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a b s t r a c t

We propose, analyze and test two novel fully discrete decoupled linearized algorithms
for a nonlinearly coupled reaction–diffusion N-species competition model with harvest-
ing or stocking effort. The time-stepping algorithms are first and second order accurate
in time and optimally accurate in space. Stability and optimal convergence theorems of
the decoupled schemes are proved rigorously. We verify the predicted convergence rates
of our analysis and efficacy of the algorithms using numerical experiments and synthetic
data for analytical test problems. We also study the effect of harvesting or stocking and
diffusion parameters on the evolution of species population density numerically, and
observe the co-existence scenario subject to optimal harvesting or stocking.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In an environmental approach, one of the most significant concerns in population dynamics is the effect of harvesting

or stocking which plays a crucial role for optimal management of limited resources to ensure the balance in ecology [1–

6]. Harvesting indicates reducing the population size due to hunting, fishing, or capturing, which shrinks the population

density. The study of harvesting for one population was limited in [7–9], and in some situations, these are unable to

explain the actual situation better. More interesting situations are discovered when harvesting is implied for two or more

interacting population dynamics [10–13] that represent either coexistence or competitive exclusion by others. A global

behavior of predator–prey systems is analyzed under constant harvesting or stocking of either or both species in [14].

To present the pattern and visualize the effects of harvesting, reaction–diffusion equation is the constitutive equation of

population dynamics, e.g., competition and prey–predator models.
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We consider the efficient and accurate numerical approximation of the population dynamics in a reaction–diffusion
N-species competition model with harvesting or stocking, which is governed by the following system of nonlinear
evolutionary equations [15–17]: For i = 1, 2, . . . ,N

∂ui

∂t
= di∆ui + riui

⎛
⎝1 − µi −

1

K

N∑

j=1

uj

⎞
⎠+ fi, ∀(t, x) ∈ (0, T ] × Ω, (1.1)

together with known initial and boundary conditions (which are suppressed momentarily) where ui, di, ri and µi represent
the population density, diffusion rate, intrinsic growth rate and harvesting or stocking coefficient of the ith competing
species, respectively. N denotes the number of species in the competition, if N = 1, the model (1.1) represents simple
logistic growth model of a single species. Here, K represents carrying capacity of the heterogeneous environment, fi the
forcing, t the time, x ∈ Ω the spatial variable, Ω the domain, and T the simulation end time. It is assumed that the
harvesting rate is proportional to the intrinsic growth rate in the model (1.1).

The difficultly in simulating Eq. (1.1) is that we need to solve a non-linearly coupled system of partial differential
equations at each time-step, where the intrinsic growth rates and carrying capacity all depend on space and time. It is an
open problem how to decouple the system in a stable way. A three-species competition-diffusion model with constant
intrinsic growth rate in a homogeneous environment (K ≡ constant) without harvesting or stocking is given by Wong
in [17]. The author presented one first-order and another second-order decoupled time-stepping discrete schemes and
their convergence rates however only the first-order scheme in a finite element setting was analyzed, and no numerical
experiments were given beyond the convergence rate verification. The optimal harvesting in controlling species density
in a two-species competition model with a heterogeneous environment is investigated in [15], where a fully-discrete
backward-Euler decoupled time-stepping algorithm is used without any analysis of the discrete algorithm. A Lotka–
Volterra interactions model with no-flux boundary conditions in the presence of prey-taxis and spatial diffusion is given
in [18] and discussed the existence and uniqueness of the weak solution. Kamrujjaman et al. studied the spatial–temporal
effects for logistic and Gilpin–Ayala growth function with starvation type diffusion for single species population with
stocking [19,20]. They studied the stability properties for the existence and extinction of species. Also, in the case of space-
dependent carrying capacity, they established the presence of optimal harvesting efforts. They presented their outcomes
analytically and computationally. The main interest focused on the analytical approach instead of claiming any robust
numerical algorithm.

Significance of the work

In this paper, we propose, analyze, and test two fully discrete and decoupled linearized stable time-stepping algorithms
of a non-linearly coupled system of reaction–diffusion equations that describes an N-species competition model in a
heterogeneous environment with harvesting or stocking. We provide rigorous analysis of the existence and uniqueness
of the solutions of the algorithms together with the priori error estimates by proving their stability and convergence
theorems. We prove that the both algorithms are optimally accurate in time and space. The numerical tests are presented
showing their convergence rates on some known analytical test problems varying number of species. The solution at each
time-step can be computed simultaneously for each species in the competition, which can reduce a huge computational
cost when compared to coupled non-linear algorithms. A series of numerical experiments are given that show the
effect of exponentially varying carrying capacity, non-stationary intrinsic growth rates, varying diffusion parameters, and
harvesting or stocking on the population density of the species in the competition.

To the best of our knowledge, the proposed efficient fully-discrete algorithms of the N-species reaction–diffusion
competition model in (1.1) with harvesting or stocking have not been investigated to date. The proposed algorithms
are expected to enable new tools for large-scale computing in population dynamics.

The rest of the paper is organized as follows: In Section 2, we present some necessary notation and preliminaries
for a thorough analysis. We present two fully discrete decoupled schemes and analyze them in Section 3. In Section 4,
we perform several numerical experiments to support the theoretical findings in Section 3. Finally, the conclusion and
discussions of future research are given in Section 5.

2. Notation and preliminaries

Let Ω ⊂ R
d(d ∈ {1, 2, 3}) be a convex domain with boundary ∂Ω . For a given carrying capacity K : (0, T ] × Ω → R,

we define

Kmin := inf
(t,x)∈(0,T ]×Ω

|K (t, x)|, (2.1)

and assume Kmin > 0. The usual L2(Ω) norm and inner product are denoted by ∥.∥ and (., .), respectively. Similarly, the
Lp(Ω) norms and the Sobolev W k

p (Ω) norms are ∥.∥Lp and ∥.∥W k
p
, respectively for k ∈ N, 1 ≤ p ≤ ∞. The Sobolev space

W k
2 (Ω)d is represented by Hk(Ω)d with norm ∥.∥k which are Hilbert spaces.
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For X being a normed function space in Ω , Lp(0, T ; X) is the space of all functions defined on (0, T ]× Ω for which the

following norm

∥u∥Lp(0,T ;X) =

(∫ T

0

∥u∥
p

Xdt

) 1
p

, p ∈ [1, ∞)

is finite. For p = ∞, the usual modification is used in the definition of this space. We denote

∥u∥∞,∞ := ∥u∥
L∞
(
0,T ;L∞(Ω)d

).

The natural function spaces for our problem are

X := H1
0 (Ω) =

{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)d, v = 0 on ∂Ω

}
.

For an element f in the dual space of X , the norm is defined by

∥f ∥−1 := sup
v∈X

(f , v)

∥∇v∥
.

Recall the Poincaré inequality holds in X: There exists C depending only on Ω satisfying for all φ ∈ X ,

∥φ∥ ≤ C∥∇φ∥.

We define the initial conditions u0
i := ui(0, x), and u1

i := ui(∆t, x).

Multiplying both sides of (1.1) by vi ∈ X and integrating over Ω , we have the following continuous weak form: For

i = 1, 2, . . . ,N

(
∂ui

∂t
, vi

)
+ di (∇ui, ∇vi) = (1 − µi)

(
ri(t, x)ui, vi

)
−

⎛
⎝ ri(t, x)ui

K (t, x)

N∑

j=1

uj, vi

⎞
⎠+ (fi, vi) . (2.2)

The conforming finite element space is denoted by Xh ⊂ X , and we assume a sufficiently regular triangulation τh(Ω)

for the inverse inequality to hold, where h is the maximum triangle diameter. We have the following approximation

properties typical of piecewise polynomials of degree k in Xh: [21,22]

∥u − PL2

Xh
(u)∥ ≤ Chk+1|u|k+1, u ∈ Hk+1(Ω), (2.3)

∥∇(u − PL2

Xh
(u))∥ ≤ Chk|u|k+1, u ∈ Hk+1(Ω), (2.4)

where PL2

Xh
(u) is the L2 projection of u into Xh and | · |r denotes the Hr seminorm. Note that C > 0 is a generic constant

and changes in computation. The following lemma for the discrete Grönwall inequality was given in [23].

Lemma 2.1. Let N denote the set of all natural numbers and ∆t, D, an, bn, cn, dn be non-negative numbers for n = 1, . . .,M

such that

aM + ∆t

M∑

n=1

bn ≤ ∆t

M−1∑

n=1

dnan + ∆t

M∑

n=1

cn + D for M ∈ N,

then for all ∆t > 0,

aM + ∆t

M∑

n=1

bn ≤

(
∆t

M∑

n=1

cn + D

)
exp

(
∆t

M−1∑

n=1

dn

)
for M ∈ N.

3. Fully discrete scheme

In this section, we propose and analyze two fully discrete, decoupled, and linearized time-stepping algorithms for

approximating a solution of (1.1). The Decoupled Backward-Euler (DBE) scheme is presented in Algorithm 1, which

approximates the temporal derivative by first-order backward-Euler formula and the non-linear term is linearized by the

immediate previous time-step solution. In Algorithm 2, we present Decoupled Backward Difference Formula (2) (DBDF-2)

3
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scheme, which consists of second-order accurate time derivative approximation formula, and linearizes the non-linear
term by second-order approximation of the unknown solution at the previous time-step.

Algorithm 1: DBE scheme

Given time-step ∆t > 0, end time T > 0, for i = 1, 2, · · · ,N , initial conditions u0
i ∈ L2(Ω)d, fi ∈ L2

(
0, T ;H−1(Ω)d

)
,

Kmin > 0, and ri ∈ L∞(0, T ; L∞(Ω)d). Set M = T/∆t and for n = 0, 1, · · ·,M − 1, compute: Find un+1
i,h ∈ Xh satisfying,

∀vi,h ∈ Xh:
(
un+1
i,h − un

i,h

∆t
, vi,h

)
+ di

(
∇un+1

i,h , ∇vi,h

)
= (1 − µi)

(
ri(t

n+1)un+1
i,h , vi,h

)

−

⎛
⎝ ri(t

n+1)un+1
i,h

K (tn+1)

N∑

j=1

un
j,h, vi,h

⎞
⎠+

(
fi(t

n+1), vi,h

)
. (3.1)

Algorithm 2: DBDF-2 scheme

Given time-step ∆t > 0, end time T > 0, for i = 1, 2, · · · ,N , initial conditions u0
i , u1

i ∈ L2(Ω)d,

fi ∈ L2
(
0, T ;H−1(Ω)d

)
, Kmin > 0, and ri ∈ L∞(0, T ; L∞(Ω)d). Set M = T/∆t and for n = 1, · · ·,M − 1, compute: Find

un+1
i,h ∈ Xh satisfying, ∀vi,h ∈ Xh:

(
3un+1

i,h − 4un
i,h + un−1

i,h

2∆t
,vi,h

)
+ di

(
∇un+1

i,h , ∇vi,h

)
= (1 − µi)

(
ri(t

n+1)un+1
i,h , vi,h

)

−

⎛
⎝ ri(t

n+1)un+1
i,h

K (tn+1)

N∑

j=1

(2un
j,h − un−1

j,h ), vi,h

⎞
⎠+

(
fi(t

n+1), vi,h

)
. (3.2)

These types of splitting algorithms are commonly used in magnetohydrodynamics [24–26]. Throughout the analysis
of this paper, we will consider the following assumption:

Assumption 3.1. Let us assume that there exists a constant K ∗ > 0 such that ∥un
i,h∥∞ ≤ K ∗ for i = 1, 2, . . . ,N .

We will prove Assumption 3.1 holds true at the end of Section 3.2 in Lemma 3.5.

3.1. Stability analysis

In this section, we prove the stability theorems and well-posedness of DBE and DBDF-2 schemes. For simplicity of our
analysis, we define

αi := di − C∥ri∥∞,∞

(
|1 − µi| +

1

Kmin

)
, for i = 1, 2, . . . ,N. (3.3)

Theorem 3.1 (Stability of DBE). For i = 1, 2, . . . ,N, assume u0
i,h ∈ L2(Ω)d, fi ∈ L2

(
0, T ;H−1(Ω)d

)
, ri ∈ L∞(0, T ; L∞(Ω)d),

Kmin > 0 and under Assumption 3.1, if αi > 0, then for any ∆t > 0

∥uM
i,h∥

2 + 2αi∆t

M∑

n=1

∥∇un
i,h∥

2 ≤ ∥u0
i,h∥

2 +
∆t

αi

M∑

n=1

∥fi(t
n)∥2

−1. (3.4)

Proof. Taking vi,h = un+1
i,h in (3.1), and using the polarization identity

(b − a, b) =
1

2

(
∥b − a∥2 + ∥b∥2 − ∥a∥2

)
,

gives

1

2∆t

(
∥un+1

i,h − un
i,h∥

2 + ∥un+1
i,h ∥2 − ∥un

i,h∥
2
)

+ di∥∇un+1
i,h ∥2 = (1 − µi)

(
ri(t

n+1)un+1
i,h , un+1

i,h

)

−

⎛
⎝ ri(t

n+1)un+1
i,h

K (tn+1)

N∑

j=1

un
j,h, u

n+1
i,h

⎞
⎠+

(
fi(t

n+1), un+1
i,h

)
. (3.5)
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We apply Hölder’s inequality on the first two terms and Cauchy–Schwarz’s inequality on the forcing term on the

right-hand-side of (3.5), we have

1

2∆t

(
∥un+1

i,h − un
i,h∥

2+∥un+1
i,h ∥2 − ∥un

i,h∥
2
)

+ di∥∇un+1
i,h ∥2 ≤ |1 − µi|∥ri(t

n+1)∥∞∥un+1
i,h ∥2

+

 ri(t
n+1)

K (tn+1)


∞

N∑

J=1

∥un+1
i,h ∥2∥un

j,h∥∞ + ∥fi(t
n+1)∥−1∥∇un+1

i,h ∥. (3.6)

Using Poincaré inequality and Assumption 3.1, we have

1

2∆t

(
∥un+1

i,h − un
i,h∥

2 + ∥un+1
i,h ∥2 − ∥un

i,h∥
2
)
+ di∥∇un+1

i,h ∥2 ≤ C |1 − µi|∥ri∥
L∞
(
0,T ;L∞(Ω)d

)∥∇un+1
i,h ∥2

+

C∥ri∥
L∞
(
0,T ;L∞(Ω)d

)

inf
(t,x)∈(0,T ]×Ω

|K |
∥∇un+1

i,h ∥2 + ∥fi(t
n+1)∥−1∥∇un+1

i,h ∥. (3.7)

Grouping terms on the left-hand-side and using (3.3), and (2.1), yields

1

2∆t

(
∥un+1

i,h − un
i,h∥

2 + ∥un+1
i,h ∥2 − ∥un

i,h∥
2
)
+ αi∥∇un+1

i,h ∥2 ≤ ∥fi(t
n+1)∥−1∥∇un+1

i,h ∥. (3.8)

Assume αi > 0, use Young’s inequality, and hide term on left-hand-side, to obtain

1

2∆t

(
∥un+1

i,h − un
i,h∥

2 + ∥un+1
i,h ∥2 − ∥un

i,h∥
2
)
+

αi

2
∥∇un+1

i,h ∥2 ≤
1

2αi

∥fi(t
n+1)∥2

−1. (3.9)

Now, multiply both sides by 2∆t , and sum over time steps from n = 0, 1, . . . ,M − 1, we have

∥uM
i,h∥

2 +

M−1∑

n=0

∥un+1
i,h − un

i,h∥
2 + αi∆t

M∑

n=1

∥∇un
i,h∥

2 ≤ ∥u0
i,h∥

2 +
∆t

αi

M−1∑

n=0

∥fi(t
n+1)∥2

−1. (3.10)

Now, dropping non-negative terms from left-hand-side completes the proof.

Theorem 3.2 (Stability of DBDF-2). For i = 1, 2, . . . ,N, assume u0
i,h, u

1
i,h ∈ L2(Ω)d, fi ∈ L2

(
0, T ;H−1(Ω)d

)
, Kmin > 0,

ri ∈ L∞(0, T ; L∞(Ω)d), and under Assumption 3.1, if αi > 0, then for any ∆t > 0

∥uM
i,h∥

2 + ∥2uM
i,h − uM−1

i,h ∥2 + 2αi∆t

M∑

n=2

∥∇un
i,h∥

2 ≤ ∥u1
i,h∥

2 + ∥2u1
i,h − u0

i,h∥
2 +

2∆t

αi

M∑

n=2

∥fi(t
n)∥2

−1. (3.11)

Proof. Taking vi,h = un+1
i,h in (3.2) to obtain

(
3un+1

i,h − 4un
i,h + un−1

i,h

2∆t
,un+1

i,h

)
+ di∥∇un+1

i,h ∥2 = (1 − µi)
(
ri(t

n+1)un+1
i,h , un+1

i,h

)

−

⎛
⎝ ri(t

n+1)un+1
i,h

K (tn+1)

N∑

j=1

(2un
j,h − un−1

j,h ), un+1
i,h

⎞
⎠+

(
fi(t

n+1), un+1
i,h

)
. (3.12)

Using the following identity

(3a − 4b + c, a) =
a2 + (2a − b)2

2
−

b2 + (2b − c)2

2
+

(a − 2b + c)2

2
, (3.13)

we write

1

4∆t

(
∥un+1

i,h ∥2 − ∥un
i,h∥

2 + ∥2un+1
i,h − un

i,h∥
2 − ∥2un

i,h − un−1
i,h ∥2 + ∥un+1

i,h − 2un
i,h + un−1

i,h ∥2
)

+ di∥∇un+1
i,h ∥2

= (1 − µi)
(
ri(t

n+1)un+1
i,h , un+1

i,h

)
−

⎛
⎝ ri(t

n+1)un+1
i,h

K (tn+1)

N∑

j=1

(2un
j,h − un−1

j,h ), un+1
i,h

⎞
⎠+

(
fi(t

n+1), un+1
i,h

)
. (3.14)

5
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We apply Hölder’s inequality on the first two terms and Cauchy–Schwarz’s inequality on the forcing term on the

right-hand-side of (3.14), we have

1

4∆t

(
∥un+1

i,h ∥2 − ∥un
i,h∥

2 + ∥2un+1
i,h − un

i,h∥
2 − ∥2un

i,h − un−1
i,h ∥2 + ∥un+1

i,h − 2un
i,h + un−1

i,h ∥2
)

+ di∥∇un+1
i,h ∥2

≤ |1 − µi|∥ri(t
n+1)∥∞∥un+1

i,h ∥2 +

 ri(t
n+1)

K (tn+1)


∞

N∑

J=1

∥un+1
i,h ∥2

(
2∥un

j,h∥∞ + ∥un−1
j,h ∥∞

)
+ ∥fi(t

n+1)∥−1∥∇un+1
i,h ∥. (3.15)

Using Poincaré inequality, Assumption 3.1, and grouping terms on the left-hand-side, to obtain

1

4∆t

(
∥un+1

i,h ∥2 − ∥un
i,h∥

2 + ∥2un+1
i,h − un

i,h∥
2 − ∥2un

i,h − un−1
i,h ∥2 + ∥un+1

i,h − 2un
i,h + un−1

i,h ∥2
)

+ αi∥∇un+1
i,h ∥2 ≤ ∥fi(t

n+1)∥−1∥∇un+1
i,h ∥. (3.16)

Drop non-negative term from left-hand-side, assume αi > 0, use Young’s inequality, and hide term on left-hand-side, to

obtain

1

4∆t

(
∥un+1

i,h ∥2 − ∥un
i,h∥

2 + ∥2un+1
i,h − un

i,h∥
2 − ∥2un

i,h − un−1
i,h ∥2

)
+

αi

2
∥∇un+1

i,h ∥2 ≤
1

2αi

∥fi(t
n+1)∥2

−1. (3.17)

Now, multiply both sides by 4∆t , and sum over time-steps from n = 1, . . . ,M − 1 finishes the proof.

Remark 3.1. The finite dimensional schemes Algorithm 1 and 2 are linear at each time-step and the stability theorems

provide their solutions are bounded continuously by the problem data, which is sufficient for the well-posedness of the

schemes. The linearity of the schemes provides the uniqueness of the solution via their stability theorem. Because of the

finite dimensional and linearity features, the uniqueness implies existence of the solution, therefore the solution to the

Algorithm 1 and 2 exist uniquely [25,27].

Remark 3.2. For arbitrarily small diffusion parameters di, the problem may behave like singularly perturbed problems

for which the use of adaptive mesh generation is important, see [28,29]. For small diffusion term, the boundary layer

originated reaction–diffusion problem is analyzed in [30].

3.2. Convergence analysis

In this section, we will provide apriori estimates of the errors in the computed species density using the both DBE and

DBDF-2 schemes.

Theorem 3.3 (Error Estimate of DBE). For i = 1, 2, . . . ,N, assume ui solves (1.1) and satisfies

ui ∈ L∞
(
0, T ;Hk+1(Ω)d ∩ L∞(Ω)d

)
, ui,t ∈ L∞

(
0, T ; L2(Ω)d

)
, ui,tt ∈ L∞

(
0, T ; L2(Ω)d

)
,

ri ∈ L∞
(
0, T ; L∞(Ω)d

)
, k ≥ 2, and Kmin > 0,

if αi > 0 then for ∆t > 0 the solution ui,h to the Algorithm 1 converges to the true solution with

N∑

i=1

∥ui(T ) − uM
i,h∥ +

N∑

i=1

{
αi∆t

M∑

n=1

∥∇
(
ui(t

n) − un
i,h

)
∥2

} 1
2

≤ C
(
hk + ∆t

)
. (3.18)

Proof. At first we build an error equation at the time level tn+1, the continuous variational formulations can be written

as ∀vi,h ∈ Xh

(
ui(t

n+1) − ui(t
n)

∆t
, vi,h

)
+ di

(
∇ui(t

n+1), ∇vi,h

)
= (1 − µi)

(
ri(t

n+1)ui(t
n+1), vi,h

)
+
(
fi(t

n+1), vi,h

)

−

⎛
⎝ ri(t

n+1)ui(t
n+1)

K (tn+1)

N∑

j=1

uj(t
n+1), vi,h

⎞
⎠+

(
ui(t

n+1) − ui(t
n)

∆t
− ui,t (t

n+1), vi,h

)
. (3.19)

Denote eni := ui(t
n) − un

i,h. Subtract (3.1) from (3.19) and then rearranging yields
(
en+1
i − eni

∆t
, vi,h

)
+ di

(
∇en+1

i , ∇vi,h

)
− (1 − µi)

(
ri(t

n+1)en+1
i , vi,h

)

6
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+

N∑

j=1

(
ri(t

n+1)

K (tn+1)
en+1
i un

j,h, vi,h

)
= G(t, ui, vi,h), (3.20)

where

G(t, ui, vi,h) =

(
ui(t

n+1) − ui(t
n)

∆t
− ui,t (t

n+1), vi,h

)
+

⎛
⎝ ri(t

n+1)ui(t
n+1)

K (tn+1)

N∑

j=1

{
un
j,h − uj(t

n+1)
}
, vi,h

⎞
⎠ .

Now, we decompose the errors as

eni := ui(t
n) − un

i,h = (ui(t
n) − ũn

i ) − (un
i,h − ũn

i ) := ηn
i − φn

i,h,

where ũn
i := PL2

Xh
(ui(t

n)) ∈ Xh is the L2 projections of uj(t
n) into Xh. Note that (ηn

i , vi,h) = 0 ∀vi,h ∈ Xh. Rewriting, we have
for vi,h ∈ Xh

(
φn+1
i,h − φn

i,h

∆t
, vi,h

)
+ di

(
∇φn+1

i,h , ∇vi,h

)
− (1 − µi)

(
ri(t

n+1)φn+1
i,h , vi,h

)
+

N∑

j=1

(
ri(t

n+1)

K (tn+1)
φn+1
i,h un

j,h, vi,h

)

= di
(
∇ηn+1

i , ∇vi,h

)
− (1 − µi)

(
ri(t

n+1)ηn+1
i , vi,h

)
+

N∑

j=1

(
ri(t

n+1)

K (tn+1)
ηn+1
i un

j,h, vi,h

)
− G(t, ui, vi,h). (3.21)

Choose vi,h = φn+1
i,h , and use the polarization identity in (3.21), to obtain

1

2∆t

(
∥φn+1

i,h − φn
i,h∥

2 + ∥φn+1
i,h ∥2 − ∥φn

i,h∥
2
)
+ di∥∇φn+1

i,h ∥2 − (1 − µi)
(
ri(t

n+1)φn+1
i,h , φn+1

i,h

)

+

N∑

j=1

(
ri(t

n+1)

K (tn+1)
φn+1
i,h un

j,h, φ
n+1
i,h

)
= di

(
∇ηn+1

i , ∇φn+1
i,h

)
− (1 − µi)

(
ri(t

n+1)ηn+1
i , φn+1

i,h

)

+

N∑

j=1

(
ri(t

n+1)

K (tn+1)
ηn+1
i un

j,h, φ
n+1
i,h

)
− G

(
t, ui, φ

n+1
i,h

)
. (3.22)

Now, we find the upper-bounds of terms in the above equation. Using Hölder’s, and Poincaré inequalities, we have

(1 − µi)
(
ri(t

n+1)φn+1
i,h , φn+1

i,h

)
≤ |1 − µi|∥ri(t

n+1)∥∞∥φn+1
i,h ∥2 ≤ C |1 − µi|∥ri∥∞,∞∥∇φn+1

i,h ∥2.

Next, using triangle, Hölder’s, and Poincaré inequalities together with Assumption 3.1, we have

−

N∑

j=1

(
ri(t

n+1)

K (tn+1)
φn+1
i,h un

j,h, φ
n+1
i,h

)
≤

N∑

j=1

∥ri(t
n+1)∥∞

inf
Ω

∥K (tn+1)∥

⏐⏐⏐
(
φn+1
i,h un

j,h, φ
n+1
i,h

) ⏐⏐⏐

≤

N∑

j=1

∥ri∥∞,∞

Kmin

∥un
j,h∥∞∥φn+1

i,h ∥2

≤
C∥ri∥∞,∞

Kmin

∥∇φn+1
i,h ∥2.

With the assumption αi > 0, use Cauchy–Schwarz, and Young’s inequalities, to obtain

di
(
∇ηn+1

i , ∇φn+1
i,h

)
≤ di∥∇ηn+1

i ∥∥∇φn+1
i,h ∥ ≤

αi

10
∥∇φn+1

i,h ∥2 +
5d2i
2αi

∥∇ηn+1
i ∥2.

7
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Using Hölder’s, and Poincaré inequalities, Assumption 3.1, and Young’s inequality, we have

(1 − µi)
(
ri(t

n+1)ηn+1
i , φn+1

i,h

)
≤ |1 − µi|∥ri(t

n+1)∥∞∥ηn+1
i ∥∥φn+1

i,h ∥

≤ C |1 − µi|∥ri∥∞,∞∥ηn+1
i ∥∥∇φn+1

i,h ∥

≤
αi

10
∥∇φn+1

i,h ∥2 +
C(1 − µi)

2∥ri∥
2
∞,∞

αi

∥ηn+1
i ∥2,

N∑

j=1

(
ri(t

n+1)

K (tn+1)
ηn+1
i un

j,h, φ
n+1
i,h

)
≤

N∑

j=1

∥ri(t
n+1)∥∞

inf
Ω

∥K (tn+1)∥

⏐⏐⏐
(
ηn+1
i un

j,h, φ
n+1
i,h

) ⏐⏐⏐

≤

N∑

j=1

∥ri∥∞,∞

Kmin

∥ηn+1
i ∥∥un

j,h∥∞
||∥φn+1

i,h ∥

≤
C∥ri∥∞,∞

Kmin

∥ηn+1
i ∥∥∇φn+1

i,h ∥

≤
αi

10
∥∇φn+1

i,h ∥2 +
C∥ri∥

2
∞,∞

αiK
2
min

∥ηn+1
i ∥2.

Now, we want to find the upper-bound of

G(t, ui, φ
n+1
i,h ) =

(
ui(t

n+1) − ui(t
n)

∆t
− ui,t (t

n+1), φn+1
i,h

)
+

⎛
⎝ ri(t

n+1)ui(t
n+1)

K (tn+1)

N∑

j=1

{
un
j,h − uj(t

n+1)
}
, φn+1

i,h

⎞
⎠ . (3.23)

For some t∗ ∈ [tn, tn+1], we use Taylor’s series expansion, Poincaré, Cauchy–Schwarz, and Young’s inequalities to obtain

the following bound for the first term on the right-hand-side of (3.23)
(
ui(t

n+1) − ui(t
n)

∆t
− ui,t (t

n+1), φn+1
i,h

)
=

∆t

2

(
ui,tt (t

∗), φn+1
i,h

)

≤
C∆t

2

(
ui,tt (t

∗), ∇φn+1
i,h

)

≤
C∆t

2
∥ui,tt (t

∗)∥∥∇φn+1
i,h ∥

≤
αi

10
∥∇φn+1

i,h ∥2 +
C(∆t)2

αi

∥ui,tt (t
∗)∥2.

We can find the upper-bound of the last term on the right-hand-side of (3.23) using Taylor’s series expansion, Poincaré,

Hölder’s, triangle, and Young’s inequalities together with the regularity assumption as

(
ri(t

n+1)ui(t
n+1)

K (tn+1)

N∑

j=1

{
un
j,h − uj(t

n+1)
}
, φn+1

i,h

)

≤
C∥ri(t

n+1)∥∞

inf
Ω

∥K (tn+1)∥

N∑

j=1

(
|ui(t

n+1)
{
un
j,h − uj(t

n+1)
}
φn+1
i,h |

)

≤
C∥ri∥∞,∞

Kmin

∥ui(t
n+1)∥∞

N∑

j=1

∥un
j,h − uj(t

n+1)∥∥∇φn+1
i,h ∥

≤

N∑

j=1

C∥ri∥∞,∞

Kmin

∥un
j,h − uj(t

n+1)∥∥∇φn+1
i,h ∥

≤

N∑

j=1

(
αi

10N
∥∇φn+1

i,h ∥2 +
C∥ri∥

2
∞,∞

αiK
2
min

∥un
j,h − uj(t

n+1)∥2

)

≤
αi

10
∥∇φn+1

i,h ∥2 +
C∥ri∥

2
∞,∞

αiK
2
min

N∑

j=1

(
∥un

j,h − uj(t
n)∥2 + ∥uj(t

n) − uj(t
n+1)∥2

)

≤
αi

10
∥∇φn+1

i,h ∥2 +
C∥ri∥

2
∞,∞

αiK
2
min

N∑

j=1

(
2∥ηn

j ∥
2 + 2∥φn

j,h∥
2 + (∆t)2∥uj,t (s

∗)∥2
)

8
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≤
αi

10
∥∇φn+1

i,h ∥2 +
C∥ri∥

2
∞,∞

αiK
2
min

(
h2k+2 + (∆t)2

)
+

C∥ri∥
2
∞,∞

αiK
2
min

N∑

j=1

∥φn
j,h∥

2,

with s∗ ∈ [tn, tn+1]. Thus, we have

|G(t, ui, φ
n+1
i,h )| ≤

αi

5
∥∇φn+1

i,h ∥2 + C
(
h2k+2 + (∆t)2

)
+ C

N∑

j=1

∥φn
j,h∥

2.

Now, using the above bounds, we can rewrite (3.22) as

1

2∆t

(
∥φn+1

i,h − φn
i,h∥

2 + ∥φn+1
i,h ∥2 − ∥φn

i,h∥
2
)
+

αi

2
∥∇φn+1

i,h ∥2 ≤
5d2i
2αi

∥∇ηn+1
i ∥2 + C

N∑

j=1

∥φn
j,h∥

2

+
C(1 − µi)

2∥ri(t
n+1)∥2

∞

αi

∥ηn+1
i ∥2 +

C∥ri∥
2
∞,∞

αiK
2
min

∥ηn+1
i ∥2 + C

(
h2k+2 + (∆t)2

)
. (3.24)

Using the regularity assumption again, we obtain

1

2∆t

(
∥φn+1

i,h − φn
i,h∥

2 + ∥φn+1
i,h ∥2 − ∥φn

i,h∥
2
)
+

αi

2
∥∇φn+1

i,h ∥2 ≤ C
(
h2k + (∆t)2

)
+ C

N∑

j=1

∥φn
j,h∥

2. (3.25)

Dropping non-negative term from left-hand-side, multiplying both sides by 2∆t , use ∥φ0
i,h∥ = 0, ∆tM = T , and summing

over time-steps n = 0, 1, . . . ,M − 1, to find

∥φM
i,h∥

2 + αi∆t

M∑

n=1

∥∇φn
i,h∥

2 ≤ ∆t

M−1∑

n=1

C

⎛
⎝

N∑

j=1

∥φn
j,h∥

2

⎞
⎠+ C

(
h2k + (∆t)2

)
. (3.26)

Sum over i = 1, 2, . . . ,N , we have

N∑

i=1

∥φM
i,h∥

2 + ∆t

M∑

n=1

(
N∑

i=1

αi∥∇φn
i,h∥

2

)
≤ ∆t

M−1∑

n=1

C

(
N∑

i=1

∥φn
i,h∥

2

)
+ C

(
h2k + (∆t)2

)
. (3.27)

Applying the discrete Grönwall Lemma 2.1, we have

N∑

i=1

∥φM
i,h∥

2 + ∆t

M∑

n=1

(
N∑

i=1

αi∥∇φn
i,h∥

2

)
≤ C

(
h2k + (∆t)2

)
, (3.28)

which gives

∥φM
i,h∥

2 + αi∆t

M∑

n=1

∥∇φn
i,h∥

2 ≤ C
(
h2k + (∆t)2

)
for i = 1, 2, . . . ,N. (3.29)

Use of triangle and Young’s inequalities allows us to write

∥eMi ∥2 + αi∆t

M∑

n=1

∥∇eni ∥
2 ≤ 2

(
∥φM

i,h∥
2 + αi∆t

M∑

n=1

∥∇φn
i,h∥

2 + ∥ηM
i ∥2 + αi∆t

M∑

n=1

∥∇ηn
i ∥

2

)
. (3.30)

Using regularity assumptions and bound in (3.29), we have

∥ui(T ) − uM
i,h∥

2 + αi∆t

M∑

n=1

∥∇
(
ui(t

n) − un
i,h

)
∥2 ≤ C

(
h2k + (∆t)2

)
for i = 1, 2, . . . ,N. (3.31)

Now, summing over i = 1, 2, . . . ,N completes the proof.

Theorem 3.4 (Error Estimate of DBDF-2). For i = 1, 2, . . . ,N, assume ui solves (1.1) and satisfies

ui ∈ L∞
(
0, T ;Hk+1(Ω)d ∩ L∞(Ω)d

)
,ui,tt ∈ L∞

(
0, T ; L2(Ω)d

)
, ui,ttt ∈ L∞

(
0, T ; L2(Ω)d

)
,

ri ∈ L∞
(
0, T ; L∞(Ω)d

)
, k ≥ 2, and Kmin > 0,

if αi > 0 then for ∆t > 0 the solution ui,h to the Algorithm 2 converges to the true solution with

∥ui(T ) − uM
i,h∥ +

{
αi∆t

M∑

n=2

∥∇(ui(t
n) − un

i,h)∥
2
}1/2

≤ C(hk + ∆t2). (3.32)

9
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Proof. At first we build an error equation at the time level tn+1, the continuous variational formulations can be written

as ∀vi,h ∈ Xh

(
3ui(t

n+1) − 4ui(t
n) + ui(t

n−1)

2∆t
, vi,h

)
+ di

(
∇ui(t

n+1), ∇vi,h

)
= (1 − µi)

(
ri(t

n+1)ui(t
n+1), vi,h

)

−

⎛
⎝ ri(t

n+1)ui(t
n+1)

K (tn+1)

N∑

j=1

uj(t
n+1), vi,h

⎞
⎠+

(
3ui(t

n+1) − 4ui(t
n) + ui(t

n−1)

2∆t
− ui,t (t

n+1), vi,h

)

+
(
fi(t

n+1), vi,h

)
. (3.33)

Subtract (3.2) from (3.33) and then rearranging, yields
(
3en+1

i − 4eni + en−1
i

2∆t
, vi,h

)
+ di

(
∇en+1

i , ∇vi,h

)
− (1 − µi)

(
ri(t

n+1)en+1
i , vi,h

)

+

N∑

j=1

(
ri(t

n+1)

K (tn+1)
en+1
i (2un

j,h − un−1
j,h ), vi,h

)
+

N∑

j=1

(
ri(t

n+1)

K (tn+1)
ui(t

n+1)(2enj − en−1
j ), vi,h

)
= G(t, ui, vi,h), (3.34)

where

G(t, ui, vi,h) =

(
3ui(t

n+1) − 4ui(t
n) + ui(t

n−1)

2∆t
− ui,t (t

n+1), vi,h

)

−

⎛
⎝ ri(t

n+1)ui(t
n+1)

K (tn+1)

N∑

j=1

{
uj(t

n+1) − 2uj(t
n) + uj(t

n−1)
}
, vi,h

⎞
⎠ .

Now, we decompose the errors and rewrite, then for vi,h ∈ Xh, we have

(
3φn+1

i,h − 4φn
i,h + φn−1

i,h

2∆t
, vi,h

)
+ di

(
∇φn+1

i,h , ∇vi,h

)
− (1 − µi)

(
ri(t

n+1)φn+1
i,h , vi,h

)

+

N∑

j=1

(
ri(t

n+1)

K (tn+1)
φn+1
i,h (2un

j,h − un−1
j,h ), vi,h

)
+

N∑

j=1

(
ri(t

n+1)

K (tn+1)
ui(t

n+1)(2φn
j,h − φn−1

j,h ), vi,h

)

= di
(
∇ηn+1

i , ∇vi,h

)
− (1 − µi)

(
ri(t

n+1)ηn+1
i , vi,h

)
+

N∑

j=1

(
ri(t

n+1)

K (tn+1)
ηn+1
i (2un

j,h − un−1
j,h ), vi,h

)

+

N∑

j=1

(
ri(t

n+1)

K (tn+1)
ui(t

n+1)(2ηn
j − ηn−1

j ), vi,h

)
− G(t, ui, vi,h). (3.35)

Choose vi,h = φn+1
i,h , and use the identity in (3.13), to obtain

1

4∆t

(
∥φn+1

i,h ∥2 − ∥φn
i,h∥

2 + ∥2φn+1
i,h − φn

i,h∥
2 − ∥2φn

i,h − φn−1
i,h ∥2 + ∥φn+1

i,h − 2φn
i,h + φn−1

i,h ∥2
)

+ di∥∇φn+1
i,h ∥2 − (1 − µi)

(
ri(t

n+1)φn+1
i,h , φn+1

i,h

)
+

N∑

j=1

(
ri(t

n+1)

K (tn+1)
φn+1
i,h (2un

j,h − un−1
j,h ), φn+1

i,h

)

+

N∑

j=1

(
ri(t

n+1)

K (tn+1)
ui(t

n+1)(2φn
j,h − φn−1

j,h ), φn+1
i,h

)
= di

(
∇ηn+1

i , ∇φn+1
i,h

)

− (1 − µi)
(
ri(t

n+1)ηn+1
i , φn+1

i,h

)
+

N∑

j=1

(
ri(t

n+1)

K (tn+1)
ηn+1
i (2un

j,h − un−1
j,h ), φn+1

i,h

)

+

N∑

j=1

(
ri(t

n+1)

K (tn+1)
ui(t

n+1)(2ηn
j − ηn−1

j ), φn+1
i,h

)
− G

(
t, ui, φ

n+1
i,h

)
. (3.36)

Now, we find the upper-bounds of terms in (3.36). Using Hölder’s, and Poincaré inequalities, we have

(1 − µi)
(
ri(t

n+1)φn+1
i,h , φn+1

i,h

)
≤ |1 − µi|∥ri(t

n+1)∥∞∥φn+1
i,h ∥2 ≤ C |1 − µi|∥ri∥∞,∞∥∇φn+1

i,h ∥2.

10
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Next, using triangle, Hölder’s, and Poincaré inequalities together with Assumption 3.1, we have

−

N∑

j=1

(
ri(t

n+1)

K (tn+1)
φn+1
i,h (2un

j,h − un−1
j,h ), φn+1

i,h

)
≤

N∑

j=1

 ri(t
n+1)

K (tn+1)


∞

∥2un
j,h − un−1

j,h ∥∞∥φn+1
i,h ∥2

≤
C∥ri∥∞,∞

Kmin

∥∇φn+1
i,h ∥2.

With the assumption αi > 0, use Hölder’s inequality, Sobolev embedding theorem, Poincaré and Young’s inequalities, and

regularity assumption, we obtain

−

N∑

j=1

(
ri(t

n+1)

K (tn+1)
ui(t

n+1)(2φn
j,h − φn−1

j,h ),φn+1
i,h

)
≤

N∑

j=1

∥ri∥∞,∞

Kmin

∥ui(t
n+1)∥L6∥φ

n+1
i,h ∥L3∥2φ

n
j,h − φn−1

j,h ∥

≤

N∑

j=1

∥ri∥∞,∞

Kmin

∥ui(t
n+1)∥H1∥φ

n+1
i,h ∥

1
2 ∥∇φn+1

i,h ∥
1
2 ∥2φn

j,h − φn−1
j,h ∥

≤

N∑

j=1

(
αi

14N
∥∇φn+1

i,h ∥2 +
C∥ri∥

2
∞,∞

αiK
2
min

∥2φn
j,h − φn−1

j,h ∥2

)

≤
αi

14
∥∇φn+1

i,h ∥2 +
C∥ri∥

2
∞,∞

αiK
2
min

N∑

j=1

∥2φn
j,h − φn−1

j,h ∥2.

Use Cauchy–Schwarz, and Young’s inequalities, to obtain

di
(
∇ηn+1

i , ∇φn+1
i,h

)
≤ di∥∇ηn+1

i ∥∥∇φn+1
i,h ∥ ≤

αi

14
∥∇φn+1

i,h ∥2 +
7d2i
2αi

∥∇ηn+1
i ∥2.

Using Hölder’s, Sobolev embedding theorem, Poincaré, and Young’s inequalities, we have

(1 − µi)
(
ri(t

n+1)ηn+1
i , φn+1

i,h

)
≤ |1 − µi|∥ri(t

n+1)∥∞∥ηn+1
i ∥∥∇φn+1

i,h ∥

≤
αi

14
∥∇φn+1

i,h ∥2 +
7(1 − µi)

2∥ri∥
2
∞,∞

2αi

∥ηn+1
i ∥2.

Using Hölder’s inequality, and triangle inequality, Assumption 3.1, Poincaré, and Young’s inequalities, we can write

N∑

j=1

(
ri(t

n+1)

K (tn+1)
ηn+1
i

(
2un

j,h − un−1
j,h

)
, φn+1

i,h

)
≤

N∑

j=1

∥ri∥∞,∞

Kmin

∥ηn+1
i ∥∥2un

j,h − un−1
j,h ∥∞∥φn+1

i,h ∥

≤

N∑

j=1

∥ri∥∞,∞

Kmin

∥ηn+1
i ∥

(
2∥un

j,h∥∞ + ∥un−1
j,h ∥∞

)
∥∇φn+1

i,h ∥

≤
C∥ri∥∞,∞

Kmin

∥ηn+1
i ∥∥∇φn+1

i,h ∥

≤
αi

14
∥∇φn+1

i,h ∥2 +
C∥ri∥

2
∞,∞

αiK
2
min

∥ηn+1
i ∥2.
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Using Hölder’s inequality, Sobolev embedding theorem, Poincaré inequality, regularity assumption, and Young’s inequality,

we have

N∑

j=1

(
ri(t

n+1)

K (tn+1)
ui(t

n+1)(2ηn
j − ηn−1

j ), φn+1
i,h

)
≤

N∑

j=1

∥ri∥∞,∞

Kmin

∥ui(t
n+1)∥L6∥2η

n
j − ηn−1

j ∥∥φn+1
i,h ∥L3

≤

N∑

j=1

∥ri∥∞,∞

Kmin

∥ui(t
n+1)∥H1∥2ηn

j − ηn−1
j ∥∥φn+1

i,h ∥1/2∥∇φn+1
i,h ∥1/2

≤

N∑

j=1

C∥ri∥∞,∞

Kmin

∥ui∥
L∞
(
0,T ;H1(Ω)d

)∥2ηn
j − ηn−1

j ∥∥∇φn+1
i,h ∥

≤
αi

14
∥∇φn+1

i,h ∥2 +
C∥ri∥

2
∞,∞

K 2
min

N∑

j=1

∥2ηn
j − ηn−1

j ∥2.

Using Taylor’s series, Cauchy–Schwarz and Young’s inequalities the last term is evaluated as

⏐⏐⏐− G
(
t, ui, φ

n+1
i,h

) ⏐⏐⏐ ≤ ∆t2
C∥ri∥∞,∞

Kmin

∥ui∥
L∞
(
0,T ;H1(Ω)d

)
N∑

j=1

∥uj,tt∥
L∞
(
0,T ;L2(Ω)d

)∥∇φn+1
i,h ∥

+ C∆t2∥ui,ttt∥
L∞
(
0,T ;L2(Ω)d

)∥∇φn+1
i,h ∥

≤
αi

7
∥∇φn+1

i,h ∥2 +
C∆t4∥ri∥

2
∞,∞

αiK
2
min

.

Using these above estimates in (3.36) and reducing, yields

1

4∆t

(
∥φn+1

i,h ∥2 − ∥φn
i,h∥

2 + ∥2φn+1
i,h − φn

i,h∥
2 − ∥2φn

i,h − φn−1
i,h ∥2 + ∥φn+1

i,h − 2φn
i,h + φn−1

i,h ∥2
)

+
αi

2
∥∇φn+1

i,h ∥2 ≤
C∥ri∥

2
∞,∞

αiK
2
min

N∑

j=1

∥2φn
j,h − φn−1

j,h ∥2 +
7d2i
2αi

∥∇ηn+1
i ∥2 +

7(1 − µi)
2∥ri∥

2
∞,∞

2αi

∥ηn+1
i ∥2

+
C∥ri∥

2
∞,∞

αiK
2
min

∥ηn+1
i ∥2 +

C∥ri∥
2
∞,∞

K 2
min

N∑

j=1

∥2ηn
j − ηn−1

j ∥2 +
C∆t4∥ri∥

2
∞,∞

αiK
2
min

≤ C

N∑

j=1

∥2φn
j,h − φn−1

j,h ∥2 + Ch2k + Ch2k+2 + C∆t4. (3.37)

Dropping non-negative term from left-hand-side, multiplying both sides by 4∆t , using ∥φ0
i,h∥ = ∥φ1

i,h∥ = 0, and summing

over the time-steps n = 1, 2, . . . ,M − 1, we have

∥φM
i,h∥

2 + ∥2φM
i,h − φM−1

i,h ∥2 + 2αi∆t

M∑

n=2

∥∇φn
i,h∥

2 ≤ C∆t

M−1∑

n=1

N∑

j=1

∥2φn
j,h − φn−1

j,h ∥2 + C(h2k + ∆t4). (3.38)

Sum over i = 1, 2, . . . ,N , drop non-negative terms from left-hand-side, and reducing, gives

N∑

i=1

∥φM
i,h∥

2 + 2αi∆t

M∑

n=2

N∑

i=1

∥∇φn
i,h∥

2 ≤ C∆t

M−1∑

n=2

N∑

i=1

∥φn
i,h∥

2 + C(h2k + ∆t4).

Applying the discrete Grönwall Lemma 2.1, we have

N∑

i=1

∥φM
i,h∥

2 + 2αi∆t

M∑

n=2

N∑

i=1

∥∇φn
i,h∥

2 ≤ C(h2k + ∆t4), (3.39)

for i = 1, 2, . . . ,N , which gives

∥φM
i,h∥

2 + 2αi∆t

M∑

n=2

∥∇φn
i,h∥

2 ≤ C(h2k + ∆t4). (3.40)

Use of triangle and Young’s inequalities, and regularity assumption completes the proof.

12
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Now we proof the assumption ∥un
i,h∥∞ ≤ C that was used in stability Theorems 3.1–3.2 and in convergence

Theorems 3.3–3.4 by principle of mathematical induction. The strategy of this proof is adopted from the idea of Wong in
the analysis of three-species competition model [17]. Since ui ∈ L∞(0, T ; L∞(Ω)d), we define

K̃ := ∥ui∥∞,∞ ≥ max
0≤n≤M

∥ui(t
n)∥∞.

Lemma 3.5. If ui(0, x) is sufficiently regular for x ∈ Ω , then ∥un
i,h∥∞ ≤ K ∗, 0 ≤ n ≤ M, where K ∗ is a positive constant.

Proof. Basic step: u0
i,h = Ih(ui(0, x)), where Ih is an appropriate interpolation operator. Because of the regularity

assumption of ui(0, x), we have ∥u0
i,h∥∞ ≤ K ∗, for some constant K ∗ > 0.

Inductive step: Assume for some L ∈ N and L < M , ∥un
i,h∥∞ ≤ K ∗ holds true for n = 0, 1, . . . , L. Then, we have

∥uL+1
i,h ∥∞ = ∥uL+1

i,h − ui(t
L+1) + ui(t

L+1)∥∞

≤ ∥uL+1
i,h − ui(t

L+1)∥∞ + ∥ui(t
L+1)∥∞.

Using Agmon’s inequality [31], and discrete inverse inequality, yields

∥uL+1
i,h ∥∞ ≤ Ch− 3

2 ∥uL+1
i,h − ui(t

L+1)∥ + K̃

≤ Ch− 3
2

(
∥φL+1

i,h ∥ + ∥ηL+1
i ∥

)
+ K̃ (Triangle inequality).

Use inductive hypothesis to get (3.29), and approximation property (2.3), the above bound can be written as

∥uL+1
i,h ∥∞ ≤ C

(
hk− 3

2 + h− 3
2 ∆t + hk− 1

2

)
+ K̃ . (3.41)

We note that the above bound is independent of L, that is, the bound is not affected by time. For k > 3/2, and sufficiently
small h and ∆t such that

hk− 3
2 ≤

1

C
and ∆t ≤

h
3
2

C
,

we have

∥uL+1
i,h ∥∞ ≤ 3 + K̃ .

Therefore, ∥uL+1
i,h ∥∞ ≤ K ∗ holds also true for K ∗ = 3 + K̃ . Hence, by the principle of strong mathematical induction,

∥un
i,h∥∞ ≤ K ∗ holds true for 0 ≤ n ≤ M .

4. Numerical tests

In this section, we perform several numerical experiments to support theoretical results and to explain the harvesting
or stocking effect on population density from the simulated outcomes. In all the experiments, we consider a domain
Ω = (0, 1) × (0, 1); we also use P2 element for the finite element computation, and structured triangular meshes. We
define the average energy density corresponding to a species density ui at time t = tn as

ūn
i =

1

|Ω|

∫

τh

ui(t
n, x)dx.

The experiment that involves the second-order accurate DBDF-2 scheme uses the first-order accurate DBE scheme at the
first time-step to generate the required number of initial conditions.

In the first experiment, we numerically verified the predicted convergence rates. We observed the evolution of
population density with an exponentially varying carrying capacity in the second experiment. In the third experiment, we
observed the effect of diffusion parameters on population density. The effect of harvesting and stocking on the evolution of
species density is presented in the fourth and fifth experiments, respectively. The numerical experiments were done in the
finite element platform Freefem++ [32] using the direct solver UMFPACK [33]. A summary of the numerical experiments
and the parameters used are presented in Table 4.1.

4.1. Test 1: Convergence rate verification

We define the global error ei := ui − ui,h and its L2 − H1 norm as ∥ei∥2,1 := ∥ei∥
L2
(
0,T ;H1(Ω)d

). We have seen from the

convergence analysis that the predicted error of the Algorithms 1 and 2 and for P2 finite element are

∥ui − ui,h∥2,1 ≤ C(h2 + ∆t), and (4.1)

∥ui − ui,h∥2,1 ≤ C(h2 + ∆t2), i = 1, 2, . . . ,N, (4.2)

13
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Table 4.1

A brief summary of the numerical experiments where µi is the harvesting coefficient and di is the diffusion speed of the ith competing

species.

Test Description Carrying

capacity

Growth

rate

Additional parameters

1 Verify the convergence rates Periodic Periodic N = 2, d1 = d2 = 1, µ1 = 0.001, µ2 = 0.0006

N = 3, d1 = d2 = d3 = 1, µ1 = 0.001,

µ2 = 0.0006, µ3 = 0.0

2

Effect on

population

density of

varying

spatio-temporal

carrying capacity

Gaussian-

periodic

Constant N = 3, d1 = d2 = d3 = 1, µ1 = 0.0009,

µ2 = 0.0015, µ3 = 0.0027

3 diffusion speed Gaussian-

periodic

Periodic N = 3, µ1 = µ2 = µ3 = 0.0

4 harvesting

coefficients

Gaussian-

periodic

Periodic
N = 3, d1 = 0.1, d2 = 0.02, d3 = 0.01

5 stocking

coefficients

Gaussian-

periodic

Periodic

Table 4.2

Two-species model: Spatial errors and convergence rates with µ1 = 0.001, and µ2 = 0.0006.

Errors and convergence rates (fixed T = 0.0001, ∆t = T/8)

h DBE scheme DBDF-2 scheme

∥e1∥2,1 Rate ∥e2∥2,1 Rate ∥e1∥2,1 Rate ∥e2∥2,1 Rate

1/4 2.1868e−05 3.6307e−05 2.0456e−05 3.3962e−05

1/8 5.4640e−06 2.00 9.1106e−06 1.99 5.1111e−06 2.00 8.5221e−06 1.99

1/16 1.3658e−06 2.00 2.2798e−06 2.00 1.2776e−06 2.00 2.1325e−06 2.00

1/32 3.4144e−07 2.00 5.7009e−07 2.00 3.1939e−07 2.00 5.3327e−07 2.00

1/64 8.5360e−08 2.00 1.4253e−07 2.00 7.9848e−08 2.00 1.3333e−07 2.00

respectively. To verify the above convergence rates, we plugin the following carrying capacity and intrinsic growth rates

K (t, x) = (2.1 + cos(x) cos(y))(1.1 + cos(t)), and ri(t, x) = (1.5 + sin(x) sin(y))(1.2 + sin(t)),

respectively, in

fi(t, x) =
∂ui

∂t
− di∆ui − riui

⎛
⎝1 − µi −

1

K

N∑

j=1

uj

⎞
⎠ , (4.3)

to obtain the forcing fi(t, x), for i = 1, 2, . . . ,N . For this experiment, we consider known analytical solution as the Dirichlet

boundary condition on the boundary of the unit square, the diffusion coefficients are di = 1, for i = 1, 2, . . . ,N . To observe

the spatial convergence rates, we keep fixed, a small simulation end time T , successively reduce mesh size h and run the

simulations, and record the errors. On the other hand, to exhibit the temporal convergence, we use a fixed small mesh

size h, successively refined time-step size ∆t and run the simulation, and record the errors.

4.1.1. Two-species competition model

In this case, we have N = 2, and consider the following analytical solution

u1(t, x) =
(
1.1 + sin(t)

)
(2.0 + sin(y)),

u2(t, x) =
(
2.0 + cos(t)

)(
1.1 + cos(x)

)
,

together with the harvesting coefficients µ1 = 0.001, and µ2 = 0.0006. To compute the spatial errors and convergence

rates, we consider end time T = 0.0001, and time-step size ∆t = T/8. The spatial errors and convergence rates for

both the DBE and DBDF-2 schemes are given in Table 4.2. We observe second order spatial convergence in both species

from both the algorithms, which are consistent with (4.1) and (4.2), since we have used P2 element. For the temporal

convergence rate, we keep fixed T = 1, and h = 1/64, and present the temporal errors and convergence rates in Table 4.3.

It is observed the first order temporal convergence rate from the DBE scheme, which is optimal rate for the backward-

Euler time-stepping algorithm, and is an excellent agreement with the error estimate in (4.1). Recall that we used the

backward-Euler formula to approximate the time derivative. Whereas, we observe a second order temporal convergence

rate for the DBDF-2 scheme, which is also optimal as we approximate the temporal derivative by the BDF-2 formula, and

is consistent with (4.2).
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Table 4.3

Two-species model: Temporal errors and convergence rates with µ1 = 0.001, and µ2 = 0.0006.

Errors and convergence rates (fixed T = 1, h = 1/64)

∆t DBE scheme DBDF-2 scheme

∥e1∥2,1 Rate ∥e2∥2,1 Rate ∥e1∥2,1 Rate ∥e2∥2,1 Rate

T
4

4.9154e−02 6.5044e−02 2.3061e−01 3.3998e−01
T
8

2.3436e−02 1.07 3.2022e−02 1.02 5.1569e−02 2.16 8.3617e−02 2.02
T
16

1.1468e−02 1.03 1.5931e−02 1.01 1.2773e−02 2.01 2.1564e−02 1.96
T
32

5.6853e−03 1.01 7.9691e−03 1.00 3.2627e−03 1.97 5.6131e−03 1.94
T
64

2.8339e−03 1.00 3.9917e−03 1.00 8.3346e−04 1.97 1.4477e−03 1.96
T

128
1.4155e−03 1.00 1.9989e−03 1.00 2.1203e−04 1.97 3.6976e−04 1.97

Table 4.4

Three-species model: Spatial errors and convergence rates with µ1 = 0.001, µ2 = 0.0006, and µ3 = 0.0.

DBE scheme Errors and convergence rates (fixed T = 0.0001, ∆t = T/8)

h ∥e1∥2,1 Rate ∥e2∥2,1 Rate ∥e3∥2,1 Rate

1
4

2.1868e−05 3.6307e−05 1.3313e−05
1
8

5.4640e−06 2.00 9.1106e−06 1.99 3.3407e−06 1.99
1
16

1.3658e−06 2.00 2.2798e−06 2.00 8.3597e−07 2.00
1
32

3.4144e−07 2.00 5.7009e−07 2.00 2.0904e−07 2.00
1
64

8.5364e−08 2.00 1.4254e−07 2.00 5.2268e−08 2.00

Table 4.5

Three-species model: Spatial errors and convergence rates with µ1 = 0.001, µ2 = 0.0006, and µ3 = 0.0.

DBDF-2 scheme Errors and convergence rates (fixed T = 0.001, ∆t = T/16)

h ∥e1∥2,1 Rate ∥e2∥2,1 Rate ∥e3∥2,1 Rate

1
4

6.6986e−05 1.1115e−04 4.0774e−05
1
8

1.6738e−05 2.00 2.7893e−05 1.99 1.0233e−05 1.99
1
16

4.1839e−06 2.00 6.9804e−06 2.00 2.5608e−06 2.00
1
32

1.0460e−06 2.00 1.7457e−06 2.00 6.4041e−07 2.00
1
64

2.6174e−07 2.00 4.3698e−07 2.00 1.6034e−07 2.00

Table 4.6

Three-species model: Temporal errors and convergence rates with µ1 = 0.001, µ2 = 0.0006, and µ3 = 0.0.

DBE scheme Temporal convergence (fixed h = 1/64)

∆t ∥e1∥2,1 Rate ∥e2∥2,1 Rate ∥e3∥2,1 Rate

T
4

2.1742e−01 3.1934e−01 1.6932e−01
T
8

9.9975e−02 1.12 1.5053e−01 1.09 7.7848e−02 1.12
T
16

4.8267e−02 1.05 7.3538e−02 1.03 3.7585e−02 1.05
T
32

2.3770e−02 1.02 3.6446e−02 1.01 1.8510e−02 1.02
T
64

1.1805e−02 1.01 1.8163e−02 1.00 9.1929e−03 1.01
T

128
5.8844e−03 1.00 9.0705e−03 1.00 4.5823e−03 1.00

4.1.2. Three-species competition model

In this case, we have N = 3, and consider the following manufactured analytical solution

u1(t, x) =
(
1.1 + sin(t)

)
(2.0 + sin(y)),

u2(t, x) =
(
2.0 + cos(t)

)(
1.1 + cos(x)

)
,

u3(t, x) =
(
1.1 + sin(t)

)(
1.1 + cos(y)

)
,

together with the harvesting coefficients µ1 = 0.001, µ2 = 0.0006, and µ3 = 0.0. We then compute the solution using

the both Algorithms 1 and 2 and compare them with the manufactured analytical solution.

The spatial errors and convergence rates for the Algorithm 1, and Algorithm 2 are given in Table 4.4 in Table 4.5,

respectively. We observe second order spatial convergence in both algorithms for all species, which is consistent with

both (4.1) and (4.2). The temporal errors and convergence rates for the Algorithm 1, and Algorithm 2 are presented in

Table 4.6 and in Table 4.7, respectively. From Table 4.6 we see, the DBE scheme exhibits first order temporal convergence
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Table 4.7

Three-species model: Temporal errors and convergence rates with µ1 = 0.001, µ2 = 0.0006, and µ3 = 0.0.

DBDF-2 scheme Temporal convergence (fixed h = 1/128)

∆t ∥e1∥2,1 Rate ∥e2∥2,1 Rate ∥e3∥2,1 Rate

T
4

4.2702e−01 6.4799e−01 3.3294e−01
T
8

8.8706e−02 2.27 1.5471e−01 2.07 6.8771e−02 2.28
T
16

2.1412e−02 2.05 3.9362e−02 1.97 1.6557e−01 2.05
T
32

5.4327e−03 1.98 1.0206e−02 1.95 4.1909e−03 1.98
T
64

1.3844e−03 1.97 2.6272e−03 1.96 1.0655e−03 1.98
T

128
3.5123e−04 1.98 6.6970e−04 1.97 2.6976e−04 1.98

rate, which is optimal rate as a backward-Euler time-stepping algorithm, and is an excellent agreement with the error
estimate in (4.1).

On the other hand, DBDF-2 scheme displays second order temporal convergence for all three species in Table 4.7, which
is also optimal for the second order time-stepping algorithm and is consistent with the error estimate in (4.2). Therefore,
for both two and three species, we observe optimal convergence rates.

In all the numerical experiments for Test 2 through Test 5 below, we consider the carrying capacity

K (t, x) ≡
(
1.2 + 2.5π2e−(x−0.5)2−(y−0.5)2

)(
1.0 + 0.3 cos(t)

)
,

initial population density u0
i = 1.6, forcing functions fi ≡ 0 for i = 1, 2, 3, and solve (1.1) using the DBDF-2 scheme given

in Algorithm 2 with time-step size ∆t = 0.1 along with no-flux boundary condition. The no-flux boundary condition
ensures the competing species live in a closed environment.

4.2. Test 2: Evolution of population density with exponentially varying carrying capacity

For this experiment, we consider constant intrinsic growth rates ri ≡ 1, diffusion rates di = 1, for i = 1, 2, 3, and the
harvesting coefficients µ1 = 0.0009, µ2 = 0.0015, and µ3 = 0.0027. When carrying capacity K is time periodic, as it is
realistic to assume where there is seasonal variation, we display the space averaged profile as a function of time to show
its approach to a periodic state, and display the instantaneous contour plot of u1, u2, and u3 for t = T , where T is chosen
large enough for time periodicity of ui, (i = 1, 2, 3) to emerge.

In Figs. 4.1, the average density of each species versus time is plotted for time t = 0 to 80, and the population density
contour plot of each of the species at time t = 80. From the average density plot, we observe periodic population densities
for all species, where the density of u3 is decreasing because of its higher harvesting coefficient (Fig. 4.1(a)). It is predicted
that the species u3 will die out if time is too large, and we consider the extinction scenario in a later experiment.

From the contour plots, it is observed that the highest population density is at the point (0.5, 0.5) and there is a
coexistence of all species, though the population density of the species u1 remains bigger than the species u2, and u3

over the domain (Fig. 4.1(b)–(d)). This happens because of different harvesting coefficients, and the optimal value of the
carrying capacity function is achieved at the point (0.5, 0.5), which shows the symmetric distribution of the population.

In all the numerical experiments for Test 3 through Test 5 below, we will use the intrinsic growth rates ri(t, x) ≡

(1.5 + sin(x) sin(y))(1.2 + sin(t)), i = 1, 2, 3.

4.3. Test 3: Diffusion speed and evolution of population density

In this example, we consider the problem for three species populations in absence of harvesting (e.g., µi = 0). We want
to see how the average population density of a species varies with the diffusion parameter. We plot the average density
versus time in Fig. 4.2 for all three species varying the diffusion parameters as di = 0.01, 0.02, and 0.1 for i = 1, 2, 3.
Fig. 4.2 suggests that the initial value is unimportant to the final state due to the global convergence of solutions. It is
also remarked that the same is true in other experiments. From all three plots in Fig. 4.2(a)–(c), we observe that as the
diffusion parameter increases, the species density increases over time. The species with higher diffusion rate will converge
to the stable solution faster [34]. Fig. 4.2(c)–(d) are plotted for the same data, but for short and long time scenarios. We
observe that the species with the highest diffusion rate is extinct, whereas the species with the lowest diffusion rate is
the winner over the other species. In summary, the slow diffuser is the sole winner for multiple population competition
and is independent of any choice of equal intrinsic growth rate and the initial population size.

4.4. Test 4: Effect of harvesting on the evolution of population density

In this experiment, we consider N = 3, a three species competition model with varying diffusion rates as d1 = 0.1,
d2 = 0.02, and d3 = 0.01. That is, the spreading rate of the first and third species is the highest and lowest, respectively.
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Fig. 4.1. (a) Average density of each species, (b) contour plot of species density u1 , (c) contour plot of species density u2 , and (d) contour plot of

species density u3 with the harvesting coefficients µ1 = 0.0009, µ2 = 0.0015, and µ3 = 0.0027 at t = 80.

Consequently, without stocking, their population density at any time must be the lowest and highest, respectively as

investigated and presented in Fig. 4.2.

In Fig. 4.3, we plot the average density of each species versus time with varying harvesting coefficients over the time

interval [1000, 1080]. We choose the time interval [1000, 1080] to exhibit the long-range behavior of the solutions. In

Fig. 4.3(a), we plot the long-range behavior of the average density of each of the species in absence of harvesting or

stocking effort (µ1 = µ2 = µ3 = 0.0). We observe a periodic behavior in the average density of all the species, and the

third species dominates the other species in competition. The periodic behavior is inherited from periodic system carrying

capacity of the system. The lowest diffusion rate plays a key role for the third species in becoming the winner. For time

periodic parameters in Fig. 4.3(a), we notice the average density of u1 approaches zero in an oscillatory fashion.

Fig. 4.3(b) represents the average density of each of the three species on the time interval [1000, 1080], where only

the third species is affected by harvesting with coefficient µ3 = 0.001. The sequential map presented the results based on

the combined effects of harvesting and diffusion coefficient. Comparing Fig. 4.3(a) and Fig. 4.3(b), it is clear that due to the

non-zero harvesting coefficient µ3 = 0.001, the density of the third species has been reduced. On the other hand, clearly,

the second species is also impacted by the harvesting of the third species. Because of the reduction in the population

density of the third species, the other species get more resources to grow, and a significant boost is observed in the

second species’ density and a considerable amount of density increment is observed in the first species.

If we further increase the harvesting coefficients as µ2 = 0.001, and µ3 = 0.002, but keep µ1 = 0 (no harvesting) and

plot the average density curves versus time for each species in Fig. 4.3 (c), we observe an evolutionary population density

feature, especially for the first species. The harvesting in the second and third species provides an advantage to the first

species, and thus an apparent co-existence of all three species is visible over the time [1000, 1080]. It is noted that Fig. 4.3

reveals the effects of harvesting levels on the scaled average population density on periodic time-dependent functions as

happens for seasonal changes. Though the considered values of the harvesting coefficients are not corresponding to the

optimal co-existence, it is possible to estimate optimal (µ1, µ2, µ3) [15].
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Fig. 4.2. The effect of diffusion rate on the average population density (a) ū1 , (b) ū2 , (c) ū3 , and (d) ū3 on long-range without harvesting or stocking

effort for K (t, x) ≡
(
1.2 + 2.5π2e−(x−0.5)2−(y−0.5)2

)(
1.0 + 0.3 cos(t)

)
, µi = 0 and ri(t, x) ≡ (1.5 + sin(x) sin(y))(1.2 + sin(t)), i = 1, 2, 3.

4.5. Test 5: Effect of stocking on the evolution of population density

In this experiment, we observed how the evolution of population density is affected by the variation in stocking

coefficients. We plot the average density corresponding to each species versus time varying the stocking coefficients

in Fig. 4.4 on the time interval [1000, 1080]. Because of the periodic resource function, we observe periodic behavior in

all the population densities (Fig. 4.4). We consider the same diffusion rates, d1 = 0.1, d2 = 0.02, and d3 = 0.01 as in the

case of Fig. 4.3(a), where no harvesting or stocking is considered.

We reduce the stocking coefficient µ1 = 0.0 to µ1 = −0.002 for u1 since the diffusion rate is higher for the first

species. The results are displayed in Fig. 4.4(a). Comparing Fig. 4.3(a) and Fig. 4.4(a), we observe that the population

density of the first species increases while for the second and third species decrease. It provides the increased population

of the first species consumes more resources from the environment, which reduces the productivity of the other two

species.

Next, we decrease the stocking coefficient of the first species to µ1 = −0.0025 and for the second species to

µ2 = −0.001, keeping no harvesting or stocking to the third species, and plot the average density in Fig. 4.4(b). We observe

that the density of the third species decreases while the first and second species increase, and there is a transparent co-

existence of all the species. Therefore, the harvesting and stocking coefficients can be a controlling tool in population

dynamics to optimize the limited resources.

5. Conclusion and future research

Time evolutionary reaction–diffusion equation is the basis of harvesting and/or stocking model in population dynamics.

In this paper, we propose a time-dependent system of non-linear coupled partial differential equations representing the

dynamics of an N-species competition model with harvesting and/or stocking effect. We propose, analyze and test two

fully discrete decoupled stable algorithms for numerical computation. We prove the first scheme is first-order accurate

and the second scheme is second-order accurate in time and both are optimally accurate in space. We perform extensive
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Fig. 4.3. The effect of harvesting coefficients on the average density with diffusion parameters d1 = 0.1, d2 = 0.02, and d3 = 0.01 for

K (t, x) ≡
(
1.2 + 2.5π2e−(x−0.5)2−(y−0.5)2

)(
1.0 + 0.3 cos(t)

)
, and ri(t, x) ≡ (1.5 + sin(x) sin(y))(1.2 + sin(t)), i = 1, 2, 3. with (a) No harvesting, (b)

third population is harvested and (c) u2, u3 are harvested.

Fig. 4.4. Effect of stocking coefficients on the system energy corresponding to each species density with the diffusion parameters d1 = 0.1, d2 = 0.02,

and d3 = 0.01 for K (t, x) ≡
(
1.2 + 2.5π2e−(x−0.5)2−(y−0.5)2

)(
1.0 + 0.3 cos(t)

)
, and ri(t, x) ≡ (1.5 + sin(x) sin(y))(1.2 + sin(t)), i = 1, 2, 3.

numerical tests to verify the predicted convergence rates with some analytical test problems for both two- and three-
species competition models. The linearized decoupled algorithms are efficient at each time-step and the solution for each
species can be computed simultaneously. This can significantly reduce the computational time in simulating large-scale
computationally intensive complex problems.

Numerical experiments exhibit (a) if the diffusion rate increases the population density decreases and faster the process
of extinction, (b) if the harvesting coefficient of a species increases, its density decreases, and other species get benefit
in the competition, and (c) if the stocking effect of a species intensify, the population density increases and tends to win
over the other species in the competition, that is, the survival period of the species increases. For a particular competition
model, a set of values of the harvesting or stocking coefficients can be found for which co-existence of all species will
be ensured. The harvesting and/or stocking coefficient can be a useful as a control in the population dynamics with
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limited natural resources. In the future, we plan to explore the problem of uncertainty quantification and model parameter
estimation for practical applications. Harvesting or stocking modeling based on convection diffusion reaction parabolic
problem [35,36] also could be a new research avenue. To reduce the computation cost while dealing with coupled system
of reaction–diffusion equations with small parameters, we are interested in the recent work here [37].
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Appendix

Here we find the restriction on the time-step size to have the stability of the Algorithm 1. We consider the following
linear system:

a(un+1
i,h , vi,h) = F

(
vi,h

)
, ∀vi,h ∈ Xh, i = 1, 2, . . . ,N, (A.1)

where the linear form

F
(
vi,h

)
:=

1

∆t

(
un
i,h, vi,h

)
+
(
fi(t

n+1), vi,h

)
, (A.2)

and the bilinear form

a
(
un+1
i,h , vi,h

)
: =

1

∆t

(
un+1
i,h , vi,h

)
+ di

(
∇un+1

i,h , ∇vi,h

)
− (1 − µi)

(
ri(t

n+1)un+1
i,h , vi,h

)

−

⎛
⎝ ri(t

n+1)un+1
i,h

K (tn+1)

N∑

j=1

un
j,h, vi,h

⎞
⎠ . (A.3)

Now, substitute vi,h = un+1
i,h in (A.3) to give

a
(
un+1
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i,h

)
=

1
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∥un+1

i,h ∥2 + di∥∇un+1
i,h ∥2 − (1 − µi)

(
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−

⎛
⎝ ri(t
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⎞
⎠

≥
1
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C∥ri(t
n+1)∥∞

inf
Ω

∥K (tn+1)∥
∥un+1

i,h ∥2. (A.4)

The last term in the above inequality is derived as the lower bound subject to Assumption 3.1. Rearranging

a
(
un+1
i,h , un+1

i,h

)
≥

⎛
⎝ 1

∆t
− |1 − µi|∥ri∥

L∞
(
0,T ;L∞(Ω)d

) −

C∥ri∥
L∞
(
0,T ;L∞(Ω)d

)

inf
(t,x)∈(0,T ]×Ω

|K |

⎞
⎠ ∥un+1

i,h ∥2 + di∥∇un+1
i,h ∥2. (A.5)

To have the coercivity condition, we must have

1

∆t
− |1 − µi|∥ri∥∞,∞ −

C∥ri∥∞,∞

Kmin

≥ 0,

which gives the following restriction on the time-step size

∆t ≤
Kmin

|1 − µi|∥ri∥∞,∞Kmin + C∥ri∥∞,∞

. (A.6)

In a similar approach, we can find the time-step restriction on the stability of the Algorithm 2.
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