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For X being a normed function space in £2, L[P(0, T; X) is the space of all functions defined on (0, T] x §2 for which the
following norm

1
T i
lullwo.r:x) = (/ IIUIIf(dt> , pell,o00)
0

is finite. For p = oo, the usual modification is used in the definition of this space. We denote
e

The natural function spaces for our problem are
X:=Hy(2)={vel’(2): Vvel*(2)", v=0o0nde}

For an element f in the dual space of X, the norm is defined by

(f,v)
If |1 := sup :
b TR

Recall the Poincaré inequality holds in X: There exists C depending only on 2 satisfying for all ¢ € X,

ol < ClIVell.

We define the initial conditions u? = 1;(0, x), and u} = u;j( At, x).
Multiplying both sides of (1.1) by v; € X and integrating over 2, we have the following continuous weak form: For
i=1,2,...,N

au; ri(t, ®)u; N
(E, v,-) + d,‘ (Vu,-, Vvi) = (1 — m)(r,-(t, x)ui, U,‘) — K(t, X) ;u]', vi | + (fi, Ui) . (22)

The conforming finite element space is denoted by X, C X, and we assume a sufficiently regular triangulation t,($2)
for the inverse inequality to hold, where h is the maximum triangle diameter. We have the following approximation
properties typical of piecewise polynomials of degree k in X,: [21,22]

lu — PL I < CH* M ulyyy. u € HHY(), (2.3)
IV(u — P )]l < Ch¥{ulyyy, u € H'(2), (2.4)

where P)L(Z(u) is the L2 projection of u into X; and | - |, denotes the H" seminorm. Note that C > 0 is a generic constant
and changes in computation. The following lemma for the discrete Gronwall inequality was given in [23].

Lemma 2.1. Let N denote the set of all natural numbers and At, D, ay, by, c,, d, be non-negative numbers forn=1,...,M
such that

M-1 M

M
ay+ Aty by < AtY dan+ Aty i+ D for MEN,

n=1 n=1 n=1

then for all At > 0,

M M M-1
aM+Athn < (Athn+D> exp (AtZdn) for M € N.
n=1 n=1 n=1

3. Fully discrete scheme

In this section, we propose and analyze two fully discrete, decoupled, and linearized time-stepping algorithms for
approximating a solution of (1.1). The Decoupled Backward-Euler (DBE) scheme is presented in Algorithm 1, which
approximates the temporal derivative by first-order backward-Euler formula and the non-linear term is linearized by the
immediate previous time-step solution. In Algorithm 2, we present Decoupled Backward Difference Formula (2) (DBDF-2)
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scheme, which consists of second-order accurate time derivative approximation formula, and linearizes the non-linear
term by second-order approximation of the unknown solution at the previous time-step.

Algorithm 1: DBE scheme
Given time-step At > 0, end time T > 0, for i = 1,2, --- , N, initial conditions u{ € [*(2)%, f € I? (0, T; H'(£2)"),

Kmin > 0, and 1; € L0, T; L®(£2)?). Set M = T/At and forn =0, 1, ---, M — 1, compute: Find u”“ € Xj satisfying,
Yvip € Xp:

u?j{l — u?,h n+1 n+1y,,n+1
v di (Vu'y', Vi) = (1 — ) (¢ Dl vin)

(tn+l) n+1

b con Z o i | + (. vin) (3.1)

Algorithm 2: DBDF-2 scheme

Given time-step At > 0, end time T > 0, fori = 1,2, --- , N, initial conditions u?, u! € [*(2)1,

fi € 2(0, T; H'(22)%), Kimin > 0, and r; € L°(0, T; L(2)"). Set M = T/At and forn =1, ---, M — 1, compute: Find
ult e Xy satisfying, Yvip € Xp:

3uf ! — 4ul, +ufly!
2At

7Ui,h> +di (VUi Vi) = (1 — ) (€™ Dl vin)

rl_(tn+1 )uij-H N

- WZ(Zu}%h—uﬁ]),vm + (™), vin) - (3.2)
j=1

These types of splitting algorithms are commonly used in magnetohydrodynamics [24-26]. Throughout the analysis
of this paper, we will consider the following assumption:

Assumption 3.1. Let us assume that there exists a constant K* > 0 such that ||u, plloo <K*fori=1,2,...,N.

We will prove Assumption 3.1 holds true at the end of Section 3.2 in Lemma 3.5.
3.1. Stability analysis

In this section, we prove the stability theorems and well-posedness of DBE and DBDF-2 schemes. For simplicity of our
analysis, we define

1 )
a; = d; — ClIrillcc,c0 { 11— il + — ), fori=1,2,...,N. (3.3)
Knin

Theorem 3.1 (Stability of DBE). For i = 1,2,..., N, assume u, € [*(2)", fi € I? (0, T; H™'(22)7), r; € L®(0, T; L(£2)"),
Kmin > 0 and under Assumption 3.1, if a; > 0, then forany At >0

a2 +2alAtZ||Vu,h|| <l |2 +—Z||f "I (3.4)

n=1
Proof. Taking v;, = u"“ in (3.1), and using the polarization identity

(b—ab)= (Ilb—all + IbII* = llall?) ,

N \

gives

1
e (et = w12+ D 2 = 1) 4+ Vs 1 = (1= ) (e i)

l’n+1 n+1 N

| Tk Z ot |+ e ). (35)
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We apply Hélder’s inequality on the first two terms and Cauchy-Schwarz’s inequality on the forcing term on the
right-hand-side of (3.5), we have

S (I = w1 ||u?h||2) F VU < 11— oo g 2
. leu”“ll I loo + I 192 - (36)
K tn+]) j,h1loo 1 .

Using Poincaré inequality and Assumption 3.1, we have

2At(”un+l —uf mE+ ||u”+1 Iz — lluf, I ) +d; ||Vu"+l||2 <Cl1- M,|||r,|| (quoc )IIVu”+1||2
Clirill
L (0,T;Lo0(2)d
- . ( ) IV 2+ DA DI V- (37)
inf IK|
(t,x)e(0,T]x 2
Grouping terms on the left-hand-side and using (3.3), and (2.1), yields
3AL (i = 1P 4 2 = 1) + el Va2 < A DIVl (3.8)
Assume ¢; > 0, use Young’s inequality, and hide term on left-hand-side, to obtain
1
1 1 1
SAT (i = uf 1P 4 2 = 1) + *IIVU”+ & o — ™I, (3.9)

Now, multiply both sides by 2At, and sum over time steps fromn =20, 1,...,M — 1, we have

a1 +leu"+1—u,hll +a1ArZ||Vulh|| < Iyl +—Z||f " I2,. (3.10)

n=1 n=0

Now, dropping non-negative terms from left-hand-side completes the proof.

Theorem 3.2 (Stability of DBDF-2). For i = 1,2,....N, assume u?,. u!, € [(R)", fi € [?(0,T: H"(22)?), Kmin > O,
€ L®(0, T; L*°(£2)?), and under Assumption 3.1, if o; > 0O, then for any At > 0

M M
2At
Il + 120, — w1+ 20048 Y IVU 1 < P+ 1120, — uf D IREI,. (3.11)
n=2 ' on=2
Proof. Taking v;, = u in (3.2) to obtain
3ult! —qut +
( i,h ZAlth Ih , ;1?]—1) + d ”vun—H” ( )(rl(tn+1)u;1?1—l’ u:j,—h}—l)
tn+1 n+1
- th Z(zu],, =yl )+ (R ) (3.12)
Using the following identity
a®+(2a—-bP? b +2b—cP (a—2b+c)
(3a—4b+c,a) = +(2 ) - +(2 ) +( 2+ ), (3.13)
we write
e (I = 2 N2 = w12 = 2y = w12+ N = 20y + 50 ) + il V)
tn+1)un+1 N
= (1= ) (" Dy ") = Z = D |+ BT U (3.14)

K(t”‘H
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We apply Hélder’s inequality on the first two terms and Cauchy-Schwarz’s inequality on the forcing term on the
right-hand-side of (3.14), we have

1

i At(nu?rn — Nl 2005 = w1 = 2ty — w1 = 2 ) + il VP
< 11—l ol 2 4+ | S G Zn TP QI lso + 1]y lloo) + IAE DIl VU (3.15)
= MilllTi 00 K t”‘H) i hlloo i lloo 1 .

Using Poincaré inequality, Assumption 3.1, and grouping terms on the left-hand-side, to obtain

o (02 = 7 4 20— a2 = 2, — w02 2+ )
+ el VU < WDl Vag L (3.16)

Drop non-negative term from left-hand-side, assume «; > 0, use Young's inequality, and hide term on left-hand-side, to
obtain

517 B+ 120 = = 02y — ) + SR < S IR, (3.17)

i

Now, multiply both sides by 4At, and sum over time-steps fromn=1,...,M — 1 flmshes the proof.

Remark 3.1. The finite dimensional schemes Algorithm 1 and 2 are linear at each time-step and the stability theorems
provide their solutions are bounded continuously by the problem data, which is sufficient for the well-posedness of the
schemes. The linearity of the schemes provides the uniqueness of the solution via their stability theorem. Because of the
finite dimensional and linearity features, the uniqueness implies existence of the solution, therefore the solution to the
Algorithm 1 and 2 exist uniquely [25,27].

Remark 3.2. For arbitrarily small diffusion parameters d;, the problem may behave like singularly perturbed problems
for which the use of adaptive mesh generation is important, see [28,29]. For small diffusion term, the boundary layer
originated reaction-diffusion problem is analyzed in [30].

3.2. Convergence analysis

In this section, we will provide apriori estimates of the errors in the computed species density using the both DBE and
DBDF-2 schemes.
Theorem 3.3 (Error Estimate of DBE). For i = 1,2, ..., N, assume u; solves (1.1) and satisfies
up € L0, T; () N L(2)%), uie € L%(0, T; L2(£2)7), i € L0, T; L2(£2)1),
ri € L1 (0,T; L°(82)") .k > 2, and Kmin > O,

if a; > 0 then for At > 0 the solution u; to the Algorithm 1 converges to the true solution with
N N M %
PG EITAE ) :aim DIV (") - uzh)nz} < C(h* + At). (3.18)
i=1 i=1 n=1

Proof. At first we build an error equation at the time level t"*!, the continuous variational formulations can be written
as Vvi’h e Xp

(N+1Y _ 4,1
(5 uf,h) (V). Vn) = (1 ) (1 W), i) + (), vin)

l‘”+1 l’”+1

u'(tn+]) _ U'(l’n)
- t”“ ZUJ (™), v | + (# — Ui (t™), vig ) - (3.19)

Denote e} := u;(t") — uf,,. Subtract (3.1) from (3.19) and then rearranging yields

e —ef n+1 n+1y,n+1
Tl di (Ve[ Vi) — (1= i) (ri(t")ef ™, vin)

6
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(™) nt
+ Y K)o Wik vin | = GUE i vin) (3:20)
j=1
where
N
u.(tn+1) _ u,(tn) (tn+l tn+l
G(t, uj, vip) = (# - ui,t(t”“), Vin | + t"+] Z )}, Vi
j=1
Now, we decompose the errors as
e = u(t") —uiy = (w(t") = ) — (uy — ) =0 — oy,
where i := PL (u,»(t”)) € Xy, is the L? projections of u;(t") into X,. Note that (n', v;n) =0 Yv;, € X;,. Rewriting, we have
for Vih € Xh
o — o, (et
(#, vin |+ di (Vo Vi) — (1= ) (€™ e vin) + Z ' Ko "HU"h, Vi
j=1
N ri(t"t
=di (Vo™ Voin) = (1= ) (r(e™ i+ vin) + Y ( R "“ufh, v h> G(t, Ui, vi)- (321)
j=1

Choose v;, = ¢i”h“, and use the polarization identity in (3.21), to obtain

(||<z>"+1 Ol H N7 = N0 I1P) + dill Ve I — (1 — ) (™ gl o)

i,h > ¥ih

N
1 1 1 1 1y, 041 1
+Z(Kt"+1 e U,"h,ﬁﬁr):di(vﬂrr,V¢fh+)—(1—ui)(fi(tn+ i el
j=1

+ Z (rz t"+1 n+1 n ¢n+1> (l’ u;, ¢n+l) . (322)

j=1

Now, we find the upper-bounds of terms in the above equation. Using Holder’s, and Poincaré inequalities, we have
(1= 1) (5 00 = 11 =l ool 12 < €11 = il Irilloc. oo I VO 1.

Next, using triangle, Holder’s, and Poincaré inequalities together with Assumption 3.1, we have

- 1 1 ”rl tn+1 ”oo 1 1
n+ n n+ n+1,n n+
— u,
]21:<1< ) Pin i ) meHK )| (#0590 )’
il !
Z el [T P i

Kmm

C ” Ti ” 00,00
Kmin

IA

+1
VeI,

With the assumption «; > 0, use Cauchy-Schwarz, and Young's inequalities, to obtain

di (Vo™ Voli) < di vl T I Vel < ||V¢"“|| ||Vn"“|| .
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Using Holder’s, and Poincaré inequalities, Assumption 3.1, and Young's inequality, we have

(1= ) (™, @) < 11—l IrCe™ o Il 17
< €11 = willirllos,co ™ 11V

C(1 — iRl
< —nw”“n b 2,
1
: n I Dlloo | (vt 0 i
P ) < ’ g ’
]=21< tn—H) i J.h ¢l,h ) - Z 1nf||K(t”+1)|| ( (’b )
=l
<D e
j:1 min
Clirilloe,
= = v
min
n+1 ClI l'”2 n+1)2
< —nw) 12— |2,
lem
Now, we want to find the upper-bound of
N
1 w(E™) — uy(t") 1 (e (e 1
G(t, ui, o) = (T—um(t"“), ol ) + WZ{uﬁh—uj(t"“)},#h* ) (3.23)
j=1

For some t* € [t", t"*1], we use Taylor’s series expansion, Poincaré, Cauchy-Schwarz, and Young’s inequalities to obtain
the following bound for the first term on the right-hand-side of (3.23)

(1Y ot
(M — (), Bl 1) = 5 el 013

At 2
< 2 (). Valy)
< S MV
< 2 vl A 2

i
We can find the upper-bound of the last term on the right-hand-side of (3.23) using Taylor’s series expansion, Poincaré,
Hoélder’s, triangle, and Young’s inequalities together with the regularity assumption as

ri(t" (e ) (™ n+1
( () Z why — u(t" O} o

j=1

Cliri(t™ Dl

< u tn+1 —u t”'H n+1
~ inf K ()] 4 Z ( (D100
C” 1”0000 n+] n+1 n+1
= o it ||OOZ|| uly — w1Vl
ClIrillso.o0 | |
< Iy — eIV
j—Zl I<lTlll‘l

Clinli3,
< n+1 —u tn+l 2
< Z (m >+ R =g, — w(t)|

j=1 min

a Cliril% 00 &
< VeI + ’72 (Il = w2 + l(e") — w(e™)]?)
10 ik 5
Clrill% 00 o
i
< —nw"*1 I”+ o 2 QI + 2118717 + (A . (sMI1P)
min j=1
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Clirl2 Clirliy
< ZL vt |2 4 J110000 (k2 | Ap 2
< IVl LR G R ann

with s* € [t", t"*1]. Thus, we have
N
|G(t, i, g ) < —nw"“ 12+ C(R™2 4 (AtP) +C Dl I2.

Now, using the above bounds, we can rewrite (3.22) as

N
o
e (1905 = 81l + 190517 — 190l?) + SVl 1 =< 2 IIW"“II D19l
j=1
C(1 — pPllr(e™ )12 rill3
L GO = il )“oo”nm—]”z_l_ Clirills 2 C (K2 4 (Ar)R). (3.24)

. 1 2
i lem

Using the regularity assumption again, we obtain

N
T (||¢"“ Ol + 101> = pfwll?) + —||V¢”“|| < C(h* + (At)’) +C Z llpa . (3:25)
Dropping non-negative term from left-hand-side, multiplying both sides by 2 At, use ||¢, Wl =0, AtM =T, and summing
over time-stepsn=0,1,...,M — 1, to find
M —
12517 + it Y 1V I2 < At Y [ Y ligpal* | + (W + (Ar)?). (3.26)

Sumoveri=1,2,...,N, we have

N M N
D oM+ Ay (Zainww) < At Zc (Z (E ) +C(R* + (AtP). (327)
i=1 =1 i=1

Applying the discrete Gronwall Lemma 2.1, we have

N M N
Dol + Ay (Zainw:?huz) < C(h* +(At)?), (328)
i=1 n=1 i=1

which gives

M
16412 + At Y " IVeLI12 < C(h** + (At)?)  fori=1,2,...,N. (3.29)
n=1

Use of triangle and Young'’s inequalities allows us to write

M M M
leM' |12 + At Y Vel < 2 (||¢>,{”h||2 + At Y (VLI + I 17 + Aty ||Vn?||2) : (3.30)

n=1 n=1 n=1

Using regularity assumptions and bound in (3.29), we have
M
(T — ulh 1 + e At Y 1V (ui(e™) = uf) 1> < C(R* + (At)?)  fori=1,2,....N. (3.31)
n=1

Now, summing over i = 1, 2, ..., N completes the proof.
Theorem 3.4 (Error Estimate of DBDF-2). Fori = 1,2, ..., N, assume u; solves (1.1) and satisfies
up € L (0, T; H*(2)" N L¥(2)") i € L (0, T; LX(2)%) , uiwe € L (0, T; L*(2)Y),
i € L% (0,T; 1°(82)") .k = 2, and Kpin > 0,

if o; > O then for At > O the solution u;j to the Algorithm 2 converges to the true solution with

M 1/2
() =l + fowae D 19 w2} < i+ ae) (3:32)
n=2
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Proof. At first we build an error equation at the time level t"*!, the continuous variational formulations can be written

as Vv,-,h € Xy

3ui(t”+1) — 4u;(t") + U,‘(tn_l)
2At

, Ui,h) + di (Vu(t™), Voip) = (1= ) (r(e"™ (e ), vin)

tn+1 (" N 3y (6" — duy(E") + (e )
- t”“ Z (E"1), vin +< : 21At l — (£, Ui,h)

+ (f(E"™), vin) -
Subtract (3.2) from (3.33) and then rearranging, yields
(36,’7“ — el + ¢!

2

: Ui,h) +d; (VeI Vi) = (1= ) (r(e™ el vin)

N rl_(tn-H) rz tn+1
+ Z <K(t”+1)en+1( u] h u h )s Vi h) + Z ( (1) tn+1)(291 - e;_l)a Ui,h) = G(t, uj, vip),
j=1 j=1
where
3u(E™1) — 4uy(th) + wi(e!
G(t, uj, vip) = ( () ZlA(t Jrult™) (£, vi,h)
A () _
- W Z{uj(th) — 2u;(t") + y(t" 1)}, Vi h
=1

Now, we decompose the errors and rewrite, then for v; , € Xj, we have

A
N (+n+1 N n+1
+ Z <2§§n+1))¢:1h+](2uj,h - u] h ) Ui,h) + Z <;((in+];u( "'H)(Z([)] b ¢ ), Ui,h)
= S

N

r(e"h)
=d; (Vo™ Vo) — (1 — w) (€™ vin) + Z( 1 ) "H(Zuj,h —uly . Ui,h)
j=1

¢l1+1 4¢n + ¢'n*]
( 5 lt’h Y ) 4+ d; (Vo Vuin) — (1 — ) (r(e™ )l vin)

N ri(tn+1) n+] n )
+ Z K(tn+l)u( )(an i ) Vih | — G(f, uj, Ui,h)-
j=1

Choose v;, = ¢f:1, and use the identity in (3.13), to obtain

i (191512 = NI + 12675 = o1 = 126, — o051 +||¢““—2¢,-’}h+¢;},:1||2)

+ dill Vol 1> — (1= ) (™ Dl o) +Z(K ) din (Qufy — uy ),¢{}:1)

i i rl(th)U( aNoY ¢n 1, M) = d, (V n+1 Vd)n-H)
K(t”+1) Jh i,h - N
=

N
rx(tn+l)
— (1= ) (€™ i ) + Z (KI(th)’?nH(zujh —ul . et
=1

ZN (™) 1 -1 1 1
n+ n+ n+
" pu (K(t”“)u (e » i ) 6t a7
Now, we find the upper-bounds of terms in (3.36). Using Holder’s, and Poincaré inequalities, we have

(1= ) (€ DB o) < 11 = il Dlloo 07 12 < CIT = willilloc.c0 I V1%
10

(3.33)

(3.34)

(3.35)

(3.36)
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Next, using triangle, Holder’s, and Poincaré inequalities together with Assumption 3.1, we have

N 1 1 T, tn+l .
n+ n+ et
B ]Zl: (K t”+] (Zu" ) ¢ ) - Z ” K(tm+1) ’ u, ||oo||¢ ||
C T
3 l Wil g gt 2
Kmm

With the assumption «; > 0, use Holder’s inequality, Sobolev embedding theorem, Poincaré and Young’s inequalities, and

regularity assumption, we obtain

N
Iri .
—Z(K U2 — ¢ ) ) D= i s gy s 1267 — o7y
t Kmin

j=1

|1||E>OOC 1 1 1,1 -1
([T Gae|[PY [oXos ||2||V<i>”+ 121267 — &y |l

N
; Kmm
N
Clirill2,
< n+1 2 p—] 2
_g(m I” + ,K;m = 12¢% — ofy
Clirill%,
< —nwﬂ“n ’KZ anqh P
I

min

Use Cauchy-Schwarz, and Young’s inequalities, to obtain

di (V™ Veli) < dil| Vo Vel < ﬁnvw“n ||Vn“+‘|| .

Using Holder’s, Sobolev embedding theorem, Poincaré, and Young's inequalities, we have
1T = il (€™ Dl I IV

7(1 — i lIrill3
+—2 A
i

IA

(1= ) (€™ T, g )

7 IIV¢"+] I?

| /\

Using Holder’s inequality, and triangle inequality, Assumption 3.1, Poincaré, and Young’s inequalities, we can write

N
Nt i 1 Irillco s o
Z(x tnﬂ)? (20— ui"). ol Z o 20— o 9
j=1 _ min
Il
sZ T I 2N leo + Ty o) IV
min
C||r-|| .
= = Ve
min
Cliril, o
< LV n+12 _n+l 2.
< Ve el UM

min
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Using Holder's inequality, Sobolev embedding theorem, Poincaré inequality, regularity assumption, and Young's inequality,
we have

N N
> WO ertyan? — ) = 30 e ety g — g
< I((t“+1) 77] 77] i,h — J - Kmin L ’7] ’i] L

Iri
sZ e Lo 1 1 e - R A e

_ Knin
C”ri”oo,oo . it
f Z W ”ui”LOQ(O,T;H](Q)d) ||27]J || ||V¢ ”
j=1
Cll 1”
n+1 S lilloo, 00 n n112
S*||V¢ 1% + Z”Z —
mm

Using Taylor’s series, Cauchy-Schwarz and Young’s inequalities the last term is evaluated as

N
Clirl
_ o pnt1 2 = lTilloo,00 n+1
|-Gt < at il o 1) Znumn ~ (o) V00 |
+ CAC Uil 01,20 2) ||V<z>"+1 I
cattiinlig,
il v/ n+1 + 00,0
ZIve I’ el

min

Using these above estimates in (3.36) and reducing, yields

(NP g + 1200 ¢>,-'jh||2—||2¢>,-'fh—¢ R g - 200+ 0 ?)

4At
ClIrill%, 701 — i Irill2
—||V¢"“|| — e Z 126, — ¢ I? + IIVn"“II e e [/
Kmm = 20!,‘
ClirillZ, ClIrill3 _ CAt|nilZ,
N 2 Z 120 — 7+ —
lKmm Kmm i Kmm
2%k 2k+2
<C Z 1297, — ¢ 12 + Ch* + Ch? 2 4 c At (3.37)
Dropping non-negative term from left-hand-side, multiplying both sides by 4At, using ||¢fh | = ||¢£h || = 0, and summing
over the time-stepsn=1,2,...,M — 1, we have
M-1 N
%1% + 12605 — o511 + za,ArZ IV 12 < CAEY "y 11290, — ¢l 11> + C(h™ + At*). (338)
n=1 j=1

Sum overi =1, 2,...,N, drop non-negative terms from left-hand-side, and reducing, gives

M—-1 N
ann +2a,AtZvamn < CALY Y I + (4 A,
n=2 i=1 n=2 i=1

Applying the discrete Gronwall Lemma 2.1, we have

N M N
D UM% + 20648 Y D (VR IP < C(h* + Ar?), (339)

i=1 n=2 i=1
fori=1,2,..., N, which gives

M

IBIHI> + 248 Y IV I17 < C(W* + Ac?). (3.40)
n=2

Use of triangle and Young’s inequalities, and regularity assumption completes the proof.

12
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Now we proof the assumption [[u};llc < C that was used in stability Theorems 3.1-3.2 and in convergence
Theorems 3.3-3.4 by principle of mathematical induction. The strategy of this proof is adopted from the idea of Wong in
the analysis of three-species competition model [17]. Since u; € L(0, T; L®(£2)%), we define

K= ltilloo,o = max [u(e")lloo-
0<n<M

Lemma 3.5. If u;(0, X) is sufficiently regular for x € £2, then ||uf;|lco < K*, 0 < n < M, where K* is a positive constant.

Proof. Basic step: u?h = Iy(u;(0, x)), where I, is an appropriate interpolation operator. Because of the regularity
assumption of u;(0, x), we have ||uf?,h||OO < K*, for some constant K* > 0.
Inductive step: Assume for some L € Nand L < M, ||Uﬁh||oo < K* holds true forn =0, 1, ..., L. Then, we have

it Moo = Nufs" — ui(t 1) + ui(t oo
< Mluipt = w(t oo + ()l oo
Using Agmon’s inequality [31], and discrete inverse inequality, yields
_3 ~
luii Moo < Ch™2 ufh! — ui(e )] + K
< Ch 3 (Ig5 11+ I ) + K (Triangle inequality).

Use inductive hypothesis to get (3.29), and approximation property (2.3), the above bound can be written as
1

It oo < C(H2 + 173 At + 1 3) +K. (3.41)

We note that the above bound is independent of L, that is, the bound is not affected by time. For k > 3/2, and sufficiently
small h and At such that

=
a3

1
h"_% < — and At <
C
we have
e < 3+K.

Therefore, ||ufj§]||oo < K* holds also true for K* = 3 + K. Hence, by the principle of strong mathematical induction,
lufplloe < K* holds true for 0 < n < M.

4. Numerical tests

In this section, we perform several numerical experiments to support theoretical results and to explain the harvesting
or stocking effect on population density from the simulated outcomes. In all the experiments, we consider a domain
£2 = (0,1) x (0, 1); we also use P, element for the finite element computation, and structured triangular meshes. We
define the average energy density corresponding to a species density u; at time t = t" as

_ 1
uf = —/ u;(t", x)dx.
1$21 Jy,

The experiment that involves the second-order accurate DBDF-2 scheme uses the first-order accurate DBE scheme at the
first time-step to generate the required number of initial conditions.

In the first experiment, we numerically verified the predicted convergence rates. We observed the evolution of
population density with an exponentially varying carrying capacity in the second experiment. In the third experiment, we
observed the effect of diffusion parameters on population density. The effect of harvesting and stocking on the evolution of
species density is presented in the fourth and fifth experiments, respectively. The numerical experiments were done in the
finite element platform Freefem++ [32] using the direct solver UMFPACK [33]. A summary of the numerical experiments
and the parameters used are presented in Table 4.1.

4.1. Test 1: Convergence rate verification

We define the global error e; := u; — u; and its [2 — H' norm as ||e;||2.1 == ||e,~||L2(0 T~H1(g)d)' We have seen from the
convergence analysis that the predicted error of the Algorithms 1 and 2 and for P, finite element are
llui — uipllo,1 < C(h* + At), and (4.1)
i — uipllag < C(R® + A?), i=1,2,...,N,

13
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Table 4.1
A brief summary of the numerical experiments where p; is the harvesting coefficient and d; is the diffusion speed of the ith competing
species.
Test Description Carrying Growth Additional parameters
capacity rate
1 Verify the convergence rates Periodic Periodic N=2,dy =dy =1, uy =0.001, u, = 0.0006
N:?), d] :dz :dg: 1, 125} :0001,
2 = 0.0006, u; = 0.0
2 spatio-temporal Gaussian- Constant N=3,dy =dy, =d3 =1, u; = 0.0009,
carrying capacity periodic no = 0.0015, us = 0.0027
3 Effect on diffusion speed Gaussian- Periodic N=3 1 =p=pn3=00
population periodic
4 density of harvesting Gaussian- Periodic
varying coefficients periodic N=3,d; =01, d, =0.02, d; = 0.01
5 stocking Gaussian- Periodic
coefficients periodic
Table 4.2

Two-species model: Spatial errors and convergence rates with ©; = 0.001, and u, = 0.0006.
Errors and convergence rates (fixed T = 0.0001, At =T/8)

h DBE scheme DBDF-2 scheme

lleq iz Rate llezl2,1 Rate llexllz. Rate llezll2.1 Rate
1/4 2.1868e—05 3.6307e—05 2.0456e—05 3.3962e—05
1/8 5.4640e—06 2.00 9.1106e—06 1.99 5.1111e—06 2.00 8.5221e—06 1.99
1/16 1.3658e—06 2.00 2.2798e—06 2.00 1.2776e—06 2.00 2.1325e—06 2.00
1/32 3.4144e—07 2.00 5.7009e—07 2.00 3.1939e—-07 2.00 5.3327e—07 2.00
1/64 8.5360e—08 2.00 1.4253e—07 2.00 7.9848e—08 2.00 1.3333e—07 2.00

respectively. To verify the above convergence rates, we plugin the following carrying capacity and intrinsic growth rates
K(t,x) = (2.1 4 cos(x)cos(¥))(1.1 + cos(t)), and ri(t, x) = (1.5 + sin(x) sin(y))(1.2 + sin(t)),

respectively, in

N
au; 1
filt, %) = aitl — iy it | - — X;uj ) (4.3)
]:
to obtain the forcing fi(t, %), fori = 1, 2, ..., N. For this experiment, we consider known analytical solution as the Dirichlet
boundary condition on the boundary of the unit square, the diffusion coefficients are d; = 1,fori = 1, 2, ..., N. To observe

the spatial convergence rates, we keep fixed, a small simulation end time T, successively reduce mesh size h and run the
simulations, and record the errors. On the other hand, to exhibit the temporal convergence, we use a fixed small mesh
size h, successively refined time-step size At and run the simulation, and record the errors.

4.1.1. Two-species competition model
In this case, we have N = 2, and consider the following analytical solution

u(t, ®) = (1.1 4 sin(t))(2.0 + sin(y)),
us(t, X) = (2.0 + cos(t)) (1.1 + cos(x)),

together with the harvesting coefficients w; = 0.001, and x, = 0.0006. To compute the spatial errors and convergence
rates, we consider end time T = 0.0001, and time-step size At = T/8. The spatial errors and convergence rates for
both the DBE and DBDF-2 schemes are given in Table 4.2. We observe second order spatial convergence in both species
from both the algorithms, which are consistent with (4.1) and (4.2), since we have used P, element. For the temporal
convergence rate, we keep fixed T = 1, and h = 1/64, and present the temporal errors and convergence rates in Table 4.3.
It is observed the first order temporal convergence rate from the DBE scheme, which is optimal rate for the backward-
Euler time-stepping algorithm, and is an excellent agreement with the error estimate in (4.1). Recall that we used the
backward-Euler formula to approximate the time derivative. Whereas, we observe a second order temporal convergence
rate for the DBDF-2 scheme, which is also optimal as we approximate the temporal derivative by the BDF-2 formula, and
is consistent with (4.2).

14
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Table 4.3
Two-species model: Temporal errors and convergence rates with w7 = 0.001, and u, = 0.0006.
Errors and convergence rates (fixed T =1, h = 1/64)

At DBE scheme DBDF-2 scheme
llexll2,1 Rate llezll2,1 Rate llexll2,1 Rate llezll2,1 Rate
% 4.9154e—02 6.5044e—02 2.3061e—01 3.3998e—01
% 2.3436e—02 1.07 3.2022e—02 1.02 5.1569e—02 2.16 8.3617e—02 2.02
% 1.1468e—02 1.03 1.5931e—02 1.01 1.2773e—02 2.01 2.1564e—02 1.96
% 5.6853e—03 1.01 7.9691e—03 1.00 3.2627e—03 1.97 5.6131e—03 1.94
é 2.8339e—03 1.00 3.9917e—03 1.00 8.3346e—04 1.97 1.4477e—03 1.96
% 1.4155e—03 1.00 1.9989e—03 1.00 2.1203e—04 1.97 3.6976e—04 1.97
Table 4.4
Three-species model: Spatial errors and convergence rates with p; = 0.001, u, = 0.0006, and w3 = 0.0.
DBE scheme Errors and convergence rates (fixed T = 0.0001, At =T/8)
h lle1ll2,1 Rate lle2ll2,1 Rate llesll2,a Rate
% 2.1868e—05 3.6307e—05 1.3313e—05
% 5.4640e—06 2.00 9.1106e—06 1.99 3.3407e—06 1.99
% 1.3658e—06 2.00 2.2798e—06 2.00 8.3597e—07 2.00
% 3.4144e—-07 2.00 5.7009e—07 2.00 2.0904e—07 2.00
6]7 8.5364e—08 2.00 1.4254e—07 2.00 5.2268e—08 2.00
Table 4.5
Three-species model: Spatial errors and convergence rates with p; = 0.001, u,; = 0.0006, and w3 = 0.0.
DBDF-2 scheme Errors and convergence rates (fixed T = 0.001, At =T/16)
h ez Rate lle2llz.1 Rate llesllz.1 Rate
% 6.6986e—05 1.1115e—04 4.0774e—05
% 1.6738e—05 2.00 2.7893e—05 1.99 1.0233e—05 1.99
% 4.1839e—06 2.00 6.9804e—06 2.00 2.5608e—06 2.00
é 1.0460e—06 2.00 1.7457e—06 2.00 6.4041e—07 2.00
é 2.6174e—07 2.00 4.3698e—07 2.00 1.6034e—07 2.00
Table 4.6
Three-species model: Temporal errors and convergence rates with @, = 0.001, u; = 0.0006, and w3 = 0.0.
DBE scheme Temporal convergence (fixed h = 1/64)
At llexll2x Rate llezll2,1 Rate llesll2,1 Rate
% 2.1742e—01 3.1934e—01 1.6932e—01
% 9.9975e—02 1.12 1.5053e—01 1.09 7.7848e—02 1.12
% 4.8267e—02 1.05 7.3538e—02 1.03 3.7585e—02 1.05
% 2.3770e—02 1.02 3.6446e—02 1.01 1.8510e—02 1.02
é 1.1805e—02 1.01 1.8163e—02 1.00 9.1929e—03 1.01
12—8 5.8844e—03 1.00 9.0705e—03 1.00 4.5823e—03 1.00

4.1.2. Three-species competition model
In this case, we have N = 3, and consider the following manufactured analytical solution

uy(t, ®) = (1.1 4 sin(t))(2.0 + sin(y)),
uy(t, x) = (2.0 4 cos(t)) (1.1 + cos(x)),
us(t, %) = (1.1 4 sin(t)) (1.1 + cos(y)),
together with the harvesting coefficients u; = 0.001, u, = 0.0006, and p3; = 0.0. We then compute the solution using
the both Algorithms 1 and 2 and compare them with the manufactured analytical solution.
The spatial errors and convergence rates for the Algorithm 1, and Algorithm 2 are given in Table 4.4 in Table 4.5,
respectively. We observe second order spatial convergence in both algorithms for all species, which is consistent with

both (4.1) and (4.2). The temporal errors and convergence rates for the Algorithm 1, and Algorithm 2 are presented in
Table 4.6 and in Table 4.7, respectively. From Table 4.6 we see, the DBE scheme exhibits first order temporal convergence
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Table 4.7

Three-species model: Temporal errors and convergence rates with pu; = 0.001, u, = 0.0006, and us; = 0.0.
DBDF-2 scheme Temporal convergence (fixed h = 1/128)
At llerll2,1 Rate lle2ll2,1 Rate llesll2 1 Rate
% 4.2702e—01 6.4799e—01 3.3294e—01
% 8.8706e—02 2.27 1.5471e—01 2.07 6.8771e—02 2.28
% 2.1412e—02 2.05 3.9362e—02 1.97 1.6557e—01 2.05
% 5.4327e—03 1.98 1.0206e—02 1.95 4.1909e—03 1.98
é 1.3844e—03 1.97 2.6272e—03 1.96 1.0655e—03 1.98
i 3.5123e—04 1.98 6.6970e—04 1.97 2.6976e—04 1.98

=]
o

rate, which is optimal rate as a backward-Euler time-stepping algorithm, and is an excellent agreement with the error
estimate in (4.1).

On the other hand, DBDF-2 scheme displays second order temporal convergence for all three species in Table 4.7, which
is also optimal for the second order time-stepping algorithm and is consistent with the error estimate in (4.2). Therefore,
for both two and three species, we observe optimal convergence rates.

In all the numerical experiments for Test 2 through Test 5 below, we consider the carrying capacity

K(t, %) = (1.2 4 2.57% *05°-0-057) (1.0 4 0.3 cos(t)),

initial population density u? = 1.6, forcing functions f; = 0 for i = 1, 2, 3, and solve (1.1) using the DBDF-2 scheme given
in Algorithm 2 with time-step size At = 0.1 along with no-flux boundary condition. The no-flux boundary condition
ensures the competing species live in a closed environment.

4.2. Test 2: Evolution of population density with exponentially varying carrying capacity

For this experiment, we consider constant intrinsic growth rates r; = 1, diffusion rates d; = 1, for i = 1, 2, 3, and the
harvesting coefficients p; = 0.0009, u, = 0.0015, and p3 = 0.0027. When carrying capacity K is time periodic, as it is
realistic to assume where there is seasonal variation, we display the space averaged profile as a function of time to show
its approach to a periodic state, and display the instantaneous contour plot of 1y, u, and usz for t = T, where T is chosen
large enough for time periodicity of u;, (i = 1, 2, 3) to emerge.

In Figs. 4.1, the average density of each species versus time is plotted for time t = 0 to 80, and the population density
contour plot of each of the species at time t = 80. From the average density plot, we observe periodic population densities
for all species, where the density of us is decreasing because of its higher harvesting coefficient (Fig. 4.1(a)). It is predicted
that the species u3 will die out if time is too large, and we consider the extinction scenario in a later experiment.

From the contour plots, it is observed that the highest population density is at the point (0.5, 0.5) and there is a
coexistence of all species, though the population density of the species u; remains bigger than the species u,, and u3
over the domain (Fig. 4.1(b)-(d)). This happens because of different harvesting coefficients, and the optimal value of the
carrying capacity function is achieved at the point (0.5, 0.5), which shows the symmetric distribution of the population.

In all the numerical experiments for Test 3 through Test 5 below, we will use the intrinsic growth rates ri(t, x) =
(1.5 + sin(x) sin(y))(1.2 4 sin(t)), i = 1,2, 3.

4.3. Test 3: Diffusion speed and evolution of population density

In this example, we consider the problem for three species populations in absence of harvesting (e.g., u; = 0). We want
to see how the average population density of a species varies with the diffusion parameter. We plot the average density
versus time in Fig. 4.2 for all three species varying the diffusion parameters as d; = 0.01, 0.02, and 0.1 fori = 1, 2, 3.
Fig. 4.2 suggests that the initial value is unimportant to the final state due to the global convergence of solutions. It is
also remarked that the same is true in other experiments. From all three plots in Fig. 4.2(a)-(c), we observe that as the
diffusion parameter increases, the species density increases over time. The species with higher diffusion rate will converge
to the stable solution faster [34]. Fig. 4.2(c)-(d) are plotted for the same data, but for short and long time scenarios. We
observe that the species with the highest diffusion rate is extinct, whereas the species with the lowest diffusion rate is
the winner over the other species. In summary, the slow diffuser is the sole winner for multiple population competition
and is independent of any choice of equal intrinsic growth rate and the initial population size.

4.4. Test 4: Effect of harvesting on the evolution of population density

In this experiment, we consider N = 3, a three species competition model with varying diffusion rates as d; = 0.1,
d, = 0.02, and d3 = 0.01. That is, the spreading rate of the first and third species is the highest and lowest, respectively.
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Fig. 4.1. (a) Average density of each species, (b) contour plot of species density uq, (c) contour plot of species density u,, and (d) contour plot of
species density us with the harvesting coefficients p; = 0.0009, i, = 0.0015, and 3 = 0.0027 at t = 80.

Consequently, without stocking, their population density at any time must be the lowest and highest, respectively as
investigated and presented in Fig. 4.2.

In Fig. 4.3, we plot the average density of each species versus time with varying harvesting coefficients over the time
interval [1000, 1080]. We choose the time interval [1000, 1080] to exhibit the long-range behavior of the solutions. In
Fig. 4.3(a), we plot the long-range behavior of the average density of each of the species in absence of harvesting or
stocking effort (i1 = 2 = 3 = 0.0). We observe a periodic behavior in the average density of all the species, and the
third species dominates the other species in competition. The periodic behavior is inherited from periodic system carrying
capacity of the system. The lowest diffusion rate plays a key role for the third species in becoming the winner. For time
periodic parameters in Fig. 4.3(a), we notice the average density of u; approaches zero in an oscillatory fashion.

Fig. 4.3(b) represents the average density of each of the three species on the time interval [1000, 1080], where only
the third species is affected by harvesting with coefficient 3 = 0.001. The sequential map presented the results based on
the combined effects of harvesting and diffusion coefficient. Comparing Fig. 4.3(a) and Fig. 4.3(b), it is clear that due to the
non-zero harvesting coefficient 3 = 0.001, the density of the third species has been reduced. On the other hand, clearly,
the second species is also impacted by the harvesting of the third species. Because of the reduction in the population
density of the third species, the other species get more resources to grow, and a significant boost is observed in the
second species’ density and a considerable amount of density increment is observed in the first species.

If we further increase the harvesting coefficients as u, = 0.001, and u3 = 0.002, but keep ©; = 0 (no harvesting) and
plot the average density curves versus time for each species in Fig. 4.3 (c), we observe an evolutionary population density
feature, especially for the first species. The harvesting in the second and third species provides an advantage to the first
species, and thus an apparent co-existence of all three species is visible over the time [1000, 1080]. It is noted that Fig. 4.3
reveals the effects of harvesting levels on the scaled average population density on periodic time-dependent functions as
happens for seasonal changes. Though the considered values of the harvesting coefficients are not corresponding to the
optimal co-existence, it is possible to estimate optimal (w1, t2, p3) [15].
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Fig. 4.2. The effect of diffusion rate on the average population density (a) i1, (b) i, (c) i3, and (d) 13 on long-range without harvesting or stocking
effort for K(t,x) = (1.2 +2.57 e*<**°-512*<%°-5>2)(1.0 +0.3cos(t)), wi =0 and ri(t, x) = (1.5 + sin(x) sin(y))(1.2 + sin(t)), i=1,2,3.

4.5, Test 5: Effect of stocking on the evolution of population density

In this experiment, we observed how the evolution of population density is affected by the variation in stocking
coefficients. We plot the average density corresponding to each species versus time varying the stocking coefficients
in Fig. 4.4 on the time interval [1000, 1080]. Because of the periodic resource function, we observe periodic behavior in
all the population densities (Fig. 4.4). We consider the same diffusion rates, d; = 0.1, d = 0.02, and d3 = 0.01 as in the
case of Fig. 4.3(a), where no harvesting or stocking is considered.

We reduce the stocking coefficient u; = 0.0 to u; = —0.002 for u; since the diffusion rate is higher for the first
species. The results are displayed in Fig. 4.4(a). Comparing Fig. 4.3(a) and Fig. 4.4(a), we observe that the population
density of the first species increases while for the second and third species decrease. It provides the increased population
of the first species consumes more resources from the environment, which reduces the productivity of the other two
species.

Next, we decrease the stocking coefficient of the first species to «; = —0.0025 and for the second species to
o = —0.001, keeping no harvesting or stocking to the third species, and plot the average density in Fig. 4.4(b). We observe
that the density of the third species decreases while the first and second species increase, and there is a transparent co-
existence of all the species. Therefore, the harvesting and stocking coefficients can be a controlling tool in population
dynamics to optimize the limited resources.

5. Conclusion and future research

Time evolutionary reaction-diffusion equation is the basis of harvesting and/or stocking model in population dynamics.
In this paper, we propose a time-dependent system of non-linear coupled partial differential equations representing the
dynamics of an N-species competition model with harvesting and/or stocking effect. We propose, analyze and test two
fully discrete decoupled stable algorithms for numerical computation. We prove the first scheme is first-order accurate
and the second scheme is second-order accurate in time and both are optimally accurate in space. We perform extensive
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Fig. 4.3. The effect of harvesting coefficients on the average density with diffusion parameters d; = 0.1, d; = 0.02, and d; = 0.01 for
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third population is harvested and (c) u,, us are harvested.
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Fig. 4.4. Effect of stocking coefficients on the system energy corresponding to each species density with the diffusion parameters d; = 0.1, d, = 0.02,
and d3 = 0.01 for K(t,x) = (1.2 + 2.57128‘("‘0'5)2‘0"0'5)2)(1.0 + 0.3 cos(t)), and ri(t, x) = (1.5 + sin(x) sin(y))(1.2 + sin(t)), i=1,2,3.

numerical tests to verify the predicted convergence rates with some analytical test problems for both two- and three-
species competition models. The linearized decoupled algorithms are efficient at each time-step and the solution for each
species can be computed simultaneously. This can significantly reduce the computational time in simulating large-scale
computationally intensive complex problems.

Numerical experiments exhibit (a) if the diffusion rate increases the population density decreases and faster the process
of extinction, (b) if the harvesting coefficient of a species increases, its density decreases, and other species get benefit
in the competition, and (c) if the stocking effect of a species intensify, the population density increases and tends to win
over the other species in the competition, that is, the survival period of the species increases. For a particular competition
model, a set of values of the harvesting or stocking coefficients can be found for which co-existence of all species will
be ensured. The harvesting and/or stocking coefficient can be a useful as a control in the population dynamics with
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limited natural resources. In the future, we plan to explore the problem of uncertainty quantification and model parameter
estimation for practical applications. Harvesting or stocking modeling based on convection diffusion reaction parabolic
problem [35,36] also could be a new research avenue. To reduce the computation cost while dealing with coupled system
of reaction—diffusion equations with small parameters, we are interested in the recent work here [37].
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Appendix

Here we find the restriction on the time-step size to have the stability of the Algorithm 1. We consider the following
linear system:

a(ufy', vin) =F (vin) . Yoin € Xn i=1,2,....N, (A1)
where the linear form
1
F(vip) = Ar (uf s vin) + (FE™), vin) (A2)

and the bilinear form

1
a (ui";[l, Ui,h) L= A—t (u?j{l, U,"h) + d; (Vu?j{l, Vv,-,h) —(1— ) (Ti(fn+1) ln?l—l, v;, h)

(tn+1 n+1

h
_ th’ Z Ul vin | - (A3)

Now, substitute v;;, = ;" in (A.3) to give

1 tn—H) n+1
a (ufi ! ") = Il P o dl Vi = (= ) (R ) — tnﬂ) Z . ufy!
Clir(e™ )l
||u:T|| + i Vi 17 = 11 = il (e Dol 1P = o (A4)

inf K (e )]l

The last term in the above inequality is derived as the lower bound subject to Assumption 3.1. Rearranging

Cllrill
1 1= (0.1:120(2)4)
a(@ Hut) > | — — 11— willln - 7 TP 4 dil vl A5
(i) 2 | g = 1= Al g e T AU N (AS)
(t,x)e(0,T]x 2
To have the coercivity condition, we must have
1 ClITillos,00
— — 1 = willlr; - > 0,
T [T — willlrillos, 00 ra——
which gives the following restriction on the time-step size
K
At < L ) (A.6)

- |1 - /vLi|||ri||oo,ooKmin + C”ri”oo,oo
In a similar approach, we can find the time-step restriction on the stability of the Algorithm 2.
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