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Abstract: The loss and degradation of habitat, Allee effects, climate change, deforestation, hunting-
overfishing and human disturbances are alarming and significant threats to the extinction of many
species in ecology. When populations compete for natural resources, food supply and habitat, survival
to extinction and various other issues are visible. This paper investigates the competition of two species
in a heterogeneous environment that are subject to the effect of harvesting. The most realistic harvesting
case is connected with the intrinsic growth rate, and the harvesting functions are developed based on
this clause instead of random choice. We prove the existence and uniqueness of the solution to the
model. Theoretically, we state that, when species coexist, one may drive the other to die out, so both
species become extinct, considering all possible rational values of parameters. These results highlight
a worthy-of attention study between two populations based on harvesting coefficients. Finally, we
solve the model for two spatial dimensions by using a backward Euler, decoupled and linearized time-
stepping fully discrete algorithm in a series of examples and observe a match between the theoretical
and numerical findings.
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1. Introduction

In population dynamics, harvesting is quite common and always visible in ecology. In the natural or
human haphazardness, harvesting reduces species due to hunting, fishing, disease, war, environmental
effects like natural disasters, competition among the species for the same resources, limited living space
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and limited food supply. For the optimal use of limited natural resources, and to maintain the balance
of the ecological system, it is crucial to know the threshold of harvesting. The study of harvesting
is very effective both in ecology and economics. Population models with a harvesting effect greatly
impact various industries that drive the economy, like fisheries, forestry, plants and poultry.

In [1], the authors delineated two species harvesting strategies where the populations are harvested
independently at constant rates. The largest amount of secure harvesting may be much less than what
would be considered from the perspective of a local analysis for the equilibrium point. The global
behavior of predator-prey systems was investigated in the presence of constant harvesting and the
preservation of either or both species [2–5]. The result is analogous to the characteristics of an
unharvested system with several parameters. The combined impacts of harvesting and discrete-time
delay on the predator-prey system were studied in [6], where a comparative analysis of stability
behavior has been offered without time delay.

Notably, the regular diffusion strategy could be more challenging to analyze; see [7–12] and
references therein.

Several scenarios can happen when harvesting is applied to a single or interacting species with
different diffusive strategies [13–15]. Previously, the single species with spatio temporal harvesting
was considered to investigate the persistence and extinction of a population [13]. In contrast, the
harvesting effort was focused on by using a time-independent cropped function for two competitive
populations in [15]. The model is a modified reaction-diffusion model, known as the directed diffusion
model, where species diffuse according to the smooth spatial function. Also, the resource distribution
of the model is described as per capita available resources. A non-homogeneous Gilpin–Ayala diffusive
equation was studied for single species by considering a spatially distributed harvesting map [16, 17].
The study emphasized the crucial concept in the ecological system that a perfect mathematical model
cannot be gained since we cannot include all of the effective parameters in the model [18]. Moreover,
the model will never be able to forecast ecological catastrophes.

This study gives a transparent idea about real-life frameworks of the competitive population in the
population ecology. To design the mathematical model, we are taking into account that the harvesting
rate is proportional to the intrinsic growth rate such that the harvesting functions are E1(x) ∝ r(x) and
E2(x) ∝ r(x) which implies that E1(x) = µr(x) and E2(x) = νr(x), where µ and ν are coefficients of
proportionality which are non-negative. The model equations are

∂u
∂t
= d1∆u(t, x) + r(x)u(t, x)

(
1 −

u(t, x) + v(t, x)
K(x)

)
− µr(x)u(t, x),

∂v
∂t
= d2∆v(t, x) + r(x)v(t, x)

(
1 −

u(t, x) + v(t, x)
K(x)

)
− νr(x)v(t, x),

t > 0, x ∈ Ω,
∂u
∂η
=
∂v
∂η
= 0, x ∈ ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,

(1.1)

where u(t, x) and v(t, x) represent the population densities of two competing species which are non-
negative, with corresponding dispersal rates d1 and d2, respectively. The harvesting coefficients of
populations u, v are µ, ν, respectively. Hence the harvesting functions are E1(x) = µr(x) and E2(x) =
νr(x), respectively. To analyze the model, we have simplified the model into a more compact profile in
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a later section.
Let us now consider the initial conditions u0(x) ≥ 0 and v0(x) ≥ 0, x ∈ Ω, and these initial

conditions are positive in an open nonempty subdomain of Ω. The carrying capacity and intrinsic
growth rate are denoted by K(x) and r(x), respectively. The function K(x) is continuous as well as
positive on Ω and r(x) ⩾ 0, where x ∈ Ω; moreover, r(x) is positive in an open nonempty subdomain
of Ω. The notation Ω is a bounded region in Rn, i.e., typically, n = {1, 2, 3}, with the smooth boundary
∂Ω ∈ C2+α, 0 < α < 1, and where η represents the unit normal vector on ∂Ω. The zero Neumann
boundary condition indicates that no individual crosses the boundary of the habitat, or that individuals
going in and out at any location from the boundary stay equal at all times. The Laplace operator
∆ :=

∑n
i=1 ∂

2/∂x2
i in Rn implies the random motion of the species.

Now, we modify the system (1.1) in such a technique that the harvesting rate is expedited and easier
to complete the analysis. The first equation of the model (1.1) can be written in the following way:

∂u
∂t
= d1∆u(t, x) + r(x)u(t, x)

(
1 −

u(t, x) + v(t, x)
K(x)

)
− µr(x)u(t, x)

= d1∆u(t, x) + r(x)u(t, x)(1 − µ)
(
1 −

u(t, x) + v(t, x)
(1 − µ)K(x)

)
.

Let K1(x) = (1 − µ)K(x) and r1 = 1 − µ. Then, we obtain

∂u
∂t
= d1∆u(t, x) + r1r(x)u(t, x)

(
1 −

u(t, x) + v(t, x)
K1(x)

)
.

After applying same framework for the second equation of the system (1.1), we finally obtain the
modified version of the main model:

∂u
∂t
= d1∆u(t, x) + r1r(x)u(t, x)

(
1 −

u(t, x) + v(t, x)
K1(x)

)
,

∂v
∂t
= d2∆v(t, x) + r2r(x)v(t, x)

(
1 −

u(t, x) + v(t, x)
K2(x)

)
,

t > 0, x ∈ Ω,
∂u
∂η
=
∂v
∂η
= 0, x ∈ ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,

(1.2)

where K1(x) = (1 − µ)K(x),K2(x) = (1 − ν)K(x), r1 = 1 − µ and r2 = 1 − ν.
In the present study, the main objectives and findings are as follows:

• We study the impact of the harvesting of two species in a spatially non-homogeneous environment
on their interaction, where the harvesting rate varies for each population. The competition arises
for the same resources, limited food supply and limited living space; predators make the prey
species their food.
• We prove that the solution to the initial value problem for positive initial conditions approaches

(us(x), vs(x)) globally in time.
• This study aims to illustrate the persistence-extinction story-line due to the harvesting rates

between two competitive species.
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• We have established the result to describe when they can coexist or when one species will drive
the other to extinction.
• If the harvesting rate does not exceed the intrinsic growth rate and imposes conditions on µ and
ν, coexistence is possible.
• We also present some numerical results both in one and two dimensional cases. We find the

evolution of system energy for species densities with a periodic space and time dependent intrinsic
growth rate and carrying capacity. Also, the system energy versus time is plotted for both short-
time and long-time evolution with the harvesting coefficients.

We solve (1.1) numerically by using a stable backward Euler, decoupled and linearized fully discrete
time-stepping algorithm in a finite element setting and examine whether the theoretical results are
supported by giving several numerical experiments. To the best of our knowledge, the modeling,
theoretical and numerical results presented in this manuscript are novel.

The rest of the paper is organized as below. In Section 2, the existence and uniqueness of the solution
of (1.1) are proven. In Section 3, stability analysis of the equilibrium points is given for the conditions
when the intrinsic growth rate exceeds the harvesting rates, one harvesting rate exceeds the intrinsic
growth rate and both harvesting rates exceed the intrinsic growth rate. To support the theoretical
findings, several numerical experiments are given in Section 4. Finally, a concluding summary and
future research directions are discussed in Section 5.

2. Existence and uniqueness

Now we detach each equation to delineate the existence and uniqueness of the paired system.
Consider the following system:



∂u
∂t
= d1∆u(t, x) + r1r(x)u(t, x)

(
1 −

u(t, x)
K1(x)

)
, t > 0, x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω,
∂u
∂η
= 0, x ∈ ∂Ω.

(2.1)

The results of single species are also discussed in [19–22]. Note that the proofs of Lemmas 7 and 8
are analogous to the proofs in [19] . The statements and proofs of Lemmas 7 and 8 can be found in
Appendix A. It is also noted that all single-species results are available in Appendix A, and we will
recall the results where necessary.

The following result demonstrates the existence and the uniqueness of solutions to a paired
system (1.2).

Theorem 1. Let K1(x),K2(x) > 0, which implies that µ, ν ∈ [0, 1), and r(x) > 0 on x ∈ Ω. When
u0(x), v0(x) ∈ C(Ω), the model (1.2) has a unique solution (u, v). Further, if both initial functions u0

and v0 are non-negative and nontrivial, u(t, x) > 0 and v(t, x) > 0 for t > 0.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6374–6399.
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Proof. Take into account the following system with µ, ν ∈ [0, 1) :

∂u
∂t
= d1∆u(t, x) + r1r(x)u(t, x)

(
1 −

u(t, x) + v(t, x)
K1(x)

)
,

∂v
∂t
= d2∆v(t, x) + r2r(x)v(t, x)

(
1 −

u(t, x) + v(t, x)
K2(x)

)
,

t > 0, x ∈ Ω,
∂u
∂η
=
∂v
∂η
= 0, x ∈ ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,

(2.2)

where K1(x) = (1 − µ)K(x) > 0, K2(x) = (1 − ν)K(x) > 0, r1 = 1 − µ > 0 and r2 = 1 − ν > 0 since
µ, ν ∈ [0, 1).

We utilize the existence-uniqueness theorem for parabolic paired, systems which is discussed
in [23], and methods which are similar to the proof of [21], to show the existence of nontrivial
time-dependent solutions. We choose the following constants:

ρu > sup
x∈Ω

u0(x) > 0, and ρv > sup
x∈Ω

v0(x) > 0,

and use the notations of proven results as discussed in [23] to denote

f1(t, x, u, v) = r1r(x)u(t, x)
(
1 −

u(t, x) + v(t, x)
K1(x)

)
,

f2(t, x, u, v) = r2r(x)v(t, x)
(
1 −

u(t, x) + v(t, x)
K2(x)

)
.

Then, it is simple to establish that the following conditions of the theorem are satisfied: f1(t, x, ρu, 0) ≤ 0 ≤ f1(t, x, 0, ρv),
f2(t, x, 0, ρv) ≤ 0 ≤ f2(t, x, ρu, 0).

(2.3)

The conditions of (2.3) satisfy the conditions of the parabolic coupled systems in [23] for the
functions f1 and f2 defined above. As a result, we come to the theorem conclusion that for any
nontrivial (u0(x), v0(x)) such that

(u0, v0) ∈ Sρ ≡
{
(u1, v1) ∈ C

(
[0,∞) ×Ω

)
×C

(
[0,∞) ×Ω

)
; 0 ≤ u1 ≤ ρu, 0 ≤ v1 ≤ ρv

}
, (2.4)

where C
(
[0,∞) ×Ω

)
is the class of continuous functions on [0,∞) × Ω; a unique solution

(u(t, x), v(t, x)) for the system (2.2) exists and remains in Sρ for all (t, x) ∈ [0,∞) × Ω. Thus,
(u(t, x), v(t, x)) is a unique and positive solution. □

Let us establish the existence result for (1.1) for 0 ≤ ν < 1 ≤ µ.

Theorem 2. Assume that 0 ≤ ν < 1 ≤ µ, and let the initial conditions be u0 ≥ 0 and v0 ≥ 0; therefore,
the model (1.1) has a unique, positive, time-dependent nontrivial solution.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6374–6399.
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Proof. The system (1.1) can be written as

∂u
∂t
= d1∆u(t, x) + r(x)u(t, x)

(
1 − µ −

u(t, x) + v(t, x)
K(x)

)
,

∂v
∂t
= d2∆v(t, x) + r(x)v(t, x)

(
1 − ν −

u(t, x) + v(t, x)
K(x)

)
,

t > 0, x ∈ Ω,
∂u
∂η
=
∂v
∂η
= 0, x ∈ ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω.

(2.5)

Recalling the theoretical results as vindicated in [23] and the methods parallel to the proof in [22], to
show the existence of nontrivial time-dependent solutions, let us choose the following constants:

ρu = max
{

sup
x∈Ω

u0(x), 1
}
, ρv = max

{
sup
x∈Ω

v0(x), sup
x∈Ω

K(x)
}
.

Note that the definitions of ρu and ρv are analogous to those in [22]. Let us denote

f1(t, x, u, v) = r(x)u(t, x)
(
1 − µ −

u(t, x) + v(t, x)
K(x)

)
,

f2(t, x, u, v) = r(x)v(t, x)
(
1 − ν −

u(t, x) + v(t, x)
K(x)

)
.

Then, it is simple to establish that the following conditions of the theorem are satisfied: f1(t, x, ρu, 0) ≤ 0 ≤ f1(t, x, 0, ρv),
f2(t, x, 0, ρv) ≤ 0 ≤ f2(t, x, ρu, 0).

(2.6)

The conditions (2.6) are valid based on the analysis presented in [23] for the functions f1 and f2.

Therefore, we come to the theorem conclusion that for any nontrivial (u0(x), v0(x)) such that

(u0, v0) ∈ Sρ ≡
{
(u1, v1) ∈ C

(
[0,∞) ×Ω

)
×C

(
[0,∞) ×Ω

)
; 0 ≤ u1 ≤ ρu, 0 ≤ v1 ≤ ρv

}
, (2.7)

where C
(
[0,∞) ×Ω

)
is the class of continuous functions on [0,∞) × Ω; a unique solution

(u(t, x), v(t, x)) for the system (2.5) exists and remains in Sρ for all (t, x) ∈ [0,∞) × Ω. Thus,
(u(t, x); v(t, x)) is a unique and positive solution. □

Let us establish the existence result for (1.1) for 0 ≤ µ < 1 ≤ ν.

Theorem 3. Assume that 0 ≤ µ < 1 ≤ ν and the initial conditions are u0 ≥ and v0 ≥ 0; therefore, the
model (1.1) has a unique, positive, time-dependent nontrivial solution.

Proof. The proof is analogous to that of Theorem 2. □

Remark 1. In the next section, the residuum of the main results is presented. We need several
preliminary and auxiliary results to prove the theoretical results for the two species populations,
which are presented in Appendix A. It is also noted that the main body of the paper contains only the
leading and significant findings.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6374–6399.
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3. Main results (global stability analysis)

When investigating the consequences of competition between two competitive species, it is a vital
task to check the stability analysis of the semi-trivial equilibrium, namely, one should evaluate
(u∗(x), 0), (0, v∗(x)), the trivial solution (0, 0) and the nontrivial stationary solution, which implies the
coexistence (us, vs).

3.1. When the intrinsic growth rate exceeds the harvesting rate

The following section describes the case of the intrinsic growth rate transcending harvesting rate
such that µ, ν ∈ [0, 1). Given that E1(x) = µr(x), E2(x) = νr(x), where µ, ν belongs to [0, 1) then
obviously 0 ≤ E1(x) < r(x) and 0 ≤ E2(x) < r(x). We investigate two possible cases: µ ≤ ν and µ ≥ ν.

Lemma 1. Assume that µ, ν ∈ [0, 1), which implies that r1 > 0, r2 > 0 and K1(x) and K2(x) are positive
on Ω. Therefore, the trivial steady state (0, 0) of the model (1.2) is an unstable repelling equilibrium.

Proof. Let the linearized system (1.2) near the trivial equilibrium be given as

∂u
∂t
= d1∆u(t, x) + r1r(x)u(t, x), t > 0, x ∈ Ω,

∂v
∂t
= d2∆v(t, x) + r2r(x)v(t, x), t > 0, x ∈ Ω,

∂u
∂η
=
∂v
∂η
= 0, x ∈ ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω.

(3.1)

The corresponding eigenvalue problems are given below:
γψ = d1∆ψ + r1r(x)ψ, x ∈ Ω,
σϕ = d2∆ϕ + r2r(x)ϕ, x ∈ Ω,
∂ψ

∂η
=
∂ϕ

∂η
= 0, x ∈ ∂Ω.

(3.2)

Using the variational characterization of eigenvalues according to [19], we obtain the principal
eigenvalue by choosing the eigenfunction ψ = 1 :

γ1 ≥
1
|Ω|

∫
Ω

r1r(x)dx =
1
|Ω|

∫
Ω

(1 − µ)r(x)dx > 0, since µ ∈ [0, 1).

Analogously, utilizing the variational characterization of eigenvalues according to [19], we obtain the
principal eigenvalue by the choosing the eigenfunction ϕ = 1 :

σ1 ≥
1
|Ω|

∫
Ω

(1 − ν)r(x)dx > 0, while ν ∈ [0, 1).

Thus, the trivial equilibrium (0, 0) is unstable. Now, we prove that the trivial steady state (0, 0) is a
repeller. The proof can be found in [20] and [24]. □

The following case demonstrates the result for the outcome of the competition when the intrinsic
growth rate exceeds the harvesting rate for 0 ≤ µ ≤ ν < 1.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6374–6399.
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3.1.1. Case: µ ≤ ν

The semi-trivial steady state (u∗, 0) is unstable whenever µ ≤ ν, as shown in the following lemma.

Lemma 2. Let µ, ν ∈ [0, 1), where µ ≤ ν. Thus, there exists ν1 for a certain µ such that, for all
ν ∈ [µ, ν1), the equilibrium (u∗, 0) is unstable for the system (1.2).

Proof. The analogous case µ = ν was discussed in [25], where the species have a common carrying
capacity. Thus, we discuss the case that µ < ν. Linearization of the second equation from (1.2) near
the stationary solution (u∗(x), 0) gives

∂v(t, x)
∂t

= d2∆v(t, x) + r2r(x)v(t, x)
(
1 −

u∗(x)
K2(x)

)
, t > 0, x ∈ Ω,

v(0, x) = v0(x), x ∈ Ω,
∂v
∂η
= 0, x ∈ ∂Ω.

The corresponding eigenvalue problem is represented as follows:

σψ = d2∆ψ + r2r(x)ψ
(
1 −

u∗(x)
K2(x)

)
, x ∈ Ω,

∂ψ

∂η
= 0, x ∈ ∂Ω. (3.3)

The principal eigenvalue of this system is given by [19]:

σ1 = sup
ψ,0,ψ∈W1,2


−d2

∫
Ω
|∇ψ|2 dx +

∫
Ω

r2r(x)ψ2

(
1 −

u∗(x)
K2(x)

)
dx∫

Ω
ψ2 dx

 . (3.4)

We assume that Ψ is the principal eigenfunction for the problem (3.3) with the principal eigenvalue σ1.
This value is positive whenever the numerator of (3.4) is positive, leading to

σ1 =

−d2

∫
Ω
|∇Ψ|2 dx +

∫
Ω

r2r(x)Ψ2

(
1 −

u∗(x)
K2(x)

)
dx∫

Ω
Ψ2 dx

. (3.5)

Since the denominator on the right-hand side of (3.5) is positive, to have a positive eigenvalue, we
assume that

− d2

∫
Ω

|∇Ψ|2 dx +
∫
Ω

r2r(x)Ψ2
(
1 −

u∗(x)
K2(x)

)
dx > 0

⇒

∫
Ω

r2r(x)Ψ2
(
1 −

u∗(x)
K2(x)

)
dx > d2

∫
Ω

|∇(Ψ)|2 dx

⇒

∫
Ω

r2r(x)Ψ2 dx > d2

∫
Ω

|∇(Ψ)|2 dx +
∫
Ω

r2r(x)Ψ2 u∗(x)
K2(x)

dx.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6374–6399.
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Multiplying both sides by (1 − ν) gives

(1 − ν)
∫
Ω

r2r(x)Ψ2 dx > (1 − ν)d2

∫
Ω

|∇(Ψ)|2 dx + (1 − ν)
∫
Ω

r2r(x)Ψ2 u∗(x)
K2(x)

dx

⇒(1 − ν)
∫
Ω

r2r(x)Ψ2 dx > (1 − ν)d2

∫
Ω

|∇(Ψ)|2 dx + (1 − ν)
∫
Ω

r2r(x)Ψ2 u∗(x)
(1 − ν)K(x)

dx

⇒1 − ν >
r2d2

∫
Ω
|∇(Ψ)|2 dx + r2

∫
Ω

r(x)Ψ2 u∗(x)
K(x)

dx

r2

∫
Ω

r(x)Ψ2 dx
.

Therefore, we have

1 − ν >
d2

∫
Ω
|∇(Ψ)|2 dx +

∫
Ω

r(x)Ψ2 u∗(x)
K(x)

dx∫
Ω

r(x)Ψ2 dx
.

Here, in the above inequality, the left-hand-side (1 − ν) ∈ (0, 1] whenever ν ∈ [0, 1) and the right-
hand side is positive since the numerator and denominator have a square term and there is no negative
term because the parameter d2 is positive. Therefore, we can say that the right-hand side of the above
inequality belongs to (0, 1) since the right-hand side is less than the left-hand side and positive, where
the left-hand side of the above inequality is (1 − ν) ∈ (0, 1].

Rearrange the above inequality to obtain

1 −
d2

∫
Ω
|∇Ψ|2 dx +

∫
Ω

r(x)Ψ2 u∗(x)
K(x)

dx∫
Ω

r(x)Ψ2 dx
> ν.

Note that and left-hand side of the above inequality belongs to (0, 1) as explained above. We define

ν1 := 1 −
d2

∫
Ω
|∇Ψ|2 dx +

∫
Ω

r(x)Ψ2 u∗(x)
K(x)

dx∫
Ω

r(x)Ψ2 dx
,

which implies that ν1 > ν since the right-hand side is greater than ν. Hence, we obtain that µ ≤
ν < ν1. Therefore, there exists ν1 for a fixed µ such that, for all ν ∈ [µ, ν1), the equilibrium (u∗, 0)
is unstable. □

In the following lemma, we prove that the steady state (0, v∗) is unstable whenever µ ≤ ν.

Lemma 3. Let µ, ν ∈ [0, 1), where µ ≤ ν, and let there exist ν1 for a certain µ as long as ν ∈ [µ, ν1).
Thus, the steady state (0, v∗) is unstable in the system (1.2).

Proof. The case that µ = ν was discussed in [25]. Thus, here we only discuss the case that µ < ν.
Linearizing the first equation of (1.2) in the neighborhood of (0, v∗), we obtain

∂u(t, x)
∂t

= d1∆u(t, x) + r1r(x)u(t, x)
(
1 −

v∗(x)
K1(x)

)
, x ∈ Ω,
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u(0, x) = u0(x), x ∈ Ω,
∂u
∂η
= 0, x ∈ ∂Ω.

The corresponding eigenvalue problem is

σψ = d1∆ψ + r1r(x)ψ
(
1 −

v∗(x)
K1(x)

)
, x ∈ Ω,

∂ψ

∂η
= 0, x ∈ ∂Ω. (3.6)

The principal eigenvalue of this problem is given by [19]:

σ1 = sup
ψ,0,ψ∈W1,2


−d1

∫
Ω
|∇ψ|2 dx +

∫
Ω

r1r(x)ψ2

(
1 −

v∗(x)
K1(x)

)
dx∫

Ω
ψ2 dx

 . (3.7)

For ν ∈ [0, 1), take into account the eigenfunction ψ(x) =
√

(1 − ν)K(x) =
√

K2(x). Then, the principle
eigenvalue becomes

σ1 ≥

∫
Ω

r1r(x)K2(x)
(
1 −

v∗(x)
K1(x)

)
dx∫

Ω
K2(x) dx

.

Note that ν ∈ [µ, ν1), ν1 is defined in Lemma 2. We introduce a constant c :=
1 − µ
1 − ν

> 1 as long as
µ < ν; further, it is true for every 0 ≤ µ ≤ ν < 1, and it is definitely true for 0 ≤ µ ≤ ν < ν1 < 1 because
ν1 ∈ [0, 1), which means that µ, ν, ν1 ∈ [0, 1); it implies that c > 1 for any values in [0, 1).

Let us now estimate the principal eigenvalue in the following way:

σ1 ≥

∫
Ω

r1r(x)K2(x)
(
1 −

v∗(x)
(1 − µ)K(x)

)
dx∫

Ω
K2(x) dx

,

which can be rewritten as

σ1 ≥

∫
Ω

r1r(x)K2(x)
(
1 − v∗(x)

(1−µ)
(1−ν) (1−ν)K

)
dx∫

Ω
K2(x) dx

.

Introducing the constant c, we have

σ1 ≥

r1

∫
Ω

r(x)K2(x)
(
1 −

v∗(x)
cK2(x)

)
dx∫

Ω
K2(x) dx

. (3.8)

We want to show that the numerator of the right-hand-side fraction in (3.8) is positive. From Lemma 13,
we have ∫

Ω

r(x)K2(x)
(
1 −

v∗(x)
K2(x)

)
dx > 0.
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Note that, since c > 1, we obtain∫
Ω

r(x)K2(x)
(
1 −

v∗(x)
cK2(x)

)
dx >

∫
Ω

r(x)K2(x)
(
1 −

v∗(x)
K2(x)

)
dx > 0.

Therefore, the numerator of the inequality (3.8) is positive. Thus, the principal eigenvalue is positive:

σ1 ≥

r1

∫
Ω

r(x)K2(x)
(
1 −

v∗(x)
cK2(x)

)
dx∫

Ω
K2(x) dx

> 0,

which completes the proof. □

In the following theorem, we prove that the equilibrium (us, vs) is globally stable for the system
(1.2) whenever µ ≤ ν by using Lemmas 1, 2 and 3.

Theorem 4. Suppose that µ, ν ∈ [0, 1), where µ ≤ ν. There exists ν1 for a certain µ such that, for all
ν ∈ [µ, ν1), the equilibrium (us, vs) of the system (1.2) is globally stable.

Proof. We consider that 0 ≤ µ ≤ ν < 1. Lemma 2 demonstrates that there is a number ν1 ∈ [0, 1) such
that, whenever ν ∈ [µ, ν1), the steady state (u∗, 0) is unstable. Lemma 3 illustrates that the steady state
(0, v∗) is unstable. Lemma 1 demonstrates that the trivial steady state (0, 0) is unstable and a repeller.
We extract two results established in [24]. Hence, there exists a globally stable coexistence solution.

□

We get symmetrical results by exchanging µ and ν, which means that 0 ≤ ν ≤ µ < 1. The following
results can be obtained:

• When µ ≥ ν, where µ, ν ∈ [0, 1). There exists a value µ1 for a certain ν such that, for all µ ∈ [ν, µ1),
the steady state (0, v∗(x)) of (1.2) is unstable.
• When µ ≥ ν, where µ, ν ∈ [0, 1), there exists a value µ1 for a certain ν for all µ ∈ [ν, µ1). Thus, the

steady state (u∗(x), 0) of the system (1.2) is unstable.
• Global coexistence solution: When µ ≥ ν, where µ, ν ∈ [0, 1). Thus, there exists a value µ1 for a

certain ν for all µ ∈ [ν, µ1); the coexistence steady state of the system (1.2) is globally stable.

3.2. When one harvesting rate exceeds the intrinsic growth rate

In the present section, we examine the outcomes of two competitive species when one harvesting
rate in the system (1.1) surpasses the corresponding intrinsic growth rate, which means that there are
two possible scenarios that can arise, namely, E1(x) ≥ r(x) or E2(x) ≥ r(x) such that 0 ≤ ν < 1 ≤ µ or
0 ≤ µ < 1 ≤ ν, respectively.

First, we depict the result on the impact of competition when one harvesting function exceeds the
respective intrinsic growth function for the case that 0 ≤ ν < 1 ≤ µ.

3.2.1. Case ν < 1 ≤ µ

The following lemma shows that there is no coexistence state when 0 ≤ ν < 1 ≤ µ.
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Lemma 4. Suppose that 0 ≤ ν < 1 ≤ µ; thus, there is no nontrivial stationary solution (us, vs) for the
model (2.5) or (1.1).

Proof. Take into account that there is a nontrivial stationary solution (us(x), vs(x)), where us ≥ 0 and
vs ≥ 0 for all x ∈ Ω. The coexistence solution is to satisfy the following system of equations:

0 = d1∆us(x) + r(x)us(x)
(
1 − µ −

us(x) + vs(x)
K(x)

)
, x ∈ Ω,

0 = d2∆vs(x) + r(x)vs(x)
(
1 − ν −

us(x) + vs(x)
K(x)

)
, x ∈ Ω,

∂us

∂η
=
∂vs

∂η
= 0, x ∈ ∂Ω.

(3.9)

Now, integrating the first equation over Ω and utilizing the boundary conditions yields∫
Ω

rus

(
1 − µ −

us + vs

K

)
dx = 0.

The integrand is non-positive for all x ∈ Ω whenever µ ≥ 1 and us . 0 (which holds by our assumption
of us being a nontrivial coexistence solution). Hence, there is no coexistence state, (us, vs). □

Next, we delineate that (0, v∗) is the only possible nontrivial stationary solution for the system (2.5)
for any nontrivial non-negative initial conditions.

Lemma 5. Suppose that µ ≥ 1 then (0, v∗(x)) is the only nontrivial stationary solution of (2.5)
and (1.1).

Proof. We assume that there exists a nontrivial equilibrium other than (0, v∗(x)). Since there is no
coexistence in the system according to Lemma 4, the other possible solution of such type is (u∗(x), 0),
where u∗(x) ≥ 0 on Ω and satisfies the following boundary value problem for µ = 1:

d1∆u∗(x) − r(x)u∗(x)
u∗(x)
K(x)

= 0, x ∈ Ω,
∂u∗

∂η
= 0, x ∈ ∂Ω.

Now, integrating and applying the boundary conditions yields∫
Ω

r(x)
(u∗(x))2

K(x)
dx = 0,

which is not true for a nontrivial u∗(x) ≥ 0. Therefore, we arrive at a contradiction, and the only
nontrivial stationary solution is (0, v∗(x)), where the function v∗(x) satisfies the second equation given
Lemma 13. The same procedure is applicable for µ > 1. Thus, (0, v∗(x)) is the only nontrivial stationary
solution of (1.1) for µ ≥ 1. □

The following lemma proves that (0, 0) of the system (2.5) (equivalent to (1.1)) is unstable but not
a repeller when the harvesting rate E1(x) surpasses or is equal to the intrinsic growth rate r(x). Note
that the proof is parallel with [21].
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Lemma 6. Consider the case that 0 ≤ ν < 1 ≤ µ. Thus, the trivial steady state (0, 0) of the model (1.1)
is unstable, but it is not a repeller.

Proof. First, we assume that µ > 1 and the system (1.2) is linearized near the trivial equilibrium:

∂u
∂t
= d1∆u + r1r(x)u, t > 0, x ∈ Ω,

∂v
∂t
= d2∆v + r2r(x)v, t > 0, x ∈ Ω,

∂u
∂η
=
∂v
∂η
= 0, x ∈ ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω.

(3.10)

The corresponding eigenvalue problems are
γψ = d1∆ψ + r1r(x)ψ, x ∈ Ω,
σϕ = d2∆ϕ + r2r(x)ϕ, x ∈ Ω,
∂ψ

∂η
=
∂ϕ

∂η
= 0, x ∈ ∂Ω.

(3.11)

Consider ψ1 and ϕ1 as two eigenfunctions (that can be chosen positive) with corresponding principal
eigenvalues of (3.11): γ1 and σ1, respectively [19]. Integrating (3.11) by using the boundary
conditions yields

γ1 =

∫
Ω

r1r(x)ψ1 dx∫
Ω
ψ1 dx

=

∫
Ω

(1 − µ)r(x)ψ1 dx∫
Ω
ψ1 dx

< 0, since µ > 1,

and

σ1 =

∫
Ω

r2r(x)ϕ1 dx∫
Ω
ϕ1 dx

=

∫
Ω

(1 − ν)r(x)ϕ1 dx∫
Ω
ϕ1 dx

> 0, given ν < 1, (3.12)

respectively. Thus, the steady state (0, 0) is unstable.
Therefore, for 0 ≤ ν < 1 ≤ µ, the steady state (0, 0) is unstable but not a repeller. □

The next result shows the global stability for the solution (0, v∗(x)) of the system (1.1) when the
harvesting coefficient satisfies 0 ≤ ν < 1 ≤ µ, as obtained by using Lemmas 4, 5 and 6.

Theorem 5. Let 0 ≤ ν < 1 ≤ µ. Thus, the stationary solution (0, v∗(x)) of the system (1.1) is globally
asymptotically stable.

Proof. From Lemma 6, the solution (0, 0) is unstable and there is no coexistence solution according to
Lemma 4. According to Lemma 5, the remaining non-negative steady state is (0, v∗(x)). This solution
is unique by the positivity and uniqueness proofs; see Lemmas 9 and 10. Recall the definition of Sρ
from (2.7):

Sρ ≡
{
(u1, v1) ∈ C

(
[0,∞) ×Ω

)
×C

(
[0,∞) ×Ω

)
; 0 ≤ u1 ≤ ρu, 0 ≤ v1 ≤ ρv

}
,
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where

ρu = max
{

sup
x∈Ω

u0(x), 1
}
, ρv = max

{
sup
x∈Ω

v0(x), sup
x∈Ω

K(x)
}
.

Using the result in [23], we obtain the time-dependent solution (u(t, x), v(t, x)) of (1.1), and the
solution will converge to the equilibrium (0, v∗(x)) as t → ∞ for any initial conditions from Sρ, which
completes the proof. □

Symmetrically, the steady state (u∗(x), 0) of the model (1.1) is globally asymptotically stable when
µ < 1 ≤ ν.

3.3. When both harvesting rate exceed the intrinsic growth rate

Finally, in this section, we examine the case when both harvesting rates exceed the intrinsic growth
rate; symbolically, µ, ν ≥ 1.

3.3.1. Case µ, ν ≥ 1

Theorem 6. Let µ, ν ≥ 1. Thus the trivial solution (0, 0) of the model (1.1) is globally
asymptotically stable.

Proof. The reasoning from the proof of Lemma 6 applies here directly, and it shows that the solution
(u(t, x), v(t, x)) gradually converges to the trivial solution, which completes the proof. □

Biologically, the result of Theorem 6 is valid since more harvesting than growth significantly
reduces the density of both populations, and, as a continuation, populations will tend to extinction.

4. Numerical results

In this section, we represent numerical experiments by using the finite element method to support

the theoretical results. Here, ∥u∥L2 :=
√∫
Ω

u2(t, x)dx is the L2 norm, whereas ∥u∥L1 :=
∫
Ω
|u(t, x)|dx is

the L1 norm. In finite element simulations, we deal with finite-dimensional space, where all norms are
equivalent. Therefore, using either L1 or L2 norms, the outcomes and decisions will be similar. But,
we used L2-norm square with a scaling factor of 1

2 so that it looks like the kinetic energy. The usual
L2(Ω) inner product is denoted by (., .). We define the Hilbert space for our problem as

X := H1(Ω) =
{
u ∈ L2(Ω) : ∇u ∈ L2(Ω)n}.

The conforming finite element space is denoted by Xh ⊂ X, and we assume a regular triangulation
τh(Ω), where h is the maximum triangle diameter. We consider the following fully discrete, decoupled
and linearized scheme of the system (1.1):
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Algorithm 1: Fully discrete and decoupled ensemble scheme
Given a time step ∆t > 0, end time T > 0, initial conditions u0, v0 ∈ Xh, set M = T/∆t, and, for
n = 1, · · · ,M − 1, compute the following: Find un+1

h ∈ Xh satisfying, for all χh ∈ Xh:(
un+1

h − un
h

∆t
, χh

)
= −d1

(
∇un+1

h ,∇χh
)
+

(
r(x)un+1

h

(
1 −

un
h + vn

h

K(x)

)
, χh

)
−

(
µr(x)un+1

h , χh

)
. (4.1)

Find vn+1
h ∈ Xh satisfying, for all lh ∈ Xh:(

vn+1
h − vn

h

∆t
, lh

)
= −d2

(
∇vn+1

h ,∇lh
)
+

(
r(x)vn+1

h

(
1 −

un
h + vn

h

K(x)

)
, lh

)
−

(
νr(x)vn+1

h , lh

)
. (4.2)

For all experiments, we consider the diffusion coefficients d1 = d2 = 1, a unit square domain
Ω = (0, 1) × (0, 1) and P2 finite element and structured triangular meshes. We define the energy of the
system at time t for the species densities u and v as

1
2

∫
Ω

u2(t, x)dx, and
1
2

∫
Ω

v2(t, x)dx,

respectively. The 2D code is written in Freefem++ [26].

4.1. Stationary carrying capacity

In this section, we will consider the stationary carrying capacity together with both constant and
space-dependent intrinsic growth rates.

4.1.1. Experiment 1: Constant intrinsic growth rate

In this experiment, we consider the carrying capacity of the system

K(x) ≡ 2.1 + cos(πx) cos(πy),

with a constant intrinsic growth rate r(x) ≡ 1.2. We ran several simulations for various values of
the harvesting coefficients µ and ν. In Figures 1–4, we considered the initial population densities
u0 = v0 = 1.8 with time step size ∆t = 0.1.

In Figure 1, we present the contour plots for the species densities u and v at time t = 1.6 with fixed
harvesting coefficients µ = 1.5 and ν = 0.08. A co existence is observed at the moment.
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Figure 1. Population density for (a) u(t, x) and (b) v(t, x) at time t = 1.6 with the harvesting
coefficients µ = 1.5 and ν = 0.08.

We also plotted the energy of the system for the species densities u and v versus time for three
different combinations of the harvesting coefficient pairs (µ, ν) in Figure 2. We consider the harvesting
parameter µ = 1.5 > ν = 0.08 in Figure 2(a), and thus observe that the species u will die away shortly
while the species v survives. The opposite scenario is observed in Figure 2(b), where µ = 0.08 <

ν = 1.15 is considered. This is because one harvesting coefficient is significantly bigger than the other
and exceeds the intrinsic growth rate; that is why one species becomes extinct in a short period of
time. The results in Figure 2(a) and (b) support Theorems 2 and 3, respectively. In Figure 2(c), though
the harvesting coefficients are the same (µ = ν = 1.5), both exceed the intrinsic growth rate; thus,
extinction in both species is observed in short-time evolution.
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Figure 2. Evolution of system energy for species densities u and v with (a) µ = 1.5 and
ν = 0.08, (b) µ = 0.08 and ν = 1.5, and (c) µ = 1.5 and ν = 1.5.

In Figure 3, we plot the energy of the system versus time for the species density u, and v with the
coefficients of harvesting (a) µ = 0.0006, and ν = 0.0, and (b) µ = 0.0, and ν = 0.0006. We observe
the harvesting impact as an extinction of the species u in (a), and the species v in (b).

In Figure 4, we plot the energy of the system for both species versus time, keeping fixed the

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6374–6399.



6390

harvesting parameter µ = 0.0009 while varying ν. We ran the simulation until t = 2000 for each case.
In Figure 4(a), since µ > ν, as time grows, the species density for v remains bigger than that for u,
whereas, the scenario is opposite in Figures 4(b)–(f) because µ < ν. A possible coexistence is
exhibited in Figure 4(a), (c) and (d), which supports Theorem 4. There is a possible threshold from
extinction to the persistence of both populations. In Figure 4(b), (e) and (f), the long-run results show
that, when µ < ν, a possible extinction and evolution of multiple thresholds can exist.

In Figure 5, we show the population density v(t, x) versus time for various values of the initial
condition v0. In all cases, we considered the initial densities for both species to be the same and
omitted the results for u. We observe a unique solution as time grows if the initial conditions are
positive.
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Figure 3. System energy for the species densities u and v versus time for (a) µ = 0.0006 and
ν = 0.0 and (b) µ = 0.0 and ν = 0.0006.
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Figure 4. Evolution of system energy for species densities u and v with µ = 0.0009 (a)
ν = 0.0005, (b) ν = 0.001, (c) ν = 0.0012, (d) ν = 0.0015, (e) ν = 0.002 and (f) ν = 0.0025.
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Figure 5. Stable solution v(t, x).

From Figure 6(a), we observe that, when the harvesting parameters do not exceed the intrinsic
growth rate, a nontrivial solution exists, i.e., there is the co-existence of the two species. In Figure 6(b),
we observe that the population density of the first species remains bigger than the second species
because µ < ν. Ultimately, the second species will die out because of the competition between them.
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Figure 6. Evolution of system energy for species densities u and v with (a) µ = 0.0009 and
ν = 0.0009 and (b) µ = 0.0009 and ν = 0.001.

4.1.2. Experiment 2: Space-dependent intrinsic growth rate

In this experiment, we consider the carrying capacity and the intrinsic growth rate as

K(x) ≡ 2.5 + sin(x) sin(y) and r(x) ≡ 1.5 + cos(x) cos(y),

respectively, along with the equal initial population densities u0 = v0 = 1.2. The system energy versus
time is plotted until t = 3000 in Figure 6(a) and (b) for two different harvesting parameter pairs.
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4.2. Non-stationary carrying capacity

In this section, we consider a time-dependent periodic system carrying capacity together with
constant and time-dependent intrinsic growth rates.

4.2.1. Experiment 3: Constant intrinsic growth rate

In this experiment, we consider the time-dependent carrying capacity

K(t, x) ≡ (2.1 + cos(πx) cos(πy))(1.1 + cos(t)),

harvesting coefficients µ = 0.0009, and ν = 0.0025, intrinsic growth rate r(x) ≡ 1.0 and initial
conditions u0 = 0.5 and v0 = 1.5 for the species u and v, respectively. We have a fixed time
t = T = 13.74 and draw the contour plots at t = T,T + π/2,T + π,T + 3π/2 and T + 2π for the species
densities u and v in Figures 7 and 8, respectively. From Figures 7 and 8, we observe quasiperiodic
behavior in both species and their coexistence.
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Figure 7. Contour plots of species u at five different time steps with harvesting coefficients
µ = 0.0009 and ν = 0.0025.

We have also plotted the energy of the system for species densities u and v versus time in Figure 9.
We observe a clear co-existence of the two populations and change their density quasiperiodically over
time. Since, in this case, µ < ν, the amplitude of the species density u increases, while it decreases for
v, consuming more resources by population u and enjoying the best possible habitat.
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Figure 8. Contour plots of species v at five different time steps with harvesting coefficients
µ = 0.0009 and ν = 0.0025.
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Figure 9. Short-time (a), and long-time (b) energy of the system for the species densities u
and v with the harvesting coefficients µ = 0.0009 and ν = 0.0025.

4.2.2. Experiment 4: Exponentially varying carrying capacity

In this experiment, we consider the carrying capacity

K(t, x) ≡
(
1.2 + 2.5π2e−(x−0.5)2−(y−0.5)2)(

1.0 + 0.3 cos(t)
)
,

together with the constant intrinsic growth rate r(x) ≡ 1, initial population density u0 = v0 = 1.6 and
harvesting coefficients µ = 0.0009 and ν = 0.0025.

In Figure 10, the system energy versus time is plotted for both short-time and long-time evolution
with the harvesting coefficients µ = 0.0009, and ν = 0.0025. We observe the periodic population
densities for both species , and that, eventually, the species v dies out while the species u continues
to exist.
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Figure 10. Short-time (a) and long-time (b) energy of the system for the species densities u
and v with the harvesting coefficients µ = 0.0009 and ν = 0.0025.

In Figure 11, we present the contour plots for both species at times t = 80 and t = 1600. It is
observed that the highest population density is at (0.5, 0.5) and there is a coexistence of both species
though the population density of the species u remains bigger than the species v at every place. This is
the effect of the different harvesting parameters.
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Figure 11. Contour plots of species v at times t = 80 (top) and t = 1600 (bottom), with
harvesting coefficients µ = 0.0009 and ν = 0.0025.
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5. Conclusions

In this paper, we have studied two competing species in spatially heterogeneous environments. We
observed various scenarios for several harvesting rates. When the harvesting rate does not surpass the
intrinsic growth rate, which means that µ, ν ∈ [0, 1) and imposes conditions on µ and ν, so coexistence
is possible. For small values of µ and ν, prey and predator populations coexist, which is observed
analytically and numerically. We estimated the threshold of the harvesting coefficient when coexistence
is possible; consider the following:

(i) When we fix µ = 0.0009, the threshold of ν is 0.5, so species v tends to extinction. Notably, we
can get another entry of ν by choosing any other values of µ ∈ [0, 1).

(ii) Analogously, we can determine the threshold of µ when ν is fixed, which has been demonstrated
in Theorem 5.

Further, only one species becomes extinct when their harvesting rate is greater than their growth rate
and other species persist when the harvesting rate is less than their growth rate. Both species become
extinct when their harvesting rate exceeds the growth rate and the systems (1.1) and (1.2) converge
to the trivial solution. From these analytical and numerical observations, we can conclude that both
species coexist when the harvesting rate is less than their growth rate. Both species die out if the
harvesting rate exceeds their intrinsic growth rate.

The model (1.1) is a well-known Lotka-Volterra competition model. Also, it is a predatory system
as a special case; in some scenarios, two species fight for the same resources and limited space, and
in another scenario or environment, one species attacks another species because of the limitation of
food. Moreover, we have the harvesting term depending on the intrinsic growth rate, which is more
realistic and biologically feasible. The study can be extended for experimental research on intra-
or inter-specific competitive populations. This study is appropriate for application to various farms,
wild animal persistence and river-ocean ecologies with seasonal change; in particular, the model is
applicable to two-species phytoplankton populations [27]. Finally, there are two open problems for
future studies. Consider and analyze the problem (1.2) for the following cases [28]:

• Predator-prey dynamics while µ < 0 and ν > 0. Various lines of evidence attest to the importance
of predation, such as the evidence of research on diversity, the ubiquity of anti-predator
adaptations, and the impact of interacting with predators and prey in a population circle.
• Symbiotic (mutualism) model when µ < 0 and ν < 0. Mutualism refers to a relationship between

two species of organisms that benefit from the association.

Acknowledgments

The authors thank the anonymous reviewers for their suggestions, which have significantly
improved the quality of the manuscript. The author M. Kamrujjaman was partially supported by the
University Grants Commission and the Bose Center for Advanced Study and Research in Natural
Sciences, University of Dhaka. Also, the author Muhammad Mohebujjaman was supported by the
National Science Foundation grant DMS-2213274 and University Research grant Texas A&M
International University.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6374–6399.



6396

Conflict of interest

The authors declare no conflict of interest.

References

1. G. Dai, M. Tang, Coexistence region and global dynamics of harvested predator-prey system,
SIAM J. Appl. Math. 58 (1998), 193–210. https://doi.org/10.1137/S0036139994275799

2. E. Braverman, M. Kamrujjaman, Lotka systems with directed dispersal dynamics:
Competition and influence of diffusion strategies, Math. Biosci., 279 (2016), 1–12.
https://doi.org/10.1016/j.mbs.2016.06.007

3. F. Brauer, A. C. Soudack, On constant effort harvesting and stocking in a class of predator-prey
systems, J. Theor. Biol., 95 (1982), 247–252. https://doi.org/10.1016/0022-5193(82)90242-9

4. R. D. Parshad, S. Bhowmick, E. Quansah, A. Basheer, R. K. Upadhyay, Predator interference
effects on biological control: The “paradox” of the generalist predator revisited, Commun.
Nonlinear Sci. Numer. Simul., 39 (2016), 169–184. https://doi.org/10.1016/j.cnsns.2016.02.021

5. M. Yavuz, N. Sene, Stability analysis and numerical computation of the fractional
predator–prey model with the harvesting rate, Fractal Fract., 4 (2020), 35.
https://doi.org/10.3390/fractalfract4030035

6. N. H. Gazi, M. Bandyopadhyay, Effect of time delay on a harvested predator-prey model, J. Appl.
Math. Comput., 26 (2008), 263–280. https://doi.org/10.1007/s12190-007-0015-2

7. Y. Lou, W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations, 131 (1996), 79–
131. https://doi.org/10.1006/jdeq.1996.0157

8. M. Kamrujjaman, A. Ahmed, S. Ahmed, Competitive reaction-diffusion
systems: Travelling waves and numerical solutions, Adv. Res., 19 (2019), 1–12.
https://doi.org/10.9734/air/2019/v19i630140

9. B. Wang, Z. Zhang, Dynamics of a diffusive competition model in spatially
heterogeneous environment, J. Math. Anal. Appl., 470 (2019), 169–185.
https://doi.org/10.1016/j.jmaa.2018.09.062

10. M. Mohebujjaman, C. Buenrostro, M. Kamrujjaman, T. Khan, Decoupled algorithms for non-
linearly coupled reaction-diffusion competition model with harvesting and Stocking, preprint,
arXiv:2209.14144.

11. V. Hutson, Y. Lou, K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra
dynamics, J. Diff. Equations, 185 (2002), 97–136. https://doi.org/10.1006/jdeq.2001.4157

12. Y. Kuang, E. Beretta, Global qualitative analysis of a ratio-dependent predator–prey system, J.
Math. Biol., 36 (1998), 389–406. https://doi.org/10.1007/s002850050105

13. L. Korobenko, M. Kamrujjaman, E. Braverman, Persistence and extinction in spatial models with
a carrying capacity driven diffusion and harvesting, J. Math. Anal. Appl., 399 (2013), 352–368.
https://doi.org/10.1016/j.jmaa.2012.09.057

14. K. Y. Lam, W. M. Ni, Uniqueness and complete dynamics in heterogeneous competition-diffusion
systems, SIAM J. Appl. Math., 72 (2012), 1695–1712. https://doi.org/10.1137/120869481

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6374–6399.



6397

15. E. Braverman, I. Ilmer, On the interplay of harvesting and various diffusion strategies
for spatially heterogeneous populations, J. Theor. Biol., 466 (2019), 106–118.
https://doi.org/10.1016/j.jtbi.2019.01.024

16. L. Bai, K. Wang, Gilpin–Ayala model with spatial diffusion and its optimal harvesting policy,
Appl. Math. Comput., 171 (2005), 531–546. https://doi.org/10.1016/j.amc.2005.01.068

17. I. Zahan, M. Kamrujjaman, S. Tanveer, Mathematical study of a resource based diffusion
model with Gilpin-Ayala growth and harvesting, Bull. Math. Biol., 84 (2022), 120.
https://doi.org/10.1007/s11538-022-01074-8

18. A. Martin, S. Ruan, Predator-prey models with delay and prey harvesting, J. Math. Biol. 43 (2001),
247–267. https://doi.org/10.1007/s002850100095

19. R. S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley,
Hoboken, 2004.

20. E. Braverman, M. Kamrujjaman, L. Korobenko, Competitive spatially distributed population
dynamics models: Does diversity in diffusion strategies promote coexistence?, Math. Biosci., 264
(2015), 63–73. https://doi.org/10.1016/j.mbs.2015.03.004

21. L. Korobenko, E. Braverman, On evolutionary stability of carrying capacity driven dispersal
in competition with regularly diffusing populations, J. Math. Biol., 69 (2014), 1181–1206.
https://doi.org/10.1007/s00285-013-0729-8

22. L. Korobenko, E. Braverman, On logistic models with a carrying capacity dependent diffusion:
Stability of equilibria and coexistence with a regularly diffusing population, Nonlinear Anal.: Real
World Appl., 13 (2012), 2648–2658. https://doi.org/10.1016/j.nonrwa.2011.12.027

23. C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Springer, New York, 1992.

24. S. B. Hsu, H. L. Smith, P. Waltman, Competitive exclusion and coexistence for competitive
systems on ordered Banach spaces, Trans. Am. Math. Soc., 348 (1996) 4083–4094.

25. E. Braverman, M. Kamrujjaman, Competitive–cooperative models with
various diffusion strategies, Comput. Math. Appl., 72 (2016), 653–662.
https://doi.org/10.1016/j.camwa.2016.05.017

26. F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251–266.
http://dx.doi.org/10.1515/jnum-2012-0013

27. D. Jiang, K. Lam, Y. Lou, Z. Wang, Monotonicity and global dynamics of a
nonlocal two-species phytoplankton model, SIAM J. Appl. Math., 79 (2019), 716–742.
https://doi.org/10.1137/18M1221588

28. M. Kamrujjaman, Dispersal dynamics: Competitive symbiotic and predator-prey interactions, J.
Adv. Math. Appl., 6 (2017), 7–17. http://dx.doi.org/10.1166/jama.2017.1122

29. M. Kamrujjaman, Directed vs regular diffusion strategy: Evolutionary stability analysis of
a competition model and an ideal free pair, Differ. Equation Appl., 11 (2019), 267–290.
http://dx.doi.org/10.7153/dea-2019-11-11

30. M. Kamrujjaman, K. N. Keya, Global analysis of a directed dynamics competition model, J. Adv.
Math. Comput. Sci., 27 (2018), 1–14. http://dx.doi.org/10.9734/JAMCS/2018/41247

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6374–6399.



6398

Appendix A Auxiliaries of single species

In the first appendix, we have a few preliminary and auxiliary results for single-species populations.

Lemma 7. [21] Consider that the parameters are positive on Ω and the initial condition of (2.1) is a
nonnegative continuous function u0(x) ∈ C(Ω), u0(x) ≥ 0 in Ω, and u0(x) > 0 in some open, bounded,
nonempty domain Ω1 ⊂ Ω. Thus, there exists a unique positive solution of the system (2.1).

Lemma 8. [21] Consider the problem (2.1); then, there exists a function u∗(x) > 0 that is a unique
equilibrium solution of (2.1). Further, for any initial condition u0(x) ≥ 0, u0(x) . 0, the solution
u(t, x) satisfies the condition

lim
t→∞

u(t, x) = u∗(x)

uniformly for x ∈ Ω.

Now, take into account the next following problem for the population density v = v(t, x):

∂v
∂t
= d2∆v(t, x) + r2r(x)v(t, x)

(
1 −

v(t, x)
K2(x)

)
, t > 0, x ∈ Ω,

v(0, x) = v0(x), x ∈ Ω,
∂v
∂η
= 0, x ∈ ∂Ω.

(A.1)

Lemma 9. [21] Consider the initial condition of (A.1) as a continuous non-negative function v0(x) ∈
C(Ω), v0(x) ≥ 0 in Ω, and v0(x) > 0 in some open, bounded, nonempty domain Ω1 ⊂ Ω. Therefore,
there exists a unique positive solution of the system (A.1).

Lemma 10. [21] Consider the problem (A.1); thus, there exists a function v∗(x) > 0 which is a unique
stationary solution of (A.1). Further, for any initial condition v0(x) ≥ 0, v0(x) . 0, the solution v(t, x)
satisfies the condition

lim
t→∞

v(t, x) = v∗(x)

uniformly for x ∈ Ω.

Stationary solutions and preliminaries:
Let the following problem have a stationary solution u∗(x) where v is zero in (1.2):

d1∆u∗(x) + r1r(x)u∗(x)
(
1 −

u∗(x)
K1(x)

)
= 0, x ∈ Ω,

∂u∗

∂η
= 0, x ∈ ∂Ω. (A.2)

Analogously, the following problem has a stationary solution v∗(x) when u is zero in (1.2)

d2∆v∗(x) + r2r(x)v∗(x)
(
1 −

v∗(x)
K2(x)

)
= 0, x ∈ Ω,

∂v∗

∂η
= 0, x ∈ ∂Ω. (A.3)

The following preliminary results are also discussed in [15, 25, 29, 30].
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Lemma 11. Let u∗ be a positive solution of (A.2) and v∗ be a positive solution of (A.3); let K1(x) satisfy
d1∆K1(x) . 0 and K2(x) satisfy d2∆K2(x) . 0 on Ω. Thus,∫

Ω

r(x)K1(x) dx >
∫
Ω

r(x)u∗(x) dx (A.4)

and ∫
Ω

r(x)K2(x) dx >
∫
Ω

r(x)v∗(x) dx, (A.5)

respectively.

Proof. First, we set v = 0 and u = u∗ in the first equation of (1.2), and, utilizing the boundary
conditions, as well as integrating over Ω, we obtain

r1

∫
Ω

ru∗
(
1 −

u∗

K1

)
dx = 0. (A.6)

Adding and subtracting K1 in (A.6), we have∫
Ω

r (u∗ − K1 + K1)
(
1 −

u∗

K1

)
dx = 0. (A.7)

Rewriting ∫
Ω

rK1

(
1 −

u∗

K1

)
dx =

∫
Ω

rK1

(
1 −

u∗

K1

)2

dx > 0, (A.8)

we have ∫
Ω

rK1

(
1 −

u∗

K1

)
dx > 0. (A.9)

Simplifying (A.9), we obtain ∫
Ω

r(x)K1(x)dx >
∫
Ω

r(x)u∗(x)dx.

Analogously, the result (A.5) is justified. □

Lemma 12. Assume that u∗(x) is a positive solution of (A.2). Moreover, if K1(x) . const, then∫
Ω

rK1

(
1 −

u∗

K1

)
dx > 0. (A.10)

Proof. The proof is analogous to that of Lemma 11. □

Lemma 13. Assume that v∗(x) is a positive solution of (A.3). Moreover, if K2(x) . const, then∫
Ω

rK2

(
1 −

v∗

K2

)
dx > 0. (A.11)

Proof. The proof is analogous to that of Lemma 11. □
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