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This paper is concerned with the problem of reconstructing an unknown rank-one
matrix with prior structural information from noisy observations. While computing
the Bayes optimal estimator is intractable in general due to the requirement of
computing high-dimensional integrations/summations, Approximate Message Passing
(AMP) emerges as an efficient first-order method to approximate the Bayes optimal
estimator. However, the theoretical underpinnings of AMP remain largely unavailable
when it starts from random initialization, a scheme of critical practical utility. Focusing
on a prototypical model called Z, synchronization, we characterize the finite-sample
dynamics of AMP from random initialization, uncovering its rapid global convergence.
Our theory—which is nonasymptotic in nature—in this model unveils the non-
necessity of a careful initialization for the success of AMP.

approximate message passing j random initialization j nonasymptotic analysis j
spiked Wigner model j global convergence

The problem of estimating an unknown low-rank matrix, when given access to highly
noisy observations, has been the subject of considerable studies, shedding light on a
diverse array of contexts including collaborative filtering, synchronization and alignment,
localization, and causal panel data, to name just afew (1-8). While low-rank estimators are
not in short supply, the quest for algorithms that can work all the way to the information-
theoretic limits continues to inspire theoretical and algorithmic development.

1. Motivation and An Informal Overview

In this paper, we focus on how to reconstruct a structured signal v’ 2 R" (or equivalently,
v?v?>) from noisy data:

M= viv?+ W 2 R" with > 0: [1]
This classical model is commonly referred to as a deformed Gaussian Wigner model or
spiked Gaussian Wigner model when the entries of the noise matrix W = [Wijl1jjn

are independently drawn from Gaussian distributions—more precisely, Wi; . Nd( 0, ,)aAd

w =W "U.N"(?), 1 f%r i = j—which serves as a prototypical model toward
understanding the feasibility and fundamental limits of low-rank matrix estimation.

The spectral properties of the observed matrix M have been extensively studied (see,
e.g. refs. 9—13), motivating the design of spectral methods when there is no structural
information associated with (1, 3, 14—16). In practice, there is no shortage of applications
where additional structural information about v’ is available a priori, examples including
finite-group structure (17), cone constraints (18, 19), and sparsity (20, 21), among
others. The presence of prior structure further exacerbates the nonconvexity issue
when computing the maximum likelihood estimate or Bayes optimal estimate, thereby
presenting a pressing need for the search of algorithms that can be executed efficiently.

Remarkably, the approximate message passing (AMP) algorithm emerges as an
efficient nonconvex paradigm that rises to the aforementioned challenge (22, 23).
Originally proposed in the context of compressed sensing, AMP has served as not only a
family of first-order iterative algorithms that enjoy rapid convergence (24-28) but also a
powerful statistical machinery that assists in determining the performance limits of
other statistical procedures in high-dimensional asymptotics (29-38). Over the past two
decades, AMP has also received widespread adoption in a variety of engineering and
science applications, including but not limited to imaging, wireless communications,
signal processing, and deep learning (see, e.g., refs. 39-43 and references therein).
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Inadequacy of Prior AMP Theory. Nevertheless, while the exist-
ing suite of AMP theory covers a wealth of applications, it remains
inadequate in at least two aspects. To begin with, a dominant
fraction of existing AMP theory is asymptotic in nature, in the
sense that it predicts the AMP dynamics in the large-n limit for
any fixed iteration t. For this reason, prior AMP theory falls
short of describing how AMP evolves after a growing number
of iterations (even when it is run for only logn iterations),
which stands in contrast to other optimization-based procedures
that often come with nonasymptotic analysis accommodating
a large number of iterations (3, 6, 44). Another issue that
further complicates matters stems from the requirement of an
informative initialization, that is, existing AMP theory for low-
rank estimation often requires starting from a point that already
enjoys nonvanishing correlation with the true signal (45-47).
While an informative initial estimate like spectral initialization is
sometimes plausible and analyzable, this requirement presents
a hurdle to understanding the effectiveness of other widely
adopted alternatives like random initialization. This motivates
the following natural questions that remain by and large open:

Is a warm start like spectral initialization necessary for the
success of AMIP? Can we start with a simpler initialization
scheme but still work equally well as spectral initialization?

Thus far, there has been no rigorous evidence precluding
one from starting randomly and uninformatively. As shall be
made clear shortly, tackling this issue necessitates a different
and powerful nonasymptotic framework for AMP, due to the
difficulty of tracking the AMP dynamics when the iterates exhibit
only extremely weak correlation with the truth.

Inspired by the aforementioned issues, there has been growing
interest in understanding the finite-sample performance of AMP.
A seminal work by Rush and Venkataramanan (48) [see also
its follow-up work (49)], studied AMP for sparse regression
and permitted the total number of iterations to be as large as

logn : . . T
TogTogn . This order of iteration number, however, is still highly

insufficient in understanding randomly initialized AMP, as at
least an order of logn iterations might be required for AMP to
achieve nontrivial correlation with the truth. A recent work by
Li and Wei (50) developed a nonasymptotic framework for the
spiked Gaussian Wigner model, which characterized the AMP
behavior for up to O Aogr iterations. Although the theory

o

therein is well suited to the stu)dies of spectrally initialized AMP,
it remains largely elusive whether it is capable of accommodating
random initialization, a circumstance whose resultant initial stage
is far more challenging and subtle to track.

This Paper: Randomly Initialized AMP for Z, Synchronization.
In this work, we take a step toward addressing the above chal-
lenges by studying a concrete model called Z, synchronization.
To be precise, Z, synchronization is a special case of the spiked
Gaussian Wigner model when the ground truth is known to have

a discrete structure obeying v° 2 f lpg: Here and throughout,
we impose a prior distribution on v’ = [V,?]lin such that v;

" Undf B 1 1i n:

The goal is to reconstruct v¥ on the basis of the measurements
M (Eqg. 1). This problem can be viewed as a basic example of
a more general problem—synchronization over compact groups
(1, 2, 17, 51-53)—and has an intimate connection to stochastic
block models (35, 54).

https://doi.org/10.1073/pnas.2302930120

The AMP Algorithm. Note thatitisin general intractable to calcu-
late the Bayes optimal solution directly due to computational dif-
ficulty in computing high-dimensional integrations/summations.
A common alternative is to resort to the variational inference
approximation, while the computational challenge still remains
due to the nonconvexity nature of the variational inference
objective. This motivates the search for computationally feasible
alternatives, for which AMP emerges as a natural and successful
option (46, 50, 54, 55). More concretely, given the initialization
Xo X1 2 R", AMP tailored to Z, synchronization adopts the
following update rule:

Xe+1 = Me(xe)  hO0p)ic 1(x 1), t 1, [2]
where we denote hxi := 1 P " L X; foranyvectorx = [x;]y;,
and the denoising function is'éiven by*

t(x) = ttanh(rx), _ _ _fort_1
with ;:= 4 max.n(.kx_kz_l), 1 (3]
ktanh(ixi)k, 1: 2

and ¢ :

Here, it is understood that the functions (), %() and tanh() are
applied entrywise if the input argument is a vector.

Thus far, there have been two strategies to accommodate a
growing number of iterations in the most challenging regime
(i.e., when is above but very close to the information-
theoretic threshold 1). One attempt was made by Celentano
et al. (46), which proposed a three-stage hybrid algorithm that
runs spectrally initialized AMP followed by natural gradient
descent (NGD). It was conjectured therein that the third stage
(i.e., NGD) is unnecessary. Recently, Li and Wei (50) put
forward another strategy to address this conjecture, showing
that a third refinement stage is indeed not needed as long as
spectral initialization is adopted. Despite the nonconvex nature
of the underlying optimization problem, AMP with spectral
initialization is nearly Bayes optimal.

The Effect of Random Initialization. As alluded to previously,
all existing AMP theory for this problem (45, 46, 50, 56)
requires informative initialization obtained by, for example,
spectral methods. By contrast, one initialization strategy that
enjoys widespread adoption is to initialize AMP randomly; for
instance,

1
x1 N O R (independent of M)
n

and o(xo) = O: [4]

In order to investigate whether a warm start is required for
AMP to be effective, let us first conduct a series of numerical
experiments using Eq. 4, as reported in Fig. 1. Encouragingly,
AMP with random initialization seems to work surprisingly well:
it only takes several tens of iterations to achieve nearly the same
performance as spectrally initialized AMP (note that spectral
initialization also consists of several tens of power iterations).
Such encouraging numerical results motivate us to pursue in-
depth theoretical understanding about the effect of random
initialization upon AMP convergence, which was previously
unavailable in the literature.

*Note that for ease of analysis, we adopt a slightly different scaling from that of ref. 54,
but they are equivalent up to global scaling.

pnas.org
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) 2.
Fig. 1. The correlation of ¢(x¢) and v? (i.e., JP%}—vs. iteration count t for AMP with both random and spectral initialization. Here, n = 10,000 and v*
2

ii.d.

(twice) the SD. Plots (A) and (B) correspond to = 1:15 and = 1:2, respectively.

Main Contributions and Technical Challenges. In the present
paper, we provide a nonasymptotic analysis that allows one to
predict how AMP evolves over time from random initialization,
even when the signal strength is exceedingly close to the

information-theoretic limit. Our theory is able to track the
correlation of the AMP iterates and the truth v°. In particular,
we demonstrate in Theorem 1 that the signal component in

the AMP iterates increases exponentially fast at the initial stage,

taking no more than O b% iterations to grow from @(p—lﬁ) to

O(p—z—i) (the latter of which coincides with the correlation of
spectral initialization and the truth). Furthermore, once the signal
component surpasses O(° 2—1) in magnitude, the finite-
sample AMP dynamics are very well predicted by the asymptotic
state evolution recursion derived previously for any fixed t and
n ! 1 (even though we are working with the finite-sample
regime). Our paper characterizes the performance of AMP when
initialized randomly, justifying and advocating the use of random
initialization. Put another way, a carefully designed warm start is
not necessary at all for this problem.

Built upon the analysis recipe recently developed by Li and
Wei (50), the development of our theory requires ideas far
beyond this framework in order to track AMP from random
initialization. Before continuing, we take a moment to single out
the key technical hurdles that need to be overcome.

e Prior theory based on state evolution analysis falls short of
offering “fine-grained” understanding about the AMP iterates
when they have vanishingly small correlation with the truth.
More precisely, past theory fails to measure the progress of
AMP during the initial stage when its signal component is of

strength o(1) (in fact, as small as &( p:l'—ﬁ) when initialized), but

instead treats the signal strength as 0 in the large-n limit.

e Another technical challenge results from the complicated
statistical dependency across iterations, which is particularly
difficult to cope with when the algorithm starts with random
initialization and when the number of iterations grows with
the dimension n. While prior literature tackles this issue for
other nonconvex optimization methods by resorting to either

PNAS 2023 Vol. 120 No. 31 e2302930120

?

; Unif( 1) [@_i n). We generate 20 independent copies of M according to Eq. 1 and report the averaged results, with the width of the shaded region reflecting
n

delicate leave-one-out decoupling arguments (see, e.g. ref. 57)
or global landscape analysis (see, e.g. ref. 58), these approaches
remain unavailable when analyzing AMP.

Notation. Finally, let us introduce a set of notation that shall
be useful throughout. We use " () (resp. * (})) to denote the
probability density function (p.d.f.) of a standard Gaussian
random variable (resp. a Gaussian random vector N (O, /.)).
For any matrix M, we let kMk and kMk denote the spectral
norm and the Frobenius norm of M, respectively. For any vector
x 2 [xilun = R", we denote by jxj(; (resp. x(;)) the absolute
value (resp. value) of the i-th largest entry of x in magnitude.
We write S 1 = fx 2 R? j kxka = 1g as the unit sphere
in 9. Moreover, for any two vectors x, y R", we write x y for
their Kronecker product, namely, x y = (x,y;,:::,x,y,)” R".
When a function is applied to a vector, it should be understood as
being applied in a component-wise fashion; for instance, for any
vector x = [x] D o We letx+ 1:= [xl.+ 1]1’.n

In addition, given two functions f(n) and g(n), we write
f(n) . g(n) or f(n) = O(g(n)) to indicate that jf(n)j ¢
g(n) for some universal constant ¢ $ 0 independent of n,
and similarly, f(n) & g(n) means that f(n) c2jg(n)j for
some universal constant ¢, > 0. We write f(n) = &(g(n)) if
f(n) = O(g(n)) up to logarithm factors. We also adopt the
notation f(n) g(n) to indicate that both f(n) . g(n) and f
(n) & g(n) hold simultaneously. Moreover, when we write f
(n) g(n) or f(n) = o(g(n)), it means f(n)=g(n) ! Oas
n! 1; wealsowrite f(n) g(n)ifg(n)=f(n)! Oasn!
1. We use ¢, C to denote universal constants that do not
depend on n, whose values might change from line to line.

2. Main Results

In this section, we provide precise statements of our main theo-
retical guarantees for randomly initialized AMP. For notational
convenience, let us introduce

t+1 = V?>t(Xt), [5]

https://doi.org/10.1073/pnas.2302930120
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which captures the projection of the t-th iterate (after denoising)
onto the direction of the truth v’. In some sense, this quantity
captures the size of the signal component carried by the t-th
iterate. With this notation in place, we single out a key threshold

as follows:

1
&:=min t:jij Zp 2, [6]

2

which reflects the time taken for the AMP iterate to carry
a significant signal component (note that a random initial
guess obeys jv*>x1j . © p;ﬁ , meaning that the initial signal
component is exceedingly small). Additionally, we define the state
evolution recursion starting from the &-th iteration as follows for
anyt &

z 1=2 &

?? )

tanh * (" + x) " (dx)

=7?jgj and 4 ="

(7]

Notably, the asymptotic state evolution recursion (which is
concerned with a 1-dimensional sequence in this case) is known
to faithfully track the dynamics of AMP for any fixed t in the
limit when n ! 1, although its utility in the finite-sample
regime was poorly understood in theory.

Equipped with the above definitions, our main results are
summarized in the following theorem.

Theorem 1. Consider the Z, synchronization problem with

n ¥ logn . 1 0:2:

Suppose we run AMP (cf. Egs. 2 and 3) with random initialization
5

C"f—og}n—), where ¢ > 0

is some universal constant. Then, with probability at least 1

O(n 19), the following results hold:

e (Decomposition and error bound). The AMP iterates admit the
decomposition

Eq. 4. Consider any t obeying 1 t

g1
? k
Xt =tV + ikt ot L [8a]
k=1

where ; is defined in Eq. 5, the |’s are i.i.d. Gaussian vectors

obeying A l{ld(O, 1—In)h and

keka = (4,2,5:0,1), = kS;(xt)kz =1, [8b]
(ks ° tlogn . log* n ‘ 18
n( 1)2 n( 1)3 7
e (Crossing time). The threshold & defined in Eq. 6 satisfies
&= O logn ; 9]

1
e (Nonasymptotic state evolution). For any t obeying & t
en( 1 )°

AT we have
0 ‘é%,l
log :
tot+ 28 [bgn
L @l+o KNS t [10]
h 1 )5

where f?g stand for the asymptotic state evolution parameters
defined in Eq. 7.

https://doi.org/10.1073/pnas.2302930120

Remark 1 (Range of ): Theorem 1 only focuses on the regime
where is larger than but close to 1. In fact, = 1 represents the
phase transition point for Z, synchronization (54), in the sense
that i) when < 1, no estimator performs better than the 0
estimator asymptotically, and ii) when is strictly larger than 1,
it is possible to achieve nontrivial correlation with v?. We focus
on the feasible regime by considering a more refined yet highly
challenging case with 1 & n 1=° log n (so that can be very close
to 1). While it is possible to improve the exponent 1=9, it is
beyond the scope of this paper. The upper bound 1:2 is not
crucial at all as the problem becomes easier as increases. In fact,
our result continues to hold when > 1:2, which can be justified
via a more refined characterization of the residual term as well
ag . This paper imposes this assumption 1:2 merely to
streamline our presentation and analysis.

Remark 2: We remark that while the iterates x, are random
quantities that depend on the randomnesses in W and v°, the
decomposition Eq. 8a is purely deterministic. For definitions
and properties of f g ,, ; and fk « 1 » we refer the
readers to S/ Appendix, section A.2.2. In order to ensure that

each yields a homogeneous Gaussian distribution N (0, L ),,yve
have included in , additional terms that involve extra
randomnesses fgkgkt 1 - These terms are properly subtracted
and reflected in tﬁe residual , ,As a result, the right-hand side
of expression Eq. 8a is a function of and therefore measurable
with respect to W and v°:

In the sequel, we provide some interpretations of Theorem 1
and discussions about its implications. It is assumed below that
> 1.

Gaussian Approximation. The first result Eq. 8a in Theorem 1
asserts that each AMP iterate is composed of three components:

i) a signal component \4? that aligns with the true signal v?, ii) a

noise component Z:llk that is a linear combination of i.i.d.
Gaussian vectors, and 1ii) a residual component ¢+ 1- While
this decomposition resembles that of ref. 50, we justify its validity
even in the absence of carefully designed spectral initialization.

A few remarks are in order.

¢ Regarding the noise component, Theorem 1 implies that the
1-Wasserstein distance between its distribution (denoted by

Z: 1 kt ),@nd a Gaussian distribution N 0, L ,n isat
most
t r !
X 1t logn
Wi NO, . =P —— ]
k1=

For t not too large, the noise component well approximates a
Gaussian vector N (0, 1—ln).

¢ Regarding the signal rf'omponent y 7 it is self-evident that
governs how effective AMP is in recovering the true signal.

Importantly, once j j, exceeds the threshold 1 B 1, it
follows a nonasymptotic state evolution that cIoszer resembles
the asymptotic counterpart ° {Eq. 10), a result that is made
possible thanks to the nonasymptotic nature of our analysis.

q

To summarize, up to a small error term at most © W
gﬁ, the AMP iterate is approximately
xt v’ + NO, 1In, t< On( 1)5,
n log?n
pnas.org
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even when initialized randomly. An asymptotic version of this
observation has been made in ref. 45, although the result therein
required both informative initialization and a fixed t that does
not grow with n.

Dynamics after Random Initialization. The most challenging
element of Theorem 1 lies in analyzing the initial stage after
random initialization. As shall be made clear from our analysis,
we can understand the AMP trajectory by dividing it into three
phases.

® Phase #1: escaping from random initialization. When ini-
tialized randomly with x; N (O, 1ln) AMP starts with an
extremely small signal component about the order of é)(p. ),
for which the canonical state evolution becomes vacuous.
To overcome this technical hurdle, we develop fine-grained
characterizations regarding how ; evolves in this phase (before jtj
surpasses P—1n 14), thatis,

. 1
t+1 t+ gt 1, withgr 1 N 0, n [12]
see S/ Appendix, section B.4 for details. This approximate
noisy recursion tells us that while the signal component might
be initially buried under the noise term, it takes at most

(o] m#) iterations for the signal component to rise above the

noise size and reach the order of 1=4 (51 Appendix,
section A.2.2).

e Phase #2: exponential growth. Once the signal component
exceeds In 1 in size, the AMP iterate correlates
nontrivially with the true signal. Interestingly, the signal
strength ¢+ starts to grow exponentially until reaching the order

Pr—r As we shall justify in S/ Appendix, section A.2.2, t+1
obeys

1 o(1)

je+1] 1+ ( 1)ji [13]

in this phase, which accounts for at most O( Iog") iterations.

Phase #3: local refinement. Upon reachlng the order of
Z 1, j j enters a local refinement phase, during which
randomly initialized AMP behaves similarly as AMP with
spectral or other informative initialization. In this phase, the
asymptotic state evolution Eq. 7 also starts to be effective when
predicting the evolution of (Eq. 10). As we shall solidify in S/
Appendix, section A.2.4, the signal strength ¢ satisfies

s — |
. 22. t & t+ L
“joo1 1 + 0 1
jeA (1 e T
[14]
where ? (determined by ) denotes the limit of ast. 1 1 (cf.

Eq. 7) and is unique solution of

2= 2ktanh (P (P + G)), with G N (0, 1):

[15]

Bayes Optimality. As was shown previously [see e.g., (46, Lemma
A.7)], we can construct an AMP-based estimator whose risk

coincides with that of the Bayes optimal estimator Roaves .=

PNAS 2023 Vol. 120 No. 31 e2302930120

E[v?’v’> j M]. More precisely, taking the AMP-based estimator

as

= —ql—tanh(txt), [16]
nir + B

its asymptotic risk satisfies [S/ Appendix, section C and (54)]:

. . ?7?
lim lim Eviv” w2
t n
r1 11 t 2
2 2 ’
= ||m Ekv‘v > )(ti)ayeskZF= 1 q [17]

where ? is the fixed point of the limiting state evolution (cf. Eq.
15). This together with the nonasymptotic results in Theorem 1
leads to a more refined risk characterization, as we shall prove in
SI Appendix, section C.

Corollary 1. With probability at least 1~ O(n 19), there exists

somet = O(m#)such that

4
1o e e

In words, it only takes the AMP algorithm at most O '°8"

number of iterations to achieve—up to a discrepancy_lof
eO q —the Bayes optimal risk.

n( )8

Roadmap for the Proof of Theorem 1. To provide some intuition
underlying Theorem 1, we briefly give an outline of the proof;
details can be found in S/ Appendix.

e First, focusing on the initial stage obeying 1

logn

t min &,
C

) forrsome constant ¢ > 0, we develop an upper bound on
kik2 in SI Appendix, section A.2.1 as:

kika . — [19]

here, & is a threshold defined in Eq. 6. This step, which is
accomplished by means of an inductive argument, helps us
justify the validity of the decomposition Eq. 8a with small
residual terms before the crossing time &.

Second, with the above decomposition Eq. 8a in place, we can
readily investigate (using the derived Gaussian approximation)
how the signal strength , evolves during the execution of
AMP (SI Appendix, section A.2.2). Crucially, recalling that &
reflects the first time t that satisfies j j, & 7 1(cf. Eq.
6), we can use the dynamics of 1 demonstrate that

|
&. Ogln ; [20]

in words, in spite of random (and hence uninformative)

initialization, it takes AMP at most O log"
an informative estimate.
Third, with the above control of & in place, we go on to
develop a more complete upper bound on k k ;that covers the
iterations after &, that is,

s

iterations to find

U
t1(t> &)Iogn* m
n( 1) 2

inft, &g3Togn

keka . - [21]

https://doi.org/10.1073/pnas.2302930120
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5
forany t < %n—). In order words, when the number of

. . 3 .
iterations grows larger that an order of 'Og—l”, the size of the
residual scales as

tlogn

keks . TS
This is the main content of S/ Appendix, section A.2.3,
accomplished again via an inductive argument.

e Finally, after the iteration number exceeds the threshold
&, we demonstrate in S/ Appendix, section A.2.4 that the
asymptotic state evolution (the one characterizing large-system
limits) becomes fairly accurate in the finite-sample/finite-time
regime. In particular, a connection is established between
the nonasymptotic state evolution and its asymptotic analog,
namely,

2 2 %
I 1 1
—_— ) 2.
1 tef 1) St t)
1 ¢
OE Iog3n
(t + dg n
+ O%) #:A for some ¢ > 0,
n( 1) 3

which plays a critical role in characterizing the finite-sample
convergence behavior of AMP.

Comparisons to Li and Wei (50). While Li and Wei (50) provided
a general decomposition for the AMP iterates fx,g, the theory
therein is far from sufficient when studying AMP from random
initialization. A key reason is that during the initial stage of AMP,
the signal component is vanishingly small and asymptotically
vanishing compared to the magnitude of the residual. A direct
application of ref. 50 leads to a vacuous upper bound on k k ,
and does not reveal the effectiveness of random initialization. In
contrast, the current paper focuses on showing that the signal
component will undergo a rapid growth phase and reach a level
comparable to the noise. A crucial step of our analysis is to prove
that (x ), v + ¢ 1 at the initial stage, by demonstrating
thatf (x,)garealmostorthogonal to each other (see S/ Appendix,
section B.4 for more details). Based on this approximation, we
then argue that it takes only O(logn) iterations for the signal
strength to reach a nontrivial level. Once the signal strength
has reached this level, we then proceed to uncover a new stage
in which the signal strength starts to grow exponentially fast.
Establishing all these phenomena requires fine-grained analyses
about how AMP behaves in different stages, which was not
achievable by existing analysis in ref. 50.

3. Discussions

In this paper, we have pinned down the finite-sample convergence
behavior of AMP when initialized randomly, focusing on the
prototypical Z, synchronization problem. This algorithm has
been shown to enjoy fast global convergence, as it takes no

1. A Singer, Angular synchronization by eigenvectors and semidefinite programming. Appl. Comput.
Harmonic Anal. 30, 20-36 (2011).

2. E.Abbe,J. Fan, K. Wang, Y. Zhong, Entrywise eigenvector analysis of random matrices with low
expected rank. Ann. Stat. 48, 1452 (2020).

https://doi.org/10.1073/pnas.2302930120

morre than O(M)%) iterations to arrive at a point whose risk is

4
o( _Gn('°gl ’; ) close to Bayes optimal. Our theory offers rigorous

evidence supporting the effectiveness of randomly initialized
AMP in low-rank matrix estimation. While the present paper
concentrates on a specific choice of denoising functions tailored
to Z, synchronization, we expect our analysis framework to be
generalizable to a broader family of separable and Lipschitz-
continuous denoising functions.

Moving forward, there is no shortage of research directions
worth exploring. One natural extension is concerned with other
structural prior about v?; for instance, it would be interesting to
see how randomly initialized AMP performs when v? is known to
satisfy general cone constraints (see e.g., refs. 59 and 60). Another
direction of interest is to go beyond the spiked Gaussian Wigner
model. A recent work along this line (61) studied the role of
random initialization for power iteration in the problem of tensor
decomposition, which leverages upon the AMP-type analysis
for analyzing tensor power methods. Can we further extend
these to understand (randomly initialized) AMP toward solving
more challenging problems like low-rank matrix completion and
tensor completion? Moreover, while AMP serves as a versatile
machinery for understanding various statistical procedures in
high dimensions, there are several alternative analysis frameworks
like the convex Gaussian min-max theorem (CGMT) (62—
64) and the leave-one-out analysis (2, 65, 66) that also prove
effective and enjoy their own benefits. Is there any effective
way to combine them so as to exploit all of their advantages
at once? Finally, moving beyond Z, synchronization, we believe
that our nonasymptotic framework and the analysis ideas for
understanding random initialization can both be extended to
accommodate other important settings such as sparse linear re-
gression and generalized linear models (GLMs). Take generalized
approximate message passing (GAMP) for instance (27, 67),
which can often be viewed as AMP applied to asymmetric matrix
models. More specifically, given an asymmetric design matrix X,
GAMP maintains two sequences of updates as follows

st = XFe(t)
FOG: 1(st 1), t+1 = X Gt(st)
G® Fe(e), ‘

thus resembling the update rule considered in the current paper.
One can then employ similar analysis ideas as in ref. 50, while in
the meantime keeping track of two sets of orthogonal bases and
two sequences of Gaussian random vectors. Once we are equipped
with the nonasymptotic decomposition for each sequence, the
role of random initialization can be understood via similar
yet more complicated arguments as the ones provided in the
current paper, given that these two sequences are intertwined
and rely heavily on each other. We leave these questions for
future investigation.
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